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1
Introduction

Nowadays, computers play a dominant role in various aspects of our lives and it is

difficult, especially for younger generations, to imagine a world without them. In

their early days, computers were mainly used to perform the tedious work of solving

complex mathematical evaluations. Only universities and large companies were able

to afford computers and computing power was expensive.

This changed with the advent of personal computers in the 1970’s, such as the

Altair and the Apple II. These small, yet powerful, machines for individual usage

brought the technology into both offices and homes. In this period, computers were

also introduced to the gaming market.

As computers were intended for a wider range of users, they required suitable

forms of user interaction. While punched cards provided a means for computer spe-

cialists to feed simple programs into early computer models even up to the 1960’s,

the general user required a graphical user interface and intuitive input devices, such

as mouse and keyboard.

In the years that followed, the computer industry experienced an enormous tech-

nological progress; the computing power could be increased significantly while both

the cost of production and the size of the devices were reduced. This development

lead to the emergence of computers in more and more different aspects of our lives.

Hand-held devices allow us to access the internet wherever we are. Complex mul-

timedia systems for viewing digital media, such as movies or photos, appear in our

living rooms. And computer-aided systems provide support in automobiles, produc-

tion facilities, and hospitals.

These new appliances of computer technology require novel forms of human-

computer interaction; mouse and keyboard are not always the ideal means for pro-

viding user input. Here, a lot of progress has been achieved in the areas of speech
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CHAPTER 1. INTRODUCTION

recognition systems and touch screens in recent years. In the former case, however,

it has proven difficult to devise systems that perform with sufficient reliability and ro-

bustness, i.e. apart from correctly recognizing speech it is difficult to decide whether

an incoming signal is intended for the system or whether it belongs to an arbitrary

conversation. So far, this limited the widespread use of speech recognition systems.

Touch screens, on the other hand, have experienced a broad acceptance in infor-

mation terminals and hand-held devices, such as Apple’s iPhone. Especially, in the

latter case one can observe a new trend in human-machine interaction – the use of

gestures.

The advantage of touch sensitive surfaces in combination with a gesture recog-

nition system is that a touch onto the surface can have more meaning than a simple

pointing action to select a certain item on the screen. For example, the iPhone can

recognize a swiping gesture to navigate between so-called views, which are used to

present different content to the user, and two finger gestures can be used to rotate

and resize images.

Taking the concept of gestures one step further is to recognize and interpret hu-

man gestures independently of a touch sensitive surface. This has two major advan-

tages: (i) It comes closer to our natural use of gestures as a body language and (ii) it

opens a wider range of applications where users do not need to be in physical contact

with the input device.

The success of such systems has first been shown in the gaming market by Sony’s

EyeToy. In case of the EyeToy, a camera is placed on top of the video display, which

monitors the user. Movement in front of the camera triggers certain actions and,

thus, allows the gamer to control the system.

A similar, yet more realistic, approach was taken by Nintendo to integrate ges-

ture recognition into their gaming console Wii. Hand-held wireless motion sensors

capture the movement of the hands and, thus, provide natural motion patterns to the

system, which can be used to perform virtual actions, such as the swing of a virtual

tennis racket.

The next consequent step is to perform complex action and gesture recognition

in an entirely contact-less fashion - for example with a camera based system. This

goal seems to be within reach since the appearance of low-cost 3D sensors, such as

the time-of-flight (TOF) camera. A TOF camera is a new type of image sensor which

provides both an intensity image and a range map, i.e. it can measure the distance to

the object in front of the camera at each pixel of the image at a high temporal resolu-

tion of 30 or more frames per second. TOF cameras operate by actively illuminating
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the scene (typically with light near the infrared spectrum) and measuring the time

the light takes to travel to the object and back into the camera.

Although TOF cameras emerged on the market only recently, they have been

successfully applied to a number of image processing applications, such as shape

from shading (Böhme et al., 2008b), people tracking (Hansen et al., 2008), gesture

recognition (Kollorz et al., 2008), and stereo vision (Gudmundsson et al., 2007a).

Kolb et al. (2010) give an overview of publications related to TOF cameras.

The importance of this technology with respect to commercial gesture recogni-

tion systems is reflected by the interest of major computer companies. To give an

example, in the fourth quarter of 2009 Microsoft bought one of the major TOF cam-

era manufacturers in the scope of the Project Natal, which is intended to integrate

gesture recognition into Microsoft’s gaming platform XBox 360.

This thesis will focus on the use of computer vision with TOF cameras for human-

computer interaction. Specifically, I will give an overview on TOF cameras and will

present both algorithms and applications based on this type of image sensor.

While Part I of this thesis will be devoted to introducing the TOF technology,

Part II will focus on a number of different computer vision algorithms for TOF data.

I will present an approach to improving the TOF range measurement by enforcing

the shading constraint, i.e. the observation that a range map implies a certain inten-

sity image if the reflectance properties of the surface are known allows us to correct

measurement errors in the TOF range map.

The range information provided by a TOF camera enables a very simple and ro-

bust identification of objects in front of the camera. I will present two approaches

that are intended to identify a person appearing in the field of view the camera. The

identification of a person yields a first step towards recognizing human gestures.

Given the range information, it is possible to represent the posture of the person

in 3D by inverting the perspective projection of the camera. Assuming that we have

identified all pixels depicting the person in the image, we thus obtain a 3D point

cloud sampling the surface of the person that is visible to the camera. I will present

an algorithm that fits a simple model of the human body into this point cloud. This

allows the estimation of the body pose, i.e. we can estimate the location of body parts,

such as the hands, in 3D.

To obtain further information about the imaged object, one can compute fea-

tures describing the local geometry of the range map. I will introduce a specific type

of geometric features referred to as generalized eccentricities, which can be used to

distinguish between different surface types. Furthermore, I will present an extension
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CHAPTER 1. INTRODUCTION

of these features to obtain scale-invariance by computing them on the 3D surface of

the object instead of on the image grid.

An alternative approach to computing features describing the image is the sparse

coding principle. Sparse codes have previoulsy been used for the representation of

conventional image data. Here, I extend the concept to multimodal data, i.e. a sparse

code is computed simultaneously for range and intensity data, thus yielding perfectly

registered basis functions for both types of data.

Another type of features often used in image processing aims at describing the

motion pattern visible in a sequence of images. For conventional image data one

usually estimates the 2D projection of the true motion, generally referred to as optical

flow. In case depth information is available, one can compute the so-called range

flow to estimate object motion in 3D. I review the computation of range flow and

will demonstrate how this feature can be used to reliably detect and recognize hand

gestures.

Part III of this thesis will focus on applications for TOF cameras based on the

described algorithms. The first application will be a system that tracks the human

nose and thus allows a user to control the mouse cursor with the movement of his

head. This system can be used for an alternative form of text input.

A second application focuses on the use of deictic gestures to control a slide show

presentation. The user may point at the screen to initiate the appearance of a virtual

laser pointer. Hand gestures made towards the left and the right of the screen enable

the navigation between slides.

A third application targets digital photography. Based on the range map it is

possible to create the effect of depth of field in digital photos in a post-processing

step. Depth of field is one of the most important stylistic devices in photography and

allows the artist to let parts of the image appear sharp while others become blurred,

thus guiding the attention of the spectator towards the intended content of the scene.

Although this topic does not fall into the scope of gesture-based interaction, it aptly

demonstrates the diversity of applications in which TOF cameras can be employed

and has thus been added to this work.

Many of the results in this thesis were obtained in collaboration with others. In

these cases, I will identify which contributions are my own at the beginning of the

corresponding chapter. To reflect this, I will use the personal pronoun “we” and will

do so throughout the thesis for consistency, even when the results were obtained

solely by myself.
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2
Time-of-Flight Cameras

2.1 Introduction

The TOF camera is a combined range and image sensor that delivers both a distance

and an intensity measurement at every pixel of the sensor array. The camera works

by emitting light from an active illumination unit and measuring the time the light

travels from the camera to an object and back to the sensor. Typically, the illumi-

nation unit operates near the infrared spectrum so that the active illumination does

not interfere with the human visual system, which is relatively insensitive to infrared

light.

There exist two main technical approaches to measuring the time the light takes

to travel from the camera to the object and return to the sensor. The first approach

emits pulsed light and uses an electronic shutter to control the exposure time of the

sensor with high accuracy (Iddan and Yahav, 2001; Yahav et al., 2007). Depending

on the distance of an object from the camera the amount of light that reaches a pixel

before the shutter closes varies, i.e. objects close to the camera appear brighter than

objects at larger distances. In order to be independent of the reflectivity of the ob-

ject, the camera takes a second image as a reference for which the exposure time is

extended such that the entire light pulse can return to the camera independently of

the distance of the object.

The second approach modulates the intensity of the active illumination by a pe-

riodic signal over time (Schwarte et al., 1995; Lange, 2000). The signal that returns

to the camera is a shifted version of the emitted signal, where the phase shift between

the two signals depends linearly on the distance of the object. The sensor, which is

synchronized with the illumination unit, integrates over a number of subintervals

of the periodic signal and the phase shift can be reconstructed from these measure-

ments. The duration of the integration time is related to the exposure time of a con-
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CHAPTER 2. TIME-OF-FLIGHT CAMERAS

ventional camera. This second approach will be discussed in more detail throughout

the remainder of this chapter.

An important property of TOF cameras that operate with modulated illumina-

tion is that they have a so-called non-ambiguity range. Beyond this range distances

cannot be reconstructed unambiguously. The non-ambiguity range depends on the

modulation frequency of the periodic signal. If the modulated signal passes through

more than an entire period of the signal during the time the light requires to reach

the object and return to the camera the distance measurement becomes ambiguous.

In the case of pulsed light the problem of the non-ambiguity range can be avoided.

With these cameras, one can specify a certain range interval in which the camera is

to deliver range estimates. The length of the pulse and the timing of the shutter de-

termine this range interval in which the amount of sensed light corresponds to the

distance. A drawback is however, that this interval has to be specified beforehand,

i.e. if objects in the scene are very close the camera and the shutter closes only after

the entire light pulse has returned to the sensor from every object in the scene all

objects appear at the same distance to the camera.

As mentioned above, this chapter will give an overview of the measurement prin-

ciples and properties of TOF cameras with a special focus on cameras using the ap-

proach of modulated illumination. For a more detailed review of the topic refer to

the work of Lange (2000).

2.2 State-of-the-art TOF Sensors

Over the years, a number of manufacturers offering TOF cameras have emerged on

the market. Initially, the market was mainly dominated by CSEM/MESA Imaging,

PMD Technologies, Canesta, and 3DV Systems for several years. Only recently, other

companies started to develop their own sensor technology or to integrate existing

TOF sensors into their own cameras.

A typical state-of-the-art TOF camera is the SR4000 (see Figure 2.1a), which was

developed by the Centre Swisse d’Electronique et de Microtechnique (CSEM) and is

manufactured and distributed by the Swiss company MESA Imaging. It is based on

the phase measurement principle (Oggier et al., 2004, 2005b) and the sensor has a

resolution of 176 by 144 pixels. A typical modulation frequency is 30 MHz. With this

modulation frequency the camera achieves a non-ambiguity range of 5 meters. The

accuracy of the range measurement is given as roughly 0.5% at a distance of 2 meters

from the camera. This corresponds to an accuracy of 5 millimeters. This error is with
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2.2. STATE-OF-THE-ART TOF SENSORS

respect to the variation of the range measurement between two successive frames, i.e.

it refers to the repeatability of the measurement. The absolute error is specified at

10 millimeters over the calibrated range of the camera. The SR4000 also supports

modulation frequencies of 14.5 MHz, 15 MHz, 15.5 MHz, 29 MHz, and 31 MHz. This

yields non-ambiguity ranges from roughly 5 to 10 meters. The camera achieves frame

rates up to 54 fps. The view angle is specified at 43.6o.

The CamCube (see Figure 2.1b) by the German company PMD Technologies of-

fers a slightly higher resolution of 204 by 204 pixels. The CamCube is also based

on the phase measurement principle (Schwarte et al., 1995; Xu et al., 1998). Fur-

thermore, it is fitted with a CS-mount, which allows the use of different optics. The

camera comes with two illumination units mounted on both sides of the sensor. Each

illumination unit is equipped with a fan, which is required for cooling. In contrast to

this, the SR4000 is cooled passively.

The ZCam (see Figure 2.1c) is a low-cost TOF camera developed by the Israeli

company 3DV Systems and is based on the pulsed light approach using an electronic

shutter (Yahav et al., 2007). It delivers both a range and a color image at a resolution

of 320 by 280 pixels. Despite its higher resolution, it delivers range images of poorer

quality than both the SR4000 and the CamCube. 3DV Systems was bought by Mi-

crosoft in the scope of Project Natal in the third quarter of 2009. It can be speculated

that Microsoft sees the value of the TOF technology for the gaming market.

Canesta is a TOF camera manufacturer from the United States. Their TOF sensor

technology CanestaVision (see Figure 2.1d) is also based on the phase measurement

principle (Gokturk et al., 2004).

Other manufacturers include the companies ifm electronic GmbH from Germany

(see Figure 2.1e), IEE S.A. from Luxembourg, Optrima from Belgium, and TriDiCam

from Germany. The first two companies also employ the phase measurement prin-

ciple (Nieuwenhove, 2009; Devarakota et al., 2005) whereas the latter bases their

camera on the pulsed light approach (König et al., 2007).

The world’s currently smallest TOF camera was developed by CSEM in the scope

of the EU project ARTTS (see Figure 2.1f). Similarly to the SR4000, it comes with

a resolution of 176 by 144 pixels but measures only 38 by 38 by 35.4 millimeters.

Furthermore, the camera supports modulation frequencies of up to 80 MHz and has

a low power consumption, which allows the camera to draw its power directly from

the USB port, i.e. it does not require an additional external power supply.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Examples of current TOF cameras. Figure 2.1a shows the SR4000 by MESA
Imaging. Figure 2.1b shows the CamCube by PMD Technologies. Figure 2.1c shows the
ZCam by 3DV Systems. Figure 2.1d shows the DP200 development platform by Canesta.
Figure 2.1e shows the efector PMD by ifm electronic. Figure 2.1f shows the ARTTS camera
developed by CSEM.
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2.3. ALTERNATIVE OPTICAL RANGE IMAGING TECHNIQUES

2.3 Alternative Optical Range Imaging Techniques

TOF cameras are the main focus of this work, however, there exist a number of al-

ternative range imaging techniques. These techniques can be grouped into different

categories with respect to the type of signal they detect, i.e. such systems can rely

on microwaves, visible light, or ultrasonic waves. In the scope of this work, we will

only focus on optical systems that operate by detecting electromagnetic radiation

fields that lie near the spectrum of visible light. Furthermore, one can differentiate

between systems that actively emit a signal into the scene or passively rely on an am-

bient signal present in the scene, such as daylight. To give a brief overview of existing

technologies, we will now briefly discuss triangulation, photometry, interferometry,

and time-of-flight methods.

2.3.1 Triangulation

Triangulation methods owe their name to the basic principle that the target point in

the scene and two known points that are placed at a fixed baseline distance on the

measurement device form a triangle. The range measurement is inferred from the

angles of the triangle. A major restriction of triangulation methods is that the accu-

racy of the range measurement depends on the baseline distance, i.e. the accuracy is

increased if the two known points are placed further apart which implies that there is

a limit to the miniaturization of range imaging systems based on this approach. Gen-

erally, triangulation methods can be categorized into active and passive systems, and

there exist different implementations for both categories:

Stereoscopy is an example of a passive system where the baseline is defined by

two or more calibrated cameras that image the scene from different angles. The dis-

tance to a point in the scene is determined from the difference of the position in

which the point appears in the individual images. This is achieved by establishing

point-to-point correspondences in the individual images. Naturally, correct range

estimates can only be computed if these point-to-point correspondences can be es-

tablished, i.e. stereoscopy fails if the objects in the scene are not sufficiently textured.

Apart from this restriction, the computational cost of the procedure must not be un-

derestimated, even if the search space is restricted by taking the orientation of the

baseline into account.

Laser scanners are a typical example of an active triangulation system. In such

scanners an image sensor and a laser are placed on the baseline. Early scanners

swept a laser beam across the scene which results in a dot on the image. Given the
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direction of the laser beam and the position in which the dot appears in the image,

the distance to the target can be computed. More advanced scanners project a line

(or a light sheet) onto the scene, which speeds up the acquisition process because

the scene has to be scanned only in the direction orthogonal to the projected line.

Nevertheless, laser scanners typically have a low temporal resolution in comparison

to other range imaging techniques. On the other hand, they allow a robust range

estimation with high accuracy.

Structured light refers to an extension of the laser scanning approach in the sense

that a two-dimensional light pattern is projected onto the scene. Such patterns can

e.g. be composed of parallel lines, random textures, or color-coded light. The ap-

pearance of the pattern is imaged using a camera and the shape of the scene can be

reconstructed based on the distortions of the pattern. As laser scanners, the struc-

tured light approach is able to deliver range maps of high accuracy but usually at the

cost of lower temporal resolution because often such systems use several different

patterns to obtain a single range image.

2.3.2 Photometry

Photometric approaches aim at exploiting the knowledge of the image formation pro-

cess to recover the imaged object surface. One approach is to invert the image forma-

tion process to recover the local surface orientation of the imaged objects. The shape

of the object can then be reconstructed from these local estimates. The estimation

of the local surface orientation is based on the fact that the intensity with which a

surface point of an object appears in the image depends on the orientation of the

surface normal towards the light source, the distance of the surface from the light

source, and the reflectivity of the object. Under known lighting conditions and accu-

rate assumptions on the reflectivity, the shape of an object can thus be reconstructed

from its appearance in the image.

Shape from shading is a straightforward implementation of the above procedure

that infers the shape of the object from a single image. Usually, shape from shading

is restricted to a single point-light source and assumes a uniform reflectivity of the

object. These strong constraints are generally fulfilled only under very well defined

conditions, such as in microscopy, where shape from shading can yield highly accu-

rate results.

Photometric stereo is a generalization of the shape from shading approach that

uses several images of the scene taken from the same viewing angle but under differ-

ent lighting conditions. This allows photometric stereo to infer the shape of objects
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with non-uniform reflectivity properties. However, the method is sensitive to shad-

ows that are cast under the utilized lighting conditions.

Shape from focus is a third example of a photometric method. Here, the distance

to the target is determined from the focal length of the optical system when the ob-

ject appears sharp in the image. Intuitively speaking, an optical system with a large

aperture has a small depth of field which in turn means that the optimal focal length

in which the object appears sharp can be determined with higher accuracy. Similarly

to stereoscopy, the shape from focus approach only works if the object is sufficiently

textured. Otherwise, the blur caused by defocusing the image cannot be detected.

2.3.3 Interferometry

Interferometry is an active range imaging procedure where coherent monochromatic

light is emitted towards the imaged object and the reflected signal is superimposed

with a reference signal of the same light source. Due to the use of coherent monochro-

matic light both signals can be viewed as wavefronts of the same frequency. The dis-

tance of the object induces a phase shift between these two wavefronts, which results

in constructive or destructive interference. Thus, the amplitude of the superimposed

signal can be used to estimate the distance of the object.

The Mitchelson interferometer implements this approach using a beam splitter

to split a laser beam of coherent monochromatic light into two beams. One beam is

directed at the object whereas the other is targeted at a mirror at a fixed distance to

generate the reference signal. Both reflected signals are superimposed by the beam

splitter and projected onto an integrating detector. While this setup allows range

measurements with an accuracy of fractions of the laser’s wavelength, it is not possi-

ble to obtain absolute range estimates because the non-ambiguity range is only one

half of a wavelength.

Multiple-wavelength interferometers overcome the limitation of low non-ambi-

guity ranges by using two laser beams of very similar wavelengths. This allows the

generation of beat signals with high frequency which in turn yields absolute range

measurements up to several tens of centimeters.

2.3.4 Time-of-Flight

The time-of-flight principle can be used for optical range measurement systems be-

cause we know the speed of light. A range estimate can thus be obtained by mea-

suring the time the light requires travel from the imaging system to the object and
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back to the detector. This implies that time-of-flight systems fall into the category of

active range imaging techniques.

Like TOF cameras, laser scanners can be used to implement this approach. A

major disadvantage of laser scanners is, however, that they can only measure the

distance to a single point in the scene at a time. Thus, they sweep the laser beam

across the scene to obtain an entire range image, which reduces the temporal of res-

olution of the imager.

2.3.5 Summary

In contrast to the above mentioned procedures to measuring range, a number of

advantages of the TOF sensor technology can be highlighted. These advantages can

roughly be divided into three categories: the robustness of the measurement, the

reliability of the hardware, and the cost of production.

As mentioned above, the most competitive alternative to TOF cameras are stereo

systems. However, one has to note that stereo systems only work under very restric-

tive constraints on the scene, i.e. the surfaces of the measured objects have to provide

sufficient texture for a robust estimate of the point-to-point correspondences. Here,

TOF cameras are less dependent on the scene and their main limitations in this con-

text are objects with specular surfaces. At the same time TOF cameras are widely

independent of the ambient light conditions as they rely on their own active illumi-

nation.

Although TOF cameras cannot match the accuracy of laser scanners they offer

the advantage that they use solid state sensor technology, i.e. the cameras are not

composed of moving parts which makes them very reliable and reduces maintenance

costs. Furthermore, they can achieve a higher temporal resolution as the range mea-

surement is computed in hardware in each pixel for an entire image and instead of

scanning the scene.

Finally, TOF cameras can be mass-produced at a very low cost because they are

based on standard CMOS technology. Thus, the sensor itself lies in the same price

range as regular 2D image sensors. Although, additional costs arise due to the illumi-

nation and control units, TOF systems are still cheaper than stereo cameras, which

generally involve two high quality imagers. Here, they also have the advantage of

being smaller in size.
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2.4 Measurement Principle

The most common technical realization of current TOF cameras uses an illumination

unit that emits light whose intensity is modulated by a periodic signal over time. The

time the light requires to travel from the camera to the object and back to the sensor

induces a delay between the emitted and received signal. Because of the periodicity

of the signal, this delay corresponds to a phase shift, which encodes the distance of

the object. The camera estimates this phase shift and thus determines the distance.

This measurement principle is illustrated in Figure 2.2. Here, the emitted sig-

nal e(t) is an ideal sinusoidal function. The intensity of the active illumination is

modulated according to such a periodic signal over time. The received signal s(t) is

composed of a shifted and attenuated version of e(t) and an additive constant com-

ponent. The phase shift between the signals s(t) and e(t) is denoted by φ. The

distance to the object can be inferred from φ given the modulation frequency and

the speed of light. The attenuation is due to the fact that only a small portion of the

emitted light is actually reflected back towards the optical system of the camera while

a large portion of the light is simply scattered into the scene. Hence, the amplitude A

of the received signal is smaller than that of the emitted signal. The constant additive

offset I0 has its origin in ambient infrared light that is emitted by other light sources

illuminating the scene, such as the sun. For convenience, we also introduce the DC

component B of the received signal, which corresponds to B = I0 + A. Thus the

received signal takes the form

s(t) = B +A · sin(ωt− φ)
�� ��2.1

where ω denotes the angular frequency which relates to the modulation frequency

fmod by ω = 2πfmod.

As demonstrated by Lange (2000), the parameters ϕ, A, and B can be recon-

structed by sampling the received signal s(t) at four points over one modulation pe-

riod Tmod = 1
fmod

. This yields samples A0, . . . , A3, where Ak = s(k4 · Tmod) =

B + A · sin(k · π
2 − φ). Given these four samples, the parameters of the received
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Figure 2.2: Measurement principle of TOF cameras based on an intensity-modulated ac-
tive illumination unit. The phase difference between the emitted signal e(t) and the received
signal s(t) is denoted by φ, the amplitude of the received signal corresponds to A, the off-
set (or DC component) of received signal is given by B, and I0 represents the ambient light
present in the scene.

signal can be reconstructed as follows

Phase φ = atan

(
A0 −A2

A1 −A3

) �� ��2.2

Amplitude A =

√
(A0 −A2)2 + (A1 −A3)2

2

�� ��2.3

Offset B =
A0 +A1 +A2 +A3

4

�� ��2.4

This concept is illustrated in Figure 2.3. Note that the sampling is done in synchrony

with the modulation frequency of the illumination unit, i.e. the first sample is taken

at the beginning of a new period.

Given the phase shift φ and the modulation frequency fmod we can compute the

distance of the object. To this end, we consider the time delay between the emitted

and received signal which corresponds to φ
ω with ω = 2πfmod. During this time de-

lay, the light travels a distance of φ c
ω , where c denotes the speed of light. Because the

light has to travel from the camera to the object and back to the sensor, the distance

of the object is given by

R =
φ c

2ω
.

�� ��2.5
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Figure 2.3: The received signal s(t) is sampled at four points over one modulation pe-
riod of the emitted signal e(t), i.e. the sampling is synchronized with the modulation of the
emitted signal. This yields the samples A0, . . . , A3 which enable the reconstruction of the
parameters of the received signal.

2.5 Technical Realization

In practice, an ideal sampling of the received signal cannot be realized. Instead, the

signal has to be integrated over certain interleaving time intervals to approximate the

samplesA0, . . . , A3. Before going into more detail on how this is done on the sensor,

let us consider how the length of the integration interval ∆t affects the reconstruc-

tion of the signal s(t). Note that the integration theoretically equals a convolution

of the signal s(t) with a rect function followed by an ideal sampling under a signal

processing point of view. Thus, it suffices here to investigate the effect of the convo-

lution on the signal s(t). Figure 2.4 visualizes this effect for three different lengths

of the integration interval.

In the first case, an infinitesimal interval is used, which corresponds to the ideal

sampling with a Dirac δ. When a signal is convolved with a Dirac in the time domain,

each frequency component is multiplied with a constant one in the Fourier domain.

Naturally, the frequency components of the sine function are not altered and the

signal s(t) can be reconstructed perfectly.

Extending the length of the integration interval ∆t results in the convolution

with a rect function h(t) = 1
∆trect

(
t
∆t

)
, which corresponds to a multiplication with

the transfer function H(f) = sinc(πf∆t) in the Fourier domain, where we define

sinc(x) = sin(x)
x . At the modulation frequency fmod, the transfer function takes the
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Figure 2.4: Influence of the physical realization of an ideal sampling by integrating over
a certain time interval ∆t. The left column shows the integration in the time domain with
intervals ∆t = 0 (top), ∆t < Tmod (middle), and ∆t = Tmod (bottom). The right column
shows the effect in the Fourier domain. The signal is either not affected (top), attenuated
(middle), or lost (bottom).
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form H(fmod) = sinc(π ∆t
Tmod

). Thus, the frequency components of s(t) are atten-

uated as depicted in Figure 2.4. This results in an attenuation of the amplitude of

the received signal, which has a negative effect on the reconstruction of the signal

parameters ϕ, A, and B in the presence of noise.

In case we further elongate the integration interval to an entire period of the mod-

ulation frequency (∆t = Tmod), the zero-crossings of the transfer function H(f) fall

in place with the frequency components of s(t), i.e. H(fmod) = 0, and we lose all

information on the signal.

This effect is leads us to the concept of the demodulation contrast. In the case

that ∆t < Tmod, the transfer function H(f) does not affect the phase of the sig-

nal s(t) and the phase shift φ can be estimated as defined in Equation (2.2). The

illustration above indicates however that an increase of the integration interval ∆t

leads to an attenuation of the received signal’s amplitude A relative to the amplitude

Asig of the emitted signal. The ratio between the received amplitude and the emitted

amplitude is referred to as the demodulation contrast, which is defined as

cdemod =
A

Asig
.

�� ��2.6

Thus, integrating over a time window of length ∆t yields a demodulation contrast

of cdemod = sinc(π ∆t
Tmod

). Again, we can observe that the demodulation contrast and

thus the robustness of the reconstruction increases for small ∆t.

We now consider the case where the length of the integration interval is one

fourth of the modulation period (∆t = Tmod
4 ). In this case, we obtain a demodula-

tion contrast of cdemod =
√
8

π ≈ 0.90 and the samples A0, . . . , A3 can be estimated

consecutively during one period, as illustrated in Figure 2.5. In practice, this is done

by collecting and storing the photoelectrons generated on the sensor during one of

these time intervals in corresponding potential wells - one for each sample Ak. This

is achieved by applying an electric field over the light sensitive area of the pixel to

guide the photoelectrons into one of the potential wells. This electric field is actu-

ated in synchrony with the illumination unit so that the photoelectrons are driven

cyclically into one of the four potential wells corresponding to A0, . . . , A3 during

one cycle of the modulation period. This approach is known as the 4-tap pixel.

In order to obtain reliable estimates Ak, the total exposure time for one image is

extended over several periods of the modulation signal and the above procedure of

sampling s(t) is repeated for each period during the entire duration of the exposure

time. Apparently, an increased exposure time reduces the frame rate of the camera
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Figure 2.5: Illustration of the measurement sequence for the samples A0, . . . A3 for both
the 4-tap pixel and the 2-tap pixel.

while increasing the signal-to-noise ratio of the measurement.

While the 4-tap pixel resembles a straightforward implementation of the mea-

surement principle introduced in Section 2.4 it has a major disadvantage. The four

potential wells for storing the photoelectrons take up a large portion of the total space

of one pixel. Thus, the actual photo-sensitive area of a pixel is very small, i.e. the 4-

tap pixel has a low so-called fill factor. As a result either the size of a pixel has to be

very large or the exposure time of the camera has to be increased. Both approaches

have their drawbacks. Large pixels reduce the effective spatial resolution of the cam-

era. At the same time, the extension of a pixel is limited because the photoelectrons

travel to the potential wells by diffusion and the expected amount of time for this

diffusion process increases quadratically with the mean distance the photoelectrons

have to travel before reaching the potential wells. Longer exposure times reduce the

temporal resolution and also introduce so-called motion artefacts, which we will dis-

cuss in more detail at a later point.

Instead of implementing the 4-tap pixel, most recent cameras rely on the so-

called 2-tap pixel. Instead of having four potential wells for storing the photoelec-

trons during the estimation of A0, . . . , A3, the samples are estimated in two consec-

utive steps: First, the sensor integrates over two intervals of the periodic signal to

estimate A0 and A2. For this operation only two potential wells are required; hence,
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the name 2-tap pixel. AfterA0 andA2 have been estimated over a number of periods

of the modulation signal, the two values are read out and stored in an internal regis-

ter of the camera. Once the readout is completed, the sensor shifts to measuring A1

and A3. In principle, the camera performs two independent measurements and the

distance can only be computed after these two measurements have been completed.

This approach is also depicted in Figure 2.5.

A main drawback of the 2-tap implementation originates from the fact that the

sensor makes two independent measurements at different points in time to obtain

one range estimate in a pixel. Imagine that an object boundary moves across the

pixel in the moment the sensor switches between the two measurements. In that

case, A0 and A2 correspond to a different phase shift than A1 and A3. Thus, both

the computation of φ and the range value are erroneous.

Furthermore, we integrate over a time window∆t = Tmod
2 to estimateA0, . . . , A3

in the 2-tap pixel. This results in a lower demodulation contrast of cdemod = 2
π ≈

0.64 in comparison to cdemod ≈ 0.90 for the 4-tap pixel. Although the 4-tap pixel

seems to be the design of choice from this point of view, the 2-tap pixel has the major

advantage that the fill factor is increased significantly. At the same time, the pixel is

easily scalable, i.e. the potential wells are located on opposite sides of the pixel and

the distance between the containers can be set to the optimal value. Here, the op-

timal value refers to a tradeoff between a low mean distance for the photoelectrons

to travel to the potential wells and a large area of the light sensitive area. The scala-

bility results from the fact that the pixels can be extended easily along the axis that

is perpendicular to the potential wells to further increase the light-sensitive area of

the pixel. This is the reason why the majority of TOF cameras are based on the 2-tap

pixel.

2.6 Measurement Accuracy

The accuracy of the TOF range measurement depends mainly the signal-to-noise ra-

tio of the samples A0, . . . , A3. The signal-to-noise ratio is influenced by two differ-

ent factors. The first is related to the conditions of the background illumination, i.e.

the intensity of the ambient light illuminating the scene. The second depends on the

actual process of generating the emitted signal e(t) by the active illumination unit.

The influence of the ambient light can be reduced to a large extent through the

use of a bandpass filter tuned to the wave length of the infrared light of the active

illumination and a circuit that actively suppresses the contributions of the ambient
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light to the measurements of A0, . . . , A3,

In the second case, the generation of the signal e(t), the noise sources can only be

partially compensated. One deviation of a technical implementation from the mea-

surement principle introduced in Section 2.4 is that the signal e(t) will not be ideally

sinusoidal. This has the effect that the range measurement deviates depending on

the distance of the object from the camera. Since this error is systematic, it can be

corrected (Lange, 2000; Rapp, 2007).

Another noise source related to the illumination unit is the so-called photon

shot noise, which is a principal physical limitation of sensors based on active il-

lumination. It refers to the fact that light sources do not emit a steady stream of

photons at well defined time intervals, but that the generation of photons happens

according to a Poisson distribution, i.e. the time interval between the emission of

photons represents a Poisson-distributed random variable. Given that the standard

deviation of such a Poisson-distributed random variable is the square root of the

mean, the same is true for the standard deviations of the samples A0, . . . , A3, i.e.

σAi = sqrt(Ai) ∀i = 0, . . . , 3.

According to Lange (2000) this yields a standard deviation of the phase mea-

surement

∆φ =

√
B

A
√
2

�� ��2.7

and, hence, a standard deviation of the range measurement

∆R =
c

4πfmod
·

√
B

cdemodAsig

√
2
.

�� ��2.8

Equation (2.8) shows that the measurement accuracy is governed by three factors. As

already mentioned above, a high amount of background illumination increases the

measurement error. At the same time, the measurement error is reduced if we in-

creased the optical power of the active illumination, i.e. if we increase the amplitude

of the signal e(t). Here, care has to be taken in situations where the TOF system has

to comply with standards of eye safety. Finally, increasing the modulation frequency

also reduces the measurement error. Note however, that a higher demodulation fre-

quency reduces also the disambiguity range and that there is a physical limitation in

terms of the circuitry on the sensor that toggles between the samples A0, . . . , A3.

Generally speaking, Equation (2.8) reflects a principal physical limitation of the

measurement accuracy and TOF cameras currently on the market are already close

to reaching this limit (Büttgen et al., 2005).
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2.7 Limitations

As the previous sections have shown, TOF cameras constitute very appealing image

sensors. Throughout this work we will see that they can ease numerous computer

vision applications because they provide both range and intensity data. However,

there also exist a number of limitations of the TOF sensor technology that need to

be taken into account when designing applications for such cameras. Apart from the

above mentioned non-ambiguity range, these limitations entail measurement errors

which can be put into the categories of systematic errors, errors due to multiple re-

flections in the scene, wrong range estimates at jump edges (so-called flying pixels),

motion artefacts, and problems that arise when multiple cameras are used together.

In this section, we will review these sources of measurement errors and discuss so-

lutions that avoid or overcome these limitations.

2.7.1 Non-Ambiguity Range

As mentioned earlier in this chapter, TOF cameras based on the modulation prin-

ciple can only yield non-ambiguous range measurements within a certain distance

from the camera. This effect depends on the modulation frequency of the active illu-

mination unit.

To further investigate this effect, let us recall Equation (2.5) as it was introduced

in Section 2.4:

R =
φ c

2ω
.

�� ��2.9

As before, φ denotes the phase shift between the periodic signal that was emitted

by the camera and the delayed version that is reflected back into the camera from

the scene. The modulation frequency fmod contributes to the denominator via the

relation ω = 2πfmod.

A TOF camera can only disambiguate distances of objects when the signal does

not pass through more than one period of the modulation signal while the light trav-

els to the object and back to the camera. Thus, the non-ambiguity range Rmax is

defined as:

Rmax =
φ c

2ω
.

�� ��2.10

Given a typical modulation frequency of fmod = 30MHz the non-ambiguity

range limits well-defined range measurements to up to 5 meters distance from the
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camera.

There exists, however, a simple approach to increase the non-ambiguity range.

If two images are taken of the same scene with different modulation frequencies,

one can reconstruct the distance unambiguously up to a range that corresponds to

the least common multiple of the two corresponding non-ambiguity ranges. This

procedure is limited to cases, where the objects undergo no or only limited motion

in front of the camera. Otherwise, wrong distances will be estimated for pixels that

move across object borders from one frame to the other and thus depict different

objects at different distances in the two images.

2.7.2 Systematic Errors

As already mentioned in Section 2.6, TOF cameras can produce systematic errors, i.e.

range measurement errors that are induced by deviations from an ideal sinusoidal

signal e(t) of the illumination unit. Theoretically, these errors can be compensated

by using a higher number of samples Ak to estimate the phase shift φ (Lange, 2000;

Rapp, 2007). On the contrary, this is impractical as it would introduce higher com-

putational cost and abet motion artefacts (Kolb et al., 2009).

An alternative is to correct systematic errors in a post-processing step. This can,

for example, be done using look-up tables (Kahlmann et al., 2007) or correction func-

tions such as b-splines (Lindner and Kolb, 2006).

2.7.3 Multiple Reflections

The working principle of TOF cameras is based on the assumption that the modu-

lated light that reaches a pixel is reflected from a single object at a well defined dis-

tance and that the light travels directly back into the camera. In this case, the camera

receives a single signal s(t) that has a phase shift φwith respect to the emitted signal

e(t) that corresponds to the distance of the object. This assumption may be violated

due to multiple reflections that can occur both in the scene and inside the camera.

Multiple reflections in the scene refer to the situation when light of the active

illumination travels not solely between the camera and the imaged object, but when

it is reflected at additional objects in the scene along its path from the camera to the

object and back to the sensor. In such a case, the distance travelled by the light is

longer, which results in an increased time of flight and, thus, a false range estimate

(Gudmundsson et al., 2007b).

Multiple reflections inside the camera have the effect that stray light from other
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objects than the imaged one reaches a pixel. This stray light is due to unwanted

reflections in the lens and the body of the camera. Again, this results in a false range

measurement (Falie and Buzuloiu, 2007).

While the effect of multiple reflections inside the camera can be attenuated by

coating the inside of the camera with a non-reflective substance, the problem of mul-

tiple reflections in the scene is a fundamental one of the TOF principle. Currently,

there exists no general solution to this problem other than arranging the scene in a

way that avoids indirect reflections.

2.7.4 Flying Pixels

A related phenomenon is that of the so-called flying pixels. Again, the effect oc-

curs because light from different objects at different distances reaches the same pixel

which results in a false range measurement. In this case, the border between the ob-

jects runs through a single pixel. Thus, the range measurement is composed of the

distances of both objects. The contribution of each object to the distance measure-

ment depends on the relative amount of light it sends to the pixel. In case the scene

is shifted slightly in front of the camera this relative amount changes and, thus, the

corresponding pixel appears to be flying between the objects in the 3D scene.

2.7.5 Motion Artefacts

Motion artefacts occur mainly in implementations of the measurement principle de-

scribed in Section 2.4 that are based on a 1-tap or a 2-tap pixel. These artefacts are

due to the fact that the samples A0, . . . , A3 are not taken simultaneously but sub-

sequently. As described above, the 2-tap pixel first estimates A0 and A2 and then

obtains A1 and A3 in a second measurement. In case an object moves between these

two measurements, they will be inconsistent. As a result the range estimate will be

erroneous. This effect is most severe if a jump edge moves across a pixel between the

two measurements.

Note however, that the resulting range measurement does not reflect the mean

between distances to the object seen during the two measurement. Instead, the esti-

mated range value can be both smaller than the smallest and greater than the largest

range value imaged by a pixel during the time all samples A0, . . . , A3 are taken. For

more detailed reading on this topic refer to Lindner and Kolb (2009).
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2.7.6 Multi-Camera Setups

The use of TOF cameras operating at the same modulation frequency in a configu-

ration where light from one camera’s illumination unit can reach the sensor of the

other camera corrupts the range measurement. This is due to the fact that the sensor

cannot disambiguate between the phase shift induced by its own illumination unit

and that of another camera.

A straight forward way of circumventing this problem is to run the cameras at

different demodulation frequencies. The demodulation approach to measuring the

phase shift responds only to a very narrow band of frequencies near the modulation

frequency; all other frequencies will merely appear as an increase in background il-

lumination (Lange, 2000).

A second solution to using several cameras in the same environment is to mod-

ulate the illumination by a pseudo-noise signal. In case each camera uses a different

code, the sensor will only detect the phase shift corresponding to its own emitted

signal (Heinol, 2001).
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3
Introduction

The second part of this thesis is devoted to computer vision algorithms designed for

TOF camera data. In this context, we will demonstrate the advantage of a combined

image sensor that delivers both range and intensity, i.e. we will explicitly show how

the combination of both types of data significantly improves the performance of al-

gorithms in contrast to using either data alone. The first section of this chapter will

focus on the improvement of the range measurement by exploiting the intensity im-

age under the well-defined lighting conditions provided by the TOF camera illumi-

nation. Secondly, we will address the topic of image segmentation. Here, the goal

is to identify connected image regions that depict an object or a person present in

the scene. These results will then be used in an algorithm for the estimation of hu-

man pose that fits a simple model of the human body in 3D. Finally, we will turn

to the discussion of suitable image features for encoding relevant properties of TOF

images. In this context, we will first discuss geometrically motivated features that

are related to the Gaussian curvature. We will then reformulate the computation of

these features in 3D to achieve scale invariance. A third type of features is obtained

using the sparse coding principle. These three types of features will be evaluated in

the context of detecting facial features, such as the nose. Finally, we will turn to the

computation of range flow and will use the resulting 3D motion vectors for the recog-

nition of human gestures. In the following, we will give a brief overview of the four

topics discussed in the scope of Part II of thesis within Chapter 4 through Chapter 7.

Shading Constraint Improves TOF Measurements

In Chapter 4, we describe a technique for improving the accuracy of range maps mea-

sured by a TOF camera. Our technique is based on the observation that the range

map and intensity image are not independent but are linked by the shading con-
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straint: If the reflectance properties of the surface are known, a certain range map

implies a corresponding intensity image. In practice, a general reflectance model

(such as Lambertian reflectance) provides a sufficient approximation for a wide range

of surfaces. We impose the shading constraint using a probabilistic model of image

formation and find a maximum a posteriori estimate for the true range map. We

present results on both synthetic and real TOF camera images that demonstrate the

robust shape estimates achieved by the algorithm. We also show how the reflectivity

(or albedo) of the surface can be estimated, both globally for an entire object and

locally for objects where albedo varies across the surface.

Image Segmentation

In image analysis, a very helpful step towards interpreting the content of an image

is to assign the pixels of the image to different categories. Often, one uses a category

for the background of the scene and one category for each object appearing in front

of the background. In Chapter 5, we describe how the available range map can be

used effectively in combination with the intensity data to devise two very efficient

algorithms that reliably identify the pixels belonging to a person in front the camera.

One method relies on a previously captured model of the background and determines

the person as a deviation from this background model. The second method operates

on a histogram of the range values to identify the object closest to the camera. In

both cases, the range data of the TOF camera makes it possible to obtain very robust

segmentation results even in complex scenes.

Pose Estimation

In Chapter 6, we describe a technique for estimating human pose from an image

sequence captured by a TOF camera. The pose estimation is derived from a simple

model of the human body that we fit to the data in 3D space. The model is represented

by a graph consisting of 44 vertices for the upper torso, head, and arms. The anatomy

of these body parts is encoded by the edges, i.e. an arm is represented by a chain of

pairwise connected vertices whereas the torso consists of a 2-dimensional grid. The

model can easily be extended to the representation of legs by adding further chains

of pairwise connected vertices to the lower torso. The model is fit to the data in

3D space by employing an iterative update rule common to self-organizing maps.

Despite the simplicity of the model, it captures the human pose robustly and can

thus be used for tracking the major body parts, such as arms, hands, and head. The
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accuracy of the tracking is around 5–6 cm root mean square (RMS) for the head and

shoulders and around 2 cm RMS for the head. The implementation of the procedure

is straightforward and real-time capable.

Features

The discussion of TOF image features in Chapter 7 is divided into four individual

parts. The first part in Section 7.1 will discuss the so-called generalized eccentricities,

a kind of feature that can be used to distinguish between different surface types, i.e.

one can for example distinguish between planar surface regions, edges, and corners

in 3D. These features were employed for detecting the nose in frontal face images and

we obtained an equal error rate of 3.0%. Section 7.2 will focus on a reformulation

of the generalized eccentricities such that the resulting features become invariant

towards scale. This is achieved by computing the features not on the image grid but

on the sampled surface of the object in 3D. This becomes possible by using the range

map to invert the perspective camera projection of the TOF camera. As a results, one

obtains data that is irregularly sampled. Here, we propose the use of the Nonequi-

spaced Fast Fourier Transform to compute the features. As a result, one can observe

a significantly improved robustness of the nose detection when the person is moving

towards and away from the camera. An error rate of zero is achieved on the test data.

The third category of image features is computed using the sparse coding prin-

ciple, i.e. we learn an image basis for the simultaneous representation of TOF range

and intensity data. We show in Section 7.3 that the resulting features outperform

features obtained using Principal Component Analysis in the same nose detection

task that was evaluated for the geometric features. In comparison to the generalized

eccentricities we achieve a slightly reduced performance. On the other hand, in this

scenario the features were simply obtained under the sparse coding principle without

incorporating prior knowledge of the data or properties of the object to be detected.

The fourth type of features, presented in Section 7.4, aims at the extraction of the

3D motion of objects in the scene. To this end, we rely on the computation of range

flow. The goal is the recognition of human gestures. We propose to combine the

computation of range flow with the previously discussed estimation of human pose,

i.e. we explicitly compute the 3D motion vectors for the hands of the person perform-

ing a gesture. These motion vectors are accumulated in 3D motion histograms. We

then apply a learned decision rule to assign a gesture to each frame of a video se-

quence. Here, we specifically focus on the problem of detecting that no gesture was

performed, i.e. each frame is either assigned to a one of the predefined gestures or to
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the class indicating that no gesture was performed. We achieve detection rates above

90% for three investigated hand gestures.
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4
Shading Constraint Improves TOF

Measurements

4.1 Introduction

In this chapter, we present a technique for improving the accuracy of the TOF cam-

era’s range measurements, based on the insight that the range and intensity mea-

surements are not independent, but are linked by the shading constraint: Assuming

that the reflectance properties of the object surface are known, we can deduce the in-

tensity image that should be observed. In practice, a general reflectance model (such

as Lambertian reflectance) will provide an acceptable approximation to the proper-

ties of a wide range of objects.

In theory, the shading constraint can be used to reconstruct the range map from

an intensity image alone; this idea has been exploited in a wide range of shape from

shading (SfS) algorithms (see (Zhang et al., 1999; Durou et al., 2008) for surveys).

A principal limitation of these algorithms, however, is that they cannot determine

whether intensity changes are caused by the object’s shape or by changes in the ob-

ject’s reflectivity (or albedo). Because of this, the object is usually assumed to have

constant albedo; this limits the applicability of SfS methods.

The range map measured by the TOF camera places a strong additional con-

straint on the shape of the object, allowing ambiguities that may exist in the pure SfS

setting (Durou and Piau, 2000) to be resolved and enabling the albedo of the surface

to be estimated, both globally for an entire object as well as locally for objects where

albedo varies across the surface.

This chapter describes results obtained in collaboration with Martin Böhme, who formulated the
probabilistic model of image formation used to enforce the shading constraint. Martin Böhme and I
contributed approximately equally to refining and implementing the method. The work described here
has previously been published in (Böhme et al., 2008b, 2010).
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Besides the shading constraint, there are also other ways of fusing range and

intensity data. A number of authors exploit the fact that an edge in the intensity

data often co-occurs with an edge in the range data. Nadabar and Jain (1995) use a

Markov random field (MRF) to identify different types of edges. Diebel and Thrun

(2006) use edge strengths estimated on a high-resolution color image to increase the

resolution of a low-resolution depth map.

The idea of integrating the shading constraint with other range information has

been investigated by a number of researchers. Most of this work focuses on the inte-

gration of SfS with stereo. These two techniques complement each other well because

SfS works well on uniformly colored areas whereas stereo requires surface texture

to find stereo correspondences. Because of this, the fusion of SfS with stereo has a

slightly different focus than the fusion of SfS with a TOF range map. In the stereo

case, we only have range information in textured areas and need to rely on shading

cues in untextured areas. In the TOF case, we have a dense range map and wish to

fuse information from TOF and shading at the same pixel.

Many approaches to the fusion of SfS and stereo (see for example the work of

Thompson (1993), Fua and Leclerc (1995), and Hartt and Carlotto (1989)) use an

objective function that depends directly on the two or more images obtained from a

multi-camera setup; for this reason, they do not generalize to settings where a range

map has been obtained in some other way than through stereo. Samaras et al. (2000)

combine stereo with SfS by using stereo in textured areas and SfS in untextured areas,

but they do not perform a fusion of stereo and SfS at the same location. Haines

and Wilson (2007, 2008) fuse stereo and SfS in a probabilistic approach based on a

disparity map and the shading observed in one of the stereo images. Because there is

a one-to-one correspondence between disparity and range, the approach could also

be used with range maps obtained by arbitrary means. However, since color is used

to segment areas of different albedo, the approach is not suitable for use with TOF

cameras, which typically only deliver a grayscale image.

There are several other approaches that combine shading with a range map ob-

tained by arbitrary means; stereo may be used, but it is not essential to the formu-

lation of the algorithm. Leclerc and Bobick (1991) use a stereo range map to initial-

ize an iterative SfS method. Cryer et al. (1995) use a heuristic that combines low-

frequency components from the stereo range map with high-frequency components

from the SfS range map. Mostafa et al. (1999) use a neural network to interpolate

the difference between the SfS result and a more coarsely sampled range map from a

range sensor; the SfS result is corrected using this error estimate. These approaches
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allow arbitrary range maps to be used, but they are all somewhat ad-hoc.

Our approach to improving the accuracy of the range map using the shading con-

straint is based on a probabilistic model of the image formation process. We obtain

a maximum a posteriori estimate for the range map using a numerical minimiza-

tion technique. The approach has a solid theoretical foundation and incorporates

the sensor-based range information and the shading constraint in a single model;

for details, see Section 4.2. The method delivers robust estimation results on both

synthetic and natural images, as we show in Section 4.3.

4.2 Method

4.2.1 Probabilistic Image Formation Model

We seek to find the range map R that maximizes the posterior probability

p(XR,XI|R,A) p(R) p(A).
�� ��4.1

p(XR,XI|R,A) is the probability of observing a range map XR and an intensity image

XI given that the true range map describing the shape of the imaged object is R and

that the parameters of the reflectance model are A. Typically, A is the albedo of the

object – we will discuss this in more detail below. p(R) is a prior on the range map,

p(A) is a prior on the reflectance model parameters.

The conditional probability p(XR,XI|R,A) is based on the following model of

image formation: First of all, we assume that p(XR,XI|R,A) can be written as fol-

lows:

p(XR,XI|R,A) = p(XR|R,A) p(XI|R,A).
�� ��4.2

In other words, the observations XR and XI are conditionally independent given R

and A.

We now assume that the observed range map XR is simply the true range map R

with additive Gaussian noise, i.e.

p(XR|R,A) = N (XR − R|µ = 0, σR(R,A)).
�� ��4.3

Note that the standard deviation σR is not constant but can vary per pixel as a func-

tion of range and albedo. As we will see in Section 4.2.4, the noise in the range mea-

surement of a TOF camera depends on the amount of light that returns to the camera.

The shading constraint postulates that a given range map R is associated with
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an intensity image I(R,A), where the function expressed by I depends on the re-

flectance model. We generally use the Lambertian reflectance model, see Section 4.2.2;

in this case, A is the albedo of the object, which may vary from pixel to pixel. Again,

we assume that the intensity image is corrupted by additive Gaussian noise, i.e.

p(XI|R,A) = N (XI − I(R,A)|µ = 0, σI).
�� ��4.4

For the range map prior p(R), we use the shape prior introduced by Diebel et al.

(2006), which favors surfaces with smoothly changing surface normals. We tessel-

late the range map into triangles (see Section 4.2.3) and compute the surface normal

nj for each triangle. The shape prior is then given by the energy function

ER(R) = wR

∑
triangles j,k

adjacent

∥nj − nk∥2,
�� ��4.5

which implies the distribution p(R) = 1
Z exp(−ER(R)), whereZ is a normalization

constant. wR is a constant that controls the dispersion of the distribution.

We now turn to the prior p(A) for the parameters A of the reflectance model. In

the Lambertian reflectance model, these are the albedo values at each pixel location.

We will investigate several alternatives for the prior p(A): (i) “Fixed albedo”: A single

albedo value, specified beforehand, is used for all pixels. (ii) “Global albedo”: The

same global albedo is used for all pixels, but its value is allowed to vary; we assume a

uniform distribution for this global albedo. (iii) “Local albedo”: Each pixel location

may have a different albedo, and the prior p(A) favors smooth albedo changes. In

this latter case, we use an energy function

EA(A) = wA

∑
pixels j,k
adjacent

|aj − ak|,
�� ��4.6

which implies the prior p(A) = 1
Z exp(−EA(A)), in analogy to the shape prior de-

fined above.

As usual, we take the negative logarithm of the posterior and eliminate constant
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additive terms to obtain an energy function

E(R,A) =
∑
j

(XR
j −Rj)

2

2σ2
R

+

∑
j

(X I
j − Ij(R,A))2

2σ2
I

+

ER(R) + EA(A),

�� ��4.7

where the index j runs over all pixels. (For the “fixed albedo” and “global albedo”

models, the term EA(A) is omitted.) Note that all the terms in the energy function

are unitless due to multiplication or division by the constants σR, σI, wR and wA.

We find the maximum a posteriori estimate for the range map by minimizing

E(R,A) using the Polak-Ribière variant of the nonlinear conjugate gradient algo-

rithm (see for example (Press et al., 1992)). As the starting point for the minimiza-

tion, we use the observed range map XR, smoothed using a median filter, and an

albedo guess (see Section 4.2.4). The gradient of E(R,A) is computed numerically

using a finite differences approximation. The parameters σR, σI, wR and wA should

be set to reflect the noise characteristics of the sensor and the statistical properties

of the scene.

4.2.2 Lambertian Reflectance Model

Under the Lambertian model of diffuse reflection (Trucco and Verri, 1998), the in-

tensity I with which a point on an object appears in the image is obtained as follows:

I = a
n · l

r2
,

�� ��4.8

where n is the surface normal, l is the unit vector from the surface point towards

the light source, r is the distance of the surface point to the light source, and a is a

constant that depends on the albedo of the surface, the intensity of the light source,

and properties of the camera such as aperture and exposure time. For brevity, we

will refer to a simply as the albedo, because any changes to a across the scene are

due to albedo changes, while the properties of the light source and camera remain

constant.

On a TOF camera, the light source can be assumed to be co-located with the

camera, and so r is simply the range value for the surface point, and l is the unit

vector from the surface point to the camera.
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4.2.3 Computation of Surface Normals

Both the Lambertian reflectance model and the shape prior for smooth surfaces re-

quire the normals of the surface to be known; some care needs to be taken when

computing these normals on a discretely sampled range map. An obvious way is

to compute the cross product of two tangent vectors p(i + 1, j) − p(i − 1, j) and

p(i, j + 1) − p(i, j − 1) (where p(i, j) are the three-dimensional coordinates of

the point corresponding to pixel (i, j)), but surface normals calculated in this way

can lead the minimizer astray: Because the normals of pixels with even indices de-

pend only on the positions of pixels with odd indices, and vice versa, neighboring

pixels are not constrained to have similar range values, and the minimizer may hap-

pily compute a surface with a “checkerboard” pattern, where neighboring pixels are

alternately displaced upwards and downwards by a certain offset, instead of forming

a smooth surface.

For this reason, care needs to be taken when evaluating the reflectance model

and shape prior to obtain a formulation that is physically realistic and does not lead

the minimizer astray. For any given pixel, the range and intensity measured by the

camera are averages over the area covered by the pixel. Nevertheless, we will assume

that these values correspond to the range and intensity of an individual point on

the object’s surface. To obtain a continuous surface between this grid of points, we

tessellate the grid into triangles. Of the many possible tessellations, we choose one

where the diagonals dividing a quad of pixels into two triangles run parallel.

To compute the intensity of a pixel, given a certain range map, we compute the

average intensity over all triangles adjacent to it. (All triangles have the same pro-

jected area in the image, hence they are all weighted equally.) Because the triangles

in the mesh are small compared to their distance from the camera, we can assume

that intensity is constant across a triangle. The intensity Ij for pixel j is thus obtained

as follows:

Ij =
aj
∑

k∈Nj
nk · lj

R2
j |Nj |

,
�� ��4.9

where aj is the albedo of the pixel, Rj is the range value of the pixel, lj is the unit

vector from the surface point to the light source, nk is the surface normal of triangle

k, and Nj is the set of triangles that are adjacent to pixel j; see Figure 4.1 for an

illustration of the triangles that are adjacent to a pixel.

When computing the shape prior, we must take care to count each edge exactly

once. We do this by iterating over all pixels and, for each pixel, evaluating the shape

prior only for those edges in the tessellation that lie below and to the right of the pixel
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Figure 4.1: The intensity of a pixel is computed by averaging over the intensity of all tri-
angles that are adjacent to it. Triangles that are adjacent to the central pixel are shaded in
gray.

(a) (b)

Figure 4.2: To avoid directional artefacts, the shape prior is evaluated over two different
tessellations, with the diagonals running in opposite directions. Figure 4.2a shows a tes-
sellation with diagonals running top left to bottom right. For each pixel, the shape prior is
evaluated for the edges (shown in bold) below and to the right of the pixel. Figure 4.2a shows
a tessellation with diagonals running bottom left to top right. The shape prior is evaluated
for the edges below and to the left of the pixel.
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in the grid. This is illustrated in Figure 4.2a, where the bold edges are the ones for

which the shape prior is evaluated when considering the central pixel.

The direction in which the diagonals run in the tessellation introduces an asym-

metry, and we have found that this asymmetry can cause the shape prior to generate

directional artefacts. For this reason, we evaluate the shape prior for both of the two

possible directions of the diagonal and sum over the result. Figure 4.2b shows which

edges are evaluated for a given pixel on the tessellation with the alternative direction

of the diagonal.

4.2.4 Application to Time-of-Flight Cameras

When applying the method to images recorded using a TOF camera, some particular

characteristics of this sensor need to be taken into account to obtain optimal results.

First, the noise σR in the measured range map is not the same for all pixels but

depends on the amount of light collected at each pixel – the more light, the more

accurate the measurement. Hence, for each pixel, we set σR as a function of inten-

sity. To estimate the functional relationship between intensity and σR, we recorded

a sequence of images of a static scene and, at each pixel, calculated the standard de-

viation of the measured range values. We then fitted a power law function to the

calculated standard deviations as a function of intensity and used this function to set

σR in the surface reconstruction algorithm.

Another important point is that most TOF cameras do not illuminate the scene

homogeneously; typically, the illumination falls off towards the edges of the field of

view. To measure this effect, we recorded an image, averaged over 100 frames, of a

planar object with constant albedo. By comparing the actual image XI
a to the image

predicted by our shading model XI
p (which assumes homogeneous illumination), we

were able to estimate the relative illumination strength at each pixel and use this to

compensate for the effect in subsequent recordings XI via

XI
corrected(i, j) =

XI
p(i, j) · XI(i, j)

XI
a(i, j)

.
�� ��4.10

Finally, if the albedo of the measured surface is approximately constant, a good

initial albedo estimate can be found as follows: We find the highest-intensity pixel in

the image; generally, this pixel will correspond to a part of the object that is perpen-

dicular to the incoming light, because such regions reflect the most light. Hence, at

this location, equation (4.8) reduces to I = a
r2

, and we obtain the albedo as a = I r2.

A conventional camera cannot be used to estimate albedo in this way because there,

40



4.3. RESULTS

ground truth

range map noisy range map

noisy

intensity image

5 × 5 median-filtered

range map

“global albedo”

reconstruction

RMS error: 20.2 mm RMS error: 9.8 mm RMS error: 4.3 mm

RMS error: 20.2 mm RMS error: 5.5 mm RMS error: 2.5 mm

Figure 4.3: Reconstruction results for two synthetic test objects (“wave”, top, and “corner”,
bottom). Gaussian noise with a standard deviation of 20 mm was added to the range map;
for comparison, the “wave” object has a depth of 100 mm, and the “corner” object has a
depth of 120 mm. Gaussian noise was added to the intensity image at a signal-to-noise ratio
of 36 dB; the maximum intensity in the images was 0.19 (“corner”) and 0.22 (“wave”).

the range r is not known.

4.3 Results

4.3.1 Synthetic Data

To assess the accuracy of the method quantitatively, we first tested it on synthetic

data with known ground truth: A rotationally symmetric sinusoid (the “wave” object)

and an object composed of two planar surfaces that meet at a sharp edge (the “corner”

object); see Figure 4.3. To simulate the measurement process of the TOF camera, we

shaded the ground truth surface with a constant albedo, then added Gaussian noise;

the observed range map was obtained by adding Gaussian noise to the ground truth

surface. For all tests that follow, we set wR = 1 and wA = 50; σR and σI were set

to the actual standard deviations of the noise that was added to the range map and

intensity image.

Figure 4.3 shows the ground truth range maps for the “wave” and “corner” ob-

jects along with the noisy range map and intensity image that were used as input

to the reconstruction algorithm, and the reconstruction result. For comparison, the

figure also shows the result of filtering the range map with a 5 × 5 median filter.
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intensity image “global albedo” “local albedo” estimated albedo
reconstruction reconstruction

 

 

0.2

0.3

0.4

RMS error: 17.1 mm RMS error: 3.0 mm

 

 

0.25

0.3

0.35

RMS error: 12.0 mm RMS error: 3.0 mm

 

 

0.3

0.32

0.34

0.36

RMS error: 4.5 mm RMS error: 6.1 mm

Figure 4.4: Reconstruction results on synthetic objects with varying albedo. Top: “Wave”
object with an albedo of 0.2 on the left half of the object and 0.4 on the right half. Mid-
dle: “Wave” object with albedo varying continuously from 0.2 at the left to 0.4 at the right.
Bottom: “Corner” object with albedo varying continuously from 0.2 at the top to 0.4 at the
bottom. In all cases, the noise in the range map had a standard deviation of 5 mm, and noise
was added to the intensity image at a signal-to-noise ratio of 36 dB.

The noise in the range map had a standard deviation of 20 mm; for comparison, the

“wave” object has a depth of 100 mm, and the “corner” object has a depth of 120 mm.

The intensity image noise was set to a signal-to-noise ratio of 36 dB; the maximum

intensity in the images was 0.19 (“corner”) and 0.22 (“wave”). The “global albedo”

algorithm was used to reconstruct the surface; the initial albedo value for the min-

imization was set to twice the actual value that was used to produce the intensity

image. The RMS error in the reconstructed surface is reduced by a factor of over 4

for the “wave” object and around 8 for the “corner” object.

Next, we examine the results of the algorithm on an object with varying albedo.

First, we use the “wave” object with albedo set to 0.2 on the left half of the image

and 0.4 on the right half (Figure 4.4, top); the noise in the range image was reduced
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to a standard deviation of 5 mm. Reconstructions were computed using the “global

albedo” and “local albedo” algorithms; the initial albedo value for the minimization

was set to 0.3. Note that the “global albedo” algorithm does not yield a satisfac-

tory result, while the “local albedo” version does; local albedo is estimated almost

perfectly. A second test (Figure 4.4, middle) used the same object but with albedo

varying continuously from 0.2 at the left to 0.4 at the right. Albedo is overestimated

slightly on the left side of the image, and the result is not quite as good as in the first

case but still satisfactory. Finally, we show a case where the albedo estimation does

not work properly (Figure 4.4, bottom): the “corner” object with albedo varying con-

tinuously between 0.2 at the top and 0.4 at the bottom. Here, the result of the “local

albedo” algorithm is not satisfactory and, in fact, its RMS error is higher than that

of the “global albedo” algorithm. We suspect the reason for the poor performance

may be that the range map does not contain enough detail for the algorithm to “latch

onto”.

Finally, we measured the effect of the various components of the probabilistic

model. Figure 4.5 shows the reconstruction error on the “wave” object as a function

of the noise σI in the intensity image. We compare probabilistic models that use

only the shading constraint p(XI|R,A), only the shape prior p(R), or both together.

(The term p(XR|R,A), which incorporates the information from the measured range

map, was used in all cases. Because albedo did not vary across the image, the term

p(A) was omitted.)

Since σI appears in the denominator of the shading term in the energy function

(Equation (4.7)), we need to treat σI = 0 (no intensity noise) as a special case. Note

that for σI → 0, the shading term dominates all the other terms; hence, if σI = 0,

we omit all other terms from the energy function. We can then avoid scaling by 1
σI

2 .

The error for the reconstruction obtained using only the shape prior (along with

the measured range map p(XR|R,A)) is, of course, constant for all σI because it does

not use the intensity image. The shape prior reduces the RMS error in the range map

by around a factor of 2.

For the reconstructions obtained using only the shading constraint (along with

the measured range map), the error in the reconstruction generally increases with the

noiseσI in the intensity image. However, it is notable that, even forσI = 0, the range

map is not reconstructed perfectly. Though, in this case, the ground truth range map

is obviously the global minimum of the energy function, the algorithm appears to get

stuck in a local minimum. Recall that in the caseσI = 0, the shading term dominates

all other terms in the energy function. As σI increases, the energy function begins
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Figure 4.5: Reconstruction error on the “wave” object as a function of noise in the intensity
image, for different probabilistic models. (For comparison, the maximum intensity in the
image was 0.22.) Range noise was fixed at a standard deviation of 20 mm.

taking the measured range map into account, and this in fact leads to an initial slight

reduction in the reconstruction error; we speculate that the additional constraint

imposed by the measured range map makes it easier to minimize the energy function.

This effect is even more pronounced for the full model, which combines the shad-

ing constraint, the shape prior, and the measured range map. For σI = 0, the shad-

ing term again dominates all other terms in the energy function, and so we obtain

the same result as for the shading constraint alone. As σI begins to increase, the re-

construction error decreases markedly as the shape prior and the measured range

map come into play. After a certain point, the reconstruction error begins increas-

ing again; for σI → ∞, the reconstruction error will tend to that of the range prior

because the shading term in Equation (4.7) tends to zero. Note that, except for very

small σI, the combined model yields better results than either the shading constraint

or the shape prior alone.

4.3.2 Real-World Data

We now apply the algorithm to data obtained using an SR3000 TOF camera (Oggier

et al., 2005a), which has a resolution of 176 by 144 pixels. The parameters σR and

σI (standard deviations of range and intensity) were set to values estimated on a

sequence of images of a static scene; σR was set as a function of intensity for each

pixel (see Section 4.2.4), while σI was constant across the whole scene, in accordance

44



4.4. DISCUSSION

with the statistical properties of the sensor. The parameters for the shape and albedo

prior were again set to wR = 1 and wA = 50.

We first demonstrate the algorithm on two terracotta objects, which fulfill the

assumption of Lambertian reflectance quite well and can be assumed to have approx-

imately constant albedo. Figure 4.6 shows the input data and reconstruction results

for the two terracotta objects. To compare the results with the effect that a conven-

tional filtering has on the range map, a 5 × 5 median-filtered version is also shown.

The objects were segmented manually, and the reconstruction was performed using

the “global albedo” algorithm. The subjective quality of the reconstruction is greatly

improved compared to both the raw data and the median-filtered version; note, in

particular, how the shading constraint allows us to reconstruct detail in the objects

that was drowned out by noise in the measured range map.

Figure 4.7 shows the results of the algorithm on a human face. This is a more

challenging object for the algorithm because the reflectance properties of skin are

considerably more complex than the Lambertian reflectance assumed by the model;

also, albedo variations occur in places such as the eyebrows and the lips.

We show the result of both the global and local albedo versions of the algorithm;

again, a 5 × 5 median-filtered version is also shown. It is evident that local albedo

estimation allows a much more faithful reconstruction than global albedo estima-

tion in areas, such as the lips, where albedo variations occur. Also, despite the fact

that skin is not a Lambertian reflector, the shape of the face is reconstructed quite

accurately, demonstrating that the algorithm is not very sensitive to violations of the

Lambertian reflectance assumption.

Finally, Figure 4.8 shows the results of the algorithm on the upper body of a

person. Note how the shading constraint allows the cloth folds to be reconstructed

faithfully. This example also illustrates the limitations of the algorithm: The head is

reconstructed less well than in the previous example; we believe this is because there

is too much albedo variation in an area of only a few pixels. The lowest part of the

body is not reconstructed well either, and this is probably due to the low reflectivity

of the material in this region, which leads to a large amount of noise in both the range

map and the intensity image.

4.4 Discussion

As we have shown, enforcing the shading constraint can substantially improve the

quality of range maps obtained using a TOF camera, both in terms of objective mea-
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intensity image

range map

5 × 5 median-filtered range map

“global albedo” reconstruction

Figure 4.6: Surface reconstructions of two terracotta objects, manually segmented in im-
ages taken with an SR3000 TOF camera. The renderings of the range maps are rotated 30
degrees around the vertical axis.
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(a) (b) (c) (d) (e) (f)

Figure 4.7: 3D reconstruction of a human face. (a) Manually segmented intensity image,
(b) measured range map, (c) 5 × 5 median-filtered range map, (d) “global albedo” recon-
struction, (e) “local albedo” reconstruction, (f) “local albedo” reconstruction textured with
intensity image. The renderings of the range maps are rotated 30 degrees around the verti-
cal axis.

(a) (b) (c) (d)

Figure 4.8: 3D reconstruction of a person’s upper body. (a) Manually segmented intensity
image, (b) measured range map, (c) 5 × 5 median-filtered range map, (d) “local albedo”
reconstruction. The renderings of the range maps are rotated 30 degrees around the vertical
axis.
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sures as well as subjectively perceived quality.

The TOF camera is particularly well suited for algorithms that incorporate SfS

because it eliminates many sources of variability that are difficult to deal with in the

general SfS setting: In the TOF camera, the position of the light source is known (it

is co-located with the camera); the camera attenuates all other sources of light; and

the albedo of the surface can be estimated robustly because its distance from the light

source is known (see Section 4.2.4).

The main limitation of the current algorithm is that it does not cope well with

range discontinuities, so-called jump edges. Because the reconstructed surface is

always continuous, jump edges lead to surface normals that are almost perpendicular

to the incoming light; hence, the corresponding regions are shaded with very low

intensity. This disagrees with the observed image, so the algorithm will flatten the

edge to compensate.

It should be possible to overcome this limitation by ignoring any mesh triangle

that straddles a jump edge. Jump edges could be identified either by searching for

large jumps in the measured range maps or by incorporating jump edges into the

probabilistic image model, as in the work of Nadabar and Jain (1995).

It should also be noted that the algorithm is computationally fairly expensive;

the current implementation takes several minutes to process an image on a contem-

porary PC. Since our main focus was correctness, not performance, we expect that

optimization should yield a substantial speedup. However, optimizing the algorithm

to the point that it could run at camera frame rates would present a major challenge

and would probably require techniques such as computation on the graphics pro-

cessing unit (GPU).

Even in its present form, though, the algorithm is suitable for the post-processing

either of individual images or of recorded image sequences. Of course, other range

sensors, such as laser range scanners, still provide far better accuracy than TOF

camera data post-processed using our algorithm. The strength of the TOF camera,

however, lies in its high temporal resolution and its potential to be manufactured at

low cost for mass-market applications. Enforcing the shading constraint allows TOF

cameras to provide range maps of considerably enhanced quality, opening up many

new application fields.
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5
Segmentation

5.1 Introduction

An important component of computer vision algorithms that aim at interpreting the

scene in front of the camera is known as segmentation. It refers to segmenting the

image into different regions, i.e. defining subsets of pixels in the image that share a

common property, such as pixels depicting the same object.

One goal of segmentation in image analysis can be to identify the location of an

object of interest and to separate it from the background of the scene. Taking gesture

recognition as an example, one is interested in the pixels that show the visible surface

of the person in front of the camera while the static background can be neglected if it

has no meaning to the interpretation of the gesture. In the scope of this chapter, we

will focus on exactly this problem, i.e. we want to assign all pixels in the image either

to the background or to one of the persons in the field of view of the camera.

There exist two different approaches to this problem. In the simpler case, one has

prior knowledge of the static background and can use this knowledge to determine

deviations from the background model in the current image. However, this approach

is limited to cases, where the assumption of static background holds. In the second

case, where no knowledge about the scene is available beforehand, the segmentation

must be based on information inherent in the image itself.

The problem of segmentation has been tackled in a number of ways for conven-

tional 2D images (refer to Stockman and Shapiro (2001) for an overview). However,

the task can become arbitrarily difficult based on the complexity of the scene. Fig-

The segmentation method using a background model was developed in collaboration with Ann-
Kristin Grimm. Ann-Kristin Grimm and I contributed approximately equally to the development and
implementation of the method. The histogram-based segmentation method has previously been de-
scribed in part in (Haker et al., 2007, 2009a).
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(a) (b)

Figure 5.1: Complex scene showing four persons in front of a cluttered background. Fig-
ure 5.1a shows the amplitude image captured with a PMD CamCube and Figure 5.1a shows
the corresponding range map.

ure 5.1 shows an example, where four persons stand in front of a complex background

scene. On the basis of the intensity information a simple algorithm that operates on

a per pixel basis will fail, because parts of the foreground objects have the same gray-

values as the background. Here, the TOF camera facilitates the disambiguation due

to the available range data, i.e. the persons appear at different distances to the cam-

era than the background.

In the following, we will present solutions to both formulations of the problem.

In Section 5.1.1, we will focus on the segmentation of the foreground in front of a

known static background. Then, in Section 5.1.2, we will consider the case where we

want to segment a single person standing in front of the camera before an unknown

background.

5.1.1 Segmentation Based on a Background Model

In this section, we will discuss a procedure for segmenting the foreground based on

an estimated model of the static background scene. The proposed procedure aims

at identifying all pixels that belong to objects that differ from the static background

model. Since we assume the background to be static, we can estimate the model

beforehand.

The model is estimated by averaging over a fixed number of frames depicting the

background scene. This is done for both amplitude and range data and we obtain the

following figures for each pixel:
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(a) (b)

(c) (d)

Figure 5.2: Background model of the scene shown in Figure 5.1. The model was estimated
over 20 frames of the empty scene captured with a PMD CamCube. Figure 5.2a shows the
amplitude image and Figure 5.2b the range data. The corresponding standard deviations
are given in Figure 5.2c and Figure 5.2d, respectively.

µamp(i, j) = E[xamp(i, j)]
�� ��5.1

µrng(i, j) = E[xrng(i, j)]
�� ��5.2

σamp(i, j) =
√

E[(xamp(i, j)− µamp(i, j))2]
�� ��5.3

σrng(i, j) =
√

E[(xrng(i, j)− µrng(i, j))2]
�� ��5.4

Here, µamp(i, j) and µrng(i, j) refer to the mean values of amplitude and range

whileσamp(i, j) andσrng(i, j)denote the corresponding standard deviations. These

values, estimated for the background of Figure 5.1, are presented in Figure 5.2.

Using these figures, we determine if a pixelx(i, j) conforms with the background

model using the following condition:
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(a) (b)

(c)

Figure 5.3: Segmentation result using the rule for classifying background pixels given in
Equation (5.5). Figure 5.3a uses only a threshold on the amplitude data. In analogy, a
threshold is applied only to the range data in Figure 5.3b. The combination of amplitude
and range as specified by Equation (5.5) is depicted in Figure 5.3a.

√
(xamp(i, j)− µamp(i, j))2 < θamp · σamp(i, j) ∧√
(xrng(i, j)− µrng(i, j))2 < θrng · σrng(i, j)

�� ��5.5

Thus, a pixel is considered a foreground pixel if it deviates from the background

either with respect to amplitude or range given the estimated noise level at that pixel.

Here, θamp and θrng constitute parameters that can be used to control the sensitivity

of the thresholding. The outcome of this approach is given in Figure 5.3 where we

chose the parameter settings θamp = 0.05 and θrng = 0.9.

While the method performs well in image regions with low measurement noise,

it yields random decisions in those areas of the image that are completely dominated

by noise. These regions occur where the background cannot be sufficiently illumi-

nated by the infrared LEDs of the TOF camera. Because the range data tends to take

arbitrary values for those regions, background pixels often deviate significantly from
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the mean value µrng(i, j) and are thus classified as foreground.

This effect can only be tackled by ruling out those pixels with low confidence in

the range measurement. In the case of the background model this can be achieved via

the standard deviation of the range values. On the contrary, the standard deviation

cannot be estimated for a single frame that we intend to segment. However, a good

approximation can be achieved by thresholding the amplitude data, as it is related to

the signal-to-noise ratio (see Chapter 2). Care has to be taken that this approach does

not remove foreground objects that have low reflectivity or are at a large distance

from the camera and thus appear with low intensity in the amplitude image.

Taking these considerations into account, we extend Equation (5.5) and obtain

a rule that classifies a pixel as background if the following conditions are met:

(√
(xamp(i, j)− µamp(i, j))2 < θamp · σamp(i, j) ∧√

(xrng(i, j)− µrng(i, j))2 < θrng · σrng(i, j)
)

∨

xamp(i, j) < ϵamp

�� ��5.6

Here, ϵamp denotes the threshold for the amplitude data, i.e. pixels with low

confidence in the range measurement are automatically considered as background.

Applying Equation (5.6) to the data of Figure 5.3 yields a significant improvement

reducing the artefacts in the segmentation result, as Figure 5.4a demonstrates. Re-

maining false positives can easily treated by removing all connected components that

are not sufficiently large to compose a person. The final outcome of the proposed

segmentation procedure is depicted in Figure 5.4b.

5.1.2 Histogram-based Segmentation

In this section, we present a method to segment the person closest to the camera

from the remainder of the scene. Following this approach we intend to devise sys-

tems for gesture-based single-user interaction using a TOF camera, as described in

Chapter 6, Section 7.4, and Chapter 10. The proposed algorithm does not rely on a

background model and can thus be used for any scene that meets certain contraints

without prior calibration. The algorithm uses combined information from both the

range and intensity data of the TOF camera. Previous work of Haker et al. (2007,

2009b) has already shown that the combined use of both range and intensity data

can significantly improve results in a number of different computer vision tasks.
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(a) (b)

Figure 5.4: The segmentation result using the rule for classifying background pixels given
in Equation (5.6) is shown in Figure 5.4a. To remove remaining noise pixels, all connected
components smaller than 100 pixels have been removed in Figure 5.4b.

The proposed algorithm operates on a per pixel basis and determines adaptive

thresholds for range and intensity based on histograms. These thresholds are then

applied to decide for each pixel if it belongs to the foreground or background.

In case of the intensity data, the threshold discards dark pixels. This has two

effects: Firstly, the amount of light that is reflected back into the camera decays pro-

portionally to the squared distance of the object from the camera, thus the back-

ground generally appears significantly darker than foreground objects that are close

to the camera. Secondly, this procedure discards unreliable pixels from the range

measurement, because the intensity can be considered a confidence measure for the

depth estimation as it is related to the signal-to-noise ratio (see Chapter 2). The value

of the threshold is determined adaptively for each frame to increase the robustness

of the procedure. For example, a lower threshold is required if the person is at a

larger distance to the camera, whereas the person appears brighter in the image if

it is closer to the camera. We employ the method of Otsu (1979), which assumes a

bimodal distribution in the histogram of grayvalues. This simple assumption is usu-

ally sufficient because the amplitude decays quickly with increasing distance due to

the above mentioned quadratic relation between distance and amplitude.

Figure 5.5 shows the amplitude image of a person in a cluttered scene. In addi-

tion we present the histogram of grayvalues and the estimated Otsu threshold. Note

here, that we multiply the resulting Otsu threshold by a constant factor of 0.6 to al-

low more pixels to pass as foreground. This avoids that clothing with low reflectivity

properties in the infrared spectrum are assigned to the background. Figure 5.5 also

depicts the result of the segmentation when only the amplitude threshold is used.

Note, that the result is not very accurate and many background pixels are still clas-
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Figure 5.5: Segmentation based on amplitude thresholding. Left: Amplitude image. Cen-
ter: Histogram of amplitudes and estimated Otsu threshold (dotted line). Multiplication
with a factor of 0.6 yields final threshold (solid line). Right: Resulting segmentation of
pixels exceeding the threshold.
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Figure 5.6: Segmentation based on range thresholding. Left: Range image. Center:
Histogram of range values and estimated threshold at minimum after first peak (dotted line).
A shift by 0.3 meters yields final threshold (solid line). Right: Resulting segmentation of
pixels that fall below the threshold.

sified as foreground due to their bright appearance in the image.

In case of the range data, peaks in the histogram can be assumed to correspond

to objects at different distances in front of the camera. Thus it is apparent, that the

assumption of a bimodal distribution does not hold in the general case. The assump-

tion is for example violated, if two people appear at different distances in the field

of view before a constant background. In that case one would obtain three peaks,

one for each person and a third for the background. To find the person closest to the

camera, we determine the threshold as the one that separates the peak of the clos-

est object from the remaining range values. This is achieved by applying a simple

hill-climbing algorithm to the histogram. Once the first peak is detected, we apply

the hill-climbing algorithm again to determine the local minimum that follows the

peak. All pixels above this threshold should belong to the object closest to the camera.

Because the estimation of this threshold is often too aggressive and partly discards

pixels belonging to the foreground object, we add a constant offset of 0.3 meters to

obtain the final threshold. This procedure is illustrated in Figure 5.6.

The final segmented image is composed of those pixels that were classified as
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Figure 5.7: Segmentation result using combined amplitude and range data. Left: Seg-
mented amplitude image. Center: Segmented range map. Right: Combined segmentation
result. Only pixels considered foreground in both amplitude and range data are classified
as foreground pixels in the final segmentation result. Furthermore, only the largest con-
nected component of foreground pixels is retained because we are interested in the closest
foreground object.

foreground pixels with respect to both types of data. To ensure that only a single

object is considered, only the largest connected component of foreground pixels is

retained, all other objects are considered background. The combined result of range-

and amplitude-based thresholding is given in Figure 5.7.

A drawback of this simple approach is that the algorithm cannot distinguish be-

tween two people who stand side by side at the same distance from the camera. How-

ever, there exist applications (see Part III) in which one can assume that a single

person stands close to the camera and in those cases the proposed procedure yields

robust results at very low computational cost.

5.1.3 Summary

In this chapter we proposed two segmentation algorithms that aim at identifying

connected components of pixels depicting a person in the field of view of the camera.

The first algorithm uses a model of the background to determine foreground objects

as deviations from this model. While this approach operates very robustly it has the

main drawback that the method fails once the camera is moved or the static back-

ground changes. For scenarios in which this is likely to happen or when there are no

means to acquire a model of the background, we proposed a second algorithm that

does not require prior calibration. Instead, the foreground object is determined by

applying adaptive thresholds to both the range and amplitude data. In both cases,

we have not addressed the problem of telling multiple persons in the image apart.

An extension to the presented methods, which enables the segmentation and

tracking of multiple persons in the field of view of the camera, was proposed by

Hansen et al. (2008). The main idea is to project the 3D points corresponding to the
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xz

y

Figure 5.8: An illustration of the procedure to identify and segment multiple persons stand-
ing in the field of view of a TOF camera. After inverting the perspective projection of the
camera, the 3D points are projected onto the (x, z)-plane, where persons can be identified
through a clustering algorithm.

foreground objects onto a plane representing the floor. Thus, one will obtain clusters

of points in areas where a person is standing. Two people standing in front of each

other will form two clusters which appear at different distances on a line extending

from the position of the camera. This situation is depicted in Figure 5.8.

Hansen et al. (2008) propose the use of an Expectation Maximization (EM) algo-

rithm (Dempster et al., 1977) to identify the resulting clusters. An alternative is the

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm

proposed by Ester et al. (1996). A major advantage of the DBSCAN algorithm is that

it does not require the number of expected clusters as opposed to many other clus-

tering algorithms, such as the EM algorithm and k-means (Lloyd, 1982). Hansen

et al. (2008) avoid the problem of initializing the number of clusters by introducing

a scheme that uses the clusters detected in the previous frame to create, delete, or

merge existing clusters as required.
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6
Pose Estimation

6.1 Introduction

In this section, we present a technique for estimating human pose in 3D based on a

simple model of the human body. The model consists of a number of vertices that are

connected by edges such that the resulting graph structure resembles the anatomy

of the human body, i.e. the model represents the torso, the head, and the arms. The

model is updated using an iterative learning rule common to self-organizing maps

(SOMs) as proposed by Kohonen (1995). The position of certain body parts, such

as the hands, can be obtained from the model as the 3D coordinates of the corre-

sponding vertices, i.e. the position of the hands in 3D corresponds to the position of

the vertex that terminates the chain representing an arm. Thus, body parts can be

tracked in 3D space.

The estimation of 3D human pose has been addressed in a number of different

publications. The majority of work focuses on the estimation of pose from single

images taken with a regular 2D camera, and a number of different algorithmic ap-

proaches have been presented. In the work of Agarwal and Triggs (2006) the pose is

recovered from shape descriptors of image silhouettes. Rosales and Sclaroff (2000)

map low-level visual features of the segmented body shape to a number of body con-

figurations and identify the pose as the one corresponding to the most likely body

configuration given the visual features. An approach based on a large database of

example images was presented by Shakhnarovich et al. (2003). The authors learn

a set of parameter-sensitive hashing functions to retrieve the best match from the

Parts of this chapter are joint work with others. The devised idea of fitting a SOM to the data cloud
in 3D to estimate the human pose and implemented the algorithm. Martin Böhme and I contributed
approximately equally to evaluating the accuracy of the method. The work decried here has previously
been published in (Haker et al., 2009a).
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database in an efficient way. Rehg et al. (2003) describe a method for robustly track-

ing the human pose in single camera video sequences. They use both 2- and 3-

dimensional models to overcome disambiguities when the body motion is directed

along the viewing axis of the camera.

Human pose estimation using a multi-camera setup was proposed by Cheung

et al. (2003). The motion, shape, and joints of an articulated model of the human

body are recovered from a set of images based on the shape-from-silhouette method.

Very accurate 3D reconstruction of human motion from multi-view video se-

quences was published by Gall et al. (2010). Based on a segmentation of the sub-

ject, the authors use a multi-layer framework that combines stochastic optimization,

filtering, and local optimization to estimate the pose using a detailed model of the hu-

man body. However, the computational cost is relatively high and the system does

not operate at camera frame rates.

Pose estimation based on 3D data has been addressed by Weik and Liedtke (2001).

The 3D volume of a person is estimated in a multi-camera setup using the shape-

from-silhouette method. A skeleton model is then fit to a 2D projection of the vol-

umetric data. The 2D projection is obtained by a virtual camera and the model is

fit using certain features of the outer contour. The 3D coordinates of the model are

finally reconstructed by inverting the 2D projection of the virtual camera, i.e. the ver-

tices of the skeleton are projected back into 3D space using the intrinsic parameters

of the virtual camera.

Another approach to obtaining a skeleton in 3D is to apply a thinning to volumet-

ric data directly in 3D space (Palágyi and Kuba, 1999; Pudney, 1998). The human

pose can then be estimated from the skeleton (Arata et al., 2006).

Two related methods based on stereo imaging were presented by Yang and Lee

(2006) and Yang and Lee (2007). The authors introduce a hierarchical human body

model database. For a given image the algorithm uses both silhouette and depth

information to identify the model pose with the best match.

The work of Knoop et al. (2009) fuses 2D and 3D information obtained from a

stereo rig and a TOF camera to fit a human body model composed of generalized

cylinders. The system models body joints and uses kinematic constraints to reduce

the degrees of freedom. The 3D data is obtained using a TOF camera and the system

runs at frame rates of 10–14 frames per second.

Another recent approach using TOF cameras was presented by Zhu et al. (2008).

The method tracks a number of anatomical landmarks in 3D over time and uses these

to estimate the pose of an articulated human model. The model is in turn used to
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resolve disambiguities of the landmark detector and to provide estimates for unde-

tected landmarks. The entire approach is very detailed and models constraints such

as joint limit avoidance and self-penetration avoidance. Despite its complexity, the

method runs at a frame rate of approximately 10 frames per second.

Our approach, in contrast, is a very simple one that demonstrates how effec-

tively TOF cameras can be used to solve relatively complex computer vision tasks. A

general advantage of TOF cameras is that they can provide both range and intensity

images at high frame rates. The combined use of both types of data was already used

for tracking (Böhme et al., 2008a; Haker et al., 2009a) and allows a robust segmen-

tation of the human body in front of the camera. The range data, representing a 21
2D

image, can then be used to obtain a point cloud in 3D representing the visible surface

of the person. Thus, limbs extended towards the camera can still be easily identified

while this proves to be a more difficult task in 2D projections of a scene.

Our approach takes advantage of this property and fits a simple model of the

human body into the resulting point cloud in 3D. The model fitting algorithm is based

on a SOM, can be implemented in a few lines of code, and the method runs at camera

frame rates up to 25 frames per second on a 2 GHz Intel Core 2 Duo. The algorithmic

approach to this procedure is discussed in Section 6.2. The method delivers a robust

estimation of the human pose, as we show in Section 6.3 for image data that was

acquired using a MESA SR4000 TOF camera.

6.2 Method

The first step of the proposed procedure is to segment the human body from the

background of the image. We employ the histogram-based segmentation procedure

described in Section 5.1.2. The method adaptively determines thresholds for both the

range and intensity data. The final segmented image is obtained as the one where

the foreground pixels have been classified as foreground pixels with respect to both

types of data. Furthermore, the largest connected component of foreground pixels

is identified and all remaining pixels are classified as background. Thus, we obtain a

clear segmentation of a single person closest to the camera in most cases. A sample

TOF image and the resulting segmented image is shown in Figure 6.1.

The identified foreground pixels can be assumed to sample the visible surface

of the person in front of the camera. Since the intrinsic parameters of the camera,

such as focal length and pixel size, are known, the surface pixels can be projected back

into 3D space, i.e. one can invert the perspective projection of the camera. As a result
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Figure 6.1: Sample image taken with a MESA SR4000 TOF camera. The leftmost image
shows the amplitude data. The range image is given in the center and the resulting segmen-
tation is shown on the right.

one obtains a point cloud in 3D that represents the 3-dimensional appearance of the

person. This approach has two major advantages: (i) The representation is scale-

invariant due to the fact that the size of the person in 3D space remains the same

independently of the size of its image; (ii) body parts that are extended towards the

camera in front of the torso can be easily identified due to the variation in distance,

whereas this information is lost in 2D projections of the scene obtained with regular

cameras.

Our method aims at fitting a simple graph model representing the anatomy of

the human body into the resulting point cloud in 3D. To this end, we employ a SOM.

We define a graph structure of vertices and edges that resembles a frontal view of the

human body. Body parts, such as arms and torso, are modeled by explicitly defin-

ing the neighborhood structure of the graph, i.e. an arm is represented by a simple

chain of pairwise connected vertices whereas vertices in the torso are connected to

up to four neighbors forming a 2D grid. The resulting model structure is depicted in

Figure 6.2.

The SOM is updated by an iterative learning rule for each consecutive frame of

the video sequence. The first frame uses the body posture depicted in Figure 6.2 as an

initialization of the model. During initialization the model is translated to the center

of gravity of the 3D point cloud. The scale of the model is currently set manually to

a fixed value that corresponds to an average-sized person. We can report that the

scale is not a particularly critical parameter and that the same fixed scale works for

adults of different height. Once the scale is set to an appropriate value, there is no

need to adjust it during run-time due to the above mentioned scale-invariance of the

method. The update of the model for each consecutive frame then depends on the

model that was estimated for the previous frame.

The adaptation of the model to a new frame involves a complete training of the
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Figure 6.2: Graph model of the human body. The edges define the neighborhood structure
for the SOM.

SOM, i.e. a pattern-by-pattern learning is performed using the data points of the 3D

point cloud. This iterative procedure selects a sample vector x⃗ from the point cloud

at random and updates the model according to the following learning rule:

ˆ⃗vt+1 = ˆ⃗vt + ϵ̂t · (x⃗− ˆ⃗vt)
�� ��6.1

˜⃗vt+1 = ˜⃗vt + ϵ̃t · (x⃗− ˜⃗vt).
�� ��6.2

Here, ˆ⃗v denotes the node that is closest to the sample x⃗ with respect to the distance

measure d(x⃗, v⃗) = ∥x⃗ − v⃗∥2. The nodes ˜⃗v are the neighbors of ˆ⃗v as defined by the

model structure. The learning rates are denoted by ϵ̂t and ϵ̃t for the closest node and

its neighbors, respectively. The learning rate ϵ̂t was set to:

ϵ̂t = ϵi · (ϵf/ϵi)t/tmax .
�� ��6.3

Here, t ∈ {0, . . . , tmax} denotes the current adaptation step for this frame and tmax

denotes the total number of adaptation steps performed for this frame. The initial

learning rate ϵi and the final learning rate ϵf were set to 0.1 and 0.05. The learning

rate for the neighbors was chosen to be ϵ̃t = ϵ̂t/2. This choice of the learning rate

was already proposed in previous work on self-organizing networks (Martinetz and

Schulten, 1991). The initial and final learning rates were set to relatively high values

in order to allow the network to handle fast movements of the person, i.e. if the limbs

are moved quickly the correctional updates for the corresponding nodes have to be

large so that the model can accurately follow.

This update rule does not always guarantee that the topology of the model is
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preserved. Here, we refer to topology with respect to the connectivity of the nodes

within body parts such as the arm. Imagine the situation where the subject’s hands

touch in front of the torso. If the hands are separated again, it is possible that the

model uses the last node of the left arm to represent samples that actually belong

to the hand of the right arm. It can thus happen, that the last node of the left arm

may continue to be attracted by the right hand although both hands have moved

apart and, thus, the left arm will extend into empty space. In principle, the update

rules resolve this problem over time. However, only a small number of updates are

performed per frame and this may lead to a wrong estimation of the topology for a

small number of frames.

To avoid this, we developed a modification of the update rule that speeds up

the learning process by forcing neighboring vertices to stay close together. This is

achieved by the following rule that is applied after the actual learning step if the dis-

tance d(ˆ⃗v, ˜⃗va) exceeds a certain threshold θ:

ˆ⃗v = ˜⃗va + θ · (ˆ⃗v − ˜⃗va)

∥ˆ⃗v − ˜⃗va∥2
.

�� ��6.4

Here, ˜⃗va is a specific neighbor of ˆ⃗v referred to as an anchor. The rule enforces that

the distance between the vertex ˆ⃗v and its anchor is always less than or equal to θ. The

threshold θ depends on the scale of the model. The anchor of each vertex is defined

as the neighbor that has minimal distance to the center of the torso with respect to

the graph structure of the model, i.e. it is the vertex that is connected to the center of

the torso by the smallest number of edges.

6.3 Results

6.3.1 Qualitative Evaluation

The proposed method was evaluated using a MESA SR4000 TOF camera. We oper-

ate the camera at a modulation frequency of 30 MHz for the active illumination. As

a result the camera can disambiguate distances in the range of up to 5 meters. In the

following sample images, the person was at a distance of roughly 2.5 meters from the

camera. At that distance the range measurement has an accuracy of approximately

1 cm.

A sample result of the pose estimation is shown in Figure 6.3. The figure depicts

the point cloud of samples in 3D that represent the visual surface of the person in
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Figure 6.3: Point cloud sampling the visible surface of a human upper torso in 3D. The
graph represents the human model that was fitted to the data.

front of the camera shown in Figure 6.1. The model that was fitted to the point cloud

is imprinted into the data. One can observe that the model captures the anatomy

of the person correctly, i.e. the torso is well covered by the 2-dimensional grid, a

number of vertices extend into the head, and the 1-dimensional chains of vertices

follow the arms. Thus, the position of the major body parts, such as the hands, can

be taken directly from the corresponding vertices of the model in 3D.

The data from Figure 6.3 is taken from a sequence of images. Further sample

images from this sequence are given in Figure 6.4. Each image shows the segmented

amplitude image with the imprinted 2D projection of model. One can observe that

the model follows the movement of the arms accurately, even in difficult situations

where the arms cross closely in front of the torso. Note that the procedure does not

lose the position of the head even though it is occluded to a large extent in some of

the frames. The sample images are taken from a video sequence, which is available

under http://www.artts.eu/demonstrations/.

It is important to point out that the method may misinterpret the pose. This can

for example be the case if the arms come too close to the torso. In such a case the

SOM cannot distinguish between points of the arm and the torso within the 3D point

cloud. We can report, however, that in most cases the method can recover the true

configuration within a few frames once the arms are extended again.

We assume that it is possible to detect and avoid such problems by imposing a

number of constraints on the model, e.g. that the arms may only bend at the elbows
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Figure 6.4: A selection of frames from a video sequence showing a gesture. The model
estimated by the pose estimation is imprinted in each frame. The edges belonging to torso
and head are colored in white, whereas the arms are colored in black.

and that the entire model should generally be oriented such that the head is pointing

upwards. However, note that the current results were achieved without any such

constraints.

6.3.2 Quantitative Evaluation of Tracking Accuracy

To evaluate the accuracy of the tracking quantitatively, we acquired sequences of 5

persons moving in front of the camera; each sequence was around 140 to 200 frames

long. In each frame, we hand-labeled the positions of five parts of the body: the

head, the shoulders, and the hands. To obtain three-dimensional ground-truth data,

we looked up the distance of each labeled point in the range map and used this to

compute the position of the point in space. This implies that the sequences could

not contain poses where any of the body parts were occluded; however, many poses

that are challenging to track, such as crossing the arms in front of the body, were still

possible, and we included such poses in the sequences. (Note that the tracker itself

can track poses where, for example, the head is occluded; see Figure 6.4.)

The labeled positions can now be compared with the positions of the correspond-

ing nodes in the tracked model. However, when assessing the accuracy of the track-

ing in this way, we run into the problem that we never define explicitly which part

of the body each node should track. For example, though the last node in each of

the arms will typically be located on or near the hand, we do not know in advance
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exactly which part of the hand the node will track. This means that there may be a

systematic offset between the position that is labeled as “hand” and the position that

the hand node tracks. To give a realistic impression of tracking accuracy, we should

eliminate these systematic offsets.

We do this by measuring the average offset between the tracked position and

the labeled position on ten “training” frames; this offset is then used to correct the

tracked position in the remaining “test” frames, on which the accuracy is measured.

Because the orientation of the respective parts of the body can change, we need to

measure the offsets not in the world coordinate system but in a local coordinate sys-

tem. For the head and shoulders, we use a coordinate system where the x-axis points

from the left shoulder (of the tracked model) to the right shoulder, the y-axis is de-

fined so that the head lies in the x-y-plane, and the z-axis is perpendicular to the other

two axes to form a right-handed coordinate system. For the hands, it is not as easy

to define a full coordinate system because the model only measures the direction in

which the forearm is pointing but not the orientation of the hand. For this reason,

we estimate and correct the offset between tracked and labeled position only along

the direction of the forearm, which we define by the last two nodes in the arm; this

is the direction that accounts for most of the offset. Any offset perpendicular to the

direction of the forearm is not corrected.

Once the tracked positions have been corrected in this way, we can measure the

tracking error. Figure 6.5 shows a plot of tracking error over time for one of the

recorded sequences. It is obvious that there is little to no systematic error remaining;

instead, most of the error is due to tracking noise.

Table 6.1 shows the root mean square (RMS) tracking error, averaged over all

frames and subjects. The average error is around 5 to 6 cm for the hands and shoul-

ders and around 2 cm for the head. While this degree of accuracy is not sufficient for

tracking very fine movements, it is more than adequate for determining overall body

posture and for recognizing macroscopic gestures. Also, consider that no smoothing

of the tracked positions over time was carried out.

A major advantage of the proposed method is that the training of the model con-

verges very fast for each new frame. Thus, only a small number of the samples of the

3D cloud need actually be considered during the update even when the person per-

forms very fast movements in front of the camera. The sample image in Figure 6.1

contains roughly 6500 foreground pixels. However, we use only 10% of these sam-

ples for updating the model, i.e. we select roughly 650 points in 3D in random order

from the point cloud and use these for updating the model by pattern-by-pattern
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Figure 6.5: Plots of tracking error over time for one of the sequences. The horizontal axis
plots frame number, the vertical axis plots tracking error in meters.

body part RMS error

left hand 5.90 cm
right hand 5.29 cm
left shoulder 5.32 cm
right shoulder 5.15 cm
head 2.21 cm

Table 6.1: Root mean square (RMS) error between tracked and labeled positions, averaged
over all frames and subjects.
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learning. As a result the computational complexity is very low, and we achieve frame

rates up to 25 frames per second on a 2 GHz PC while robustly tracking the human

pose in scenarios such as the one depicted in Figure 6.4. The use of a higher number

of samples for training will further increase the robustness while at the same time

the frame rate will decrease.

6.4 Discussion

We have presented a simple procedure to estimate human pose from a sequence of

range images. The procedure is especially suitable for TOF cameras as they can de-

liver range data in combination with intensity images at high frame rates. These

cameras can be assumed to be available at relatively low costs in the near future.

The use of a SOM results in a very simple, yet very efficient implementation.

In principle the procedure can be extended easily to any other kind of deformable

object.

A major shortcoming of the current implementation is that the method cannot

deal with multiple persons in front of the camera, i.e. the system always assumes

that the segmented foreground pixels correspond to a single person. This approach

fails for example if two people are at the same distance in front of the camera and

very close together. In that case the segmented foreground pixels sample the visual

surface of both persons. Since the SOM attempts to represent all samples equally

the resulting pose estimation fails. Using the current approach, this problem must

be solved by an improved method for segmentation that can handle multiple objects

in front of the camera. Then, a SOM can be trained for each segmented object and

thus multiple people can be tracked.

This in turn can lead to a related problem that occurs when the segmentation

fails to detect parts of the body due to occlusion, e.g. when the lower part of an arm

is occluded by a second person. In that case the SOM will use the entire chain of arm

nodes to represent the upper part of the arm. Thus, the node for the hand will be

misplaced. To tackle this problem the system needs to identify the presence of certain

body parts based on pose estimates from previous frames. In case occluded body

parts have been identified, the corresponding nodes of the SOM must be excluded

from training. Instead their location could be predicted based on the posture of the

remaining model. These two issues need to be addressed in future work.

There exist other approaches that compute a more accurate estimate of human

pose but our goal within this work was to develop a simple method that gives a rough
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but robust estimate of human pose at high frame rates.

We use the proposed pose estimation method for action recognition and gesture-

based man-machine interaction in Section 7.4. Generally, the evaluation of certain

spatio-temporal features for the analysis of video sequences is computationally ex-

pensive. We argue that rough knowledge of the position of landmarks, such as the

hands, can greatly improve the runtime of feature-based action recognition systems,

because the features do not have to be evaluated over the entire video sequence but

only at those locations where certain important landmarks have been detected. Fur-

thermore, these features can be put into a larger context if their relative location to

each other is known.

The proposed method of pose estimation using SOMs has been filed as a patent

by the University of Lübeck in 2009 through the Patent- und Verwertungsagentur

für die wissenschaftlichen Einrichtungen in Schleswig-Holstein GmbH. The patent

is pending.

70



7
Features

In image processing, the data, i.e. the images, are generally represented by discrete

samples of a function f(x, y) where x and y denote the spatial coordinates of the

image plane and f(x, y) encodes properties of the imaged object. Such properties

can be the object’s irradiance in the form of image intensity or its distance from the

image sensor in the form of a range map. In most cases, we use a regular sampling

grid and x and y correspond to pixel coordinates of a digital image.

While the entirety of samples (x, y, f(x, y)) encodes the content of the image,

one is generally interested in higher level features that repesent certain properties of

the image when addressing computer vision tasks, such as object detection or image

classification. An apparent reason for this is that neighboring pixels often encode

redundant information as in regions of constant image intensity. Furthermore, the

content of an image in terms of pixels is highly sensitive to simple image transfor-

mations, e.g. a slight translation of the camera can cause a change of f(x, y) at every

pixel location while the essential content of the image as an entity is only subject to

a minor change.

Under this perspective, one is interested in features that encode structural infor-

mation of the imaged scene while being invariant to a number of factors that may in-

fluence the imaging process. Such factors include translation, scale, and orientation,

which depend on the relative position of the imaging device with respect to the scene.

In this context, the features should tolerate shifts in local geometry, which arise from

Parts of this chapter are joint work with others. Martin Böhme and I contributed approximately
equally to the implementation of the facial feature detector based on geometric eccentricities. It was my
idea to compute the features in 3D to achieve scale-invariance. Martin Böhme proposed the use of the
NFFT to obtain a fast and accurate implementation. Martin Böhme and I contributed approximately
equally to implementing this concept. I implemented and evaluated the sparse coding principle with
TOF image data. The computation of range flow was implemented by Tiberiu Viulet in the scope of
his master’s thesis (Viulet, 2009). I devised and implemented the gesture recognition framework. The
work described here has previously been published in (Böhme et al., 2008a; Haker et al., 2008, 2009b).
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the projection of the 3-dimensional scene to 2-dimensional image coordinates under

different perspectives. Furthermore, it is desirable to achieve an invariance towards

changes in illumination and contrast.

Considering the example of object detection, an image of a certain object would

yield the same features even if the distance from the imaging device, viewing angle,

and lighting conditions varied. Thus, the task of object detection would be invariant

towards the process of imaging an object, which in turn eases the problem in many

real-world scenarios.

There exist a number of approaches to object detection, that utilize the concept

of invariance. Scale-invariance can be achieved by operating on an image pyramid

(Koenderink, 1984), i.e. by creating scaled versions of the image and searching for

the object in each level of the pyramid (Lowe, 1999). The same effect can be achieved

by scaling the features (Viola and Jones, 2004; Lienhart et al., 2003). An invariance

towards small translations can be obtained by applying a maximum operation over

local neighborhoods (Serre et al., 2007; Labusch et al., 2008a). Rotation invariance

can for example be based on rotated versions of the filters (Barczak et al., 2006; Serre

et al., 2007) or by a transformation into a rotation invariant feature space (Weinland

et al., 2006). Another approach is to assign location, scale, and orientation to a com-

puted feature with respect to the image coordinates and to include this information

in the detection algorithm (Lowe, 1999).

In the scope of this work we investigated four different kinds of features. Three of

those features are static and computed on single image frames, while the fourth fea-

ture captures dynamic properties of an image sequence and estimates the 3D motion

of objects in the scene.

The three static features are evaluated for a very simple feature-based nose de-

tector in combined range and amplitude data obtained by a TOF camera. The image

data shows frontal face images and the task is to identify the location of the nose. To

find a nose in the image, the features are computed per pixel; pixels whose feature

values lie inside a certain bounding box in feature space are classified as nose pix-

els, and all other pixels are classified as non-nose pixels. The extent of the bounding

box is learned on a labeled training set. Despite its simplicity this procedure gener-

alizes well, that is, a bounding box determined for one group of subjects accurately

detects noses of other subjects. The performance of the detector is demonstrated by

robustly identifying the nose of a person in a wide range of head orientations. An im-

portant result is that the combination of both range and amplitude data dramatically

improves the accuracy in comparison to the use of a single type of data.
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The first type of feature is related to the Gaussian curvature and is thus consid-

ered a geometric feature, known as the generalized eccentricity. As already men-

tioned, the feature achieves best results if it is evaluated for both range and intensity

data, which is reflected in the equal error rates (EER) obtained on a database of head

poses. Using only the range data, we detect noses with an EER of 66.0%. Results on

the amplitude data are slightly better with an EER of 42.3%. The combination of

both types of data yields a substantially improved EER of 3.1%.

The second type of feature is a generalization of the geometric features to com-

pute scale-invariant features on range maps produced by a range sensor, such as a

TOF camera. Scale invariance is achieved by computing the features on the recon-

structed three-dimensional surface of the object. This technique is general and can

be applied to a wide range of operators. Features are computed in the frequency

domain; the transform from the irregularly sampled mesh to the frequency domain

uses the Nonequispaced Fast Fourier Transform (NFFT). Here, we apply the proce-

dure to the computation of the generalized eccentricities. On a dataset containing

frontal faces at various distances from the camera the EER in the nose detection task

is halved for the case of scale-invariant features compared to features computed on

the range map in the conventional way. When the scale-invariant range features are

combined with intensity features, the error rate on the test set reduces to zero.

In the case of the third type of feature the sparse coding principle is employed

for the representation of multimodal image data, i.e. image intensity and range. We

estimate an image basis for frontal face images taken with a TOF camera to obtain

a sparse representation of facial features, such as the nose. These features are then

evaluated in the nose detection task where we estimate the position of the nose by

template matching and a subsequent application of appropriate thresholds that are

estimated from a labeled training set. The main contribution of this work is to show

that the templates can be learned simultaneously on both intensity and range data

based on the sparse coding principle, and that these multimodal templates signif-

icantly outperform templates generated by averaging over a set of aligned image

patches containing the facial feature of interest as well as multimodal templates com-

puted via Principal Component Analysis (PCA). The system achieves an average EER

of 3.7%.

Finally, we discuss a fourth type of feature that differs from the previously men-

tioned ones in the sense that it is not computed for static images but captures the

motion patterns of an image sequence. In order to describe the 3D motion of ob-

jects in the scene we compute the so-called range flow which aims at estimating a 3D
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motion vector for each pixel of an image sequence composed of range maps. We fol-

low an approach by Spies et al. (2000) that also exploits the available intensity data.

We combine the range flow features with the estimation of human pose discussed in

Chapter 6 in the way that we compute the range flow around local neighborhoods of

the estimated positions of body parts. Thus, we can for example assign robust 3D mo-

tion to both hands. The motion patterns are accumulated in 3D motion histograms

which we use to classify the performed gesture of each individual frame. Following

this procedure, we achieve detection rates above 90% for three investigated hand

gestures. We also consider the problem of detecting the case when no gesture was

performed, i.e. we also define a fourth class representing arbitrary hand movements

of the user which are not intended as a gesture.

In the following, we will first address the geometric features and evaluate their

performance on a database of images in Section 7.1. Then, we will extend the results

to obtain scale-invariant features using the NFFT in Section 7.2. The multimodal

sparse features will be addressed in Section 7.3 and the features capturing 3D motion

will be the subject of Section 7.4.
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7.1 Geometric Invariants

7.1.1 Introduction

In this section we focus on object tracking, more precisely, on the task of nose and

head tracking. The most common forms of digital images that are utilized in com-

puter vision to solve such tasks are intensity and range images. The former type is by

far the most popular, which is mainly due to the low cost of the corresponding image

sensors.

However, within the last decade the TOF camera has been developed and fuses

the acquisition of both intensity and range data into a single device at a relatively low

cost. The future pricing of such cameras is expected to be comparable to a standard

web-cam. In contrast to web-cams, the TOF camera simplifies the determination

of geometrical properties of the 3D scene significantly, thus it is worth investigating

methods that make explicit use of the available data.

We will discuss geometrically invariant measures that are suitable for identifying

facial features in a TOF camera image. Based on these features, we construct a sim-

ple nose detector and test its performance on range and intensity data individually,

as well as on the combination of these two types of data. And indeed, the detector

performs better on TOF data than on intensity data alone. However, beyond this we

have observed an interesting phenomenon in our results: It is not the range data by

itself that improves the robustness of the results but rather the combination of range

and intensity data; while both types of data perform roughly the same when used in-

dividually, the combination of the two yields substantially better results than either

type of data alone. This underlines the potential of TOF cameras for machine vision

applications.

Previous work has already identified the nose as an important facial feature for

tracking, e.g. in (Gorodnichy, 2002) and (Yin and Basu, 2001). In the former ap-

proach the location of the nose is determined by template matching, under the as-

sumption that the surface around the tip of the nose is a spherical Lambertian surface

of constant albedo. This approach gives very robust results under fixed lighting con-

ditions and at a fixed distance of the user from the camera. The latter approach is

based on a geometrical model of the nose that is fitted to the image data.

We also consider the nose as being very well suited for head tracking, because

the nose is obviously a distinctive characteristic of the human face. In terms of dif-

ferential geometry, the tip of the nose is the point of maximal curvature on the object
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surface of a face. A benefit of analyzing the 3D surface in terms of differential geom-

etry is that a major portion of differential geometry is concerned with the description

of invariant properties of rigid objects. Although curved surface patches have been

shown to be unique (Mota and Barth, 2000; Barth et al., 1993), Gaussian curvature

is rarely used as a feature because its computation is based on first and second order

derivatives, which are sensitive to noise. We propose alternative features that can

be related to generalized differential operators. These features, which are computed

per pixel of the input image, are used to decide for each input pixel if it corresponds

to the tip of the nose based on the simple application of thresholds learned from a

set of labeled training data.

We will first review and motivate the geometric features and evaluate them with

respect to their suitability for the specific task of nose detection. Then, we will discuss

the robustness of the method by presenting results on a database of head pose images

acquired using a MESA SR3000 TOF camera (Oggier et al., 2005b).

7.1.2 Geometric Invariants

For the definition of invariant geometric features we will restrict ourselves to a spe-

cial type of surface known as the Monge patch or the 2-1/2-D image. Such surfaces

are defined as a function f : R2 → R3 in the following manner:

(x, y) 7→ (x, y, f(x, y)).
�� ��7.1

This is the natural definition for digital intensity images, as each pixel value is bound

to a fixed position on the image sensor without explicit reference to a coordinate

representation in the 3D world. In the case of range data, however, each pixel is as-

sociated with explicit 3D coordinates via the geometry of the optical system of the

camera. Nevertheless, we will assume a weak-perspective camera model for both

range and amplitude data of the TOF camera, because we do not expect a great dif-

ference in range for the pixels of interest. (Within a frontal face we do not expect any

range differences greater than 5 cm, which would roughly correspond to a relative

shift of only 5% in the coordinates x and y at a distance of 1 meter from the cam-

era if we assumed a perspective camera model.) Under the weak-perspective camera

model we can treat both types of data as Monge patches with respect to the regular

image grid, which results in a simplified mathematical formulation and comparable

results for range and amplitude data. An approach that exploits a perspective camera

model will be discussed in Section 7.2.
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The features derived for the above data model are mainly due to a conceptual

framework for image analysis which was introduced by Zetzsche and Barth (1990a,b).

Within this framework, image regions are associated hierarchically, with respect to

their information content, with 0D (planar), 1D (parabolic), and 2D (elliptic/hyper-

bolic) regions of a Monge patch. Naturally, the concept of curvature is fundamental

to this representation. Within this framework, the authors proposed a set of mea-

sures that provide basic and reliable alternatives to the Gaussian curvature K and

the mean curvature H for the purpose of surface classification.

Let us first recall the definition of Gaussian curvature for a Monge patch:

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )
2
.

�� ��7.2

In case only the sign of the curvature is relevant, one can rely on the DET-operator

D, which can be formulated in terms of the determinant of the Hessian

(hij) =

(
fxx fxy

fxy fyy

)
.

�� ��7.3

This amounts to the numerator of Equation (7.2). Thus the DET-operator takes the

following form:

D = fxxfyy − f2
xy = det(hij) = d1d2.

�� ��7.4

Here, d1 and d2 denote the eigenvalues of the Hessian. Rearranging the first part of

the formula (Barth et al., 1993) yields

D = 1
4(fxx + fyy)

2 − 1
4(fxx − fyy)

2 − f2
xy

= (∆f)2 − ϵ2,

�� ��7.5

where ∆f denotes the Laplacian and ϵ is referred to as the eccentricity, which is

defined as

ϵ2 =
1

4
(fxx − fyy)

2 + f2
xy.

�� ��7.6

The above formulation yields a relationship of the curvature to the Laplacian and the

eccentricity. A generalized representation of the operators ∆f and ϵ can be achieved

in the Fourier domain by defining the generalized eccentricity ϵn via the following

filter functions in polar coordinates ρ and θ, where A(ρ) represents the radial filter
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Figure 7.1: Discrimination of the six surface types pit, peak, saddle, valley, ridge, and planar
within the feature space spanned by ϵ0 (∆f) and ϵ2 (ϵ).

tuning function:

Cn = inA(ρ) cos(nθ),

Sn = inA(ρ) sin(nθ).

�� ��7.7

Recall that the transfer functions of partial derivatives are of the form (ifx)
n and

(ify)
n, where fx and fy represent the spatial frequencies and n denotes the order of

differentiation. Even-order partial derivatives correspond to real transfer functions,

whereas odd-order partial derivatives correspond to imaginary transfer functions.

The two transfer functions in Equation (7.7) correspond to convolution kernels

cn(x, y) and sn(x, y) in the image domain. Using these, we obtain the generalized

eccentricity

ϵ2n = (cn(x, y) ∗ l(x, y))2 + (sn(x, y) ∗ l(x, y))2
�� ��7.8

for n = 0, 1, 2, . . . , which corresponds to |∆f | for n = 0 and to the eccentricity

ϵ for n = 2, when A(ρ) = (2πρ)2. The gradient is defined by ϵn for n = 1 and

A(ρ) = 2πρ. In a purely geometrical interpretation, all measures ϵn are positive,

and as a result one cannot distinguish between convex and concave curvature using

ϵ0 and ϵ2. An extension to this formulation in (Barth et al., 1993) justifies the use of

ϵ0 with the sign of ∆f , i.e. ϵ0 = −c0 ∗ l.
For practical applications, the radial filter tuning functionA(ρ) can be combined

with a low-pass filter, e.g. Gaussian blurring of the formG(ρ, σ) = exp(−πρ2/4σ2).

Ideally, the low-pass filter should be adapted to the distribution of noise inherent in

the data.

The measures ϵn for n = 0 and n = 2 can be used to distinguish between the

six well-known surface types in the feature space spanned by ϵ0 and ϵ2. Figure 7.1
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Figure 7.2: (Top) Distribution of feature points for pixels taken from range data of the
SR3000 camera projected into the 2D feature space spanned by ϵ0 (∆f) and ϵ2 (ϵ). (Bot-
tom) The feature space around the origin at a higher resolution. The black crosses represent
feature points corresponding to the nose tip of various subjects and clearly cluster in the re-
gion associated with the surface type pit as expected. The grey dots represent randomly
chosen non-nose pixels.

shows where the different surface types lie in feature space. Because the nose is a

local minimum in the range data, we would expect the corresponding pixels to lie in

the region labeled pit. Conversely, since the nose tends to be a local maximum in the

intensity data, we would expect to find the corresponding pixels in the region labeled

peak.

7.1.3 Feature Selection

The interpretation of Figure 7.1 not only demonstrates how the features ϵn can be

interpreted intuitively, but it also shows how the interpretation can be used to se-

lect meaningful features for the task at hand. In other words, the goal of feature

extraction should be that all data points belonging to the same class, e.g. pixels cor-

responding to the tip of the nose, form clusters in the feature space while being easily

separable from points of other classes.
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The top plot in Figure 7.2 displays feature points for pixels computed on range

data in the feature space spanned by ϵ0 and ϵ2. Only pixels with high amplitude, i.e.

pixels belonging to an object that is close to the camera, were considered. First, it is

noticeable that the frequency of occurrence is ordered with respect to 0D structures

around the origin, 1D structures along the diagonals, and 2D structures. Thus, only

a small portion of pixels belongs to curved regions. However, in the bottom plot in

Figure 7.2, one can observe that the feature points associated with the tip of the nose

cluster nicely and correspond to the surface type pit as one would expect. Qualita-

tively similar results can be observed on the amplitude data, the major difference

being that nose pixels cluster in the region associated with the surface type peak.

7.1.4 Nose Detector

We use the geometric invariants ϵ0 and ϵ2, as introduced in Section 7.1.2, to con-

struct a nose detector. It decides per pixel of the input image if it corresponds to the

tip of a nose or not. In other words, each pixel of the input image is mapped to a

d-dimensional feature space, where d is the number of features considered. Within

this feature space, we estimate a bounding box that encloses all pixels associated

with the tip of a nose. It is important to mention that the bounding box should be

estimated in polar coordinates due to the interpretation of the feature space (see Fig-

ure 7.1).

The estimation is done in a supervised fashion based on a set of feature points

computed for pixels that were hand-labeled as belonging to the tip of the nose. The

extent of the bounding box within each dimension of the feature space is simply taken

as the minimum and the maximum value of the corresponding feature with respect

to all training samples. A softness parameter can be introduced to control the sensi-

tivity of the detector.

To detect a nose within an image, the features are computed for each pixel, and

a pixel is classified as the tip of a nose if its feature point lies within the estimated

bounding box in the feature space. Despite the simplicity of this approach, we obtain

very accurate and robust results, as we will show below.

The input for each feature computation was either the range or the amplitude

data of an image from the SR3000 camera. The raw camera data was preprocessed

by scaling it to the interval [0, 1]. Then, a threshold computed using the method by

Otsu (1979) was applied to the amplitude data to separate the foreground from the

background. The background was set to a fixed value in both range and amplitude

data. This was mainly done to avoid unwanted spatial filter responses on the range

80



7.1. GEOMETRIC INVARIANTS

Figure 7.3: Sample images from the database of head poses. The amplitude data (left col-
umn) and the range data (right column) are given for four subjects. All pixels identified
as nose pixels by our detector are marked in each image, the cross simply highlighting the
locations.

data due to high levels of noise in regions with low confidence. The radial filter tuning

function was set to A(ρ) = (2πρ)2 · exp(−πρ2/4σ2) with σ = 0.3 for all feature

computations. We expect that filter optimization will further improve the results.

7.1.5 Results

The procedure was evaluated on a database of images taken of people at different

head poses. A sample of such images is shown in Figure 7.3, where both amplitude

and range data are given for four subjects. Our database consists of a total of 13

subjects; for each subject, nine images were taken at roughly the same distance from

the camera for different orientations of the head. The extent of the bounding box was

estimated on a training set of three subjects, and the method was evaluated on the

remaining ten subjects. The results presented in the following show that the method

generalizes very well when using the combination of range and amplitude data.

Figure 7.4 shows the ROC curves for different combinations of input data. For

Figure 7.4a only the range data was used from each image, whereas Figure 7.4b shows

the results for the amplitude data. The features ϵ0 and ϵ2 were used in both cases.

The method achieves an equal error rate (EER) of 66.0% on the range data and 42.3%

on the amplitude data. Even though the range data seems to be better suited for

the proposed geometric features the amplitude data gives slightly better results. We

cannot give a final explanation for this effect, but we assume that it is due to a higher

level of noise in the range data. Although the EER is not satisfying in both cases, the

results are quite good considering the simplicity of the classifier.
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(a) Range data.
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(b) Amplitude data.
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(c) Range and amplitude data.

Figure 7.4: ROC curve of detection rate vs. false positive rate on range data (a), amplitude
data (b), and the combination of both (c). The detection rate gives the percentage of images
in which the nose has been identified correctly, whereas the false positive rate denotes the
percentage of images where at least one non-nose pixel has been misclassified. Thus, strictly
speaking, the curves do not represent ROC curves in the standard format, but they convey
exactly the information one is interested in for this application, that is, the accuracy with
which the detector gives the correct response per image.
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We were able to improve the performance dramatically by using a combination

of features on range and amplitude data. We used the two features ϵ0 and ϵ2 for both

types of data, which amounts to a total of four features. The corresponding ROC

curve is shown in Figure 7.4c, and we can report an EER of 3.1% for this method.

7.1.6 Discussion

In this section, we presented a very simple detector for the human nose based on the

TOF camera SR3000. The method yields very accurate and robust detection rates.

However, we can point out three aspects that have potential to increase the perfor-

mance the detector: (1) The use of a more sophisticated classifier, (2) an adaptation

of the low-pass filter to the noise distribution, and (3) the use of additional features.

Also, we point out that when the detector is used to track the nose over several

frames, as opposed to performing detection on individual frames, robustness can be

improved by exploiting the fact that, in general, the position of the nose does not

change much from frame to frame. In Chapter 9 we show that a very robust tracking

of the nose can be achieved using this feature based approach.
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7.2 Scale Invariant Features

7.2.1 Introduction

The fact that the apparent size of an object in a camera image changes with the dis-

tance of the object from the camera leads to one of the fundamental problems in

computer vision: Finding scale-invariant image features, i.e. features that, by their

mathematical formulation, are unaffected by image scale (for an example of a recent

approach, see (Lowe, 1999)). Achieving scale invariance usually requires increased

algorithmic complexity and additional computation. For example, the image can ei-

ther be scanned for objects of different sizes, or it can be transformed into scale-space

(Koenderink, 1984), where the feature extraction is computed individually at differ-

ent levels of scaling. In both cases, the treatment of objects at different scales has to

be made explicit within the algorithm.

In this section, we suggest a novel approach to the problem of scale-invariance:

If we use a range sensor – such as a TOF camera – to image the object, we can com-

pute features directly on the reconstructed surface of the object in 3D space. In this

way, the features become scale-invariant, because the 3D reconstruction – unlike the

image of the object – does not undergo scale changes as the object moves towards or

away from the camera.

We are particularly interested in the TOF camera as a basis for this type of ap-

proach because it provides a range map that is perfectly registered with an intensity

image in a single device, making it easy to create detectors based on a combination

of range and intensity features.

Naturally, one can compute image features on the regular image grid of both

range and amplitude images directly as we have demonstrated in the previous sec-

tion (Haker et al., 2007). Note, however, that interpreting the range map as an array

of height values measured over a regular grid is equivalent to the weak-perspective

assumption, i.e. to assuming that the total depth variation within the object is small

compared to the distance of the object from the camera. If this assumption is vio-

lated, the geometry of the surface reconstructed using weak perspective will differ

markedly from the true geometry of the object. Furthermore, the size of an object in

the image changes with its distance to the camera.

Alternatively, if the intrinsic camera parameters are known, we can apply the in-

verse of the camera projection to the range data, thus obtaining an actual sampling

of the object’s surface in three-dimensional Cartesian coordinates. Obviously, the
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measured object does not undergo any scaling in the 3D scene if it is moved towards

or away from the camera; instead, only the spatial sampling frequency decreases as

the distance to the camera is increased (see Figure 7.5). It is important to note, how-

ever, that the sampling grid in this representation is no longer regular; the spacing

between two samples depends on the distance of the relevant part of the object to the

camera. Many techniques for extracting image features, such as convolution with a

filter kernel, require a regular sampling and can thus no longer be used.

To overcome this problem, we compute the features not in the spatial domain,

but in the frequency domain. We transform the sampled object shape to a frequency

domain representation using the Nonequispaced Fast Fourier Transform (NFFT, see

Section 7.2.2), an efficient algorithm for computing the Fourier transform of a signal

sampled on an irregular grid. Thus, any feature computation that can be performed

in the Fourier domain can now be evaluated efficiently. The main advantage of this

approach is that any filter operation has, in theory, the same effect on an object in-

dependently of the distance of the object to the camera. The NFFT has been used

for image processing tasks such as CT and MRI reconstruction (see e.g. (Potts and

Steidl, 2001)), and it has also been used to extract features from vector fields for vi-

sualization (Schlemmer et al., 2005). However, to our knowledge, the approach of

using the NFFT to compute scale-invariant features for classification is novel.

We demonstrate this approach using the set of geometric features introduced in

Section7.1, which are related to mean and Gaussian curvature. When evaluated on

the image in the conventional way, these features are sensitive to scale changes; how-

ever, when evaluated on the object surface using the NFFT, the features are invariant

to scale. We verify this using a synthetic test object in Section 7.2.4.

Finally, we use these features for a facial feature tracking problem. In previous

work by Böhme et al. (2008a) (as described in Section 7.1), we tackled this prob-

lem using features evaluated conventionally on the camera image; this solution had

limited robustness towards scale variations. The new scale-invariant features yield

greatly improved detection at varying distances from the camera, as we show in Sec-

tion 7.2.4.

7.2.2 Nonequispaced Fast Fourier Transform (NFFT)

Definition

As noted in the introduction, we need to compute the Fourier transform of a function

sampled on a nonequispaced grid. To do this, we use the NFFT (Potts et al., 2001),
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Figure 7.5: Top: Sampling of a face 35 cm from the camera. Bottom: Sampling of a face
at 65 cm from the camera. Note that the spatial sampling frequency is significantly lower
compared to the face at 35 cm, but the physical size of the face in 3D space is still the same.
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an algorithm for the fast evaluation of sums of the form

f(xj) =
∑
k∈IN

f̂ke−2πikxj ,
�� ��7.9

where the xj ∈ [−1
2 ,

1
2)

d, j = 1, . . . ,M are arbitrary nodes in the spatial domain

(of dimension d), the k are frequencies on an equispaced grid, and the f̂k are the

corresponding Fourier coefficients. The equispaced frequency grid IN is defined as

IN :=

{
k = (kt)t=1,...,d ∈ Zd :

−Nt

2
≤ kt <

Nt

2
, t = 1, . . . , d

}
,

�� ��7.10

where N = (N1, . . . , Nd) is the so-called multibandlimit, which specifies the band

limit along each dimension. (Note that all Nt must be even.)

We refer to Equation (7.9) as the Nonequispaced Discrete Fourier Transform

(NDFT). From this equation the Discrete Fourier Transform (DFT) (with equispaced

nodes in the spatial domain) can be obtained by setting the xj to the nodes of the grid

x = ( kt
Nt

)t=1,...,d, kt ∈ {−Nt
2 , . . . , Nt

2 − 1}.

Equation (7.9) describes the transform from the frequency domain to the spa-

tial domain. In the case of the equispaced DFT, because the matrix that describes

the transform is unitary, the same algorithm can be used for the opposite transform

(from the spatial to the frequency domain). This is not true in the nonequispaced

case; here, to transform from the spatial to the frequency domain, i.e. to find Fourier

coefficients f̂k such that evaluation of Equation (7.9) will yield certain given values

f(xj), we need a second algorithm (see (Kunis and Potts, 2007)), which is based on

a combination of the conjugate gradient method with the NFFT. Note that this al-

gorithm (which transforms from the spatial to the frequency domain) is sometimes

referred to as the “inverse NFFT”, whereas the term “inverse” is otherwise usually

applied to a transform from the frequency to the spatial domain.

Applying the NFFT to Range Data

We assume that the object surface, reconstructed from the range data by inverting

the camera projection, is given in Cartesian coordinates x, y, z, where the x-y-plane

is parallel to the image plane and the z-axis is parallel to the camera’s optical axis.

To apply the NFFT to this data, we interpret the z-coordinate as a function z(x, y) of

the x-y-coordinates; hence, the x-y-coordinates define the grid nodes for the NFFT.
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As noted in the previous section, these nodes need to lie in the interval [−1
2 ,

1
2) ×

[−1
2 ,

1
2). Generally, this means that the x-y-coordinates of the surface points need

to be scaled to this interval. We wish to use the same scaling for all images so that

the interpretation of the Fourier domain remains the same.

To define this scaling, we will introduce the concept of an equivalence range;

we want to choose such a scaling that, for an object at the equivalence range e, the

effect of applying a particular transfer function to the FFT spectrum and to the NFFT

spectrum is the same. The correct scaling is computed by intersecting the camera’s

field of view with a plane perpendicular to the view direction at distance e from the

camera, yielding a rectangle; the x-y-plane is then scaled such that this rectangle fits

exactly within the interval [−1
2 ,

1
2)× [−1

2 ,
1
2).

Note that the x-y-coordinates of points beyond the equivalence range may lie

outside the interval [−1
2 ,

1
2)× [−1

2 ,
1
2); these points are discarded. The equivalence

range thus needs to be chosen such that the resulting clipping volume is large enough

to contain the objects of interest. The centroid of these objects should be shifted to

x = 0, y = 0 to ensure they are not clipped.

Another point of note is that it is advisable, if possible, to segment the foreground

object of interest and apply the NFFT only to the points belonging to that object.

There are various reasons for doing this: (i) Steep edges between the foreground

and background can lead to ringing artefacts. (ii) The grid nodes in the background

region are spaced further apart; the greater the spacing between grid nodes, the lower

the frequency where aliasing begins. (iii) Passing fewer points to the NFFT reduces

the computational requirements.

Finally, note that the transform from the spatial domain to the frequency domain

is often an underdetermined operation. In this case, the NFFT computes the solution

with minimal energy, meaning that the background region, where there are no grid

nodes, is implicitly set to zero. To avoid steep edges between the foreground and the

background, we subtract a constant offset from the z values so that the maximum z

value becomes zero.

7.2.3 Nose Detection

In Section 7.1, we have used the geometric features for the task of nose detection and

tracking. Here we will evaluate the benefit of the scale-invariant feature computa-

tion by comparing the results in the nose detection task to those obtained using the

feature computation in image coordinates. As described in the previous section, the

geometric features can be computed conveniently in the Fourier domain. In case of
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the orthographic projection, the spectrum can simply be computed using the FFT.

However, we leverage the depth information using the perspective camera model to

obtain a 3D object representation that is independent of the object’s distance to the

camera. As a consequence, we have to rely on the NFFT for the computation of the

spectrum. There exist a number of technical details regarding the application of the

NFFT, which will be the focus of this section.

Some of the details are best explained with respect to the nose detector, thus, we

will briefly review the algorithm as described in 7.1.4. For each pixel in an image we

compute the generalized eccentricities ϵ0 and ϵ2 and, thus, map it to the feature space

given in Figure 7.1. Within feature space, noses are characterized by a bounding box

which is learned from a set of labeled training data. During classification, a given

pixel is said to belong to the tip of a nose iff it is mapped into this bounding in feature

space.

In correspondence to Section 7.1, we segmented the foreground from the back-

ground in the TOF range images to discard noise in image regions with low signal

to noise ratio. All background pixels were set to the maximum distance in the fore-

ground region to obtain a smooth continuation from the foreground to the constant

background region. To further improve the smoothness, we also discarded 20% of

the foreground pixels with largest distance to the camera. As a result, the border of

the foreground is roughly at the same distance to the camera and filling the back-

ground with a constant does not induce any discontinuities.

In the orthographic case, the resulting range image was then passed directly to

the FFT. In case of the NFFT based algorithm, we first inverted the perspective pro-

jection to obtain xyz-coordinates. Note, that the background noise should be re-

moved prior to this step, because noise pixels having very low distance values will

project to points that lie between the object in the foreground and the camera result-

ing in spurious peaks in the Monge patch. In a second step, the coordinates x and

y were shifted so that the foreground object was centered on the optical axis of the

camera. This was achieved by a simple subtraction of the mean of all xy-coordinates

of foreground pixels.

The final step in preparing the data for the NFFT is to select the relevant samples

for processing and to scale the sampling nodes to the correct interval. Apparently,

the sampling nodes have to lie within a constant interval for all images so that re-

sults relate to the same scale. Thus, we determined upper and lower bounds for x

and y which correspond to a square frame of 50 cm side length in the 3D scenery.

The resulting interval is scaled to (−1
2 ,

1
2)× (−1

2 ,
1
2) for processing with the NFFT.
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Figure 7.6: Generalized eccentricity ϵ0, computed on a synthetic test image of a sphere, as
a function of distance from the camera.

Furthermore, only foreground samples were passed to the NFFT to reduce the com-

putational cost. Note, that it makes sense omit too distant background pixels be-

cause, intuitively speaking, the Nyquist frequency depends on the largest sampling

rate within the data which is inversely proportional to the distance. Finally, the NFFT

assumes the input function to be zero in all regions in (−1
2 ,

1
2)× (−1

2 ,
1
2) where no

samples are provided. As a consequence, the maximum input value was subtracted

from all input samples to avoid discontinuities. An example of the samples passed

to the NFFT for two specific images is given in Figure 7.5.

7.2.4 Experimental Results

The algorithms were implemented in Matlab; the NFFT 3.0 library (Keiner et al.,

2006), which is implemented in C, was used to compute the NFFT.

Synthetic Data

To begin, we will examine the feature values computed on a synthetic test object us-

ing both the classical scale-dependent FFT-based approach and the scale-independent

NFFT-based approach. We synthesized range images of a sphere at various distances

from the virtual camera and computed the generalized eccentricity ϵ0 using the FFT-

and NFFT-based approaches.

Figure 7.6 shows the value of ϵ0 at the apex of the sphere as a function of dis-

tance. (ϵ2 is not shown because it is identically zero for objects that, like the sphere,
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exhibit the same curvature in all directions.) It is apparent that while the feature

value changes noticeably with distance for the FFT-based approach, it remains es-

sentially constant for the NFFT-based approach. Note also that at the equivalence

range of e = 0.5m, both approaches compute the same feature value.

Real-World Data

To evaluate the performance of the features on a real-world problem, we compare

the detection rates of the nose detector (Haker et al., 2007) on images of an SR3000

TOF camera using the NFFT-based algorithm and the original FFT-based version,

respectively. In both cases, the training was done on a database of three subjects who

were imaged at a fixed distance of 60 cm from the camera. During evaluation, the

detector had to generalize to a dataset of 87 face images showing a different subject.

The test images were taken at distances ranging from 35 to 70 cm. Figure 7.7 shows

two examples of range maps from the test set along with the scale-invariant features.

In the case where only the range data of the TOF images is considered, the results

are given in Figure 7.8. Here, the NFFT-based algorithm achieves an EER of 20%

in comparison to 39% in case of the FFT-based version and, thus, clearly yields a

significant improvement in detection performance.

We have shown the detection results on features extracted from the range data

alone to make the effect more clearly visible; for optimal detection performance, we

would additionally use the same type of features computed on the intensity data. As

we will discuss in Section 7.2.5, we still compute the intensity features in the conven-

tional way using the FFT, and they are thus not scale-invariant. Nevertheless, when

they are combined with the FFT-based range features, we obtain an EER of 4%; when

NFFT-based range features are used, the EER drops to 0%, i.e. there are no errors

on the test set – a larger test set would be required to measure a more meaningful

EER. (As a point of note, the EER on the intensity features was 78%; it is only the

combination of range and intensity features that yields low error rates.)

It should be mentioned that, while the NFFT has the same asymptotic running

time as the FFT, it is slower by a relatively large constant factor. Our Matlab im-

plementation, running on a 2.66 GHz E6750 Intel CPU, requires 0.1 s to compute

the FFT-based features, versus 5 s for the NFFT-based features. A C implementation

of the FFT-based detector runs at camera frame rates (Böhme et al., 2008a); the

NFFT-based detector is currently too slow for this type of application. However, we

believe there are ways of achieving the same effect at lower computational cost; in

the meantime, we see NFFT-based scale-invariant features as an attractive technique
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range at 35 cm range at 65 cm

ϵ0 at 35 cm ϵ0 at 65 cm

ϵ2 at 35 cm ϵ2 at 65 cm

Figure 7.7: Two different range image samples from the test set, taken at 35 cm (left col-
umn) and 65 cm distance (right column). The corresponding features ϵ0 and ϵ2 computed at
foreground pixels via the NFFT are shown, respectively.
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Figure 7.8: Top: ROC curve showing detection rate vs. false positive rate for the nose
detection task using the NFFT. Bottom: The ROC curve obtained on the same database
using the FFT. The detection rate indicates the percentage of images in which the nose has
been identified correctly, whereas the false positive rate denotes the percentage of images
where at least one non-nose pixel has been misclassified. Thus, strictly speaking, the curves
do not represent ROC curves in the standard format, but they convey exactly the information
one is interested in for this application, that is, the accuracy with which the detector gives
the correct response per image.
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for non-interactive applications.

7.2.5 Discussion

Features computed directly on the three-dimensional geometry of the object are, by

their nature, scale-invariant. As we have shown, this allows for a more robust classi-

fication than when the same features are computed directly on the range map, where

they are sensitive to scale variations. We have demonstrated this using a specific set

of features, the generalized eccentricities, but the method itself is very general and

can be applied to a wide range of operators.

We have used our technique to implement a facial feature detector using a TOF

camera. The detector generalizes from faces presented at a fixed training distance

to a test set containing different faces at different distances. It achieves good de-

tection performance, making no errors on the test set. Two important factors that

help us achieve this result are the scale-invariant features and the fact that the TOF

camera provides a perfectly registered intensity image in addition to the range map.

The combination of range and intensity data yields substantially better classification

results than either type of data alone.

Currently, we still compute the intensity features on the image, where they are

sensitive to scale variations. Ideally, we would like to compute these features on the

object surface, too. This is, however, a slightly more complicated problem, because

intensity is a function of the position on a two-dimensional sub-manifold (the ob-

ject surface) in three-dimensional space; the geometry of this sub-manifold must be

taken into account when computing the intensity features. This is an avenue for fu-

ture work.

On a general level, our key point is this: The perspective transformation that

is inherent in the image formation process causes scale variations, which present

additional difficulties in many computer vision tasks. This is why, in our view, the

TOF camera is an attractive tool for computer vision: In effect, it can act as a digital

orthographic camera, thereby simply eliminating the problem of scale variations.
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7.3 Multimodal Sparse Features for Object Detection

7.3.1 Introduction

In recent years there has been a lot of interest in learning sparse codes for data repre-

sentation, and favorable properties of sparse codes with respect to noise resistance

have been investigated (Donoho et al., 2006). Olshausen and Field (1997) applied

sparse coding to natural images and showed that the resulting features resemble re-

ceptive fields of neurons in the visual cortex. Thus, it stands to reason that the basis

functions computed by sparse coding can be used effectively in pattern recognition

tasks in the fashion introduced by Serre et al. (2007), who model a recognition sys-

tem that uses cortex-like mechanisms. They use Gabor jets, which also roughly cor-

respond to receptive fields of V1 simple cells, to extract images features for object

recognition.

Sparse coding has also been successfully applied to the recognition of handwrit-

ten digits. Labusch et al. (2008a) learn basis functions for representing patches of

handwritten digits and use these to extract local features for classification.

In this work, we aim to learn a sparse code for multimodal image data, i.e. we

simultaneously learn basis functions for representing corresponding intensity and

range image patches. As a result, we obtain aligned pairs of basis functions that

encode prominent features that co-occur consistently in both types of data. Thus,

a corresponding pair of basis functions can be used to consistently extract features

from intensity and range data. To our knowledge, sparse representations have not

yet been learned for multimodal signals. The considered image data was obtained

by a TOF camera, which provides a range map that is perfectly registered with an

intensity image.

We already showed in Section 7.1 and Section 7.2 that using both intensity and

range data of a TOF camera in an object detection task can significantly improve

performance in comparison to using either data alone (Haker et al., 2007, 2008).

The fact, that a sparse code learned simultaneously on both intensity and range data

yields perfectly aligned basis functions, allows us to extract relevant features from

both types of data.

Here, we aim to learn a set of basis functions that encode structural information

of frontal face images in a component-based fashion. As a result, the basis functions

estimated by sparse coding can be regarded as templates for facial features, such as

the nose. We evaluate the resulting templates on a database of TOF images and use
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simple template matching to identify the presence and position of the nose in frontal

face images. The importance of the nose as a facial feature for problems such as head

tracking was already mentioned by Yin and Basu (2001) and Gorodnichy (2002). The

fact that we use a single basis function for template matching yields a very efficient

algorithm for detecting the nose that can be implemented at camera frame rates.

The common alternative to using only a single basis function in the nose detec-

tor would be to compute a sparse coefficient vector for every image patch that may

contain a nose based on the estimated basis functions. The coefficient vector can

then serve as an input to a high-dimensional classification algorithm, such as a sup-

port vector machine (SVM). While this procedure is computationally more expensive

than template matching and cannot be implemented at camera frame rates, it yields

improved detection rates.

Section 7.3.2 will discuss the computation of a set of basis functions under the

constraint of the sparse coding principle. In Section 7.3.3 we discuss the procedure of

determining the basis function that yields the optimal equal error rate (EER) in the

template matching approach for the nose detection task. Furthermore, we discuss

the training of an SVM on the sparse coefficient vectors. Section 7.3.4 presents the

results and shows that templates generated via sparse coding yield significantly bet-

ter detection rates than templates obtained by PCA or by computing an average nose

from a set of aligned nose samples. In addition, we compare the results of an SVM

classifier trained on coefficient vectors computed under the sparse coding principle

in comparison to coefficient vectors obtained via PCA.

7.3.2 Sparse Features

The investigated database of frontal face images (art) was obtained using an SR3000

TOF camera (Oggier et al., 2005a). The subjects were seated at a distance of about 60

cm from the camera and were facing the camera with a maximum horizontal and/or

vertical head rotation of approximately 10 degrees. As a result, the facial feature of

interest, i.e. the nose, appears at a size of roughly 10 × 10 pixels in the image. A

number of sample images are given in Figure 7.9.

As a TOF camera provides a range map that is perfectly registered with an inten-

sity image, we aim to learn an image basis for intensity and range simultaneously. To

this end, the input data for the sparse coding algorithm are vectors whose first half

is composed of intensity data and the second half of range data, i.e. in case we con-

sider image patches of size 13× 13, each patch is represented by a 338-dimensional

vector (d = 338 = 2 · 13 · 13) where the first 169 dimensions encode intensity and
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Figure 7.9: Three sample images of frontal face images taken by an SR3000 TOF camera.
The top row shows the intensity and the bottom row the range data.

the remaining 169 dimensions encode range.

In order to speed up the training process, we only considered training data that

originated from an area of 40 × 40 pixels centered around the position of the nose.

The position of the nose was annotated manually beforehand. By this procedure we

prevent the basis functions from being attracted by irrelevant image features, and a

number of 72 basis functions proved to be sufficient to represent the dominant facial

features, such as the nose or the eyes.

A common difficulty with TOF images is that the range data is relatively noisy

and that both intensity and range can contain large outliers due to reflections of the

active illumination (e.g. if subjects wear glasses). These outliers violate the assumed

level of Gaussian additive noise in the data and can lead the sparse coding algorithm

astray. To compensate for this effect, we applied a 5× 5 median filter to both types

of data. To ensure the conservation of detailed image information while effectively

removing only outliers, pixel values in the original image Io were only substituted by

values of the median filtered image If if the absolute difference between the values

exceeded a certain threshold:

Io(i, j) =

{
If (i, j) if |Io(i, j)− If (i, j)| ≥ θ

Io(i, j) otherwise .

There exist a number of different sparse coding approaches, see for example (Ol-

shausen and Field, 1997; Lewicki et al., 2000; Labusch et al., 2009). We employed

the Sparsenet algorithm proposed by Olshausen and Field (1997) for learning the

sparse code. The basic principle aims at finding a basis W for representing vectors

x⃗ as a linear combination of the basis vectors using coefficients a⃗ under the assump-
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tion of Gaussian additive noise: x⃗ = Wa⃗+ ϵ⃗. To minimize the reconstruction error

while enforcing sparseness, i.e. the property that the majority of coefficients ai are

zero, the Sparsenet algorithm solves the following optimization problem:

min
W

E

(
min
a⃗

(∥x⃗−Wa⃗∥+ λS(⃗a))

)
.

�� ��7.11

Here, E denotes the expectation and S(⃗a) is an additive regularization term that

favors model parameters W that lead to sparse coefficients a⃗. The parameter λ bal-

ances the reconstruction error ϵ⃗ against the sparseness of the coefficients.

In order to apply the method, the input data has to be whitened beforehand as

indicated by Olshausen and Field (1997). We applied the whitening to both types of

data individually. Only after this preprocessing step, the training data was generated

by selecting random image patches of the template size, i.e. for a patch in a given

image the corresponding intensity and range data were assembled in a single vector.

The resulting features for 19 × 19 image patches are given in Figure 7.10. Fa-

cial features, e.g. nose, eyes, and mouth, can readily be distinguished. We set the

parameter λ to a relatively high value (λ = 0.1), i.e. we enforce high sparseness, in

order to obtain this component-based representation. However, we can report that

the results are not particularly sensitive to minor changes of this parameter.

7.3.3 Nose Detection

Template Matching Approach

Since the basis functions computed by sparse coding in Section 7.3.2 represent facial

features, it stands to reason that they can be used for object detection via template

matching. At this point two questions arise: (i) Which basis function represents the

best template, and (ii) what is the actual position of the facial feature with respect to

the center of the image patch corresponding to this basis function. A straightforward

solution would be to select the most promising feature by visual inspection and to an-

notate the position of the facial feature within the image patch manually. Obviously

though, this procedure is not generally applicable and is likely to yield suboptimal

results.

Thus, we decided to follow a computationally more intensive procedure that, in

contrast, is fully automatic and operates in a purely data-driven fashion. For each

of the 72 basis functions we trained and evaluated a nose detector for every possible

position of the nose in a certain neighborhood around the center of the image patch.
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Figure 7.10: Basis functions learned for frontal face images via the Sparsenet algorithm.
The upper and lower part of the figure show the basis functions representing intensity data
and range data, respectively. The basis functions for both types of data were learned si-
multaneously and correspond pairwise, i.e. the top-left intensity feature is aligned with the
top-left range feature.
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In the case of 13× 13 image patches we chose this neighborhood to be 11× 11. As

a result, a total of 8712 = 72 · 11 · 11 detectors were trained. The final detector uses

the basis function and the position of the nose out of the 8712 configurations that

produced the best EER on the training set.

The thresholds of each detector were simply determined by taking the minimum

and the maximum of the filter responses at the annotated positions of the nose on a

set of training images, i.e. upper and lower bounds for the filter responses that iden-

tify a nose were determined for both intensity and range data. In order to identify a

nose in a new image, both intensity and range were filtered with the corresponding

template images and each pixel whose filter responses complied with the identified

bounds was classified as a nose pixel. To obtain an EER, these bounds were relaxed

or tightened.

The procedure was evaluated on a data set of 120 TOF images of frontal faces

taken from 15 different subjects. To double the amount of data, mirrored versions of

the images were also added to the data set. From the total of 240 images one half was

chosen at random as a training set to determine the bounds of each classifier. These

bounds were then adjusted to yield an EER on the training set. Finally, the optimal

classifier, i.e. the one out of the 8712 candidates yielding the best EER, was evaluated

on the remaining 120 images that were not used during the training process.

In order to assess the performance of the learned templates, we also evaluated

two other types of templates – “average” and “eigen” templates. The former were

generated by computing an average nose from a set of image patches containing

aligned sample noses. The latter were obtained as the principal components of these

aligned image patches. Again, we generated corresponding pairs of templates for

both intensity and range data. The same training images, including the preprocess-

ing, were used as in Section 7.3.2 for the Sparsenet algorithm.

A fundamental difference between these two approaches to generating the av-

erage and eigen templates and the sparse coding method is, that the former only

yield templates in which the nose is centered in the image patch whereas the lat-

ter also produces translated versions of the nose (see Figure 7.10). To guarantee

a fair comparison between the different templates we applied the following proce-

dure: Since the optimal position of the nose within the template is not known a pri-

ori, we generated a total of 121 13 × 13 templates centered at all possible positions

in a 11 × 11 neighborhood around the true position of the nose, i.e. the templates

were shifted so that the nose was not positioned in the center of the template. In

correspondence to the procedure described above for the sparse-coding templates,
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each shifted template was then evaluated for every possible position of the nose in a

11 × 11 neighborhood around the center of the image patch. For the average tem-

plates the resulting number of possible detectors amounts to 14641. In the case of

the eigen templates, it is not apparent which principal component should be used as

a template. To constrain the computational complexity, we considered only the first

three principal components. Nevertheless, this resulted in 43923 possible detectors.

Again, the optimal average and eigen templates were determined as the ones yielding

the best EER on the training set according to the procedure described above.

Coefficient Vector Approach

In contrast to the procedure described above, where only a single basis function was

used for template matching to detect the nose, we will now discuss the procedure

that utilizes the entire set of basis functions W . Again, the basis functions W were

computed according to Equation (7.11) using the Sparsenet algorithm. In this setting,

we compute a coefficient vector a⃗ for each image patch of a new image under the

sparse coding principle:

a⃗ = min
a⃗

(∥x⃗−Wa⃗∥+ λS(⃗a)) .
�� ��7.12

As before, the vector x⃗ is composed of both the range and intensity data of an image

path. Based on the resulting vector a⃗, a classifier decides for each image patch if it

depicts a nose or not.

Again, we rely on the annotated data set of frontal face images described above

to extract training vectors representing human noses. As we intend to train an SVM

we also require samples from the non-nose class, which we extracted randomly from

the training images.

Based on the resulting vectors we train an SVM using the iterative SoftDouble-

MaxMinOver algorithm proposed by Martinetz et al. (2009). The hyper-parameters

are optimized via 10-fold cross-validation.

To evaluate the detection performance of this approach, we compare it to basis

functions U computed via PCA. To obtain the coefficient vector a⃗ with respect to the

PCA basis functions, we followed the standard procedure of projecting the vector x⃗

onto the orthonormal basis U :

a⃗ = UT x⃗ .
�� ��7.13

For the results to be comparable, we used the same number of basis functions

for both approaches. The number equals the dimensionality of the input vectors x⃗
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Figure 7.11: ROC curves of detection rate vs. false positive rate. The curves were gener-
ated using the sparse-coding templates, the eigen templates, the average templates, and
the sparse-coding templates using only the intensity data (sparse int) or only the range
data (sparse rng). The detection rate gives the percentage of images in which the nose
was identified correctly, whereas the false positive rate denotes the percentage of images
where at least one non-nose pixel was misclassified. Thus, strictly speaking, the curves do
not represent ROC curves in the standard format, but they convey exactly the information
one is interested in for this application, that is, the accuracy with which the detector gives
the correct response per image.

representing an image patch. Thus, for a patch size of 13× 13 both x⃗ and a⃗ were of

dimension 338.

7.3.4 Results

Template Matching Approach

The results of the training for the nose detection task using 13 × 13 templates are

given in Figure 7.11. The EER on the training set using the sparse-coding templates is

3.9%. The eigen templates achieve an EER of 6.6%, and the average templates yield

an EER of 22.5%, i.e. the EERs for these two procedures are higher by roughly 50%

and 500%, respectively. The EERs prove to be largely independent of the training set.

We ran 100 evaluations of the procedure with random configurations of the training

set and recomputed both the templates and the classifiers in each run. The standard

deviations for the three EERs over the 100 evaluations were σ = 0.9%, σ = 1.6%,

and σ = 2.3%, respectively.

Figure 7.11 also shows the ROC curves for detectors that use the sparse-coding
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templates computed on either intensity or range data of the TOF images alone. Note

that the EERs are dramatically higher in comparison to the detector that uses both

types of data together. This confirms results reported by Haker et al. (2007), where

the combination of intensity and range data also yielded markedly better results in

the detection of the nose based on geometrical features.

The error rates on the test set are only slightly higher than the EERs on the train-

ing set, which shows that the method generalizes well to new data. The false positive

rates (FPR) amount to 5.3%, 9.3%, and 24.4% for the sparse-coding, eigen, and av-

erage templates.

The evaluation above considered only templates of a fixed size of 13 × 13 pix-

els. However, varying the template size reveals some interesting properties of the

different approaches. To this end, we computed templates of size n × n, where

n = 1, 3, . . . , 19, for each approach and estimated the optimal detector according to

the same procedure outlined above. To reduce the number of possible detectors to

be evaluated, the neighborhood sizes for positioning the nose and shifting the tem-

plate were reduced to 7× 7 pixels for templates with size n smaller than 13. Again,

we considered 100 random configurations of training and test set.

Figure 7.12 shows the configurations of template and position of the nose within

the template that yielded the best EERs on the training set for each approach with

respect to the different template sizes.

Note that the sparse-coding templates (first two rows) exhibit a more appropri-

ate structure and convey higher frequency information in comparison to the average

templates (rows three and four), especially for larger sizes of the template. This ex-

plains the bad performance of the average templates, because an increase in size does

not add more information to the template. This effect becomes clearly visible in Fig-

ure 7.13. The plot shows the FPRs on the test set for the different approaches over

varying template sizes. One can observe that the FPR of the average template starts

to increase for templates of size five. In comparison, the FPR of the sparse-coding

templates continues to decrease up to a template size of 19.

A decrease of the FPR can also be observed for the eigen templates up to size 11

of the template. For larger template sizes the FPR also starts to increase, whereas the

sparse-coding templates continue to achieve low FPRs, as already mentioned above.

It seems that sparse coding can exploit further reaching dependencies.

A comparison of the FPRs with respect to the optimal template size for each

method reveals that the average template achieves the worst overall performance

with an FPR of 9.6% (σ = 3.5) for a 7 × 7 template. The best results for the eigen
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Figure 7.12: Optimal templates for different template sizes, where each column shows tem-
plates of odd pixel sizes ranging from 3 to 19. The first row shows the sparse-coding tem-
plates for intensity data and the second row shows the corresponding features for range
data. Rows three and four give the average templates and rows five and six show eigen
templates. The crosses mark the estimated position of the nose within the templates.
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Figure 7.13: The graph shows the FPRs and standard deviations on the different test sets for
the different templates at different template sizes. The dotted lines show the corresponding
false negative rates.

templates were obtained with templates of size 11 yielding an FPR of 7.9% (σ = 3.2).

The sparse coding templates of size 19 had the best overall performance (FPR 3.7%,

σ = 2.3), and the FPR improved roughly by a factor of 2.5 in comparison to the best

eigen template.

Note that the false negative rate for the different approaches lies well within the

error bars of the FPR in Figure 7.13, as one would expect, since the classifier was set

to achieve an EER during training.

Coefficient Vector Approach

The results of the classification with an SVM trained on the full coefficient vectors a⃗

are presented in Figure 7.14 and Figure 7.15. Again, we evaluated the classification

of image patches of different sizes. Here, we considered patches of size n×n, where

n = 7, 9, . . . , 19. We ran ten different configurations of training and test set to

obtain representative results.

Both Figure 7.14 and Figure 7.15 show an effect that is similar to the one observed

previously for the template matching approach. For small sizes of the image patch

the PCA yields better results in comparison to sparse coding. However, for large tem-

plate sizes the sparse coding method achieves similar FPRs at slightly better FNRs.

Both approaches perform at an average FPR of 0.3% and an FNR of 2.0%. While
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Figure 7.14: The graph shows the FPRs and standard deviations on the different test sets
for the different sizes of the classified image patches.
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Figure 7.15: The graph shows the FNRs and standard deviations on the different test sets
for the different sizes of the classified image patches.
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this result is obtained at a patch size of 11× 11 in case of the PCA, the sparse coding

approach achieves these error rates at a patch size of 19× 19. Note, that the differ-

ences between both methods are not significant. We point out that the classifier was

not adjusted to an EER in this setting. The disparity between the FPRs and FNRs is

due to the fact that the two classes of nose pixels and non-nose pixels were not rep-

resented equally among the training set, i.e. we extracted approximately seven times

more non-nose samples than nose samples for training to achieve the best overall

performance. It remains a task for future work to retrain the classifier at an EER.

7.3.5 Discussion

We have demonstrated how a sparse code can be learned for multimodal image data,

i.e. we computed an image basis for the simultaneous representation of both range

and intensity data of a TOF camera. As a result the basis functions capture prominent

characteristics of the training images that consistently co-occur in both types of data.

We have shown how the resulting basis functions can be used effectively for tem-

plate matching in detecting the nose in frontal face images. On a labeled set of TOF

images we obtained a FPR of 3.7%. The sparse-coding templates yield significantly

better results in comparison to templates obtained by averaging over a number of

aligned sample images of noses. Templates resembling the principal components of

these aligned sample images were also outperformed, especially for large sizes of the

template. We could also confirm previous observations (Haker et al., 2007, 2008)

that the combination of intensity and range data yields a greatly improved detector

compared to using either type of data alone.

The use of the complete set of basis functions for the feature representation of

an image patch yields significantly improved results in comparison to using a single

basis function as a template, lowering the FPR to 0.3% at an FNR of 2.0%. How-

ever, the computational complexity of this approach prevents an implementation at

interactive frame rates.
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7.4 Local Range Flow for Human Gesture Recognition

The features introduced in Section 7.1, 7.2, and 7.3 where all computed with respect

to a single image, i.e. they capture static properties of the image data. For a number

of computer vision problems it is desirable to also consider dynamic properties of a

sequence of images. For example it is possible to learn a sparse code in analogy to

Section 7.3 for the representation of motion patterns (Olshausen, 2003). However,

the most commonly used representative of dynamic features in image analysis is the

optical flow.

A typical computer vision problem that requires the use of dynamic features is

human action and gesture recognition. It has been tackled by a number of different

approaches in recent years. Approaches that are based on the estimation of optical

flow were for example proposed by Polana and Nelson (1994) and Efros et al. (2003).

Other, approaches aim at extracting meaningful features that describe the char-

acteristic evolvement of the human pose over time for a specific action. Shechtman

and Irani (2007) compute a correlation measure for a space-time patch showing the

performed action with templates of the actions to be recognized. A differential geo-

metric approach by Yilmaz and Shah (2008) computes features on a 3D volume in

spatio-temporal space that is composed of the 2D contours of the performing per-

son. Other approaches, such as the one by Sun et al. (2009), determine trajectories

of keypoints and use them to recognize actions.

The general interest in the topic of action and gesture recognition is also reflected

by an increasing number of companies that are active in this area. The Belgian com-

pany Softkinetic S.A. provides a middleware for human pose tracking and gesture

recognition based on 3D range sensors. The Israeli company 3DV Systems Ltd. de-

veloped a similar system that was mainly targeted at the gaming market. In late

2009, 3DV Systems was purchased by Microsoft in the scope of the Project Natal,

which aims at providing a gesture interface for the XBox 360.

In this work, we propose a gesture recognition system that decides on a per frame

basis whether a gesture out of a set of predefined gestures was performed by a user

within a video stream captured by a TOF camera. The gestures investigated here are

performed with the users hands. The challenges in this scenario are twofold, i.e. the

system is not only required to distinguish between the predefined gestures, but it also

needs to decide whether the user is actually performing a gesture or if the movements

of the hands are arbitrary and not intended for the gesture recognition system.

We propose a method that combines the pose estimation procedure presented
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in Chapter 6 with 3D motion features, i.e. we compute the features only at keypoints

identified by the estimated pose model. In this way, we can directly assign the mo-

tion vectors to certain parts of the body, such as the hands. The utilized features

are referred to as range flow. For their computation we use the algorithm proposed

by Spies et al. (2000, 2002). The resulting 3D motion vectors from local space-

time neighborhoods around the keypoints are accumulated in 3D motion histograms.

These histograms are used as input for a classification algorithm that decides on a

per frame basis if one of the predefined gestures was performed.

The proposed feature vectors will then be evaluated in a gesture recognition task,

i.e. we train and test a gesture recognition system on features extracted from a labeled

database of video sequences. We demonstrate the benefit of using the proposed

range flow features by comparing them against motion vectors computed directly

from the estimated models of human pose of two successive frames.

In the Section 7.4.1 we will briefly review the computation of range flow. Sec-

tion 7.4.2 will be devoted to the computation of suitable feature vectors using range

flow histograms that yield a distinctive representation of the local motion patterns.

We will then present the results of the gesture recognition task in Section 7.4.3.

7.4.1 Range Flow

The goal of estimating the range flow for an image sequence of range maps is to es-

timate a 3D motion vector (u, v, w)T ∈ R3 at every pixel to characterize the 3D

motion of the observed surface.

To this end, one considers the range map as a function Z = Z(x, y, t) ∈ R
of space and time. Based one this function one can formulate the range flow mo-

tion constraint equation (RFMC) (Horn and Harris, 1991; Yamamoto et al., 1993) as

follows:

Zxu+ Zyv + w + Zt = 0 .
�� ��7.14

A similar equation, generally used for the estimation of optial flow, can be for-

mulated for the intensity data of the TOF camera. Assuming intensity as a function

I(x, y, t) ∈ R of space and time, the well-known brightness change constraint equa-

tion (BCCE) (Horn and Schunck, 1981) takes the following form:

Ixu+ Iyv + It = 0 .
�� ��7.15

As the TOF camera delivers both range and intensity data, we can use both the

RFMC and the BCCE in combination to estimate the range flow. Naturally, the BCCE
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can only contribute to the components u and v of the motion vector. When combin-

ing the two constraints, care has to be taken that not one of the terms dominates the

numerical calculation due to a different scaling of the two types of data. Spies et al.

(2000) propose to use a scaling factor β2 based on the average gradient magnitudes

computed on a representative data set of range and intensity data:

β2 =
< ∥∇Z∥2 >
< ∥∇I∥2 > .

�� ��7.16

According to Spies et al. (1999), the RFMC and BCCE lead to a total least squares

framework of the form:

u1Zx + u2Zy + u3 + u4Zt = 0
�� ��7.17

u1Ix + u2Iy + u4It = 0 .
�� ��7.18

Solving this system yields the desired range flow in the form:

(u, v, w)T =
1

u4
(u1, u2, u3)

T

.

�� ��7.19

In order to obtain enough constraints to solve the system of equations, one assumes

constant range flow in a local neighborhood of the considered pixel, often referred

to as an aperture. As a result, one obtains an overdetermined system of equations

consisting of Equation (7.17) and Equation (7.18) for every pixel in this local neigh-

borhood. It can be shown that the solution in a total least squares sense corresponds

to the eigenvector to the smallest eigenvalue of the extended structure tensor:
ZIxx ZIxy < Zx > ZIxt

ZIyx ZIyy < Zy > ZIyt

< Zx > < Zy > < 1 > < Zt >

ZItx ZIty < Zt > ZItt


.

�� ��7.20

Here, the operator < · >=
∫
· denotes the integration over the aperture. We

introduced the abbreviation ZIab =< ZaZb > +β2 < IaIb > for a more compact

notation.

Nevertheless, this approach cannot always retrieve the full range flow if the aper-

ture does not provide sufficient information to uniquely determine the underlying 3D

motion vector. This circumstance is referred to as the aperture problem. To reflect
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this situation one distinguishes between full flow, line flow, and plane flow.

In case three linear independent constraints are available, all but the smallest

eigenvalue differ from zero and one can compute the full flow as described above.

This is for example the case if the aperture encompasses a 3D corner. In case of lin-

ear structures, such as a 3D edge, one obtains two independent constraints and can

determine the so-called line flow as the minimum norm solution. Plane flow refers

to the minimum norm solution of depth planar structures, which merely yield a sin-

gle constraint. Note, that one obtains a full-rank tensor if the assumption of locally

constant range flow is violated. In such a case the range flow cannot be estimated.

7.4.2 Human Gesture Recognition

Given the range flow computed on a sequence of TOF images, we aim at recogniz-

ing human gestures. To this end, we need to integrate the estimated motion vectors

into an appropriate feature representation, which can serve as an input to a decision

rule that classifies gestures. For the practical applicability of such a gesture recogni-

tion system, special attention has to be paid to the problem that unintentional hand

movements should not be interpreted as gestures. Thus, the extracted features need

to be highly distinctive of the corresponding gesture. In the following, we will first

discuss the procedure of extracting the features and will then turn to the utilized

classification procedure for recognizing the gestures.

Feature Extraction

In this work, we investigate gestures performed with the users hands. Thus, the con-

sidered feature representation aims at characterizing the 3D motion of the subjects

hands. To this end, we employ the pose estimation procedure described in Chapter 6,

i.e. we compute the range flow for every pixel in a local neighborhood around the es-

timated positions of the hands according to the procedure described in Section 7.4.1.

For the hand position within a specific frame, this neighborhood includes every pixel

in a 11 × 11 window centered around the position of the hand. In order to capture

only the motion of the subject, we first segment the person and compute the range

flow only for those pixels within the window that belong to the person. For the uti-

lized segmentation algorithm refer to Section 5.1.2. An illustration of this procedure

is given in Figure 7.16.

To obtain a compact representation of the local motion field around a hand, we

accumulate the resulting 3D motion vectors in a 3D motion histogram, i.e. we trans-
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Figure 7.16: Sample image of a person performing a gesture. The estimated model of the
human pose is imprinted into the image. Furthermore, the range flow estimated in a local
neighborhood around the hands is depicted.

form the motion vectors (u, v, w)T into spherical coordinates (θ, ϕ, r)T and esti-

mate the frequency of the vectors in different sectors of the sphere around the con-

sidered pixel. We use three bins for each of the spherical coordinates which yields

a total number of 27 bins for the 3D motion histogram. This concept is depicted in

Figure 7.17.

The above procedure yields a 3D motion histogram describing the range flow

in a local spatial neighborhood around the estimated positions of both hands for

every frame of the video sequence. These two histograms are composed into a feature

vector x⃗i ∈ R54 to characterize the motion of both hands with respect to a given

frame i.

Our goal is to use these feature vectors to classify the performed gesture on a

per frame basis. Note, however, that a complete gesture is typically performed over

a number of successive frames. To pay respect to this observation, the final feature

vector ˆ⃗xi for a given frame i is obtained by averaging the feature vectors of the frames

j ∈ i−N, . . . , i+N :

ˆ⃗xi =
1

2N + 1

i+N∑
j=i−N

x⃗j .
�� ��7.21

Here, the temporal extension of a gesture in terms of frames is defined by 2N + 1,

i.e. we assume that it takes a subject a certain number of frames to perform a gesture

and we aim at detecting the frame that lies in the middle between the first and last

frame of the gesture.
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Figure 7.17: Illustration of a 3D motion histogram. The motion vectors of a local neigh-
borhood are transformed into spherical coordinates (θ, ϕ, r)T . The vectors are then accu-
mulated in a motion histogram. Intuitively speaking, the sphere is divided into sectors and
we estimated the frequency of the motion vectors within each sector. An example of such a
sector is depicted as a shaded volume.

Training and Classification

Given the feature vectors described above, we trained a classifier based on a labeled

training set. To this end, we recorded a number of video sequences in which a subject

performed ten instances of a predefined gesture. Between each instance the subject

was asked to return to a normal standing position, however, the length of the interval

between different instances of the gesture was arbitrary. We then labeled each frame

of the video sequence, i.e. we assigned each frame either to one of the corresponding

gestures or it was labeled as belonging to a non-gesture sequence.

We investigated a total of three different gestures: (i) A push gesture where a sub-

ject extends the palm in front of the body, (ii) a left-right gesture where the subject

sweeps a hand in front of his body from the left to the right, and (iii) a corresponding

right-left gesture. Sample frames of these gestures are depicted in Figure 7.18.

The data was recorded using an SR4000 TOF camera from MESA Imaging and

we recorded at a framerate of approximately ten frames per second. It took a subject

less than a second to perform the core part of the gestures we aim to recognize. Thus,

a typical gesture extends over roughly seven successive frames. By core part of the

gesture, we refer to those frames that actually identify the gesture, excluding the

frames that the user requires to move the hands to the starting position of the gesture.
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Figure 7.18: Sample frames of the three investigated gestures. The top row shows the ges-
ture where the subject moves a hand from right to left. The center row shows a push gesture.
The bottom row depicts the user sweeping a hand from left to right. In each frame the esti-
mated model of the pose is imprinted into the image.

Taking the left-right gesture as an example, we consider only those frames as the

core part in which the movement from the left to the right takes place. Given this

observation, we evaluated Equation (7.21) for N = 3 to obtain a feature vector for

every frame.

To increase the number of training samples, we extracted five feature vectors

for each performed instance of a gesture from the training sequences – the second

through the sixth frame of the core part of an instance. An efficient way to avoid high

false positive rates was to also extract samples from those frames were no gesture was

performed. These frames were selected at random. The resulting feature vectors

were use to train a classification algorithm. After training, each frame of a new video

sequence was classified by computing the corresponding feature vector and applying

the previously learned decision rule.

In this context, we evaluated three different classification algorithms: (i) The k-

Nearest-Neighbor classifier (kNN), (ii) the Nearest Mean classifier (NM), and (iii)

the One-Class MaxMinOver classifier (OMMO) (Labusch et al., 2008b).

In case of the kNN, we assigned a frame to the gesture with the largest number

of feature vectors in the neighborhood of the feature vector to be classified. As we
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are dealing with a multi-class problem, it is possible that two classes perform equally

well. In such a case, the frame was classified as a no-gesture frame. As mentioned

above, we also sampled the no-gesture class to reduce the number of false positives.

However, this class is rather difficult to sample. Thus, we introduced another rule

to improve the identification of frames in which no gesture was performed. To each

class cwe assigned a marginmc in terms of a minimum distance to the closest feature

vector among the nearest neighbors of that class, i.e. let x⃗ be a feature vector to be

classified and f⃗c the closest feature vector of the winning class, then

∥x⃗− f⃗c∥ < mc

�� ��7.22

must hold for x⃗ to be assigned to c. Otherwise, x⃗ is assigned to the no-gesture class.

Intuitively speaking, we avoid assigning a feature vector to a gesture class if it differs

too much from the representatives of that class. The margins can be viewed as hyper

parameters of the kNN algorithm. We adjusted these parameters to achieve 100%

detection rate on the training set while maintaining the lowest possible false positive

rate. The same procedure was also applied to the NM classifier.

In case of the third type of decision rule, we trained an OMMO for each class

including the no-gesture class. For a new frame, the OMMO classifiers for each class

were evaluated. The frame was only assigned to a gesture class, if the classifiers

of the other gesture classes rejected the frame. Otherwise, the frame was assigned

to the no gesture class to avoid false positives. We trained a hard-margin classifier

with a Gaussian kernel using the OMMO algorithm and thus had to adjust the kernel

parameter σ. Again, the parameter was chosen to achieve high detection rates on the

training set at the lowest possible false positive rate.

7.4.3 Results

In total, we recorded five data sets with different persons and evaluated three dif-

ferent gestures; the push gesture, the left-right gesture, and the right-left gesture.

Each person performed each gesture ten times. Thus, the data set consisted of 150

instances of gestures – 50 per individual gesture.

For the evaluation of the method we applied the leave-one-out procedure with

respect to the subjects, i.e. we trained a classifier for each gesture on the feature

vectors computed for four subjects and did the evaluation on the data set of the fifth

person. The hyper parameters of the considered classification algorithms (k for the

kNN, the margins in case of both the kNN and the NM, and the kernel parameter
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PU RL LR NG

PU 90.48 4.54 2.81 9.52

RL 0.00 95.65 0.00 4.35

LR 0.20 0.00 95.83 4.17

NG 0.77 0.73 0.17 97.68

Table 7.1: Confusion matrix for the kNN classifier. The gesture classes are denoted as PU
for the push gesture, RL for the right-left gesture, LR for the left-right gesture, and NG for
the no-gesture class. Note that the entries on the diagonal and the last column, excluding
the bottom right entry, were computed with respect to instances of a gesture while all other
entries were computed with respect to individual frames. By this procedure we emphasize
that we are interested in two different measures: (i) That each performed gesture is detected
and (ii) that each individual occurrence of an erroneously classified frame counts as a false
positive. Note, that this implies that the rows of the matrix do not automatically sum to one.

PU RL LR NG

PU 76.19 4.10 0.43 23.81

RL 5.63 100.00 0.00 0.00

LR 0.00 0.00 91.67 8.33

NG 1.50 0.73 0.27 96.52

Table 7.2: Confusion matrix for the NM classifier.

σ for the OMMO) were adjusted on one of the leave-one-out configurations. This

configuration was excluded from the test results presented here, i.e. the confusion

matrices were averaged over the remaining four leave-one-out configurations.

The results of the three classification procedures in the proposed hand gesture

recognition task are presented in Table 7.1 through Table 7.3. One can observe that

the method detects the predefined gestures with high accuracy in most cases, typi-

cally with detection rates above 90%. At the same time, the procedure successfully

distinguishes between those frames in which a gesture occurred from those were the

user did not perform a gesture. Here, detection rates are above 95% for the kNN and

the NM classifier and above 90% for the OMMO classifier. The overall performance

appears to be best for the kNN classifier, i.e. it achieves the highest detection rates

PU RL LR NG

PU 63.64 7.83 1.30 36.36

RL 1.92 91.67 0.00 8.33

LR 0.00 0.00 100.00 0.00

NG 1.38 4.00 0.67 91.58

Table 7.3: Confusion matrix for the OMMO classifier.
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PU RL LR NG

PU 61.90 0.00 0.00 38.10

RL 0.26 95.65 0.00 4.35

LR 0.40 0.00 83.33 16.67

NG 2.52 4.00 0.19 96.14

Table 7.4: Confusion matrix for the kNN classifier based on 3D motion vectors extracted
directly from human pose model.

in most cases and especially for the push gesture while maintaining low confusion

rates between the individual gestures.

In order to assess the advantage of using range flow as feature for 3D motion,

we also used the estimated model of the human pose to directly extract the motion

vectors of the hands by considering their 3D coordinates from two successive frames.

We followed the same procedure as above and accumulated the motion vectors from

seven successive frames in a 3D motion histogram to obtain a feature vector. The

classification results using the kNN classifier are given in Table 7.4. One can observe,

that the overall performance is significantly reduced in comparison to the results

based on range flow presented above. Thus, we can deduce that range flow serves as

a robust feature for characterizing object motion in TOF image data.

7.4.4 Discussion

In this section, we presented an approach to the classification of hand gestures. The

main goal was to achieve high detection rates while also handling the situation, where

a user is not performing any gesture at all. To this end, we proposed highly discrim-

inative features that combine knowledge of the human pose with 3D motion estima-

tion, i.e. we extracted 3D motion histograms based on the computation of range flow

at the priorly estimated image locations of the hands. This approach has two advan-

tages. First, the computationally intensive estimation of range flow can be kept to

a minimum for each frame because we require the range flow only in local neigh-

borhoods around the estimated positions of the hands. Furthermore, this approach

allows us to assign the motion information directly to body parts instead of to an

entire image or fixed image region.

Although the database for evaluating the proposed procedure is very limited and

this section presents only preliminary work, we obtained quite promising results.

We evaluated three different classification algorithms. The best performance was

achieved by the kNN algorithm, i.e. it yielded detection rates ranging from 90.48% to
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95.83% while the situation where no gesture was performed was detected with an ac-

curacy of 97.68%. This was achieved at confusion rates with the other gestures rang-

ing from 0.00% to 4.54%. Future work should aim at investigating a larger database

because one may expect the decision rules to be trained with higher accuracy. This is

especially the case for the OMMO classifier where we assume the poor performance

to be due to the limited amount of training data. At the same time, the results may

be evaluated in a more representative fashion. Furthermore, we expect an increase

in detection performance if one does not classify single frames. Instead, the method

should be extended to consecutive sequences of frames in which a gesture must be

detected before it is recognized.
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8
Introduction

In Part II we have introduced a collection of algorithms for TOF camera data. These

include the segmentation of foreground objects (see Section 5), the estimation of hu-

man pose (see Section 6), and the tracking of facial features (see Section 7). In the

scope of the third part of this thesis, we will discuss two applications for human-

computer-interaction that make use of these results. First we will investigate how

the nose can be used to control a mouse cursor for an alternative text input applica-

tion. Then we will discuss the use of deictic gestures for the control of a slide show

presentation. Finally, we will turn to the topic of digital photography, where we will

demonstrate how a TOF camera can be used to generate depth of field in digital im-

ages in a post-processing stage.

Facial Feature Tracker

We describe a facial feature tracker based on the combined range and amplitude

data provided by a TOF camera. We use this tracker to implement a head mouse, an

alternative input device for people who have limited use of their hands.

The facial feature tracker is based on the geometric features introduced in Sec-

tion 7.1 that are related to the intrinsic dimensionality of multidimensional signals.

In Section 7.1 we also showed how the position of the nose in the image can be de-

termined robustly using a very simple bounding-box classifier, trained on a set of

labelled sample images. Despite its simplicity, the classifier generalizes well to sub-

jects that it was not trained on. An important result is that the combination of range

and amplitude data dramatically improves robustness compared to a single type of

data.

The resulting facial feature tracker runs in real time at around 30 frames per

second. We demonstrate its potential as an input device by using it to control Dasher,
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an alternative text input tool.

Deictic Gestures

We present a robust detector for deictic gestures based on a TOF camera. Pointing

direction is used to determine whether the gesture is intended for the system at all

and to assign different meanings to the same gesture depending on pointing direc-

tion. We use the gestures to control a slideshow presentation: Making a “thumbs-

up” gesture while pointing to the left or right of the screen switches to the previous

or next slide. Pointing at the screen causes a “virtual laser pointer” to appear. Since

the pointing direction is estimated in 3D, the user can move freely within the field

of view of the camera after the system was calibrated. Near the center of the screen

the pointing direction is measured with an absolute accuracy of 0.6 degrees and a

measurement noise of 0.9 degrees.

Depth of Field Based on Range Maps

Depth of field is one of the most important stylistic devices in photography. It allows

the photographer to guide the spectators attention to certain features in the image

by tuning the camera parameters in such a way that only the important portions of

scene at the focused distance appear sharp while other objects appear blurred.

This effect requires certain features of the optical system, such as a large aper-

ture. On the contrary, modern digital camera become smaller and smaller in size

and, thus, incapable of creating the effect of depth of field.

We propose an algorithm based on Distributed Raytracing that uses a range

map acquired with a TOF camera to simulate the effect of depth of field in a post-

processing step. We compare our approach, referred to as 21/2D Distributed Ray-

tracing, to previously published approaches and apply the algorithm to both syn-

thetic and real image data.
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Facial Feature Tracking

9.1 Introduction

In this chapter, we use a TOF camera to implement a facial feature tracker and show

how this tracker can be used as an alternative means of controlling a mouse cursor.

In contrast to conventional cameras, TOF cameras have the obvious benefit of

providing information about the three-dimensional structure of the scene. Com-

puter vision applications that use this information can reasonably be expected to be

more robust than if they used only a conventional intensity image, because geometric

structure is typically more invariant than appearance.

Previous work has already identified the nose as an important facial feature for

tracking, see for example (Gorodnichy, 2002) and (Yin and Basu, 2001). The former

approach determines the location of the nose by template matching and gives very

robust results under fixed lighting conditions and at a fixed distance of the user from

the camera. The latter approach works by fitting a geometrical model of the nose to

the image data.

We also consider the nose as being well suited for head tracking because, in terms

of differential geometry, the tip of the nose is the point of maximal curvature on the

surface of the face. This observation allows the nose to be tracked robustly in range

maps provided by a TOF camera. In the scope of differential geometry, the Gaussian

curvature would seem to be a good choice as an image feature for tracking the nose,

but it has the disadvantage that it is based on first and second order derivatives,

which are sensitive to noise. In Section 7.1 we proposed alternative features that

can be related to generalized differential operators. In Section 7.1.4, we described a

Parts of this chapter are joint work with others. Martin Böhme and I contributed approximately
equally to the implementation of the nose tracker. The work described here has previously been pub-
lished in (Böhme et al., 2008a).
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nose detector based on these features that achieves good error rates using a simple

threshold-based classifier.

The nose detector described previously in Section 7.1 was a Matlab implementa-

tion that did not run in real time. In this chapter, we describe a real-time C++ im-

plementation of the nose detector, which we then use as the basis for a nose tracker.

Because of the low error rate of the detector, the tracker requires only simple post-

processing and tracking algorithms. We envisage that this type of tracker can be used

for human-computer interaction and, particularly, for Augmentative and Alternative

Communication. To demonstrate this type of application, we use the tracker to con-

trol the alternative text entry tool Dasher proposed by Ward and MacKay (2002).

9.2 Nose Tracking

To track the nose and use it to control the position of the mouse pointer, we need to

choose one of the potentially several nose locations that were detected, and we need

to translate this nose location into a mouse cursor position.

First, we find all of the connected components in the image; each connected com-

ponent yields one candidate location for the position of the nose, which we determine

as follows: We first find the pixel whose feature vector is closest to the center of the

bounding box, i.e. for which ∥F − Fcentre∥2 is minimal. We then refine this location

with subpixel precision by taking a small window around the candidate location and

computing a weighted centroid of the pixels in the window, where the weight of a

pixel depends on the distance of its feature vector to Fcentre; specifically, the weight

function is a Gaussian centered on Fcentre.

Since the raw results delivered by the nose detector are already quite good (see

Section 9.3), most camera frames contain only a single connected component and

thus a single candidate location, placed correctly on the nose. If the current frame

contains more than one candidate location, we choose the candidate that is closest to

the position of the nose in the previous frame. For the very first frame, or if no nose

was found in the previous frame, we simply choose one of the candidates arbitrarily.

Even if we choose the wrong candidate, it is quite likely that the next frame will not

contain any misdetections, and from that point on, we will be tracking the correct

position. This is a simple strategy for eliminating misdetections, but it works quite

well in practice.

Once the position of the nose has been identified, we need to convert it into a

position on the screen. We define a rectangular “active region” in the camera image,
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a) b)

Figure 9.1: a) Illustration of the mapping between the position of the nose in the camera
image and the position of the mouse cursor on the screen. The shaded rectangle is the active
region, the cross marks the position of the nose, and the arrow symbolizes the mouse cursor.
For clarity, the horizontal flip contained in the mapping is not shown. b) Adjustment made
when the nose moves outside the active region. Top: Before the adjustment of the active
region. Bottom: After the adjustment.

sized so that when the user rotates his or her head, they are able to place their nose

anywhere within this region. We then convert the nose position to a mouse cursor

position by defining a mapping from camera image coordinates to screen coordinates

such that the borders of the active region are mapped to the borders of the screen (see

Figure 9.1a). The mapping has to flip the horizontal axis (for clarity, this is not shown

in the figure) because a head movement to the left causes the position of the nose in

the camera image to move to the right.

Two questions remain to be solved: Where in the image should we place the ac-

tive region? And what should be done if the user’s seating position changes such that

the nose leaves the active region? We solve these problems using an implicit calibra-

tion procedure that continually adjusts the position of the active region. For example,

if the nose moves beyond the left border of the active region, we shift the active re-

gion to the left until the nose is just inside the active region again (see Figure 9.1b).

Effectively, users “drag” the active region along as they change their seating position.

This procedure works equally well for setting the initial position of the active region:

A quick rotation of the head left, right, up, and down is sufficient to put the active re-

gion in a suitable position. If desired, the size and initial position of the active region
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can also be determined during an explicit calibration phase.

9.3 Results

The algorithms were implemented in GNU C++ and tested on a 2.8 GHz Pentium 4

under Linux 2.6. The FFTW library (Frigo and Johnson, 2005) was used for the FFT

transforms needed to calculate the generalized eccentricity measures. Images were

acquired using a MESA SR3000 camera (Oggier et al., 2005a), which has a resolution

of 176 by 144 pixels.

To evaluate the error rate of the nose detector, we first tested it on a set of static

images, consisting of images from 13 subjects, with nine head orientations per sub-

ject. The position of the nose was hand-labelled in each image. The data from three

subjects was used to estimate the bounding box for the nose detector, which was

then tested on the remaining ten subjects. We calculated the detection rate as the

percentage of images in which the nose was identified correctly (to within five pixels

distance from the hand-labelled position) and the false positive rate as the percent-

age of images where at least one non-nose pixel was falsely classified as “nose”. We

adjusted the softness parameter until the false negative rate (one minus the detec-

tion rate) and the false positive rate were equal, thus obtaining an equal error rate

(EER). When nose detection was performed on the range and amplitude data indi-

vidually, we obtained EERs of 0.64 and 0.42, respectively, When nose detection was

performed on the combination of both types of data, we obtained an EER of 0.03

(see (Haker et al., 2007) for details). Figure 9.2 shows some examples of detection

results.

The softness parameter that corresponded to the EER was chosen to set the

bounding box for the nose tracker. On the combined range and amplitude data, the

tracker ran at a rate of 27 frames per second. This is adequate for the frame rate we

run the camera at but could be improved further (for example, we currently use a

complex-to-complex FFT for simplicity of implementation, which could be replaced

with a real-to-complex FFT). A video showing the nose tracker in action is available

on the web at http://www.artts.eu/demonstrations.

To evaluate the usefulness of the nose tracker for interaction tasks, we used it to

control the alternative text input tool Dasher proposed by Ward and MacKay (2002).

Dasher can be controlled using a variety of pointing devices, which are used to “steer”

towards the letters to be input. A test subject using the nose tracker with Dasher to

input text from an English language novel achieved 12 words per minute (wpm). For

126



9.4. CONCLUSIONS

Figure 9.2: Examples of detection results. The amplitude data (left column) and the range
data (right column) are given for four subjects. All pixels identified as nose pixels by our
detector are marked in each image, the cross simply highlighting the locations.

comparison, the rate that can be achieved using an eye tracker is between 15 and

25 wpm (Ward and MacKay, 2002).

9.4 Conclusions

We have demonstrated how a very simple classifier based on geometric features can

be used to detect a user’s nose robustly in combined range and amplitude data ob-

tained using a TOF camera. A particularly interesting result is that markedly better

results were obtained on the combination of range and amplitude data than on either

type of data alone.

Based on this classifier, we implemented a real-time nose tracker. To demon-

strate the usefulness of this tracker for human-computer interaction, we have shown

that it can be used effectively to control the alternative text entry tool Dasher.
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10
Gesture-Based Interaction

10.1 Introduction

In this chapter, we use gestures recognized using a TOF camera to control a slideshow

presentation, similar to (Baudel and Beaudouin-Lafon, 1993) where, however, a data

glove was used to recognize the gestures. Another idea we adapt from Baudel and

Beaudouin-Lafon (1993) is to recognize only gestures made towards an “active area”;

valid gestures made with the hand pointing elsewhere are ignored. This solves the

problem (also known as the “immersion syndrome”) that unintentional hand move-

ments or gestures made towards other people may erroneously be interpreted as

commands.

We expand this idea by allowing the same gesture to mean different things when

made towards different active areas. Specifically, the slideshow is controlled in the

following way: To go to the next slide, point to the right of the screen and make a

thumbs-up gesture with the hand; to go to the previous slide, point to the left of the

screen and make a thumbs-up gesture. Point at the screen and a dot appears at the

location you are pointing to, allowing you to highlight certain elements of the slide.

This scenario is depicted in Figure 10.1.

To determine where the user is pointing on the screen, we need to know its po-

sition relative to the camera. This is determined in a calibration procedure where

the user points at the four corners of the screen from two different locations; this

information is sufficient to compute the position of the screen. After calibration the

user is allowed to move freely within the field of view of the camera, as the system

estimates both the screen position and the pointing direction in 3D with respect to

Parts of this chapter are joint work with others. I devised and implemented the concept of deictic
gestures. Martin Böhme and I contributed approximately equally to the evaluation of the accuracy of
the pointing gesture. The work described here has previously been published in (Haker et al., 2009a).
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Figure 10.1: The application scenario where a user controls a slideshow presentation using
deictic gestures. The gestures include switching between the slides and pointing at the screen
using a virtual laser pointer.

the camera coordinate system.

The “thumbs-up” gesture is recognized using a simple heuristic on the silhou-

ette of the hand. This simple technique is sufficient because hand gestures are only

recognized when the user is pointing at one of the two active regions; when pointing

elsewhere, the user need not be concerned that hand movements might be misinter-

preted as gestures.

One important advantage of the TOF camera in this setting is that it directly mea-

sures the three-dimensional position of objects in space, so that the pointing direc-

tion can easily and robustly be obtained as a vector in space. This is much more

difficult for approaches that attempt to infer pointing direction using a single con-

ventional camera. One solution is to restrict oneself to pointing directions within the

camera plane (see e.g. (Hofemann et al., 2004; Moeslund and Nøregaard, 2006)),

but this places restrictions on the camera position and type of gestures that can be

recognized. A physical arm model with kinematic constraints (see e.g. (Moeslund

and Granum, 2003)) allows arm pose to be estimated from a single camera image,

but the depth estimation can be unreliable for some poses of the arm. In contrast,

the approach we will present here is simple but at the same time accurate and robust.

In the remainder of the chapter we will first discuss the detection of the pointing

and the “thumbs-up” gesture. We will then describe the calibration of the system.

Finally, the accuracy of the virtual laser pointer will be evaluated in an experimental

setup where users had to point at given targets. This evaluation is conducted in two
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scenarios: One, where the user does not receive visual feedback, and another, where

the estimated pointing position is indicated by the virtual laser pointer.

10.2 Method

Our method can be divided into three individual components: (i) the detection and

interpretation of the pointing gesture, (ii) the recognition of the thumbs-up gesture

used for navigating between slides, and (iii) the calibration of the system. This sec-

tion will cover each component in the order mentioned above. For simplicity, we as-

sume that the user always points towards the left as seen from the camera throughout

this section although this is not a restriction of the system.

10.2.1 Pointing Gesture

The algorithm for detecting pointing gestures can be subdivided into four main stages.

The first stage segments the person in front of the camera from the background. The

second stage uses the segmented image to identify both the head and the extended

hand that is used for pointing. During the third stage, the 3D coordinates of head

and hand in space are estimated, which are then used to determine the location on

the screen the user is pointing to during the fourth stage. In the following, we will

discuss each step of this procedure individually in more detail.

Stage 1: The segmentation of the person in front of the camera uses combined in-

formation from both the range and intensity data of the TOF camera. Previous work

by Haker et al. (2007, 2009b) has shown that the combined use of both range and

intensity data can significantly improve results in a number of different computer

vision tasks. We determine adaptive thresholds for range and intensity based on

histograms as described in Section 5.1.2. The final segmented image is composed of

those pixels that were classified as foreground pixels with respect to both types of

data. To ensure that only a single object is considered, only the largest connected

component of foreground pixels is retained, all other objects are considered back-

ground. A sample TOF image showing both range and intensity with the resulting

segmented foreground is given in Figure 10.2.

Stage 2: In the second stage, the segmented image is used to determine an initial

guess for the location of the head and hand in the image. We employ a simple heuris-

tic based on the number of foreground pixels in each column of the segmented image.
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Figure 10.2: Sample image taken with a MESA SR4000 TOF camera. The leftmost image
shows the intensity data. The range image is given in the center, and the resulting segmen-
tation is shown on the right.

The initial guess for the hand is the topmost pixel in the leftmost pixel column of the

silhouette; the head is the topmost pixel in the tallest pixel column. This procedure

is extremely simple to implement, yet reliable. We use a single parameter θ to de-

termine whether we have a valid initial estimate, i.e. whether the hand is actually

extended and the person is performing a pointing gesture:

|ihead − ihand| ≥ θ .
�� ��10.1

Here, ihead and ihand denote the indices of the pixel columns corresponding to the

initial guess for the head and hand, respectively, where indices of pixel columns in-

crease from left to right.

Stage 3: During the third stage of the method, the initial guesses are refined to

more accurate pixel positions in the image. Once these positions are determined,

the corresponding range values are estimated, and finally the coordinates of both the

head and hand can be computed in 3D by inverting the perspective camera projection

using the known intrinsic camera parameters.

In order to refine the pixel positions of the head and hand in the image, we de-

fine rectangular regions of interest (ROIs) around their estimated locations from the

previous stage and compute the centroids of the foreground pixels in the ROIs to

find the centers of the head and hand blobs; these refined positions are marked by

crosses in Figure 10.3.

To invert the camera projection we require the actual distance of the head and

hand from the camera. Again, we define ROIs around the estimated pixel coordinates

and take the average range value of the foreground pixels within the ROI to obtain

estimates for the two range values. Finally, from the pixel coordinates (x, y), the
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Figure 10.3: Segmented image of the user with the detected locations of the head and hand
marked by crosses. The time-of-flight camera measures the three-dimensional positions of
these points, which are then used to compute the pointing direction.

distance from the camera r, and the intrinsic parameters of the camera one can infer

the 3D coordinates of the corresponding point x⃗ in camera coordinates using the

following formula:

x⃗ = r
((cx − x) · sx, (cy − y) · sy, f)T

∥((cx − x) · sx, (cy − y) · sy, f)T ∥2 .

�� ��10.2

Here, (cx, cy)denotes the principal point, i.e. the pixel coordinates of the point where

the optical axis intersects the image sensor. The width and height of a pixel are de-

fined by sx and sy, and the focal length is given by f . To obtain a more stable esti-

mate, a Kalman filter (Kalman, 1960) tracks the 3D coordinates of the head and hand

from frame to frame.

Stage 4: Because the TOF camera allows us to determine the position of the head

and hand in space, we directly obtain an estimate for the pointing direction from

the ray that emanates from the head and passes through the hand. As Nickel and

Stiefelhagen (2003) show, the line connecting the head and hand is a good estimate

for pointing direction. This ray can be represented in camera coordinates by the

following line equation:

r⃗ = o⃗+ λd⃗ .
�� ��10.3

Here, o⃗ denotes the origin of the ray and corresponds to the 3D position of the head.

The direction of the ray is given by d⃗ = p⃗ − o⃗, where p⃗ denotes the position of the

hand. The parameterλ ≥ 0 defines a point r⃗ in front of the person along the pointing

direction.

We now intersect this ray with the screen used for projecting the slides. To this
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end we represent the screen by its center c⃗ and the normal n⃗ of the screen plane.

Assuming that both c⃗ and n⃗ are also given in camera coordinates, the intersection x⃗

of the ray and the screen is given by:

x⃗ = o⃗+
⟨c⃗− o⃗, n⃗⟩
⟨d⃗, n⃗⟩

d⃗
.

�� ��10.4

The intersection is only valid if the scalar product ⟨c⃗ − o⃗, n⃗⟩ is positive, otherwise

the user is most likely pointing away from the screen plane.

What remains to be determined is if the intersection lies within the limits of the

screen. In that case, the intersection can be converted to pixel coordinates on the

screen in order to display the virtual laser pointer.

The location and size of the screen are determined by the calibration procedure

introduced in Section 10.2.3. Since the procedure determines the 3D position of the

four corners of the screen independently, the screen is generally not represented by

a perfect rectangle. Thus, we determine the intersection by considering two triangles

that are obtained by dividing the screen diagonally along the line from the bottom

left corner to the top right corner. Assume that the triangles are defined by their

three corners a⃗, b⃗, and c⃗ in counter-clockwise order such that either the top left or

the bottom right corner are represented by a⃗. For both triangles one can solve the

following equation under the constraint that d1 = 1:

x⃗ =

 a1 b1 − a1 c1 − a1

a2 b2 − a2 c2 − a2

a3 b3 − a3 c3 − a3


 d1

d2

d3


.

�� ��10.5

Intuitively, we check if the intersection x⃗, represented as a linear combination of the

two sides of the triangle given by b⃗ − a⃗ and c⃗ − a⃗, lies within the bounds of the

triangle. Thus, if d2 + d3 ≤ 1 holds for the upper triangle, the intersection x⃗ lies

above the diagonal through the screen. Correspondingly, x⃗ lies below the diagonal if

d2 + d3 ≤ 1 holds for the lower triangle.

We now convert the coefficients d2 and d3 to coordinates x and y on the screen

in such a way that the top left corner corresponds to (x, y) = (0, 0) and the bottom

right corner corresponds to (x, y) = (1, 1). This is achieved by setting (x, y) =

(d2, d3) if x⃗ was above the diagonal through the screen and setting (x, y) = (1 −
d2, 1 − d3) otherwise. As a result one obtains for example the four different inter-

pretations of the pointing gesture listed in Table 1. These interpretations correspond
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Table 10.1: Interpretation of pointing gesture

on screen 0.0 ≤ x ≤ 1 .0 ∧ 0.0 ≤ y ≤ 1.0

left of screen -0.05 ≤ x < 0.0 ∧ 0.0 ≤ y ≤ 1.0

right of screen 1.0 < x ≤ 1 .05 ∧ 0.0 ≤ y ≤ 1.0

off screen otherwise

to the scenario depicted in Figure 10.1.

In the “on screen” case, the virtual laser pointer is displayed on the screen at

the location (x, y) the user is pointing to. If the user is pointing to one of the two

active areas “left of screen” or “right of screen”, a small triangle is displayed at the

corresponding edge of the screen to indicate that the system is now expecting input in

form of the “thumbs-up” gesture to navigate between the slides of the presentation.

In all other cases, any detected pointing gesture is ignored, which avoids the so-called

immersion syndrome (Baudel and Beaudouin-Lafon, 1993).

Despite the fact that the estimation of the head and hand is quite robust and we

apply a Kalman filter to the approximated 3D coordinates for temporal smoothing,

the estimated intersection of the pointing direction and the screen in the “on screen”

case is not entirely free of noise. This is dealt with by applying a smoothing filter

with an exponential impulse response. The strength of the smoothing is adaptive

and depends on the amount by which the pointing position changed: The greater the

change, the less smoothing is applied. In this way, we suppress “jitter” in the virtual

laser pointer when the user’s hand is stationary but allow the pointer to follow large

hand movements without the lag that would be caused by a non-adaptive smoothing

filter.

10.2.2 Thumbs-up Gesture

The detection of the thumbs-up gesture is only triggered when a pointing gesture

made towards one of the two active areas was detected for the current frame accord-

ing to the procedure described above.

The thumbs-up detector uses the segmented image and the pixel coordinates that

were estimated for the hand. The main idea of the algorithm is that the silhouette of

an extended thumb that points upwards is significantly narrower along the horizon-

tal axis than a fist.

Thus, we define an ROI around the position of the hand and count the number
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of foreground pixels in each row. Next, we estimate wfist, which denotes the width

of the fist, by taking the maximum number of foreground pixels counted per row.

The parameter wfist is then used to determine the presence of both the fist and the

thumb. We count the number cfist of rows containing at least 0.8 · wfist foreground

pixels and the number cthumb of rows containing at least one and at most 0.3 · wfist

foreground pixels. A thumb is detected in the current frame if both cfist and cthumb

exceed a threshold of two. Due to the fact that the thresholds for detecting the fist

and thumb depend on the estimated width of the fist wfist in the current image, the

procedure is relatively independent of the distance of the user from the camera, i.e.

the algorithm is scale-invariant.

To avoid misdetections due to noise, we keep track of the detections of the thumb

per frame over a certain time window, i.e. the command for switching to the next

slide is only issued if the thumbs-up gesture was detected in four out of six consecu-

tive frames. At the same time, we want to avoid multiple activations of the command

for switching to the next slide if the above criterion is fulfilled in a number of con-

secutive frames. Otherwise, the user would not be able to go from one slide to the

next in a controlled fashion without unintentionally skipping slides. Thus, we ig-

nore any detections of the gesture for a total of 50 frames once a switch-to-next-slide

command was issued. Since our system operates at roughly 25 Hz, a new command

can only be issued every two seconds. This gives the user sufficient time to end the

thumbs-up gesture once the gesture takes effect in order to prevent the system from

switching directly to the next slide.

10.2.3 System Calibration

The third component of our method deals with the calibration of the system. To

determine where the user is pointing on the screen, we need to know its position

relative to the camera. This is determined in a calibration procedure where the user

points at the four corners of the screen from two different locations; this information

is sufficient to compute the position of the screen, as we will demonstrate in more

detail in the following.

During calibration the user is asked to point continuously at one of the four cor-

ners of the screen for a total of 50 frames. This allows us to obtain a robust estimate

for the position of the head and hand for the given pointing direction. Again, the

pointing direction can be represented by a ray r⃗ = o⃗ + λd⃗ that emanates from the

head and passes through the hand. We can assume that this ray passes through the

corner the user was pointing at. However, we do not know the exact location of the
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corner along the ray.

To obtain this information, the user is asked to move to a different position in

the field of view of the camera and to point again at the same corner for a total of 50

frames. By this procedure we estimate a second ray that should also pass through

the corner of the screen. Ideally, the two rays intersect at the position of the corner;

however, this assumption does generally not hold due to measurement noise. Never-

theless, a good estimate for the position of the corner can be obtained from the point

that is closest to both rays in 3D space.

Assuming that the two estimated pointing directions are represented by rays

r⃗i = o⃗i+λid⃗i where i ∈ {1, 2}, one can obtain this point by minimizing the squared

distance ∥o⃗1 +λ1d⃗1 − o⃗2 −λ2d⃗2∥22 between the two rays with respect to λ1 and λ2.

This leads to the following linear system of equations where we assume ∥d⃗i∥2 = 1

without loss of generality:(
1 ⟨d⃗1, d⃗2⟩

−⟨d⃗1, d⃗2⟩ −1

)(
λ1

λ2

)
=

(
−⟨o⃗1 − o⃗2, d⃗1⟩
−⟨o⃗1 − o⃗2, d⃗2⟩

) �� ��10.6

Solving Equation (10.6) yields the parameters λ1 and λ2, which specify the closest

point on one ray with respect to the other ray, respectively. Taking the arithmetic

mean of both solutions as specified by Equation (10.7) yields the approximation of

the intersection of both rays and, thus, an estimate for the position of the corner in

camera coordinates:

x⃗ = 0.5 · (o⃗1 + λ1d⃗1 + o⃗2 + λ2d⃗2)
�� ��10.7

This procedure can be repeated for the remaining three corners of the screen.

The approach does not guarantee, however, that all four corners lie in one plane.

Thus, we fit a plane through the four corners by least squares and project the cor-

ners onto this plane to obtain their final estimates. The normal to this plane and

the four corners are used to determine where the user is pointing on the screen, as

described in Section 10.2.1. Obviously, this calibration procedure does not gener-

ally yield a screen that resembles a perfect rectangle in 3D space. How this problem

can be treated by dividing the screen into two triangles along its diagonal was also

discussed in Section 10.2.1.

We consider the procedure of not enforcing the screen to be rectangular as an

advantage, because it provides an implicit way of correcting systematic errors. Such

errors may for example be caused by measurement errors or a simplified approxi-
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mation of the camera parameters. The former can e.g. be due to multiple reflections

of the scene (Gudmundsson et al., 2007b). The latter can occur if the optical system

is not modelled accurately in the process of inverting the camera projection, e.g. if

radial distortions of the lens or other effects are not taken into account.

10.3 Results

The method was implemented in C++ under the Windows operating system. On a

2 GHz Intel Core 2 Duo, it requires 40 ms per frame, achieving a frame rate of 25

frames per second.

To assess the accuracy with which the pointing direction is measured, we per-

formed a test with 10 users. Each user was first given a few minutes to practice using

the system. We then presented a sequence of nine targets at predefined positions on

the screen; users were instructed to point at a target as soon as it appeared. Once a

pointing gesture towards the screen was detected, each target was presented for a to-

tal of 50 frames, which corresponds to a time interval of roughly two seconds, before

it disappeared. Users were asked to return to a normal standing position after the

target had disappeared. Before presenting the next target, the system waited for four

seconds to allow the user to rest the arm. The order in which the targets appeared

was chosen in such a way that the average distance between successive targets on the

screen was maximized.

For each user, we performed this test under two different conditions: Under the

first condition, the virtual laser pointer was switched off, i.e. the users did not receive

any feedback about the measured pointing direction. This gives an impression of the

overall accuracy of the system. For the second test condition, the virtual laser pointer

was switched on, allowing users to compensate for systematic calibration and mea-

surement errors. This test condition therefore gives an impression of the residual

measurement noise after the temporal smoothing described in Section 10.2.1.

Figure 10.4a shows the results of the first test condition (without visual feed-

back) to assess the overall accuracy of the system. Here, measured error in pointing

direction can have two sources: (i) Systematic errors due to measurement noise and

inaccurate calibration and (ii) errors induced by the assumption that the ray ema-

nating from the head across the hand corresponds to the natural human pointing

direction (Kranstedt et al., 2006). The horizontal axis plots the frame number after

the pointing gesture was detected, and the vertical axis plots the distance between

the target and the measured pointing position in pixels. In the test setup the screen
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Figure 10.4: Measurement error in pointing direction (a) without visual feedback (the
virtual laser pointer was switched off) and (b) with visual feedback (virtual laser pointer
switched on). The horizontal axis plots the time in seconds after the target appeared, and
the vertical axis plots the distance between the target and the measured pointing position in
pixels. In our setup, an offset of 20 pixels corresponds to approximately one degree.
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Figure 10.5: Measurement error in pointing direction (a) without visual feedback (the
virtual laser pointer was switched off) and (b) with visual feedback (virtual laser pointer
switched on). Only targets near the center of the screen where considered.

had a size of 1.71m×1.29m and the user was standing at a distance of roughly 3.2 m

from the screen. As a result, an offset of 20 pixels corresponds to approximately one

degree. The solid line gives the mean distance, averaged over all users and pointing

targets, and the shaded area indicates an interval of two standard deviations above

and below the mean, i.e. 95% of the errors fell within this range.

From the plot, we can see that users took around 10 frames or 400 ms to point

at a target; after this time, the average error stabilizes at around 106 pixels (or 5.3

degrees), with 95% of error falling between 0 and 271 pixels.

Figure 10.4b shows the results of the second test condition (with visual feedback).

As expected, the error stabilizes at a lower value of 23 pixels (or 1.2 degrees) on av-

erage but also takes a longer time to do so – around 1600 ms. This is because, after
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pointing at the target as in the first test, users need to correct their hand position to

compensate for the systematic measurement error and bring the virtual laser pointer

onto the target.

A closer look at the data reveals that the largest measurement errors occur for

targets that are close to the corners of the screen. This is mainly due to shortcomings

of the rather simple calibration procedure. However, the system is well calibrated

for the center of the screen where most of the content of a presentation is likely to

be placed. Thus, the impact of calibration errors near the corners on the usability is

rather low. This becomes clear by looking at Figure 10.5a and Figure 10.5b. Again,

the plots show the distance between the target and the measured pointing position

without and with visual feedback, respectively. This time however, only targets near

the center were considered, i.e. targets with an offset from the center of the screen

corresponding to less than 15 degrees. In case of the first test condition without vi-

sual feedback the average error amounts to 91 pixels (4.6 degrees). For the second

test condition with visual feedback the average error was halved to 12 pixels, which

corresponds to 0.6 degrees. Note also that the standard deviation decreased signifi-

cantly to 17 pixels (0.9 degrees) in the test with visual feedback, which indicates that

the system is very robust and hence intuitive to use near the center of the screen.

10.4 Discussion

We have presented a framework that implements simple and robust gesture recogni-

tion in the context of a slideshow presentation. The system is based on a TOF camera

that allows us to detect and interpret pointing gestures in an intuitive and effective

way, because the provided range data facilitates the localization of the user in front

of the camera and allows the estimation of the pointing direction in 3D space once

the head and hand have been identified.

We believe pointing is a powerful way to determine whether a gesture is intended

for the system at all and to assign different meanings to the same gesture depending

on where the user is pointing. Because the meaning of the gesture is strongly tied

to the direction it is made in, we avoid the immersion syndrome and thus greatly

increase the usability of the system.

Thus, we have developed an intuitive system that allows the user to control a

slideshow by switching between slides through a simple thumbs-up gesture that is

made towards one of the sides of the screen. Alternatively, we could have imple-

mented an additional thumbs-down gesture using a single active area, but our in-
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tention here was to demonstrate the use of multiple active areas, i.e. the number of

active areas multiply the number of actions that can be triggered with a given set of

gestures. Finally, the user may highlight certain details on the slides simply by point-

ing at them; a virtual laser pointer is displayed at the location the user is pointing to.

This virtual laser pointer has three advantages: (i) The user is not required to hold

an additional physical device, (ii) the size and appearance can be chosen depending

on the context, and (iii) the build-in smoothing of the pointer can veil a tremor of the

users hand that may originate from an impairment or excitement.
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11
Generation of Depth of Field Based on

Range Maps

11.1 Introduction

In this chapter, we present a method to synthesize the effect of depth of field in digital

color images. In photography, depth of field describes the portion of the scene that

appears sharp in the image. The extent of the depth of field depends on the optics

of the imaging system. While a lens can focus objects precisely only at a specific

distance, the sharpness will decrease gradually for objects that are moved away from

the focused distance. The amount of decrease in sharpness depends on a number

of parameters, such as the aperture of the lens. For example, a pinhole camera has

infinite depth of field.

Depth of field is one of the most important stylistic devices in photography. As

objects within the depth of field appear sharp in the image while objects at other

distances become blurred, the objects in focus can be accentuated in the image and

attention can thus be directed towards them.

However, we can observe a trend that digital compact cameras become smaller

and smaller in size. From a technical perspective, this miniaturization implies that

the depth of field for such cameras becomes larger and larger and images often ap-

pear completely sharp. Thus, the stylistic device of depth of field is available in a

rather limited form to photographers using compact cameras.

The proposed method is targeted at photographers who want to add the effect

of depth of field in a post-processing step. A digital compact camera that is also

Parts of this chapter are joint work with Michael Glodek, who conducted his diploma thesis
(Glodek, 2009) under my supervision. In the scope of his thesis Michael Glodek implemented and
evaluated the proposed method.
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Figure 11.1: The circle of confusion. An optical system with a focal length f and an aperture
D images a point at distance g. The camera constant fc is chosen such that the point appears
in focus on the sensor. A second point at a distance g′ is also in the field of view but its image
is spread over the circle of confusion with diameter C . The depth of field is characterized
by the interval of distances g for which the circle of confusion is sufficiently small for objects
to be perceived sharp in the image. Apparently, for large apertures this interval becomes
smaller and the effect stronger.

equipped with a range sensor, such as a TOF sensor, can capture a range map of the

imaged scene. The resulting range map can then be used to generate the effect of

depth of field.

This task has first been addressed by Potmesil and Chakravarty (1981, 1982) who

proposed the algorithm known as the Forward-Mapped Z-Buffer. The main concept

is to use the range map to estimate the so-called circle of confusion for each pixel.

The concept of the circle of confusion is depicted in Figure 11.1.

In analogy to the circle of confusion, one can define the set of points on the object

surface that are mapped by the optical system in such a way that they contribute to

a certain pixel. Then, the pixel value of the post-processed image is computed as a

linear mixture of pixel values belonging to this set. For a given pixel, Potmesil et al.

approximate this set using the circle of confusion of the pixel itself. Here, they always

assume a circular circle of confusion where its size is chosen based on the range value

of the considered pixel. This assumption is violated if partial occlusions occur, i.e. at

borders of an object.

The theoretical solution to this problem was introduced by Cook et al. (1984)

under the name of Distributed Raytracing. For each pixel a number of rays are sent

into the scene to sample the circle of confusion. The algorithm determines where

these rays intersect with the scene and the post-processed pixel is composed of a
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linear mixture of intensities at these intersections. This approach is only applicable

if a complete 3D model of the scene is available, which is rarely the case in real-life

scenarios.

Next to Potmesil, a number of authors proposed approximations of Distributed

Raytracing. Haeberli and Akeley (1990) suggest the so-called Accumulation Buffer

to simulate depth of field. They use a model of a pinhole camera to render the scene

from different perspectives and generate the final image as a mixture of the differ-

ent views. While results are similar to Distributed Raytracing the method can be

implemented more efficiently.

Variations of the Forward-Mapped Z-Buffer algorithm by Potmesil et el. were

proposed by Chen (1987) and Rokita (1993, 1996). These methods aim at a reduction

of the processing time. A variant of the algorithm that addresses the problem of

partial occlusions was proposed by Shinya (1994).

A very different approach is known as Layered Depth of Field (Scofield, 1992).

The method creates different depth layers using the range map and each layer is

blurred according to its distance from the camera. The final image is created by

combining the different layers. A disadvantage of the method is that the amount

of blur introduced is not continuous but is discretized by the number of utilized lay-

ers. Propositions to circumvent the resulting artefacts where made by Barsky et al.

(2005) and Kraus and Strengert (2007).

The Reverse-Mapped Z-Buffer Technique was proposed by Demers (2003). The

algorithm is optimized for an implementation on a graphics card and yields results

that are similar to the Forward-Mapped Z-Buffer and are obtained at very high frame

rates.

An approach based on the heat equation computes the depth of field using Aniso-

trophic Diffusion (Bertalmío et al., 2004). The heat equation is used to avoid arte-

facts at discontinuities in the range map that are due to partial occlusions. While

the algorithm can be computed efficiently, it is not very realistic because the circle

of confusion is approximated by a Gaussian and the depth of field cannot be tuned

with respect to a specific aperture.

In this work, we introduce an algorithm called 21/2D Distributed Raytracing that

uses the TOF range map to simulate the depth of field. Based on the information of

the distance of the object that is depicted at a pixel we determine how sharp the image

should be at that pixel location with respect to the desired depth of field. As TOF

cameras usually have a significantly lower resolution than standard color imaging

sensors, we also rely on a method that aligns the high resolution color image with
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the low resolution range map based on a Markov random field.

Cook et al. (1984) already noticed that a camera with a small aperture, which is

generally the case for compact cameras and the reason why they lack the feature of

depth of field, cannot capture all information that is required to generate realistic

depth of field. Going by the example of the pinhole camera, the reason for this is that

the scene is rendered from only a single view point. Cameras with larger apertures

have more view points depending on where the corresponding light ray from the

object enters the lens.

This lack of information leads to artefacts in the synthesis of depth of field. We

propose a heuristic that extends the 21/2D Distributed Raytracing algorithm to at-

tenuate these artefacts.

The remainder of this chapter is organized as follows: In Section 11.2.1 we will

discuss the procedure to upsample the range map and align it with the high resolu-

tion color image. Section 11.2.2 will discuss preprocessing steps of the image data

to obtain more natural results. The 21/2D Distributed Raytracing algorithm and a

heuristic to improve the visual outcome will be introduced in Section 11.2.3 and Sec-

tion 11.2.4. Finally, we will demonstrate results on both artificial and real data in

Section 11.3.

11.2 Method

11.2.1 Upsampling the TOF range map

Before the generation of depth of field in a color image, it is important to preprocess

the range map. This has two objectives: (i) We require a range value for every pixel

in the color image to determine the extension of the circle of confusion and (ii) the

range map must be properly aligned with the color image, i.e. edges in the range

map must coincide with edges in the color image. Otherwise, parts of the image that

should be in focus appear blurred or vice verse. This can lead to disturbing artefacts;

especially near object borders.

An approach to this problem was introduced by Andreasson et al. (2006) and is

referred to as Nearest Range Reading Considering Color. For a given pixel in the

color image, one selects the range value in a corresponding neighborhood that max-

imizes a certain likelihood function.

An alternative procedure is the Multi-Linear Interpolation Considering Color

which was also suggested by Andreasson et al. (2006). The interpolated range value
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is a linear combination of known range values in its neighborhood where the coeffi-

cients depend on both the range values and the color information.

We employ a method by Diebel and Thrun (2006) that is based on a Markov

random field. The Markov random field is organized in three layers; two layers rep-

resent the color image and the measured range map. A third layer represents the

upsampled range map and it is optimized with respect to the known data.

The Markov Random Field is composed of two potentials. The first potential

– the depth measurement potential – aims at reconstructing the measured range

sample and takes the following form:

Ψ =
∑
i∈L

k(yi − zi)
2 .

�� ��11.1

Here, the set L denotes the indices of pixels for which a range measurement zi is

provided by the TOF range map. yi denotes a range value in the upsampled range

map. The parameter k depends on the variance of zi with respect to the true 3D

scene.

The second potential – the depth smoothness prior – aims at creating a smooth

range map:

Φ =
∑
i

∑
j∈N(i)

wij(yi − yj)
2 .

�� ��11.2

Here, N(i) denotes the set of direct neighbors of the pixel i and the deviation of

neighboring range values is penalized. The weights wij are influenced only by the

color image:

wij = exp(−c uij)
�� ��11.3

uij = ∥x⃗i − x⃗j∥22 .

�� ��11.4

Here, x⃗i and x⃗j denote the RGB color values of neighboring pixels. Deviations in the

range map get a lower weight if the neighboring pixels differ with respect to color,

i.e. if the two pixels lie across an edge in the color image. The parameter c denotes a

constant that quantifies the amount of smooting we allow across edges in the image.

Given these two potentials we can now the define the Markov Random Field. The

conditional distribution over the target range values y is given by:

p(y | x⃗, z) = 1

Z
exp

(
−1

2
(Ψ + Φ)

)
,

�� ��11.5
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where Z is a normalization constant.

The computation of the full posterior is impossible for high resolution images.

Thus, Diebel and Thrun (2006) propose to compute the solution via a conjugate gra-

dient descent of the log-posterior.

11.2.2 Preprocessing the Image Data

Before we can synthesize the effect of depth of field, two preprocessing steps are

required to obtain optimal results: (i) The inversion of the gamma correction of the

utilized file format and (ii) an increase of the contrast ratio.

An inversion of the gamma correction is required for certain file formats, such

as JPEG. As almost all displays have a non-linear tonal response curve, such file

formats store the gamma-corrected image data with standard correction parameters

to supersede a correction before the image is displayed. Since we assume a linear

relation between pixel intensities, we need to invert the gamma correction prior to

the synthesis of depth of field.

The second preprocessing step is due to the fact the most formats store low dy-

namic range images, i.e. the maximal contrast between low and high pixel intensities

is limited to optimize data compression. As a result, high intensity values are often

clipped. The blur induced by the depth of field effect spreads the intensity of pixels

that are out of focus over a larger area in the output image. Thus, clipped pixels are

likely to appear darker than they should because their intensities were already arti-

ficially reduced through low dynamic range. The optimal solution would be to use

high dynamic range images. While these are often not available, one can simulate

high dynamic range by increasing pixel values with maximal intensity values.

The effect of these two preprocessing steps is demonstrated in Figure 11.2. The

figure shows a treetop where the sunlight is falling through the leafs. In Figure 11.2a

and 11.2b the depicted tree is once in focus and once defocused. Both images were

taken with a real camera. The remaining images show the result of simulating depth

of field without preprocessing (Figure 11.2c), with gamma correction (Figure 11.2d),

and with additional simulation of high dynamic range (Figure 11.2e). Apparently, the

version that uses both preprocessing methods appears to be more lively and comes

closest to the natural effect in Figure 11.2b.
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(a) (b)

(c) (d)

(e)

Figure 11.2: The effect of preprocessing for the synthesis of depth of field. A treetop with
sunlight glittering through the leafs in focus is shown in 11.2a. The defocused treetop imaged
with a real camera is given 11.2b. The remaining three figures simulate the effect of depth of
field on 11.2a with a simple blur of 30×30 pixels. The effect on the unprocessed JPEG image
is depicted in 11.2c. In 11.2d a gamma correction was applied and in 11.2e high dynamic
range was simulated by increasing the maximum pixel values by a factor of three.
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11.2.3 Synthesis of Depth of Field

The goal of this work is to devise an algorithm for the synthesis of depth of field

that comes as close as possible to the natural effect. Thus, we decided to follow the

approach by Cook et al. (1984) and use Distributed Raytracing. Since a TOF camera

does not provide a complete model of the 3D scene and instead only gives range

measurements at those points that are directly visible to the camera, we refer to our

algorithm as 21/2D Distributed Raytracing.

The main idea of Distributed Raytracing is to send a number of rays from each

pixel into the scene and to determine the color value of the pixel as a mixture of the

color values that occur at intersections of the rays with the scene. In the simplest

case of a pinhole camera model only a single ray is considered for each pixel.

If a camera with a lens is simulated, one considers a distribution of sample points

u⃗l over the aperture of the lens and sends a ray from a given pixel (i, j) to each

sample. Suitable distributions can for example be found in the book of Pharr and

Humphreys (2004). The effective size of the aperture can be controlled by scaling

the distribution. The shape of the utilized diaphragm can be modelled by discard-

ing those sample points that are obscured by it. In the following, we will restrict

ourselves to a circular diaphragm and thin lenses.

In this case, all rays through the sample points u⃗l will intersect at a 3D point q⃗i,j

in the scene. We will now determine this point q⃗i,j . Let us assume a camera with a

fixed focal length f . Furthermore, we want to focus the camera such that objects at

a distance g appear sharp in the image. Given these parameters, we can determine

the camera constant fc, i.e. the distance at which the image sensor must be placed

behind the lens for objects at distance g to be in focus, as:

fc =
f · g
g − f .

�� ��11.6

Given the camera constant fc, we can send a ray from each pixel (i, j) through

the center of projection, which will pass the lens unrefracted. Following this ray for

the distance g will yield the 3D point q⃗i,j , where all rays from the pixel (i, j) passing

through the lens at sample points u⃗l will intersect:

q⃗i,j =
((cx − i) · sx, (cy − j) · sy, fc)T

∥((cx − i) · sx, (cy − j) · sy, fc)T ∥2
· g

.

�� ��11.7

Here, (cx, cy)denotes the principal point, i.e. the pixel coordinates of the point where
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the optical axis intersects the image sensor. The width and height of a pixel are de-

fined by sx and sy.

Thus, a ray Rl passing from pixel (i, j) through the lens at u⃗l can be expressed

as follows:

Rl = u⃗l + t · r⃗i,j,l
�� ��11.8

r⃗i,j,l = q⃗i,j − u⃗l .

�� ��11.9

The next step is to determine, where the ray Rl intersects with the surface of the

scene characterized by the range map of the TOF camera. To this end, we invert the

perspective projection of the TOF camera and obtain the 3D coordinates p⃗ of each

pixel as a sample on the surface of the scene. We now tessellate the range map into

triangles to obtain a smooth surface and compute the surface normal n⃗ and the bias

d for each triangle. Assuming that a triangle is characterized by its three corners

P1 = p⃗1, P2 = p⃗2, and P3 = p⃗3 we obtain:

˜⃗n = (P2 − P1)× (P3 − P1)
�� ��11.10

n⃗ = α ·
˜⃗n

∥˜⃗n∥

�� ��11.11

d = −⟨P1, n⃗ ⟩ ,

�� ��11.12

where α = sign(⟨P1, ˜⃗n ⟩), i.e. α enforces that the normal n⃗ always points towards

the camera. Using Equation (11.8), we can now determine the intersection x⃗ of the

ray Rl with the plane defined by the triangle. To this end we determine t as:

t = −⟨ u⃗l, n⃗ ⟩+ d

⟨ r⃗i,j,l, n⃗ ⟩
�� ��11.13

and evaluate Equation (11.8).

Finally, we need to determine whether the intersection x⃗ lies within the triangle

defined by P1, P2, and P3. To this end we compute the barycentric coordinates u, v,

and w that represent x⃗ as a linear combination of the corners of the triangle:

x⃗ = u · P1 + v · P2 + w · P3 .
�� ��11.14

In case the four constraints w = 1 − (u + v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and
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u+ v ≤ 1 hold, the point x⃗ lies within the triangle and the barycentric coordinates

fulfil u+ v + w = 1.

Now, that we have determined where a ray hits the scene, we can compute its

contribution to the pixel (i, j) using the coefficients u, v, w and the color values x⃗Pk

corresponding to the corners of the triangle. Thus, we compute the contribution of

ray Rl to the color value z⃗i,j,l of pixel (i, j) in the output image by:

z⃗i,j,l = u · x⃗P1 + v · x⃗P2 + w · x⃗P3 .

�� ��11.15

The color value of pixel (i, j) is a linear mixture of all rays Rl defined by the

distribution of samples u⃗l over the aperture. In the simplest case, all rays get equal

weights ωl. Generally, we can compute the final pixel value z⃗i,j as follows:

z⃗i,j =

∑
l ωl · z⃗i,j,l∑

l ωl .

�� ��11.16

11.2.4 Dealing with Missing Data

Choosing equal weights for all rays Rl does not always yield the optimal visual expe-

rience because it can produce artefacts especially near the borders of objects. This

is due to the fact that the proposed method cannot access the complete 3D model of

the scene. Instead we must rely on the range map provided by the TOF camera, i.e.

we have to deal with missing data where an object that is close to camera partially

occludes another object. Hence, we refer to our algorithm as 21/2D Distributed Ray-

tracing.

The reason why this situation causes problems is depicted in Figure 11.3. The

first observation we have to make is that the effect of depth of field is strongest for

cameras with a large aperture, i.e. the circle of confusion for a defocused point in the

scene grows with the diameter of the aperture (see Figure 11.1). For simplicity, let

us assume that the TOF sensor is based on a pinhole camera. In order to create the

effect of depth of field, we have to simulate an optical system with a large aperture

– larger than the one used for acquiring the range map. As a result, the simulated

camera has different view angles on the scene for rays emanating from the boundary

of the aperture and is able see parts of objects that are occluded to the TOF sensor.

Figure 11.3 shows two rays the intersect with triangles that do not exist in the 3D

scene. Nevertheless, the algorithm described in the previous section assigns a color

value to these rays based on the barycentric coordinates. This causes two kinds of

problems: (i) In case of the ray that passes between the objects at distance g and
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Figure 11.3: 21/2D Distributed Raytracing at the borders of objects that are not at the fo-
cused distance g. For both objects at distances g′ and g′′ some of the rays intersect with a
triangle that does not represent the true scene, i.e. we have an incomplete model of the 3D
scene with missing data.

g′, the true color value should correspond to the color value of the object at distance

g. This would cause the focused object to shine through the object in front, i.e. the

object at g′ appears strongly defocused. However, this effect is attenuated because

the ray also gets a color contribution from the object at distance g′. (ii) In the second

case, the ray passing between the focused object and the object at g′′ gets a color

contribution from the former one. This causes the focused object to blur although it

should be in focus.

We propose an approach to avoid this problem and devise a strategy to attenu-

ate rays with erroneous color values. This comes at the disadvantage of discarding

information for rays that have already been computed, however, we avoid disturbing

artefacts. We refer to this procedure as angle-of-incidence-based weight adaptation.

Missing data often co-occurs with jump edges in the range data. Thus, the angle

between the normals of the corresponding triangles and the incoming rays is large

for missing data and we can define weights ωl as follows:

ωl = (h− 1) ·
cos(⟨ n⃗, r⃗i,j,l ⟩) + (β − 1)

β
+ h

,

�� ��11.17

where h=
min(|g − yP1 |, |g − yP2 |, |g − yP3 |)

∆zg .

�� ��11.18
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Figure 11.4: Behavior of the weight ωl for different angles ](n⃗, r⃗i,j,l) and deviations from
the focused distance g.

We take the cosine of the measured angle between the normal n⃗ and the incom-

ing ray Rl. We introduce the parameter h to ensure that the weight adaptation takes

effect only if one of the corners of the triangle is near the focused distance g. Here,

∆zg is a normalization constant representing the largest possible range value in the

image to enforce h ∈ [0, 1]. The additional parameter β controls how much influ-

ence h has on the weights ωl. Figure 11.4 shows the behavior of ωl with respect to

different distances and angles.

11.3 Results

We have evaluated the proposed method using both synthetic and real data. The

basis for the evaluation with synthetic data is an image rendered by PBRT (Pharr and

Humphreys, 2004) which is shown in Figure 11.5. The image shows three spheres

which partially occlude each other, i.e. the blue sphere on the right occludes the green

sphere in the center, which in turn occludes the red sphere on the left.

We synthesized the effect of depth of field using a number of different methods

for a qualitative comparison in Figure 11.6. In all images the focus is on the green

sphere in the center of the image. The image in Figure 11.6a was generated by PBRT

using the Distributed Raytracing algorithm by Cook et al. (1984). Since the algorithm

has access to the full 3D model of the scene in PBRT it can be considered ground truth

and serves as a comparison for the other methods.
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Figure 11.5: Synthetic raw data showing three spheres at different distances. The images
were rendered by PBRT at a resolution of 512 × 256 pixels. The range map has values in
the interval [7.8m, 43.4m]. A camera with a focal length of 10mm, an opening angle of 30◦,
and a sensor of size 3.2mm × 1.7mm was simulated.

(a) (b)

(c) (d)

(e) (f)

Figure 11.6: Synthesis of depth of field on the data of Figure 11.5 using different algorithms.
The following algorithms where used for the generation: 11.6a Distributed Raytracing using
the full 3D model of the scene. 11.6b Forward-Mapped Z-Buffer. 11.6c Anisotropic Diffusion.
11.6d Layered depth of field. 11.6e 21/2D Distributed Raytracing. 11.6f 21/2D Distributed
Raytracing with angle-of-incidence-based weight adaptation.
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The Forward-Mapped Z-Buffer algorithm using the implementation proposed by

Chen (1987) was used to generate the image in Figure 11.6b. One can observe that

the method fails to maintain sharp edges around the green sphere and the blurred

region around the blue sphere shows a strong contour.

Figure 11.6c shows the results of the anisotropic diffusion approach by Bertalmío

et al. (2004). While the green sphere is still blurred, the sharp contour around the

blue sphere disappeared.

The same is true for Layered depth of field approach by Scofield (1992), which

is depicted in Figure 11.6d. One can observe, however, the effect of depth of field is

stronger than it is the case for the anisotropic diffusion method.

Figure 11.6e and Figure 11.6f show the results obtained with our method. In the

latter case, the angle-of-incidence-based weight adaptation was used, which visibly

improves the sharpness of the green sphere.

Results for a real image captured with the ZCam by 3DV Systems is given in Fig-

ure 11.7. The original images are available under http://inb.uni-luebeck.de/

mitarbeiter/haker/dof. The image in Figure 11.7a shows the color image cap-

tured by the ZCam. The corresponding range map is given in Figure 11.7b. One can

observe, that both the color image and the range map have limited quality. The syn-

thesis of depth of field with 21/2D Distributed Raytracing and angle-of-incidence-

based weight adaptation is shown in Figure 11.7c. The simulated camera focuses on

the third person from the left and the effect of depth of field is clearly visible. How-

ever, there occur a number of disturbing artefacts that are mainly due to the flawed

range map. Notice for example the hair of the foremost person; the strands that

stand out have erroneous range values and are thus not sufficiently blurred.

To demonstrate the capabilities of the algorithm, we manually created a range

map that aims at assigning correct range values to the pixels at borders of objects.

The resulting image is shown in Figure 11.7e and one can observe a significant re-

duction of artefacts and a generally more consistent experience of the effect. From

this we can conduct that it is highly important to have range maps that are consistent

with the content of the color image, especially at the border of objects.

11.4 Discussion

In this section we have presented an algorithm that can be applied as a post-processing

method to create the effect of depth of field in digital images. The basis of this ap-

proach is a range map of the scene depicted by the color image. Such a range map
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(a)

(b) (c)

(d) (e)

Figure 11.7: Synthesis of depth of field on the data captured by a ZCam by 3DV Systems.
11.7a Shows the color image at a resolution of 320× 240 pixels. The range map captured by
the ZCam and the resulting synthesis of depth of field is given in 11.7b and 11.7c. An artificially
created range map and the resulting output image are depicted in 11.7d and 11.7e.
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can for example be obtained using a TOF camera. We have presented a technique

for upsampling and smoothing the range map such that is has the same resolution

as the color image.

Using the range data, we create a mesh of triangles representing the surface of

the scene and use Distributed Raytracing to assign a color value to each pixel. The

color value is computed as a linear mixture of color values that are computed for rays

intersecting the mesh. Since the camera setup does not acquire a complete model of

the scene, we have to deal with missing data. We have proposed a heuristic that

avoids artefacts that are induced by missing data.

Finally, we have compared the method, which we refer to as 21/2D Distributed

Raytracing, to a number of alternative algorithms on synthetic data. The algorithm

was also tested on a real image captured by a TOF camera.

We can conclude that the method achieves realistic results if the range map is

consistent with the color image. Thus, future work should focus on the improvement

of the procedure for upsampling and aligning the range map with the color image.

Otherwise, artefacts can impede the visual experience.
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12
Conclusion

The results presented in this thesis were already discussed individually at the end of

the corresponding chapters. The main achievements on the algorithmic side include

the exploitation of the shading constraint to dramatically improve the range maps

measured by a TOF camera, a robust algorithm for the estimation of human pose that

is based on self-organizing maps, and a variety of different image features that can

be employed for feature tracking and action recognition. These algorithms play an

important role in three potential applications for TOF cameras: A nose tracker which

enables an alternative form of text input, and framework for controlling a slideshow

presentation with pointing gestures, and a method for photographers to generate

the stylistic device of depth-of-field in digital images. I will now conclude this thesis,

by discussing where I see the potential of computer vision systems in the context of

human-computer interfaces at a more general scope.

The IT sector has seen a fascinating development since the invention of the first

computers. We can observe that the role of computer systems is changing in the

sense that computers are no longer only stationary terminals with the standard tech-

nology of display, mouse, and keyboard for user interaction. On the contrary, pow-

erful computer systems become integrated into various devices we continuously use

throughout the day, such as mobile phones. These devices often provide some form

of assistance while the user does not even notice that he is dealing with a computer

in the conventional manner.

This concept of the embedded computer was already envisioned by Mark Weiser

in the early 90’s (Weiser, 1991). In this context, Weiser formed the term ubiquitous

computing and recast the role of computers in human-machine interaction: “The

most profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it.” The technical re-
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CHAPTER 12. CONCLUSION

alization of this vision is commonly known by the term information appliance, which

was coined by Jef Raskin in the late 70’s. In the scope of information appliance, Don-

ald A. Norman sees computers as enhancements of very common devices, which are

designated to certain very specific tasks (Norman, 1998). While the user interface

of such devices is kept simple and easy to use even for untrained people, the com-

puter operates invisbily in the background providing additional functionality; possi-

bly through an exchange of information with other information appliances.

While some of these computer systems will simply provide information or oper-

ate without intentional input of the user, the total number of human-computer inter-

faces will nevertheless increase. And for most systems in the category of ubiquitous

computing conventional user interfaces consisting of display, mouse, and keyboard

will not be an option. Thus, we will require new means of user interaction.

Under this perspective, I see a lot of potential for gesture-based interaction. Cur-

rently, the most dominant market for gesture-based interaction is the gaming mar-

ket. An obvious reason for this development is that the targeted consumers are gen-

erally young and open to new concepts involving computer technology. New forms

of human-computer interaction can be explored in a playful manner and the level of

accuracy and reliability required in games is not critical, i.e. a failure of immature

technology does not endanger anyone.

However, I can also imagine a number of appliances for human action and ges-

ture recognition as well as gesture-based interaction beyond the gaming market. An

important sector is the health industry. Imagine a medical doctor in an operating

room filled with high-tech equipment ranging from life sustaining devices to systems

providing the clinician with important patient data. Gestures may enable doctors to

have all these devices within reach while adhering to hygiene standards. Conven-

tionally, doctors have to access this information through the assistance of a surgical

nurse or they have to abandon their operating equipment while actuating the device.

Another field of application is health monitoring; either at home or in the hospi-

tal. Disabled people can be monitored continuously through a camera based system

which signals an alarm when an unexpected event occurrs, for example when an el-

derly person has an accident at home and is unable to reach for the phone to call for

assistance.

The use of gestures and action recognition can also be applied to the automotive

sector. Navigation systems are available in almost every high-class car. The use of

simple gestures for the control of such systems would both ease the use and increase

the security while driving. In addition, camera based systems can be used to monitor
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the traffic. Thus, potential hazards can be detected and the driver can be warned or

precrash counter measures can be activated.

The techology and algorithms described in this thesis provide a steping stone to-

wards the realization of the above mentioned scenarios. During the years of my re-

search in this area and numerous discussions with camera manufacturers and com-

panies interested in gesture-based interaction, I also began to see the potential of

commercializing the acquired knowledge. The first serious footstep in this direc-

tion was taken in late 2009, when we applied for funding in the scope of the EXIST

Forschungstransfer at the German Federal Ministry of Economics and Technology.

And since the beginning of 2010 we are heading straight towards realizing this idea,

preparing a start-up company that targets human action and gesture recognition by

means of computer vision based on 3D imaging sensors.
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Sigurjón Árni Gudmundsson, Henrik Aanæs, and Rasmus Larsen. Effects on mea-

surement uncertainties of time-of-flight cameras. In Proceedings of the IEEE In-

ternational Symposium on Signals, Circuits & Systems (ISSCS), volume 1, pages

1–4, 2007b.

Paul Haeberli and Kurt Akeley. The accumulation buffer: hardware support for high-

quality rendering. In SIGGRAPH Computer graphics, pages 309–318, ACM, 1990.

Tom S. F. Haines and Richard C. Wilson. Integrating stereo with shape-from-shading

derived orientation information. In British Machine Vision Conference, volume 2,

pages 910–919, 2007.

Tom S. F. Haines and Richard C. Wilson. Combining shape-from-shading and stereo

using Gaussian-Markov random fields. In International Conference on Pattern

Recognition, pages 1–4, 2008.
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