
Aus dem Institut für Neuro- und Bioinformatik
der Universität zu Lübeck
Direktor: Prof. Dr. rer. nat. Thomas Martinetz

Tracking Gaze and Human Activity

Inauguraldissertation
zur Erlangung der Doktorwürde der Universität zu Lübeck
aus der Technisch-Naturwissenschaftlichen Fakultät

vorgelegt von
Martin Böhme aus Darmstadt

Lübeck 2009

Erster Berichterstatter: Prof. Dr.-Ing. Erhardt Barth

Zweiter Berichterstatter: Prof. Dr.-Ing. Alfred Mertins

Dritter Berichterstatter: Prof. Dr.-Ing. Andreas Kolb

Tag der mündlichen Prüfung: 21. April 2010

Zum Druck genehmigt
Lübeck, den 21. April 2010

gez. Prof. Dr. rer. nat. Jürgen Prestin
Dekan der Technisch-Naturwissenschaftlichen Fakultät

Jetzt bist du da, ein Stück deiner Zukunft dabei,
Es ist schon lange klar, du fühlst dich frei,

Wenn die Zukunft zur Gegenwart wird, hast du’s getan.
Das Warten – war es wirklich dein Plan?

Die Fantastischen Vier

Acknowledgements

I have many people to thank for supporting me while I was working on this thesis.
First of all, I thank Erhardt Barth, my supervisor, from whom I learned a lot and

who provided both technical guidance and moral support when it was needed. He
likes to quip that sometimes, instead of doing pattern recognition, it is more fruitful
to create recognizable patterns. I believe this advice holds true not just for pattern
recognition but on a more general level: When you are toiling away at a problem, take
a step back from time to time and ask yourself if you are actually working on the right
problem. I thank Erhardt for pointing me towards the right problems.

I thank Thomas Martinetz for providing a great research environment – and, not
least importantly, countless litres of coffee!

I thank Christopher Krause, Michael Dorr and Martin Haker, with whom I worked
together on the research projects that resulted in the work described here. In a PhD
thesis, one must by necessity describe one’s own contribution – but that should not
give the wrong impression that this was a solitary effort. Even my own contributions
would not have turned out the same without the intensive and fruitful discussions
with Christopher, Michael and Martin.

I thank everyone at the Institute for Neuro- and Bioinformatics for the friendly at-
mosphere that pervades the institute and for the lively discussions in the kitchen –
some of the best of which did not revolve around either neuro- or bioinformatics.

It is said that the person who learns the most in the classroom is the teacher – and
if that it so, I certainly have a lot of students to thank who endured my teaching over
the years. I would add the corollary that the person who learns the most from a thesis
is the supervisor – and so I particularly thank André Meyer, Mathis Graw, Martin
Lechner and Kolja Riemer, whose theses I supervised.

During my time as a PhD student, I was funded by the German Ministry of Educa-
tion and Research (bmbf) in the ModKog project, the German Research Council (dfg)
in the Locomotor project, and the European Commission in the projects artts and
cogain. Despite all of the paperwork involved in a research project, one should not
forget the valuable role that these institutions play in supporting our research. For all
my gratitude, though, they will not let me get away without a disclaimer – so bear
with me as I point out that this publication reflects the views only of the author, and
that none of the funding institutions can be held responsible for any use which may
be made of the information contained herein.

My deepest thanks go to the people who supported me on a personal level during
my thesis work – but allow me to keep my thanks personal as well by extending them
privately.

Contents

Introduction i

I Eye Tracking 1

1 Eye Tracking – An Overview 3

1.1 Introduction 3

1.2 The Human Eye 4

1.3 A Brief Survey of Eye Tracking Technology 8

1.4 Video-Oculographic Eye Trackers 10

2 A Simulation Framework for Eye Trackers 15

2.1 Simulated Entities 16

2.2 A Simple Example 22

3 Implementation of a Single-Camera Remote Eye Tracker 25

3.1 Hardware Setup 26

3.2 Image Analysis 28

3.3 Gaze Estimation 30

3.4 User-Specific Calibration 38

3.5 Recalibration 41

3.6 Results 42

3.7 Avenues for Future Work 54

4 Automatic User-Specific Calibration 57

4.1 State of the Art 58

4.2 Motivation 59

4.3 Method 60

4.4 Results 64

4.5 Discussion and Outlook 67

II Human Activity Tracking 69

5 The Time-of-Flight (tof) Camera 71

5.1 Introduction 71

5.2 Comparison With Other Range Imaging Methods 72

5.3 Working Principle 76

5.4 Accuracy 78

5.5 Limitations 79

6 Image Improvement Using the Shading Constraint 81

6.1 Introduction 81

6.2 Method 83

6.3 Results 88

6.4 Discussion 94

7 Facial Feature Tracking 97

7.1 Geometric Features 98

7.2 Feature Computation in Spatial Coordinates 102

7.3 Facial Feature Detection and Tracking 105

7.4 Results 107

7.5 Discussion 111

8 Face Detection 113

8.1 Method 114

8.2 Results 116

8.3 Discussion 121

Outlook 123

Bibliography 125

Index 137

Introduction

Traditionally, people have interacted with machines by manipulating input devices
using their hands, feet, and other parts of the body. We control computers with key-
boards, mice, and joysticks; we fly aircraft with sticks, rudder pedals, and various
levers and handles; we choose songs on our music players using buttons, scrollwheels,
and touch screens.

For many tasks, this type of interaction via a physical intermediary is entirely appro-
priate. A physical interaction device provides affordances [99], i.e. indications of how
we should interact with the device; it can provide physical feedback: a steering wheel
turns more easily on an icy road; and indeed, using a physical object to interact with
the environment is human nature: we are a tool-wielding species.

In contrast, much of our interaction with other people does not involve physical con-
tact and relies instead on the senses of seeing and hearing. We communicate verbally,
by speaking and listening, and non-verbally, through body language, gestures, facial
expressions, and gaze. It seems plausible, then, that sight and sound should also be
useful for interacting with machines.

This basic idea has been explored in many different ways. Computers can recognize
speech with reasonable accuracy as well as synthesize speech, and these capabilities
have been used for telephone dialogue systems, home automation, text input, and
the like. Computer vision can be used to detect the presence or absence of humans,
to measure body posture, to recognize gestures and facial expressions, or to track the
direction of gaze, and these methods can in turn be used for sign language recognition,
computer games, or alternative communications systems for people with disabilities.

This thesis will deal with the use of computer vision for human-machine interaction.
Specifically, I will deal with eye tracking – measuring the direction of gaze – as well
as applications of the time-of-flight camera, a combined range and image sensor, to
human activity tracking.

Eye tracking has an obvious use in human-machine interaction as a pointing device:
Because we can consciously control where we look and, moreover, because what we
look at is usually what we are interested in, eye tracking has been used successfully
to replace traditional pointing devices such as the mouse. This is of particular value
to those who suffer from severe motor impairments, for whom the eyes are often
among the few remaining parts of the body they can control. For these users, eye
tracking can be a valuable communication tool. However, eye tracking has appeal

i

as an interaction device for able-bodied users, too. For example, controlling games
through gaze is not only fun but can actually be more effective than using traditional
interaction devices [36].

On a more subtle level, eye tracking can be used not only for conscious interaction
but to provide the machine with clues about what the user is interested in and where
their attention lies. This information can then be used to modify the display depending
on where the user is looking – for example, an interactive three-dimensional display
can render the visual periphery in less detail and use the computing power that is
saved to provide more detail in the region that the user is looking at directly. Moving
one step further, we can modify the display to influence and thus optimize the user’s
gaze pattern – that is, to provide gaze guidance [8].

All of these applications require eye trackers that are accurate, easy to use, and,
preferably, cheap. Only in the last few years have eye trackers become available that
simultaneously satisfy at least the first two of these requirements. For a long time,
eye trackers were only used in research because they were difficult to set up and
burdensome to use: These eye trackers either required the user’s head to be fixated
in the device, or they were heavy devices worn on the user’s head. Recent years have
seen the development of remote eye trackers, which do not require physical contact
with the user and allow the head to be moved within a certain range.

In this thesis, I will describe the development of such a remote eye tracker. On the
hardware side, it consists of two infrared light sources, which provide controlled il-
lumination, and a high-resolution camera, which records an image of the user’s face.
Algorithmically, there are two main problems to be solved: First, we must detect the
user’s eyes and measure the position of suitable image features on the eyes (the im-
age analysis step); second, we must use these measured positions to infer the user’s
direction of gaze (the gaze estimation step).

Developing and testing algorithms for eye tracking is complicated by the fact that
the ground truths for many intermediate quantities, such as the position of the eye in
space or the various dimensions of the eye, are hard to determine accurately. For this
reason, I will also describe a software framework that simulates the measurements
made by the camera or cameras in a video-oculographic eye tracker. I will use this
framework to validate the gaze estimation algorithms for the remote eye tracker.

Because some properties of the eye, such as the offset between the fovea and the vi-
sual axis, are hard or impossible to observe from the outside, existing video-oculographic
eye trackers require user-specific calibration. During calibration, the user is asked to fix-
ate one or several calibration targets; the measurements made during this calibration
phase allow the system to adapt itself to the user’s eyes. Because the calibration phase
is burdensome for the user, it is desirable to eliminate it. I will describe an alternative
approach that performs unobtrusive calibration in settings where the user is using
a mouse for interaction. This approach makes use of the fact that when users click

ii

the mouse, there is a certain probability that they will be looking at the mouse cursor.
This information can be used to obtain a calibration that is almost as good as a manual
calibration, but without an explicit calibration phase.

The second part of this thesis deals with applications of the time-of-flight (tof) cam-
era to tracking humans and their activities. The time-of-flight camera is a novel type
of sensor that delivers a range map and a corresponding intensity image with high
temporal resolution (typically 30 frames per second or more). The camera performs
a range measurement at each pixel by emitting modulated infrared light and measur-
ing the time taken by the light to travel to the object and back to the camera. Given
the speed at which light travels, the achievable accuracies (around 5 mm in optimal
conditions) are impressive, but the range map that is obtained is still relatively noisy.
I will describe a technique for improving the accuracy of the range map based on
the observation that the range map and intensity image are not independent but are
linked by the shading constraint: If the reflectance properties of the surface are known, a
certain range map implies a corresponding intensity image. By enforcing this shading
constraint, the intensity image can be used to improve the accuracy of the range map.

The range map delivered by the tof camera can be used to compute features that
describe geometric properties of the imaged object. I will show how a certain type
of geometric features, the generalized eccentricities, can be used to distinguish different
surface types. Furthermore, these features can be made scale-invariant by computing
them on the irregularly sampled surface of the object instead of on the regularly sam-
pled pixel grid. I will show how the geometric features, evaluated both on the range
map and the intensity image, can be combined with a very simple classifier to yield a
robust facial feature detector and tracker.

Finally, I will show how the popular face detection algorithm of Viola and Jones
can be extended to use both intensity and range features. The resulting detector has
a higher detection rate as well as requiring less execution time than a conventional
detector trained only on the intensity images.

In academia, the actual software that implements an idea is often treated as an
unloved child, relegated to a side note in the results section. Nevertheless, this thesis
only exists as the result of a lot of code being written, and I am not about to disavow
my offspring. Both the eye tracker and the interactive tof applications are based on a
high-performance image and video processing framework whose development I initi-
ated and led. It consists of around 70,000 lines of C++ and assembly and is being used
by three teams at the institute. I hope this child continues to mature and thrive.

Many of the results described in this thesis were obtained as part of a group effort.
In these cases, I will, at the beginning of the corresponding chapter, identify which
contributions are my own. For the sake of consistency, I will use the personal pronoun
“we” throughout, even when describing results that are solely my own. I will deviate
from this convention in only a few cases when expressing my own personal opinions.

iii

iv

Part I

Eye Tracking

1 Eye Tracking – An Overview

1.1 Introduction

Eye tracking is the process of measuring the orientation or motion of the eyeball. The
original motivation was basic research: Besides being a tool for investigating the neu-
rophysiological mechanisms that trigger and control eye movements, eye tracking is
widely used to study attention and cognition, because gaze position is strongly corre-
lated with visual attention and thus provides a good objective measure for it.

As eye trackers became easier to use, they started to be used for other purposes. Eye
tracking can be used to diagnose diseases of the visual system [81]; in commercial ap-
plications, eye trackers are used to study the usability of web pages or the effectiveness
of advertising media; eye trackers are starting to be fitted to cars and trucks to monitor
driver alertness and attention [82]; and besides these passive monitoring applications,
eye trackers are also used as input devices for human-computer interation (hci), both
for the general population [72] and, particularly, for disabled users [68] as a means
for augmentative and alternative communication (aac), environmental control, and
wheelchair control (see [28, 29] for an extensive survey). Finally, eye trackers may be
used to implement gaze-contingent displays, which change some aspect of the image
as a function of where the user is looking (see e.g. [88, 48]), and gaze guidance, where
the display is changed suitably to guide the user’s eye movements and thus optimize
the flow of information [8].

There is a host of different technologies and devices for eye tracking, which we will
survey briefly in Section 1.3. The different technologies differ not only in terms of cost,
accuracy, and the burden they place on the user (equipment mounted on the eye or
head, restrictions on movement) but also in the type of data they deliver: Eye trackers
may be binocular, meaning that they measure both eyes, or monocular, measuring only
one eye. Also, different eye trackers measure different quantities. Some eye trackers
measure rotation angles of the eye relative to the head; others measure the point of
regard (por) on a screen or some other planar display; still others deliver a line of
sight (los) vector in three-dimensional world coordinates. Some authors refer to the
measurement of eye rotation angles as eye tracking and the measurement of point of
regard or line of sight as gaze tracking, but this convention is not universal. For clarity,
we will therefore speak of eye rotation angles, point of regard, or line of sight if a particular
type of measurement is meant; we will use gaze direction as a general term for all three

3

Figure 1.1: Anatomical structure of the human eye; see Section 1.2.1 for a detailed
description. (Modified from a public domain image on Wikipedia.)

types of measurement; and we will use eye tracking to mean any process of measuring
gaze direction.

A general property of many eye trackers is that they require user-specific calibration.
This is because every person’s eyes are slightly different, and thus the same measured
quantity may correspond to different gaze directions in different people. Calibration is
usually done by presenting one or several fixation targets at known positions and ask-
ing the user to fixate them; the measurements made for these known gaze directions
are then used to calibrate the eye tracker.

1.2 The Human Eye

1.2.1 Anatomy

Figure 1.1 shows the anatomical structure of the human eye. (For a detailed treatment,
see e.g. [4] and [123].) Most of the eye is covered by the sclera, a white fibrous tissue
that serves mainly to protect the eye. At the front of the eye, the sclera joins to the
cornea, a transparent tissue that protects the eye while allowing light to enter. As a

4

curved, approximately spherical surface, the cornea plays an important role in the
optics of the eye, providing the majority of the refractive power (around 42 dioptres).
The second refracting component in the eye is the lens, a mass of transparent tissue
surrounded by an elastic capsule. The lens is attached by the zonular fibres to the ciliary
muscle; when this muscle expands and contracts, it changes the shape of the lens and
thereby its refractive power. This process is known as accommodation and allows the
eye to focus on objects at different distances. The refractive power of the lens can vary
between about 19 dioptres for an object at infinity and 30 dioptres for an object 10 cm
from the eye.

The iris is a ring of pigmented tissue located in front of the lens. It contains two
antagonistic muscles that allow it to expand and contract, changing the size of its
aperture, the pupil, to control the amount of light entering the eye.

The space between the iris and the cornea is called the anterior chamber. It is filled
with the aqueous humour, a colourless liquid that maintains the shape of the cornea and
provides nutrients to the cornea and lens. The posterior chamber – the space between
the iris and the ciliary body – is also filled with aqueous humour. The vitreous chamber
is the space behind the lens. It is filled with the vitreous humour, a gelatinous mass that
stabilizes the shape of the eye.

The inner wall of the vitreous chamber is lined with the retina, a light-sensitive
tissue, and the choroid, which lies between the retina and the sclera and contains vessels
supplying blood to the retina.

The retina is composed of several layers of cells. The photoreceptor cells are con-
tained in one of the outer layers (i.e. close to the choroid), and on top of this photore-
ceptor layer lie several layers of nerve cells that relay and modify the signals from the
photoreceptors. An inner layer of nerve fibres converges towards the back of the eye
to form the optic nerve, which transmits the sensory signals to the brain.

The photoreceptor cells in the retina can be divided into two types: rods and cones.
Cones, in turn, exist in three subtypes, which respond to different wavelengths of light
and thus allow different colours to be distinguished. Rods, on the other hand, cannot
distinguish between wavelengths but are more sensitive in low-light conditions.

The density of rods and cones is not constant but varies across the retina; correspond-
ingly, visual acuity is not constant either but is highest in the centre of the visual field
and falls off towards the periphery. The centre of the visual field corresponds to the
fovea, a circular region on the retina subtending about five degrees of visual angle,
where cones predominate. The highest-resolution part of the fovea, known as the fove-
ola, contains virtually no rods and subtends about one degree of visual angle. Because
visual acuity varies across the retina in this way, the eyes are constantly moving to
bring objects of interest onto the foveola.

5

Figure 1.2: Optical characteristics of the human eye that are relevant to eye tracking.
N: Front nodal point. N’: Rear nodal point.

The part of the retina where the optic nerve and retinal blood vessels enter the eye
is called the optic disc. This part of the retina does not contain any photoreceptors and
is therefore also known as the blind spot.

Six extraocular muscles are arranged around the eye; these muscles form three pairs
of antagonistic muscles, and each pair rotates the eye around a different axis, allowing
horizontal, vertical, and torsional eye movements.

1.2.2 Optics

Figure 1.2 illustrates the optical aspects of the human eye that are relevant to eye
tracking. (For a detailed treatment of the optics of the human eye, see [4].)

The eye contains four refracting surfaces: The anterior and posterior surfaces of both
the cornea and the lens. The ciliary muscle can change the shape of the lens to alter its
refractive power and thereby the focal length of the entire system, allowing the eye to
focus on objects at different distances.

It is useful to think of the refracting surfaces in the eye as being rotationally symmet-
ric and as being aligned along a common axis of symmetry, the optical axis. In reality,
this is only approximately true, and so to define the optical axis stringently, one needs
to define it as the best-fit axis according to some error measure.

The nodal points of an optical system (marked as N and N’ in Figure 1.2) have the
property that a ray travelling towards N at a certain angle to the optical axis will be
refracted so that it appears to emanate from N’ at the same angle.

The nodal points are important for eye tracking because the fovea is displaced from
the optical axis. Therefore, to find the point that the eye is fixating, we need to trace a
ray from the fovea to the rear nodal point N’, find the angle between this ray and the

6

optical axis, and then trace a second ray outward from the front nodal point N under
the same angle. This second ray, which intersects the point that the eye is fixating, is
known as the visual axis.

1.2.3 Eye Movements

There are two main reasons why the human eye needs to move within its orbit [81]:
The first is that when we walk or run, the head is jerked about. If the eye was rigidly

connected to the head, these movements would cause the image on the retina to blur.
To compensate for head movements, the human visual system contains two mecha-
nisms: the vestibulo-ocular reflex (vor), which generates compensating eye movements
based on head accelerations sensed by the vestibular system in the inner ear; and the
optokinetic reflex, which is based on the speed of image drift on the retina.

The second reason for eye movements is that visual acuity is highest at the fovea
and falls off sharply towards the periphery. Because of this, the eye must constantly be
moving, either to move the fovea onto different objects of interest or to keep the fovea
on a moving target. Within this second group of eye movements, we will distinguish
the following basic types:

Saccade A saccade is a quick eye movement that repositions the fovea onto a new
target of interest. Saccades have peak velocities of several hundred degrees per second,
depending on saccade amplitude [81, Chapter 3].

Smooth pursuit Smooth pursuit eye movements maintain the fovea on a moving target,
or on a stationary target during self-motion. Smooth pursuit can reach velocities up to
around 100 degrees per second [81, Chapter 4].

Fixation A fixation occurs when the eye is held stationary to examine a static target.
Even during a fixation, however, the eye is still making small movements: Fixation may
drift slightly over time, microsaccades (typically less than a third of a degree) may occur,
and there is a constant tremor of less than 0.01 of a degree, with a frequency of up to
150 Hz. Since an image that is perfectly stabilized on the retina fades and disappears,
it seems plausible that the purpose of tremor could be to counteract this effect, but
this explanation has not been proved or disproved conclusively.

Vergence Depending on the distance of the object of interest, the eyes must have a
certain orientation relative to each other to ensure that the object appears on both
foveas at the same time. Vergence is a movement of both eyes in opposite directions
which changes the relative orientation of the eyes, thereby adjusting them to different
object distances.

7

Besides these basic categories of eye movements, there are several more that we will
not discuss here; for details, see [81].

1.3 A Brief Survey of Eye Tracking Technology

There is a host of different devices and techniques for eye tracking; some of these are
only of historical interest, but a whole range of techniques remains in active use. Which
of these techniques is most suitable depends on the requirements of the application.

For an overview of both historical and contemporary techniques, see Wade and
Tatler [134], Richardson and Spivey [112], Young and Sheena [142], and Schneider and
Eggert [117].

Historically, the first attempts at eye tracking involved the experimenter directly
observing the subject’s eye [134, Section 1.3]. Even though humans can estimate an-
other person’s gaze direction to a certain degree [125], direct observation has obvious
disadvantages in terms of accuracy and objectivity.

The first methods for recording eye movements [32, 67] used a plaster-of-Paris eye
cup that was placed on the anaesthetized eye; a lever on the eye cup was connected to
a pen, which recorded the eye movements on a rotating drum.

Dodge and Cline [35] developed a method that avoided direct contact with the eye;
they reflected a vertical line of light on the cornea, passed it through a horizontal slit
to generate a point of light, and recorded the movement of this point of light on a
moving photographic plate.

Photographic techniques were widely used up to the 1960s, for example in Yarbus’s
seminal work on scanpaths [139]. However, they are quite laborious to use – for each
recording, a photographic plate or film has to be developed – and if one wishes to
record both horizontal and vertical eye movements, the temporal dynamics of the eye
movements are lost and one obtains only the scanpath.

These disadvantages prompted the development of other eye tracking techniques,
many of which are still in use today.

The scleral search coil technique [114] uses a contact lens introduced into the eye
that contains one or two wire coils (see Figure 1.3a). A time-varying magnetic field is
generated around the subject’s head (see Figure 1.3b), and this induces a voltage in the
search coils whose amplitude depends on the orientation of each coil to the magnetic
field. Wires connect the search coils to a device that uses these signals to deduce the
orientation of the eye.

Because the search coil technique offers excellent accuracy and temporal resolution,
it is still considered the “gold standard” by which other techniques are judged. How-
ever, the contact lens may be uncomfortable for the subject to wear, and because of
this, other techniques are preferred if the accuracy of the search coil is not required.

8

(a) (b)

(c) (d)

Figure 1.3: Examples of different eye tracking techniques. (For examples of video-
oculgraphic eye trackers, see Figure 1.4.) (a) Scleral search coil. (Image courtesy of
Skalar Analytical, Breda, the Netherlands, reproduced with permission.) (b) Field
frames for use with a scleral search coil. Coils in the field frames generate a time-
varying magnetic field, which induces a current in the search coil. (Image courtesy
of Skalar Analytical, Breda, the Netherlands, reproduced with permission.) (c) Dual
Purkinje image (dpi) eye tracker by Fourward Technologies, Inc. (Image courtesy of
Jan Drewes, reproduced with permission.) (d) Goggles for electro-oculography (eog),
from [23]. (Image courtesy of Bulling et al., reproduced with permission.)

9

A dual Purkinje image (dpi) eye tracker [30] (see Figure 1.3c) makes use of the fact
that a light source produces a series of reflections, called the Purkinje images, at the
front and rear surface of the cornea and the front and rear surface of the lens. The
dpi tracker uses the first and fourth Purkinje image, which are imaged onto a pho-
tosensor. Servo motors drive mirrors to keep the two Purkinje images superimposed
on the photosensor as the eye rotates; the position of these servo motors can then be
used to deduce eye orientation. The dpi tracker provides good accuracy and temporal
resolution but requires the head to be stabilized using a bite bar.

Electro-oculography (eog) [93, 118] exploits the fact that the retina is an electrical
dipole. Because of this, eye movements cause changes in the electrical field surround-
ing the eye, which can be picked up using electrodes placed around the eye (see Fig-
ure 1.3d). eog is a relatively simple and inexpensive technique, and it is one of the few
techniques that allow eye movements to be measured while the eyes are closed, but it
is an invasive technique in that it requires the electrodes to be placed on the subject,
and it is not as accurate as the scleral search coil or dpi trackers.

Infrared reflection devices (ird) [141] use an infrared light source along with several
photosensors located near the eye. Because the sclera reflects more light than the iris
or pupil, the amount of light picked up by each photosensor changes as the eye rotates.
This type of eye tracker has good temporal resolution and is inexpensive to build, but
vertical eye movements can be hard to measure accurately because they do not cause
as much change in the reflectance properties of the eye as horizontal eye movements.

Video-oculography (vog) is a common term for a variety of techniques that use one or
several video cameras to image the eye and measure its orientation, and this is the class
of eye tracker that we will focus on in this work. Merchant et al. [89] describe an early
vog tracker; reviews are given for example by Duchowski [37] and Witzner and Ji [57].
An attractive feature of vog eye trackers is that they can be quite non-intrusive: the
camera can be mounted some distance away from the user, and the user may, within
certain limits, move naturally, as long as the eye remains within the camera’s field of
view and provided the software can compensate for these movements. A disadvantage
of vog eye trackers is that their accuracy and temporal resolution is often substantially
lower than that of other techniques. The next section will deal with the different types
of vog eye trackers and their characteristics in more detail.

1.4 Video-Oculographic Eye Trackers

A video-oculographic eye tracker uses one or several cameras to image the eye and
computes the gaze direction from the information in the image. There is a broad range
of devices that fit this general definition, and the category of video-oculographic eye
trackers is probably more diverse than any other category of eye trackers. The choices

10

(a) (b)

(c) (d)

Figure 1.4: Examples of video-oculographic eye trackers. (a) smi iView X Hi-Speed, a
fixed-head eye tracker. (Image courtesy of the copyright holder, SensoMotoric Instru-
ments GmbH, Teltow, Germany, reproduced with permission.) (b) sr Research Eye-
Link, a head-mounted eye tracker. (Image courtesy of Ingrid Brænne, reproduced with
permission.) (c) Tobii T120, a remote eye tracker integrated into an lcd monitor. (Im-
age courtesy of Tobii Technology, Danderyd, Sweden, reproduced with permission.)
(d) smi iView X red, a remote eye tracker. (Image courtesy of the copyright holder,
SensoMotoric Instruments GmbH, Teltow, Germany, reproduced with permission.) A
version that is integrated into an lcd monitor is also available.

11

one is faced with when designing a video-oculographic eye tracker include the follow-
ing:

Head movement tolerance and invasiveness Early video-oculographic eye trackers usu-
ally required the user’s head to be fixated, often using a chin rest or bite bar. We will
refer to these systems as fixed-head systems – see Figure 1.4a for an example. If the
head does not move, the camera can be set up so that the eye fills most of the camera
frame, which allows the position of relevant points in the image to be measured with
good precision. Also, gaze direction is easier to compute if the head is fixed. However,
keeping the head still is obviously uncomfortable and unnatural for the user. Head-
mounted systems (Figure 1.4b) are worn on the user’s head. This allows the user to
move their head, but the weight of the system and the straps used to hold the system
in place may be uncomfortable, particularly for prolonged use. Remote eye trackers
(Figures 1.4c and 1.4d) are the least invasive variant: They do not require the user to
wear any equipment and allow the user to move their head freely within certain limits.
However, to keep the eye in the camera frame when the head moves, it is necessary ei-
ther to increase the field of view of the camera (reducing precision) or to fit the camera
with a pan-tilt mechanism (introducing additional mechanical complexity).

Number and type of cameras Fixed-head and head-mounted systems usually use a sin-
gle camera if one eye is tracked (monocular tracking) or two cameras if both eyes are
tracked (binocular tracking). The camera is either mounted close to the eye or is fitted
with a tele lens so that the eye fills most of the camera frame.

For remote systems, the possibilities are more varied. Cameras may have a narrow
or wide field of view (fov) and may be steerable to track the user’s face or eyes (using
a pan-tilt unit or steerable mirrors). The simplest configuration uses a single fixed
camera with a wide fov [74, 140]. A single narrow-fov camera may be used with a
pan-tilt unit, but this approach appears to be unpopular because of the difficulty of
reacquiring the eye if it leaves the camera’s fov. Multi-camera systems come in many
different configurations. One option that multiple cameras open up is to use stereo
vision [120], which greatly simplifies the problem of determining the depth coordinate
of the user’s head and eyes. Another popular option is to combine a fixed wide-fov

camera with a steerable narrow-fov camera; in this setting, the wide-fov camera is
usually used to locate the user’s eye, and the narrow-fov camera is then steered to
this position and used for the actual eye tracking [107]. Combinations of both of these
ideas are of course also possible; one may for example combine a wide-fov stereo
system with a single steerable narrow-fov camera [21, 101], or use two stereo units,
one fixed and with a wide fov, the other steerable and with a narrow fov [11].

12

Illumination Many video-oculographic eye trackers use active illumination with in-
frared light. Not only does this make the lighting more predictable, but many systems
also exploit the fact that the lights generate reflections on the corneal surface (so-called
corneal reflexes or crs) that can be used as convenient reference points. Some systems
also exploit the so-called bright-pupil effect: Lights that are located close to the camera
axis will cause the pupil to appear as a bright disc in the camera image, while off-axis
lights yield a dark pupil. This effect permits easy segmentation of the pupil.

Eye tracking under ambient lighting has the advantage that it does not require any
additional light sources, lowering the cost and complexity of the system. Also, this
type of system works even in bright sunlight, which tends to drown out active in-
frared illumination. Conversely, systems that rely on ambient light obviously do not
work in low-light conditions, and they must deal with the general problem of vari-
able illumination. Finally, finding suitable reference points on the face is more difficult
under ambient lighting because no well-defined corneal reflexes are generated.

Besides these aspects concerning the hardware side of the system, there is also a
wide variety of approaches on the algorithmic side. Most eye tracking algorithms are
made up of two major components: image analysis, which measures certain quantities
in the image (often, the position of relevant features), and gaze estimation, which com-
putes gaze direction from these measurements. These general tasks can be approached
in different ways:

Image analysis The first task in image analysis is eye detection, i.e. finding the eye
or eyes in the image. Fixed-head and head-mounted systems usually do not need to
perform this step explicitly because the eye fills most of the image. Remote eye trackers
with active infrared illumination will often search for the typical pattern produced by
the corneal reflexes; these can be extracted quite well using a band-pass filter, and
heuristics can be applied to eliminate false positives. The bright-pupil effect is another
popular way of finding the eye. Eye detection is most difficult in remote eye trackers
using ambient illumination; these need to employ more sophisticated techniques such
as eigeneyes [106] or cascades of boosted classifiers [42, 132, 135].

Once the eye has been found, we need to measure certain quantities that can be used
to determine gaze direction. Most eye trackers measure the position of key features in
the image, such as the corneal reflexes, the eye corners, the pupil border, or the limbus.
However, more holistic approaches also exist. An active appearance model (aam) can
be fit to the image of the eye; the parameters of the model are then used to compute
gaze direction [56]. Another possibility is to train a neural network that maps images
of the eye directly to gaze direction [5, 137].

13

Gaze estimation Gaze estimation algorithms may be divided into two main categories:
Those that interpolate between data points obtained during calibration and those that
model the actual physical characteristics of the eye. A simple example for the first cate-
gory is the popular pupil-cr technique (e.g. [95, Section 4]), which maps the difference
vector between the pupil center and a corneal reflex to the point of regard using an
interpolation function (a biquadratic function, for example). The coefficients of the in-
terpolation function are determined using least-squares estimation on the calibration
points.

Model-based methods (e.g. [50]) typically trace light rays from the camera back to
the eye and use prior knowledge about the eye and the eye tracker setup to determine
the position and orientation of the eye. By incorporating more prior knowledge, model-
based methods typically require less user calibration data than interpolation-based
methods, particularly for remote eye tracking. The downside is that model-based meth-
ods usually take more time to implement and require a calibrated camera setup as well
as knowledge about the positions of any active light sources.

14

2 A Simulation Framework for Eye Trackers

To develop eye tracking algorithms and assess their accuracy, it is necessary to have
ground-truth data against which the results of the algorithms can be compared. To
obtain these data, subjects can be asked to fixate certain known positions, and the gaze
position computed by the eye tracker can be compared against the fixated position.

While this approach is the most realistic way of measuring the overall accuracy of an
eye tracker under real-world conditions, it does have a number of shortcomings: (i) The
position on the fovea that is brought onto the fixation target may change from fixation
to fixation; moreover, the eye is not completely static during a fixation but may drift or
perform microsaccades. This means that the true gaze direction is not known precisely.
(ii) To find the source of gaze estimation errors, it is very useful to have ground truth
values not only for the fixated location but also for intermediate quantities that may
be computed by the algorithm, such as the position and orientation of the eyeball in
space. It is very hard to measure these values accurately on a human subject. (iii) To
examine the effect of hardware changes in the system, the measurements have to be
redone. This is relatively time-consuming, which limits the amount of experimentation
that can be carried out.

An alternative is to use a simulation of the system; this has the advantage that all
ground truth values are known with high accuracy, and that the simulated hardware
can be changed easily. The main disadvantage of simulation is that it must always
make simplifications, and these can cause the algorithms to behave differently than
they would in the real world. Nevertheless, simulation is a valuable tool for developing
and testing eye tracking algorithms.

In this chapter, we describe a simulation framework for video-oculographic eye
trackers [15] that uses an optical model to determine the coordinates of relevant fea-
tures (pupil contour and corneal reflexes) in the camera image. These features can then
be used by a gaze estimation algorithm to compute point of regard or line of sight. In
Chapter 3, the framework will be used to test the gaze estimation algorithms described
there.

The framework is written in matlab, an interpreted language for numerical com-
puting that facilitates experimentation and allows gaze estimation algorithms to be
expressed concisely. The source code for the framework is freely available on the web
at www.uni-luebeck.de/tools-demos/et_simul.zip.

Some of the work described here has previously been published in [15].

15

2.1 Simulated Entities

Most video-oculographic eye trackers use the following processing steps: image ac-
quisition, using one or several cameras; image analysis, to determine the position of
relevant features in the image; gaze estimation, where the point of regard or line of
sight is computed from the observed feature positions; and, optionally, a tracking com-
ponent that tracks the change in position of the image features from frame to frame.

In the simulation framework, we have chosen not to simulate the image analysis
step explicitly. That is, instead of computing the image seen by each camera (using 3d

rendering algorithms) and then extracting the position of relevant features from the
image, the framework directly computes the positions where these features will lie in
the camera image given the spatial positions of the eye, camera, and lights. The effect
of finite camera resolution and of inaccuracies in the image analysis algorithms are
simulated by perturbing each image feature by a random offset.

Our main reason for leaving out the image analysis step is to increase the speed
of the simulation: Rendering and analyzing a full camera image for every test con-
dition would certainly not be practicable in a pure matlab implementation. Also, we
believe that gaze estimation is where most of the problems lie that are particular to eye
tracking; in contrast, the image analysis step usually uses proven existing techniques.

We will now describe in detail how the individual components of the system are
modelled. We will also describe the simplifications we have made, i.e. which aspects
of the system are not modelled.

2.1.1 Eye

The eye (see Figure 2.1) is the most important and most complex part of the model. It
consists of the following components:

Cornea

This is modelled as a spherical cap with a radius of rcornea, a centre of curvature ccornea

lying on the optical axis of the eye, and a cap height of hcornea. (The numerical values
for these parameters and others that follow are taken from the standard eye in Boff and
Lincoln [13, Section 1.210].) For brevity, we will refer to the centre of corneal curvature
simply as the cornea centre.

The corneal surface plays a role in two effects that are relevant for eye tracking:

Reflection The cornea acts as a spherical mirror in which reflections of the light
sources – the crs – are observed. Reflection at the surface of the cornea follows the law

16

bb

ccornea

cornea

rcornea

hcornea

b

crotation

z

y

cpupil

rpupil

rpc

iris

zoptical

zvisual α, βfovea

Figure 2.1: Eye model used in the simulation framework. The origin of the eye coordi-
nate system is located at the eye’s centre of rotation crotation but is shown outside the
eye for clarity. The x-axis points into the page. The meaning of the various parameters
is explained in Section 2.1.1.

b

ccornea

n

b x

b

b

l

c

α

α

(a)

b

ccornea

b b
n b

x

bc

θ1
θ2

(b)

Figure 2.2: (a) Reflection of a ray from the light source l at a point x on the surface of
the cornea towards the camera c. n: surface normal; ccornea: centre of corneal curvature;
α: angle of incident and reflected ray with the surface normal. (b) Refraction of a ray
from the pupil boundary point b at a point x on the surface of the cornea towards
the camera c. n: surface normal; ccornea: centre of corneal curvature; θ1, θ2: angles of
incident and refracted ray with the surface normal.

17

of reflection (angle of incidence equals angle of reflection [44], see Figure 2.2a):

c − x
‖c − x‖2

· n =
l − x

‖l − x‖2
· n, (2.1)

where l is the position of the light source, c is the position of the camera (from where
the reflection is observed), x is the position on the corneal surface where the ray is
reflected, and n = x−ccornea

‖x−ccornea‖2
is the surface normal at x. In addition, c, l, x, and ccornea

must be coplanar. Together with the constraint that x should lie on the surface of the
cornea, i.e. ‖x − ccornea‖2 = rcornea, on the half-sphere facing c, x is uniquely deter-
mined.

We find x by noting that it is constrained to the half-circle formed by intersecting
the corneal half-sphere facing c with the plane given by c, l, and ccornea. We use a one-
dimensional root-finder to find the solution for x that satisfies the reflection equation
under these constraints.

After the point of reflection x has been found, we check to see if it actually lies
within the boundaries of the cornea (i.e. within the spherical cap). If not, no cr is
generated.

Refraction The observed image of the pupil is distorted by refraction at the corneal
surface (see Figure 2.2b). This is governed by Snell’s law [44]:

n1 sin θ1 = n2 sin θ2, (2.2)

where θ1 is the angle between the incident ray and the surface normal, θ2 is the angle
between the refracted ray and the surface normal, and n1 and n2 are the indices of
refraction of the two materials.

Given a point b on the pupil border, we wish to find the location x on the corneal
surface where an incident ray from b is refracted in such a way that it passes into
the camera at c. Similar to the case of reflection, we note that c, b, ccornea and x are
coplanar and that x must lie on the half-sphere facing c, giving a unique solution for
x. Again, we use a one-dimensional root finder to find x; if the point of refraction that
is found does not lie within the boundaries of the cornea, no image is generated for
the pupil border point.

Pupil

The pupil boundary is modelled as a circle of radius rpupil lying in a plane perpendic-
ular to the optical axis with its centre at cpupil on the optical axis. We will refer to the
distance between cpupil and ccornea as rpc.

18

Visual axis

Because the fovea is displaced temporally and slightly upwards from the optical axis,
the visual axis, i.e. the line connecting the fixated point and the fovea via the nodal
points, is displaced relative to the optical axis. We denote the horizontal and vertical
angle of this displacement by αfovea and βfovea. In our eye model, we assume that there
is only one nodal point and that it is coincident with ccornea; this is sufficiently accurate
for our purposes.

Let zoptical and zvisual be the direction of the optical and visual axes. We can then
define a matrix F that transforms the optical to the visual axis as follows:

zvisual = F zoptical, F := Qvα
(αfovea) · Qvβ

(βfovea), (2.3)

where vα and vβ are the axes around which the horizontal and vertical displacement
angles are measured, and Qv(θ) is a rotation matrix that rotates around the vector v
by an angle of θ.

Rotation of the eyeball (Listing’s law)

When the eye is rotated out of the primary position (which coincides approximately with
the position where the eye is looking straight ahead), it undergoes a certain amount of
torsion. The exact amount of torsion is governed by Listing’s law, which states that the
torsion of the eyeball will be that which is obtained by rotating around an axis that is
perpendicular to both the visual axis in the primary position and to the visual axis in
the new position [62, 133].

This is important because the eye is not rotationally symmetric around the optical
axis; as stated above, the fovea is offset from the optical axis, and hence torsion will
affect the relative orientation of the optical and visual axes.

Mathematically, Listing’s law may be stated as follows:

zvisual,0 · w = zvisual,1 · w = 0, (2.4)

where zvisual,0 is the visual axis in the primary position, zvisual,1 is the visual axis in
the rotated position, and w is the direction of the axis around which the rotation takes
place. (In the following, let zvisual,0, zvisual,1, and w be unit vectors.)

To find the rotation matrix R that transforms the eye from the primary position to
the rotated position, we note that R transforms zvisual,0 into zvisual,1 and w into itself.
Furthermore, (w, zvisual,0, w × zvisual,0) form an orthonormal frame, and this frame is
transformed by R into (w, zvisual,1, w× zvisual,1). Thus, we can apply the transformation
R to a point by finding the coordinates of this point in the frame (w, zvisual,0, w ×
zvisual,0) and multiplying the basis vectors of the frame (w, zvisual,1, w × zvisual,1) by

19

these coordinates:

R =
(

w, zvisual,1, w × zvisual,1

) wT

zT
visual,0

(w × zvisual,0)T

 . (2.5)

Limitations of the model

Because of the complex form and function of the eye, an eye model must almost
necessarily make certain simplifications. The most important properties of the eye that
are relevant for eye tracking but are not captured in the model are the following:

Limbus The limbus, i.e. the boundary between the cornea and the sclera, is currently
not modelled as an image feature.

Cornea shape The true shape of the cornea is closer to an ellipsoid than to a sphere [4];
in spite of this, the current implementation uses a spherical model because it simplifies
the optical calculations. However, one should keep in mind that this simplification
may favour gaze estimation algorithms that likewise model the cornea as a spherical
surface, thus underestimating their gaze error; conversely, the framework may actually
overestimate the gaze error for algorithms that use a more sophisticated ellipsoidal
cornea model (e.g. [11]).

Refraction at the posterior cornea surface The cornea and the aqueous humour have
slightly different refractive indices (Boff and Lincoln [13] give values of 1.376 and
1.336, respectively). Because of this, refraction occurs at the boundary between these
two media, additionally distorting the image of the pupil as viewed from the outside.
The framework does not model this effect because it is comparatively small compared
to the refraction at the air-cornea interface.

Occlusion by eyelids In real eye trackers, the eyelids may, in certain situations, hide
parts of the pupil boundary or of the limbus, or they may obscure the crs. This is an
important effect, but it is hard to model realistically because there are a number of
factors affecting eyelid position: the normal eyelid opening angle may vary between
individuals and between races; bright lighting may lead to squinting; and vertical eye
movements are accompanied by movements of the eyelids, particularly the upper lid
(a phenomenon known as lid-eye coordination [124]). For this reason, the framework
does not currently model eyelids.

20

Pupil In the real eye, the pupil centre will not, in general, lie exactly on the optical
axis. Indeed, the pupil is not perfectly circular, so it is hard to define exactly what its
centre is in the first place. Additionally, when the pupil contracts or expands, its shape
may change, and its centre may shift [26].

2.1.2 Cameras

The framework models cameras using the pinhole camera model [44]. A camera has
two parameters: The (horizontal and vertical) resolution in pixels, and the focal length,
i.e. the distance between the pinhole and the image plane. By a convention that is
common in computer vision (see e.g. [129]), focal length is measured in pixels.

Pan-and-tilt cameras are simulated; however, camera movement happens instanta-
neously, i.e. the framework does not simulate latency, inertia, maximum pan and tilt
speeds, and so on.

Image acquisition and image analysis are simulated by projecting relevant feature
points (points on the pupil contour and CRs) onto the image plane. If a feature point
falls outside the boundaries of the simulated image sensor, it is marked as invalid.
To simulate the combined effects of finite image resolution, finite signal-to-noise ratio,
residual errors after camera calibration, and inaccuracies in the image analysis step,
each point can be perturbed by a random vector. We call this random perturbation the
feature position error.

Since many gaze estimation algorithms use the pupil centre as an image feature, this
point is also determined by fitting an ellipse to the (perturbed) pupil boundary points
in the image using the algorithm of Halı́ř and Flusser [55] and taking the centre of the
ellipse as the pupil centre. (Note that because of perspective foreshortening, this point
is not identical to the projection of the true pupil centre – which cannot, of course, be
observed directly – onto the image plane.)

Limitations of the model

The simulated camera does not exhibit any lens distortion or other imperfections; an
implementation of the simulated algorithms on real cameras will often require the
internal parameters of the camera to be calibrated (see e.g. [44]). Furthermore, the
simulated camera has infinite depth of field; in reality, depth of field is one of the
limiting factors for head movement tolerance in remote eye trackers.

2.1.3 Lights

All lights are simulated as point light sources that radiate in all directions.

21

Limitations of the model

The simulation does not account for the fact that real light sources have spatial extent
and that the apparent shape of the light source can change depending on the direction
from which it is viewed. In real systems, this effect means that, when the light source
is viewed from different directions, the centroid of the light source, as determined by
the image analysis algorithms, can shift relative to the idealized point position of the
light source.

2.2 A Simple Example

To demonstrate the use of the framework, we will show how to implement a simple
eye tracker with one camera and one light source that uses the pupil-cr technique
(see e.g. [95, Section 4]). This technique maps the difference vector between the pupil
centre and a corneal reflex to the point of regard using an interpolation function. In
this example, we will use a bilinear interpolation function

(
gx

gy

)
=

(
a11 a12 a13 a14

a21 a22 a23 a24

)
1
dx

dy

dx dy

 , (2.6)

where d = (dx, dy) is the difference vector between the position of the pupil centre
and the corneal reflex in the camera image, and g = (gx, gy) is the gaze position on
screen. The coefficients a11, . . . , a24 are determined using least squares estimation on
the calibration data.

In the simulation framework, an eye tracker is represented by a matlab structure
that contains the camera(s), the light source(s), and the positions of the calibration
points. The eye tracking algorithms are implemented as a pair of functions: (i) the
calibration function, which is supplied with the positions of the image features observed
for each calibration point and uses these to calibrate the eye tracker; and (ii) the gaze
estimation function, which is supplied with observed image feature positions and uses
these to compute the gaze position.

Figure 2.3 shows the calibration and evaluation function for the pupil-cr eye tracker.
The calibration function interpolate calib takes two arguments: et is the eye tracker
structure, and calib data is a structure containing calibration data, i.e. the positions of
the image features observed for each calibration point. The calibration function uses
this information to compute the matrix of coefficients for the interpolation function
and stores these in the state field of the eye tracker object.

The gaze estimation function interpolate eval also takes two arguments, the eye
tracker structure et and a camera image structure camimg, which contains the positions

22

function et = interpolate_calib(et, calib_data)

% Calculate pupil-CR vector for each calibration point

for i=1:size(et.calib_points, 2)

pcr = calib_data{i}.camimg{1}.pc- ...

calib_data{i}.camimg{1}.cr{1};

X(:,i) = [1 pcr(1) pcr(2) pcr(1)*pcr(2)]’;

end

% Find least-squares solution for coefficients of

% interpolation function

et.state.A=et.calib_points/X;

function gaze = interpolate_eval(et, camimg)

% Calculate pupil-CR vector

pcr = camimg{1}.pc-camimg{1}.cr{1};

% Evaluate interpolation function

gaze=et.state.A*[1 pcr(1) pcr(2) pcr(1)*pcr(2)]’;

Figure 2.3: Implementation of a simple eye tracker with bilinear interpolation.

of the observed image features. Using the pupil-cr vector and the matrix of coefficients
stored in et.state, the function computes the gaze position and returns it in gaze.
Note how the built-in matrix and vector features of matlab allow the algorithms to be
expressed concisely.

23

24

3 Implementation of a Single-Camera
Remote Eye Tracker

When implementing a remote eye tracker, a fundamental design choice is whether to
use a single camera or multiple cameras. A multi-camera system can triangulate points
in the scene to determine their position in space. Triangulation is not possible with a
single camera, which makes gaze estimation more difficult, but single-camera systems
have the advantage of being smaller and typically less expensive to manufacture.

In this chapter, we will describe a high-accuracy single-camera remote eye tracker
that we have developed [14, 20, 92, 131]. At the time that we started this work, the most
accurate remote eye tracking systems described in the literature used multiple cameras
and achieved an accuracy of 0.5 to 1.0 degrees [11, 21, 101, 120, 140]. A commercial
system [127] achieved similar accuracy using a single camera, but no implementation
details had been published, and we were not aware of any comparable system in
the literature. Since then, other academic groups have described similar single-camera
approaches (e.g. [50, 65]), and several companies have introduced new single-camera
eye trackers (e.g. [2, 122]).

Our eye tracker consists of a single camera mounted below a computer screen, with
two infrared light sources to either side of the camera (see Section 3.1). The image anal-
ysis component is based on the Starburst algorithm [83], which was reimplemented
and modified to fit the needs of the remote eye tracking setting (see Section 3.2). The
gaze estimation algorithm uses a physical eye model to determine the position and ori-
entation of the user’s eyes (see Section 3.3). The complete system achieves an accuracy
of around one degree and allows head movements of 20 cm between the extremes of
the working range on all three spatial axes (see Section 3.6).

Parts of this chapter are joint work with others. André Meyer developed the image analysis algorithms
(see Section 3.2) and implemented the C++ eye tracking software as part of his diploma thesis [91],
which he conducted under my supervision. Some of the work described in this chapter has previously
been published in [14, 20, 92, 131].

25

3.1 Hardware Setup

Figure 3.1 shows the hardware setup of the eye tracker; it consists of the following
components:

Camera The camera (Lumenera Lu175 [86]) is placed centrally under the display. It
has a monochrome 2⁄3-inch cmos sensor with a resolution of 1280 × 1024 pixels and
runs at a frame rate of 15 frames per second for full frames; the frame rate increases
if only part of the pixel array is read out, but this feature was not used. The camera is
connected to the computer by a usb 2.0 interface.

The lens (Pentax c1614-m [105]) has a fixed focal length of 16 mm, providing a field
of view of around 60 degrees horizontally and 50 degrees vertically; at a distance of
50 cm from the camera, this corresponds to around 60 cm horizontally and 50 cm
vertically. The eye tracker is designed to be used with the head at a distance of 60 cm
from the screen, and the camera’s focus is set to this distance; the field of view and
depth of focus of the camera allow head movements in a volume of about 20 × 20 ×
20 cm around this point.

To minimize the effect of ambient light, the lens was fitted with an infrared filter
(Heliopan rg830 [64]), which blocks wavelengths below around 770 nm, reaching 50%
transmission at around 830 nm and 90% transmission at around 870 nm. This filter
response matches well against the infrared illuminators, which have a peak wavelength
of 870 nm (see below).

The intrinsic parameters of the camera (focal lengths, principal point, and nonlin-
ear lens distortion coefficients) were calibrated using the calibration routines from
the OpenCV library [103], which are based on the camera calibration technique of
Zhang [144].

Illumination Two infrared illuminators (epitex l870-66-60-550 [40]) are mounted be-
low the display, one on either side of the camera. Each illuminator consists of 60

light-emitting diode (led) chips and is fitted with a glass lens and a heat sink. The
illuminator emits light with a peak wavelength of 870 nm and a half width of 40 nm.
The maximum radiated power is 950 mW at a current of 800 mA and a voltage of
7.5 V. The illumination is pulsed; a pulse is triggered by the camera shutter and lasts
for 7 ms.

Computer A pc with a 3 GHz Intel Pentium 4 cpu and 1 GB of ram performs the
image analysis and gaze estimation.

Display An 18-inch colour lcd display (ViewSonic vg800) with a display area of 36 ×
28 cm is used to display calibration targets and test stimuli.

26

Figure 3.1: Hardware setup of the remote eye tracker. A camera and two infrared
light sources are mounted below the display. The illumination control electronics are
housed in the box to the left of the display. (Images courtesy of André Meyer.)

27

Figure 3.2: Left: Sample camera image from the remote eye tracker. Right: Close-up of
the eye region. (Image courtesy of André Meyer.)

3.2 Image Analysis

The task of the image analysis step is to find the eyes in the image (if they are present)
and to measure the position of the pupil centre and the two corneal reflexes in the
image. Figure 3.2 shows a typical camera image and a close-up of the eye region.

Eyes are detected by searching for the typical pattern of the corneal reflexes – two
small bright spots in close proximity. Once the eyes have been found, we find points
on the pupil contour using a variant of the Starburst algorithm [83], which works
by shooting rays from an initial pupil centre guess and looking for maxima in the
derivative along this ray. Finally, we fit an ellipse to the pupil contour points. The rest
of this section will describe each of these steps in more detail.

3.2.1 Eye Detection and Corneal Reflex Measurement

To find the corneal reflexes (crs) in the image, we first apply a difference of Gaussians
(dog) filter [49, Chapter 4] to the image. This filter has a bandpass characteristic, and
if its pass band is suitably matched to the size of the crs, it leaves these intact while
suppressing most of the other image content. We found that a dog consisting of a 3 × 3

and a 5 × 5 binomial filter was a good match for the size of the crs. Figure 3.4b shows
the effect of applying this filter to an eye region.

Next, we threshold the filtered image to find candidate locations for crs. This stage
often produces a number of false detections; we eliminate these by requiring that crs
appear in pairs with a certain maximum distance. This simple rule is very effective; any

28

possibly remaining false detections are identified later on in the pupil segmentation
step if no valid pupil can be found near the crs.

The thresholding of the dog-filtered image yields an initial segmentation of the crs.
We refine this segmentation using a flood fill algorithm, which starts at the pixel with
the highest intensity and uses an adaptive threshold based on this intensity. Finally,
we compute the centroid of the segmented pixels to obtain the centre of the cr.

3.2.2 Pupil Segmentation

After the crs have been found, we search for the darkest pixel in a rectangular re-
gion of interest (roi) around the crs; we expect this pixel to lie somewhere within
the pupil. We create another roi, centred around this pixel, and apply an adaptive
threshold based on the intensity of the pixel to obtain an initial segmentation of the
pupil. The segmented region may still contain other dark areas in the eye region, such
as eyelashes, but the centroid of the region is already a good initial guess for the pupil
centre.

We now determine adaptive thresholds for the intensities of the pupil and iris; these
will be used to ensure that contour points that are found do indeed lie on the border
between the pupil and iris.

Figure 3.3 shows the gray value histogram of a 50 × 50 pixel region around the
preliminary pupil centre. The two large peaks correspond to pupil pixels and iris
pixels, and we wish to find intensity ranges [pupilmin, pupilmax] and [irismin, irismax]
that contain the pixels in the pupil and iris, respectively. We find these ranges as
follows:

1 Search for the maximum histogram entry for intensities greater than 40. This is
irispeak. (The lower threshold of 40 is used because the pupil peak is sometimes
higher than the iris peak.)

2 Starting from an intensity of zero, search for the first local maximum; this is
pupilpeak. (Histogram entries containing fewer than five pixels are ignored to avoid
spurious local maxima.)

3 Find the minimum histogram entry between pupilpeak and irispeak. This intensity is
pupilmax; set irismin := pupilmax + 1.

4 Set pupilmin := 0. Set irismax := irispeak + (irispeak − irismin).

Now that we have determined the intensity ranges for pupil and iris, the next step
is to identify points on the pupil contour. We do this using a variant of the Starburst
algorithm [83], which works by shooting rays radially from the initial pupil centre
guess and searching for a maximum in the intensity derivative along each ray (see

29

Figure 3.3: Intensity histogram of a 50 × 50 pixel region around the initial pupil centre.
The intensity ranges corresponding to the pupil and iris are marked in the histogram.

Figure 3.4c). False positives are discarded by requiring that the contour point must lie
between a pupil pixel (with a gray value in [pupilmin, pupilmax]) and an iris pixel (with
an intensity in [irismin, irismax]).

From each contour point that was found, we now shoot a fan of secondary rays back
towards the pupil and find contour points on these secondary rays (see Figure 3.4d).
The rationale for this is that if the initial pupil centre guess was not good, some of the
primary rays will cross the pupil border at an oblique angle, and no contour points
may be detected on these rays. The secondary rays ensure that we detect contour
points along the whole pupil border.

Finally, we fit an ellipse to the detected pupil contour points, using the algorithm of
Halı́ř and Flusser [55]. Figure 3.4f shows the result of this ellipse fitting.

More details on the image analysis process are given in Chapter 4 of André Meyer’s
diploma thesis [91].

3.3 Gaze Estimation

The gaze estimation step takes the position of the pupil and the crs for each eye
and uses these to compute a line-of-sight (los) ray. The los rays for the two eyes
are intersected with the screen plane, and we take the midpoint between the two
intersection points to obtain the point of regard (por) on screen.

The gaze estimation technique is based on a physical eye model that is very similar
to the one used in the simulation framework (see Section 2.1.1). The only differences

30

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Overview of the image analysis process. (a) Eye region from the input
image with the corneal reflexes (crs). (b) Eye region filtered with a difference of Gaus-
sians (dog). The crs are preserved while the rest of the image content is suppressed.
(c) Primary rays are shot from the initial pupil centre guess, and contour points are
detected on these rays. (d) A secondary ray is shot from each contour point, and addi-
tional contour points are detected on the secondary rays. (e) Contour points detected
in steps c and d. (f) An ellipse is fitted to the contour points. (Images courtesy of André
Meyer.)

31

are that for gaze estimation, the cornea is modelled not as a spherical cap but as a
sphere, and that only the pupil center but not the pupil boundary is used.

In the simulation framework, the eye model was used to predict where the pupil
and crs will be observed in the camera image, given the position and orientation of
the eye relative to the camera. For gaze estimation, the eye model will be used to solve
the inverse problem of determining eye position and orientation from the position of
the pupil and the crs in the camera image.

The eye model contains four user-specific parameters: rcornea, rpc, αfovea, and βfovea.
These parameters can either be set to population averages or estimated from data
obtained during the calibration phase (see Section 3.4).

This approach of using a physical eye model, as well as the actual model used, is
similar to that of several other authors [11, 50, 65, 74, 94, 102].

In particular, our approach – though developed independently – is very similar to
that of Guestrin and Eizenman [50], who use the four user-specific parameters listed
above as well as an additional fifth parameter, the effective index of refraction of the
aqueous humour and cornea combined. As we do, they use a single camera and esti-
mate the eye model parameters from calibration data. The main differences between
their approach and ours is that we take Listing’s law for the torsional component of
eye rotation into account (see Sections 2.1.1 and 3.3.4) and that we use a statistical
model to estimate the user-specific parameters (see Section 3.4).

Other existing work includes the following: Beymer and Flickner [11] model the re-
flective and refractives properties of an ellipsoidal cornea as well as the offset between
the optical and visual axes; they successfully estimate the user-specific parameters
of this model using a system composed of two wide-field-of-view cameras and two
steerable narrow-field-of-view cameras.

Ohno et al. [102] describe a single-camera system that uses a single glint and deter-
mines the distance of the eye from the camera using depth-from-focus. They perform
gaze estimation using an eye model; however, this model does not account for the
offset between the optical and visual axes, and the eye model parameters are set to
population averages. Kaminski et al. [74] describe a similar approach but use a face
model to estimate the distance of the user from the camera.

The system of Hennessey et al. [65] consists of a single camera with two illuminators;
they use an eye model to determine the position and orientation of the eye in space,
but the offset between the optical and visual axis is not modelled, and the eye model
parameters are set to population averages.

3.3.1 Algorithmic Prerequisites

In the algorithms that follow, we assume the existence of the following subroutines:

32

x = unproject(p, d)
Takes a point p on the camera’s image plane and returns the point x at a distance of
d from the camera’s centre of projection (measured along the direction of projection)
that has the image p.

(x, d) = unproject ray(p)
Takes a point p on the camera’s image plane and returns the ray (defined by the origin
x and the direction d) that passes through all points that have the image p.

x = intersect ray sphere((o, d), c, r)
Takes a ray (defined by its origin o and direction d) and a sphere (defined by its centre
c and radius r) and finds the intersection x between the ray and the sphere that is
closest to o. It is assumed that some kind of error code is returned if the ray does not
intersect the sphere.

(u0, ud) = refract ray sphere((o, d), c, r, noutside, nsphere)
Takes a ray (defined by its origin o and direction d) and a sphere (defined by its centre
c and radius r) and returns the point u0 where the ray strikes the sphere along with
the direction ud of the refracted ray. The refractive index outside the sphere is noutside,
the refractive index of the sphere is ninside. It is assumed that some kind of error code
is returned if the ray does not intersect the sphere.

x = lines closest point((u0, ud), (v0, vd))
Takes two non-parallel lines (defined by points u0, v0 and directions ud, vd, respec-
tively) and returns the point x that has the smallest sum of squared distances to the
two lines.

x = intersect ray plane((u0, ud), (o, x1, x2))
Takes a ray and a plane, intersects the ray with the plane, and returns the point of
intersection in terms of a two-dimensional coordinate system within the plane. The
ray is defined by its origin u0 and direction ud; the coordinate system within the plane
(and thereby the plane itself) is defined by its origin o and two perpendicular vectors
x1, x2 that define its coordinate axes.

3.3.2 Estimating the Position of the Cornea

The first step in gaze estimation is to compute the position of the cornea centre ccornea

in space from the position of the two crs in the image. For a given configuration of
lights, any particular set of observed cr positions corresponds to a uniquely deter-

33

ccornea = estimate cc((ki))

Input: ki (i = 1, 2) Positions of corneal reflexes in image

Constants: rcornea True radius of cornea
c Position of camera in space
li (i = 1, 2) Positions of lights in space

Output: ccornea Position of corneal centre in space

Initialize estimated distance: dest = 0.5 (metres)

repeat

k̂i = unproject(ki, dest) ∀i = 1, 2

repeat

bi = c−k̂i
‖c−k̂i‖2

+ li−k̂i
‖li−k̂i‖2

ccornea = lines closest point((k̂1, b1), (k̂2, b2))

r̂cornea = 0.5
(
‖k̂1 − ccornea‖2 + ‖k̂2 − ccornea‖2

)
k̂i = intersect ray sphere(unproject ray(ki), ccornea, r̂cornea)

until no k̂i moves by more than ε1

dest = dest

√
rcornea
r̂cornea

until |1 − rcornea
r̂cornea

| < ε2

Algorithm 3.1 (estimate cc): Estimates the position of the cornea in space.

mined position of the cornea centre. This relationship can be expressed as a system of
nonlinear equations, which can then be solved numerically (see e.g. [65]).

We have chosen a slightly different approach (see Algorithm 3.1) using an iterative
procedure that adjusts the estimated distance of the eye from the camera (dest in the
algorithm) until the corneal radius that an eye at distance dest would need to have to
generate the observed crs is equal to the known actual corneal radius.

The algorithm uses a double iteration: The outer loop converges on an estimate
dest for the distance of the eye from the camera and uses this distance in each step
to find the position of the crs in space. This will lead to both crs ending up at the
same distance dest from the camera. In reality, however, the distance of the two crs is
usually slightly different. The inner loop thus refines the position estimates based on
the observation that the following two constraints must simultaneously be fulfilled:

• The cornea centre must lie at the intersection of the surface normals at the two crs.
The surface normal at a cr can be obtained by taking the bisector (denoted by bi in

34

the algorithm) between the ray from the cr to the light and the ray from the cr to
the camera.

• The cornea centre must lie at equal distances from the crs.

The inner loop obtains positions for the cornea centre and the crs that fulfill these
two constraints. It does this by iterating the following procedure: Compute the surface
normals at the crs, intersect these to find the cornea centre, measure the distances
from the crs to the cornea centre and take their mean, then construct a sphere with
this mean corneal radius around the cornea centre and intersect with the rays from
the camera towards the two crs to obtain new position estimates for the crs.

Among other things, the inner loop thus determines the radius r̂cornea of the corneal
surface that would give rise to the observed crs if placed at a distance of dest from
the camera. This distance estimate dest is now adjusted depending on the relationship
between r̂cornea and the true corneal radius rcornea. All other things being equal, it can
be shown that corneal radius has to increase with the square of the distance to produce
the same crs (to a first-order approximation), which leads to the update rule used in
the algorithm.

3.3.3 Finding the Optical Axis of the Eye

We will now determine the direction of the optical axis by finding the position of the
pupil centre in space; the optical axis is then found as the line connecting the cornea
centre and the pupil centre.

We find the pupil centre by tracing the light ray from the centre of the pupil in
the image back into space (see Algorithm 3.2). We refract the ray at the surface of the
cornea and trace it further into the eye. We now have two constraints on the position
of the pupil centre: first, it must lie on the ray, and second, its distance to the cornea
centre is rpc. This means that we can find the pupil centre by intersecting the ray with
a sphere of radius rpc around the cornea centre; the first point of intersection is the
pupil centre.

Note that we incur a systematic error in this step. To determine the position of the
pupil centre in the image, we fit an ellipse to the pupil boundary, then take the centre
of this ellipse as the pupil centre (see also Section 3.2.2). Under an orthographic cam-
era projection, the centre of the ellipse would be identical to the projection of the pupil
centre – which cannot, of course, be observed directly – onto the image plane; perspec-
tive foreshortening, however, leads to a slight difference between the ellipse centre and
the true pupil centre, and this difference causes a systematic gaze estimation error. We
will examine the magnitude of this error in Section 3.6.1; as we will see, the error is
relatively small compared to other sources of error and can, moreover, be eliminated
almost entirely during calibration.

35

zoptical = find optical axis(ccornea, p, rcornea, rpc)

Input: ccornea Position of cornea centre in space
p Position of pupil in image
rcornea True radius of cornea
rpc Distance between ccornea and cpupil

Constants: nair Refractive index of air
ncornea Refractive index of cornea

Output: zoptical Direction of optical axis

(p0, pd) = unproject ray(p)
(p0, pd) = refract ray sphere((p0, pd), ccornea, rcornea, nair, ncornea)
cpupil = intersect ray sphere((p0, pd), ccornea, rpc)
zoptical = cpupil − ccornea

Algorithm 3.2 (find optical axis): Computes the direction of the optical axis.

There is an alternative approach to finding the pupil centre in space that avoids the
pupil centre approximation error: Instead of tracing a light ray from the pupil centre
in the image back into space, we can trace a ray from every pupil boundary point
(see e.g. [65]). We then estimate the position and orientation of the pupil disc that
best agrees with these rays. This eliminates the pupil centre approximation error but
introduces a different problem: The existing approach to estimating the position of the
pupil [65] requires the radius of the pupil to be known. This radius can be estimated
from the size of the pupil in the camera image, but the fact that the image of the pupil
is distorted by refraction at the cornea surface introduces an error into this estimate. In
practice, we have found that this alternative technique for estimating the pupil centre
is not any more precise than Algorithm 3.2.

3.3.4 Correcting Foveal Displacement

We will now correct for the displacement of the fovea from the optical axis to find the
visual axis of the eye.

The matrix F (Equation 2.3, page 19) defines the transformation between the optical
and visual axes, but this transformation is defined relative to the eye in its primary
position. To apply F, we therefore first need to know the rotation matrix R between
the primary position and the current position of the eye. R is easy to compute if the
direction of the visual axis is known (see Equation 2.5, page 20), but here we have only
the optical axis.

36

To find R, let zoptical,0 and zvisual,0 be the direction of the optical and visual axes
of the eye in the primary position, and let zoptical,1 be the direction of the optical
axis in the eye’s current position. (All of these vectors should be unit vectors.) We
now wish to find the axis w around which the eye has rotated from the primary
position to its current position. From Equation 2.4 (page 19), we know that zvisual,0 is
perpendicular to w, i.e. zvisual,0 · w = 0. Furthermore, because zoptical,0 rotates around
w into zoptical,1, we know that the projection of zoptical,0 and zoptical,1 onto w must be
the same, i.e. zoptical,0 · w = zoptical,1 · w. From this, we find (zoptical,1 − zoptical,0) · w = 0,
i.e. the difference vector zoptical,1 − zoptical,0 is perpendicular to w. We now have two
vectors that are perpendicular to w, so we can find w using the cross product: w =
zvisual,0 × (zoptical,1 − zoptical,0).

We know that the rotation matrix R transforms zoptical,0 to zoptical,1 and w to itself.
Again, as in the derivation of Equation 2.5 (page 20), we wish to find two orthonormal
frames such that R transforms one to the other. To find these frames, we apply Gram-
Schmidt orthonormalization to obtain the vectors

zacross,0 =
zoptical,0 − (wTzoptical,0)w

‖zoptical,0 − (wTzoptical,0)w‖2
, (3.1)

zacross,1 =
zoptical,1 − (wTzoptical,1)w

‖zoptical,1 − (wTzoptical,1)w‖2
, (3.2)

giving us the frames (w, zacross,0, w × zacross,0) and (w, zacross,1, w × zacross,1). From this,
we find that R is

R =
(

w, zacross,1, w × zacross,1

) wT

zT
across,0

(w × zacross,0)T

 . (3.3)

We can now finally use R to compute the orientation of the visual axis:

zvisual,1 = R F R−1 zoptical,1. (3.4)

Algorithm 3.3 summarizes the steps for correcting foveal displacement.

3.3.5 Computing the Point of Regard

Now that the visual axis of the eye is known, we can intersect it with the display plane
to find the point of regard on the display. Algorithm 3.4 ties together all of the steps of
the gaze estimation process: estimating the position of the cornea; locating the pupil
centre in space to find the optical axis; correcting for the foveal offset to find the visual
axis; and finally intersecting the visual axis with the display plane to obtain the point
of regard.

37

zvisual = correct foveal displacement(zoptical, αfovea, βfovea)

Input: zoptical,1 Direction of optical axis
αfovea Horizontal angle between visual and optical axis
βfovea Vertical angle between visual and optical axis

Constants: zoptical,0 Direction of optical axis in primary position
zvisual,0 Direction of visual axis in primary position

Output: zvisual,1 Direction of visual axis

w = zvisual,0 × (zoptical,1 − zoptical,0)

zacross,0 = zoptical,0−(wTzoptical,0)w
‖zoptical,0−(wTzoptical,0)w‖2

zacross,1 = zoptical,1−(wTzoptical,1)w
‖zoptical,1−(wTzoptical,1)w‖2

R =
(

w, zacross,1, w × zacross,1

) wT

zT
across,0

(w × zacross,0)T

F = Qvα

(αfovea) · Qvβ
(βfovea) (see Equation 2.3)

zvisual,1 = R F R−1 zoptical,1

Algorithm 3.3 (correct foveal displacement): Computes direction of visual axis
from direction of optical axis and foveal displacement.

3.4 User-Specific Calibration

We now turn to the problem of calibration, i.e. estimating the user-specific values for
the eye model parameters from the data obtained during a calibration phase.

During calibration, the user is asked to fixate a number of calibration points whose
position relative to the camera is known. For each of the calibration points, we record
the position of the pupil and the crs in the camera image. We do not require the user’s
head to remain fixed during calibration – but, for that matter, we do not require the
user’s head to move, either.

Our algorithm does not require a specific pattern of calibration points, but obviously
the results tend to become more accurate the more calibration points are used.

The calibration algorithm uses a statistical approach: We find the maximum a pos-
teriori estimate for the user-specific parameters. Assume that we have n calibration
targets t1, . . . , tn that the user fixates in sequence, and that for each calibration target
ti we observe an image Ii. (In particular, of course, we are interested in the position of
the corneal reflexes and the pupil in the image, but we do not need to make this ex-

38

g = estimate gaze((ki), p, rcornea, rpc, αfovea, βfovea)

Input: ki (i = 1, 2) Positions of corneal reflexes in image
p Position of pupil in image
rcornea True radius of cornea
rpc Distance between ccornea and cpupil

αfovea Horizontal angle between visual and optical axis
βfovea Vertical angle between visual and optical axis

Constants: nair Refractive index of air
ncornea Refractive index of cornea
(o, x1, x2) Coordinate system of the display plane

Output: g Point of regard on display

ccornea = estimate cc(rcornea, (k1, k2))
zoptical = find optical axis(ccornea, p, rcornea, rpc)
zvisual = correct foveal displacement(zoptical, αfovea, βfovea)
g = intersect ray plane(ccornea, zvisual, (o, x1, x2))

Algorithm 3.4 (estimate gaze): Computes point of regard on the display.

plicit here.) The image that is observed depends on the user-specific parameters, which
we will gather into a parameter vector θ = (rcornea, rpc, αfovea, βfovea). The posterior that
we wish to maximize is then (

n

∏
i=1

P(Ii|θ, ti)

)
P(θ). (3.5)

To model P(I|θ, t), we need to introduce the function gθ(I), which computes the
gaze position from an image I given the user-specific parameters θ. (In our eye tracker,
gθ(I) performs the image analysis from Section 3.2 to obtain the position of the corneal
reflexes and the pupil centre, then uses Algorithm 3.4 to compute the gaze position.)
The computed gaze position gθ(Ii) will not be exactly identical to the target ti, for
several reasons: (i) The user does not fixate the target exactly; (ii) a certain measure-
ment error is incurred when determining the position of the image features; and (iii)
the physical model used in the gaze estimation algorithm is only an approximation of
reality. We assume that these combined effects result in a normally distributed error
between the computed gaze position gθ(Ii) and the gaze target ti. This allows us to
model the probability of observing an image Ii as follows:

P(Ii|θ, ti) = N (ti − gθ(Ii)|µtracker, Σtracker). (3.6)

39

We assume that µtracker = 0 (i.e. there is no systematic gaze estimation error) and that
the gaze estimation error is equally distributed in all directions with a standard devia-
tion of σtracker, i.e. Σtracker = diag(σ2

tracker, σ2
tracker). We estimate σtracker using simulations

(see Section 3.6.1).

We turn now to the prior P(θ), which we also assume is normally distributed:

P(θ) = N (θ|µθ, Σθ). (3.7)

We take the parameters of the distribution from the literature. For the mean values
µθ = (µrcornea , µrpc , µαfovea , µβfovea), we take µrcornea = 7.98 mm, µrpc = 4.44 mm (from [13,
Section 1.210]) and µαfovea = 5 °, µβfovea = 2 ° (from [4, Chapter 4]).

The covariance matrix Σθ is harder to obtain. We would expect some or all of the
parameters to be statistically dependent – for example, rcornea and rpc should scale ap-
proximately equally with the overall size of the eye – but we have not been able to find
any data on this in the literature. Hence, in the absence of better data, we assume Σθ to
be a diagonal matrix Σθ = diag(σ2

rcornea
, σ2

rpc
, σ2

αfovea
, σ2

βfovea
). Even the standard deviations

in this matrix are somewhat hard to determine. From [41], we take σrcornea = 0.6 mm.
We were not able to find a corresponding value for σrpc , but we speculate that most of
the variation in rcornea and rpc is due to variations in the overall size of the eye, and so
we assume that σrpc should have a similar relative magnitude as σrcornea . We therefore
choose σrpc =

µrpc
µrcornea

σrcornea = 0.33 mm. Good values for σαfovea and σβfovea are even harder
to obtain; Boff and Lincoln [13, Section 1.210] give a range of 5 ° to 7 ° for αfovea, while
Atchison and Smith [4, page 35] state that “the mean value of angle α is often taken to
be about +5 ° horizontally, but is usually in the range +3 to +5 °, and is rarely negative.
The visual axis is also downwards relative to the optical axis by 2− 3 °.” Based on this,
we choose to set σαfovea = 2 ° (allowing negative αfovea in rare cases) and σβfovea = 1 °.

With the statistical model in place, we can maximize the posterior to find the param-
eter estimates. By computing the negative log posterior and discarding constant terms,
we arrive at the potential function

φ(θ) =
n

∑
i=1

(‖ti − gθ(Ii)‖2

σeyetrack

)2

+
(

rcornea − µrcornea

σrcornea

)2

+

(
rpc − µrpc

σrpc

)2

+

(
αfovea − µαfovea

σαfovea

)2

+
(

βfovea − µβfovea

σβfovea

)2

. (3.8)

Because gθ(Ii) is a nonlinear function of θ, we find the minimum of the potential
function using a nonlinear minimizer (the matlab function fminunc).

40

3.5 Recalibration

The results of the gaze estimation algorithm always contain a certain amount of sys-
tematic error because the algorithm’s model of the system (camera, eye and display)
is by necessity only an approximation. There are several factors that may contribute to
this systematic error:

• The image analysis algorithms may make systematic errors when measuring the
position of the pupil and the corneal reflexes in the image.

• The camera model contains residual errors after camera calibration (see Section 3.1).

• The eye model is only an approximation of the real eye; for example, the cornea
is modelled as a spherical surface, whereas in reality it is closer in shape to an
ellipsoid [4].

• The estimated eye model parameters contain residual errors.

• The measured position of the display relative to the camera contains errors.

To compensate for these and other sources of systematic error, we ask the user to
fixate a number of calibration targets and determine the difference between this known
gaze direction and the gaze direction estimated by the system; this information is
stored and used to correct subsequent measurements.

Specifically, we construct a bilinear interpolation function that maps the point of
regard gest = (xest, yest) as computed by the gaze estimation algorithm to the corrected
point of regard gcorr = (xcorr, ycorr) as follows:

(
xcorr

ycorr

)
=

(
a11 a12 a13 a14

a21 a22 a23 a24

)
1

xest

yest

xest yest

 , (3.9)

where the parameters a11, . . . , a24 are chosen using least squares estimation on the
calibration data.

This procedure, which we call recalibration, is performed individually for each eye,
because there may be differences in the systematic error between the two eyes. The
results that are obtained for both eyes are then averaged to obtain the final point of
regard.

41

System component Position

Screen x = −0.18, . . . , 0.18
y = 0.108, . . . , 0.388
z = 0

Lights (−0.15, 0.03, 0)
(0.15, 0.03, 0)

Camera (0, 0, 0)

Eye position volume (0, 0.388, 0.6) ± (w
2 , h

2 , d
2)

w = 0.27, h = 0.2, d = 0.2

Table 3.1: Position of system components in the simulated eye tracker (coordinates in
metres). The coordinate system is right-handed, with the screen in the x-y-plane and
the z-axis pointing towards the user.

3.6 Results

3.6.1 Simulation

We will begin by testing the gaze estimation algorithms on the simulation framework
described in Chapter 2. This will allow us to examine the effect of errors in the mea-
sured feature positions on gaze estimation accuracy, and will also be able to compare
the eye parameters estimated by the gaze estimation algorithm to the ground-truth
values.

Because the eye models used by the simulation framework and the gaze estimation
algorithm are very similar, the simulated results are probably slightly optimistic, i.e.
they underestimate the gaze error that would be made by a hardware implementation.
With this caveat in mind, though, the simulation is a useful tool for assessing the
properties of the gaze estimation algorithm.

For the tests in this section, we will not use a recalibration procedure (see Section 3.5)
because we are interested in the performance of the gaze estimation algorithm itself,
without any correction.

The virtual setup that we use for the tests is intended to be as close as possible
to the physical layout of the real eye tracker described in Section 3.1. Table 3.1 gives
the precise positions of the individual system components. All positions are given
in a right-handed coordinate system, with the screen in the x-y-plane and the z-axis
pointing towards the user.

We also define an eye position volume, i.e. an area within which we wish to be able to
track a user’s eye; this eye position volume is also intended to correspond as closely
as possible to the eye position volume of the real eye tracker. The volume is box-

42

shaped and is centred around a point 60 cm from the top centre of the screen. The
dimensions (width, height, and depth) of the volume are 27 × 20 × 20 cm. Assuming
an interocular distance of 7 cm, this eye position volume allows head movements of 20

× 20 × 20 cm if we wish to track both eyes. (However, all simulated results presented
in the following are for one eye only.) The simulated camera is oriented with its optical
axis pointing towards the centre of the eye position volume.

Visibility of crs

As the eye rotates, the position of the crs relative to the border of the cornea changes.
Beyond a certain rotation angle, a cr will move off the cornea. When this happens,
the reflex either moves onto the sclera or becomes invisible; in both cases, the reflex
becomes unsuitable for eye tracking (a scleral reflex does not have the same properties
as a corneal reflex because of the different curvature of the sclera).

Because of this, we wish to validate that both crs remain on the cornea for all
gaze directions and eye locations the eye tracker is designed for. Consider Figure 3.5,
which visualizes the visibility of the crs as a function of gaze direction, for various
eye locations. The x- and y-axis of each plot correspond to the coordinates of the gaze
target. For each point in the plot, the shading indicates how many crs are visible when
the eye fixates that location (white: no glint visible; light grey: one glint visible; dark
grey: two glints visible). The rectangular inset marks the boundaries of the screen; to
ensure that gaze tracking is possible across the whole screen, two glints must be visible
for all gaze positions within the screen.

Note first that when the eye is horizontally centred on the screen (topmost plot),
the cr visibility regions are not exactly horizontally symmetric. This is caused by the
asymmetry in the eye that is due to the offset between the optical and visual axis.

Comparing the plot for the centre of the eye position volume to the other plots, we
notice that the greatest change occurs when the eye moves closer to the screen. The
region where two crs are visible shrinks, for two reasons: First, the crs move further
apart on the cornea, and hence the eye can rotate less before one of the crs moves off
the cornea; and second, when the eye is closer to the screen, it needs to rotate by a
greater angle to fixate a given location in the screen plane.

When the eye moves parallel to the screen plane, the change in the cr visibility
region is not as pronounced. The visibility region moves in the same direction as the
eye, but by a smaller amount. This is because there are two effects at work that partially
cancel each other out: As the eye moves down, for example, the crs shift upwards on
the cornea, but the eye also has to rotate further upwards to fixate a given location.

Finally, when the eye moves along all three axes to the front bottom left corner of
the eye position volume, the cr visibility region still comfortably contains the screen.

43

Centre (0, 0, 0)

−0.5 −0.25 0 0.25 0.5
−0.2

0

0.2

0.4

0.6

Closer (0, 0, -0.1) Lower (0, -0.1, 0)

−0.5 −0.25 0 0.25 0.5
−0.2

0

0.2

0.4

0.6

−0.5 −0.25 0 0.25 0.5
−0.2

0

0.2

0.4

0.6

Further left (0.135, 0, 0) Combined (0.135, -0.1, -0.1)

−0.5 −0.25 0 0.25 0.5
−0.2

0

0.2

0.4

0.6

−0.5 −0.25 0 0.25 0.5
−0.2

0

0.2

0.4

0.6

Figure 3.5: Visibility of crs as a function of gaze direction; the x- and y-axis of each
plot correspond to the coordinates of the gaze target. The plots show cr visibility for
different eye positions, whose coordinates are given relative to the centre of the eye
position volume (0, 0.388, 0.6). The shading indicates how many crs are visible (white:
no cr visible; light grey: one cr visible; dark grey: two crs visible). The rectangular
inset marks the boundaries of the screen.

44

Though we have only shown the results for a few selected eye positions, we have
validated that both crs remain visible for a finely spaced grid of positions spanning
the eye position volume.

Gaze estimation using true eye parameters

We will now test the gaze estimation algorithm with the eye model parameters set to
their ground truth values, i.e. with a “perfect” calibration. This serves two purposes:
First, we want to explore how the algorithm performs under ideal conditions, and
second, we want to determine σtracker, the standard deviation of the gaze estimation
error, which is needed for the calibration algorithm (see Section 3.4).

We will investigate the effect that different amounts of error in the measured po-
sition of the image features have on gaze estimation error. The feature position error
was uniformly distributed, and we varied the maximum magnitude of the error. We
placed the simulated eye at the centre of the eye position volume and measured the
resulting gaze estimation error for a grid of 16 × 16 gaze targets distributed across the
simulated screen.

Figure 3.6 shows the results. First, consider the plot for a normal pupil radius of
rpupil = 3 mm. As expected, the gaze error increases with increasing feature position
error. Interestingly, though, the gaze error does not reduce to zero even if no feature
position error is present. The reason for this residual error is an approximation that
the gaze estimation algorithm makes: It fits an ellipse to the pupil contour points in
the image, then uses the centre of this ellipse as the position of the pupil centre. As
explained in Section 3.3.3, this approximation introduces a certain error, and this error
causes the gaze error we observe.

To eliminate the error caused by this pupil centre approximation, we can reduce the
simulated pupil to a point by setting its radius to zero. The dotted plot in Figure 3.6
shows the results obtained for this setting; a feature position error of zero now results
in a gaze error of zero, confirming that the pupil centre approximation was the source
of the error. We also see that for feature position errors we might realistically expect
in a real implementation (at least 0.2 pixels, say), the pupil centre approximation con-
tributes only a few millimetres to the gaze error, while the greater part of the gaze
error is caused by feature position error.

We will now use the data from this second plot to estimate the dependency of σtracker,
the standard deviation of the gaze estimation error, on the feature position error efpe.
A least-squares fit yields σtracker = 34 mm

px · efpe, and this estimate will be used in the
tests of the calibration algorithm.

We choose to estimate σtracker on the data for rpupil = 0 because the calibration
algorithm (see Section 3.4) assumes that there is no systematic gaze estimation error;
in other words, we are interested only in the noise-dependent component of the gaze

45

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

feature position error (pixels)

R
M

S
 g

az
e

er
ro

r
(m

m
)

 r

pupil
 = 3 mm

 r
pupil

 = 0

Figure 3.6: Effect of feature position error on gaze estimation error. The eye model
parameters were set to ground-truth values.

estimation error. As we will see later, the calibration algorithm can compensate very
well for the systematic error by calibrating the eye model parameters to values that are
slightly biased relative to their ground truth values.

Effect of inaccuracies in eye model parameters

Before we use the calibration algorithm to estimate the user-specific eye model pa-
rameters, we will investigate the effect that errors in these parameters have on gaze
estimation. We will keep the parameters used by the gaze estimation algorithm fixed at
the population averages from Section 3.4 and change the parameters of the simulated
eye to investigate their effect on the gaze error.

Changing αfovea and βfovea, i.e. the angle between the visual and optical axis, has a
rather predictable effect: It adds a fixed angular error to the gaze estimate. For this
reason, we will only examine the effect of changing rcornea and rpc.

The standard deviation of rcornea is 0.6 mm (see Section 3.4), which corresponds
to around 8% of the mean value. Assuming a normal distribution, this means that
around 99.7% of the adult population have a corneal curvature that lies within 24%
of the mean. Assuming that rpc has a similar distribution, we varied both parameters
of the simulated eye from 25% below the population average to 25% above. Figure 3.7
shows the effect of this on the gaze estimation error. (The feature position error was
set to zero.)

The top plot shows the effect of varying both parameters in unison, which we believe
is reasonable because most of the variation should be due to differences in the size of
the eyeball as a whole. At 25% or about three standard deviations below the assumed

46

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

1.2

relative error in r
cornea

 and r
pc

R
M

S
 g

az
e

er
ro

r
(d

eg
)

−0.2 −0.1 0 0.1 0.2
0

1

2

3

4

5

6

7

relative error in r
cornea

R
M

S
 g

az
e

er
ro

r
(d

eg
)

−0.2 −0.1 0 0.1 0.2
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

relative error in r
pc

R
M

S
 g

az
e

er
ro

r
(d

eg
)

Figure 3.7: Effect of inaccuracies in the eye model parameters. Top: The parameters
rcornea and rpc of the simulated eye are varied by the same ratio relative to the values
assumed by the gaze estimation algorithm. Bottom: Only rcornea or rpc is varied while
the other parameter is fixed at the assumed value.

values for rcornea and rpc, the parameter error accounted for another 0.7 degrees of gaze
estimation error in addition to the 0.4 degrees obtained for a relative error of zero (this
residual error is caused by the pupil centre approximation).

Because the relative deviation of both parameters will not be exactly the same, we
also investigated the effect of varying just one parameter (see the lower row of plots
in Figure 3.7).

Here, the effect on gaze estimation error is much stronger, reaching over 6 degrees
for an rcornea value 25% below the assumed value. Though it is probably not realistic
for rcornea or rpc to change this much without the other parameter changing at all,
smaller changes of ±10% still increase the gaze error by over two degrees. This shows
that calibrating the eye model parameters accurately can have an appreciable effect on
the gaze error.

The plots shows another, perhaps even more interesting effect: The lowest gaze error
is not achieved when the actual values of the parameters are identical to the assumed

47

values but when the actual value of rcornea is slightly too high or when the actual value
of rpc is slightly too low. At the lowest point in the two plots, the gaze error is less
than 0.1 degrees, compared to 0.4 degrees for a relative error of zero. This suggests
that a conscious miscalibration of rcornea or rpc can actually compensate for most of
the error caused by the pupil centre approximation. The calibration algorithm will
take advantage of this fortuitous effect automatically because it seeks to minimize the
gaze estimation error. As we will see later, the parameter values determined by the
calibration algorithm actually yield smaller errors than the ground truth parameter
values. One may argue that this deliberate miscalibration is not entirely sound from
a theoretical point of view; however, the actual amount by which the parameters are
miscalibrated is fairly small, and the miscalibration does reduce the gaze estimation
error, so we feel that we can allow it to occur.

Accuracy of eye model parameter estimation

We will now investigate how accurately the calibration algorithm from Section 3.4 can
estimate the user-specific eye model parameters.

We performed the calibration with a rectangular 3 × 3 grid of calibration targets,
with the eye at the centre of the eye position volume. We set each of the parameters
of the simulated eye to one standard deviation above the population mean used by
the prior in the calibration algorithm (see Section 3.4); this was to avoid the unfair
advantage that the calibration algorithm would have had if we had set the eye param-
eters exactly to the means used in the prior. We varied the amount of feature position
error to assess its effect on the accuracy of the estimated parameters. Because the ran-
dom variations of the feature position error can cause corresponding variations in the
parameter estimates, we performed 100 calibrations for each given amount of feature
position error.

Figure 3.8 shows the results. The dotted line plots the ground-truth parameter value,
the dashed line plots the mean parameter estimate over all runs, and the shaded region
indicates a range of two standard deviations above and below this mean. This means
that, 95% of the time, the estimated parameter value will fall within this range.

For a feature position error of zero, the estimated parameter values are close but
not equal to the ground-truth values. This is because, as discussed above, the gaze
estimation error is lower when the parameters are slightly miscalibrated than when
they are exactly equal to the ground-truth values.

For all four parameters, the mean estimated values remain quite close to the ground
truth as feature position error increases. Somewhat surprisingly, though, the variations
in the estimated values for rcornea and rpc become quite large when even small amounts
of feature position error are introduced. Figure 3.7 (top) illustrates the reason for this:
When rcornea and rpc are close to their true values and change by the same relative

48

0 0.2 0.4 0.6 0.8 1
6

7

8

9

10

11

feature position error (pixels)

 r
co

rn
ea

 (
m

m
)

estimated

true

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

feature position error (pixels)

 r
pc

 (
m

m
)

estimated

true

0 0.2 0.4 0.6 0.8 1
5.5

6

6.5

7

7.5

8

8.5

feature position error (pixels)

 α
fo

ve
a (

de
g)

estimated

true

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

feature position error (pixels)

 β
fo

ve
a (

de
g)

estimated

true

0 0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

1.8

1.9

2

feature position error (pixels)

 r
co

rn
ea

 /
 r

pc

estimated

true

Figure 3.8: Estimated eye model parameter values as a function of feature position
error. The dotted line plots the true parameter value; the dashed line plots the mean
estimated parameter value, averaged over 100 runs; the shaded region indicates a
range of two standard deviations above and below the mean.

49

amount, the gaze estimation error does not change very much. This means that even
a small amount of feature position error can cause a relatively large change in the
position of the minimum. If we look at the ratio between rcornea and rpc (Figure 3.8,
bottom), we see that, for small feature position error, there is much less variation,
confirming that rcornea and rpc change by approximately the same relative amount.

An even more surprising effect is that, for large feature position error, the variation
in rcornea and rpc individually is actually smaller than for small feature position error.
We hypothesise that this is because the relative influence of the prior becomes stronger
as feature position error increases. The ratio between rcornea and rpc, on the other hand,
behaves as expected, with the variation increasing in an approximately linear fashion
with feature position error.

For αfovea, the variation remains approximately constant, independent of feature po-
sition error; we hypothesise that the effects of increasing feature position error and of
the prior cancel each other out. For βfovea, finally, the variation increases approximately
linearly with feature position error.

As we have already noted, most of the variation in the parameters, particularly for
small feature position errors, is caused by the parameters varying jointly, rather than
individually. Figure 3.9 (left) illustrates this with a scatter plot of rcornea against rpc

(for a feature position error of 0.2 pixels); it is evident that the two parameters are
strongly correlated. In fact, this is true for all four parameters. For every setting of
the feature position error, we performed a principal component analysis (see e.g. [12])
on the parameter values obtained in the 100 calibrations. (All four parameters were
normalized to a standard deviation of one.) Figure 3.9 (right) plots the eigenvalues
of the covariance matrix as a function of feature position error. We see that, for small
feature position error, almost all of the variation in the data is due to a single principal
component, which corresponds to a joint scaling of rcornea and rpc and a corresponding
adjustment of αfovea and βfovea.

Overall accuracy

Finally, we will test the overall accuracy of the eye tracker. We will calibrate the eye
tracker with the eye at the centre of the eye position volume, then test the accuracy
of the gaze estimation obtained using that calibration. Again, we will set each of the
parameters of the simulated eye to one standard deviation above the population means
used in the prior and, again, we will perform 100 runs for each condition to average
out the effect of random variations in feature position error.

Figure 3.10 (left) shows the gaze estimation error as a function of feature position
error, with the eye at the same position as for the calibration. Again, the shaded region
indicates a range of two standard deviations above and below the mean; for compari-
son, we also show the gaze estimation error obtained by setting the eye model param-

50

4 6 8 10 12
3

3.5

4

4.5

5

5.5

6

 r
cornea

 (mm)

 r
pc

 (
m

m
)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

feature position error (pixels)

ei
ge

nv
al

ue
s

Figure 3.9: Left: Scatter plot of estimated values of rcornea and rpc for a feature position
error of 0.2 pixels. Right: Result of a principal component analysis on the estimated pa-
rameter values. The plot shows the eigenvalues of the covariance matrix as a function
of feature position error.

eters to their ground-truth values. For both calibrated and ground-truth parameter
values, gaze error increases approximately linearly with feature position error, and the
mean errors for both variants are quite close to each other, though the ground-truth
parameter values produce less variation in the gaze error.

We see a notable difference between the two variants for a feature position error
of zero: While the ground-truth parameter values produce a residual gaze error of
around 0.4 degrees, the gaze error for the calibrated parameters values goes down
to almost zero (the residual error is 0.02 degrees). This shows that the intentional
slight miscalibration discussed earlier does in fact reduce the gaze error compared to
a “perfect” calibration that sets the eye model parameters to their ground truth values.

This is true not only at the calibration position. Figure 3.10 (bottom left) shows the
gaze error obtained for a feature position error of zero when the distance of the eye
from the screen is varied (calibration was performed at a distance of 0.6 m). At all
positions, the error obtained using the calibrated parameter values is lower than the
error obtained using the ground-truth parameter values.

Finally, Figure 3.10 (bottom right) shows the result of the same test with a feature
position error of 0.5 pixels. The gaze error for both calibrated and ground-truth param-
eters is around 1.5 degrees across the whole range of eye positions, increasing slightly
with the distance of the eye from the camera. This is probably because, as the distance
increases, the image of the eye becomes smaller, and so a given amount of feature posi-
tion error makes a greater difference relative to the size of the eye. The variation in the
error is larger for the calibrated parameter values than for the ground-truth parameter
values.

51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

feature position error (px)

ga
ze

 e
rr

or
 (

de
g)

parameters:
calibrated
ground−truth

0.5 0.55 0.6 0.65 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

distance (m)

ga
ze

 e
rr

or
 (

de
g)

feature position error: 0

parameters:
calibrated
ground−truth

0.5 0.55 0.6 0.65 0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

distance (m)

ga
ze

 e
rr

or
 (

de
g)

feature position error: 0.5 pixels

parameters:
calibrated
ground−truth

Figure 3.10: Overall accuracy of the simulated eye tracker. Results were averaged over
100 runs; the shaded region indicates a range of two standard deviations above and
below the mean. Top: Gaze estimation error at the calibration position as a function of
feature position error. Bottom: Gaze estimation error obtained with the eye at different
distances from the screen for a feature position error of 0 (left) and 0.5 pixels (right).
Calibration was performed at a distance of 0.6 m from the screen.

Discussion of the results

Simulation has not only allowed us to validate that the gaze estimation and calibration
algorithms function correctly; it has also given us an idea of the accuracy that needs
to be achieved in the image analysis component of the real eye tracker to achieve a
certain gaze estimation accuracy. Referring to Figure 3.10 (top), we see that if we want
to achieve an accuracy of 1 degree, we need to measure the position of image features
to within an accuracy of 0.3 pixels. This is a relatively demanding requirement but one
that still seems achievable. For the calibration step, in particular, we know that the eye
is (nearly) stationary when fixating a calibration point, so we can reduce the noise in
the measured position of the image features by averaging over several frames.

52

3.6.2 Hardware Implementation

For the hardware implementation of the remote eye tracker, the image analysis algo-
rithms (Section 3.2) and gaze estimation algorithms (Section 3.3) were implemented in
C++, running under the Windows XP operating system.

The gaze estimation algorithm requires the position of the illuminators and the
display relative to the camera to be known; these positions were measured using a
ruler and a protractor.

The eye tracker was tested on four subjects, all of whom were Caucasians and none
of whom wore glasses or contact lenses. Each subject calibrated the eye tracker with
the head at the centre of the eye position volume using a 5-point calibration pattern;
the accuracy of the eye tracking was then measured for different head positions in
the eye position volume using a rectangular grid of 9 gaze targets, 5 of which were
identical to the calibration points. The grid had a width of 27 cm and a height of 22 cm.
For each gaze target, 40 gaze samples were collected, and the root mean square (rms)
error across all samples was computed. No temporal filtering or averaging was applied
to the gaze samples. A chin rest was used to position the subject’s head accurately, but,
of course, no chin rest is needed during actual use.

The eye model parameters were set to population averages because initial experi-
ments had shown that they could not be estimated reliably from the calibration data.
We speculate that this is because the relative positions of the system components were
not known with sufficient accuracy; this issue is discussed in more detail in Section 3.7.

A bilinear recalibration function (see Section 3.5) was used to compensate for re-
maining systematic errors in the gaze estimation.

Table 3.2 shows the results of the accuracy measurements; for each head position,
the error averaged over all gaze targets and subjects is reported. The lowest error,
around one degree, was obtained with the head in the calibration position. Moving
the head parallel to the display plane caused the error to increase by 0.2–0.4 degrees,
while moving the head forwards and backwards increased the error more strongly, by
around 1–1.5 degrees. The main reason for this is that, at the front and back of the
eye position volume, the image becomes slightly defocused, so that the position of the
corneal reflexes and the pupil cannot be measured as accurately.

The average error over all head positions was 1.57 degrees; other systems (e.g. [2,
122, 127]) report accuracies between 0.5 and 1 degrees, but note that these systems
typically use temporal filtering on the gaze samples, which was not used here.

The temporal resolution of the system is constrained by the frame rate of the camera,
which runs at 15 frames per second, but the software itself is capable of running at
higher frame rates; on the test system, 37.4 ms were required to process a camera frame,
which would allow a frame rate of 26 frames per second. Most of the processing time
is spent on computing the dog filter on the complete image; once the eyes have been

53

Head position rms gaze error
centre (calibration position) (0, 0, 0) 1.01 °
left (−10, 0, 0) 1.33 °
top (0, 10, 0) 1.23 °
top left (−10, 10, 0) 1.44 °
front (0, 0, −10) 2.54 °
back (0, 0, 10) 1.88 °
Overall 1.57 °

Table 3.2: Gaze accuracy for different head positions, averaged over four test subjects.
Head position coordinates (in centimetres) are relative to the centre of the eye position
volume.

found, one could restrict the processing in subsequent frames to a region of interest
(roi), since it is unlikely that the eyes will move much from frame to frame. This
strategy would considerably reduce the amount of computation required and allow a
corresponding increase in the frame rate (see also the discussion of rois in Section 3.7).

3.7 Avenues for Future Work

While the eye tracker we have presented has satisfactory performance, we have already
hinted at several areas in which it could be improved.

We have used simulation to validate that the algorithm for estimating the user-
specific eye model parameters works and is reasonably robust to feature position error.
However, the current hardware implementation does not estimate these parameters
reliably; this is why the results presented in Section 3.6.2 used population averages
for these values. We speculate that the reason the parameters cannot be estimated is
that the positions of the illuminators and the display relative to the camera were not
measured accurately enough. We used a ruler and a protractor, which is obviously not
a very accurate way of making these measurements, particularly since the reference
point for the measurements – the camera’s optical centre – lies inside the camera and
its position is not marked on the camera or lens.

We believe a more accurate approach would be to use the camera itself to make
the measurements, similar to the method described by Beymer and Flickner [11], as
follows: Part of a planar mirror is covered with a chessboard pattern. The mirror is
then held in front of the camera, thus reflecting an image of the illuminators and
the display back at the camera. From the chessboard pattern on the mirror, we can
determine the spatial orientation of the mirror plane; from this and the location of the
illuminators in the camera image, we can determine the position of the illuminators

54

relative to the camera. To determine the position of the display, we display calibration
marks at known pixel positions on the display. From the position of these calibration
marks in the camera image (observed via the mirror), we can likewise deduce their
position relative to the camera.

Another obvious deficiency of the current eye tracker is the low temporal resolution
of 15 Hz, which is quite low even for hci (human-computer interaction) applications.
The frame rate of 15 Hz is imposed by the usb interface of the camera, so an obvious
way to increase it would be to use an interface with higher bandwidth. If one wants
to stay with the low-cost consumer-grade usb interface, there is another option: Most
current industrial cameras can be configured to read out only part of the pixel array – a
region of interest (roi) or area of interest (aoi); the smaller the number of pixels read out,
the higher the frame rate. In the eye tracker, one could restrict the roi to a rectangular
region containing the eyes. If the head moves, the roi is shifted accordingly, and a full
frame has to be acquired only on the first frame or when tracking of the eyes is lost. In
addition to increasing the camera frame rate, defining an roi in this way also reduces
the amount of computation that needs to be carried out in the image analysis step.

The camera that we used (see Section 3.1) does offer the option to define an roi;
unfortunately, we discovered that changing the position of the roi caused a pause of
around half a second during which the camera did not deliver any image data. This
made the roi feature unattractive to us because any head movement would cause a
corresponding pause in the eye tracker data stream. However, with a camera that can
change the roi position more quickly, it should be easy to implement a shifting roi.

On a more general note, most remote eye trackers currently in existence, both com-
mercial and academic, are roughly similar in terms of their performance and other
characteristics, and the eye tracker we have presented here is no exception. A contem-
porary remote eye tracker typically achieves an accuracy of between half a degree and
a degree and allows head movements within a box measuring around 20 cm on each
side. Most trackers still have difficulty tracking some users, particularly those wear-
ing glasses, and the tracker needs to be calibrated for each individual user. On the
hardware side, remote trackers typically use industrial cameras with high-grade glass
optics, leading to high manufacturing costs, even at volume.

These characteristics themselves suggest ways in which current eye trackers could
be improved, both to make them more useful for current applications and to enable
their use in new areas.

Cost One of the reasons that eye trackers have not yet found their way into consumer
applications is the cost of making them. The camera (including the lens) accounts for
much of the cost, so this is where large savings could be made: The 2⁄3-inch image
sensor on our current eye tracker measures 8.6 × 6.9 mm, whereas web cameras of-
ten use 1⁄4-inch sensors, which measure 3.6 × 2.7 mm, i.e. only about a sixth of the

55

area. Similarly, our tracker uses a lens consisting of multiple glass elements, whereas
web cameras often use only a single element, made from plastic. Obviously, there is
potential for reducing the cost, but equally obviously, lower-quality components do
an inferior job. A smaller image sensor has a lower signal-to-noise ratio, and a simple
lens has lower resolution and produces more distortion than a more sophisticated one.
Higher-quality algorithms may be able to compensate for lower-quality hardware, but
only to a certain degree; the challenge is to see how cheap a system can be while still
remaining useful for certain applications at least.

Another obvious area for cutting cost is to eliminate the infrared illuminators and
use natural illumination (see e.g. [59]); again, though, this makes the image analysis
task significantly more difficult.

Tolerance towards glasses Many eye trackers that use active illumination have trouble
tracking users who wear glasses because the illumination causes reflections to appear
on the glasses. Depending on the orientation of the head, these reflections can obscure
the eye entirely. A possible solution to this problem would be to add more illuminators
to the system; then, if the system detected that the eyes were being obscured by reflec-
tions on the glasses, it could switch to a different set of illuminators, which would
change the position of the reflections, making the eyes visible again.

Another consideration with users wearing glasses is that the glasses distort the im-
age of the eye observed through them. This might make it necessary to incorporate an
optical model of the glasses into the gaze estimation algorithm, though, as far as we
have observed, accuracy still remains tolerable for moderate-strength glasses even if
their effect is not modelled.

User-specific calibration Current eye trackers must be calibrated to account for the
individual size and shape of the user’s eyes; this is usually done by asking the user
to fixate a certain number of calibration targets. Because this places a certain burden
on the user and requires the user to cooperate, it would be desirable to eliminate
the calibration phase. The difficulty, however, is that certain parameters of the eye,
particularly the foveal displacement, cannot be measured easily or unobtrusively.

Alternatively, if we know the scene the user is viewing or the task the user is ex-
ecuting, we may be able to infer – with a certain probability – where the user may
be looking. For example, if the user is interacting with a graphical user environment
using a mouse, the user will often (though not always) look at the mouse cursor when
clicking the mouse. In the following chapter, we will show how we can use this infor-
mation to perform an automatic, unobtrusive calibration.

56

4 Automatic User-Specific Calibration

As we saw in Chapter 3, eye trackers require user-specific calibration because the size
and shape of the eye varies from person to person [41]. In current eye trackers, the
calibration phase typically involves the user having to fixate one or more calibration
targets. It should be possible to measure some of the relevant parameters – such as the
corneal radius – without requiring the user to fixate known targets, but it seems that at
least one parameter cannot realistically be measured without knowing where the user
is fixating: This parameter is the offset of the fovea from the optical axis. Measuring the
position of the fovea directly would require an image of the retina obtained through
ophthalmoscopy, which involves shining a bright light into the user’s eye and imaging
it from a short distance. Such a procedure would be more burdensome than simply
requiring the user to fixate a few calibration targets.

Nevertheless, it would of course be appealing if user-specific calibration could be
eliminated entirely, particularly in situations with rapidly changing users, such as
web usability studies. Also, the less obtrusive the eye tracking process is, the smaller
the chance that users will make different eye movements than they ordinarily would
because they are aware that they are being tracked.

In this chapter, we will present an automatic calibration technique that requries no
explicit calibration phase and can be used to calibrate the system continually while it
is in use. The technique is based on the observation that in many settings, we know the
visual scene that the user is looking at, and this allows us to make educated guesses
as to where the user is looking. These guesses may be wrong much of the time, but if
we gather enough of them, we may still be able to exploit them to perform calibration.

The particular setting we will use here is that of a user interacting with a graphical
user environment (gui) using a mouse. When a mouse click occurs, the user will often
(though not always) be looking at the mouse cursor (see Section 4.2).

Because the click location coincides with the gaze position only a certain percentage
of the time, we cannot use click locations as input to conventional calibration algo-
rithms, which assume that the gaze target is fixated accurately every time. Instead, we
use a probabilistic approach that models the distribution of gaze positions relative to
the click location as a mixture of two distributions: The first is a Gaussian with low
variance and represents the case where the user was in fact looking at the click loca-
tion. The second is a uniform distribution across the whole screen, representing the

57

case where the user was looking elsewhere. We then use Expectation Maximization
(EM) to estimate the maximum likelihood calibration (see Section 4.3).

We performed experiments in a web browsing scenario (see Section 4.4). The average
gaze error without calibration was 181 pixels (or 5.2 degrees). Using a conventional
calibration with a nine-point calibration pattern, we obtained an average error of 42.0
pixels (or 1.2 degrees); with the automatic calibration, the average error was 49.3 pixels
(or 1.4 degrees), 17.4% more than for the conventional calibration. The calibration was
based on around 150–220 clicks per user, corresponding to around 15 minutes of web
browsing.

4.1 State of the Art

The idea of automatic calibration does not appear to have been investigated much
in the existing literature, despite its obvious appeal. The only relevant publication
we were able to find concerns the EyeCatcher system [60], a gaze-controlled human-
computer interface that uses so-called “EyeCons” as gaze targets, square buttons show-
ing an image of an eye. When the user gazes at an EyeCon, the eye on the button starts
to close; if the user maintains fixation until the eye is fully closed, the corresponding
user interface item is selected. To make the system robust against miscalibration, an
EyeCon is activated even if the gaze falls slightly outside its border. Because of the
visually salient nature of the EyeCon as well as its semantically dominant role in the
user interface, the system assumes that whenever an EyeCon is selected, the user was
looking right at the graphical depiction of the eye; this information is then used for
local recalibration.

Several commercially available eye trackers name “automatic calibration” among
their product features; see for example [128]. However, this seems to mean simply that
the tracker switches from one calibration point to the next automatically.

Several patents exist describing “automatic calibration” or “self-calibration”. One
approach [108] is based on histograms of gaze positions; from the figures given in
the patent, it appears that such histograms usually exhibit a peak at the eye’s rest
position and fall off towards the sides. A new user may be calibrated by comparing
their histogram with that of a previously calibrated reference user and adjusting the
calibration until the histograms match.

Another patent [85] claims an “automatic recalibration”. However, the approach
relies on “attractors with constant or variable [...] size” that may be “stationary or [...]
moving” and “attract the attention of the curious observer automatically”. Calibration
then proceeds on the assumption that the attractors are sufficiently salient to attract
the user’s gaze. In effect, then, this approach is similar to a traditional calibration

58

∆t = 0 ms ∆t = 300 ms

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

distance (pixels)

cl
ic

ks
 p

er
 b

in

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

distance (pixels)

cl
ic

ks
 p

er
 b

in

Figure 4.1: Histogram of the distance between click location and gaze position. Left:
No time offset was applied, i.e. gaze position was measured at the time of the click.
Right: Gaze position was measured ∆t = 300 ms before the click occurred.

procedure as described above, only with more refined gaze targets. The procedure
requires a specific visual stimulus and is thus not transparent to the user.

4.2 Motivation

To assess how often and with what degree of accuracy the user fixates the mouse cur-
sor when clicking, we recorded about 25 minutes of eye movement, mouse movement
and mouse button presses on a subject who was freely browsing the web, without any
specific task. We used an smi iView X Hi-Speed 1250 eye tracker [121], a fixed-head
system with 1250 Hz sampling rate; the resolution of the screen was 1280 × 960 pixels.
For this recording, the eye tracker was calibrated.

We extracted clicks from the recorded mouse data; for each click, we determined
the corresponding gaze position. Since experienced users may already be shifting their
gaze away from the click target by the time the click occurs, we used the position of
gaze a certain time offset ∆t before the click, with the goal of determining the value
for ∆t that would maximize the agreement between click location and gaze position.

Figure 4.1 shows histograms of the distance between click location and gaze position.
The left plot is for an offset of ∆t = 0, i.e. gaze position was measured at the time that
the click occurred. The right plot is for ∆t = 300 ms, i.e. gaze position was measured
300 milliseconds before the click occurred. It is apparent that the latter plot is more
“peaked”, i.e. that there was better agreement between click and gaze when gaze was
measured 300 milliseconds before the click.

To quantify this effect, we computed the entropy of the distance between click and
gaze for various values of ∆t. Figure 4.2 shows a plot of the entropy as a function of

59

0 100 200 300 400 500 600 700 800 900 1000
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

time offset (ms)

en
tr

op
y

Figure 4.2: Entropy of the distance between click location and gaze position as a func-
tion of ∆t; gaze is measured at a time offset ∆t before the click.

∆t, with a minimum at ∆t ≈ 360 ms, indicating that this ∆t gave the best agreement
between click and gaze. (To estimate the entropy, we used an mn-spacing estimator [9,
Equation (16)] with mn = b

√
nc.)

Figure 4.3 shows a scatter plot of gaze positions relative to the click location, which
is at the origin of the plot; the plot uses the optimal offset ∆t = 360 ms determined
above. There is a prominent cluster of points around the origin, which corresponds to
cases when the user looked at the mouse cursor when clicking. Note that the cluster
appears to be somewhat wider than it is tall; one explanation for this could be that in
the web browsing scenario, most click targets (such as web links and page tabs) are
also wider than tall.

4.3 Method

Our approach to automatic calibration is as follows: We start out with the eye tracker
set to a “standard” calibration. In our case, this is simply the calibration obtained for
an arbitrarily chosen test user; a more sophisticated approach might be to choose a
calibration that yields the smallest average error over a diverse group of test subjects.

We seek a function φ that translates the uncalibrated gaze position ĝ (measured
using the “standard” calibration) into the true gaze position g, i.e. φ(ĝ) = g. The
function φ can be chosen to take different forms, such as a bilinear or biquadratic
interpolation function.

60

−1000 −500 0 500
−600

−400

−200

0

200

400

600

Figure 4.3: Scatter plot of (true) gaze positions relative to click location (which is at the
origin of the plot). Gaze was measured at a time offset of ∆t = 360 ms before the click.
Coordinates are in pixels.

As the user begins interacting with the system, we start collecting mouse click loca-
tions while simultaneously recording gaze data. As more and more click positions are
collected, we compute a continually refined calibration, using a procedure that will
be described below. In principle, we can continue refining the calibration indefinitely.
However, if we wish to limit the amount of computation required, we can choose to
stop refining the calibration when it has stabilized, i.e. when the change in the calibra-
tion falls below a certain threshold.

While the accuracy of the calibration is low during the initial period of interaction,
we can recalibrate the whole of the recorded gaze data using the more accurate calibra-
tion available at the end of the session. Thus, if the gaze data is not needed for online,
interactive purposes but recorded for later evaluation (as is typical for “diagnostic”
applications such as web usability studies), we achieve high gaze accuracy during
the whole session. If the calibration for the specific eye tracker is expected to “drift”
over time, we can choose to use only the last n clicks for calibration, thus continually
adjusting the calibration.

Assume, then, that we have acquired n click locations C = (c1, . . . , cn) along with a
corresponding gaze recording. Automatic calibration then proceeds as follows.

The first step is to determine the time offset ∆t that gives the best agreement between
click and gaze, as explained in Section 4.2. Using this time offset, we extract n gaze
positions Ĝ = (ĝ1, . . . , ĝn) from the gaze recording that correspond to the n click
locations.

61

We now seek to find the transformation φ between measured and true gaze positions.
To do this, we will define a suitable likelihood function

P(Ĝ|C, φ), (4.1)

i.e. the likelihood that (uncalibrated) gaze positions Ĝ will be measured given click
locations C and the transformation φ. We then choose the transformation φ that maxi-
mizes this likelihood function.

As a basis for defining the likelihood function, we use the conditional probability
P(g|c), i.e. the conditional probability that the true gaze position is g, given that a click
occurred at position c. Figure 4.3 shows a scatter plot of true gaze positions relative to
the click position. Given our observations in Section 4.2, it seems reasonable to model
P(g|c) as a mixture of two distributions, conditioned by a latent variable z, where z = 1
corresponds to the case that the user looked at the click target, and z = 0 corresponds
to the case that the user was looking elsewhere:

P(g|c) = P(z = 1)P(g|c, z = 1) + P(z = 0)P(g|c, z = 0). (4.2)

We model the first case (user was looking at the click target, z = 1) as a Gaussian
distribution, i.e. P(g|c, z = 1) = N (g − c|µ, Σ), with µ = 0; the covariance matrix Σ

will be estimated from the data. For the case where the user was not looking at the
click target (z = 0), we assume a uniform distribution across the screen, i.e. P(g|c, z =
0) = 1

w·h , where w and h are the width and height of the screen.
Using this model, we obtain the following expression for the likelihood:

P(Ĝ|C, φ) =
n

∏
i=1

P(ĝi|ci, φ)

=
n

∏
i=1

P(gi = φ(ĝi)|ci)

=
n

∏
i=1

(
P(z = 1)N (φ(ĝi) − ci|µ, Σ) + P(z = 0)

1
w · h

)
.

(4.3)

To find the transformation φ and covariance matrix Σ that maximize the likelihood
function, we use the Expectation Maximization (EM) algorithm (see for example Chap-
ter 9 in [12]). Expectation Maximization is commonly used to find the maximum of
likelihood functions, such as this one, that depend on latent variables (in this case, z).
In other words, the likelihood function P(X|θ) (where X are the observed variables
and θ are the model parameters to be estimated) is obtained by marginalizing a distri-
bution P(X|θ, Z) over the latent variables Z. The Expectation Maximization algorithm
alternates between two steps: The E (Expectation) step estimates the posterior distri-
bution P(Z|X, θcur) of the latent variables given the observed data X and a current

62

estimate θcur for the parameters; the M (Maximization) step finds new parameter val-
ues θnew that maximize the expected log likelihood given the distribution of the latent
variables estimated in the E step.

In our case, the parameters θ comprise the parameters of the calibration function
as well as the covariance matrix Σ. We assume that the calibration function is pa-
rameterized by parameters α, and we will therefore in the following denote it by φα

to emphasize that it depends on α. The parameters θ for which we wish to find a
maximum-likelihood estimate are then the calibration parameters α as well as the co-
variance matrix Σ.

In the M step of the EM algorithm, we need to find the new parameter values
θnew that maximize the likelihood for a given distribution P(Z|X, θcur) of the latent
variables; we find θnew by setting the derivative of the log likelihood to zero. We will
do this for α and Σ individually.

Let us begin with α. The derivative of the log likelihood with respect to α is

∂

∂α
ln P(Ĝ|C, φα) =

−
n

∑
i=1

P(gi = φα(ĝi)|ci, z = 1)P(z = 1)
P(gi = φα(ĝi)|ci)︸ ︷︷ ︸

γi

(φα(ĝi) − ci)
T

Σ−1
(

∂

∂α
φα(ĝi)

)
, (4.4)

where the γi are the so-called responsibilities.
A common special case is that φα is linear in α, i.e. φα(ĝi) = J(ĝi)α, where J(ĝi) =

∂
∂α φα(ĝi) is the Jacobian, which depends only on ĝi. In this case, Equation 4.4 becomes

∂

∂α
ln P(Ĝ|C, φα) = −

n

∑
i=1

γi (J(ĝi)α − ci)
T

Σ−1 J(ĝi). (4.5)

To find the α that maximizes the log likelihood, we set the above expression to zero,
obtaining a linear system of equations for the unknown α:

αT
n

∑
i=1

γi J(ĝi)
TΣ−1 J(ĝi) =

n

∑
i=1

γi cT
i Σ−1 J(ĝi). (4.6)

We solve this system to find the updated values for the calibration parameters. The
system matrix is nonsingular if at least one of the J(ĝi) has full rank. In this case, since
Σ−1 is positive definite, at least one of the J(ĝi)

TΣ−1 J(ĝi) is also positive definite, and
all of them are positive semidefinite. Hence, because γi > 0 for all i, the system matrix
∑i γi J(ĝi)

TΣ−1 J(ĝi) is also positive definite.
As a concrete example, let us choose φα as follows:

φα(ĝ) =

(
α1 ĝ1 + α2 ĝ2 + α3 ĝ1 ĝ2 + α4

α5 ĝ1 + α6 ĝ2 + α7 ĝ1 ĝ2 + α8

)
(4.7)

63

(where ĝ = (ĝ1, ĝ2)T). The corresponding Jacobian is

J(ĝ) =

(
ĝ1 ĝ2 ĝ1 ĝ2 1 0 0 0 0
0 0 0 0 ĝ1 ĝ2 ĝ1 ĝ2 1

)
, (4.8)

and it is obvious that J(ĝ) always has full rank, independent of ĝ.
We turn now to the covariance matrix Σ, for which we use the usual update rule as

derived in [12, Chapter 9]:

Σnew =
1

∑n
i=1 γi

n

∑
i=1

γi(φ(ĝi) − ci) (φ(ĝi) − ci)T. (4.9)

The rest of the EM algorithm proceeds in the standard way.

4.4 Results

We evaluated the automatic calibration algorithm as follows. Four test subjects with
normal or corrected-to-normal vision were asked to perform a fifteen-minute web
browsing task in the style of a web usability study. During this task, we recorded
the subjects’ eye movements using an smi iView X red eye tracker [122], a remote
eye tracker with a sampling rate of 50 Hz. The eye tracker was set to a “standard”
calibration that had been obtained with a user who otherwise did not participate in
the experiment. In addition to gaze data, we also recorded mouse movements and
mouse button presses. The subjects were seated with their head around 60 cm from a
display with a resolution of 1280 × 1024 pixels and a visible area of 38 × 30 cm. One
degree of visual angle thus corresponded to around 35 pixels.

The subjects were told that the goal of the experiment was to analyze the eye move-
ments that people make when interacting with web sites. We purposely did not tell
subjects that we were recording mouse movements, nor did we tell them that we were
interested in the relationship between eye and mouse movements; this was to avoid de-
mand characteristics, an experimental effect where participants modify their behaviour
according to the perceived purpose of the experiment [66, 104]. In this case, we were
concerned that participants might fixate the mouse cursor more often than they nor-
mally would if they knew that the experiment was concerned with the relationship
between eye and mouse movements.

After the web browsing task was completed, we asked subjects to fixate a nine-point
calibration pattern that would later be used to perform a post-hoc “conventional” cali-
bration of the eye tracker. We then asked subjects to fixate a second, 25-point grid; this
was used to compute the calibration error of the “automatic” and the “conventional”
calibration as the root mean square error over all fixation targets. Both the automatic
and the conventional calibration used the calibration function from Equation 4.7.

64

20 40 60 80 100 120 140 160 180 200 220
0

50

100

150

200

number of clicks

ca
lib

ra
tio

n
er

ro
r

(p
ix

el
s)

Subject 1

20 40 60 80 100 120 140 160
0

50

100

150

200

number of clicks

ca
lib

ra
tio

n
er

ro
r

(p
ix

el
s)

Subject 2

20 40 60 80 100 120 140
0

20
40
60
80

100
120
140
160
180

number of clicks

ca
lib

ra
tio

n
er

ro
r

(p
ix

el
s)

Subject 3

20 40 60 80 100 120 140 160
0

10
20
30
40
50
60
70
80
90

number of clicks

ca
lib

ra
tio

n
er

ro
r

(p
ix

el
s)

Subject 4

Figure 4.4: Calibration error in pixels as a function of the number of mouse clicks
available for the calibration. The continuous line plots the average calibration error,
averaged over 20 runs for a given number of clicks; error bars show the minimum
and maximum error over all runs. The dashed line shows the calibration error of a
conventional calibration, the dotted line shows the error obtained when no calibration
at all is performed.

65

calibration
clicks none conventional automatic

Subject 1 226 220.5 px 51.8 px 71.4 px (+37.8%)
Subject 2 168 205.5 px 42.6 px 55.4 px (+30.1%)
Subject 3 152 166.8 px 54.9 px 49.0 px (-10.7%)
Subject 4 179 87.0 px 18.7 px 21.4 px (+14.6%)
Average 182 197.6 px 42.0 px 49.3 px (+17.4%)

Table 4.1: Calibration error in pixels for uncalibrated gaze data as well as conventional
and automatic calibration. The relative difference between the automatic and conven-
tional calibration is given in the last column. For each subject, the complete set of
recorded clicks was used; the number of clicks is given in the table.

Figure 4.4 shows the results. For each user, we plot the calibration error of the auto-
matic calibration as a function of the number of clicks available for the calibration. For
a given number of clicks, we selected a random subset of that size from all the clicks,
then performed an automatic calibration using those clicks. Because the accuracy of
the calibration can vary depending on whether a “good” or a “bad” subset of clicks
happens to be chosen, we performed 20 runs for each number of clicks. The plots show
the average calibration error over all runs using a continuous line, with error bars for
the minimum and maximum calibration error. Additionally, we plot the calibration
error for the conventional calibration and with no calibration at all (using only the
standard calibration that the eye tracker was set to).

It is evident that, for all subjects, the automatic calibration reduced the error consid-
erably compared to the uncalibrated case; in one case (Subject 3), the accuracy of the
automatic calibration was comparable to that of the conventional calibration. While
acceptable calibrations can sometimes be obtained with around 50 clicks, around 100

clicks are necessary to reliably obtain a good calibration. For the tasks in our exper-
iments, 100 clicks correspond to between 5.3 and 10.9 minutes of web browsing, de-
pending on the subject.

Table 4.1 gives the numerical values for the calibration error achieved per subject
when all recorded clicks were used. The relative difference between the conventional
and the automatic calibration is also given. This varies between -10.7% for Subject
3 (where the automatic calibration was actually slightly better than the conventional
calibration) to +37.8% for Subject 1.

The average error across all subjects was 42.0 pixels (1.2 degrees) for the conven-
tional calibration and 49.3 pixels (1.4 degrees), or 17.4% more, for the automatic cali-
bration.

66

4.5 Discussion and Outlook

We have shown that in a human-computer interaction setting where a mouse or other
pointing device is used, an eye tracker can be calibrated using only the information of
where the user clicked the mouse; 100 mouse clicks are sufficient to reliably obtain a
good calibration. The calibration error for the automatic calibration is typically slightly
higher than for a conventional calibration; for one subject, however, the automatic
calibration was actually more accurate than the conventional calibration.

The calibration becomes progressively better over time the more data is recorded;
for non-interactive applications where the gaze data is stored and analyzed offline,
the whole of the recorded data can be recalibrated using the calibration computed at
the end of the session.

An obvious advantage of the approach is that it eliminates the tedious calibration
phase – the user can just “sit down and go”. This is particularly valuable in settings
with rapidly changing users such as web usability studies. Also, the less obtrusive
the eye tracking is, the smaller the chance that users’ awareness of the fact that they
are being eye tracked will cause them to make different eye movements than they
normally would. Finally, in public installations without supervision, it can be hard to
get users to perform a calibration procedure properly [60, Section 2.3].

The current technique only works in settings where a mouse is used for interaction.
If we wish to drop this requirement, we must look for other clues to tell us where
the user might be looking. The most general but probably most challenging scenario
would be to calibrate the eye tracker based solely on the knowledge of the scene the
user is looking at. Algorithms that compute visual saliency (see e.g. [71, 76, 130]) could
be used to quantify the probability that the user will look at certain parts of the scene.
This probability distribution could then be used in a maximum-likelihood approach
similar to that of Section 4.3 to estimate the calibration.

The success of such a scheme would depend on the accuracy with with the saliency
algorithm is able to predict where gaze is likely to fall. Apart from the shortcomings
of any individual saliency algorithm, we note that top-down, task-driven influences
place a principal limit on how accurately gaze can be predicted based on knowledge
of the visual stimulus alone. Nevertheless, we believe that such a calibration scheme
should still be feasible in many settings, particularly when the visual stimulus contains
strong bottom-up cues for eye movements, such as in video games. One may also
introduce visual elements into the scene that are designed to attract the user’s gaze
with high probability (see for example [85]), but such a manipulation of the scene
may be undesirable, and it is debatable whether such an approach can still be called
“automatic” calibration – after all, the traditional calibration stimulus of a lone fixation
target on a uniform background is itself a fairly strong gaze cue.

67

68

Part II

Human Activity Tracking

5 The Time-of-Flight (tof) Camera

The time-of-flight (tof) camera is a combined range and image sensor that delivers
both a range and an intensity measurement at every pixel in the sensor array. It works
by emitting modulated light (usually infrared light) and measuring the time taken by
the light to reach the object and return to the camera.

There are two main variants in which the modulation of the light and the range
measurement can be performed. The first variant uses pulsed light combined with
an optical or electronic shutter on the sensor [69, 138]. The closer the object is to the
camera, the more light can return to the camera before the shutter closes. To account
for different object reflectivities, a second measurement is made without the shutter to
determine how much light the object would normally return to the camera.

The second variant, which we will describe in more detail here, uses light modu-
lated by a periodic signal [79, 119]. The sensor, which is synchronized with the light
source, integrates over different subintervals of the modulation period; from these
measurements, the phase shift between the transmitted and received light (which is
proportional to the distance) can be reconstructed.

Both of these variants can be viewed as specific embodiments of a more general prin-
ciple: That of demodulating a periodic signal by correlating it with another periodic
signal.

In both cases, the sensor has a certain non-ambiguity range beyond which the range
can no longer be reconstructed unambiguously. This is because the light emitted by
the camera is modulated by a periodic signal. When the time taken by the light to
reach the object and return to the camera becomes greater than one period of the mod-
ulation signal, the measurement becomes ambiguous. A typical modulation frequency
for a tof camera is 20 MHz; this corresponds to a non-ambiguity range of 7.5 m, i.e.
distances up to a maximum of 7.5 m can be measured unambiguously.

In this chapter, we will summarize the properties and working principle of the tof

camera. For an in-depth treatment of the subject, see the work of Lange [79].

5.1 Introduction

Figure 5.1 shows a few examples of the tof cameras currently in existence. The mesa

sr4000 [90] (Figure 5.1a) is a typical representative of the state of the art. It consists of
an array of 24 near-infrared leds placed around the camera lens, which is fitted with

71

a bandpass filter matched to the wavelength of the leds. Figure 5.2 shows the camera
in operation; the image was taken with a camera that is sensitive in the near-infrared
spectrum, and the leds are clearly visible around lens. The leds emit light with a
wavelength of 850 nm, modulated with a frequency of 30 MHz; this gives the camera a
non-ambiguity range of 5 metres. The total optical power emitted by the leds is around
1 W or below, depending on the integration time. The sensor, which is manufactured
in a hybrid ccd/cmos process, has a resolution of 176 × 144 pixels. Depending on
the integration time, the camera runs at framerates of up to 54 frames per second. The
accuracy of the range measurement depends on the amount of light received from the
object, which in turn depends on the distance of the object, its reflectivity, and other
factors; in favourable conditions, the root-mean-square (rms) noise level in the range
image is around 5 mm, and the absolute accuracy is around 1 cm.

Several other manufacturers offer tof cameras with slightly different specifications;
we will not give a complete overview but cite a few notable examples. The pmdtec
CamCube [109] (Figure 5.1b) has a resolution of 204 × 204 pixels; to optimize the
measurement setup for different applications, the illumination units can be detached
from the camera, and the lens can be exchanged. The Canesta dp200 [25] (Figure 5.1c)
has a resolution of 64 × 64 pixels and comes in three variants with different fields of
view (30, 55 and 80 degrees). The 3dv Systems ZCam [1] (Figure 5.1d) contains both a
tof sensor and an rgb colour sensor in a single housing, though with separate optics.
It is aimed at the gaming market and is expected to sell at a consumer price point. The
ifm electronic efector pmd [70] (Figure 5.1e) is a single-pixel tof sensor for distance
measurement in industrial applications; the company also offers the efector pmd3d, a
64 × 48 pixel tof camera. A prototype camera (Figure 5.1f) developed by csem within
the eu project artts [3] is distinguished by its small size (40 × 40 × 35 mm) and the
fact that it is powered entirely via a usb cable.

5.2 Comparison With Other Range Imaging Methods

Besides tof cameras, there are a host of other range imaging technologies, with differ-
ent characteristics – see [73, Volume 1, Chapter 18] and [79, Section 2.1] for an overview.
Broadly, these technologies can be subdivided into the following categories:

Triangulation

The methods in this category are based on the principle that the position of a point can
be determined by measuring angles towards that point at the ends of a fixed baseline.
The baseline and the point to be measured form a triangle, hence the name. In all
triangulation-based techniques, the accuracy of the distance measurement increases

72

(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Examples of tof cameras: (a) mesa sr4000 (image courtesy of Ingrid
Brænne), (b) pmdtec CamCube (image courtesy of pmd Technologies, Siegen, Ger-
many), (c) Canesta dp200 development platform (image courtesy of Canesta, Inc.), (d)
3dv Systems ZCam (image courtesy of Ingrid Brænne), (e) ifm electronic efector pmd
(single-pixel tof sensor, image courtesy of ifm electronic GmbH, Essen, Germany), (f)
prototype camera developed by csem within the artts project (image courtesy of csem

sa, Neuchâtel, Switzerland).

73

Figure 5.2: mesa sr4000 in operation. The image was taken with a camera that is
sensitive in the near-infrared spectrum, making the illuminated leds clearly visible.

with the size of the baseline; this can be a disadvantage if it is important that the
system should be small.

The basic principle of triangulation can be implemented in a variety of ways:

Stereoscopic methods use two or more cameras; the distance of a point is computed
from the difference in the positions in which it appears in the camera images. Stere-
oscopy works best on textured objects and cannot be used on uniformly coloured
surfaces.

Triangulating laser scanners sweep a collimated laser beam or a lightsheet across the
scene; on the object to be measured, the beam or lightsheet appears as a dot or stripe,
respectively. A camera is used to observe the position of the dot or the shape of the
stripe, from which the shape of the object can be reconstructed. This technique allows
accurate range measurements, but because the laser must be swept across the scene,
the temporal resolution is typically lower than with many other systems. Another
disadvantage is that the scanner requires moving parts.

Structured light techniques follow a similar approach. They typically use a projector to
project a light pattern, such as a series of parallel stripes, onto the scene, which is ob-
served using a camera. The shape of the object to be measured causes characteristic dis-
tortions in the appearance of the pattern, from which the shape can be reconstructed.
Like triangulating laser scanners, structured light measurements can achieve high ac-

74

curacy, but several different patterns are typically used per measurement, limiting the
temporal resolution.

Shape from focus is a technique for reconstructing the shape of an object from the
variations in its appearance when the focus setting of the lens is changed. (The baseline
of the triangulation in this case is the width of the lens aperture.) Because the technique
is based on the different amounts of blur caused by defocus, it does not work on
uniformly coloured surfaces.

Photometric techniques

Photometric techniques exploit the fact that the intensity with which a surface point
appears in the image depends on the orientation of the surface normal towards the
light source, the distance between the surface and the light source, and the object’s re-
flectivity. The shape of the object can thus be reconstructed from its appearance in the
image. Photometric stereo uses several images of the same scene taken under different
illumination conditions. It can handle objects with non-uniform reflectivity, but shad-
ows and highlights can cause problems. Shape from shading is a variant of photometric
stereo that uses only a single image. This obviously requires stronger constraints on
the properties of the object; usually, the object is required to have uniform reflectivity.

Interferometry

Interferometry works by illuminating the object with coherent monochromatic light and
superposing the reflected light with a reference wavefront from the same light source.
Depending on the difference in path lengths, constructive or destructive interference
will occur, and this can be used to measure the distance of the object. Interferometry al-
lows very accurate measurements, in the range of fractions of a wavelength, but in the
classical setting, absolute range measurements are not possible, and the non-ambiguity
range is only half a wavelength. Multiple-wavelength interferometry overcomes this limi-
tation by using light of two different but very similar wavelengths. This creates a beat
signal with a much longer wavelength, allowing unambiguous range measurements
up to the 10 metre range.

Time-of-flight

Like time-of-flight cameras, time-of-flight laser scanners also measure the time taken
by light to travel to the object and back. However, tof laser scanners can measure
the distance of only one point at a time; to measure the entire scene, the light beam
has to be swept across it, which increases the mechanical complexity and reduces the
temporal resolution of the system.

75

intensity

t

emitted signal f (t) received signal s(t)

A

B
I0

φ

Figure 5.3: Working principle of time-of-flight cameras based on the phase-difference
method. φ: Phase difference between the emitted and received signal. A: Amplitude
of received signal. B: Offset (or dc component) of received signal. I0: Background
illumination component.

5.3 Working Principle

The majority of tof cameras currently on the market use light whose intensity is
modulated by a periodic signal. The time taken by the light to reach the object and
return to the camera leads to a phase difference between the emitted and received
light; by measuring this phase difference, the distance can be determined.

Figure 5.3 illustrates this working principle. The received light is delayed by a phase
difference φ relative to the emitted light. Also, because each pixel receives only a
small fraction of the light emitted by the camera, the amplitude A of the received
signal is smaller than that of the emitted signal; the precise value of A depends on
various factors including the object’s reflectivity and its distance from the camera.
Finally, because background light is usually present in the scene, the received signal
contains a certain constant component I0; the total dc component of the received signal
is B = I0 + A.

As shown in [79], these parameters of the received signal s(t) can be reconstructed
by sampling it at four points in the modulation period, yielding samples A0, . . . , A3,
with Ai = s(i

4 Tmod), where Tmod is the modulation period. Based on these samples,

76

we can reconstruct the parameters of the received signal as follows:

Phase φ = atan
(

A0 − A2

A1 − A3

)
, (5.1)

Amplitude A =
√

(A0 − A2)2 + (A1 − A3)2

2
, (5.2)

Offset B =
A0 + A1 + A2 + A3

4
. (5.3)

For a signal with a modulation frequency of fmod, a phase difference of φ corresponds
to a time delay of φ

2π fmod
and thus a distance travelled by the light of φ c

2π fmod
(where c is

the speed of light). Because the light has to travel to the object and back, the distance
of the object from the camera is

R =
φ c

4π fmod
. (5.4)

In practice, of course, it is not possible to sample the received signal at a single point
in time. Rather, one must integrate the signal over a certain time window ∆t; physically,
this corresponds to collecting the photoelectrons generated during this time window.
A natural way of doing this is to provide four “charge buckets” (i.e. potential wells)
per pixel for the four measurements A0, . . . , A3; the pixel switches cyclically between
these charge buckets and is synchronized to the illumination source so that one cycle
through the four buckets corresponds to one modulation interval. The length of the
integration window is thus ∆t = Tmod

4 . This type of pixel (known as a 4-tap pixel) is
a straightforward implementation of the measurement principle. However, the four
charge buckets occupy a relatively large part of the pixel area, which reduces the fill
factor, i.e. the fraction of the pixel area that is sensitive to light.

An alternative is to use only two charge buckets, each with an integration time of
∆t = Tmod

2 . The measurement then has to be done in two phases: In the first phase, we
measure A0 and A2, and in the second phase, we measure A1 and A3. This type of
pixel is known as a 2-tap pixel.

The 2-tap pixel has a higher fill factor, but its longer integration window also brings
a disadvantage: Because we are measuring the average amplitude of the signal over
the whole integration window, any change that happens in the signal during the inte-
gration window is effectively lost. The longer the integration window, the more pro-
nounced this effect is. Mathematically, we can model the effect of integrating over a
time period ∆t by convolving the signal with a rect function h(t) = 1

∆t rect(t
∆t). The

corresponding transfer function H(f) = sinc(π f ∆t) (with sinc(x) = sin(x)
x) has a low-

pass characteristic. At the modulation frequency fmod = 1
Tmod

, we obtain H(fmod) =
sinc(π ∆t

Tmod
). For ∆t < Tmod, this transfer function leaves the phase of the signal un-

changed, so it does not interfere with the phase measurement, but it attenuates the

77

signal by a certain factor, and this attenuation increases with the length of the integra-
tion window ∆t. The effect of this is that the measured amplitude A is smaller than the
actual amplitude of the signal Asig that reaches the pixel. The ratio between the mea-
sured amplitude and the actual amplitude is called the demodulation contrast, defined
as

cdemod =
A

Asig
. (5.5)

Integrating over a time window of ∆t leads to a demodulation contrast of cdemod =
sinc(π ∆t

Tmod
), as derived above. (In the physical implementation, other effects reduce

the demodulation contrast further, but we will not deal with these here.) For a 2-tap
pixel, with ∆t = Tmod

2 , we obtain a demodulation contrast of cdemod = 2
π ≈ 0.64; for a

4-tap pixel, with ∆t = Tmod
4 , we obtain cdemod =

√
8

π ≈ 0.90. From this point of view,
the 4-tap pixel appears to be superior, but the higer fill factor of the 2-tap pixel more
than makes up for the difference in demodulation contrast, and so the majority of tof

cameras on the market use 2-tap pixels.
An actual tof camera will only be able to implement an approximation to the mea-

surement principle presented here: The signal emitted by the active illumination will
not be exactly sinusoidal, the timing of the integration intervals will not be perfect, and
so on. These deviations from the idealized measurement principle will cause a system-
atic error; due to manufacturing variations, this error is different for every pixel. A
wide variety of calibration schemes that can eliminate most types of systematic error
have been devised. We will not describe these calibration schemes in detail here but
refer simply to the survey given in [77].

5.4 Accuracy

How accurate the tof range measurement is depends on the signal-to-noise ratio of
the measurements A0, . . . , A3. An important factor that influences the signal-to-noise
ratio is the amount of light: The more light, the better the signal-to-noise ratio. One
way of improving the accuracy is thus to increase the strength of the illumination, but
this is not always possible, for reasons of both power consumption and eye safety.

For this reason, we will examine the factors that govern measurement accuracy given
a certain amount of available light. There are a number of effects that contribute to the
noise present in the measurements A0, . . . , A3, but while most of these can, at least in
theory, be reduced by improving the technology, one noise source, photon shot noise,
is a principal physical limitation. Photon shot noise occurs because a light source does
not emit a steady stream of photons at regular intervals; rather, photons are emit-
ted probabilistically at irregular intervals according to a Poisson distribution. Because
the standard deviation of a Poisson-distributed random variable is the square root of

78

the mean, the standard deviations of the measurements A0, . . . , A3 are
√

A0, . . . ,
√

A3.
From this, one can show [79] that the standard deviation of the phase measurement is

∆φ =
√

B
A
√

2
(5.6)

and, hence, the standard deviation of the range measurement is

∆R =
c

4π fmod
·

√
B

cdemod Asig
√

2
. (5.7)

From this, we see that several factors influence measurement accuracy. First, increas-
ing the amplitude of the modulated light or increasing the demodulation contrast
decreases the measurement error. Second, increasing the amount of background light
(which in turn increases B, the mean amount of light reaching the pixel) increases the
measurement error. Finally, increasing the modulation frequency decreases the mea-
surement error.

Equation 5.7 is a principal physical limitation on the measurement accuracy; the tof

cameras currently on the market are already close to reaching this physical limit [24].

5.5 Limitations

Like any measurement technology, tof cameras have a number of idiosyncrasies and
limitations that need to be kept in mind when using them in applications.

Multiple reflections The tof measurement principle is based on the assumption that
all of the modulated light arriving at a pixel comes from the same object and that it
travelled directly from the camera to the object and back. There are two basic ways in
which this assumption can be violated: First, the object being imaged may be illumi-
nated not only directly but also indirectly through light from the active illumination
that is reflected by other objects in the scene (which need not even be in the field of
view of the camera); this indirect illumination has taken a longer path, leading to a
longer time of flight and, hence, an incorrect range measurement. Second, unwanted
reflections inside the lens and camera body can cause stray light from other objects to
reach a pixel in addition to the light that was intended for that pixel; again, this causes
an error in the measured distance. While the latter effect (multiple reflections inside
the camera) can be minimized using suitable nonreflective coatings, the phenomenon
of multiple reflections outside the camera is a principal problem for current time-of-
flight cameras. If possible, the scene to be measured should be arranged in a way that
minimizes indirect reflections.

79

Flying pixels Pixels that straddle the border between two objects at different ranges
will receive light from both objects. This results in a measured range that lies some-
where between the ranges of the two objects, depending on the relative amount of light
contributed by them. When the objects move, this relative contribution changes, caus-
ing the pixel to appear to fly towards or away from the camera; this effect is therefore
referred to as the flying pixel effect.

Motion artefacts In a 1-tap or 2-tap pixel, which are used in the majority of tof cam-
eras currently available, the four measurements A0, . . . , A3 (see Section 5.3) are not
obtained simultaneously; a 2-tap pixel, for example, may first measure A0 and A2 and
then A1 and A3. If the object moves between these measurements, they will not be
consistent, and the result will be an error in the range measurement. Note that the
effect of this is not just an averaging of the range value over time; the range value that
is computed can be greater than the largest range value or less than the smallest range
value seen by the pixel in the given time interval.

Interference between multiple cameras If multiple tof cameras are used in close proxim-
ity, the modulated light signals emitted by them will interfere with each other. One
way of dealing with this is to operate the cameras at different modulation frequen-
cies. The demodulation technique used for the phase measurement responds only to
a narrow band of frequencies around the modulation frequency, and the light emitted
by the other cameras at different modulation frequencies will only show up as an in-
creased background illumination component. An alternative approach to using several
cameras in the same environment is to modulate the light with a pseudo-noise signal
that is different for each camera [63].

80

6 Image Improvement Using the Shading
Constraint

6.1 Introduction

Whereas the strength of the tof camera is that it delivers both a range map and an
intensity image with high temporal resolution in a compact solid-state device, the
signal-to-noise ratio of the range map is not as good as with some other ranging
technologies. In this chapter, we will explore a technique for increasing this signal-to-
noise ratio, based on the insight that the range and intensity measurements are not
independent but are linked by the shading constraint: Assuming that the reflectance
properties of the object surface as well as the positions and illumination properties
of the light sources are known, we can deduce the intensity image that should be
observed for a given range map. In practice, a general reflectance model (such as
Lambertian reflectance) will provide an acceptable approximation to the properties of
a wide range of objects.

In theory, the shading constraint can be used to reconstruct the range map from an
intensity image alone; this idea has been exploited in a wide range of shape from shading
(SfS) algorithms (see [38, 143] for surveys). A principal limitation of these algorithms,
however, is that they cannot determine whether intensity changes are caused by the
object’s shape or by changes in the object’s reflectivity (or albedo). Because of this, the
object is usually assumed to have constant albedo; this limits the applicability of SfS
methods.

The range map measured by the tof camera places a strong additional constraint on
the shape of the object, allowing ambiguities that may exist in the pure SfS setting [39]
to be resolved and enabling the albedo of the surface to be estimated, both globally for
an entire object as well as locally for objects whose albedo varies across the surface.

Besides the shading constraint, there are also other ways of fusing range and inten-
sity data. A number of authors exploit the fact that an edge in the intensity data often
co-occurs with an edge in the range data. Nadabar and Jain [98] use a Markov ran-
dom field (mrf) to identify different types of edges. Diebel and Thrun [33] use edge

Parts of this chapter are joint work with others. I developed the concept of enforcing the shading con-
straint in a probabilistic framework; Martin Haker and I contributed approximately equally to refining
and implementing that concept. The work described here has previously been published in [17, 18].

81

strengths estimated on a high-resolution colour image to increase the resolution of a
low-resolution depth map.

The idea of integrating the shading constraint with other range information has
been investigated by a number of researchers. Most of this work focuses on the in-
tegration of SfS with stereo. Many approaches to this problem (see for example the
work of Thompson [126], Fua and Leclerc [47], and Hartt and Carlotto [61]) use an
objective function that depends directly on the two or more images obtained from a
multi-camera setup; for this reason, they do not generalize to settings where a range
map has been obtained in some other way than through stereo. Samaras et al. [116]
combine stereo with SfS by using stereo in textured areas and SfS in untextured areas,
but they do not perform a fusion of stereo and SfS at the same location. Haines and
Wilson [51, 52] fuse stereo and SfS in a probabilistic approach based on a disparity map
and the shading observed in one of the stereo images. Because there is a one-to-one
correspondence between disparity and range, the approach could also be used with
range maps obtained by arbitrary means. However, since colour is used to segment ar-
eas of different albedo, the approach is not suitable for use with TOF cameras, which
typically only deliver a grayscale image.

There are several other approaches that combine shading with a range map obtained
by arbitrary means; stereo may be used, but it is not essential to the formulation of
the algorithm. Leclerc and Bobick [80] use a stereo range map to initialize an iterative
SfS method. Cryer et al. [31] use a heuristic that combines low-frequency components
from the stereo range map with high-frequency components from the SfS range map.
Mostafa et al. [96] use a neural network to interpolate the difference between the SfS
result and a more coarsely sampled range map from a range sensor; the SfS result is
corrected using this error estimate. These approaches allow range maps from arbitrary
sources to be used, but they are all somewhat ad-hoc.

Our approach to improving the accuracy of the range map using the shading con-
straint is based on a probabilistic model of the image formation process. We obtain
a maximum a posteriori estimate for the range map using a numerical minimization
technique. The approach incorporates the range map measured by the tof camera
and the information from the shading constraint in a single theoretically well-founded
framework. As we will see, the signal-to-noise ratio as well as the subjective quality of
the range map is improved substantially by the algorithm.

The main shortcoming of the current approach is that it does not deal well with dis-
continuities in the range map (so-called jump edges) and that it takes several minutes
to process a range map, making it unsuitable for interactive applications. In the dis-
cussion (Section 6.4), we will address potential ways to deal with these shortcomings.

82

6.2 Method

6.2.1 Probabilistic Image Formation Model

Our approach to image improvement is based on the following model for the proba-
bility P(XR, XI) of observing a range map XR and an intensity image XI:

P(XR, XI) = P(XR, XI|R, A) P(R) P(A). (6.1)

P(XR, XI|R, A) is the conditional probability of observing a range map XR and an
intensity image XI given that the true range map describing the shape of the imaged
object is R and that the parameters of the reflectance model are A. (Typically, A is the
albedo of the object – we will discuss this in more detail below.) P(R) is a prior on the
range map, P(A) is a prior on the reflectance model parameters. We then seek to find
the range map R and parameters A that maximize Equation 6.1 to obtain a maximum
a posteriori estimate.

The conditional probability P(XR, XI|R, A) is based on the following model of image
formation: First of all, we assume that P(XR, XI|R, A) can be written as follows:

P(XR, XI|R, A) = P(XR|R, A) P(XI|R, A). (6.2)

In other words, the observations XR and XI are conditionally independent given R
and A.

We now assume that the observed range map XR is simply the true range map R
with additive Gaussian noise, i.e.

P(XR|R, A) = N (XR − R|µ = 0, σR(R, A)). (6.3)

Note that the standard deviation σR is not constant but can vary per pixel as a function
of range and albedo. As we saw in Section 5.4, the noise in the range measurement
of a tof camera depends on the amount of light that returns to the camera; we will
discuss how we set σR in Section 6.2.4.

The observed intensity image depends on the range map through the reflectance
model, which we express as a function I(R, A) that takes the range map R and param-
eters A and yields the corresponding image. For the results presented in this chapter,
we will use the Lambertian reflectance model (see Section 6.2.2); in this case, the pa-
rameter vector A contains the albedo of the object, which may vary from pixel to pixel.
Again, the observed intensity image is corrupted by Gaussian noise, i.e.

P(XI|R, A) = N (XI − I(R, A)|µ = 0, σI). (6.4)

For the range map prior P(R), we use the shape prior introduced by Diebel et
al. [34], which favours surfaces with smoothly changing surface normals. We tessellate

83

the range map into triangles (see Section 6.2.3) and compute the surface normal nj for
each triangle. The shape prior is then given by the energy function

ER(R) = wR ∑
triangles j,k

adjacent

‖nj − nk‖2, (6.5)

which implies the distribution P(R) = 1
Z exp(−ER(R)), where Z is a normalization

constant. wR is a constant that controls the dispersion of the distribution.
Finally, we need to define the prior P(A) for the parameters A of the reflectance

model. In the Lambertian reflectance model, these are the albedo values at each pixel
location. We will investigate several alternatives for the prior P(A): (i) “Fixed albedo”:
A single albedo value, specified beforehand, is used for all pixels. (ii) “Global albedo”:
The same global albedo is used for all pixels, but its value is allowed to vary; we as-
sume a uniform distribution for this global albedo. (iii) “Local albedo”: Each pixel lo-
cation may have a different albedo, and the prior P(A) favours smooth albedo changes.
In this latter case, we use an energy function

EA(A) = wA ∑
pixels j,k
adjacent

|aj − ak|, (6.6)

which implies the prior P(A) = 1
Z exp(−EA(A)), in analogy to the shape prior defined

above.
As usual, we take the negative logarithm of the posterior and eliminate constant

additive terms to obtain an energy function

E(R, A) = ∑
j

(XR
j − Rj)2

2 σ2
R

+

∑
j

(XI
j − Ij(R, A))2

2 σ2
I

+

ER(R)+

EA(A),

(6.7)

where the index j runs over all pixels. (For the “fixed albedo” and “global albedo”
models, the term EA(A) is omitted.) Note that all the terms in the energy function are
unitless due to multiplication or division by the constants σR, σI, wR and wA.

We minimize E(R, A) using the Polak-Ribière variant of the nonlinear conjugate
gradient algorithm (see e.g. [111]). As the starting point for the minimization, we use
the observed range map XR, smoothed using a median filter, and an albedo guess
(see Section 6.2.4). The gradient of E(R, A) is computed numerically using a finite
differences approximation. The parameters σR, σI, wR and wA should be set to reflect
the noise characteristics of the sensor and the statistical properties of the scene.

84

6.2.2 Lambertian Reflectance Model

For the results presented in this chapter, we will use the Lambertian model of dif-
fuse reflection [129], and we will see that we obtain satisfactory results even on sur-
faces, such as skin, that do not fulfill the assumption of Lambertian reflectance exactly.
Highly glossy surfaces, however, will require a different reflectance model to achieve
satisfactory results.

Under the Lambertian reflectance model, the intensity I of a pixel in the image is

I = a
n · l
r2 , (6.8)

where n is the surface normal, l is a unit vector that points from the surface point
towards the light source, r is the distance of the light source from the surface point,
and a is a constant that describes the combined effect of the albedo of the surface,
the intensity of the light source, and properties of the camera such as aperture and
exposure time. We will refer to a simply as the albedo because albedo is the only
factor affecting a that is not constant across the scene.

In the case of images captured with a tof camera, the reflectance model is particu-
larly easy to evaluate because the light source is colocated with the camera. Hence, r
is just the distance of the surface point from the camera (i.e. its range value), and l is
the unit vector from the surface point to the camera.

6.2.3 Discretization

The pixel array of the tof camera implies a discretization of the range map and inten-
sity image. Though each pixel measures the average range and intensity over a certain
area, we will treat the measured values as if they were samples taken at point locations
on the object surface.

Particular care needs to be taken when computing the surface normals that are
used by the reflectance model and the shape prior. An obvious way of computing the
normals (and one that we tried initially) is to take the cross product of two tangent
vectors p(i + 1, j) − p(i − 1, j) and p(i, j + 1) − p(i, j − 1) (where p(i, j) is the spatial
position of the surface point corresponding to pixel (i, j)). However, this approach
can cause undesirable solutions to be computed. For example, consider a “corrugated”
surface where p(i, j) = (i, j, 0) for odd i and p(i, j) = (i, j, 1) for even i. If the normals
are computed as described above, every pixel will have the same normal, and the
surface will appear to be completely flat. As a consequence, the shading of the surface
will be wrong, and the shape prior will fail to penalize the surface even though it is
in fact highly uneven. We have observed in practice that this effect can cause folds or
“checkerboard” patterns to appear in the surface reconstruction.

85

Figure 6.1: The intensity of a pixel is computed by averaging over the intensity of
all triangles that are adjacent to it. Triangles that are adjacent to the central pixel are
shaded in gray.

For this reason, we use a different approach where the range map is tessellated into
an array of triangles; we then compute surface normals not per pixel but per triangle.
This ensures that the normals that are computed correspond to a physically consistent
surface. Of the many different possible triangular tessellations, we choose one where
all diagonals between two pixels run in the same direction.

The shading of the surface is obtained by first shading every triangle, then averaging
over all triangles that are adjacent to a pixel to obtain the shading for that pixel. (All
triangles have the same projected area in the image, hence they are all weighted equally.
In addition, because the triangles are small relative to their distance from the camera,
we assume that the shading is constant across each triangle.) The intensity Ij of pixel j
is then

Ij =
aj ∑k∈Nj

nk · l j

R2
j |Nj|

, (6.9)

where aj is the albedo of the pixel, Rj is the range value of the pixel, l j is the unit vector
from the surface point to the light source, nk is the surface normal of triangle k, and
Nj is the set of triangles that are adjacent to pixel j; see Figure 6.1 for an illustration of
the triangles that are adjacent to a pixel.

The shape prior is evaluated at every edge between two triangles. The direction
in which the diagonals run introduces an asymmetry into the tessellation and hence
into the shape prior, and we have found in testing that this asymmetry can cause
directional artefacts. To avoid these artefacts, we evaluate the shape prior for both
possible directions of the diagonals and take the average of the two results.

To make sure that we evaluate the shape prior exactly once for each edge in the
tessellation, we iterate over all pixels and evaluate the shape prior for the edges that
lie below and to the right or below and to the left of the pixel, depending on the
direction of the diagonal; see Figure 6.2 for an illustration of this.

86

(a) (b)

Figure 6.2: To avoid directional artefacts, the shape prior is evaluated over two different
tessellations (a) and (b), with the diagonals running in opposite directions. For each
pixel, the shape prior is evaluated for the edges shown in bold.

6.2.4 Implementation considerations

In a tof camera, the standard deviation of the range measurement σR is not constant
but depends on the amount of light arriving at each pixel: The more light, the lower
σR. For this reason, we set the value of σR per pixel based on the intensity at that
pixel. To determine the functional relationship between intensity and σR, we recorded a
sequence of images of a static scene, from which we were able to estimate the standard
deviation of the range measurements at each pixel. We then fit a power law regression
function to the measured data. We also used the recorded image sequence to estimate
the standard deviation of intensity σI. Since σI is approximately constant for all pixels
(for a given integration time and illumination intensity), we estimated a single fixed
value for σI.

Another implementation issue is that a tof camera’s illumination is typically stronger
in the centre of the field of view and falls off towards the periphery. To measure this
effect, we recorded an image (averaged over 100 frames) of a planar wall with constant
reflectivity and fit a plane to the measured points. We then used the intensity image of
this plane as computed by the reflectance model (which assumes homogeneous illumi-
nation) and the measured intensity image to compute a correction factor for each pixel.
We can use this correction factor to compensate for the illumination inhomogeneity in
new images as follows:

XI
corrected(i, j) = XI(i, j) ·

XI
p(i, j)

XI
a(i, j)

, (6.10)

where XI
p is the intensity image of the plane predicted by the reflectance model, XI

a
is the actual intensity image of the plane, XI is a new image, and XI

corrected is the
corrected version of that image.

87

Finally, we need to find a suitable starting point for the minimization. To obtain
the initial range map, we apply a 5 × 5 median filter to the measured range map. To
obtain an initial albedo estimate, we observe that it is likely that the brightest pixel
in the image corresponds to a part of the surface that is oriented face-on to the light
source. In this case, the surface normal n and the vector to the light source l in the
reflectance model (Equation 6.8) are identical, and the equation reduces to I = a

r2 . We
can rearrange for a and insert the measured intensity I and range value r into the
equation to obtain the albedo estimate.

6.3 Results

6.3.1 Synthetic Data

To evaluate the algorithm on data with known ground truth, we used synthesized
range maps and intensity images of two test objects (see the leftmost column of Fig-
ure 6.3): “wave” (a rotationally symmetric sinusoid) and “corner” (two planar regions
meeting at a sharp edge).

We obtained simulated intensity images for these objects by using the reflectance
model to shade the ground truth range map, then adding Gaussian noise to the gen-
erated intensity image. The measured range map was simulated by adding Gaussian
noise to the ground truth range map. To ease evaluation, the standard deviation of the
range noise was the same for all pixels, i.e. it did not depend on intensity.

The parameters σI and σR of the probabilistic model were set to the actual standard
deviations of the noise that was added to the intensity image and the range map. The
parameters wR and wA were set to wR = 1 and wA = 50 for all tests.

Figure 6.3 shows the results obtained on the synthetic test objects shaded with a con-
stant albedo value of 0.2 for all pixels. Since albedo was the same for all pixels, we used
the “global albedo” variant of the algorithm; the initial albedo for the minimization
was set to 0.4. The range noise had a standard deviation of 20 mm; for comparison, the
“wave” object has a depth of 100 mm, and the “corner” object has a depth of 120 mm.
The intensity noise had a standard deviation of 0.003; this compares to a maximum
intensity of 0.22 in the “wave” images and 0.19 in the “corner” image.

On these test data, the algorithm reduces the rms error by a factor of over 4 for
the “wave” object and around 8 for the “corner” object. To compare these results wtih
that of a standard denoising filter, we also applied a 5 × 5 median filter to the range
map (fourth column in Figure 6.3). The rms error in the median-filtered range maps
is higher by more than a factor of 2, and the median-filtered result is visually less
pleasing than that of the “global albedo” algorithm.

We will now evaluate the algorithm on the same objects but with varying albedo.
Accordingly, we will use the “local albedo” algortihm, but will also run the “global

88

ground truth
range map noisy range map

noisy
intensity image

5 × 5

median-filtered
range map

“global albedo”
reconstruction

rms error: 20.2 mm rms error: 9.8 mm rms error: 4.3 mm

rms error: 20.2 mm rms error: 5.5 mm rms error: 2.5 mm

Figure 6.3: Reconstruction results for two synthetic test objects (“wave”, top, and “cor-
ner”, bottom) using the “global albedo” algorithm. The Gaussian noise in the range
map had a standard deviation of 20 mm; for comparison, the “wave” object has a
depth of 100 mm, and the “corner” object has a depth of 120 mm. The Gaussian noise
in the intensity image had a standard deviation of 0.003; the maximum intensity is
0.22 in the “wave” image and 0.19 in the “corner” image.

89

albedo” variant for comparison. Because this setting is more challenging, we reduce
the range noise to a standard deviation of 5 mm; all other parameters remain as before.
Figure 6.4 (top) shows the results on the “wave” object with albedo set to 0.2 on the
left half of the object and 0.4 on the right half. (The initial albedo for the minimiza-
tion was set to 0.3.) Not surprisingly, the “global albedo” algorithm fails to produce a
satisfactory result; in constrast, the “local albedo” algorithm reconstructs the surface
well, and the estimated albedo matches the ground truth almost perfectly. The middle
row in Figure 6.4 shows a test with the same object but with albedo varying continu-
ously from 0.2 at the left to 0.4 at the right. Albedo is overestimated slightly on the left
side of the image, and the result is not quite as good as in the first case but still satis-
factory. Finally, we show a case where the albedo estimation does not work properly
(Figure 6.4, bottom): the “corner” object with albedo varying continuously between
0.2 at the top and 0.4 at the bottom. Here, the result of the “local albedo” algorithm
is not satisfactory and, in fact, its rms error is higher than that of the “global albedo”
algorithm. We suspect the reason for the poor performance may be that the range map
does not contain enough detail for the algorithm to “latch onto”.

Finally, we will evaluate the effect of varying amounts of noise σI in the inten-
sity image and the contribution that the individual components of the probabilistic
model make to the result. We compare the results of using only the shading constraint
P(XI|R, A), only the shape prior P(R), or both. The term P(XR|R, A), which constrains
the solution to lie near the measured range map, will be used in all cases, and because
we will use an object with constant albedo, the term P(A) will be omitted.

We need to take special consideration to test the case σI = 0 (no intensity noise),
since σI appears in the denominator of the shading term in the energy function (Equa-
tion 6.7). Note that for σI → 0, the shading term dominates all the other terms; hence,
if σI = 0, we omit all other terms from the energy function. We can then avoid scaling
by 1

σI
2 .

Figure 6.5 shows the results of the tests. The error for the reconstruction obtained
using only the shape prior (along with the measured range map P(XR|R, A)) is, of
course, constant for all σI because it does not use the intensity image. The shape prior
reduces the rms error in the range map by around a factor of 2.

For the reconstructions obtained using only the shading constraint (along with the
measured range map), the error in the reconstruction generally increases with the
noise σI in the intensity image. However, it is notable that, even for σI = 0, the range
map is not reconstructed perfectly. Though, in this case, the ground truth range map is
obviously the minimum of the energy function, the algorithm appears to get stuck in
a local minimum. Recall that in the case σI = 0, the shading term dominates all other
terms in the energy function. As σI increases, the energy function begins taking the
measured range map into account, and this in fact leads to an initial slight reduction

90

intensity image
“global albedo”
reconstruction

“local albedo”
reconstruction estimated albedo

0.2

0.3

0.4

rms error: 17.1 mm rms error: 3.0 mm

0.25

0.3

0.35

rms error: 12.0 mm rms error: 3.0 mm

0.3

0.32

0.34

0.36

rms error: 4.5 mm rms error: 6.1 mm

Figure 6.4: Reconstruction results on synthetic objects with varying albedo. Top:
“Wave” object with an albedo of 0.2 on the left half of the object and 0.4 on the right
half. Middle: “Wave” object with albedo varying continuously from 0.2 at the left to
0.4 at the right. Bottom: “Corner” object with albedo varying continuously from 0.2 at
the top to 0.4 at the bottom. In all cases, the noise in the range map had a standard
deviation of 5 mm, and the noise in the intensity image had a standard deviation of
0.003.

91

0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

intensity noise

R
M

S
 e

rr
or

 (
m

et
re

s)

shading constraint
shape prior
both

Figure 6.5: Reconstruction error on the “wave” object as a function of noise in the
intensity image, for different probabilistic models. (For comparison, the maximum
intensity in the image was 0.22.) Range noise was fixed at a standard deviation of
20 mm.

in the reconstruction error; we speculate that the additional constraint imposed by the
measured range map makes it easier to minimize the energy function.

This effect is even more prononunced for the full model, which combines the shad-
ing constraint, the shape prior, and the measured range map. For σI = 0, the shading
term again dominates all other terms in the energy function, and so we obtain the
same result as for the shading constraint alone. As σI begins to increase, the recon-
struction error decreases markedly as the shape prior and the measured range map
come into play. After a certain point, the reconstruction error begins increasing again;
for σI → ∞, the reconstruction error will tend to that of the shape prior because the
shading term in Equation 6.7 tends to zero. Note that, except for very small σI, the
combined model yields better results than either the shading constraint or the shape
prior alone.

6.3.2 Real-World Data

We will now test the algorithm on real images recorded using a tof camera, the Swiss-
Ranger sr3000 [100], which has a resolution of 176 × 144 pixels. Because the algo-
rithm in its present form cannot deal well with range discontinuities, we manually
segmented the objects from the background and computed the reconstruction only on
the object. The range and intensity noise were estimated as described in Section 6.2.4;
the parameters wR and wA were again set to wR = 1 and wA = 50.

92

intensity image range map

5 × 5

median-filtered
range map

“global albedo”
reconstruction

Figure 6.6: Surface reconstructions of terracotta objects. The renderings of the range
maps are rotated 30 degrees around the vertical axis.

For a first test, we will use two objects made of unglazed terracotta, which has ap-
proximately Labertian reflectance and approximately constant albedo over the whole
surface. Accordingly, the “global albedo” algorithm will be used. Figure 6.6 shows the
reconstruction results; again, a 5 × 5 median-filtered version is also shown. It is appar-
ent that the algorithm reduces the amount of noise substantially, yielding a visually
pleasing result. Note, in particular, that the reconstructions contain detail, such as the
ridges in the second object, that can only be inferred from the intensity image and
could not be revealed by a filter operating on the range map alone.

We now test the algorithm on a more challenging object, a human face. Human skin
does not fulfill the assumption of Lambertian reflectance nearly as well as terracotta;
in addition, while albedo is approximately constant across much of the face, there are
regions, such as the lips and eyebrows, where albedo changes noticeably. Figure 6.7
shows the results of the “global albedo” and “local albedo” algorithms on the face;
again, a median-filtered range map is shown for comparison. While the “global albedo”
reconstruction contains noticeable artefacts due to the non-uniform albedo, the “local
albedo” reconstruction is much more smooth and true to the shape of the face. It is

93

apparent that the algorithm can produce satisfactory results even in cases such as this
one where the assumption of Lambertian reflectance is not fulfilled exactly. The figure
also shows the result of texturing the “local albedo” reconstruction with the intensity
image to illustrate the quality of textured models that can be obtained for applications
such as virtual avatars.

Finally, Figure 6.8 shows the results of the algorithm on the upper body of a person.
Note how the shading constraint allows the cloth folds to be reconstructed faithfully.
This example also illustrates the limitations of the algorithm: The head is reconstructed
less well than in the previous example; we believe this is because there is too much
albedo variation in an area of only a few pixels. The lowest part of the body is not
reconstructed well either, and this is probably due to the low reflectivity of the material
in this region, which leads to a large amount of noise in both the range map and the
intensity image.

6.4 Discussion

We have shown that the shading information contained in the intensity image can be
used to improve the quality of the range map substantially, in terms of both quantita-
tive measures (rms error) and subjective quality.

In many ways, the data obtained from a tof camera are ideally suited for apply-
ing the shading constraint: The range map provides a rough “scaffolding” onto which
the fine details obtained using the shading constraint can be placed. In this way, we
avoid the ambiguities that are present in the traditional shape-from-shading (SfS) set-
ting, where shape is estimated from an intensity image alone. Indeed, the additional
constraints provided by the range map allow us to estimate the albedo of the surface
within certain limits. A further advantage over the traditional SfS setting is that the
position of the light source is known and that the tof camera suppresses all other
ambient illumination.

The current algorithm does, however, have its limitations. On current hardware, our
implementation requries several minutes to process a single image. Though the imple-
mentation has not been optimized for speed, we do not think it is realistic that the
algorithm can be accelerated enough to run at camera frame rates, even if a graphics
processing unit (gpu) is used to carry out computations. For this reason, we will un-
fortunately not be able to use the shading constraint for the interactive applications
that we will describe in the remainder of this thesis. Irrespective of the speed of the
algorithm, though, we have shown that the range and intensity data combined contain
detailed shape information; we hope that future work will find more efficient ways of
extracting this information from the data.

94

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Surface reconstruction of a human face. (a) Manually segmented intensity
image, (b) measured range map, (c) 5 × 5 median-filtered range map, (d) “global
albedo” reconstruction, (e) “local albedo” reconstruction, (f) “local albedo” reconstruc-
tion textured with intensity image. The renderings of the range maps are rotated 30

degrees around the vertical axis.

95

(a) (b) (c) (d)

Figure 6.8: Surface reconstruction of a person’s upper body. (a) Manually segmented
intensity image, (b) measured range map, (c) 5 × 5 median-filtered range map, (d)
“local albedo” reconstruction. The renderings of the range maps are rotated 30 degrees
around the vertical axis.

Another limitation of the algorithm is that it does not cope well with range disconti-
nuities (so-called jump edges). This requires the object of interest to be segmented from
the background – either manually, as we have done here, or automatically. The reason
why jump edges present a difficulty is that triangles that straddle a jump edge are al-
most perpendicular to the incoming light and are hence shaded with very low intensity.
This disagrees with the observed intensity images, so, to compensate, the algorithm
must either flatten the edge or assign very high albedo values to the corresponding
pixels. A solution to this problem would be to ignore any triangle that straddles a
jump edge. Jump edges could be identified either by searching for large jumps in the
measured range values or by incorporating jump edges into the probabilistic model,
as in the work of Nadabar and Jain [98].

Of course, other range sensors, such as laser range scanners, still provide far bet-
ter accuracy than tof camera range maps post-processed using our algorithm. The
strength of the tof camera, however, lies in its potential to be manufactured at low
cost and in its high temporal resolution – though the algorithm is currently too slow
for interactive applications, it can still be used to post-process high-frame-rate image
sequences. The enhanced accuracy that is achieved using the shading constraint should
open up new applications fields for the tof camera.

96

7 Facial Feature Tracking

In this chapter, we will explore how the tof camera can be used for tracking facial
features, and we will demonstrate the resulting tracker in an interactive application.
The detector for the facial features will be based on geometric features that describe
the local properties of the object surface – whether it is planar, convex, concave, and
so forth. Since the intensity image can be interpreted as a height field, where height
is proportional to intensity, the geometric features can be computed on the intensity
image as well. We will combine the geometric features with a very simple threshold-
based classifier to obtain a robust detector for a prominent facial feature: the nose.

We will also examine how the tof camera can be used to deal with the problem
of scale changes. The effect of scale is a fundamental problem in computer vision: As
the distance of an object from the camera changes, so does its apparent size in the
image. Various approaches can be used to detect objects independently of their scale.
For example, a scale-sensitive object detector can be made scale-invariant by applying
it to a sequence of scaled versions of the image (an image pyramid). Alternatively, one
can define features in such a way that they are inherently invariant to scale and then
detect objects based on these features.

The tof camera offers another possibility: Because it senses the physical shape of
the object, we can compute features on the surface of the object (in spatial coordinates)
instead of the image (in image coordinates). If the actual size of the physical object does
not change (or not much), we can sidestep the problem of scale variations entirely.

Computing features on the object surface introduces an additional difficulty, how-
ever. Whereas the image is sampled on a regular pixel grid, the corresponding grid on
the object surface is irregular because the spacing of the grid points increases with the
distance from the camera. This irregular sampling makes it more difficult to compute
features because many techniques, such as convolution with a filter kernel, assume
that the data are sampled on a regular grid.

We deal with this problem by using the nonequispaced fast Fourier transform (nfft),
a generalization of the fast Fourier transform (fft) that can deal with functions sam-
pled at arbitrary locations. We will use the nfft to transform the range map to the

Parts of this chapter are joint work with others. Martin Haker and I contributed approximately equally
to the facial feature detector and tracker. I came up with the idea of using the nfft to achieve scale-
invariance, and Martin Haker and I contributed approximately equally to refining and implementing
that idea. Parts of the work described here have previously been published in [16, 53, 54].

97

frequency domain, compute the features there, and then transform back to the spa-
tial domain. As we will see, the resulting features are indeed scale-invariant, and, on
a dataset containing scale changes, they have higher detection rates than the same
features computed on the image in the conventional way.

Unfortunately, though, the scale-invariant features cannot be computed fast enough
to allow interactive applications on current hardware. We will therefore use the conven-
tional scale-variant features for the interactive applications. Nevertheless, our results
demonstrate the potential that the data recorded by the tof camera have for dealing
with scale variations.

7.1 Geometric Features

The features we will use in the facial feature detector are the so-called generalized
eccentricites, introduced in [7], which, as we will see, describe the local properties of a
surface. To motivate the definition of the generalized eccentricities, we will start with
a classical descriptor of surface properties, the Gaussian curvature [10]. If the surface
can be described as a height field or Monge patch, i.e. if the surface points (x, y, z) can
be described by a function f of x and y, with z = f (x, y), then the Gaussian curvature
K is given by

K =
fxx fyy − f 2

xy

1 + f 2
x + f 2

y
. (7.1)

The Gaussian curvature is non-zero only for points where the surface is non-planar in
two directions; this is equivalent to saying that the surface cannot be deformed into a
plane without introducing distortions. Intuitively, one can say that surfaces with non-
zero Gaussian curvature cannot be formed from a sheet of paper without creasing or
tearing the paper. Shapes that can be formed from a sheet of paper, such as a cylinder,
have a Gaussian curvature of zero.

There are two basic types of shape with non-zero Gaussian curvature; these two
types can be distinguished by the sign of the curvature K. Positive curvature (K > 0)
means that the surface is curved in the same sense (either inwards or outwards) in
both directions. Negative curvature (K < 0) means that one direction has a different
sense of curvature than the other direction; this type of shape is also called a saddle
point.

The property of non-zero Gaussian curvature is interesting because it means that
the function f is intrinsically two-dimensional at this location, i.e. it cannot be de-
scribed locally by a function of less than two variables. It can be shown [7, 97] that f
is described fully by its values in the intrinsically two-dimensional regions.

To identify the points with non-zero Gaussian curvature and to distinguish between
the two basic types of surface that can occur at these points (according to the sign of

98

K), we only need the numerator of Equation 7.1, which we will call D:

D = fxx fyy − f 2
xy. (7.2)

The name D is intended to express that this quantity is the determinant of the Hessian
H =

(
fxx fxy
fxy fyy

)
of f . We can rewrite D in an alternative form as follows:

D =
1
4
(fxx + fyy)2 − 1

4
(fxx − fyy)2 − f 2

xy

=
1
4
(
(∆ f)2 − ε2) ,

(7.3)

where ∆ f = fxx + fyy is the Laplacian and ε is the eccentricity, defined as

ε2 = (fxx − fyy)2 + 4 f 2
xy. (7.4)

Note that we have non-zero Gaussian curvature if the Laplacian and the eccentricity
are not equal.

We are now ready to define the generalized eccentricities εn (n = 0, 1, 2, . . .), of
which, as we will see, both the Laplacian and the eccentricity are special cases:

ε2
n = (cn ∗ f)2 + (sn ∗ f)2. (7.5)

The ∗ is the convolution operator, and cn and sn are filter kernels corresponding to
transfer functions Cn and Sn. These transfer functions are best described in terms of
polar coordinates ρ (spatial frequency) and θ (orientation):

Cn(ρ, θ) = in A(ρ) cos(nθ), (7.6)

Sn(ρ, θ) = in A(ρ) sin(nθ). (7.7)

A(ρ), the radial filter tuning function, is typically a power function in ρ. The filters
cn and sn can be interpreted as orientation-sensitive derivative operators, where the
exponent in A(ρ) determines the order of the derivative and n determines the number
of directions in which the operator is sensitive.

For certain choices of A(ρ) and certain n, the generalized eccentricities are equiva-
lent to various well-known derivative operators. For A(ρ) = 2πρ, ε1 is equal to the
norm of the gradient ‖∇ f ‖2. For A(ρ) = (2πρ)2, ε0 is equal to the absolute value of
the Laplacian |∆ f |, and ε2 is equal to the eccentricity ε.

Before we go any further, let us briefly prove these equivalences. First of all, we note
that the Cartesian coordinates corresponding to ρ and θ are

ξx = ρ cos(θ),

ξy = ρ sin(θ).
(7.8)

99

(We use ξx and ξy for the Cartesian spatial frequencies instead of the more usual fx and
fy to avoid confusion with the partial derivatives of f .) We also note that the transfer
functions corresponding to the partial derivative operators in x- and y-direction are
Dx = i2πξx and Dy = i2πξy, respectively.

Let us now prove that ε1 with A(ρ) = 2πρ is the norm of the gradient. We have

C1 = i 2πρ cos(θ) = i 2πξx = Dx,

S1 = i 2πρ sin(θ) = i 2πξy = Dy,
(7.9)

i.e. c1 ∗ f and s1 ∗ f are just the partial derivatives fx and fy. Hence

ε2
1 = f 2

x + f 2
y = ‖∇ f ‖2

2, (7.10)

as claimed.
Turning to ε0 with A(ρ) = (2πρ)2, we have

C0 = (2πρ)2 = (2π)2 (ξ2
x + ξ2

y)

= (i 2πξx)2 + (i 2πξy)2

= D2
x + D2

y,

S0 = 0.

(7.11)

Since D2
x and D2

y are the transfer functions for the second-order partial derivatives fxx

and fyy, we have
ε2

0 = (c0 ∗ f)2 = (fxx + fyy)2 = (∆ f)2, (7.12)

as claimed.
Finally, we turn to ε2 with A(ρ) = (2πρ)2. We have

C2 = (2πρ)2 cos(2θ)

= (2πρ)2 (cos(θ)2 − sin(θ)2)

= (2πρ)2

((
ξx

ρ

)2

−
(

ξy

ρ

)2
)

= (i 2πξx)2 − (i 2πξy)2

= D2
x − D2

y,

S2 = (2πρ)2 sin(2θ)

= (2πρ)2 2 cos(θ) sin(θ)

= (2πρ)2 2
ξx

ρ
·

ξy

ρ

= 2 (i 2πξx)(i 2πξy)

= 2DxDy.

(7.13)

100

ridge valley

planar

ε0

ε2

saddle

peak pit

Figure 7.1: Six surface types can be distinguished in the half-plane defined by ε0 and
ε2 (redrawn from [7]).

Hence

ε2
2 = (fxx − fyy)2 + (2 fxy)2 = ε2, (7.14)

as claimed.

We have already seen that we can distinguish different surface types based on the
sign of D = 1

4

(
(∆ f)2 − ε2) = 1

4 (ε2
0 − ε2

2) (with A(ρ) = (2πρ)2). We can achieve a finer
distinction if we consider the two-dimensional coordinate system defined by ε0 and
ε2. For this purpose, it is useful to define ε0 to have not just the magnitude but also
the sign of the Laplacian, i.e. ε0 = c0 ∗ f . With this definition, we can distinguish six
different surface types, which correspond to different regions in the coordinate system
defined by ε0 and ε2 (see Figure 7.1). Regions with a Gaussian curvature of zero can
be subdivided into three types: planar (no curvature in any direction), and valley and
ridge (curved in one direction). Regions with a Gaussian curvature unequal to zero can
also be subdivided into three different types: saddle (different sense of curvature in the
two directions), and pit and peak (same sense of curvature in both directions).

Because the generalized eccentricities describe properties of surfaces, it is intuitive
that they should be well suited for detecting features in range maps. However, they
can also be applied to intensity images if we interpret an image as a height field
(x, y, I(x, y)), where each point in the image is associated with a height proportional
to its intensity I(x, y). We will use this interpretation to compute geometric features
on the intensity image as well as on the range map. The use of the geometrical inter-
pretation of images for encoding, labelling and reconstruction is investigated in depth
in [7].

101

7.2 Feature Computation in Spatial Coordinates

7.2.1 Image Coordinates Versus Spatial Coordinates

We saw in the previous section how the generalized eccentricities can be used to deter-
mine the surface properties of a height field or Monge patch (x, y, f (x, y)). The most
obvious way of defining this Monge patch is to let x and y be pixel coordinates and to
define f (x, y) as the intensity or range corresponding to that pixel.

We can now evaluate the generalized eccentricities on this Monge patch as follows.
Recall that the generalized eccentricities are defined using transfer functions Cn and
Sn (see Equations 7.6 and 7.7). The obvious way of applying the filter kernels cn and sn

corresponding to these transfer functions is to transform f (x, y) to the frequency do-
main, multiply by the desired transfer function, and transform back. Because f (x, y) is
sampled on a regular grid of pixel coordinates, the transform to the frequency domain
and back can be carried out efficiently using the fast Fourier transform (fft). (We will
refer to features computed in this way as image-coordinate features.)

This approach of computing the generalized eccentricities in image coordinates does,
however, have an important disadvantage: If the distance of the object from the camera
changes, its apparent size in the image also changes, and this, in turn, affects the values
of the geometric features.

In the case of the range data, there is an obvious alternative: Because the range map
encodes the true spatial shape of the object, we can define the Monge patch in terms
of spatial coordinates, i.e. x and y are spatial coordinates parallel to the image plane,
and f (x, y) is the coordinate perpendicular to the image plane. We obtain these spatial
coordinates of the object surface pixels by undoing the perspective transform of the
camera. If the feature values are now computed in spatial coordinates instead of in
image coordinates, they will no longer be influenced by the distance of the object from
the camera.

Computing the features in spatial coordinates introduces an additional difficulty,
however: The sampling points at which the values of f (x, y) are known now form an
irregular grid because the spacing between two grid points is proportional to their
distance from the camera; see Figure 7.2 for an illustration of this. This means that the
fft, which requires f (x, y) to be sampled on a regular grid, can no longer be used. One
way of dealing with this would be to resample f (x, y) on a regular grid, to compute
the generalized eccentricities on this regular grid, and then to interpolate between the
computed values to obtain the generalized eccentricities on the original irregular grid.

There is, however, a more elegant alternative: The nonequispaced fast Fourier trans-
form (nfft) is a generalization of the fft that can be applied to functions sampled
on arbitrary grids. We can use the nfft to transform the irregularly sampled Monge

102

image sensor

centre of projection

object

Figure 7.2: Whereas the sampling grid on the image sensor is regular, the sampling
grid on the object surface is irregular because the distance between two grid points
depends on their distance from the camera.

patch to the frequency domain, apply the transfer functions as before, then transform
back. We will refer to features computed in this way as spatial-coordinate features.

7.2.2 The Nonequispaced Fast Fourier Transform (nfft)

The nonequispaced fast Fourier transform (nfft) [110] is an approximative algorithm
for the fast evaluation of sums of the form

f (xj) = ∑
k∈IN

f̂ke−2πikxj , (7.15)

where the xj ∈ [− 1
2 , 1

2)d, j = 1, . . . , M are arbitrary nodes in the spatial domain, the
k are frequencies on an equispaced grid IN , and the f̂k are the corresponding Fourier
coefficients. The equispaced frequency grid IN is defined as

IN :=
{

k = (kt)t=1,...,d ∈ Zd : −Nt

2
≤ kt <

Nt

2
, t = 1, . . . , d

}
, (7.16)

103

where N = (N1, . . . , Nd) is the so-called multibandlimit, which specifies the band limit
(i.e. the number of spectral coefficients) along each direction. (Note that all Nt must be
even.)

Equation 7.15, which we will call the nonequispaced discrete Fourier transform
(ndft), describes the transform from the frequency domain to the spatial domain. Note
at this point that the nomenclature for the nonequispaced setting is exactly the reverse
of that for the equispaced setting. The classical equispaced discrete Fourier transform
(dft) transforms from the spatial domain to the frequency domain, and the inverse
dft transforms from the frequency domain to the spatial domain. In the nonequis-
paced setting, however, the ndft transforms from the frequency domain to the spatial
domain, and the inverse transform (which we will cover in more detail in a moment)
transforms from the spatial domain to the frequency domain.

While the direct evaluation of the sum in the ndft requires O(M · |IN |) operations,
the nfft algorithm reduces the asymptotic complexity to O

(
|IN | log(|IN |) + M log(1

ε)
)
,

where ε is the desired accuracy.
In the more familiar case of the equispaced dft, the matrix that describes the trans-

form is unitary, and so the same algorithm – typically the fast Fourier transform (fft)
– can be used for both the forward and the inverse transform. In the nonequispaced
setting, however, the matrix that describes the transform need not even be square, and
even if it is, it is not guaranteed to be regular. In many cases, therefore, a true in-
verse transform does not exist. Instead, one can compute a least-squares solution (if
the solution is overdetermined) or apply a regularization condition (if the solution is
underdetermined) [78]. In both cases, the solution is found by combining the forward
transform (the nfft) with an iterative minimization scheme such as the conjugate gra-
dient method.

In our application, we have M ≤ |IN |, and so the solution is typically underdeter-
mined. The regularization that we apply yields the solution with minimal energy.

7.2.3 Using the nfft for Feature Computation

To compute features in spatial coordinates using the nfft, we first invert the camera
projection to obtain the Cartesian coordinates x, y, z of each pixel, where the coordinate
system is defined so that the x- and y-axes are parallel to the image plane and the z-
axis is perpendicular to it. We interpret these points as a Monge patch z(x, y), sampled
on an irregular x-y-grid; the grid points define the nodes xj for the nfft.

Because the nfft requires the nodes to lie within the range [− 1
2 , 1

2) × [− 1
2 , 1

2), as
noted in the previous section, the x-y-coordinates need to be scaled suitably. A scaling
in the spatial domain corresponds to an equal but opposite scaling in the frequency
domain, so the particular scaling factor that is chosen affects the way we must interpret
the Fourier coefficients in the frequency domain. For this reason, it is important to use

104

the same scaling across all images. To define the scaling factor, we use the concept
of an equivalence range: For an object at the equivalence range, the nfft produces the
same spectrum as the fft. To find the scaling that corresponds to a given equivalence
range e, we take a plane that is parallel to the image plane at a distance e from the
camera and intersect this plane with the camera’s field of view, yielding a rectangle.
We then set the scaling factor so that the longer side of the rectangle is scaled to the
interval [− 1

2 , 1
2].

Because the x-y-extent of the camera’s field of view increases with the distance from
the camera, points beyond the equivalence range may have x-y-coordinates outside the
range [− 1

2 , 1
2) × [− 1

2 , 1
2); these points are discarded. This implies that the equivalence

range needs to be defined in such a way that the objects of interest fit inside this
clipping volume. In addition, we shift the centroid of the objects to x = 0, y = 0 to
ensure that they lie centrally within the clipping volume.

Before the range map is passed to the nfft, we segment the foreground object using
adaptive range and intensity thresholds and discard the background pixels. There are
several reasons for doing this: (i) Steep edges between the foreground and background
can lead to ringing artefacts. (ii) The grid nodes in the background are spaced further
apart, and the greater the spacing, the lower the frequency where aliasing sets in. (iii)
Passing fewer points to the nfft reduces the amount of computation that has to be
carried out.

The final preprocessing step we perform is to subtract a constant offset from the z
values to bring the maximum z value to zero. This is done because, as explained in
the previous section, the transform from the spatial domain to the frequency domain
is typically underdetermined and the nfft computes a minimal-energy solution in
this case. This implies that the background region, where there are no grid nodes, is
implicitly set to zero. By bringing the maximum z value to zero, we avoid steep edges
between the foreground and background, which could cause ringing artefacts.

7.3 Facial Feature Detection and Tracking

We will now use the generalized eccentricities ε0 and ε2, evaluated on both the range
map and the intensity image, to classify each pixel as either “nose” or “non-nose”.

Because the feature space spanned by ε0 and ε2 has a radial structure (see Figure 7.1),
we convert these features to polar coordinates r =

√
ε02 + ε22 and φ = atan2(ε2, ε0).

For each pixel, we obtain a feature vector F = (F1, . . . , F4) that contains the values of r
and φ for both the range and intensity data.

On a set of training images, we hand-label the positions of the nose and compute
the features at these locations. We then use these training data to train a very simple
classifier, as follows. For each feature Fj, we compute the minimum and maximum

105

values Fmin j and Fmax j of that feature across all of the labelled nose pixels. In this way,
we obtain vectors Fmin and Fmax that define an axis-aligned bounding box in feature
space (the classification box). A pixel is classified as “nose” if its feature values fall
within the box and “non-nose” otherwise.

We can control the tradeoff between false-positive rate and false-negative rate by
scaling the box around its centre to obtain new classification box limits

F̂min =Fcentre − αFhalfwidth,

F̂max =Fcentre + αFhalfwidth,
(7.17)

where Fcentre = Fmin+Fmax
2 and Fhalfwidth = Fmax−Fmax

2 . The parameter α ∈ [−1, ∞) con-
trols the scaling of the box.

This very simple classifier can be evaluated quickly and yields good results in our
application. Nevertheless, we would expect a more sophisticated classifier, such as a
support vector machine (svm), to further improve the classification performance.

Once we have raw detections, we want to use these detections to track the position
of the nose from frame to frame.

Typically, the facial feature detector detects a cluster of several “nose” pixels around
the tip of the nose. We therefore begin by finding all connected components of “nose”
pixels in the current frame. If there are several connected components, we choose the
one that is closest to the position of the nose in the previous frame.

To identify a single pixel within the connected component as the position of the nose,
we search for the pixel whose feature vector is closest to the centre of the classification
box Fcentre; in a sense, this is the most “prototypical” nose pixel.

We then perform a subpixel refinement of this nose position by computing a weight-
ed centroid of the pixels in a certain neighbourhood around the initial pixel; the weight
of a pixel decreases with the distance of its feature vector from the centre of the classi-
fication box:

xnose =∑x∈N wxx
∑x∈N wx

with

wx =e
− ‖F(x)−Fcentre‖2

2

‖Fhalfwidth‖2
2 ,

(7.18)

where N is a neighbourhood of pixels around the initial nose position, F(x) is the
feature vector for pixel x, and xnose is the subpixel-refined nose position.

Finally, we track the position of the nose from frame to frame using a Kalman fil-
ter [87], with constant-speed unaccelerated motion as the underlying dynamic system
model.

106

7.4 Results

The facial feature detector and tracker was implemented in matlab. To evaluate the
nfft, we used the nfft library (version 3.1.0) [75], which is written in C; the mex

interface was used to call this code from matlab. The nfft library itself used the fftw

library (version 3.2.1) [46] to evaluate the ffts that occur in the nfft algorithm.
We also implemented an interactive version of the facial feature tracker in C++.

Because the spatial-coordinate image features cannot be computed quickly enough for
interactive applications, this version used only the image-coordinate features. The C++
implementation also used the fftw library.

The radial filter tuning function was set to A(ρ) = (πρ)2 · e
−πρ2

σ2 with σ = 0.33 for
the intensity features and σ = 0.15 for the range features.

We will first evaluate the performance of the facial feature detector on image-coordi-
nate features. Because these features are scale-variant, we will use a dataset that does
not contain scale changes. (We will examine later how the image-coordinate features
react to scale changes.)

We used a SwissRanger sr3000 camera [100] to acquire images of 13 subjects; for
each subject, nine images with different head orientations were taken. In all images,
the distance between the subject’s face and the camera was approximately 60 cm. The
position of the tip of the nose was hand-labelled in the images.

We trained the detector on the data from three of the subjects and tested it on the re-
maining ten subjects. We count detection rates and false-positive rates on a per-image
basis, as follows: If at least one pixel within a five-pixel radius of the labelled nose
location is classified as “nose”, we count this as a detection; otherwise, it is a false
negative. Similarly, if one or more pixels outside the five-pixel radius are erroneously
classified as “nose”, we count this as a false positive. Note that an image can simulta-
neously produce a false negative and a false positive if the true nose is not detected
and pixels in a different region are erroneously classified as “nose” instead.

As is common when evaluating classifiers, we will plot detection rate against false-
positive rate to obtain a receiver operating characteristic (roc) curve [43]. Note, how-
ever, that because we define detection rate and false-positive rate on a per-image basis,
these curves do not share all of the characteristics of standard roc curves. However, we
believe that a per-image evaluation is more useful than a per-pixel evaluation because
what we are really interested in is how often the detector identifies the nose correctly
in a whole image.

Figure 7.3 shows the roc curves that we obtain. We compare the result of using only
the range features, only the intensity features, or both. As the plot shows, the range
features yield a more accurate classification than the intensity features, with an equal
error rate (eer) of 27.4% on the range features compared to 42.2% on the intensity

107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

de
te

ct
io

n
ra

te

range & intensity
range
intensity

0 0.01 0.02 0.03 0.04 0.05 0.06
0.94

0.95

0.96

0.97

0.98

0.99

1

false positive rate

de
te

ct
io

n
ra

te

Figure 7.3: roc curve for the facial feature detector based on image-coordinate features,
using either range features, intensity features, or both. A closeup of the top left corner
of the plot is shown on the right.

features. However, the combination of range and intensity features yields markedly
better results than either type of feature alone, with an eer of 1.1%. Figure 7.4 shows
some examples of detection results obtained using the combined range and intensity
features on the test set. (Our results here are slightly better than the earlier results
reported in [53] because we have optimized the radial filter tuning function since
then.)

We will now compare the scale-variant image-coordinate features used so far with
the scale-invariant spatial-coordinate features. To verify that the spatial-coordinate fea-
tures are scale-invariant, we computed them on synthesized range maps of a sphere at
various distances from the camera. Figure 7.5 shows the value of ε0 at the apex of the
sphere as a function of distance; the feature was computed both in image coordinates
and in spatial coordinates. (ε2 is not shown because it is identically zero for objects
that have the same curvature in all directions.) While the image-coordinate version of
the feature changes noticeably with distance, the spatial-coordinate version remains
almost constant. Note also that at the equivalence range, which was set to e = 0.5 m
for this test, the values of the image-coordinate and spatial-coordinate versions of ε0

are the same.

We will now compare the performance of the image-coordinate and spatial-coor-
dinate features on the nose detection task. We used the same training set as in the
previous test (three subjects at a distance of 60 cm from the camera), but a different
test set. To evaluate how well the features cope with scale changes, we recorded a test

108

Figure 7.4: Sample detection results of the facial feature detector based on image-
coordinate features, using both intensity and range features (top: intensity image, bot-
tom: range map). The pixels marked in black indicate detected nose pixels.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

distance (m)

ε 0

image−coordinate
features
spatial−coordinate
features

Figure 7.5: Generalized eccentricity ε0 as a function of distance for a synthesized range
map of a sphere. When computed in image coordinates, the feature is sensitive to scale,
whereas in spatial coordinates, the feature value stays almost constant.

109

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

de
te

ct
io

n
ra

te

spatial−coordinate
features
image−coordinate
features

Figure 7.6: roc curve of the facial feature detector on a dataset containing scale
changes. Only the range features were used, computed either in image coordinates
or in spatial coordinates.

set consisting of 87 images of a single subject (who was not identical to any of the
subjects from the training set) at varying distances of 35 cm to 70 cm from the camera.

Because only the range features can be computed in spatial coordinates, we first
examine classification performance on range features alone. Figure 7.6 shows the roc

curves for spatial-coordinate range features versus image-coordinate range features.
The performance of the spatial-coordinate features is clearly superior, with an eer of
20.1% compared to 39.1% for the image-coordinate features.

Though the intensity features must be computed in image coordinates and are thus
not scale-invariant, they still boost the performance of the detector when combined
with the range features. The eer for intensity features combined with image-coordinate
range features is 4.6%; when spatial-coordinate range features are used, the eer drops
to 0%, i.e. the detector does not make any errors on the test set – a larger test set
would be required to measure the eer with better precision. (The roc curves for these
combined range and intensity detectors are omitted because they do not show much
meaningful information.) Note that the eer for the intensity features alone was 78.2%,
so again it is only the combination of the intensity and range features that produces
the good classification results.

While the spatial-coordinate features yield superior classification performance, they
do require more computation than the image-coordinate features. On a 2.66 GHz
Intel E6750 cpu, our matlab implementation requires 0.1 s to compute the image-
coordinate features, versus 5 s for the spatial-coordinate features. This difference is
mainly due to the nfft, which has the same asymptotic time complexity as the fft

110

Figure 7.7: Screenshot of Dasher [136], an alternative text input tool that can be con-
trolled using a variety of input devices including eye trackers, head switches, or the
facial feature tracker.

but with a larger constant factor. This means that while the spatial-coordinate features
are an attractive choice for offline applications, they are not suitable for interactive
applications on current hardware.

We have implemented a C++ version of the facial feature tracker [16] that uses the
image-coordinate features and runs at camera frame rates (up to 75 frames per second,
or 13.3 ms per frame, on a 2.66 GHz Intel E6750). We have evaluated the usefulness
of this tracker for interaction tasks by using it to control Dasher, an alternative text
input tool [136]. In Dasher, text is written continuously by “steering” towards the
letters to be input (see Figure 7.7). A wide variety of input devices can be used with
Dasher, including mice, eye trackers, and head switches. When controlling Dasher
using the nose tracker, we have achieved a rate of 12 words per minute (wpm) [16]; for
comparion, subjects using eye trackers achieve rates between 15 and 25 wpm [136].

7.5 Discussion

There are several conclusions we can draw from the results presented in this chapter.
First, we have seen that the combination of range and intensity data yields a substantial
improvement in performance on the facial feature detection task compared to either
type of data alone. We will see a similar effect for face detection in Chapter 8, and

111

we see this as evidence that the combination of range and intensity makes the tof

camera a powerful tool for a variety of object detection tasks. Within the context of the
European Network of Excellence cogain [27], we have used the facial feature tracker
to control Dasher, an alternative text input tool.

Second, we have explored how features can be computed in spatial coordinates
using the nonequispaced fast Fourier transform (nfft). This eliminates the typical
problem of scale variations that occur in image coordinates when the distance of the
object from the camera changes. Working in spatial coordinates avoids the need for
dealing with scale variations in some other way, for example with an image pyramid
that contains multiple versions of the same image at different scales. However, using
the scale-invariant spatial-coordinate features is not just a question of convenience;
an approach that deals with scale variations after the fact, using an image pyramid or
other means, is potentially more prone to false detections because it cannot distinguish
between a large, distant false positive and a closer, smaller true detection that has
the same apparent size. In contrast, an approach based on spatial-coordinate features
will only produce detections that match the true physical scale of the object to be
detected. As we have seen, a facial feature detector based on spatial-coordinate features
does indeed have better detection performance than one based on image-coordinate
features.

The disadvantage of our current approach to computing spatial-coordinate features
is that it requires more computation than the image-coordinate features and is thus
not suitable for interactive applications on current hardware. It is a question for future
research to investigate whether a similar result can be achieved with less computation.
Since the distance to each pixel is known, this could be used to compensate for the
effect of distance on the value of image-coordinate features. Alternatively, the distance
value could be passed to the classifier as an additional feature; a suitable classifier
might be able to learn the relationship between distance and feature values from the
training data.

Another open question is how the concept of computing features in spatial coor-
dinates could be applied not only to range features but also to intensity features.
Whereas the object surface can be defined as a function z(x, y) on the x-y-plane, in-
tensity should properly be defined as a function on the object surface, an irregularly
shaped two-dimensional manifold. Moreover, intensity itself decreases as distance in-
creases because there is less and less light arriving per surface area. To obtain features
that are distance-invariant, this effect also needs to be compensated for.

On a general level, we believe we have shown how the tof camera can deal with
some of the variations that occur in conventional cameras because of the nonlinearities
introduced by the perspective projection. The range map measured by the tof camera
effectively allows this perspective projection to be inverted, thereby eliminating the
corresponding nonlinearities.

112

8 Face Detection

In this chapter, we will examine how a time-of-flight camera can be used for face detec-
tion. We will extend the well-known face detection algorithm of Viola and Jones [132]
to tof images; as we will show in the results section, the detector trained on the com-
bined range and intensity data not only has a higher detection rate than detectors
trained on either type of data alone, but it also requires fewer features and therefore
has a shorter running time.

The Viola-Jones face detector is computationally very efficient while at the same time
achieving good detection rates. This is due to three important characteristics: (i) The
detector is based on image features that can be evaluated quickly and in constant time,
independent of the size of the feature; (ii) the detector selects a set of highly discrimi-
native image features using the AdaBoost algorithm; (iii) the detector is structured into
a cascade of progressively more sophisticated stages. Since most candidate regions in
an image are very dissimilar to a face, the early stages of the cascade can discard these
regions with little computation; the later stages of the cascade, which require more
computation, need to process only a small proportion of candidate regions.

The attractive properties of the Viola-Jones face detector have motivated a large
number of researchers to extend this work in various ways, including the use of differ-
ent features, modifications to the AdaBoost algorithm, and the application to different
types of object detection tasks (see e.g. [6, 22, 84]). The algorithm has also already been
applied to tof data [58]. However, this previous work does not extend the Viola-Jones
detector itself to use range features; instead, a standard Viola-Jones detector trained on
images from a conventional camera is used to find candidate faces in the tof image;
a final detector stage then computes the average distance of each candidate from the
range map and rejects candidates whose size does not match the expected size of a
face at this distance.

In contrast, the approach we will use is to include range features as well as intensity
features in the set of features used by the detector. As we will show in the results
section, the features chosen by the resulting detector consist of an approximately equal
number of range and intensity features; the detector has a higher detection rate and
shorter running time than detectors trained on the same training samples, but using

Parts of this chapter are joint work with Kolja Riemer, who wrote most of the code as part of his diploma
thesis [113], which he conducted under my supervision. A revised version of the work described here
has been published in [19].

113

������� ������� ������	

����� ����� �����

���� ���� ����
���

�	���

	�	���	�	��� 	�	���

Figure 8.1: Cascade structure of the Viola-Jones face detector.

either the range or the intensity information alone. This underlines the results from
the facial feature detection task in Chapter 7, where the combination of range and
intensity also yielded better detection performance than either type of data alone.

8.1 Method

We use the basic face detection method of Viola and Jones [132] (which we will sum-
marize briefly) but extend the set of features used to both range and intensity features.
Since the method was first described, a number of authors have made improvements
to the method (see e.g. [6, 22, 84]), but we use the original algorithm here because we
are initially more interested in the difference made by using range data rather than in
absolute performance.

The Viola-Jones face detector consists of a cascade of stages that typically become
more sophisticated as one progresses through the cascade (see Figure 8.1). The idea
is that the overwhelming majority of subregions in an image are nonfaces, and that
most of these subregions are “easy”, i.e. they can be identified as nonfaces with little
computation. Thus, the first stage of the detector contains a computationally efficient
classifier that can immediately reject most subregions as being nonfaces; no further
processing is carried out on these subregions. Only a small fraction of subregions (both
true faces and “hard” nonfaces) are passed on to the next stage for further processing.
This next stage performs more computation and, by doing so, can again reject most of
the subregions as being nonfaces, passing only a small fraction of subregions on to the
next stage, and so on. In this way, the average effort per subregion is kept low because
the overwhelming majority of subregions are rejected in the first few stages.

If the detection rate and false-positive rate of the i-th stage (on the input it receives
from the previous stage) are di and fi, then the overall detection and false-positive
rates of an n-stage cascade are D = ∏n

i=1 di and F = ∏n
i=1 fi, respectively. A common

approach is to train each stage to achieve the same detection rate d and false-positive

114

vertical
two-bar

vertical
three-bar

horizontal
two-bar

horizontal
three-bar chessboard

Figure 8.2: Haar-like features used by the Viola-Jones face detector. The feature value
is obtained by summing the pixels in the white rectangle(s), then subtracting the sum
of pixels in the black rectangle(s).

rate f on its respective input; this results in overall detection and false-positive rates
of D = dn and F = f n.

Each cascade stage is a boosted classifier trained using the AdaBoost algorithm [45];
a boosted classifier combines several weak classifiers (each of which performs only
slightly better than chance) into a strong classifier (which performs substantially better
than the individual weak classifiers). The weak classifiers in the Viola-Jones algorithm
are obtained by applying a threshold to an image feature.

The image features, finally, are composed of adjacent rectangles (see Figure 8.2);
the pixels within each rectangle are summed together, and the resulting values are
added or subtracted to obtain the final feature value. For example, the value of the
“vertical two-bar” feature is obtained by summing the pixels in the white rectangle
and subtracting the sum of pixels in the black rectangle. These features (which are
often called Haar-like features because of their similarity to Haar wavelets) have the
advantage that they can be evaluated in constant time, independent of their size, using
a data structure known as an integral image.

The feature set for training the detector is obtained by scaling these features to all
possible widths and heights and translating them to all possible positions in the image.
Also, each feature (at each size and position) may be evaluated either on the range data
or on the intensity data.

Training of the cascade now proceeds as follows. We begin with a training set of face
and nonface image patches of constant size. These are used to train the first cascade
stage to the desired detection and false-positive rate (evaluated on a validation set).
Now, because the next stage will never see those nonface patches that the first stage
rejects, we discard all nonface samples rejected by the first stage from the training and
validation set, keeping only the false positives. To bring the training and validation
set back to their original sizes, we generate new nonface samples by scanning the
cascade that has been trained so far across a set of images not containing faces and
adding those subregions that the cascade erroneously classifies as faces to the training

115

or validation set until both have been replenished. We continue adding stages to the
cascade in this way until the false-positive rate of the cascade reaches a set target.

Detection proceeds by scanning the cascade across the input image in steps of a
certain size. To be able to detect faces of different sizes, the subwindow processed by
the detector, along with the features contained in it, is progressively scaled up by a
certain factor until it reaches the size of the complete image.

8.2 Results

The training data for the face detector were recorded using a SwissRanger sr3000 cam-
era [100]. The training set consists of 1310 images (with a resolution of 176 × 144 pixels)
showing faces of 17 different persons, in different orientations and with different facial
expressions, as well as 4980 images not containing faces. Each face image was labelled
by hand with a square bounding box containing the face; some background was in-
cluded in the bounding box, since previous researchers had reported that this yielded
slightly better results than a more tightly cropped bounding box (see the discussion in
[132, Section 5.1]).

The images were split up into a training, validation, and test set, containing 70%,
23%, and 7% of the images, respectively. (The training set is used to select the best
weak classifiers for each cascade stage, the validation set is used to evaluate whether
the stage has reached its goal detection rate and false-positive rate, and the test set is
used to test the final cascade after training is completed.) Face images were cropped
to the face bounding box and resized to 24 × 24 pixels (see Figure 8.3 for examples).
To increase the number of face images in each set, we added versions of each image
that were rotated left and right by 3 degrees. After this step, a mirrored version of
each face image (including the rotated ones) was also added to the set. The nonface
images were full frames of 176 × 144 pixels; to generate examples for training the first
cascade stage, subimages of 24 × 24 pixels were cut out of the nonface images. For the
second and subsequent stages, new negative examples were generated by scanning
the cascade trained so far across the nonface images and collecting false positives (see
also Section 8.1).

In all, there were 5412 faces and 3486 nonface images in the training set, 1752 faces
and 1145 nonface images in the validation set, and 534 faces and 349 nonface images
in the test set. The data set is publicly available at www.artts.eu/publications/3d_
tof_db, and a competition for time-of-flight face detection based on this dataset has
been announced (see www.artts.eu/events/competition).

We trained a detector on the combined range and intensity data as well as on the
range and intensity data alone. The target detection rate and false-positive rate for
each stage were set to d = 0.995 and f = 0.4, respectively; the target false positive rate

116

Figure 8.3: Examples of intensity images from the face training set.

for the complete detector was set to 10−8. The range-and-intensity detector as well as
the range-only detector were successfully trained to this target rate. Training of the
intensity-only detector did not reach the target rate; training was stopped manually
when the detector had added over 1500 features to the cascade stage it was training
and the false-positive rate of the stage had stagnated without reaching the goal rate.
(This is a typical sign that the detector can no longer generalize from the training to
the validation set.) We trained another intensity detector with a lower detection rate
per stage of d = 0.99; training for this detector did complete, but its performance
was consistently worse than that of the detector with d = 0.995 whose training was
aborted. For this reason, we will only use the latter detector in the tests that follow. In
addition, we also attempted a training run for all three detectors with d = 0.997; the
range-and-intensity detector was the only detector that completed the training, and
we will show the results for this detector along with the results for all three detectors
with d = 0.995.

Figure 8.4 shows roc curves (computed as in [22]) for the detectors. The range-
and-intensity detector with d = 0.997 outperformed all other detectors across the
whole range of false-positive rates. Comparing the three detectors with d = 0.995, we
find that for false positive rates above 1.5 · 10−6, the intensity-only detector achieves a
slightly higher detection rate than the range-and-intensity detector. Below this point,
the range-and-intensity detector achieves better detection rates. Both detectors are
markedly better than the range-only detector over the whole range of false-positive
rates shown.

All detectors achieve good detection rates even for a false-positive rate of zero. This
is an indication that our test set is relatively “easy” compared to, for instance, the
mit+cmu test set [115], on which the Viola-Jones algorithm produces slightly higher

117

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

false positive rate

de
te

ct
io

n
ra

te

d=0.997:
range & intensity

d=0.995:
range & intensity
intensity
range

Figure 8.4: ROC curves for the detectors trained on the combined range and intensity
data as well as both types of data separately.

error rates [132]. Whereas the mit+cmu test set contains images from a variety of
sources, including text and line drawings, our test set consists solely of images taken
with a single camera. Also, because of the active illumination, the lighting is the same
across all images. We believe these factors combine to make the test set “easier”.

We will now examine the cascade structure of the detectors, i.e. the number of fea-
tures used in each stage together with the detection rate and false-positive rate for
each stage.

We first compare the three detectors with d = 0.995 (Table 8.1). The first thing
that is noticeable is that the first stage of the range-and-intensity detector achieves
a false-positive rate of zero on the validation set, i.e. the false-positive rate was too
small to measure on the validation set. When this first stage was run on the set of
full-frame test images, its false positive rate was 0.05%. In other words, the first stage
already eliminates 99.95% of nonfaces. For comparison, the first stages of the other
two detectors had false-positive rates of 18.9% (intensity) and 7.1% (range).

To understand why the first stage of the range-and-intensity detector has such good
performance, consider Figure 8.5, which shows the features used by this stage: A ver-
tical three-bar range feature and a horizontal three-bar intensity feature. From the
sample training image underlayed under the features, it is evident that the range fea-

118

detection rate false-positive rate number of features

Stage individual cumulative individual cumulative total intensity range
ra

ng
e

&
in

te
ns

it
y

1 1.000 1.000 0.000 1.0e-02 2 1 1

2 0.995 0.995 0.165 1.6e-03 2 1 1

3 0.995 0.991 0.138 2.3e-04 2 1 1

4 0.995 0.986 0.394 8.9e-05 7 4 3

5 0.995 0.981 0.290 2.6e-05 7 3 4

6 0.995 0.976 0.385 1.0e-05 12 5 7

7 0.995 0.971 0.334 3.3e-06 12 8 4

8 0.995 0.966 0.381 1.3e-06 15 9 6

9 0.995 0.961 0.380 4.8e-07 20 11 9

10 0.995 0.956 0.380 1.8e-07 22 13 9

11 0.995 0.951 0.368 6.8e-08 27 16 11

12 0.995 0.946 0.365 2.5e-08 44 26 18

13 0.995 0.941 0.391 9.6e-09 49 26 23

in
te

ns
it

y

1 0.999 0.999 0.189 1.9e-01 3 3 0

2 0.995 0.994 0.367 6.9e-02 15 15 0

3 0.995 0.989 0.340 2.4e-02 11 11 0

4 0.998 0.986 0.340 8.0e-03 6 6 0

5 0.997 0.983 0.391 3.1e-03 10 10 0

6 0.995 0.978 0.389 1.2e-03 17 17 0

7 0.995 0.973 0.376 4.6e-04 25 25 0

8 0.995 0.968 0.384 1.8e-04 23 23 0

9 0.995 0.963 0.386 6.8e-05 40 40 0

10 0.995 0.958 0.389 2.6e-05 59 59 0

11 0.995 0.953 0.392 1.0e-05 62 62 0

12 0.995 0.948 0.400 4.1e-06 107 107 0

13 0.995 0.943 0.396 1.6e-06 198 198 0

14 0.995 0.938 0.399 6.5e-07 117 117 0

15 0.995 0.934 0.390 2.5e-07 223 223 0

ra
ng

e

1 0.997 0.997 0.071 7.1e-02 2 0 2

2 0.995 0.992 0.285 2.0e-02 3 0 3

3 1.000 0.992 0.325 6.5e-03 3 0 3

4 0.995 0.987 0.373 2.4e-03 11 0 11

5 0.995 0.983 0.271 6.6e-04 17 0 17

6 0.995 0.978 0.374 2.5e-04 18 0 18

7 0.996 0.974 0.381 9.4e-05 10 0 10

8 0.995 0.969 0.388 3.6e-05 26 0 26

9 0.995 0.964 0.377 1.4e-05 29 0 29

10 0.995 0.959 0.396 5.4e-06 56 0 56

11 0.995 0.954 0.370 2.0e-06 42 0 42

12 0.995 0.949 0.381 7.7e-07 66 0 66

13 0.995 0.944 0.396 3.0e-07 114 0 114

14 0.995 0.940 0.382 1.2e-07 81 0 81

15 0.995 0.935 0.377 4.4e-08 111 0 111

16 0.995 0.930 0.380 1.7e-08 139 0 139

Table 8.1: Cascade structure of the detectors trained for a per-stage detection rate of
d = 0.995.

119

detection rate false-positive rate number of features

Stage individual cumulative individual cumulative total intensity range

ra
ng

e
&

in
te

ns
it

y

1 1.000 1.000 0.000 1.0e-02 2 1 1

2 0.998 0.998 0.241 2.4e-03 3 1 2

3 1.000 0.998 0.299 7.2e-04 3 2 1

4 1.000 0.998 0.385 2.8e-04 5 4 1

5 0.998 0.996 0.373 1.0e-04 6 3 3

7 0.997 0.993 0.343 3.6e-05 7 4 3

7 0.997 0.989 0.365 1.3e-05 8 3 5

8 0.997 0.986 0.385 5.0e-06 18 10 8

9 0.997 0.982 0.340 1.7e-06 15 8 7

10 0.997 0.979 0.348 5.9e-07 24 13 11

11 0.997 0.976 0.364 2.1e-07 21 11 10

12 0.997 0.972 0.390 8.4e-08 26 16 10

13 0.997 0.969 0.350 2.9e-08 35 20 15

14 0.997 0.966 0.394 1.2e-08 66 34 32

15 0.997 0.962 0.364 4.2e-09 48 29 19

Table 8.2: Cascade structure of the range-and-intensity detector trained for a per-stage
detection rate of d = 0.997.

ture responds to the range difference between the face and the background on either
side; the intensity feature seems to respond to the difference between the eye region
(which is typically darker) and the forehead and cheeks above and below (which are
typically lighter).

The fact that the first stage achieves a false-positive rate of zero on the validation
set is problematic for computing the false-positive rate of the entire cascade, which is
used during training to decide when the detector has reached its performance goal. To
be able to compute an overall false-positive rate, we conservatively assumed the false-
positive rate for this stage to be 0.01; this assumption is also used in the cumulative
rates shown in the table. The assumed rate of 0.01 is probably quite conservative
and only affects the overall false-positive rate computed during training, but not the
selection of weak classifiers or the false-positive rates computed on the test set.

Turning to the number of features per stage, we note that, in most stages, the range-
and-intensity detector requires noticeably fewer features to reach its target perfor-
mance than the other two detectors. Also, note that the range-and-intensity detector
uses an approximately equal number of range and intensity features in each stage
(with a tendency to use slightly more intensity features in the later stages). This indi-
cates that the range and intensity data contribute approximately the same amount of
information to the face detection task.

Table 8.2 shows the cascade structure of the range-and-intensity detector with d =
0.997. We see that the detector uses slightly more features than the d = 0.995 detector,
but the most obvious difference is that the d = 0.997 detector needs to accept higher

120

Figure 8.5: Features used by the first stage of the range-and-intensity detector. The blue
(vertical) feature is a range feature; the red (horizontal) feature is an intensity feature.

false-positive rates in the early stages to meet its goal detection rate: f2 = 0.241 and
f3 = 0.299 in stages 2 and 3 compared to f2 = 0.165 and f3 = 0.138 for the d = 0.995
detector. The effect of this is that the d = 0.997 detector requires two stages more than
the d = 0.995 detector to achieve the target false-positive rate for the whole cascade.

Finally, we turn to the running times for the various detectors (Table 8.3); for com-
parison, the table also shows the detection rates achieved for a zero false-positive rate
on the test set. The fastest detector is the range-and-intensity detector with d = 0.995.
It is more than two times faster than the intensity-only detector and slightly faster than
the range-only detector. This is despite the fact that the range-and-intensity detector
needs to perform twice the amount of preprocessing since it computes the integral im-
ages for both range and intensity. The range-and-intensity detector with d = 0.997 has
the best detection rate at the cost of a slightly higher running time than the d = 0.995
detector. Note that the running time for a detector is determined almost entirely by
the number of features used in the first few stages; the latter stages are evaluated so
rarely that they make almost no contribution to the running time.

8.3 Discussion

We have shown that, for the same parameter settings, a face detector trained on the
combined range and intensity data from a tof camera yields a higher detection rate
(95.3%) than a detector trained on either type of data alone (intensity: 93.8%, range:
91.2%). Furthermore, the range-and-intensity detector requires fewer features than the
other two detectors. This translates into faster running times: The range-and-intensity

121

Detector Detection rate Running time per frame

d = 0.997 range & intensity 95.5% 5.54 ms

d = 0.995 range & intensity 95.3% 5.15 ms
intensity 93.8% 10.69 ms
range 91.2% 5.51 ms

Table 8.3: Performance summary of the detectors on the various types of data. Detec-
tion rates are given for a zero false-positive rate on the test set. Running times include
preprocessing (computation of the integral images).

detector is over twice as fast as the intensity-only detector and slightly faster than the
range-only detector (which misclassifies almost twice as many faces).

The data obtained by the tof camera is in effect a two-channel image, where one
channel contains the range map and the other contains the intensity image. If the tof

camera is combined with a grayscale or rgb camera operating in the visible spectrum
(as is the case in the 3dv Systems ZCam [1], for instance, see Section 5.1 and Fig-
ure 5.1d), it would be straightforward to extend the method to the additional channels
obtained in this way.

The detector we used was a “stock” Viola-Jones face detector. Even better results
might be possible using features that are specifically tuned to the type of structures
typically found in range images. One could also investigate the idea of combining
range and intensity information in a single feature. Additionally, the many refine-
ments that have been made to the Viola-Jones algorithm since its inception could be
incorporated.

Though there is thus much room for future work on improving detection perfor-
mance, we are here not primarily interested in the maximum absolute performance
that a tof face detector can achieve but rather in the relative difference in performance
between face detection on combined range and intensity data versus either type of
data alone. We believe that the advantage of the combined range and intensity detec-
tor in terms of robustness and speed should be preserved when refinements are made
to the underlying algorithms; whether this indeed holds true is a question for future
research.

122

Outlook

I have already discussed the results presented in this thesis individually at the end of
the corresponding chapters. Now, I will try to take a wider view and give an outlook
on where I believe the area of computer-vision-based interaction is headed.

Do we even need new types of interaction? The way we interact with computers has
remained largely unchanged since the mouse and graphical user interface (gui) were
invented at the Stanford Research Institute and Xerox parc in the 1960s and brought
into widespread use by the Apple Macintosh in 1984. This can mean one of two things.
One possible explanation is that, like the user-interface of the car, human-computer
interaction has reached its logical endpoint, its optimum. But while it is plausible that
we have found the ideal interface for the relatively simple task of driving, I find it hard
to believe that the same is true for the computer, which, thanks to its programmability,
is an almost infinitely malleable general-purpose tool, for which new uses are being
found all the time and whose capabilities continue to grow at an astounding rate. I
am therefore inclined to believe in the alternative explanation: That, under the surface
of the gui, the tectonic plates have been shifting, building up stresses and strains that,
sooner or later, will be released in a major upheaval – one in which I believe computer
vision will play an important part.

The gaming industry may already be feeling some of the tremors. After the advent
of video games in the 1970s, game interaction saw a “quiet period” with little innova-
tion in the style of interaction, similar to the situation in general-purpose computing.
For three decades, players interacted with games using the joystick or its cousin, the
joypad, as well as those old acquaintances from general-purpose computing, the key-
board and mouse. In recent years, however, gaming has seen something of an inter-
action revolution. The Sony EyeToy can be considered to mark the beginning of this
development. Introduced in 2003, the EyeToy itself is simply a camera that is placed
on the game display, facing the user. The games introduced with it, however, defined
a new interaction style by sensing the player’s movements in the camera image to pro-
vide hands-off, gesture-based game control. The game console Nintendo Wii bases its
entire concept on novel forms of interaction. The primary controller for the Wii, called
the Wii Remote, contains accelerometers for sensing the player’s hand movements as
well as a camera which, together with a strip of infrared leds placed near the display,
allows the console to deduce the position and orientation of the controller. The Nat-
uralPoint TrackIR is a head tracker for gaming which consists of a camera mounted

123

on the display and infrared markers worn on the player’s head. The player can move
the head to change the viewpoint and viewing direction in the virtual world. Finally, I
have already mentioned the 3dv Systems ZCam, a low-cost time-of-flight (tof) camera
aimed at the gaming market (see Chapter 5). The prototype camera developed within
the artts project, which is the smallest tof camera yet produced and is powered en-
tirely via the usb bus, advances the technology even further in the directions required
for gaming.

Interestingly, all of these interaction innovations use computer vision in one form
or another. Within the context of this thesis, the obvious question to ask is whether
the technologies discussed here – eye tracking and time-of-flight action recognition
and tracking – could add to the list of computer-vision-based interaction devices in
gaming and, eventually, in general-purpose computing.

In the case of time-of-flight technology, it seems that we will soon know. 3dv Sys-
tems, the manufacturer of the ZCam tof camera, was recently bought by Microsoft,
and Microsoft has already presented ideas for tof-based game interaction as part of
its concept study Project Natal. As we have seen in this thesis, face detection and fa-
cial feature tracking work more robustly on tof data than on conventional intensity
images (see Chapters 7 and 8). If this is true also for other detection and tracking
tasks (and I see no reason why it should not be), this robustness should make the tof

camera particularly suitable for consumer applications.
For eye tracking in games, on the other hand, price is still a hurdle – but the potential

demand is definitely there. In 2006, several colleagues and I exhibited results from the
project ModKog at the computer trade show cebit. One of the exhibits was a gaze-
controlled game. After trying it, many visitors asked enthusiastically how much it
would cost them to buy an eye tracker so they could play at home. Their enthusiasm
was dampened when they heard the price. Recent work on low-cost eye trackers built
from off-the-shelf hardware may, however, help to overcome this hurdle – and the
automatic calibration technique described in Chapter 4 could help make eye trackers
easy enough for consumers to use.

If this discussion has focused on gaming, it is not because I think that it is the
only field where computer-vision-based interaction is viable – quite the contrary. I
believe the success of these new interaction styles will spill over into general-purpose
computing and indeed beyond to other types of devices. It is not unprecedented for
gaming to trigger innovation in computing: modern graphics processing units (gpus)
are an example of this. Originally developed for the sole purpose of rendering ever
more detailed and realistic game environments, modern gpus are now being used
as high-performance vector processors for general-purpose computing tasks. Time-of-
flight technology and eye tracking may well take a similar course.

124

Bibliography

[1] 3DV ZCam, 3DV Systems, Yokne’am, Israel. http://www.3dvsystems.com.

[2] Alea IG-30 System, Alea Technologies GmbH, Teltow, Germany. http://www.

alea-technologies.de.

[3] EU project ARTTS (Action Recognition and Tracking based on Time-of-Flight
Sensors). http://www.artts.eu.

[4] David A. Atchison and George Smith. Optics of the Human Eye. Butterworth
Heinemann, Oxford, UK, 2000.

[5] Shumeet Baluja and Dean Pomerleau. Non-intrusive gaze tracking using artifi-
cial neural networks. In Advances in Neural Information Processing Systems (NIPS),
pages 753–760, 1993.

[6] Andre L. C. Barczak, Martin J. Johnson, and Chris H. Messom. Real-time compu-
tation of Haar-like features at generic angles for detection algorithms. Research
Letters in the Information and Mathematical Sciences, 9:98–111, 2006.

[7] Erhardt Barth, Terry Caelli, and Christoph Zetzsche. Image encoding, labeling,
and reconstruction from differential geometry. CVGIP: Graphical Models and Im-
age Processing, 55(6):428–446, November 1993.

[8] Erhardt Barth, Michael Dorr, Martin Böhme, Karl R. Gegenfurtner, and Thomas
Martinetz. Guiding the mind’s eye: improving communication and vision by ex-
ternal control of the scanpath. In Bernice E. Rogowitz, Thrasyvoulos N. Pappas,
and Scott J. Daly, editors, Human Vision and Electronic Imaging, volume 6057 of
Proc. SPIE, 2006. Invited contribution for a special session on Eye Movements,
Visual Search, and Attention: a Tribute to Larry Stark.

[9] Jan Beirlant, Edward J. Dudewicz, László Györfi, and Edward Cornelis van der
Meulen. Nonparametric entropy estimation: An overview. International Journal
of Mathematical and Statistical Sciences, 6(1):17–39, 1997.

[10] Paul J. Besl and Ramesh C. Jain. Invariant surface characteristics for 3D ob-
ject recognition in range images. Computer Vision, Graphics, and Image Processing,
33:33–80, 1986.

125

[11] David Beymer and Myron Flickner. Eye gaze tracking using an active stereo
head. In Proceedings of Computer Vision and Pattern Recognition (CVPR), volume 2,
pages 451–458, 2003.

[12] Chistopher Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006.

[13] Kenneth R. Boff and Janet E. Lincoln. Engineering Data Compendium: Human
Perception and Performance. AAMRL, Wright-Patterson AFB, OH, 1988.

[14] Martin Böhme and Erhardt Barth. Challenges in Single-Camera Remote Eye-
Tracking. In 1st Conference on Communication by Gaze Interaction (COGAIN), Copen-
hagen, Denmark, 2005.

[15] Martin Böhme, Michael Dorr, Mathis Graw, Thomas Martinetz, and Erhardt
Barth. A software framework for simulating eye trackers. In Proceedings of Eye
Tracking Research & Applications (ETRA), pages 251–258, 2008.

[16] Martin Böhme, Martin Haker, Thomas Martinetz, and Erhardt Barth. A facial
feature tracker for human-computer interaction based on 3D Time-of-Flight
cameras. International Journal of Intelligent Systems Technologies and Applications,
5(3/4):264–273, 2008.

[17] Martin Böhme, Martin Haker, Thomas Martinetz, and Erhardt Barth. Shading
constraint improves accuracy of time-of-flight measurements. In CVPR 2008
Workshop on Time-of-Flight-based Computer Vision (TOF-CV), 2008.

[18] Martin Böhme, Martin Haker, Thomas Martinetz, and Erhardt Barth. Shading
constraint improves accuracy of time-of-flight measurements. Computer Vision
and Image Understanding, 2009. (in revision).

[19] Martin Böhme, Martin Haker, Kolja Riemer, Thomas Martinetz, and Erhardt
Barth. Face detection using a time-of-flight camera. In Dynamic 3D Imaging –
Workshop in Conjunction with DAGM, volume 5742 of Lecture Notes in Computer
Science, pages 167–176, 2009.

[20] Martin Böhme, André Meyer, Thomas Martinetz, and Erhardt Barth. Remote
eye tracking: State of the art and directions for future development. In The
2nd Conference on Communication by Gaze Interaction – COGAIN 2006, Turin, Italy,
pages 10–15, 2006.

[21] Xavier L. C. Brolly and Jeffrey B. Mulligan. Implicit calibration of a remote
gaze tracker. In Proceedings of the 2004 Conference on Computer Vision and Pattern
Recognition Workshop (CVPRW ’04), volume 8, page 134, 2004.

126

[22] S. Charles Brubaker, Jianxin Wu, Jie Sun, Matthew D. Mullin, and James M. Rehg.
On the design of cascades of boosted ensembles for face detection. International
Journal of Computer Vision, 77(1–3):65–86, 2008.

[23] Andreas Bulling, Daniel Roggen, and Gerhard Tröster. Wearable EOG goggles:
Seamless sensing and context-awareness in everyday environments. Journal of
Ambient Intelligence and Smart Environments, 1(2):157–171, 2009.

[24] Bernhard Büttgen, Thierry Oggier, Michael Lehmann, Rolf Kaufmann, and Felix
Lustenberger. CCD/CMOS lock-in pixel for range imaging: Challenges, limita-
tions, and state-of-the-art. In 1st Range Imaging Research Day, pages 21–32, ETH
Zürich, Switzerland, 2005.

[25] Canesta DP200 Electronic Perception Technology Development Platform,
Canesta, Inc., Sunnyvale, CA, USA. http://www.canesta.com.

[26] Jacques R. Charlier, Maurice Behague, and Cathy Buquet. Shift of the pupil
center with pupil constriction. Investigative Ophthalmology and Visual Science,
35(4):1278, 1994.

[27] COGAIN. Network of Excellence on Communication by Gaze Interaction. http:
//www.cogain.org.

[28] COGAIN. D3.1 User requirements report with observations of difficulties users
are experiencing. Technical report, European Union Network of Excellence CO-
GAIN (contract no. IST-2003-511598) of the 6th Framework Programme, 2005.
http://www.cogain.org/results/reports/COGAIN-D3.1.pdf.

[29] COGAIN. D3.2 Report on features of the different systems and develop-
ment needs. Technical report, European Union Network of Excellence CO-
GAIN (contract no. IST-2003-511598) of the 6th Framework Programme, 2006.
http://www.cogain.org/results/reports/COGAIN-D3.2.pdf.

[30] Tom N. Cornsweet and Hewitt D. Crane. Accurate two-dimensional eye tracker
using first and fourth Purkinje images. Journal of the Optical Society of America,
63(8):921–928, 1973.

[31] James Edwin Cryer, Ping-Sing Tsai, and Mubarak Shah. Integration of shape
from shading and stereo. Pattern Recognition, 28(7):1033–1043, 1995.

[32] Edmund Burke Delabarre. A method of recording eye-movements. American
Journal of Psychology, 9(4):572–574, 1898.

127

[33] James R. Diebel and Sebastian Thrun. An application of Markov random fields
to range sensing. In Advances in Neural Information Processing Systems 18, pages
291–298, 2006.

[34] James R. Diebel, Sebastian Thrun, and Michael Brünig. A Bayesian method for
probable surface reconstruction and decimation. ACM Transactions on Graphics,
25(1):39–59, 2006.

[35] Raymond Dodge and Thomas Sparks Cline. The angle velocity of eye move-
ments. Psychological Review, 8(2):145–157, 1901.

[36] Michael Dorr, Laura Pomarjanschi, and Erhardt Barth. Gaze beats mouse: A case
study on a gaze-controlled Breakout. PsychNology, 7(2):197–211, 2009.

[37] Andrew T. Duchowski. Eye Tracking Methodology: Theory and Practice. Springer,
New York, 2003.

[38] Jean-Denis Durou, Maurizio Falcone, and Manuela Sagona. Numerical methods
for shape-from-shading: A new survey with benchmarks. Computer Vision and
Image Understanding, 109(1):22–43, 2008.

[39] Jean-Denis Durou and Didier Piau. Ambiguous shape from shading with critical
points. Journal of Mathematical Imaging and Vision, 12(2):99–108, 2000.

[40] Epitex Incorporation, Kyoto, Japan. http://www.epitex.com.

[41] Thor Eysteinsson, Fridbert Jonasson, Hiroshi Sasaki, Arsaell Arnarsson, Thor-
dur Sverrisson, Kazuyuki Sasaki, Einar Stefánsson, and the Reykjavik Eye
Study Group. Central corneal thickness, radius of the corneal curvature and
intraocular pressure in normal subjects using non-contact techniques: Reykjavik
eye study. Acta Ophthalmologica Scandinavica, 80:11–15, 2002.

[42] Ian Fasel, Bret Fortenberry, and Javier Movellan. A generative framework for real
time object detection and classification. Computer Vision and Image Understanding,
98(1):182–210, 2005.

[43] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27:861–874, 2006.

[44] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2002.

[45] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

128

[46] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW.
Proceedings of the IEEE, 93(2):216–231, 2005.

[47] Pascal V. Fua and Yvan G. Leclerc. Object-centered surface reconstruction: Com-
bining multi-image stereo and shading. International Journal of Computer Vision,
16(1):35–56, 1995.

[48] Wilson S. Geisler and Jeffrey S. Perry. A real-time foveated multiresolution
system for low-bandwidth video communication. In Bernice E. Rogowitz and
Thrasyvoulos N. Pappas, editors, Human Vision and Electronic Imaging: SPIE Pro-
ceedings, volume 3299 of Proc. SPIE, pages 294–305. 1998.

[49] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-
Wesley Longman Publishing Co., Inc, Boston, MA, USA, second edition, 2001.

[50] Elias Daniel Guestrin and Moshe Eizenman. General theory of remote gaze
estimation using the pupil center and corneal reflections. IEEE Transactions on
Biomedical Engineering, 53(6):1124–1133, 2006.

[51] Tom S. F. Haines and Richard C. Wilson. Integrating stereo with shape-from-
shading derived orientation information. In British Machine Vision Conference,
volume 2, pages 910–919, 2007.

[52] Tom S. F. Haines and Richard C. Wilson. Combining shape-from-shading and
stereo using Gaussian-Markov random fields. In International Conference on Pat-
tern Recognition, pages 1–4, 2008.

[53] Martin Haker, Martin Böhme, Thomas Martinetz, and Erhardt Barth. Geometric
invariants for facial feature tracking with 3D TOF cameras. In Proceedings of the
IEEE International Symposium on Signals, Circuits & Systems (ISSCS), volume 1,
pages 109–112, Iasi, Romania, 2007.

[54] Martin Haker, Martin Böhme, Thomas Martinetz, and Erhardt Barth. Scale-
invariant range features for time-of-flight camera applications. In CVPR 2008
Workshop on Time-of-Flight-based Computer Vision (TOF-CV), 2008.

[55] Radim Halı́ř and Jan Flusser. Numerically stable direct least squares fitting
of ellipses. In Proceedings of the 6th International Conference in Central Europe on
Computer Graphics, Visualization and Interactive Digital Media (WSCG’98), volume 1,
pages 125–132, 1998.

[56] Dan Witzner Hansen. Committing Eye Tracking. PhD thesis, The IT University of
Copenhagen, Denmark, 2004.

129

[57] Dan Witzner Hansen and Qiang Ji. In the eye of the beholder: A survey of models
for eyes and gaze. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2009. (to appear).

[58] Dan Witzner Hansen, Rasmus Larsen, and François Lauze. Improving face de-
tection with TOF cameras. In Proceedings of the IEEE International Symposium on
Signals, Circuits & Systems (ISSCS), volume 1, pages 225–228, 2007.

[59] Dan Witzner Hansen and Arthur E. C. Pece. Eye tracking in the wild. Computer
Vision and Image Understanding, 98(1):155–181, 2005.

[60] John Paulin Hansen, Allan W. Andersen, and Peter Roed. Eye-gaze control of
multimedia systems. In Proceedings of the 6th International Conference on Human
Computer Interaction, pages 37–42, 1995.

[61] Keith Hartt and Mark Carlotto. A method for shape-from-shading using multi-
ple images acquired under different viewing and lighting conditions. In Proceed-
ings of Computer Vision and Pattern Recognition, pages 53–60, 1989.

[62] Werner Haustein. Considerations on Listing’s Law and the primary position
by means of a matrix description of eye position control. Biological Cybernetics,
60(6):411–420, 1989.

[63] Horst G. Heinol. Untersuchung und Entwicklung von modulationslaufzeitbasierten
3D-Sichtsystemen. PhD thesis, University of Siegen, Germany, 2001.

[64] Heliopan Lichtfilter-Technik Summer GmbH & Co KG, Munich, Germany. http:
//www.heliopan.de.

[65] Craig Hennessey, Borna Noureddin, and Peter Lawrence. A single camera eye-
gaze tracking system with free head motion. In Proceedings of Eye Tracking Re-
search & Applications (ETRA), pages 87–94, 2006.

[66] Dennis Howitt and Duncan Cramer. Introduction to Research Methods in Psychol-
ogy. Pearson / Prentice Hall, Harlow, New York, 2005.

[67] Edmund Burke Huey. Preliminary experiments in the physiology and psychol-
ogy of reading. American Journal of Psychology, 9(4):575–586, 1898.

[68] Thomas E. Hutchinson, K. Preston White, Jr., Worthy N. Martin, Kelly C. Re-
ichert, and Lisa A. Frey. Human-computer interaction using eye-gaze input.
IEEE Transactions on Systems, Man, and Cybernetics, 19:1527–1533, 1989.

[69] Gabi J. Iddan and Giora Yahav. 3D imaging in the studio. In Proceedings of SPIE,
volume 4298, pages 48–56, 2001.

130

[70] ifm efector pmd, ifm electronic GmbH, Essen, Germany. http://www.

ifm-electronic.com.

[71] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based vi-
sual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(11):1254–1259, 1998.

[72] Robert J. K. Jacob. The use of eye movements in human-computer interaction
techniques: What you look at is what you get. ACM Transactions on Information
Systems, 9(3):152–169, 1991.

[73] Bernd Jähne, Horst Haußecker, and Peter Geißler, editors. Handbook of Computer
Vision and Applications. Academic Press, San Diego, USA, 1999.

[74] Jeremy Yermiyahou Kaminski, Mina Teicher, Dotan Knaan, and Adi Shavit.
Three-dimensional face orientation and gaze detection from a single image. 2004.

[75] Jens Keiner, Stefan Kunis, and Daniel Potts. Using NFFT 3 – a software library
for various nonequispaced fast Fourier transforms. ACM Transactions on Mathe-
matical Software, 36(4), 2009. (to appear).

[76] Wolf Kienzle, Bernhard Schölkopf, Felix A. Wichmann, and Matthias O. Franz.
How to find interesting locations in video: a spatiotemporal interest point de-
tector learned from human eye movements. In Proceedings of the 29th Annual
Symposium of the German Association for Pattern Recognition (DAGM 2007), pages
405–414, Berlin, Germany, 2007. Springer Verlag.

[77] Andreas Kolb, Erhardt Barth, Reinhard Koch, and Rasmus Larsen. Time-of-flight
cameras in computer graphics. Computer Graphics Forum. (to appear).

[78] Stefan Kunis and Daniel Potts. Stability results for scattered data interpolation by
trigonometric polynomials. SIAM Journal on Scientific Computing, 29:1403–1419,
2007.

[79] Robert Lange. 3D Time-of-Flight Distance Measurement with Custom Solid-State
Sensors in CMOS/CCD-Technology. PhD thesis, University of Siegen, Germany,
2000.

[80] Yvan G. Leclerc and Aaron F. Bobick. The direct computation of height from
shading. In Computer Vision and Pattern Recognition (CVPR ’91), pages 552–558,
1991.

[81] R. John Leigh and David S. Zee. The Neurology of Eye Movements. Oxford Univer-
sity Press, fourth edition, 2006.

131

[82] Lexus LS driver monitoring system. http://www.lexus.co.uk/range/ls/

key-features/safety/safety-driver-monitoring-system.aspx. (Accessed
on 20 May 2008).

[83] Dongheng Li, David Winfield, and Derrick J. Parkhurst. Starburst: A hybrid al-
gorithm for video-based eye tracking combining feature-based and model-based
approaches. In Proceedings of the IEEE Vision for Human-Computer Interaction Work-
shop at CVPR, pages 1–8, 2005.

[84] Rainer Lienhart, Alexander Kuranov, and Vadim Pisarevsky. Empirical analysis
of detection cascades of boosted classifiers for rapid object detection. In Proceed-
ings of the 25th Annual Symposium of the German Association for Pattern Recognition
(DAGM), pages 297–304, 2003.

[85] Jin Liu and Siegmund Pastoor. Computer-aided video-based method for contact-
lessly determining the direction of view pertaining to an eye of a user for the
eye-guided interaction between human beings and computers and a device for
carrying out said method, 2001. World Patent WO0133323.

[86] Lumenera Corp., Ottawa, Canada. http://www.lumenera.com.

[87] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 1. Academic
Press, New York, 1979.

[88] George W. McConkie and Keith Rayner. The span of the effective stimulus dur-
ing a fixation in reading. Perception & Psychophysics, 17:578–586, 1975.

[89] John Merchant, Richard Morrissette, and James L. Porterfield. Remote measure-
ment of eye direction allowing subject motion over one cubic foot of space. IEEE
Transactions on Biomedical Engineering, 21(4):309–317, 1974.

[90] MESA SR4000, MESA Imaging AG, Zürich, Switzerland. http://www.

mesa-imaging.ch.

[91] André Meyer. Single-camera remote eye tracking. Diploma thesis, Universität
zu Lübeck, 2006.

[92] André Meyer, Martin Böhme, Thomas Martinetz, and Erhardt Barth. A single-
camera remote eye tracker. In Perception and Interactive Technologies, volume 4021

of Lecture Notes in Artificial Intelligence, pages 208–211. Springer, 2006.

[93] I. L. Meyers. Electronystagmography: A graphic study of the action currents in
nystagmus. Archives of Neurology and Psychiatry, 21:901–908, 1929.

132

[94] Carlos H. Morimoto, Arnon Amir, and Myron Flickner. Detecting eye position
and gaze from a single camera and 2 light sources. In Proceedings of the 16th
International Conference on Pattern Recognition, volume 4, pages 314–317, 2002.

[95] Carlos H. Morimoto and Marcio R. M. Mimica. Eye gaze tracking techniques
for interactive applications. Computer Vision and Image Understanding, 98(1):4–24,
2005.

[96] Mostafa G.-H. Mostafa, Sameh M. Yamany, and Aly A. Farag. Integrating shape
from shading and range data using neural networks. In Computer Vision and
Pattern Recognition (CVPR ’99), volume 2, page 2015, 1999.

[97] Cicero Mota and Erhardt Barth. On the uniqueness of curvature features. In
Dynamische Perzeption, volume 9 of Proceedings in Artificial Intelligence, pages 175–
178, 2000.

[98] Sateesha G. Nadabar and Anil K. Jain. Fusion of range and intensity images on
a Connection Machine (CM-2). Pattern Recognition, 28(1):11–26, 1995.

[99] Donald A. Norman. The Design of Everyday Things. Doubleday, New York, 1990.

[100] Thierry Oggier, Bernhard Büttgen, Felix Lustenberger, Guido Becker, Björn
Rüegg, and Agathe Hodac. SwissRanger™ SR3000 and first experiences based
on miniaturized 3D-TOF cameras. In Proceedings of the 1st Range Imaging Research
Day, pages 97–108, Zürich, Switzerland, 2005.

[101] Takehiko Ohno and Naoki Mukawa. A free-head, simple calibration, gaze track-
ing system that enables gaze-based interaction. In Eye Tracking Research and
Applications (ETRA), pages 115–122, 2004.

[102] Takehiko Ohno, Naoki Mukawa, and Atsushi Yoshikawa. Freegaze: A gaze track-
ing system for everyday gaze interaction. In Eye Tracking Research and Applications
(ETRA), pages 125–132, 2002.

[103] Open Computer Vision Library (OpenCV). http://www.sourceforge.net/

projects/opencvlibrary.

[104] Martin T. Orne. On the social psychology of the psychological experiment: With
particular reference to demand characteristics and their implications. American
Psychologist, 17:776–783, 1962.

[105] Pentax Europe GmbH, Hamburg, Germany. http://www.pentax.de.

[106] Alex Pentland, Baback Moghaddam, and Thad Starner. View-based and modular
eigenspaces for face recognition. In IEEE Conference on Computer Vision & Pattern
Recognition, pages 84–91, 1994.

133

[107] Antonio Pérez, Maria Luisa Córdoba, Antonio Garcı́a, Rafael Méndez, Luisa Mu
noz, José Luis Pedraza, and Francisco Sánchez. A precise eye-gaze detection and
tracking system. In Proceedings of the 11th International Conference in Central Europe
of Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic,
2003.

[108] Maurizio Pilu. Self-calibration for an eye tracker, 2005. United States Patent
Application US 2005/0225723 A1.

[109] PMD[vision] CamCube, PMD Technologies, Siegen, Germany. http://www.

pmdtec.com.

[110] Daniel Potts, Gabriele Steidl, and Manfred Tasche. Fast Fourier transforms for
nonequispaced data: A tutorial. In John J. Benedetto and Paulo J. S. G. Fer-
reira, editors, Modern Sampling Theory: Mathematics and Applications, pages 247–
270. Birkhäuser, Boston, 2001.

[111] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C. Cambridge University Press, Cambridge, UK, second
edition, 1992.

[112] Daniel C. Richardson and Michael J. Spivey. Eye-tracking: Characteristics and
methods. In Gary E. Wnek and Gary L. Bowlin, editors, Encyclopedia of Biomate-
rials and Biomedical Engineering, pages 568–572. Marcel Dekker, Inc., 2004.

[113] Kolja Riemer. Gesichtsdetektion mit Time-of-Flight-Kameras. Diploma thesis,
Universität zu Lübeck, 2008.

[114] David A. Robinson. A method of measuring eye movement using a scleral search
coil in a magnetic field. IEEE Transactions on Biomedical Engineering, 10:137–145,
1963.

[115] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Neural-network-based
face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):23–38, 1998.

[116] Dimitrios Samaras, Dimitris Metaxas, Pascal V. Fua, and Yvan G. Leclerc. Vari-
able albedo surface reconstruction from stereo and shape from shading. In Pro-
ceedings of Computer Vision and Pattern Recognition, volume 1, pages 480–487, 2000.

[117] Erich Schneider and Thomas Eggert. Methoden der Augenbewegungsmessung.
Invited talk at the convention of the Deutsche Gesellschaft für klinische Neu-
rophysiologie und funktionelle Bildgebung, 2006. http://www.forbias.de/

papers/dgkn06.pdf.

134

[118] E. Schott. Über die Registrierung des Nystagmus und anderer Augenbewegun-
gen vermittels des Seitengalvanometers. Deutsches Archiv für Klinische Medizin,
140:79–90, 1922.

[119] Rudolf Schwarte, Horst G. Heinol, Zhanping Xu, and Klaus Hartmann. New
active 3D vision system basd on rf-modulation interferometry of incoherent light.
In Intelligent Robots and Computer Vision XIV, volume 2588 of Proceedings of SPIE,
pages 126–134, 1995.

[120] Sheng-Wen Shih, Yu-Te Wu, and Jin Liu. A calibration-free gaze tracking tech-
nique. In Proceedings of the 15th International Conference on Pattern Recognition,
pages 201–204, 2000.

[121] SMI iView X Hi-Speed 1250, SensoMotoric Instruments GmbH, Teltow, Germany.
http://www.smivision.com.

[122] SMI iView X RED, SensoMotoric Instruments GmbH, Teltow, Germany. http:

//www.smivision.com.

[123] Susan Standring. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. Elsevier
Churchill Livingstone, Edinburgh, New York, 39th edition, 2004.

[124] Andreas Straube and Ulrich Büttner. Neuro-Ophthalmology: Neuronal Control of
Eye Movements. Karger, Basel, Switzerland, 2007.

[125] Lawrence A. Symons, Kang Lee, Caroline C. Cedrone, and Mayu Nishimura.
What are you looking at? Acuity for triadic eye gaze. The Journal of General
Psychology, 131(4):451–469, 2004.

[126] Clay Matthew Thompson. Robust photo-topography by fusing shape-from-
shading and stereo. AI Technical Report 1411, Massachusetts Institute of Tech-
nology, 1993.

[127] Tobii 1750 eye tracker, Tobii Technology AB, Stockholm, Sweden.

[128] Tobii Technology AB, Stockholm, Sweden. Product Description ClearView 2.7 Eye
gaze analysis software, 2006.

[129] Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer
Vision. Prentice Hall, 1998.

[130] Eleonora Vig, Michael Dorr, and Erhardt Barth. Efficient visual coding and the
predictability of eye movements on natural movies. Spatial Vision, 22(5):397–408,
2009.

135

[131] Arantxa Villanueva, Gintautas Daunys, Dan Witzner Hansen, Martin Böhme,
Rafael Cabeza, André Meyer, and Erhardt Barth. A geometric approach to re-
mote eye tracking. Universal Access in the Information Society, 2009. (to appear).

[132] Paul Viola and Michael Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, 2004.

[133] Hermann von Helmholtz. Handbuch der physiologischen Optik. Voss, Hamburg,
Leipzig, 3rd edition, 1910.

[134] Nicholas Wade and Benjamin W. Tatler. The Moving Tablet of the Eye: The Origins
of Modern Eye Movement Reserach. Oxford University Press, 2005.

[135] Peng Wang, Matthew B. Green, Qiang Ji, and James Wayman. Automatic eye
detection and its validation. In IEEE Conference on Computer Vision & Pattern
Recognition, page 164, 2005.

[136] David J. Ward and David J. C. MacKay. Fast hands-free writing by gaze direction.
Nature, 418(6900):838, 2002.

[137] Bryn Wolfe and David Eichmann. A neural network approach to tracking eye
position. International Journal of Human-Computer Interaction, 9(1):59–79, 1997.

[138] Giora Yahav, Gabi J. Iddan, and David Mandelboum. 3D imaging camera for
gaming application. In International Conference on Consumer Electronics, pages
1–2, 2007.

[139] Alfred L. Yarbus. Eye Movements and Vision. Plenum Press, New York, 1967.

[140] Dong Hyun Yoo and Myung Jin Chung. A novel non-instrusive eye gaze esti-
mation using cross-ratio under large head motion. Computer Vision and Image
Understanding, 98:25–51, 2005.

[141] Laurence R. Young. Recording eye position. In Manfred Clynes and John H.
Milsum, editors, Biomedical Engineering Systems. McGraw-Hill, New York, 1970.

[142] Laurence R. Young and David Sheena. Survey of eye movement recording meth-
ods. Behavior Research Methods & Instrumentation, 7(5):397–439, 1975.

[143] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape from
shading: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(8):690–706, 1999.

[144] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

136

Index

active appearance model (aam), 13

active illumination, 13

AdaBoost, 113, 115

affordances, i
aircraft, i
albedo, 81, 85

anatomy of the eye, 4

aqueous humour, 5, 20

augmentative and alternative commu-
nication (aac), 3

binocular eye tracking, 3, 12

body language, i
boosting, 115

bright-pupil effect, 13

calibration of eye trackers, 4, 38, 41, 56

automatic, 57, 58

calibration of time-of-flight cameras, 78

camera calibration, 26

camera model, 21

cascade of detectors, 114

click location
correlation with gaze direction, 59

cone (light-sensitive cell in the eye), 5

contact lens, 8

cornea, 4, 6, 16, 20

centre of curvature, 16

estimating position of, 33

corneal reflex, 13

detection of, 28

visibility of, 43

cr, see corneal reflex

Dasher, 111

demand characteristics, 64

demodulation contrast, 78, 79

dft, see discrete Fourier transform
difference of Gaussians (dog), 28

discrete Fourier transform, 104

disparity, 82

dpi tracker, 10

driver monitoring, 3

dual Purkinje image (dpi) tracker, 10

electro-oculography eog, 10

ellipse fitting, 21, 30

eog (electro-oculography), 10

equivalence range, 105

Expectation Maximization, 62

eye
anatomy, 4

optics, 6

eye detection, 13, 28

eye model, 16, 30

effect of inaccuracies in parameters,
46

estimation of parameters, 38, 48

eye movements, 7

eye position volume, 42

eye tracking, 3

cost of, 55

remote, 25

single-camera, 25

technology survey, 8

tolerance towards glasses, 56

137

versus gaze tracking, 3

eyelids, 20

face detection, 113

facial feature tracking, 97

fast Fourier transform, 102

feature position error, 21

feedback
physical, i

fft, see fast Fourier transform
field of view, 12

fill factor, 77

fixation (of the eye), 7

fixed-head eye tracker, 12

flying pixels, 80

fovea, 5, 6, 19

displacement from optical axis, 6,
19, 36

fusion
of range and intensity data, 81

Gaussian curvature, 98

gaze direction, 3

gaze estimation, 13, 16

remote, 30

test of algorithm, 45

gaze guidance, 3

gaze tracking
versus eye tracking, 3

gaze-contingent displays, 3

generalized eccentricites, 98

geometric features, 98

glint, see corneal reflex

Haar-like features, 115

head movement tolerance, 12

head-mounted eye tracker, 12

height field, 98

histogram analysis, 29

illumination, 13

for eye tracking, 12, 26

illumination inhomogeneity, 87

image analysis
for eye tracking, 13, 16, 28

image improvement, 81

image pyramid, 97

image-coordinate features, 102

infrared led, 26, 71

infrared filter, 26, 72

infrared illuminator, see infrared led

integral image, 115

interferometry, 75

invasiveness of eye trackers, 12

iris of the eye, 5

jump edges, 96

Lambertian reflectance model, 83, 85

laser scanner
time-of-flight, 75

triangulating, 74

lens of the eye, 5, 6

limbus, 20

line of sight (los), 3

Listing’s law, 19

modulation frequency, 71, 80

Monge patch, 98, 102

monocular eye tracking, 3, 12

motion artefacts, 80

mouse position
correlation with gaze direction, 59

multibandlimit, 104

multiple reflections, 79

ndft, see nonequispaced discrete Fourier
transform

nfft, see nonequispaced fast Fourier trans-
form

nodal points of the eye, 6

non-ambiguity range, 71

138

non-verbal communication, i
nonequispaced discrete Fourier transform,

104

nonequispaced fast Fourier transform,
102, 103

ophthalmoscopy, 57

optical axis of the eye, 6, 19

finding direction of, 35

optics of the eye, 6

pan-tilt camera, 12, 21

photographic eye tracking, 8

photometric stereo, 75

photon shot noise, 78

physical feedback, i
pinhole camera model, 21

point of regard (por), 3

pupil centre, 21, 28

error in position of, 35, 45

pupil of the eye, 5, 18

pupil segmentation, 29

pupil-cr technique, 14, 22

Purkinje images, 10

radial filter tuning function, 99

range sensors
comparison of, 72

recalibration, 41

receiver operating characteristic, see roc

curve
reflection

law of, 18

refraction
law of, 18

region of interest (roi), 55

remote eye tracker, 12

remote eye tracking, 25

retina, 5

roc curve, 107, 117

rod (light-sensitive cell in the eye), 5

saccade, 7

saliency, 67

scale invariance, 97

sclera, 4

scleral search coil, 8

search coil, 8

shading constraint, 81

shape from focus, 75

shape from shading, 75, 81

fusion with stereoscopy, 82

shape prior, 83

simulation of eye trackers, 15, 42

single-camera eye tracking, 25

smooth pursuit (type of eye movement),
7

Snell’s law, 18

spatial-coordinate features, 103

speech recognition, i
Starburst algorithm, 28, 29

stereoscopy, 74

fusion with shape from shading, 82

structured light, 74

surface normals, 85

surface types, 101

systematic error
in eye tracking, 41

in time-of-flight cameras, 78

tessellation of range map, 86

time-of-flight camera, 71

accuracy, 78

limitations, 79

use of multiple cameras, 80

working principle, 76

tof camera, see time-of-flight camera
tolerance to head movements, 12

torsional eye movements, 19

triangulation, 25, 72

verbal communication, i

139

vergence, 7

video-oculography (vog), 10

Viola-Jones face detector, 113, 114

visual axis of the eye, 7, 19

visual saliency, 67

vog, see video-oculography

140

