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Abstract

In this thesis, we are concerned with two major challenges in computational
learning theory: learning in the presence of large amounts of irrelevant infor-
mation and learning from noisy data. We model the former issue by assuming
that the concepts to be learned depend only on few relevant attributes—such
concepts are called juntas. The latter issue is modeled by a random noise process
that affects attribute and classification values. Thereby, we confine ourselves to
studying Boolean attributes and classifications. We approach the coincidence of
both issues from two different perspectives.

First, we investigate a specific greedy algorithm for finding the relevant at-
tributes of a Boolean concept. This algorithm is very simple and successfully
used in practice. We provide a precise characterization of the concepts for which
the greedy algorithm is successful. This characterization is based on a property
of the Fourier spectrum of the concept under consideration. In addition, we show
that the algorithm can tolerate quite general attribute and classification noise.

Second, we design and analyze Fourier-based algorithms with the explicit goal
of efficiently learning large classes of juntas from uniformly distributed noise-
corrupted examples. It turns out that the Fourier method and an extension of
the greedy method are capable of learning exactly the same concept classes with
equal efficiency. We extend the Fourier approach to non-uniformly distributed
examples and prove that monotone juntas and parity functions with few relevant
variables can be efficiently learned in this setting.

Both approaches are inefficient in learning the class of parity juntas from
uniformly distributed noisy examples. For this task, we propose an alternative
method, which is based on the method of minimizing the disagreements be-
tween the learning data and the output hypothesis. While the running time of
this method is also very high, it works independently of the input distribution.
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Furthermore, we prove lower bounds on the sample size that is necessary for
successful learning of parity juntas from noisy data in terms of certain noise
parameters.

As a side-product, we prove a characterization of general learnability from
noise-affected uniformly distributed examples.
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CHAPTER 1

Introduction and Summary

1.1 Motivation

In this thesis, we deal with topics from computational learning theory. This field
studies algorithms that allow computers to learn. Specifically, we are concerned
with the design and analysis of efficient learning algorithms that can deal at the
same time with large amounts of irrelevant information and with noisy data.

A typical data mining scenario is the following: a sequence of training data
points is given, each of which consists of an attribute vector and a classification
value. The latter is generated according to an unknown target concept, which
is a function that maps attribute vectors to classification values. The goal is
to produce a hypothesis that, given only an attribute vector not present in the
training data, predicts the correct classification value with high probability.

Often, it is the case that the data points contain huge amounts of irrelevant
information, i.e., the classification only depends on a small subset of all at-
tributes. For instance, the attribute vectors may be medical records of patients,
and the classification indicates whether the patient has a certain disease. The
goal is here to identify a small number of attributes that suffice to be checked
in order to make an accurate diagnosis. Thereby, it is important to know the
minimum number of medical records that are needed to infer a good prediction
rule. As another example, the data points may correspond to aligned biological
sequences (such as DNA or protein sequences), and the classification may de-
pend only on a few active base positions. Further examples are the classification
of web pages, the evaluation of experimental measurements, or the processing of

1



2 Chapter 1. Introduction and Summary

astronomical data.
When modeling the learning scenario for these examples, it is desirable to

take into account that the given data are affected by some kind of noise, e.g.,
due to imprecise measurements, errors occurring during data submission, fuzzy
specifications, or other sources of interference.

From a theoretical perspective, learning in the presence of large amounts of
irrelevant information and learning from noisy data are among the most challeng-
ing issues of algorithmic learning theory and have attracted considerable interest
in the past. In this thesis, we investigate what happens when these worlds col-
lide: if an unknown concept depends only on a small number of attributes, how
can we learn the target concept from randomly chosen examples that are cor-
rupted by attribute and classification noise? Here, we confine ourselves to look
at Boolean attributes and classifications only.

Specifically, we consider a learning model in which the learning algorithm
receives a sample that consists of random noisy examples of the form

(x1 ⊕ ξ1, . . . , xn ⊕ ξn, f(x1, . . . , xn)⊕ ζ) ∈ {0, 1}n × {0, 1} ,

where the attribute vectors x = (x1, . . . , xn) are distributed according to an at-
tribute distribution D, the attribute noise vectors ξ = (ξ1, . . . , ξn) are distributed
according to an attribute noise distribution P , and the classification noise bit ζ is
set to 1 with some probability η, called the classification noise rate. We assume
that the unknown target concept f : {0, 1}n → {0, 1} depends only on a small
but unknown set of variables xi1 , . . . , xid , where d is much smaller than n. Such
functions are called d-juntas.

The goal of researchers in this area has been to design fast attribute-efficient
algorithms, meaning that the number of examples needed to learn successfully
may depend only logarithmically (or poly-logarithmically) on the number n of all
attributes. Concerning the number d of relevant attributes, however, exponential
dependence on d is often necessary because of information-theoretic reasons. In
addition, the output hypotheses are represented by their truth tables of size 2d

(which in the worst case is the most efficient representation). For restricted
classes of juntas, it also makes sense to require polynomial dependence in the
description size of the target concept (which may be much smaller than 2d), but
as we are mainly interested in the worst case, we exclude this issue from our
agenda. Ideally, the running time of the algorithms should be polynomial in n
and 2d (and other natural learning parameters). However, for arbitrary juntas,
this goal seems out of reach for the time being and may even be impossible.

Already the case of noise-free data (which becomes a special case of the sce-
nario above by letting P (0n) = 1 and η = 0) is highly interesting. Mossel,
O’Donnell, and Servedio [MOS04] believe that “the problem of efficiently learn-
ing k-juntas is the single most important open question in uniform distribution
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learning.” Also, Blum [Blu03] stresses the importance of the problem, offering
monetary rewards for partial solutions.

Using an exhaustive search algorithm, one can trivially learn the relevant
attributes of an arbitrary d-junta from O(2d · log n) noise-free examples in time
roughly nd, independently of the attribute distribution. For the uniform at-
tribute distribution, Mossel et al. [MOS04] have provided an essential improve-
ment of this bound. They achieve a running time of roughly n0.704·d. Their anal-
ysis combines a Fourier-based and a parity-based method. The former method
searches for nonzero Fourier coefficients of the target function up to a certain
level. The latter method solves a large system of linear equations over the two-
element field GF(2) with “parity variables” from an expanded variable space (see
also Definition 2.2.2). The Fourier method yields an algorithm for learning the
class of monotone d-juntas in time polynomial in n and 2d.

In the noise-free case, it suffices to correctly identify the relevant attributes
since the truth-table of the target concept can be deduced by restricting the
examples to the relevant attributes. This approach is impossible in case of noisy
data, where we have to seek for more clever methods to construct a suitable
hypothesis. Even worse: already the exhaustive search algorithm for finding the
relevant attributes fails for noisy data. In addition, as we argue in Chapter 6,
there is little hope that the parity-based method mentioned above has tractable
analogs in the scenario of corrupted data.

Concerning the noise distributions, we impose the following restrictions.
First, it is reasonable to require η 6= 1/2 since otherwise the classifications are
turned into purely random bits and learning is made impossible. We assume
that there exists a constant γb > 0 such that |1 − 2η| ≥ γb. Second, we require
the attribute noise distribution P to be γa-bounded for some constant γa > 0.
As a proper definition of γa-boundedness is a bit technical (see Definition 3.2.6),
we only mention here that product distributions with Pr[ξi = 1] ≤ 1

2
· (1 − γa)

for all i ∈ {1, . . . , n} are γa-bounded.

We see three directions of research departing from the current state of af-
fairs. The first direction is to design attribute-efficient learning algorithms that
improve known learnability results for d-juntas from noisy data in one of the
following senses. Either, for a given subclass of the d-juntas, the new algorithms
should be faster than all previous learning algorithms for that subclass. Or,
one may develop attribute-efficient algorithms that learn a concept class that is
strictly larger than what was known to be learnable before, in the same running
time.

The second direction is to derive lower bounds on the running time for
attribute-efficient learning of d-juntas, possibly based on complexity theoretic
hardness assumptions. Similarly, lower sample bounds for learning algorithms
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that run in polynomial time are of major interest. However, most such lower
bounds seem to be tightly connected to apparently hard open problems in com-
plexity theory.

As the third direction, it is worthwhile to study algorithms that are already
present in the literature. Especially, if an algorithm is successfully used in prac-
tice, it makes sense to analyze its performance in a theoretical framework. In
some situations, this may help to decide a priori whether an algorithm is likely
to be successful in a specific application or not. In our view, such analyses are
valuable even if the results do not contribute to the first direction of research
mentioned above, i.e., if they do not yield new general learnability results. Un-
derstanding the capacity of algorithms is a central task in computer science.

1.2 Results of this Thesis

We tackle the challenge of learning in the presence of noise and irrelevant infor-
mation from two different perspectives, which correspond to the third and to the
first research direction mentioned above. First, we study a specific greedy algo-
rithm that is very simple and efficient and already used quite often in practice.
We precisely characterize the class of concepts for which this algorithm succeeds
with high probability. We first prove the characterization for noise-free data and
then show that it also holds if the given data are affected by random attribute
and classification noise.

Second, we design an algorithm with the explicit goal of efficiently learning
a large class of concepts from noisy data. The only approach that seems to
work at all is to use Fourier analysis on the hypercube. This is particularly the
case if one does not only want to learn the relevant attributes but construct a
hypothesis that is supposed to be correct with high probability.

Finally, we take a look at the bottleneck of learning in the presence of noise
and irrelevant information: learning parity functions of a small number of vari-
ables from uniformly distributed noisy examples. We describe a new method to
learn such parity functions and prove some lower sample bounds with respect to
the noise parameter γa.

The respective results are detailed in the following subsections.

1.2.1 The Greedy Method

The greedy algorithm infers relevant attributes from random data. The task of
constructing an output hypothesis has to be completed by additional methods
(such as the Fourier method).
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To infer relevant attributes from the random sample S, the key task is to find
a minimal set of attributes R ⊆ {x1, . . . , xn} such that S admits a consistent
hypothesis h that depends only on the variables inR. By the principle of Occam’s
razor [BEHW87], if the sample size m is poly(2d, log n), with high probability
there remains only one such hypothesis—the target concept itself. We reduce the
problem of finding such a set R to the Set Cover problem, which is one of the
best studied NP-complete problems in complexity theory [GJ79]. The reduction
maps the sample S to the following Set Cover instance. The ground set is
the set of all pairs {k, `} with yk 6= y`. A pair {k, `} may be covered by any
attribute xi such that xki 6= x`i . The goal is to cover the ground set by as few
attributes as possible. This reduction opens the door to apply well-known greedy
heuristics: the most generic one, which we call Greedy, successively selects the
largest remaining set and deletes all covered elements, see Johnson [Joh74] or
Chvátal [Chv79].

To characterize the functions for which Greedy outputs the relevant at-
tributes, we introduce the notion of Fourier-accessibility. A function is Fourier-
accessible if and only if all of its relevant variables can be found by exploring
the Fourier support graph. This is the subgraph of the n-dimensional hypercube
induced by the subsets I with nonzero Fourier coefficients f̂(I). The exploration
starts with the empty set. Equivalent conditions are provided in Definition 2.4.6
and Lemma 2.4.7.

The readers who have little or no knowledge about Fourier analysis on the
hypercube should think of the Fourier coefficient f̂(I), I ⊆ {1, . . . , n}, as a mea-
sure for the correlation between the function value f(x) and the parity

⊕
i∈I xi,

where x ∈ {0, 1}n is drawn according to the uniform distribution. Several differ-
ent views of Fourier coefficients are presented in Section 2.2. Additionally, a view
on Fourier analysis on the hypercube from a more structural and mathematically
more sophisticated standpoint is briefly described in Section 7.2.

We prove that if the target concept f : {0, 1}n → {0, 1} is a Fourier-accessible
d-junta, then Greedy correctly infers all relevant variables of f under the uni-
form distribution from poly(2d, log n, log(1/δ)) examples with probability at least
1− δ. On the other hand, we show that if f is not Fourier-accessible, then the
error probability of Greedy is at least 1−d2/(n−d), independent of the sample
size. In particular, this probability tends to 1 as d is fixed and n → ∞ or as
d→∞ and n ∈ ω(d2). Thus, the average-case analysis of the greedy algorithm
results in a dichotomy: for a given concept, either the relevant variables are
inferred correctly with high probability or at least one relevant variable is not
detected at all with high probability.

There are simple functions that are not Fourier-accessible (see Example 2.4.8
(d)). This inspires us to extend the concept of Fourier-accessibility to τ -Fourier-
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accessibility (see Definition 2.4.9). Here, during the exploration of the Fourier
support graph, we allow for “jumping” to other connected components of Ham-
ming distance at most τ − 1. We devise an extension of Greedy that correctly
infers the relevant variables of a concept f if and only if f is τ -Fourier-accessible.

In another direction, we generalize our investigation of Greedy to the sce-
nario of noise-affected data. It turns out that the algorithm is very noise-tolerant.
As the only adaptations we have to undertake, we additionally have to provide
the algorithm with the number of relevant attributes and to feed it with a higher
number of examples. Specifically, we prove that the variant Greedyd correctly
finds the relevant attributes of Fourier-accessible concepts f , provided that the
number of given examples is polynomial in 2d, log n, log(1/δ), γ−da , and γ−1

b (see
Theorem 4.5.3).

In addition to Greedy, we investigate an even simpler greedy strategy: in-
stead of deleting the covered elements in each round and iteratively computing
the resulting sizes of the remaining sets, Greedy Ranking simply ranks the
sets once in the beginning and then selects the largest ones until all ground el-
ements are covered. No set sizes are recalculated. We prove that this variant
learns the relevant attributes of a function f if and only if f is 1-low. In general,
a function is τ -low if for each relevant variable xi there exists an I ⊆ {1, . . . , n}
such that i ∈ I, |I| ≤ τ , and the Fourier coefficient f̂(I) is nonzero. In partic-
ular, every τ -low function is also τ -Fourier accessible, and the notions coincide
for symmetric concepts. Analogously to the results obtained for Greedy, we
generalize Greedy Ranking to cope exactly with the class of τ -low concepts.
Furthermore, we prove that Greedy Ranking is as robust against noise as
Greedy is.

The main techniques that we employ to derive our results for the greedy
algorithm are as follows. First, we express the size of certain sets (related to
the Set Cover instance) by means of the sizes of certain other sets that corre-
spond to additionally introduced parity variables xI =

⊕
i∈I xi (Lemma 4.2.1).

This way of computing the set size can be seen as a special counting technique
that is similar to the inclusion-exclusion principle. Second, we derive a Chernoff
style deviation bound for certain set sizes (Lemma 4.2.2). Finally, we find a con-
nection between these expected set sizes and corresponding Fourier coefficients
(Lemma 4.2.3).

On the one hand, greedy algorithms have been studied by many researchers.
On the other hand, there is long tradition of using properties of the Fourier
spectrum of Boolean functions in the design of learning algorithms. The con-
ceptual novelty of our analysis lies in the fact that the Greedy algorithm does
not exploit any properties of the Fourier spectrum explicitly. Nonetheless, we
show that Fourier-accessibility is necessary and sufficient for this algorithm to
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work successfully. Thus, we obtain a purely analytical characterization for the
correctness set of a nontrivial greedy algorithm.

1.2.2 The Fourier Method

While the characterization of the concepts for which the simple greedy algorithm
is successful is not at all obvious (at least not to us), design and analysis of the
Fourier-based algorithms go hand in hand. As a consequence, the results for the
latter algorithms are easier to understand from a conceptual point of view. The
focus in our exposition is therefore on explaining which problems occur when
trying to transfer methods from the noise-free scenario to the noisy case.

Moreover, while we do not know how to analyze Greedy in case of non-
uniformly distributed attributes, the use of Fourier analysis allows us to extend
the Fourier method (with some additional effort) to this setting, at least for prod-
uct distributions. Finally, there is another advantage of the Fourier method: it
naturally leads to the construction of a hypothesis (as opposed to only detecting
the relevant attributes).

Concerning the task of designing an algorithm for learning juntas from noisy
data, we show that the class of τ -low d-juntas is exactly learnable from m =
poly(log n, 2d, log(1/δ), γ−da , γ−1

b ) uniformly-distributed noisy examples in time
nτ · poly(m,n, 2d). As a main application, the class of monotone d-juntas, for
which τ = 1, is learnable from uniformly distributed noisy examples in time
poly(n, 2d, log(1/δ), γ−da , γ−1

b ). Similarly to the Fourier method described by
Mossel et al. [MOS04], the idea is to find the relevant attributes by approxi-
mating all Fourier coefficients f̂(I) for |I| ≤ τ , albeit in our setting from highly
disturbed data.

As we have already mentioned, finding the relevant variables does not suffice
to build a suitable hypothesis. Instead, we restrict the examples to the relevant
variables and apply a learning algorithm for arbitrary concepts. The restriction
is essential since in this way, the number of examples needed to build a hypothesis
does not depend on n but only on d. The learning algorithm uses the Fourier-
based learning approach originated by Linial, Mansour, and Nisan [LMN93] and
extended to the noisy scenario by Bshouty, Jackson, and Tamon [BJT03]. A
direct application of the algorithm of Bshouty et al. yields a sample complexity
of nd+O(1). By first applying our procedure to detect all relevant attributes, we
significantly improve this sample complexity to depend only poly-logarithmically
on n (and exponentially on d).

We extend our methods to certain non-uniform attribute distributions. More
precisely, we assume that the attribute distribution D is a product distribution,
i.e., in each example, each attribute xi is independently set to 1 with some
probability di. To exclude pathological cases, we impose the restriction that
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d1, . . . , dn ∈ [γc, 1 − γc] for some γc > 0. Furthermore, we assume that there
exists a ρ > 0 such that for all relevant variables xi, |f̂(i)| ≥ ρ. We show
that in this setting, the relevant attributes of d-juntas are learnable from m =
poly(log n, 2d, log(1/δ), ρ−1, γ−1

a , γ−1
b , γ−1

c ) noisy examples in time poly(m,n). In
particular, we show that for monotone d-juntas, we can choose ρ = 2γdc , and for
parity functions of up to d variables, we can choose ρ = 2γcθ

d−1, provided that
|1 − 2di| ≥ θ > 0 for all i ∈ {1, . . . , n}. For the uniform attribute distribution,
i.e., for the case d1 = . . . = dn = 1/2, the latter class is likely to be not efficiently
learnable from noisy data, as we argue in Chapter 6.

To output a hypothesis that is correct with probability at least 1 − δ, we
need m = poly(log n, 2d

2
, log(1/δ), γ−da , γ−1

b , ρ−1) noisy examples and a running
time of poly(m,n), provided that γc ≥ 0.2764. It turns out that the extension
is not as straightforward as one might first think. The method for the case of
uniformly distributed attributes relies on the fact that the orthonormal basis of
parity functions is compatible with the exclusive or operation used in the noise
model. This is no longer the case for the biased orthonormal bases that are
appropriate for non-uniform distributions. We solve this problem by combining
unbiased parity functions with biased inner products. As a consequence, the
analysis becomes a lot more intricate; in order to approximate a biased Fourier
coefficient f̂(I), I ⊆ [n], one already has to have good approximations to all
coefficients f̂(J), J ( I.

Although the greedy algorithms and the Fourier method are based on totally
different ideas, it turns out that they are successful for essentially the same
concept classes. For instance, Greedy Ranking and 1-Fourier learn the
relevant attributes of the same class of concepts, namely the 1-low concepts, in
polynomial time. Similarly, τ-Greedy Ranking and τ-Fourier both learn
the relevant attributes of τ -low concepts in time roughly nτ . Both methods are
attribute-efficient. Moreover, slight modifications of the Fourier algorithms are
also capable of learning Fourier-accessible functions (see also Chapter 7).

Historically, we have constructed the Fourier-based algorithms before we had
found the Fourier-theoretic analysis of the greedy algorithm and its extensions.
Prior to the development of the latter insight, the hope was that the combinato-
rial greedy approach might be able to deal with concepts for which the Fourier
approach fails (or takes nω(1) steps). Quite the contrary, it turned out that both
methods are equally powerful.

1.2.3 Further Results

We introduce the noise operator TP which maps a function f : {0, 1}n → R to
TP (f) : {0, 1}n → R. For x ∈ {0, 1}n, the value TP (f)(x) is the expectation
of f(x ⊕ ξ), where ξ is drawn according to the attribute noise distribution P .
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This operator is helpful for simplifying the proofs of some results of Bshouty et
al. [BJT03] by embedding them into a more structural framework. Specifically,
their noisy distance ∆(f, g) between two Boolean functions f and g is equal to
‖TP (f −g)‖1, whereas a related measure they introduce turns out to be equal to
‖TP (f−g)‖22. We extend a positive learning result of Bshouty et al. by providing a
more general condition under which their “LMN-style” learning algorithm works
(Theorem 3.6.3). Furthermore, we complement the results of Bshouty et al. by
proving a general learnability characterization: a concept class C is learnable
with accuracy parameter ε from noisy examples if and only if the noisy distance
between any pair of ε-far concepts in C is positive. This characterization yields
positive and negative results for general learnability from noisy data. As an
example, we prove that without restricting the attribute noise distributions to
be γa-bounded, noise-tolerant learning is impossible in general: as we show in
Theorem 3.7.3, there is a simple concept class that is impossible to learn under
the (a priori known) noise distribution P constructed in Example 3.2.7. This
shows that our results cannot be extended to arbitrary noise distributions. On
the other hand, we show that any concept class is in principle learnable under
any γa-bounded attribute noise distribution.

The Fourier method and the extended greedy method both need roughly nd

steps to learn the relevant variables of parity functions with at most d relevant
variables. Thus, different methods are needed for parity functions.

After reviewing the current state of affairs for parity junta learning in Sec-
tion 6.1, we propose an alternative method for learning parities of few variables
under attribute and classification noise: it first reduces the setting to pure clas-
sification noise and then uses the method of minimizing the number of disagree-
ments between the hypothesis and the noisy input data, which has been proposed
by Angluin and Laird [AL88]. Unfortunately, the complexity of disagreement
minimization seems to be no lower than the complexity of the Fourier-based
method. Some complexity theoretic issues are discussed in Section 6.1.

We show that the success of the latter approach is closely related to the
noise stability introduced in Section 3.4. For the class of all parities of up to d
attributes, the noisy distance is always larger than the noise stability: while
the noise stability is equal to the absolute value of the smallest eigenvalue λI ,
|I| ≤ d, of the noise operator, the noisy distance is equal to half the absolute
value of the second smallest such eigenvalue. We present an example in which the
disagreement minimization fails although the concept class under consideration
is learnable in principle.

For γa-bounded attribute noise distributions with γa > 0, the noise stabil-
ity (and hence also the noisy distance) of the class of parity juntas are always
positive. Exploiting a lower bound due to Bshouty et al. [BJT03], we show that
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any learning algorithm for the class of d-juntas on n attributes needs Ω(γ−da )
examples. In this respect, the results for the greedy and the Fourier algorithms
are optimal.

1.3 Related Work

1.3.1 Learning from Noise-free Data

The general learning model considered in this thesis is a variant of Valiant’s
PAC learning model [Val84]. In most of our applications, this variant fixes the
attribute distribution (as opposed to the original distribution-free framework).

There is a long tradition of relating algorithmic learning problems to spectral
properties of Boolean functions, see, e.g., Linial, Mansour, and Nisan [LMN93],
Kushilevitz and Mansour [KM93], Mansour [Man94], Blum et al. [BFJ+94], and
Bshouty and Tamon [BT96]. Specifically, as we have mentioned already, Mossel,
O’Donnell, and Servedio [MOS04] have combined spectral and algebraic methods
to learn the class of all n-ary d-juntas in roughly n0.704·d steps. For symmetric
juntas (i.e., juntas invariant under permutations of the relevant attributes), this
has been improved to n(3/31)d by Lipton et al. [LMMV05] and subsequently to
nO(d/ log(d)) by Kolountzakis, Markakis, and Mehta [KMM05]. Recently, Köbler
and Lindner [KL06] have provided a survey article on learning via the Fourier
transform.

Fourier analysis on the hypercube has been studied by many researchers, both
under uniform distribution (see, e.g., Lechner [Lec71], Bernasconi [Ber98], and
Štefankovič [Šte00]) and under non-uniform distribution (see Bahadur [Bah61],
Furst, Jackson, and Smith [FJS91], Bshouty and Tamon [BT96], and Serve-
dio [Ser04]). More information on the Fourier transform of locally compact
Abelian groups can be found in Loomis [Loo53, Chapter VII] and Katznel-
son [Kat04, Chapter VII]. Terras [Ter99] and Štefankovič [Šte00] provide a lot
of applications of Fourier analysis on finite groups.

In data mining, the mere goal of determining the relevant attributes is also
known as (a simple form of) (relevant) feature (subset) selection or dimension
reduction. It serves as a preprocessing before applying the actual induction
scheme, which may then concentrate on producing a suitable hypothesis from
a much smaller amount of data. Blum and Langley [BL97] distinguish between
embedded approaches (such as Littlestone’s Winnow [Lit87]), filter approaches
(such as the greedy algorithm considered in this thesis), and wrapper approaches
to relevant feature selection, see also John, Kohavi, and Pfleger [JKP94]. Prefer-
ring hypotheses that depend on fewer attributes has been called the min-features
bias by Almuallim and Dietterich [AD94], who also remark that such functions
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are semantically simpler in that they consider fewer aspects of the data.

Inferring relevant attributes is also related to the well-studied problem of
finding association rules (also called functional dependencies or functional re-
lations) (e.g., see Agrawal, Imelienski, and Swami [AIS93] and Mannila and
Räihä [MR92]). In the variant considered in this paper, the target attribute Y is
fixed (and considered as a classification) as by Akutsu et al. [AB96, AMK03].

Efficient inference of relevant attributes is applied in computational biol-
ogy [AMK00], investigation of chemical structures [AB96], data mining in cor-
porate and scientific records [BL97]. Additionally, Blum and Langley [BL97]
have pointed out that the “internet has put a huge volume of low-quality infor-
mation at the easy access of learning systems.” A variety of further applications
can be found in the literature, see, e.g., Littlestone [Lit87], Almuallim and Di-
etterich [AD94], and Blum and Langley [BL97].

For relevant feature selection, the reduction to Set Cover and the greedy
approach have been proposed independently by Almuallim and Dietterich [AD94]
and Akutsu and Bao [AB96]. Experimental results have been obtained for ar-
tificially generated instances as well as for real-world data from various areas,
see Almuallim and Dietterich [AD94], Akutsu, Miyano, and Kuhara [AMK00,
AMK03], and Boros et al. [BHI+03]. Akutsu et al. [AMK03] have shown how to
implement Greedy such that its running time is only O(mnd), where m denotes
the number of given examples, n denotes the total number of attributes, and d
denotes the number of relevant attributes.

For uniformly distributed attributes, Akutsu et al. [AMK03] have proved
that with high probability, Greedy successfully infers the relevant variables for
the concept class of conjunctions of attributes or their negations (i.e., Boolean
monomials) and that a small sample size polynomial in 2d and log n already
suffices. Fukagawa and Akutsu [FA05] have extended this result to functions
f that are unbalanced with respect to all of their relevant variables (i.e., for
x uniformly chosen at random, Pr[f(x) = 1|xi = 0] 6= Pr[f(x) = 1|xi = 1]
for each relevant xi). This condition is equivalent to our property of 1-lowness.
Since there are concepts that are Fourier-accessible but not 1-low (see Exam-
ple 2.4.8 (b)), we improve Fukagawa and Akutsu’s positive learning result for
the greedy algorithm to a strictly larger class of concepts. Furthermore, we are
not aware of any negative results for the greedy algorithm prior to ours.

A function that has f̂(i) = 0 for all i ∈ [n] has been called difficult by Rosell
et al. [RHRP05] since greedy tree learners cannot find the relevant variables by
computing the information gain in this case. They propose to use the method
of skewing to artificially derive an instance that is distributed differently from
the original input instance.

Restricted classes of concepts with few relevant attributes have been studied
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by Haussler [Hau88], Littlestone [Lit87], Blum, Chalasani, and Jackson [BCJ93],
Valiant [Val99], Servedio [Ser05], and others.

Some authors consider the mistake-bounded learning model. In this on-line
setting, one tries to minimize the number of examples for which the current hy-
pothesis turns out to be wrong. There are several ways known how to convert on-
line algorithms with low mistake bounds into efficient PAC learning algorithms
(see Angluin [Ang87], Angluin and Laird [AL88], and Littlestone [Lit89]).

In some other learning models, the complexity of learning juntas is settled.
As Mossel et al. [MOS04] mention, learning the class of all n-ary d-juntas from
membership queries is easy, whereas the same task using statistical queries only
is provably hard [Kea98]. An algorithm that uses membership queries can ask
for the classification bits of specific points, whereas an algorithm that uses sta-
tistical queries can ask for the expected value of arbitrary {0, 1}-valued functions
s(x, f(x)) up to a certain accuracy. Statistical query algorithms can be easily
converted into PAC learning algorithms. In addition, statistical query algorithms
work in the presence of classification noise.

Also, for distribution-free PAC learning, several hardness results are known,
both for general settings [PV88] and for restricted classes of juntas [BCJ93,
Ser05].

1.3.2 Learning from Noisy Data

Angluin and Laird [AL88] were the first to investigate PAC learning in the pres-
ence of classification noise, whereas attribute-noise was first considered for the
class of k-DNF formulas by Shackelford and Volper [SV88] and later by Decatur
and Gennaro [DG95]. Bshouty, Jackson, and Tamon [BJT03] introduced the
notion of noisy distance between concepts and showed how this quantity relates
to learning from uniformly distributed examples in the presence of attribute
and classification noise. If the noise distribution can be arbitrary and is un-
known to the learning algorithm, then learning nontrivial classes is impossible,
see Bshouty et al. [BJT03]. Goldman and Sloan [GS95] have shown that even if
the attribute noise distribution is restricted to be a product distribution, then
all noise rates must be bounded by twice the accuracy parameter (which is 2−d

for exactly learning d-juntas). However, Bshouty et al. [BJT03] have shown that
it suffices to approximate certain noise parameters to obtain positive results.
Miyata, Tarui, and Tomita [MTT04] proved that if one restricts all noise rates
to be equal to the same value, then AC0 can be learned in quasi-polynomial
time without any knowledge of this value. For our purposes, when dealing with
γa-bounded attribute noise distributions and a classification noise rate η that
satisfies |1 − 2η| ≥ γb > 0, it suffices to have knowledge of the bounds γa, γb
to infer the relevant variables. To construct an output hypothesis, however, we
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require the noise distribution to be exactly known to the algorithm.
The noise operator TP is a generalization of the Bonami-Beckner operator

Tρ [Bon70, Bec75], formally introduced, e.g., by O’Donnell [O’D03] and previ-
ously studied in several contexts, see, e.g., Kahn, Kalai, and Linial [KKL88],
Benjamini, Kalai, and Schramm [BKS99], and Mossel and O’Donnell [MO03].
Our general version appears implicitly in the work of Bshouty et al. [BJT03].
As mentioned above, their main measures turn out to be related to norms of TP
applied to the difference of concepts.

The more severe model of malicious errors, in which an adversary can ar-
bitrarily influence the classification bits of a randomly chosen fraction of the
examples, has been studied by Kearns and Li [KL93]. Their main result is that
distribution-free learning with accuracy 1− ε in this model is only possible if the
error rate is bounded by ε/(1 + ε).

1.3.3 Greedy Algorithms

For many application areas, greedy strategies are natural and efficient heuristics.
In some cases, such as for simple scheduling problems, it has been shown that
greedy strategies actually find a global optimum. To prove such a property,
several different proof techniques have been developed (see, e.g., Kleinberg and
Tardos [KT05, Chapter 4]). These techniques include exchange arguments and
the use of matroid theory. Specifically, Rado [Rad42] and Edmonds [Edm71]
have shown that a generic optimization problem is solved exactly by the greedy
algorithm if and only if the structure underlying the search space is a matroid.

For the vast majority of optimization problems, however, greedy heuristics
do not always achieve optimal solutions. In such cases, the behavior of greedy
algorithms is hardly understood. The question, “What is the subset of the
input space for which a greedy algorithm guarantees optimality?” has rarely
been answered. One notable exception is the characterization of transportation
problems using the Monge property by Shamir and Dietrich [SD90] (the property
is named after Gaspard Monge who found a similar property in 1781 [Mon81]).
Among the many extensions of the concept of matroids (to characterize the class
of functions to be optimized for which the greedy algorithm works) we mention
the work by Vince [Vin02].

Sometimes one can at least show that a specific greedy algorithm achieves
a certain nontrivial approximation ratio. This, for example, holds for the Set
Cover problem with a logarithmic approximation factor (see Johnson [Joh74],
Chvátal [Chv79], or Slav́ık [Sla96]). Under the assumption that NP is not con-
tained in a quasi-polynomial time complexity class, this result has been proven
to be best possible by Feige [Fei98]. Other heuristics for Set Cover are based
on linear programming, see Hochbaum [Hoc82] and references therein.
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1.4 How this Thesis Evolved

This thesis has been prepared in the course of the DFG research projects Re
672/3 “Average and Precision Complexity” and Re 672/4 “Robust Inference
and Compression”. A major goal of these projects has been to obtain positive
robustness results for discrete algorithms. For this purpose, discrete scenarios
have been sought in which non-trivial methods achieve good results despite the
presence of erroneous data. It turned out that one such suitable setting is pro-
vided by algorithmic learning of Boolean functions in the presence of attribute
and classification noise, with the additional constraint that only few relevant
information is given. On the one hand, we have proved a high fault-tolerance for
a simple greedy algorithm. On the other hand, we have designed an algorithm
that can cope with a large class of target concepts, based on abstract Fourier
analysis on the hypercube (again under the constraints of noisy data and much
irrelevant information).

Parts of this work have been presented at the 14th International Conference
on Algorithmic Learning Theory [AR03] as well as at the Third International
Conference on Theory and Applications of Models of Computation [AR06].

1.5 Structure of this Thesis

In Chapter 2, we introduce notation and definitions used in subsequent chapters.
The introduction of the learning and the noise models, however, are deferred to
Chapter 3. That chapter also contains the introduction of the noise operator
and related concepts as well as basic results concerning the approximation of
Fourier coefficients and upper and lower bounds for learning from noisy data.
In addition, it contains the characterization of general learnability from noisy
examples. Chapter 4 contains the results about the greedy algorithm and its
variants. The Fourier method is studied in Chapter 5. In Chapter 6, the special
problem of learning parity juntas from noisy data is discussed and some lower
bounds are proved. Possible extensions of the algorithms and their analyses,
a remark on the Fourier transform from the viewpoint of group representation
theory, and open problems are presented in Chapter 7.

To facilitate the navigation in this thesis, a List of Algorithms, a List of
Definitions, and a List of Symbols are included at the end of the main text.



CHAPTER 2

Preliminaries

This chapter is organized as follows. In Section 2.1, we provide basic notation
and definitions. We establish Fourier analysis on the hypercube, the central tool
for most of our results, in Section 2.2. Furthermore, in Section 2.3, we introduce
the main objects under consideration in this thesis: juntas. In Section 2.4, the
concepts of lowness and Fourier-accessibility are defined.

2.1 General Notation

For n ∈ N, let [n] = {1, . . . , n}. Viewing elements of {0, 1}n as binary strings
of length n, we sometimes write x1 . . . xn for (x1, . . . , xn) ∈ {0, 1}n. Further-
more, we denote by 0n (1n) the binary vectors with 0 (1) in all positions. By
a Boolean function, we mean a function f : {0, 1}n → Ω, where Ω = {0, 1} or
Ω = {−1,+1}, depending on how we choose to represent Boolean function val-
ues. If we choose Ω = {0, 1}, then 0 is interpreted as false and 1 is interpreted
as true, whereas if we choose Ω = {−1,+1}, then +1 is interpreted as false and
−1 is interpreted as true. In particular, the transformations preserving these
interpretations are given by

• x 7→ 1− 2x (or x 7→ (−1)x) from {0, 1} to {−1,+1} and

• x 7→ 1
2
(1− x) from {−1,+1} to {0, 1}.

A Boolean function is also called a concept. A concept class C is a set of
concepts f : {0, 1}n → Ω.

15
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We often identify the set {0, 1}n with the power set P([n]) of [n]: a vector
x ∈ {0, 1}n corresponds to the set {i ∈ [n] | xi = 1}. In this context, we also
sometimes identify a variable xi with its index i. Throughout this thesis, we use
the terms variable and attribute interchangeably. We write

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}n ,

where the 1 is located at position i. This corresponds to the singleton set {i}.
In general, for arbitrary setsA andB, we denote byBA the set of all mappings

from A to B.
The binary exclusive or operation ⊕ : {0, 1} × {0, 1} → {0, 1} is defined by

x ⊕ y = x + y mod 2 and extended componentwise to ⊕ : {0, 1}n × {0, 1}n →
{0, 1}n. In terms of subsets of [n], this corresponds to taking the symmetric
difference: for A,B ⊆ [n], we define A4B = (A∪B)\ (A∩B). In the {−1,+1}-
domain, the exclusive or of two bits corresponds to multiplication.

A function f : {0, 1}n → {0, 1} is called a parity function or simply a parity
if there exists I ⊆ [n] such that f(x) =

⊕
i∈I xi for all x ∈ {0, 1}n. The class of

all n-ary parities is denoted by PARn. The corresponding functions that map to
{−1,+1} are also referred to as parity functions.

A concept f : {0, 1}n → Ω is monotone if

• for all x, y ∈ {0, 1}n, x ≤ y implies f(x) ≤ f(y), or

• for all x, y ∈ {0, 1}n, x ≤ y implies f(x) ≥ f(y),

where x ≤ y means that xi ≤ yi for all i ∈ [n]. The second condition is sometimes
called anti-monotone in the literature. The class of all n-ary monotone concepts
is denoted by MONn. For i ∈ [n], f is called monotone in xi if

• for all x ∈ {0, 1}n with xi = 0, f(x) ≤ f(x⊕ ei), or

• for all x ∈ {0, 1}n with xi = 0, f(x) ≥ f(x⊕ ei).

Finally, f is called locally monotone if it is monotone in each variable xi, i ∈ [n].
A concept f : {0, 1}n → Ω is symmetric if permuting the variables does

not affect the function value, i.e., if for all x ∈ {0, 1}n and all permutations
π : [n]→ [n],

f(xπ(1), . . . , xπ(n)) = f(x1, . . . , xn) .

Equivalently, f is symmetric if and only if f(x) only depends on the Hamming
weight |x| of x, which is defined by |x| = |{i ∈ [n] | xi = 1}|. Interpreting x as a
subset of [n], |x| is equal to the set size of x.

Next we introduce restrictions of Boolean vectors and functions. In this
context, it is useful to think of a Boolean vector x ∈ {0, 1}n as an assignment
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x : [n] → {0, 1} (thus identifying {0, 1}n and {0, 1}[n]). A partial assignment a
is then a mapping a : I → {0, 1} (equivalently, a ∈ {0, 1}I) for some I ⊆ [n].
For two partial assignments a : I → {0, 1} and b : J → {0, 1} with I ∩ J = ∅,
we define the join

a t b : I ∪ J → {0, 1}

in the natural way. We denote by x|I : I → {0, 1} the restriction of the mapping
x : [n] → {0, 1} to some subset I ⊆ [n]. In this view, a Boolean function
f : {0, 1}n → Ω, interpreted as f : {0, 1}[n] → Ω, maps assignments to Ω. Given
a partial assignment a : I → {0, 1}, let the restriction of f to a be defined by
fa : {0, 1}[n]\I → Ω, fa(x) = f(a t x). If I = {i}, then we also write fxi=a(i)

for fa.
For n ∈ N and d ∈ {0, . . . , n}, the Hamming sphere of radius d in {0, 1}n is

the set of points of Hamming weight at most d. Let V (n, d) denote the size of
this sphere, i.e.,

V (n, d) =
d∑
i=0

(
n

i

)
. (2.1)

Equivalently, V (n, d) is equal to the number of subsets of [n] of size at most d.
Although many sophisticated and essentially tight upper and lower bounds on
V (n, d) are available in the literature, we only need very coarse (but therefore,
simple) bounds provided by the following lemma, which is straightforward to
prove.

Lemma 2.1.1. For all n, d ∈ N with n ≥ 2 and 2 ≤ d ≤ n,(
n− d
d

)d

≤ V (n, d) ≤ nd .

We say that a number N that depends on certain parameters t1, . . . , tk ∈ R
is of size poly(t1, . . . , tk) if there is a k-ary real polynomial p such that N ≤
p(t1, . . . , tk). For real intervals, we use the standard notation, so e.g., [0, 1] =
{x ∈ R | 0 ≤ x ≤ 1} and [0, 1

2
) = {x ∈ R | 0 ≤ x < 1

2
}. The sign function

sgn : R→ {−1,+1} is defined by sgn(x) = −1 if x < 0 and sgn(x) = +1 if x ≥ 0.
In particular, we define sgn(0) = +1 for technical reasons. The functions log
and ln denote the binary and the natural logarithm, respectively. The function
exp denotes the exponential function with base e, the Euler constant.

We denote probabilities by Pr, expected values by E, and variances by Var.
Furthermore, for a probability distribution D : {0, 1}n → [0, 1], we write Prx∼D
if the probability is taken over all x distributed according to D. If n = 1 and
Pr[x = 1] = η ∈ [0, 1], then we write x ∼ η. We use the same notation for
the case that x ∈ {−1,+1}: here we indicate by x ∼ η that Pr[x = −1] = η.
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Similarly, we use the notation Ex∼D and Varx∼D. The uniform distribution on
{0, 1}n is denoted by Un, i.e., Un(x) = 2−n for all x ∈ {0, 1}n. A probability
distribution is degenerate if it assigns zero probability to some element, otherwise
it is non-degenerate.

If x ∈ {0, 1}n is drawn according to a distribution D : {0, 1}n → [0, 1], then
a function f : {0, 1}n → R may also be considered as a real-valued random
variable. Thus, if D is clear from the context, we use the notation Pr[f = b] =
Prx∼D[f(x) = b] for b ∈ R, E[f ] = Ex∼D[f(x)], and

Var[f ] = Varx∼D[f(x)] = Ex∼D[(f(x)− E[f ])2] .

If f : {0, 1}n → {0, 1}, then E[f ] = Pr[f = 1] and

Var[f ] = Pr[f = 0] · Pr[f = 1] .

If f : {0, 1}n → {−1,+1}, then

E[f ] = Pr[f = 1]− Pr[f = −1] = 1− 2 Pr[f = −1]

and
Var[f ] = Pr[f = +1] · Pr[f = −1] .

2.2 Fourier Analysis on the Hypercube

Let the hypercube {0, 1}n be equipped with a non-degenerate probability distri-
bution D : {0, 1}n → [0, 1]. The natural inner product

〈f, g〉D = Ex∼D[f(x) · g(x)] (2.2)

for f, g : {0, 1}n → R turns the set R{0,1}n
of real-valued functions on the hyper-

cube into a real Hilbert space of dimension 2n. The norm induced by the inner
product is

‖f‖D =
√
〈f, f〉D . (2.3)

Given an orthonormal basis (bt | t ∈ T ) for some index set T of size 2n, every
function f : {0, 1}n → R has the unique expansion

f =
∑
t∈T

〈f, bt〉bt , (2.4)

see, e.g., Artin [Art91] or Lang [Lan93]. A natural orthonormal basis of this space
is given by the (normalized) Dirac functions δa : {0, 1}n → {0, 1}, a ∈ {0, 1}n,
defined by

δa(x) =

{
D(a)−1/2 if a = x,

0 otherwise.
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We have 〈f, δa〉D =
√
D(a)f(a). Thus, ‖δa‖D = 1 and for a 6= b,

〈δa, δb〉D =
√
D(b)δa(b) = 0 .

However, there is another basis that is more important to us. In case that
D is the uniform distribution on {0, 1}n, this is the so-called Hadamard basis or
Walsh basis or Rademacher basis (χI | I ⊆ [n]), defined by

χI(x) = (−1)
P

i∈I xi (2.5)

for x ∈ {0, 1}n, see for example Bernasconi [Ber98].
For arbitrary non-degenerateD, we obtain a corresponding orthonormal basis

(χDI | I ⊆ [n]) by applying the Gram-Schmidt orthonormalization procedure
(see, e.g., Artin [Art91] or Lang [Lan93]) to (χI | I ⊆ [n]) (e.g., in order of
growing |I|).

For the special case that D is a product distribution on {0, 1}n with

Pr[xi = 1] = di ∈ (0, 1) ,

let σi =
√
di(1− di) be the standard deviation of xi. Bahadur [Bah61] has

shown that χDi : {0, 1}n → R is then given by

χDi (x) =
di − xi
σi

=


√

di

1−di
if xi = 0,

−
√

1−di

di
if xi = 1,

(2.6)

and for I ⊆ [n], χDI : {0, 1}n → R is given by χDI =
∏

i∈I χ
D
i , see also Furst,

Jackson, and Smith [FJS91]. By independence of the variables under prod-
uct distributions, for all nonempty I ⊆ [n], we have E[χDI ] =

∏
i∈I E[χDi ] = 0

(whereas χD∅ ≡ 1 and hence E[χD∅ ] = 1). It is useful to compute how χDi (x) is
affected by flipping the ith bit: from (2.6), we obtain

χDi (x⊕ ei) = −1− di
di
· χDi (x) for x ∈ {0, 1}n with xi = 0 . (2.7)

Indeed, χUn
I = χI for all I ⊆ [n], and for the special case di = 1/2, (2.7) is

immediate from (2.5).
The Fourier transform FD : R{0,1}n → RP([n]) maps real-valued functions on

the hypercube to real-valued functions on the power set of [n] by

FD(f)(I) = 〈f, χDI 〉D

for f : {0, 1}n → R and I ⊆ [n]. Although {0, 1}n and P([n]) are essentially
the same, distinguishing them in this context is helpful to emphasize that the
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function f and its Fourier transform f̂ are in a certain sense “of different types”.
FD(f)(I) is called the Fourier coefficient of f at I with respect to D. In case
that D is clear from the context, we also write

f̂(I) = FD(f)(I) .

If I = {i}, we write f̂(i) instead of f̂({i}). The Fourier expansion

f(x) =
∑
I⊆[n]

f̂(I) · χDI (x) (2.8)

for all x ∈ {0, 1}n is a special case of (2.4). Since the χDI form a basis, the

coefficients f̂(I) are unique in the following sense: whenever f =
∑

I⊆[n] αIχI

for αI ∈ R (or even C), then αI = f̂(I) for all I ⊆ [n].
By orthonormality, for all I, J ⊆ [n],

χ̂DI (J) =

{
1 if I = J,

0 otherwise.

Furthermore,

Var[χDI ] = E[(χDI )2]− E[χDI ]2 = 〈χDI , χDI 〉D − 0 = 1 .

For p ≥ 1, define the p-norm of f by

‖f‖p = Ex∼D[|f(x)|p]1/p =

 ∑
x∈{0,1}n

D(x)|f(x)|p
1/p

. (2.9)

We are mainly interested in the cases p = 1 and p = 2. In particular, ‖f‖1 is
simply the average value of |f(x)|. Moreover, for f, g : {0, 1}n → {0, 1}, we have

Pr
x∼D

[f(x) 6= g(x)] = ‖f − g‖1 = ‖f − g‖22 ,

whereas for f, g : {0, 1}n → {−1,+1}, we have

Pr
x∼D

[f(x) 6= g(x)] = 1
2
‖f − g‖1 = 1

4
‖f − g‖22 .

In both cases, for ε ≥ 0, we say that f is ε-close to g (with respect to D) if
Prx∼D[f(x) 6= g(x)] ≤ ε and ε-far from g otherwise. An intensively used feature
of Fourier coefficients is Parseval’s equation∑

I⊆[n]

f̂(I)2 = ‖f‖22 =
∑

x∈{0,1}n

D(x)f(x)2 . (2.10)
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Note that ‖f‖D and ‖f‖2 coincide. In case that f : {0, 1}n → {0, 1},

‖f‖2D = Pr[f = 1] = f̂(∅)

is the bias of f , whereas for f : {0, 1}n → {−1,+1}, ‖f‖D = 1.
Fourier coefficients may also be interpreted in terms of statistical measures.

Specifically, for two functions f, g : {0, 1}n → R, define the covariance of f and
g with respect to D by

Cov[f, g] = Ex∼D[(f(x)− E[f ]) · (g(x)− E[g])] = E[f · g]− E[f ] · E[g] .

Since E[χDI ] = 0 for all nonempty I ⊆ [n], we obtain

Cov[f, χDI ] = E[f · χDI ] = 〈f, χDI 〉D = f̂(I) ,

i.e., f̂(I) is equal to the covariance of f and χI and thus measures how much f
is correlated with χDI . In fact, the correlation coefficient of f and g is defined by

ρf,g =
Cov[f, g]√

Var[f ] · Var[g]
.

Thus, f̂(I) =
√

Var[f ] · ρf,χD
I
.

Alternatively, it is sometimes useful to think of the Fourier expansion (2.8)
as a polynomial representation in the following sense. Let z1, . . . , zn be real
variables. Depending on the values of x1, . . . , xn ∈ {0, 1}, we assign

zi = (di − xi)/σi

for i ∈ [n]. Clearly, χDI (x) =
∏

i∈I zi. Hence, we may interpret χI as a real multi-
linear monomial in the variables zi. By the uniqueness of the Fourier expansion,
the representation of f as a multilinear real polynomial is also unique.

The following notions are used exclusively in Chapter 4, in which all concepts
are assumed to map to Ω = {0, 1}.

Definition 2.2.1 (Fourier support). Let f : {0, 1}n → {0, 1}. The Fourier
support of f is supp(f̂) = {I ⊆ [n] | f̂(I) 6= 0}. The Fourier support graph
FSG(f) of f is the subgraph of the n-dimensional Hamming cube induced by
the sets in supp(f̂).

The following concept will be used extensively in Chapter 4. It also appears
in the context of calculating a representation of a concept as a polynomial over
the two-element field GF(2), see, e.g., Mossel et al. [MOS04].
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Definition 2.2.2 (Expanded variable space). We define the expanded vari-
able space of variables xI , I ⊆ [n], the values of which are determined by the
values of the variables x1, . . . , xn in {0, 1} via

xI =
⊕
i∈I

xi .

Thereby, we identify x{i} and xi. Note that χI(x) = (−1)xI .

Under the uniform distribution, instead of writing a function f in terms of
the variables x1, . . . , xn, one can also write it as a function of the variables xI ,
I ∈ supp(f̂):

Lemma 2.2.3. Let D = Un, f : {0, 1}n → R and T = supp(f̂). Then there
exists a function g : {0, 1}T → R such that for all x ∈ {0, 1}n,

f(x1, . . . , xn) = g(xI | I ∈ T ) .

Proof. Define g by

g(xI | I ∈ T ) =
∑

I∈supp(f̂)

f̂(I) · (−1)xI .

By (2.8), f(x1, . . . , xn) = g(xI | I ∈ T ) for all x ∈ {0, 1}n.

The following lemma reveals a connection between vanishing Fourier coeffi-
cients of functions and their restrictions.

Lemma 2.2.4. Let D : {0, 1}n → [0, 1] be a non-degenerate product distribution,
f : {0, 1}n → {0, 1}, R ⊆ [n], a ∈ {0, 1}R, and I ⊆ [n] \R. Then

f̂a(I) =
∑
J⊆R

f̂(I ∪ J)χDJ (a) .

Proof. By the Fourier expansion (2.8),

fa =
( ∑
J⊆[n]

f̂(J)χDJ
)
a

=
∑
J⊆[n]

f̂(J)
(
χDJ

)
a

=
∑

J1⊆[n]\R

∑
J2⊆R

f̂(J1 ∪ J2)
(
χDJ1∪J2

)
a

=
∑

J1⊆[n]\R

∑
J2⊆R

f̂(J1 ∪ J2)χ
D
J2

(a)χDJ1
(a) .

By the uniqueness of the Fourier expansion (2.8), the claim follows (consider
J1 = I).

Corollary 2.2.5. Let f : {0, 1}n → {0, 1}, R ⊆ [n], and I∗ ⊆ [n] \ R. If for all

I ⊆ R, f̂(I∗ ∪ I) = 0, then for all a ∈ {0, 1}R, f̂a(I
∗) = 0.

Proof. By Lemma 2.2.4, f̂a(I
∗) =

∑
I⊆R f̂(I∗ ∪ I)χI(a) = 0.
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2.3 Juntas

A function that depends only on a small subset of its variables is called a junta.
For such functions, the function value is determined by the values of a small
number of relevant variables. In this sense, juntas are a generalization of dic-
tatorship functions. These are functions that depend only on a single variable.
Dictatorship functions play an important role in social choice theory. We use
juntas to model the presence of much irrelevant information in the learning data.

Definition 2.3.1 (Dependence/Relevance). A function f : {0, 1}n → Ω
depends on variable xi (equivalently, xi is relevant to f) if the restrictions fxi=0

and fxi=1 with xi set to 0 and 1, respectively, are not equal. This is the case if
and only if there exists an x ∈ {0, 1}n with f(x) 6= f(x⊕ ei). A variable that is
not relevant to f is called irrelevant. We denote the set of relevant variables of
f by rel(f) and the set of irrelevant variables of f by irrel(f).

If f is clear from the context, we call a variable that is relevant to f simply
relevant. The base function f ′ of f is the unique restriction of f to its relevant
variables:

Definition 2.3.2 (Base function). Let f : {0, 1}n → Ω and a ∈ {0, 1}[n]\rel(f)

be an arbitrary assignment (e.g., the constant zero assignment). Then the base
function f ′ : {0, 1}rel(f) → Ω is given by f ′ = fa.

Definition 2.3.3 (Junta). A function that depends on at most d variables is
called a d-junta, and the class of n-ary Boolean d-juntas is denoted by J n

d .

A parity function f with | rel(f)| ≤ d is called a parity d-junta or a d-parity.
The class of parity d-juntas defined on n variables is denoted by PARn

d .
The class of monotone d-juntas is denoted by MONn

d , and the class of juntas
with symmetric base function is denoted by SYMn

d .
The results of this section will be used for concepts f : {0, 1}n → Ω with

Ω = {0, 1} or Ω = {−1,+1}.
The next lemma has implicitly been proved by Mossel et al. [MOS04] for the

uniform distribution. We state a more general form for non-degenerate product
distributions. The lemma can be used to decide whether a variable is relevant to
a function or not. Intuitively, it says that a variable xi is relevant to a concept f
if and only if f has nonzero correlation with at least one of the parity functions χI
with i ∈ I.

Lemma 2.3.4. Let f : {0, 1}n → Ω and D : {0, 1}n → [0, 1] be a non-degenerate
product distribution. Then for all i ∈ [n], xi is relevant to f if and only if there
exists I ⊆ [n] such that i ∈ I and f̂(I) 6= 0.
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Proof. We prove the contrapositions of the claim. Let i ∈ [n]. Since D is a
product distribution, χDI =

∏
i∈I χ

D
i for all I ⊆ [n] (see Section 2.2). If for all

I ⊆ [n] with i ∈ I, f̂(I) = 0, then for all x ∈ {0, 1}[n]\{i},

fxi=0(x) =
∑
I⊆[n]

f̂(I)(χDI )xi=0(x) =
∑

I⊆[n]\{i}

f̂(I)(χDI )xi=0(x)

=
∑

I⊆[n]\{i}

f̂(I)(χDI )xi=1(x) = fxi=1(x) .

Consequently, fxi=0 = fxi=1, i.e., xi 6∈ rel(f).
On the other hand, if xi 6∈ rel(f), then fxi=0 = fxi=1. Let I ⊆ [n] with i ∈ I.

Then, by (2.7), for x ∈ {0, 1}n with xi = 0, χI(x ⊕ ei) = −1−di

di
· χI(x). Thus,

we obtain

f̂(I) =
∑

x∈{0,1}n:xi=0

(
D(x)f(x)χDI (x) +D(x⊕ ei)f(x⊕ ei)χDI (x⊕ ei)

)
=

∑
x′∈{0,1}[n]\{i}

(
D(x′) · (1− di) · fxi=0(x

′) · χDI (x′)

−D(x′) · di · fxi=1(x
′) · 1− di

di
· χDI (x′)

)
= 0 .

The Fourier coefficients of a function remain the same if one restricts the
function to its relevant variables:

Lemma 2.3.5. Let f : {0, 1}n → Ω and I ⊆ [n]. If I 6⊆ rel(f), then f̂(I) = 0.

If I ⊆ rel(f), then f̂(I) = f̂ ′(I).

Proof. The case I 6⊆ rel(f) follows from Lemma 2.3.4. Thus, it remains to
consider I ⊆ rel(f). Recall that f ′ = fa for a ∈ {0, 1}irrel(f), a ≡ 0. By
Lemma 2.2.4,

f̂ ′(I) = f̂a(I) =
∑

J⊆irrel(f)

f̂(I ∪ J)χJ(a) .

Since for J ⊆ irrel(f) with J 6= ∅, f̂(I ∪ J) = 0, we have

f̂ ′(I) = f̂(I)χ∅(a) = f̂(I) .
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If D is the uniform distribution on {0, 1}n, then nonzero Fourier coefficients
of d-juntas are of absolute size at least 2−d:

Lemma 2.3.6. Let D = Un, f : {0, 1}n → {0, 1}, and I ⊆ [n] such that
f̂(I) 6= 0. Then |f̂(I)| ≥ 2−| rel(f)|.

Proof. By Lemma 2.3.5, I ⊆ rel(f) and f̂(I) = f̂ ′(I) = 2−d
∑

J⊆rel(f) f
′(x)χI(x),

which is an integer multiple of 2−d.

Trivially, if f, g : {0, 1}n → R are two d-juntas, then f − g is a 2d-junta.
Thus, if f − g differs from zero in some point x, then it does so in at least 2n−2d

further points which are obtained from x by arbitrarily setting the variables in
irrel(f − g). Consequently, it is easy to show that Prx∼Un [f(x) 6= g(x)] ≥ 2−2d.
Interestingly, two distinct d-juntas cannot even differ in less than a 2−d fraction
of the inputs:

Lemma 2.3.7. Let f, g : {0, 1}n → {0, 1} be d-juntas. If f 6= g, then there are
at least 2n−d points x ∈ {0, 1}n such that f(x) 6= g(x) and thus,

Pr
x∼Un

[f(x) 6= g(x)] ≥ 2−d .

Proof. We start by proving the claim for the case that rel(f) ∩ rel(g) = ∅. In
that case, if g ≡ b, b ∈ {0, 1}, then f 6≡ b since f 6= g. This implies that
there is an a ∈ {0, 1}rel(f) such that f(a) = 1 − b. Then for all assignments
a′ ∈ {0, 1}[n]\rel(f), f(a t a′) = 1− b 6= b = g(a t a′). These are 2n−| rel(f)| ≥ 2n−d

assignments.
Now assume that g is non-constant. Let a0, a1 ∈ {0, 1}rel(g) such that g′(a0) =

0 and g′(a1) = 1. Then for each a ∈ {0, 1}rel(f),

g′(a1−f ′(a)) = 1− f ′(a) 6= f ′(a) .

Thus, for all x ∈ {0, 1}[n]\(rel(f)∪rel(g)) and all a ∈ {0, 1}rel(f),

f(a t a1−f ′(a) t x) = f ′(a) 6= g′(a1−f ′(a)) = g(a t a1−f ′(a) t x) .

These are 2| rel(f)| · 2n−| rel(f)|−| rel(g)| = 2n−| rel(g)| ≥ 2n−d assignments.
Next, let us consider the case that rel(f) and rel(g) have nonempty intersec-

tion. Let R = rel(f) ∩ rel(g). Let a ∈ {0, 1}n such that f(a) 6= g(a) and let
a′ = a|R. Then fa′ 6= ga′ . Let r = max{| rel(f)| − |R|, | rel(g)| − |R|}. Clearly,
| rel(fa′)| ≤ r, | rel(ga′)| ≤ r, and rel(fa′) ∩ rel(ga′) = ∅. By the above considera-
tions, fa′ and ga′ differ in at least

2n−|R|−r = 2n−max{| rel(f)|,| rel(g)|} ≥ 2n−d

points, and so do f and g.
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2.4 Lowness and Fourier-accessibility

By Lemma 2.3.4, whenever we find a nonzero Fourier coefficient f̂(I), we know
that all variables xi, i ∈ I, are relevant to f . Moreover, all relevant variables
can be detected in this way, and we only have to check out nonempty subsets of
size at most d = | rel(f)|. However, there are V (n, d) ≈ nd such subsets, which
is Θ(nd) for constant d, an amount that we would like to reduce. This leads us
to the following definition:

Definition 2.4.1 (τ -lowness). Let f : {0, 1}n → Ω, xi ∈ rel(f), and τ ∈ [n].
Variable xi is τ -low for f if there exists an I ⊆ [n] such that i ∈ I, |I| ≤ τ , and
f̂(I) 6= 0. The concept f is τ -low if all xi ∈ rel(f) are τ -low for f . The set of
τ -low d-juntas is denoted by J n

d (τ).

For τ -low concepts, one can find all relevant variables by investigating the
Fourier coefficients up to level τ .

The special case of 1-lowness of a variable xi has several equivalent char-
acterizations. One of them is based on the information gain of xi. This is a
measure for the appropriateness of selecting xi as a split variable in a greedy
tree learning procedure to build a small decision tree for the target concept, see
Rosell et al. [RHRP05] and references therein. Precisely, the information gain
of xi with respect to the distribution D is

ID(f |xi) = HD(f)−HD(f |xi) ,

where

HD(f) = −Pr[f = 1] · log Pr[f = 1]− Pr[f = 0] · log Pr[f = 0]

(with all probabilities with respect to x ∼ D) is the binary entropy of f (with
respect to D) and

HD(f |xi) = Pr[xi = 0] ·HD(fxi=0) + Pr[xi = 1] ·HD(fxi=1)

is the binary entropy of f conditional on xi (with respect to D).

Lemma 2.4.2. Let D : {0, 1}n → [0, 1] be a non-degenerate product distribution
and f : {0, 1}n → {0, 1}. Then the following statements are equivalent.

(a) xi is 1-low for f .

(b) f̂(xi) 6= 0.

(c) Pr[fxi=0 = 1] 6= Pr[fxi=1 = 1], i.e., fxi=0 and fxi=1 have different bias.
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(d) Pr[fxi=0 = 1] 6= Pr[f = 1] or Pr[fxi=1 = 1] 6= Pr[f = 1], i.e., setting xi to
a ∈ {0, 1} changes the bias of f at least for a = 0 or for a = 1.

(e) ID(f |xi) > 0.

Proof. (a) ⇔ (b) holds by definition.
(b) ⇔ (c): We have

f̂(i) =
∑

x∈{0,1}n

D(x)f(x)χDi (x)

= Pr[f(x) = 1 ∧ xi = 0] ·
√
di/(1− di)

−Pr[f(x) = 1 ∧ xi = 1] ·
√

(1− di)/di
= σi(Pr[f(x) = 1 | xi = 0]− Pr[f(x) = 1 | xi = 1])

= σi(Pr[fxi=0 = 1]− Pr[fxi=1 = 1]) .

Thus, f̂(i) 6= 0 implies Pr[fxi=0 = 1] 6= Pr[fxi=1 = 1]. Since D is assumed to be
non-degenerate, σi 6= 0. Hence, also the converse holds.
(c) ⇔ (d): (c) ⇒ (d) is obvious. The other direction is proved by means of

Pr[f = 1] = di · Pr[fxi=1 = 1] + (1− di) · Pr[fxi=0 = 1] :

If Pr[fxi=0 = 1] = Pr[fxi=1 = 1], then Pr[f = 1] = Pr[fxi=0 = 1] = Pr[fxi=1 = 1].
(e) ⇔ (c): The equivalence of parts (e) and (c) has been proved by Rosell et
al. [RHRP05, Lemma 2.1].

Condition (c) in Lemma 2.4.2 has been called unbalanced with respect to xi
by Fukagawa and Akutsu [FA05].

Next we show how to extend the equivalence of (a) and (d) in Lemma 2.4.2
to τ -lowness, providing a criterion for (inclusion-) minimal sets I 6= ∅ in the
Fourier support supp(f̂).

Lemma 2.4.3. Let f : {0, 1}n → {0, 1} and I ⊆ [n] such that for all J ( I
with J 6= ∅, f̂(J) = 0. Then f̂(I) 6= 0 if and only if there exists an assignment
a ∈ {0, 1}I such that Pr[fa = 1] 6= Pr[f = 1].

Proof. By Lemma 2.2.4,

Pr[fa = 1] = f̂a(∅) =
∑
J⊆I

f̂(J)χJ(a) = f̂(∅) + f̂(I)χI(a) .

On the other hand, Pr[f = 1] = f̂(∅). The claim follows.
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For a given concept class C, finding the smallest τ such that C ⊆ J n
d (τ) has

attracted considerable interest in the past. The following example lists some
known results.

Example 2.4.4. In this example, we assume that D = Un is the uniform distri-
bution on {0, 1}n.

(a) Monotone functions are 1-low (a generalization of this statement to non-
degenerate product distributions is proved in Lemma 5.6.2 on page 93). In
symbols, this means that MONn

d ⊆ J n
d (1). Even more: all concepts that

are locally monotone are 1-low; these are functions that can be turned into
a monotone function by negating some input variables. This includes all
monomials and clauses of arbitrary literals. For monotone functions, the
Fourier coefficient f̂(i) is equal to the influence of xi as defined for example
by Kahn, Kalai, and Linial [KKL88].

(b) Actually, the vast majority of juntas belongs to J n
d (1) since a random junta

fulfills f̂(i) 6= 0 for all xi ∈ rel(f) with overwhelming probability, see Blum
and Langley [BL97] and Mossel et al. [MOS04].

(c) At the other end, we have J n
d (d) = J n

d (by Lemma 2.3.4), the class of all
d-juntas on n variables.

(d) The parity function f : {0, 1}n → {0, 1} defined by f(x) =
⊕

i∈I xi for some
I ⊆ [n] is |I|-low, but not (|I| − 1)-low (by orthonormality of the functions
χI , I ⊆ [n]).

(e) The class of all unbalanced d-juntas is contained in J n
d ((2/3) ·d) (see Mossel

et al. [MOS04]).

(f) The class S = SYMn
d \{χI | |I| ≤ d} of symmetric d-juntas that are

not parity functions was shown to be contained in J n
d ((2/3) · d) by Mos-

sel et al. [MOS04]. This was improved by Lipton et al. [LMMV05] to
S ⊆ J n

d ((3/31) · d). Very recently, Kolountzakis et al. [KMM05] showed
that S ⊆ J n

d (O(d/ log d)). Concerning lower bounds, even the question
whether S ⊆ J n

d (O(1)) is still open.

(g) By Lemma 2.2.3, every function f : {0, 1}n → R can be written as a function
of variables xI , I ∈ supp(f̂). If f is not τ -low, then there exists a variable
xi such that i ∈ I ∈ supp(f̂) only for sets I of size larger than τ . In this
interpretation, the value of xi is “masked” by at least τ other bits each time
it occurs.
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The notion of τ -lowness is independent of the representation of Boolean func-
tion values:

Lemma 2.4.5. Let f : {0, 1}n → {0, 1} and g = ρ◦f with ρ : {0, 1} → {−1,+1}
defined by ρ(x) = (−1)x = 1− 2x. Then for I ⊆ [n] with I 6= ∅, ĝ(I) = −2f̂(I).
In particular, f̂(I) = 0 if and only if ĝ(I) = 0. Furthermore, ĝ(∅) = 1− 2f̂(∅).

Proof. For I ⊆ [n] with I 6= ∅, we have

ĝ(I) =
∑

x∈{0,1}n

D(x)g(x)χDI (x)

=
∑

x∈{0,1}n

D(x)(1− 2f(x))χDI (x)

= 〈1, χDI 〉D − 2f̂(I) = −2f̂(I) ,

where the latter equation follows from 〈1, χDI 〉D = 〈χD∅ , χDI 〉D = 0.

As a consequence, Lemma 2.4.2 is also valid for f : {0, 1}n → {−1,+1}
(replacing 0 with +1 and 1 with −1 in all occurrences).

For our characterization of the functions to which Greedy is applicable in
Chapter 4, we introduce the concept of Fourier-accessibility.

Definition 2.4.6 (Fourier-accessible). Let f : {0, 1}n → {0, 1} and i ∈ [n].
Variable xi is accessible (with respect to f) if there exists a sequence

∅ = I0 ( I1 ( . . . ( Is ⊆ [n]

such that

1. i ∈ Is,

2. for all j ∈ [s], |Ij \ Ij−1| = 1, and

3. for all j ∈ [s], f̂(Ij) 6= 0.

The set of variables that are accessible with respect to f is denoted by acc(f),
whereas the set of inaccessible variables with respect to f is denoted by inacc(f).
The function f is Fourier-accessible if and only if every variable that is relevant
to f is also accessible, i.e., acc(f) = rel(f). In general, acc(f) ⊆ rel(f).

If f is clear from the context, we call a variable that is accessible with respect
to f simply accessible. The following lemma provides two conditions that are
equivalent to Fourier-accessibility.
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∅ {1}

{1, 2}

{1, 3}

{1, 2, 3}

(a) FSG(f1).

∅ {3} {1, 2} {1, 2, 3}

(b) FSG(f2).

Figure 2.1: Fourier support graphs of functions f1 and f2 presented in Table 2.1.

Lemma 2.4.7. Let f : {0, 1}n → {0, 1} and i ∈ [n]. Then the following state-
ments are equivalent:

(a) f is Fourier-accessible.

(b) For all xi ∈ rel(f), there exists an I ⊆ [n] with i ∈ I such that there is a
path in the Fourier support graph FSG(f) from ∅ to I.

(c) The union of all subsets I ∈ supp(f̂) that belong to the connected component
of ∅ in FSG(f) is equal to rel(f).

Proof. (a)⇒ (b): Let xi ∈ rel(f) and ∅ = I0 ( I1 ( . . . ( Is ⊆ [n] satisfy condi-
tions 1.–3. in Definition 2.4.6. Let I = Is. Then the sequence ∅ = I0, . . . , Is = I
is a path in FSG(f), provided that ∅ ∈ FSG(f). But since

f̂(∅) = Pr[f(x) = 1] ,

∅ ∈ supp(f̂) whenever f 6≡ 0 (here it is essential that Ω = {0, 1}). In case that
f ≡ 0, however, rel(f) = ∅.
(b) ⇒ (c): Denote the union of all subsets I ∈ supp(f̂) that belong to the
connected component of ∅ in FSG(f) by U . As a consequence of Lemma 2.3.4,
I ∈ supp(f̂) implies that I ⊆ rel(f). Thus, U ⊆ rel(f). For the reverse inclusion,
let xi ∈ rel(f). By assumption, there exists I ⊆ [n] with i ∈ I and a path in
FSG(f) from ∅ to I. Consequently, I is in the connected component of ∅ and
hence i ∈ I ⊆ U .
(c) ⇒ (a): Let xi ∈ rel(f). By assumption, there exists I ∈ supp(f̂) in the
connected component of ∅ such that i ∈ I. Let ∅ = I0, I1, . . . , Is = I be a path
in FSG(f). Then conditions 1.–3. in Definition 2.4.6 are satisfied.

Example 2.4.8. (a) Simple examples of a Fourier-accessible function f1 and a
non-Fourier-accessible function f2 are given in Table 2.1. The corresponding
Fourier support graphs are presented in Figure 2.1. Note that f2 is 2-Fourier-
accessible.



2.4 Lowness and Fourier-accessibility 31

Table 2.1: Examples of Boolean functions and their Fourier spectra.

f1(x1, x2, x3) f2(x1, x2, x3)
= x1 ⊕ (x2 ∧ x3) = (x1 ⊕ x2) ∧ x3

f̂(∅) 1/2 1/4

f̂(1) −1/4 0

f̂(2) 0 0

f̂(3) 0 −1/4

f̂({1, 2}) −1/4 −1/4

f̂({1, 3}) −1/4 0

f̂({2, 3}) 0 0

f̂({1, 2, 3}) 1/4 1/4

(b) If a function f is 1-low, then it is also Fourier-accessible. On the other hand,
the function f1 in Table 2.1 is Fourier-accessible, but not 1-low.

(c) A symmetric function f is 1-low if and only if it is Fourier-accessible. This
is because for symmetric functions f , f̂(π(I)) = f̂(I) for all permutations
π : [n]→ [n] and all I ⊆ [n].

(d) An example of a function that is 2-low but not Fourier-accessible (and thus
not 1-low either) is the not-all-equal function NAE : {0, 1}n → {0, 1}, de-
fined by NAE(x) = 1 if and only if there exist i, j ∈ [n] such that xi 6= xj.
To see this, note that setting any variable xi to 0 or 1 does obviously not
change the bias. By Lemma 2.4.2, no variable xi is 1-low for NAE, and
thus no variable is accessible either. On the other hand, setting some vari-
able xi to 0 and another variable xj to 1 turns the function into the constant

1-function and thus changes the bias. By Lemma 2.4.3, f̂({i, j}) 6= 0.

We weaken the notion of Fourier-accessibility by allowing the sets Ij in Def-
inition 2.4.6 to grow by up to τ elements for some parameter τ :

Definition 2.4.9 (τ -Fourier-accessible). Let f : {0, 1}n → {0, 1}, i ∈ [n],
and τ ∈ [n]. Variable xi is τ -accessible (with respect to f) if there exists a
sequence ∅ ( I1 ( . . . ( Is ⊆ [n] such that

1. i ∈ Is,

2. for all j ∈ [s], 1 ≤ |Ij \ Ij−1| ≤ τ , and

3. for all j ∈ [s], f̂(Ij) 6= 0.
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The variables that are not τ -accessible are called τ -inaccessible. The set of vari-
ables that are τ -accessible with respect to f is denoted by τ - acc(f), whereas the
set of variables that are τ -inaccessible with respect to f is denoted by τ - inacc(f).
The function f is τ -Fourier-accessible if and only if every variable that is relevant
to f is also τ -accessible, i.e., τ - acc(f) = rel(f). In general, τ - acc(f) ⊆ rel(f).



CHAPTER 3

Learning from Noisy Data

This chapter is organized as follows. In Sections 3.1 and 3.2, we define the
learning and noise models that are investigated in this thesis and introduce some
standard tools from statistics. In Section 3.3, we show how one can approximate
Fourier coefficients from noisy data. The noise operator and related concepts are
introduced in Section 3.4. Subsequently, in Section 3.5, we present known upper
and lower bounds on the sample size that is in general necessary to learn d-juntas
from noise-free samples. Upper and lower bounds for learning from noisy data
are provided in Section 3.6. That section also contains our generalization of a
result due to Bshouty et al. [BJT03] concerning the applicability of an LMN-style
learning algorithm [LMN93]. Our general characterization of learnability from
noisy data, based on Bshouty et al.’s noisy distance, is presented in Section 3.7.

3.1 Noise-free Samples and Statistics

For the following definitions, let f : {0, 1}n → Ω (Ω = {0, 1} or Ω = {−1,+1})
be a target concept and D : {0, 1}n → [0, 1] be a probability distribution, the
so-called attribute distribution. We start by defining noise-free samples :

Definition 3.1.1 (D-distributed sample). An example is a pair (x, y) ∈
{0, 1}n × Ω. The Boolean vector x is called the attribute vector and y is called
the classification or label of the example. A sequence of examples (xk, yk)k∈[m] of
m examples is called a sample of size m. If x ∼ D and y = f(x), then the pair
(x, y) is called a (noise-free) D-distributed example for f . A sequence S of m
independent D-distributed examples for f is called a (noise-free) D-distributed

33
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sample for f of size m. Un-distributed examples and samples are also called
uniformly distributed.

If a sample S is explicitly given, we denote it in the following form:

S =

x1
1 . . . x1

n | y1

...
. . .

...
...

xm1 . . . xmn | ym

 . (3.1)

Specifically, we use superscripts to indicate example indices and subscripts to
indicate variable indices. Each row k consists of a single example (xk, yk), which
in turn consists of n attribute values xk1, . . . , x

k
n and a classification yk.

The following is a well-known technical tool to bound the probability of
deviations of the statistical mean from the expected value in sufficiently large
samples, see also Alon and Spencer [AS92]:

Lemma 3.1.2 (Hoeffding bound [Hoe63]). Let Xi, i ∈ [n], be mutually
independent random variables taking values in the real interval [a, b], a < b.
Then for any ε ∈ [0, 1],

Pr

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E[Xi]

∣∣∣∣∣ ≥ εn

]
≤ 2 exp

(
−2nε2

(b− a)2

)
.

Definition 3.1.3 (Empirical expectation). Let t : {0, 1}n × Ω → [−1,+1]
and

S = (xk, yk)k∈[m] ∈ ({0, 1}n × Ω)m

be a sample. Define the empirical expectation of t given S as

ẼS[t] =
1

m

m∑
k=1

t(xk, yk) .

Corollary 3.1.4. Let t : {0, 1}n × Ω→ [−1,+1] and δ, ε > 0. Let

S = (xk, yk)k∈[m] ∈ ({0, 1}n × Ω)m

be a sample with examples generated according to a probability distribution

R : {0, 1}n × Ω→ [0, 1] .

If m ≥ 2 · ln(2/δ) · (1/ε2), then

Pr
(∣∣∣ẼS[t]− E(x,y)∼R[t(x, y)]

∣∣∣ ≥ ε
)
≤ δ .
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This corollary is used for example when converting a statistical query algo-
rithm into a PAC learning algorithm [Kea98]: the expectation of any [−1,+1]-
valued function assigned to labeled examples can be approximated efficiently by
relative frequencies from a small amount of examples. Our main application of
this corollary is the approximation of Fourier coefficients.

Definition 3.1.5 (Empirical Fourier coefficient). Given a sample

S = (xk, yk)k∈[m] ∈ ({0, 1}n × Ω)m ,

define the empirical Fourier coefficient of f at I given S by

f̃S(I) =
1

m

m∑
k=1

χI(x
k) · yk . (3.2)

Lemma 3.1.6. Let I ⊆ [n] and S be a uniformly distributed sample of size
m ≥ 2 · ln(2/δ) · (1/ε2). Then

|f̃S(I)− f̂(I)| ≤ ε

with probability at least 1− δ.

Proof. Define t : {0, 1}n × {−1,+1} → {−1,+1} by t(x, y) = χI(x) · y. The
claim follows from Corollary 3.1.4.

Definition 3.1.7 (Consistency). Let S = (xk, yk)j∈[m] ∈ ({0, 1}n × Ω)m be
a sample. A concept h : {0, 1}n → Ω is consistent with S if for all k ∈ [m],
yk = h(xk).

The following lemma is due to Blumer, Ehrenfeucht, Haussler, and War-
muth [BEHW87] and has now become a standard fact in algorithmic learning
theory. It serves as a basis for the principle of Occam’s razor.

Lemma 3.1.8 (Blumer et al. [BEHW87]). Let C be a class of concepts
f : {0, 1}n → Ω. Let f ∈ C, D : X → [0, 1] be a probability distribution on X,
and δ, ε > 0. Let S be a D-distributed sample for f of size

m ≥ 1

ε
ln
|C|
δ

(3.3)

and h : X → Y be any concept that is consistent with S. Then

Pr
x∼D

[h(x) 6= f(x)] < ε

with probability at least 1 − δ (taken over the set of D-distributed samples of
size m for f).
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Subsequent to the appearance of Blumer et al.’s work on the principle of
Occam’s razor [BEHW87], the same authors published one of the most influen-
tial papers in algorithmic learning theory [BEHW89], in which they essentially
replace ln |C| in (3.3) by the Vapnik-Chervonenkis dimension of C. This yields
an asymptotically tight bound on the number of examples necessary to learn.
For our purposes, however, it suffices to work with Lemma 3.1.8.

3.2 Learning and Noise Models

Additionally to the target concept f and the attribute distribution D, we fix an
attribute noise distribution P : {0, 1}n → [0, 1] and a classification noise rate
η ∈ [0, 1].

Definition 3.2.1 ((P, η)-noisy sample). Let x ∼ D, ξ ∼ P , and ζ ∈ Ω
with ζ ∼ η. In case that Ω = {0, 1}, the pair (x ⊕ ξ, f(x) ⊕ ζ) is called a
D-distributed (P, η)-noisy example for f , whereas in case that Ω = {−1,+1},
the pair (x⊕ ξ, f(x) · ζ) is called a D-distributed (P, η)-noisy example for f . A
sequence S of m independent D-distributed (P, η)-noisy examples for f is called
a D-distributed (P, η)-noisy sample for f of size m.

In other words, a (P, η)-noisy example is obtained from a noise-free exam-
ple (x, y) by adding a noise-vector ξ ∼ P to the attribute vector x (component-
wisely modulo 2) and flipping the classification y according to the classification
noise bit ζ ∼ η.

A (P, 0)-noisy example is corrupted only by attribute noise but not by classi-
fication noise. Examples that suffer from classification noise with rate η but not
from attribute noise are denoted (−, η)-noisy. In these cases, we speak of pure
attribute noise and pure classification noise, respectively. Note that noise-free
examples are a special case of noisy examples: choose P (0n) = 1 and P (x) = 0
for x 6= 0n and η = 0. Hence, noise-free examples are (−, 0)-noisy.

Definition 3.2.2 (Learning algorithm). Let δ ∈ (0, 1] and ε ∈ [0, 1], called
the confidence parameter and the accuracy parameter, respectively. An algo-
rithm A learns the class C with confidence 1 − δ and accuracy 1 − ε from D-
distributed (P, η)-noisy samples of size m if the following is satisfied. For all
target concepts f ∈ C, given a D-distributed (P, η)-noisy sample S of size m as
input, A outputs a concept h : {0, 1}n → Ω such that with probability at least
1 − δ (taken over the set of D-distributed (P, η)-noisy samples of size m), h is
ε-close to f , i.e.,

Pr
x∼D

[h(x) 6= f(x)] ≤ ε .
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The concept h is called the hypothesis of A on input S. Algorithm A is a
distribution-free learning algorithm if it learns C for arbitrary attribute distribu-
tions D, without any a priori knowledge about D. This is the original definition
of PAC learnability introduced by Valiant [Val84]. Learning with accuracy ε = 0
is referred to as exact learning. The sample size m needed by A to learn (with a
certain confidence and a certain accuracy) is called the sample complexity of A.
It is a function of the parameters δ, ε, P , η, C, and n.

A learning algorithm is said to be attribute-efficient if its sample size is
polynomial in log n, 2| rel(f)|, 1/δ, and 1/ε. It has polynomial running time if its
running time is polynomial in n, 2| rel(f)|, 1/δ, and 1/ε. In all applications, the
dependence on δ is in fact only O(log(1/δ)).

Definition 3.2.3 (Learnability of a concept class). A concept class C is
learnable (with confidence 1 − δ and accuracy 1 − ε from D-distributed (P, η)-
noisy samples of size m in time t) if there exists an algorithm A that learns C
(with confidence 1−δ and accuracy 1−ε from D-distributed (P, η)-noisy samples
of size m in time t). It is exactly learnable if it is learnable with accuracy 1.

In the remainder of this subsection, we take a closer look at noise distributions
and their properties. Bshouty et al. [BJT03, Lemma 1] have observed that
attribute and classification noise may be reduced to “attribute- and concept-
dependent” classification noise:

Lemma 3.2.4 ([BJT03]). Let P : {0, 1}n → [0, 1] be an attribute noise dis-
tribution and η ∈ [0, 1] be a classification noise rate. Let x ∼ Un, ξ ∼ P , and
ζ ∼ η be independent random variables. Then the variables (x⊕ ξ, f(x) · ζ) and
(x, f(x⊕ ξ) · ζ) are identically distributed.

Since arbitrary attribute noise distributions often turn out to make learning
impossible, we also study the more restricted product random attribute noise
considered by Goldman and Sloan [GS95]. Here, each attribute xi of an example
is flipped independently with some probability pi ∈ [0, 1], called the (attribute)
noise rate of xi. Thus, we have

P (ξ1, . . . , ξn) =
∏
i:ξi=1

pi ·
∏
i:ξi=0

(1− pi) =
n∏
i=1

pξii · (1− pi)1−ξi .

Naturally, such product distributions P induce product distributions on the sub-
cubes {0, 1}I , I ⊆ [n], which we denote by P again. In general, given a product
distribution P on {0, 1}n, we refer to the probabilities pi = Pr[xi = 1] as the
rates of P .
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If η = 1/2, then the corrupted classifications are purely random and thus
not at all correlated with f . Hence, in this situation, learning is impossible.
Consequently, we always assume that η 6= 1/2. The case η > 1/2 can be reduced
to η′ < 1/2 by negating all classifications and then multiplying with noise bits ζ
drawn according to η′ = 1−η. Nevertheless, it has to be known a priori whether
η < 1/2 or η > 1/2.

The knowledge of our learning algorithms about the noise distribution P and
the noise rate η varies from exact distributions to quite weak assumptions such
as |1 − 2η| ≥ γb for some γb > 0. Specifically, the greedy algorithm studied
in Chapter 4 does not need any knowledge about the noise parameters at all.
However, the sample size needed to learn successfully always has to depend on
these parameters, as lower bounds show (see Theorem 3.6.1 and Theorem 6.4.2).

We often need to estimate, for a set I ⊆ [n] of attribute indices, how likely
an odd number of bits in I is flipped when attribute noise is applied. Therefore
we introduce

pI = Pr
ξ∼P

[χI(ξ) = −1] = Pr
ξ∼P

[⊕
i∈I ξi = 1

]
. (3.4)

Moreover, we denote p{i} by pi, which is consistent with the case of product
random attribute noise. If P is a product distribution such that all pi differ from
1/2, then also pI differs from 1/2:

Lemma 3.2.5. Let P : {0, 1} → [0, 1] be a product distribution with rates
p1, . . . , pn and I ⊆ [n]. Then

1− 2pI =
∏
i∈I

(1− 2pi) . (3.5)

Moreover, if there exists γ > 0 such that for all i ∈ [n], |1 − 2pi| ≥ γ, then
|1− 2pI | ≥ γ|I| for all I ⊆ [n].

Proof. For |I| ≤ 1, the claim is true. For |I| ≥ 2, let i ∈ I and I ′ = I \ {i}.
Then

1− 2pI = 1− 2 Pr
ξ∼P

[χI(ξ) = −1]

= 1− 2 Pr
ξ∼P

[χI′(ξ) = 1] · Pr
ξ∼P

[ξi = −1]

−2 Pr
ξ∼P

[χI′(ξ) = −1] · Pr
ξ∼P

[ξi = 1]

= 1− 2(1− pI′)pi − 2pI′(1− pi) = 4pI′pi − 2pI′ − 2pi + 1

= (1− 2pi)(1− 2pI′) .

By induction hypothesis, 1− 2pI′ =
∏

i∈I′(1− 2pi), and the claim follows.
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Inspired by the result of the previous lemma, we define γa-bounded probability
distributions:

Definition 3.2.6 (γa-bounded probability distribution). Let γa ∈ (0, 1].
A probability distribution P : {0, 1}n → [0, 1] is γa-bounded if for all I ⊆ [n],

|1− 2pI | ≥ γ|I|a .

Thus, if P is a product distribution with rates p1, . . . , pn that satisfy the
condition |1− 2pi| ≥ γa > 0 for all i ∈ [n], then P is γa-bounded. The following
example shows that Lemma 3.2.5 is not valid for arbitrary distributions (where
we define pi = Prξ∼P [ξi = 1]).

Example 3.2.7. Let n = 2 and P : {0, 1}2 → [0, 1] be defined by

P (00) = 1/2, P (01) = 1/4, P (10) = 1/4, and P (11) = 0 .

Then p1 = P (10) + P (11) = 1/4 and p2 = P (01) + P (11) = 1/4. Consequently,
(1− 2p1)(1− 2p2) = (1/2) · (1/2) = 1/4 6= 0. However,

p{1,2} = Pr
ξ∼P

[ξ1 ⊕ ξ2 = 1] = P (01) + P (10) = 1/2 ,

i.e., 1−2p{1,2} = 0. If P is an attribute noise distribution, this demonstrates that
it may happen that the parity of x1 and x2 changes with probability 1/2, although
each attribute separately is flipped with probability strictly less than 1/2. In
this case, the uncorrupted value of the parity x1 ⊕ x2 is no more recoverable
from any number of P -noisy attribute vectors. We will revert to this issue in
Section 3.7.

On the other hand, also non-product distributions P may of course be γa-
bounded:

Example 3.2.8. Let n = 2 and P : {0, 1}2 → [0, 1] be defined by

P (00) = 1/2, P (01) = 1/8, P (10) = 1/4, and P (11) = 1/8 .

Then

p1 = P (10) + P (11) = 3/8 ,

p2 = P (01) + P (11) = 1/4 , and

p{1,2} = P (01) + P (10) = 3/8 .

Consequently, |1− 2p1| = 1/4, |1− 2p2| = 1/2, and |1− 2p{1,2}| = 1/4 (note that
always p∅ = 0 and hence |1− 2p∅| = 1). Thus, P is 1/4-bounded. Furthermore,
P is not a product distribution since P (11) = 1/8, but p1 · p2 = 3/32.
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In addition to the probability pI that a parity function χI applied to a noise
vector takes the value −1, we will also often refer to the expected value of χI(ξ)
when ξ ∼ P : let

λI = Eξ∼P [χI(ξ)] = 1− 2pI . (3.6)

We have

λI = Eξ∼P [χI(ξ)] = 2−n
∑

ξ∈{0,1}n

2nP (ξ)χI(ξ) = 2nP̂ (I) , (3.7)

where the Fourier transform is taken with respect to the uniform distribution.
Interestingly, we can conclude from (3.7) that the converse of Lemma 3.2.5

is also true. Although we do not use this result any further, we include it here
as a nice application of Fourier analysis in probability theory.

Lemma 3.2.9. Let P : {0, 1}n → [0, 1] be a probability distribution that satis-
fies (3.5) for all I ⊆ [n]. Then P is a product distribution.

Proof. By (2.8),

P =
∑
I⊆[n]

P̂ (I)χI = 2−n
∑
I⊆[n]

λIχI = 2−n
∑
I⊆[n]

(1− 2pI)χI .

Thus, the mapping P 7→ (pI | I ⊆ [n]) is injective with inverse function

(pI | I ⊆ [n]) 7→ 2−n
∑
I⊆[n]

(1− 2pI)χI .

If (3.5) is valid for all I ⊆ [n], then we can compute all pI , I ⊆ [n], from
p1, . . . , pn. Let P ′ be the product distribution with rates p′i = pi for all i ∈ [n].
By the preceding argument, p′I = pI for all I ⊆ [n]. Since the mapping above is
injective, P = P ′. Hence, P is a product distribution.

3.3 Approximation of Fourier Coefficients

from Noisy Data

In Lemma 3.1.6, we have shown that the empirical Fourier coefficient f̃S(I) is a
close approximation to f̂(I) if the noise-free sample S is sufficiently large. If the
sample is (P, η)-noisy, then f̃S(I) approximates

Ex∼Un,ξ∼P,ζ∼η[χI(x⊕ ξ) · f(x) · ζ] .
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Lemma 3.3.1 (Bshouty et al. [BJT03]). For all I ⊆ [n], we have

Ex∼Un,ξ∼P,ζ∼η[χI(x⊕ ξ) · f(x) · ζ] = (1− 2pI) · (1− 2η) · f̂(I) .

Proof. We include a proof for the sake of completeness. By assumption, the
attribute vector x, the attribute noise vector ξ, and the classification noise bit ζ
are pairwise independent. Furthermore, χI(x⊕ ξ) = χI(x) · χI(ξ). Thus,

Ex∼Un,ξ∼P,ζ∼η[χI(x⊕ ξ) · f(x) · ζ] = Ex∼Un [χI(x)f(x)] · Eξ∼P [χI(ξ)] · Eζ∼η[ζ] .

It remains to compute each of the three factors: by definition,

Ex∼Un [χI(x)f(x)] = f̂(I) and Eξ∼P [χI(ξ)] = 1− 2pI .

Finally, Eζ∼η[ζ] = (1− η) · 1 + η · (−1) = 1− 2η.

A straightforward application of the Hoeffding bound (see Lemma 3.1.2)
yields

Lemma 3.3.2. Let I ⊆ [n] and m ≥ 2 · ln(2/δ) · (1/ε2). Then

|f̃S(I)− (1− 2pI)(1− 2η)f̂(I)| ≤ ε

with probability at least 1− δ.
Proof. Define t : {0, 1}n × {−1,+1} → {−1,+1} by t(x, y) = χI(x) · y. The
claim follows from Corollary 3.1.4.

Thus, we can infer f̂(I) by dividing f̃(I) by (1 − 2pI)(1 − 2η). This is
possible if and only if pI 6= 1/2 and η 6= 1/2. Requesting η to be different
from 1/2 is reasonable (even necessary) as we have discussed in Section 3.2.
Unfortunately, it can happen that pI = 1/2 for some I (even if Prξ∼P [ξi = 1] 6=
1/2 for all i ∈ [n], see Example 3.2.7), yielding a concept class C and an attribute
noise distribution P such that C is (information-theoretically) not learnable from
(P, 0)-noisy samples, as we will show in Theorem 3.7.3. In contrast, things look
much nicer for product distributions P with noise rates pi that are all different
from 1/2, as we have seen in Lemma 3.2.5. In this setting, pI 6= 1/2 for all
I ⊆ [n].

3.4 Noise Operator, Noisy Distance,

and Noise Stability

Let us now introduce some mathematical tools that will be used to prove upper
and lower sample bounds. We start with the noise operator, which allows us
to view notions such as noisy examples, noisy distance, and noise stability in a
unified framework.
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Definition 3.4.1 (Noise operator). Let P : {0, 1}n → [0, 1] be an attribute
noise distribution. We define the noise operator TP : R{0,1}n → R{0,1}n

by

TP (f)(x) = Eξ∼P [f(x⊕ ξ)] (3.8)

for f : {0, 1}n → R and x ∈ {0, 1}n.

For f : {0, 1}n → {−1,+1}, TP (f)(x) may be interpreted as follows. If x is
a noise-free attribute vector that is drawn according to the attribute distribu-
tion D, then TP (f)(x) is the expected value of the classification of the corrupted
attribute vector x ⊕ ξ. The function TP (f) may be thought of as the bias of
a probabilistic concept: on input x ∈ {0, 1}n, the outcome is −1 with prob-
ability (1 − TP (f)(x))/2 and +1 with probability (1 + TP (f)(x))/2. Learning
from noisy examples thus means to learn the target concept f , even though only
examples of this probabilistic concept are available. By linearity of expectation,
TP is a linear operator.

For the special case that P is a product distribution with rates p1 = . . . = pn,
this operator has been extensively studied in the literature, e.g., by Kahn, Kalai,
and Linial [KKL88], Benjamini et al. [BKS99], Mossel and O’Donnell [MO03],
and O’Donnell [O’D03].

We show how the Fourier coefficients of TP (f) are related to those of f .
Recall that λI = Eξ∼P [χI(ξ)] for all I ⊆ [n].

Lemma 3.4.2. Let f : {0, 1}n → R, P be an attribute noise distribution, and
I ⊆ [n]. Then

(a) TP (χI) = λIχI and

(b) T̂P (f)(I) = λI f̂(I).

Proof. (a) For all x ∈ {0, 1}n, we have

TP (χI)(x) = Eξ∼P [χI(x⊕ ξ)] = Eξ∼P [χI(x) · χI(ξ)] = λI · χI(x) .

(b) By linearity of the Fourier transform and TP , we have

T̂P (f)(I) =
∑
J⊆[n]

f̂(J)T̂P (χJ)(I) =
∑
J⊆[n]

f̂(J)λJ χ̂J(I) = λI f̂(I) .

Using the Fourier expansion (2.8) and Parseval’s equality (2.10), the following
corollary is immediate:
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Corollary 3.4.3. Let f : {0, 1}n → [−1, 1] and P : {0, 1}n → [0, 1] be an
attribute noise distribution. Then

(a) TP (f)(x) =
∑

I⊆[n] λI f̂(I)χI for all x ∈ {0, 1}n.

(b) ‖TP (f)‖1 = Ex∼Un [ |Eξ∼P [f(x⊕ ξ)] | ].

(c) ‖TP (f)‖22 = Ex∼Un [ (Eξ∼P [f(x⊕ ξ)])2 ] =
∑

I⊆[n] λ
2
I f̂(I)2.

(d) ‖TP (f)‖22 ≤ ‖TP (f)‖1 ≤ ‖TP (f)‖2.

(e) ‖TP (f)‖22 ≥ minI⊆[n] λ
2
I · ‖f‖22.

Proof. Part (a) follows by Fourier expansion (2.8) and Lemma 3.4.2 (b), part (b)
is immediate from the definitions, and part (c) follows from the definitions and
from Parseval’s equality (2.10). The first inequality of part (d) follows since for
all g : {0, 1}n → [−1,+1], we have

‖g‖22 = 2−n
∑

x∈{0,1}n

g(x)2 ≤ 2−n
∑

x∈{0,1}n

|g(x)| = ‖g‖1 .

Clearly, |TP (f)(x)| ≤ 1 for all x ∈ {0, 1}n if |f(x)| ≤ 1 for all x ∈ {0, 1}n. The
second inequality of part (d) follows from E[|X|]2 ≤ E[X2] for real-valued random
variables X. Finally, part (e) is an immediate consequence of part (c).

Another corollary concerns the invertibility of TP :

Corollary 3.4.4. Let P : {0, 1}n → [0, 1] be an attribute noise distribution.

(a) The kernel ker(TP ) = {f ∈ R{0,1}n | TP (f) = 0} of TP is equal to the linear
span of the parity functions χI with λI = 0:

ker(TP ) = 〈χI | I ⊆ [n] : λI = 0 〉 .

(b) TP is invertible if and only if λI 6= 0 for all I ⊆ [n].

Proof. (a) By Lemma 3.4.2 (a), for each I ⊆ [n], we have TP (χI) = λI · χI .
Consequently, 〈χI | I ⊆ [n] : λI = 0 〉 ⊆ ker(TP ). For the reverse inclusion,
consider f ∈ ker(TP ), i.e., TP (f) = 0. Then, by Lemma 3.4.2 (b),

λI f̂(I) = T̂P (f)(I) = 0

for all I ⊆ [n]. Consequently, if λI 6= 0, then f̂(I) = 0. By Fourier expan-
sion (2.8),

f =
∑
I⊆[n]

f̂(I)χI =
∑
I:λI 6=0

f̂(I)χI .
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Thus, f is contained in the linear span

〈χI | I ⊆ [n] : λI = 0 〉 .

(b) This is immediate from part (a).

Bshouty et al. [BJT03] have introduced a parameter ∆P (f, g), which they
have called the noisy distance between concepts f and g with respect to P . It
turns out that ∆P (f, g) is precisely half the 1-norm of the noise operator TP
applied to the difference of f and g:

∆P (f, g) = 1
2

Ex∼Un [ |Eξ∼P [f(x⊕ ξ)− g(x⊕ ξ)] | = 1
2
‖TP (f − g)‖1 . (3.9)

We have proposed an interpretation of the expression Eξ∼P [f(x⊕ξ)] = TP (f)(x)
in the beginning of this subsection. The value ∆P (f, g) measures the expected
difference between noisy examples for f and for g. The smaller this expected
difference becomes, the harder it is to tell f and g apart on the basis of random
noisy examples.

For any ε > 0, Bshouty et al. have defined ∆ε
P (C) to be the minimum noisy

distance between ε-far concepts inside C:

∆ε
P (C) = min {∆P (f, g) | f, g ∈ C : Pr

x∼Un

[f(x) 6= g(x)] > ε} . (3.10)

In our notation this is equal to

∆ε
P (C) = min

{
1
2
‖TP (f − g)‖1 | f, g ∈ C : 1

2
‖f − g‖1 > ε

}
,

i.e., ∆ε
P (C) measures how close ε-far concepts in C can become when TP is applied

to them. In addition, for α : 2[n] → [−1, 1], Bshouty et al. [BJT03] have defined
the α-attenuated power spectrum of f by sα(f) =

∑
I⊆[n] α(I)2f̂(I)2. For α(I) =

λI as introduced in (3.6), they have defined sP (f) = sα(f), i.e.,

sP (f) =
∑
I⊆[n]

λ2
I f̂(I)2 , (3.11)

and have proved a useful relationship between sα(f − g) and the noisy dis-
tance ∆P (f, g) (see Theorem 3.4.5). Again, it turns out that their definitions
can be rephrased in terms of norms of the noise operator applied to the difference
between concepts f and g: we simply have

sP (f) = ‖TP (f)‖22

by Corollary 3.4.3 (c).
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In analogy to ∆ε
P (C), the minimum sP (f − g) of ε-far concepts in C is

SεP (C) = min{sP (f − g) | f, g ∈ C : Pr
x∼Un

[f(x) 6= g(x)] > ε} ,

or, equivalently,

SεP (C) = min {‖TP (f − g)‖22 | f, g ∈ C : 1
2
‖f − g‖1 > ε} .

Theorem 3.4.5 ([BJT03]). Let P : {0, 1}n → [0, 1] be a probability distribu-
tion.

(a) For any functions f, g : {0, 1}n → {−1,+1},

1

4
sP (f − g) ≤ ∆P (f, g) ≤ 1

2

√
sP (f − g) .

(b) For every concept class C and every ε > 0,

1
4
SεP (C) ≤ ∆ε

P (C) ≤ 1
2

√
SεP (C) .

Although this theorem has been proved by Bshouty et al. [BJT03], we think
that it is worthwhile to rephrase its proof in terms of the noise operator TP and
its norms since this adds a little more structure. With the prerequisites we have
established, the proof appears more natural than the way it has been presented
by Bshouty et al.

Proof. We deduce part (a) from Corollary 3.4.3 (d): from |(f(x)− g(x))/2| ≤ 1
for all x ∈ {0, 1}n, it follows that

‖TP ((f − g)/2)‖22 ≤ ‖TP ((f − g)/2)‖1 ≤ ‖TP ((f − g)/2)‖2 .

The claim follows from

‖TP ((f − g)/2)‖22 = sP (f − g)/4 ,
‖TP ((f − g)/2)‖1 = ∆P (f, g) , and

‖TP ((f − g)/2)‖2 =
√
sP (f)/2 .

Part (b) is now a simple consequence of the definitions of ∆P (C) and SP (C).

We conclude this subsection by introducing the notion of noise stability with
respect to arbitrary attribute noise distributions. For x ∈ {0, 1}n,

Pr
ξ∼P

[f(x⊕ ξ) 6= f(x)]
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is the probability that the classification of x is flipped by the attribute noise
process. Since

TP (f)(x) =
∑

ξ∈{0,1}n

P (ξ)f(x⊕ ξ)

=
∑

ξ:f(x⊕ξ)=f(x)

P (ξ)f(x)−
∑

ξ:f(x⊕ξ)=−f(x)

P (ξ)f(x)

= f(x) ·
(

Pr
ξ∼P

[f(x⊕ ξ) = f(x)]− Pr
ξ∼P

[f(x⊕ ξ) 6= f(x)]
)

= f(x) ·
(
1− 2 Pr

ξ∼P
[f(x⊕ ξ) 6= f(x)]

)
,

we obtain that

Pr
ξ∼P

[f(x⊕ ξ) 6= f(x)] = (1− |TP (f)(x)|)/2 .

The value |1− 2 Prξ∼P [f(x⊕ ξ) 6= f(x)]| = |TP (f)(x)| measures how far the
noise process is from turning the classification f(x) into a random bit that does
not reveal any information about f(x). The noise stability is the minimum of
this measure, taken over all x ∈ {0, 1}n:

Definition 3.4.6 (Noise stability). Let C be a concept class, f ∈ C, and P
be an attribute noise distribution. Define the noise stability ΓP (f) of f with
respect to P by

ΓP (f) = min
{ ∣∣1− 2 Pr

ξ∼P
[f(x⊕ ξ) 6= f(x)]

∣∣ ∣∣ x ∈ {0, 1}n
}

and ΓP (C) = min{ΓP (f) | f ∈ C}.

Alternative characterizations are given by

ΓP (f) = min
{
|Eξ∼P [f(x⊕ ξ) · f(x)] |

∣∣ x ∈ {0, 1}n
}

= min
{
|TP (f)(x)|

∣∣ x ∈ {0, 1}n
}
. (3.12)

The related notion of noise sensitivity has been studied by Kahn et al. [KKL88],
Benjamini et al. [BKS99], Mossel and O’Donnell [MO03], and O’Donnell [O’D03].
For product distributions P with equal rates p1 = . . . = pn = ε ∈ [0, 1],
O’Donnell [O’D03] has defined

NSε(f) = Pr
x∼Un,ξ∼P

[f(x⊕ ξ) 6= f(x)] .

Thus, ΓP (f) = |1− 2NSε(f)| in this case. In general, ΓP (f) is a measure for the
noise stability under arbitrary noise distributions P . We will use this measure
in Chapter 6.
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3.5 Sample Bounds for Learning Juntas

from Noise-free Data

Almuallim and Dietterich [AD94, Theorem 1] have proved that given a num-
ber of examples that is at least polynomial in log n, 2| rel(f)|, log(1/δ), and 1/ε,
any hypothesis consistent with the sample is ε-close to the target concept with
probability at least 1 − δ. Their proof is based on the sample upper bound by
Blumer et al. [BEHW87] (Lemma 3.1.8). For uniformly distributed examples,
this means that with probability at least 1 − δ, the target concept is the only
concept consistent with the sample:

Lemma 3.5.1 ([AD94]). Let f : {0, 1}n → {0, 1}, d = | rel(f)|, and δ > 0. Let
S be a uniformly distributed sample of size

m ≥ 2d+1

(
ln

1

δ
+ d lnn+ 2d ln 2

)
(3.13)

for f . Then with probability at least 1−δ, f is the only d-junta that is consistent
with S. In particular, (3.13) is implied by

m ≥ 22d+1 ln
n

δ
.

As a lower bound for learning the relevant attributes from noise-free data, we
cite a Theorem of Almuallim and Dietterich [AD94, Theorem 3], which is based
on the computation of a lower bound on the Vapnik-Chervonenkis dimension
of J n

d .

Theorem 3.5.2 ([AD94]). To learn J n
d distribution-freely with confidence 1−δ

and accuracy 1− ε, a sample size of

Ω
(

1
ε
(ln 1

δ
+ ln 2d lnn+ 2d)

)
is necessary.

3.6 Upper and Lower Bounds for Learning

from Noisy Data

Let us now come to infer bounds for the noisy learning scenario. The following
lower bound is due to Bshouty et al. [BJT03, Theorem 2]:
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Theorem 3.6.1 ([BJT03]). Let C be a concept class, P be an attribute noise
distribution and δ, ε > 0. Then any algorithm that learns the class C with con-
fidence 1 − δ and accuracy 1 − ε from (P, 0)-noisy samples requires a sample
complexity of

Ω

(
1− 2δ

∆2ε
P (C)

)
.

In the following, we describe an approach to obtain an upper bound for
learning in fairly general situations. Let Tε ⊆ P([n]) such that∑

I∈Tε

f̂(I)2 ≥ 1− ε

for all f ∈ C. An LMN-style algorithm estimates, for each I ∈ Tε, the Fourier co-
efficient f̂(I) (e.g., using empirical Fourier coefficients (3.2)), and then computes
from these estimates a hypothesis h that is ε-close to f with high probability.
This hypothesis is build via the Fourier expansion formula (2.8). See Bshouty
et al. [BJT03] for a more precise definition of “LMN-style algorithm”, and con-
sult the seminal paper of Linial, Mansour, and Nisan [LMN93] in which such an
algorithm has been proposed first.

In all applications we are aware of, Tε always consists of all sets up to a
certain size depending on ε. In such a setting, the algorithm is also referred
to as a lowdegree algorithm in the literature. However, one might construct
concept classes C for which index sets Tε exist with

∑
I∈Tε

f̂(I)2 ≥ 1 − ε but
ε 7→ Tε is not efficiently computable, particularly in case of growing n. By saying
that C is LMN-style learnable with index set Tε, we exclude (by definition) these
pathological cases. Bshouty et al. [BJT03, Theorem 8] have shown the following:

Theorem 3.6.2 ([BJT03]). Let C be a concept class that is closed under com-
plement and suppose that C is LMN-style learnable using index set Tε ⊆ [n].
Then for every δ, ε > 0 such that {χI | I ∈ Tε} ⊆ C, C is learnable with confi-
dence 1− δ and accuracy 1− 2ε from uniformly distributed (P, η)-noisy samples
in time polynomial in |Tε|, 1/∆ε

P , log(1/δ), 1/ε, and 1/|1− 2η|.

There are two minor caveats to the statement of Theorem 3.6.2: first, C is
required to be closed under complement. Second, C is required to contain all
parities indexed by Tε. We remedy these shortcomings by replacing ∆ε

P with

λ = min{|λI | | I ⊆ Tε} . (3.14)

Note that under the assumptions of Theorem 3.6.2, ∆ε
P (C) ≤ λ since for all

I ⊆ [n],
∆P (χI ,−χI) = ‖TP (χI)‖1 = ‖λIχI‖1 = |λI |
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Algorithm 3.1 Noisy-LMNT

1: input S = ((xk1, . . . , x
k
n), y

k)k∈[m], P, η
2: for I ∈ T do

3: f̃S(I)← 1
m

∑m
k=1 χI(x

k) · yk
4: output hypothesis

Noisy-LMNT (x) = sgn
∑
I∈T

(1− 2pI)
−1(1− 2η)−1f̃S(I)χI(x)

by (3.9) and Lemma 3.4.2 (a). The algorithm Noisy-LMNT (Algorithm 3.1)
will be used to derive upper bounds on the sample and time complexity of general
learning bounds.

Theorem 3.6.3. Let C be a class of concepts {0, 1}n → {−1,+1}, ε > 0, and
Tε ⊆ P([n]) such that for each f ∈ C,

∑
I∈Tε

f̂(I)2 ≥ 1− ε. Then Noisy-LMNTε

learns C with confidence 1 − δ and accuracy 1 − 2ε from uniformly distributed
(P, η)-noisy samples using sample complexity and running time polynomial in
|Tε|, 1/λ, 1/|1− 2η|, log(1/δ), and 1/ε, with λ as defined in (3.14).

Proof. The proof is basically the same as the proof of Theorem 3.6.2 presented by
Bshouty et al. [BJT03], except for our improvements concerning the requirements
for C.

Let T = Tε and ρ = λ(1− 2η)
√
ε/|T |. For each I ∈ T , let

βI = (1− 2pI)
−1(1− 2η)−1f̃S(I)

and define h(x) =
∑

I∈T βIχI(x) for x ∈ {0, 1}n. By Lemma 3.3.2, for each
I ∈ T , with probability at least 1− δ/|T |,

|βI − f̂(I)| ≤ (1− 2pI)
−1(1− 2η)−1ρ ≤

√
ε/|T | ,

provided that

m ≥ 2 · ln(2|T |/δ) · (1/ρ2) = 2 · ln(2|T |/δ) · λ−2(1− 2η)−2ε−1 · |T | .

The latter amount of examples is polynomial in the parameters as claimed in
the statement of the theorem. Hence, with probability at least 1− δ,

|βI − f̂(I)| ≤ ε/|T |
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for all I ∈ T simultaneously. In this case, since sgn(h(x)) 6= f(x) implies
|h(x)− f(x)| ≥ 1, we obtain

Pr
x∼Un

[sgn(h(x)) 6= f(x)] ≤ 2−n
∑

x∈{0,1}n

|h(x)− f(x)|2

=
∑
I⊆[n]

(ĥ(I)− f̂(I))2

=
∑
I∈T

(βI − f̂(I))2 +
∑

I∈P([n])\T

f̂(I)2

≤
∑
I∈T

ε

T
+ ε = 2ε ,

where the first equality is Parseval’s equation (2.10).

Although sample and time complexity can be exponential in n, the method
described will prove useful as part of our noise-tolerant learning algorithm for
juntas (see Section 5.4).

3.7 A Characterization of Learnability

from Noisy Data

We start this subsection by stating that if TP maps two concepts f and g to
the same function, then the pairs (x ⊕ ξ, f(x)) and (x ⊕ ξ, g(x)) are identically
distributed:

Lemma 3.7.1 ([BJT03]). Let f, g : {0, 1}n → Ω such that TP (f − g) = 0.
Then for x ∼ Un and ξ ∼ P , the random pairs (x ⊕ ξ, f(x)) and (x ⊕ ξ, g(x))
are identically distributed.

Proof. We provide a self-contained proof since the result has only been implicitly
proved by Bshouty et al. [BJT03]. We first show that the pairs (x, f(x⊕ ξ)) and
(x, g(x ⊕ ξ)) are identically distributed. By definition of TP , TP (f − g) = 0
implies Eξ[f(x⊕ ξ)] = Eξ[g(x⊕ ξ)] for all x ∈ {0, 1}n. In case that Ω = {0, 1},

Pr
ξ∼P

[f(x⊕ ξ) = 1] = Eξ∼P [f(x⊕ ξ)]

= Eξ∼P [g(x⊕ ξ)]
= Pr

ξ∼P
[g(x⊕ ξ) = 1]
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for all x ∈ {0, 1}n. Similarly, if Ω = {−1,+1}, then

Pr
ξ∼P

[f(x⊕ ξ) = −1] = 1
2
(1− Eξ∼P [f(x⊕ ξ]))

= 1
2
(1− Eξ∼P [g(x⊕ ξ)])

= Pr
ξ∼P

[g(x⊕ ξ) = −1]

for all x ∈ {0, 1}n. Hence, for all a ∈ {0, 1}n and b ∈ Ω,

Pr
x∼Un,ξ∼P

[x = a ∧ f(x⊕ ξ) = b] = Pr
x∼Un

[x = a] · Pr
x∼Un,ξ∼P

[f(x⊕ ξ) = b | x = a]

= 2−d Pr
ξ∼P

[f(a⊕ ξ) = b]

= 2−d Pr
ξ∼P

[g(a⊕ ξ) = b]

= Pr
x∼Un,ξ∼P

[x = a ∧ g(x⊕ ξ) = b] .

Consequently, (x, f(x ⊕ ξ)) and (x, g(x ⊕ ξ)) are identically distributed. By
Lemma 3.2.4, also (x⊕ ξ, f(x)) and (x⊕ ξ, g(x)) are identically distributed.

We tighten the lower and upper bounds of Bshouty et al. [BJT03] stated in
Theorems 3.6.1 and 3.6.2 by providing the following characterization of learn-
ability from uniformly distributed examples in the presence of attribute and
classification noise:

Theorem 3.7.2. Let C be a concept class, P be an attribute noise distribution,
and η ∈ [0, 1] be a classification noise rate. Then C can be learned with accuracy
1 − ε from uniformly distributed (P, η)-noisy samples if and only if ∆ε

P (C) > 0
and η 6= 1/2.

Proof. The “only if part” can be derived directly from the definition of ∆ε
P :

if this quantity vanishes, then there are distinct concepts f, g ∈ C such that
∆P (f, g) = 0. This implies that ‖TP (f − g)‖1 = 0 and hence TP (f − g) = 0. By
Lemma 3.7.1, (x⊕ξ, f(x)) and (x⊕ξ, g(x)) with x ∼ Un and ξ ∼ P are identically
distributed, which means that also (x ⊕ ξ, f(x) · ζ) and (x ⊕ ξ, g(x) · ζ) (with
Pr[ζ = −1] = η) are identically distributed. Hence, f and g are information-
theoretically indistinguishable under attribute noise that is distributed according
to P .

Now let ∆ε
P (C) > 0. If C is closed under complement and contains all parities,

then Theorem 3.6.2 (with Tε = 2[n]) immediately yields the “if part” of the claim.
However, all that is available to us for general classes C is Theorem 3.6.3, which
we cannot apply since ∆ε(C) > 0 does not imply λ = min{|λI | | I ⊆ [n]} > 0 (a
counter-example is provided in Theorem 6.3.5). We thus have to take a different
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line since we cannot approximate any coefficients f̂(I) with λI = 0. Note that
we are only interested in an information-theoretic result here; running time and
sample complexity play no role.

The idea is now that it suffices to distinguish between any two concepts
f, g ∈ C with ‖f − g‖1 > 2ε. Let

T = {I ⊆ [n] | λI 6= 0} and λ′ = min{|λI | | I ∈ T } .

Let f ∈ C and S = (xk ⊕ ξk, yk · ζk)k∈[m] be a uniformly distributed (P, η)-noisy
sample for f of sufficiently large size m. We describe how to recover from S a
hypothesis h that is ε-close to f with high probability: first, for all I ∈ T , we
calculate

βI =
f̃S(I)

|λI | · |1− 2η|
= (|λI | · |1− 2η| ·m)−1

m∑
k=1

yk · ζk · f(xk ⊕ ξk) .

Then we check for each h ∈ C whether

∀I ∈ T : |ĥ(I)− βI | ≤ 2−n−1 .

If so, we output h. If we do not find such an h, then we output “failure”.
By Lemma 3.3.2, if

m ≥ 2 · ln(2n+1/δ) · 22n+4(λ′ · |1− 2η|)−2 ,

then with probability at least 1− 2−n · δ,

|βI − f̂(I)| ≤ 2−n−2 . (3.15)

Consequently, with probability at least 1 − δ, (3.15) holds simultaneously for
all I ∈ T , which we assume in the following. In this case, f is among the
candidates to be output. On the other hand, let h ∈ C with ‖f−h‖1 > 2ε. Then
‖TP (f − h)‖1 ≥ 2∆ε

P (C) > 0 and thus TP (f − h) 6= 0. Since by Corollary 3.4.3,

TP (f − h) =
∑
I⊆[n]

λI(f̂(I)− ĥ(I))χI ,

there has to be an I ∈ T such that f̂(I) 6= ĥ(I). Thus, |f̂(I)− ĥ(I)| ≥ 2−n and
hence

|ĥ(I)− βI | ≥ |ĥ(I)− f̂(I)| − |f̂(I)− βI | ≥ 2−n − 2−n−2 > 2−n−1 .

Consequently, h is not output. Overall, with probability at least 1 − δ, some
hypothesis h ∈ C that is ε-close to f will be output.
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If ∆ε
P (C) = 0, then C cannot be learned from finitely many (P, η)-noisy

examples with accuracy ε/2 by Theorem 3.6.1, proving a slightly weaker result
than the first direction of the previous theorem.

Finally, we prove that both possibilities ∆ε
P (C) > 0 and ∆ε

P (C) = 0 can occur
for arbitrarily small ε > 0. On the one hand, this proves that there are indeed
classes that cannot be learned at all in the presence of noise. On the other hand,
we show that γa-bounded distributions P (for γa > 0) have ∆ε

P (C) > 0 and thus
in principle admit to learn arbitrary concept classes C from noisy examples.

Theorem 3.7.3. There is a concept class C and an attribute noise distribution
P such that C is not learnable from uniformly distributed (P, 0)-noisy samples.
In addition, P may be chosen such that pi < 1/2 for all i ∈ [n].

Proof. Consider the attribute noise distribution P given in Example 3.2.7. Let
f(x) = χ{1,2}(x) = (−1)x1+x2 and choose C = {f,−f}. By Corollary 3.4.3 (c),

‖TP (2f)‖22 = 2
∑

I⊆{1,2}

λ2
I χ̂{1,2}(I)

2 = 2λ2
{1,2} = 1− 2p{1,2} = 0 ,

hence also ‖TP (2f)‖1 = 0, i.e., TP (f− (−f)) = 0. This implies that (x⊕ξ, f(x))
and (x⊕ξ,−f(x)) are identically distributed by Lemma 3.7.1. Hence, f and −f
are information-theoretically indistinguishable under P -attribute noise.

On the other hand, if the probability for a certain bit to be flipped is 1/2,
this does not automatically force ∆ε

P (C) to be zero: e.g., the variable under
consideration may be irrelevant. As another example, consider the AND-function
of a subset I of [n] with x1 being flipped with probability 1/2 and the rest not
being changed at all. It is then easy to check (with sufficiently many examples)
whether x1 is relevant or not, although it is flipped with probability 1/2 (and
thus is perfectly random): if the other variables do not admit a consistent AND-
function, then x1 must be relevant; otherwise, not.

Complementing Theorem 3.7.3, we show that any concept class is learnable
under γa-bounded attribute noise and classification noise different from 1/2.

Theorem 3.7.4. Let C be the class of all concepts {0, 1}n → Ω, Ω = {0, 1} or
Ω = {−1,+1}. Let P be a γa-bounded attribute noise distribution and η 6= 1/2 be
a classification noise rate. Then C is exactly learnable from uniformly distributed
(P, η)-noisy samples.

Proof. We have to show that ∆0
P (C) > 0. Let f, g ∈ C with f 6= g. By assump-

tion, |λI | = |1− 2pI | ≥ γ
|I|
a > 0 for all I ⊆ [n]. Hence, by Corollary 3.4.4, TP is

invertible. Therefore, TP (f − g) 6= 0. Consequently,

∆0
P (C) = min

{
‖TP (f − g)‖

∣∣ f, g ∈ C ∧ f 6= g
}
> 0 .
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CHAPTER 4

The Greedy Method

The main result of this chapter is a concise characterization of the class of target
concepts for which a simple greedy algorithm (called Greedy in this thesis) is
able to infer the relevant variables. The idea behind the greedy algorithm is to
reduce the learning problem to the combinatorial Set Cover problem and solve
the latter by a well-known greedy algorithm. The characterization is based on a
property of the Fourier spectrum of the target concept, which we call Fourier-
accessibility, and which we have introduced in Definition 2.4.6. We present how
to extend the algorithm to cope with the class of τ -Fourier-accessible concepts
for τ ≥ 1. Furthermore, it is shown that Greedy is very robust against noise
corrupting its input data.

This chapter is organized as follows. The reduction to Set Cover and the
Greedy algorithm are presented in Section 4.1. Section 4.2 provides the major
lemmas used in the proof of our main results for Greedy, which are presented
in Section 4.3 for noise-free data. In Section 4.4, we extend the greedy approach
to τ -Fourier accessible concepts. The scenario of noisy input data is treated in
Section 4.5. Results for the static variant Greedy Ranking are presented in
Section 4.6, followed by some comments about the applicability of the opposite
strategy—Modest Ranking—in Section 4.7.

In this chapter, we are only concerned with finding the relevant attributes
of the target concept. The task of constructing a hypothesis is deferred to
Chapter 5. Furthermore, all concepts map to the range Ω = {0, 1}. As a
consequence, classification noise bits ζ will also be elements of {0, 1}, drawn
with Pr[ζ = 1] = η and Pr[ζ = 0] = 1 − η for some classification noise rate η ∈
[0, 1], which we indicate by ζ ∼ η. The classification y of a random example
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(x, y) ∈ {0, 1}n × {0, 1} is then affected by addition of ζ modulo 2 (“XOR-ed”).
Thus, each classification is independently affected by noise with probability η.

4.1 Reduction to Set Cover

and the Greedy Algorithm

In the following, we assume that all attributes and function values take binary
values. The generalization of the definitions to larger domains and codomains
is straightforward. Moreover, whenever randomness comes into play, we assume
examples to be uniformly distributed.

Definition 4.1.1 (Functional relations graph). With a sample

S = (xk, yk)k∈[m] ∈ ({0, 1}n × {0, 1})m ,

we associate the functional relations graph GS = (V,E), which is defined as
follows. Its vertices correspond to the examples of S, i.e., V = [m]. They are
partitioned into the subset of examples A(0) with yk = 0, and the examples A(1)

with yk = 1. GS is the complete bipartite graph with the vertex set partition
[m] = A(0) ∪ A(1), i.e.,

E =
{
{k, `} | k, ` ∈ [m], yk 6= y`

}
.

Given S, our primary goal is to determine a set of variables R ⊆ {x1, . . . , xn}
of minimum size such that there exists some concept g : {0, 1}n → {0, 1} with
rel(g) ⊆ R that is consistent with the sample. In this case, R is said to explain
the sample. Note that, in general, g need not be identical to the original concept
f , nor need the set R contain all relevant variables of f .

In order to find an explaining set of variables, we have to specify, for each
edge {k, `} ∈ E, a relevant variable that differs in xk and x`. Such a variable
is said to explain the edge. Formally, an edge {k, `} ∈ E can be covered by an
attribute xi if and only if xki 6= x`i . The set of edges that can be covered by xi is
denoted by Ei, i.e.,

Ei =
{
{k, `} ∈ E | k, ` ∈ [m], xki 6= x`i

}
.

The characteristic vector of an edge e = {k, `} ∈ E is

c(e) = (c1(e), . . . , cn(e)) =
(
xk1 ⊕ x`1, . . . , xkn ⊕ x`n

)
. (4.1)

It is sometimes referred to as a conflict which may be covered by any variable xi
such that ci(e) = 1, see, e.g., Almuallim and Dietterich [AD94].

A set R of variables thus explains the sample S if and only if these variables
explain all edges. The previous discussion is summarized by the following lemma:
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Table 4.1: A sample of size five.

k xk1 xk2 xk3 xk4 xk5 xk6 yk = f(xk)
1 1 0 0 1 0 1 1
2 0 0 1 0 1 1 0
3 1 0 1 1 0 0 1
4 0 1 1 0 1 1 1
5 0 1 0 1 1 0 0

A(0) A(1)

1
2

3

4
5

x1, x3, x4, x5

x1, x4, x5, x6

x1, x2, x3, x5

x
2

x3, x4, x6

x1, x
2, x

5, x
6

Figure 4.1: Functional relations graph of the sample given in Table 4.1. Each
edge is labeled by the variables that can cover it.

Lemma 4.1.2. Let S ∈ ({0, 1}n × {0, 1})m be a sample, R ⊆ {x1, . . . , xn}, and
E be the edge set of the functional relations graph GS. Then R explains S if and
only if E = ∪xi∈REi.

Example 4.1.3. Consider the sample S given in Table 4.1. The corresponding
functional relations graph GS is presented in Figure 4.1. For instance, the edge
{2, 1} may be covered by variables x1, x3, x4, and x5. Hence, its characteristic
vector is

c ({2, 1}) = (1, 0, 1, 1, 1, 0) .

A set R that covers the edges of GS is, e.g., {x2, x4}. Hence, {x2, x4} explains
the sample. Moreover, no other set of size at most two can cover all edges of GS.
In contrast, e.g., the set R = {x1, x3, x4, x5} does not explain S since the edge
{2, 4} is not covered by any of these variables.
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Algorithm 4.1 Greedy

1: input S = ((xk1, . . . , x
k
n), y

k)k∈[m]

2: E ← {{k, `} | k, ` ∈ [m], yk 6= y`}
3: R← ∅
4: while E 6= ∅ do

5: for i = 1 to n do

6: Ei ← {{k, `} ∈ E | xki 6= x`i}
7: select xi with maximum |Ei|
8: E ← E \ Ei
9: R← R ∪ {xi}
10: output Greedy(S) = R

Lemma 4.1.2 provides a reduction from the problem of inferring a small set
of explaining variables to the problem of finding a small cover of E by sets from
E1, . . . , En. This allows us to use algorithms for the set cover problem to find
explaining variables. The best known and probably most generic algorithm for
this problem is a greedy algorithm that successively picks a set that covers the
largest amount of elements not covered so far. This algorithm, which we call
Greedy, is presented as Algorithm 4.1.

Each iteration of the while-loop in lines 4 to 9 of Greedy is referred to
as a round of Greedy. If there are several sets of maximum cardinality in
line 7 of Greedy, it may pick one of them at random (or follow any fixed
selection rule such as picking the set with the smallest index). It is natural
to call Greedy (or any algorithm that learns relevant attributes) successful on
input S if Greedy(S) = rel(f). In some situations, however, one may be content
with finding a superset of the relevant variables that is at most a constant factor
larger than rel(f). A corresponding notion of success for Greedy is captured
as follows.

Definition 4.1.4 (λ-success). Let f : {0, 1}n → {0, 1}, S be a sample for f ,
and λ ≥ 1. Greedy is λ-successful on input S if and only if

1. |Greedy(S)| ≤ λ · | rel(f)| and

2. Greedy(S) ⊇ rel(f).

Greedy is successful (or succeeds) if and only if it is 1-successful, i.e.,

Greedy(S) = rel(f) ,

otherwise we say that it fails. Greedy λ-fails if and only if it is not λ-successful.
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Example 4.1.5. Let f : {0, 1}6 → {0, 1} be defined by

f(x1, . . . , x6) = x2 ⊕ x4 .

Then the sample S given in Table 4.1 is a sample for f . If we assume that during
the execution of Greedy, in case of equal set sizes, the algorithm picks the set
with the smallest index, then Greedy outputs x1, x2, and x3 (in this order).
Hence, it fails on input S. Even worse, it λ-fails for all λ ≥ 1 since it does not
output x4.

4.2 Key Lemmas for the Algorithm Analyses

In this section, we provide three key lemmas that will be used in the proofs of
our main results in Section 4.3. Recall from Definition 2.2.2 that the expanded
variable space contains the variables

xI =
⊕
i∈I

xi for I ⊆ [n] .

Define the corresponding edge sets

EI =
{
{k, `} ∈ E | k, ` ∈ [m], xkI 6= x`I

}
.

Since xkI and x`I differ if and only if the number of i ∈ I with xki 6= x`i is odd,
we obtain that EI = 4i∈IEi, where 4 denotes the symmetric difference.

Suppose that Greedy has put the variables xi1 , . . . , xis into R after s rounds.
Hence, all edges in E ′ = Ei1 ∪ · · · ∪ Eis have been covered. The number of
remaining edges that can be covered by variable xi in the next round is |Ei \E ′|.
Provided that xi1 , . . . , xis are all relevant, we would like to estimate the set size
|Ei \ E ′| in dependence of properties of f . As we do not see any direct way of
doing so, we take a detour via the cardinalities of the sets EI . These turn out
to be approximable quite efficiently, as we will show in Lemma 4.2.2. But let us
first show how to express the cardinality of Ei \ E ′ in terms of the cardinalities
of the sets EI , I ⊆ {i1, . . . , is}:

Lemma 4.2.1. Let S ∈ ({0, 1}n × {0, 1})m be a sample and GS = (V,E) be the
corresponding functional relations graph. Let R ( [n] and i∗ ∈ [n]\R and define
E ′ =

⋃
i∈REi. Then

|Ei∗ \ E ′| = 2−|R|
∑
I⊆R

(|EI∪{i∗}| − |EI |) .
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Proof. Recall the definition of the characteristic vector c(e) ∈ {0, 1}n of an edge
e ∈ E given in Equation (4.1). Using the notation of the expanded variable
space, we write

cI(e) =
⊕
i∈I

ci(e) .

Clearly, we can write |EI | =
∑

e∈E cI(e) for all I ⊆ [n]. Let I ⊆ R. Since for
e ∈ E \ Ei∗ , we have cI∪{i∗}(e) = cI(e),

|EI∪{i∗}| − |EI | =
∑
e∈Ei∗

(cI∪{i∗}(e)− cI(e)) .

For e ∈ Ei∗ , we have

cI∪{i∗}(e)− cI(e) =

{
−1 if e ∈ EI ,
1 if e 6∈ EI .

For all edges e ∈ E ′, we have e ∈ EI for exactly half of the sets I ⊆ R. To see
this, let e ∈ E ′, i.e., e ∈ Ej for some j ∈ R. Then for each set I ⊆ R \ {j}, we
have e ∈ EI if and only if e 6∈ EI∪{j}. Therefore, for such edges,∑

I⊆R

(cI∪{i∗}(e)− cI(e)) = 0 .

Consequently,∑
I⊆R

(|EI∪{i∗}| − |EI |) =
∑
e∈Ei∗

∑
I⊆R

(cI∪{i∗}(e)− cI(e))

=
∑

e∈Ei∗\E′

∑
I⊆R

(cI∪{i∗}(e)− cI(e)) .

On the other hand, if e ∈ Ei∗ \ E ′, then e 6∈ EI for all I ⊆ R. In this case,∑
I⊆R

(cI∪{i∗}(e)− cI(e)) = 2|R| ,

and thus ∑
I⊆R

(|EI∪{i∗}| − |EI |) = 2|R| · |Ei∗ \ E ′| ,

proving the claim.

Now we are concerned with the estimation of the cardinalities |EI |, I ⊆ [n].
For a, b ∈ {0, 1}, let

αabI = Pr[xI = a ∧ f(x) = b] , (4.2)
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where x ∈ {0, 1}n is drawn according to the uniform distribution. It follows that
αa0I + αa1I = Pr[xI = a] = 1/2 for I 6= ∅ and α0b

I + α1b
I = Pr[f(x) = b] for all

I ⊆ [n].

A (noise-free) sample of size m consists of the outcomes of m independent
draws of xk ∈ {0, 1}n and the corresponding classifications yk = f(xk) ∈ {0, 1}.
In the following, all probabilities and expectations are taken with respect to
the random experiment of “drawing a sample of size m” for an arbitrary but
fixed m. For all I ⊆ [n] and all pairs of example indices k, ` ∈ [m] with k 6= `,
the probability that {k, `} ∈ EI is

Pr[xkI 6= x`I ∧ yk 6= y`] = 2(α00
I α

11
I + α10

I α
01
I ) .

Since there are 1
2
(m − 1)m such pairs, the expectation of |EI | is αI(m − 1)m

with

αI = α00
I α

11
I + α10

I α
01
I . (4.3)

Next we prove a Chernoff style mass concentration for the cardinalities |EI |.
It shows that for a sufficiently large sample size, |EI | is likely to be very close to
αI ·m2.

Lemma 4.2.2. There exist c1, c2 > 0 such that for every f : {0, 1}n → {0, 1},
given a uniformly distributed sample S of size m for f , for all I ⊆ [n] and
arbitrary ε ∈ [0, 1],

Pr
[∣∣|EI | − αIm2

∣∣ > εm2
]
< c1e

−c2ε2m .

Proof. Let S be a uniformly distributed sample of size m. For a, b ∈ {0, 1}, let
AabI denote the set of example indices k such that (xkI , y

k) = (a, b). In EI , there
are edges between all pairs (xk, yk) and (x`, y`) with xkI 6= x`I and yk 6= y`. Thus,
we obtain

EI = {{k, `} | k ∈ Aa,0I , ` ∈ A1−a,1
I , a ∈ {0, 1}}

and hence,

|EI | = |A00
I | · |A11

I |+ |A10
I | · |A01

I | .

The expected number of examples with xkI = a and yk = b clearly is αabI m. By
the Hoeffding bound (Lemma 3.1.2), with probability at least 1− 2e−2δ2m,

|AabI − αabI m| ≤ δm . (4.4)

Moreover, (4.4) holds for all a, b ∈ {0, 1} simultaneously with probability at least



62 Chapter 4. The Greedy Method

1− 8e−2δ2m. In this case,∣∣|EI | − αIm2
∣∣ =

∣∣|A00
I | · |A11

I |+ |A10
I | · |A01

I | − (α00
I α

11
I + α10

I α
01
I )m2

∣∣
≤

∣∣|A00
I | · |A11

I | − α00
I m · |A11

I |
∣∣ +

∣∣α00
I m · |A11

I | − α00
I m · α11

I m
∣∣

+
∣∣|A10

I | · |A01
I | − α10

I m · |A01
I |

∣∣ +
∣∣α10

I m · |A01
I | − α10

I m · α01
I m

∣∣
≤

∣∣|A00
I | − α00

I m
∣∣ · |A11

I |+
∣∣|A11

I | − α11
I m

∣∣ · α00
I m

+
∣∣|A10

I | − α10
I m

∣∣ · |A01
I |+

∣∣|A01
I | − α01

I m
∣∣ · α10

I m

≤ δm
(
|A11

I |+ α00
I m+ |A01

I |+ α10
I m

)
≤ δm

(
(α11

I + δ)m+ α00
I m+ (α01

I + δ)m+ α10
I m

)
≤ δ(1 + 2δ)m2 .

Thus, we can find c1, c2 > 0 such that∣∣|EI | − αIm2
∣∣ < c1e

−c2ε2m

as claimed (c1 = 8, c2 = 1/2, and δ = ε/2 do the job).

Before stating the third lemma, let us briefly take a closer look at the car-
dinalities |Ei| for irrelevant variables xi. Since for these, the value of xi is
independent of the classification f(x), αabi = 1

2
Pr[f(x) = b]. Consequently,

αi = 1
2
Pr[f(x) = 0] Pr[f(x) = 1] = 1

2
Var[f ]. Hence, the expectation of |Ei|

is 1
2
Var[f ]m(m − 1) ≈ 1

2
Var[f ]m2. A moment’s reflection shows that also for

I ⊆ [n] with I 6⊆ rel(f), the expectation of |EI | is equal to 1
2
Var[f ]m(m− 1).

The following lemma generalizes this result to arbitrary I ⊆ [n], revealing
an unexpected relationship between the cardinalities |EI | and the Fourier coef-
ficients f̂(I). Recall that for I ⊆ [n] with I 6⊆ rel(f), f̂(I) = 0 by Lemma 2.3.4.

Lemma 4.2.3. Let f : {0, 1}n → {0, 1} and I ⊆ [n] with I 6= ∅. Then

αI = 1
2

(
Var[f ] + f̂(I)2

)
. (4.5)

Proof. From

f̂(I) = 2−n
∑

x∈{0,1}n

f(x) · (−1)xI = α01
I − α11

I , (4.6)

it follows that

αI − 1
2
Var[f ] = α00

I α
11
I + α10

I α
01
I − 1

2
Var[f ]

= (1
2
− α01

I )α11
I + (1

2
− α11

I )α01
I − 1

2
Pr[f(x) = 0] Pr[f(x) = 1]

= 1
2
(α11

I + α01
I − 4α01

I α
11
I − Pr[f(x) = 1] + Pr[f(x) = 1]2)

= 1
2
Pr[f(x) = 1]2 − 2α01

I α
11
I

= 1
2
(α01

I − α11
I )2 = 1

2
f̂(I)2 .
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Note that always x∅ = 0, independent of the values of x1, . . . , xn. Thus,
E∅ = ∅ and α∅ = 0. In particular, (4.5) is not valid for I = ∅.

4.3 Analysis of the Greedy Algorithm

4.3.1 Greedy Succeeds for all Functions that are
Fourier-accessible

In this section, we state and prove our main results for the Greedy algorithm.
Let us start with the positive result.

Theorem 4.3.1. There is a polynomial p such that the following holds. Let
f : {0, 1}n → {0, 1} be a Fourier-accessible concept, d = | rel(f)|, and δ > 0. Let
S be a uniformly distributed sample for f of size

m ≥ p(2d, log n, log(1/δ)) .

Then Greedy(S) = rel(f) with probability at least 1− δ.

Proof. We first show that with high probability, Greedy outputs at least d
variables, provided thatm is sufficiently large. By Lemma 3.5.1, with probability
at least 1 − δ/2, any d-junta that is consistent with a sample S for f of size
m ≥ m0 = 22d+1 ln 2n

δ
must be f itself. Thus, with probability at least 1− δ/2,

E cannot be covered by less than d sets Ei since such a covering would yield a
consistent concept that depends on strictly less than d variables.

Now assume that Greedy indeed outputs at least d variables. Let the
sequence of variables output by Greedy start with xi1 , . . . , xid . For s ∈ [d],
let Rs = {i1, . . . , is}. We prove that with high probability, each variable that is
output is relevant to f . This implies that Greedy halts after exactly d rounds
since E can always be covered by the sets Ei, xi ∈ rel(f).

Let ε = 2−3d−3. For each I ⊆ [n] with 1 ≤ |I| ≤ d, we have

Pr
[∣∣|EI | − αIm2

∣∣ > εm2
]
< c1e

−c2ε2m

for some constants c1, c2 > 0 by Lemma 4.2.2. Consequently,

∀I ⊆ [n] such that 1 ≤ |I| ≤ d :
∣∣|EI | − αIm2

∣∣ ≤ εm2 (4.7)

with probability at least ρ = 1 − nd · c1e−c2ε
2m (since V (n, d) − 1 ≤ nd). In

the following, we assume that (4.7) holds. Thus, all subsequent consequences
of (4.7) hold with probability at least ρ.
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We show by induction on s ∈ [d] that Rs ⊆ rel(f). For s = 0,

R0 = ∅ ⊆ rel(f) .

For the induction step, let s ∈ {0, . . . , d − 1} and assume that Rs ⊆ rel(f).

For i ∈ [n] \ Rs, denote by E
(s)
i the set of remaining edges in Ei after the sth

round of Greedy, i.e., E
(s)
i = Ei \ {Ei1 ∪ · · · ∪ Eis}.

Our goal is to show that there exists a relevant variable xi∗ such that E
(s)
i∗

is larger than E
(s)
j for all irrelevant variables xj. Since we have not found all

relevant variables after round s, there is an i∗ ∈ rel(f) \ Rs and an I0 ⊆ Rs

such that f̂(I0 ∪ {i∗}) 6= 0 and hence |f̂(I0 ∪ {i∗})| ≥ 2−d by Lemma 2.3.6. If
there were no such i∗ and I0, then none of the variables xi with i ∈ rel(f) \ Rs

would be accessible, contradicting the assumption that f is Fourier-accessible.
For arbitrary xj ∈ irrel(f), Lemma 4.2.1 implies

|E(s)
i∗ | − |E

(s)
j | = 2−s

∑
I⊆Rs

(|EI∪{i∗}| − |EI∪{j}|) .

From (4.7), we obtain

|E(s)
i∗ | − |E

(s)
j | ≥ 2−s

∑
I⊆Rs

(
(αI∪{i∗} − ε)m2 − (αI∪{j} + ε)m2

)
.

Now, by Lemma 4.2.3,

|E(s)
i∗ | − |E

(s)
j | ≥ 2−s

∑
I⊆Rs

[(
1
2
Var[f ] + 1

2
f̂(I ∪ {i∗})2 − ε

)
m2

−
(

1
2
Var[f ] + 1

2
f̂(I ∪ {j})2 + ε

)
m2

]
≥ 2−s

∑
I⊆Rs

(
1
2
f̂(I ∪ {i∗})2 − 1

2
f̂(I ∪ {j})2 − 2ε)

)
m2 .

Since xj ∈ irrel(f), it follows that f̂(I ∪ {j}) = 0 by Lemma 2.3.5. Thus,

|E(s)
i∗ | − |E

(s)
j | ≥ 2−s

∑
I⊆Rs

(
1
2
f̂(I ∪ {i∗})2 − 2ε)

)
m2

≥ 2−s
(

1
2
f̂(I0 ∪ {i∗})2 + 2s · (−2ε)

)
m2

≥ (2−3d−1 − 2ε)m2 ≥ 2−3d−2m2 > 0 .

Consequently, in round s + 1, Greedy prefers the relevant variable xi∗ to all
irrelevant variables. In particular, Greedy selects some relevant variable in
round s+ 1.
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It suffices to choose m ≥ m1 = c−1
2 · 26d−6(d lnn + ln(2c1/δ)) to have ρ ≥

1 − δ/2. In total, we can choose m = max{m0,m1}, which is polynomial in
2d, log n, and log(1/δ), to guarantee that Greedy outputs exactly the relevant
variables of f .

Example 4.3.2. The function f1 : {0, 1}3 → {0, 1} in Table 2.1 is Fourier-
accessible (see Example 2.4.8). By Theorem 4.3.1, for any function f : {0, 1}n →
{0, 1} that has f1 as its base function (see Definition 2.3.2), Greedy succeeds
with probability at least 1−δ for sample size polynomial in 2d, log n, and log(1/δ).

4.3.2 Greedy Fails for all Functions that are
not Fourier-accessible

If a concept is not Fourier-accessible, then one of its relevant variables is not
accessible. The proof of Theorem 4.3.1 shows that Greedy first outputs all
accessible variables with high probability. Once all of these have been output,
the intuition is that the non-accessibility of the other relevant variables makes
them statistically indistinguishable from the irrelevant variables. In particular,
each inaccessible but relevant variable will be selected by Greedy with the same
probability as each irrelevant variable. Assuming that the number of irrelevant
variables is much larger than the number of relevant ones, it becomes very likely
that Greedy picks an irrelevant variable and thus fails.

Before we prove our second main result for the Greedy algorithm, we start
with a lemma that makes the above idea precise.

Lemma 4.3.3. Let f : {0, 1}n → {0, 1} be a concept that is not Fourier-
accessible and S be a sample for f of arbitrary size m. Let xi1 , . . . , xit be the
variables output by Greedy on input S. Let s ∈ {0, . . . , t − 1} and define

E
(s)
i = Ei \ (Ei1 ∪ · · · ∪ Eis) for i ∈ [n]. Given that

{xi1 , . . . , xis} ⊆ acc(f) ∪ irrel(f) ,

the following statements hold.

(a) Let xi be a variable that is relevant but not accessible. Then the random

variables |E(s)
i | and all |E(s)

j |, xj ∈ irrel(f), conditional to any fixed values

of xki1 , . . . , x
k
is and yk = f(xk), k ∈ [m], are independent and identically

distributed.

(b) The probability that xis+1 is relevant to f but not accessible is at most

| rel(f) ∩ inacc(f)|
| irrel(f) \ {xi1 , . . . , xis}|

.
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Proof. (a) Let R = {i1, . . . , is}. We show that for a, b ∈ {0, 1} and v ∈ {0, 1}R
such that there exists x ∈ {0, 1}n with x|R = v and f(x) = b,

Pr[xi = a
∣∣ x|R = v ∧ f(x) = b] = 1

2
,

just as for the irrelevant variables: Let I ⊆ R. If I ⊆ acc(f), then since xi is
not accessible, f̂(I ∪ {i}) = 0. If I 6⊆ acc(f), then I contains some irrelevant
variable index, and hence f̂(I ∪ {i}) = 0 by Lemma 2.3.4. By Corollary 2.2.5,

f̂v(i) = 0 for all v ∈ {0, 1}R. From

f̂v(i) = Pr[xi = 0 ∧ fv(x) = 1]− Pr[xi = 1 ∧ fv(x) = 1] (4.8)

= Pr[xi = 1 ∧ fv(x) = 0]− Pr[xi = 0 ∧ fv(x) = 0] ,

and

Pr[xi = 0 ∧ fv(x) = b] + Pr[xi = 1 ∧ fv(x) = b] = Pr[fv(x) = b] ,

we can deduce Pr[xi = a∧fv(x) = b] = 1
2
Pr[fv(x) = b]. Consequently, we obtain

Pr[xi = a ∧ x|R= v ∧ f(x) = b] = Pr
[
xi = a ∧ f(x) = b

∣∣ x|R= v
]
· Pr[x|R= v]

= Pr[xi = a ∧ fv(x) = b] · Pr[x|R = v]

= 1
2
Pr[fv(x) = b] · Pr[x|R = v]

= 1
2
Pr

[
f(x) = b

∣∣ x|R = v
]
· Pr[x|R = v]

= 1
2
Pr[f(x) = b ∧ x|R = v] .

Thus, Pr
[
xi = a

∣∣ x|R = v ∧ f(x) = b
]

= 1/2, which proves the claim.
As a consequence of the latter, conditional to the values of xki1 , . . . , x

k
is and

f(xk), k ∈ [m], the cardinalities |E(s)
i | and all |E(s)

j |, xj 6∈ rel(f), are identically

distributed (since these cardinalities only depend on the outcomes of xki , f(xk),
and xki1 , . . . , x

k
is , k ∈ [m], and since all examples are drawn independently). The

independence is obvious.
(b) For a fixed variable xi that is relevant but not accessible, the probability

that xis+1 = xi is at most as large as the probability that xis+1 = xi conditional to

xis+1 ∈ {xi}∪ (irrel(f)\{xi1 , . . . , xis}). Since all cardinalities E
(s)
j corresponding

to the variables in {xi}∪ (irrel(f)\{xi1 , . . . , xis}) are identically distributed, the
probability that xi is selected in round s+ 1 is at most

1

| irrel(f) \ {xi1 , . . . , xis}|+ 1
.

Hence, the probability that xis+1 is relevant but not accessible is at most

| rel(f) ∩ inacc(f)|
| irrel(f) \ {xi1 , . . . , xis}|

.
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The following negative result complements Theorem 4.3.1.

Theorem 4.3.4. Let f : {0, 1}n → {0, 1} be a concept that is not Fourier-
accessible, d = | rel(f)|, and λ ≥ 1. Given a uniformly distributed sample S for
f of arbitrary size, Greedy λ-fails on input S with probability at least

1− λd2

n− λd
.

Proof. Let xi1 , . . . , xit be the variables output by Greedy. For fixed s ∈
{0, . . . , t−1}, the probability that {xi1 , . . . , xis} ⊆ acc(f)∪irrel(f) and that xis+1

is relevant but not accessible is at most as large as the probability that xis+1 is
relevant but not accessible conditional to {xi1 , . . . , xis} ⊆ acc(f)∪ irrel(f). This
is at most d/(| irrel(f) \ {xi1 , . . . , xis}|) by Lemma 4.3.3 (b).

Suppose that Greedy is λ-successful on input S, i.e.,

t ≤ λ · d and {xi1 , . . . , xit} ⊇ rel(f) .

Since f is not Fourier-accessible, there exists s ∈ {0, . . . , t − 1} such that
xi1 , . . . , xis ∈ acc(f) ∪ irrel(f) and xis+1 is relevant but not accessible. The
probability for the latter event is at most t · d

n−t . Hence, the probability that

Greedy fails is at least 1− λd2

n−λd .

Corollary 4.3.5. Let pλ(n, d) denote the probability that for any given concept
f : {0, 1}n → {0, 1} with | rel(f)| = d that is not Fourier-accessible and for any
uniformly distributed sample S for f , Greedy λ-fails. Then for fixed λ ≥ 1,

(a) for fixed d, limn→∞ pλ(n, d) = 1 and

(b) for d→∞ and n = n(d) ∈ ω(d2), limd→∞ pλ(n, d) = 1.

Example 4.3.6. The function f2 : {0, 1}3 → {0, 1} in Table 2.1 is not Fourier-
accessible. By Theorem 4.3.4, for any function f : {0, 1}n → {0, 1} that has f2

as its base function (see Definition 2.3.2), Greedy fails with probability at least
1− 9

n−3
.

Note that Theorem 4.3.4 not only says that Greedy fails (with high proba-
bility) for concepts that are not Fourier-accessible, but that Greedy even fails
to find all relevant variables of the target concept in λ · | rel(f)| rounds for any
λ ≥ 1. In addition, note that the claim in Theorem 4.3.4 is independent of the
sample size.

In the literature, it has often been emphasized that Greedy has a “logarith-
mic approximation guarantee” (see [AB96, AMK03, BL97, FA05]), i.e., given a
sample S for f of size m, Greedy finds a set of at most (2 lnm + 1) · | rel(f)|
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variables that explain S. Theorem 4.3.4 shows that if f is not Fourier-accessible,
then with probability at least

1− (2 lnm+ 1)d2

n− (2 lnm+ 1)d
,

these variables do not contain all relevant variables (where d = | rel(f)|). Thus,
given a sample of a target concept that is not Fourier accessible, Greedy misses
some relevant variable with high probability, provided that m ∈ 2o(n). In other
words, the positive approximability properties of the greedy strategy for the
Set Cover problem do not translate to the learning situation. The fact that
Greedy outputs at most (2 lnm + 1) · | rel(f)| variables only guarantees that
any sample of size m can be explained by this amount of variables.

4.3.3 Non-uniform Attribute Distributions

Let D : {0, 1}n → [0, 1] be a non-uniform attribute distribution. Unfortunately,
while Lemma 4.2.3 is also valid with αI defined with respect to D, it does not
seem to be possible to show an equation in the spirit of (4.5) and present a
characterization of the concept class for which Greedy works under this as-
sumption. In fact, it is easy to find functions f and product distributions D
with rates d1, . . . , dn such that

(a) there are xi, xj ∈ irrel(f) such that the expected sizes of Ei and Ej differ or

(b) there are xi ∈ rel(f) and xj ∈ irrel(f) such that the expected sizes of Ei and
Ej are equal.

For item (a), we simply pick different di and dj. Then αi 6= αj whenever
Pr[f(x) = 0] 6= 0 6= Pr[f(x) = 1].

For item (b), consider f : {0, 1}3 → {0, 1} defined by f(x1, x2, x3) = x1 ∧ x2.
Let d1 = 2/3, d2 = 1/2, and d3 = 1/2. Then we have α1 = α3 = 1/9. Variable x1

is relevant to f , but x3 is not.
Another example that shows that different methods are needed for different

distributions will be presented at the end of Section 4.7.

4.4 Extension of the Greedy Algorithm

to Larger Concept Classes

As we have seen in Example 2.4.8 (d), the not-all-equal function

NAE : {0, 1}d → {0, 1}
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Algorithm 4.2 τ-Greedy.

1: input S = ((xk1, . . . , x
k
n), y

k)k∈[m]

2: E ← {{k, `} | k, ` ∈ [m], yk 6= y`}
3: R← ∅
4: while E 6= ∅ do

5: for I ⊆ [n] with 1 ≤ |I| ≤ τ do

6: EI ← {{k, `} ∈ E | xkI 6= x`I}
7: select I ⊆ [n], 1 ≤ |I| ≤ τ, with maximum |EI |
8: E ← E \

⋃
i∈I Ei

9: R← R ∪ {xi | i ∈ I}
10: output τ-Greedy(S) = R

is 2-low but not 1-low. By Lemma 2.3.4, for concepts which restricted to their
relevant variables become equal to NAE, it suffices to check for all I ⊆ [n] with
|I| = 2, whether f̂(I) 6= 0. This motivates us to seek for an extension of the
greedy approach that is also able to cope with τ -low juntas for τ > 1.

In this section, we show that allowing Greedy to choose from the sets EI ,
1 ≤ |I| ≤ τ , the algorithm can cope exactly with the τ -Fourier-accessible con-
cepts, where τ ∈ [d] is some fixed parameter. The corresponding algorithm,
which we call τ-Greedy, is presented as Algorithm 4.2. Note that 1-Greedy
matches Greedy. The running time of τ-Greedy is

(
n
τ

)
times a polynomial in

m and n, which is dominated by nτ · poly(m,n).
As one would expect, the basic ideas underlying the proofs presented in this

section are similar to those in Section 4.3. However, we have to carefully find
the correct formulations of the results and proofs, which are not immediate
in all places, in particular concerning the negative result for τ-Greedy (see
Lemma 4.4.3 and Theorem 4.4.4).

We now extend the results from Section 4.3 to τ-Greedy and τ -Fourier
accessible concepts. In particular, we need to generalize Lemma 4.2.1 to use it
in the proofs of the extended results.

Lemma 4.4.1. Let S ∈ ({0, 1}n × {0, 1})m be a sample and GS = (V,E) be
the corresponding functional relations graph. Let R ( [n] and I∗ ⊆ [n] \ R and
define E ′ =

⋃
i∈REi. Then

|EI∗ \ E ′| = 2−|R|
∑
I⊆R

(|EI∪I∗| − |EI |) .

Proof. Exactly as the proof of Lemma 4.2.1, except that every occurrence of {i∗}
has to be substituted by I∗.
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Theorem 4.4.2. There is a polynomial p such that the following holds. Let
f : {0, 1}n → {0, 1} be a τ -Fourier-accessible concept, 1 ≤ τ ≤ d = | rel(f)|, and
let δ > 0. Let S be a uniformly distributed sample S for f of size

m ≥ p(2d, log n, log(1/δ)) .

Then τ-Greedy(S) = rel(f) with probability at least 1− δ.

Proof. The proof is very similar to that of Theorem 4.3.1, so we only point out
the differences. Instead of having an i∗ ∈ rel(f) \ Rs and an I0 ⊆ Rs such
that f̂(I0 ∪ {i∗}) 6= 0, we can only guarantee that there are i∗ ∈ rel(f) \ Rs,
I∗ ⊆ [n] \ Rs with i∗ ∈ I∗ and |I∗| ≤ τ , and I0 ⊆ Rs such that f̂(I0 ∪ I∗) 6= 0
and hence |f̂(I0 ∪ I∗)| ≥ 2−d. For arbitrary J ⊆ [n] \ Rs with J ∩ irrel(f) 6= ∅
and |J | ≤ τ , Lemma 4.4.1 implies

|E(s)
I∗ | − |E

(s)
J | = 2−s

∑
∅⊆I⊆Rs

(|EI∪I∗| − |EI∪J |) > 0 ,

where the detailed calculation is the same as in the proof of Theorem 4.3.1, except
that all occurrences of {i∗} have to be substituted by I∗ and all occurrences of
{j} have to be substituted by J .

Consequently, in round s+1, Greedy prefers the set EI∗ (with I∗ ⊆ rel(f))
to all sets EJ with J ∩ irrel(f) 6= ∅. In particular, Greedy adds only relevant
variables to its output in round s+ 1.

To prove that τ-Greedy fails for all concepts that are not τ -Fourier-acces-
sible, we need to cast (and prove) an analog of Lemma 4.3.3 for such concepts.

Lemma 4.4.3. Let f : {0, 1}n → {0, 1} be a concept that is not τ -Fourier-
accessible for some τ ∈ [n] and S be a uniformly distributed sample for f of
arbitrary size m. Let t denote the number of rounds τ-Greedy runs on input
S and denote by Is, s ∈ [t], the set I selected in line 7 of τ-Greedy in round s.
Fix s ∈ {0, . . . , t− 1} and define

E
(s)
I = EI \

s⋃
r=1

⋃
i∈Ir

Ei

for I ⊆ [n]. Let xi1 , . . . , xir be the variables output by τ-Greedy in rounds
1, . . . , s, i.e., I1 ∪ · · · ∪ Is = {i1, . . . , ir}. Given that

{xi1 , . . . , xir} ⊆ τ - acc(f) ,

the following statements hold.
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(a) Let I∗ ⊆ rel(f)\{i1, . . . , ir} such that |I∗| ≤ τ and I∗∩τ - inacc(f) 6= ∅. Then

the random variables |E(s)
I∗ | and all |E(s)

J | with ∅ ( J ⊆ irrel(f), conditional
to any fixed values of xki1 , . . . , x

k
ir and yk = f(xk), k ∈ [m], are independent

and identically distributed.

(b) The probability that Is+1 ⊆ rel(f) and Is+1 ∩ τ - inacc(f) 6= ∅ is at most

d · V (d− 1, τ − 1)

V (n− d, τ)
. (4.9)

Proof. (a) Let R = {i1, . . . , ir}. We show that for a, b ∈ {0, 1} and v ∈ {0, 1}R
such that there exists x ∈ {0, 1}n with x|R = v and f(x) = b,

Pr
[
xI∗ = a

∣∣ x|R = v ∧ f(x) = b
]

= 1
2
, (4.10)

just as for the variables xJ with ∅ ( J ⊆ irrel(f). Let I ⊆ R. If I ⊆ τ - acc(f),
then since |I∗| ≤ τ and since I∗ contains some variable that is not τ -accessible,
f̂(I ∪ I∗) = 0. Otherwise, I contains some irrelevant variable index, and hence

f̂(I ∪ I∗) = 0 by Lemma 2.3.4. By Corollary 2.2.5, f̂v(I
∗) = 0 for all v ∈ {0, 1}R.

Now the remainder of the proof of (4.10) is identical to the corresponding part
of the proof of Lemma 4.3.3, except that I∗ has to be substituted for i and r
has to be substituted for s. In addition, the reasoning that |E(s)

I∗ | and all |E(s)
J |,

∅ ( J ⊆ irrel(f), are identically distributed follows the same line as the proof

of the corresponding statement in Lemma 4.3.3. The independence of |E(s)
I∗ | and

|E(s)
J | is clear by the disjointness of I∗ and J . For nonempty J, J ′ ⊆ irrel(f) with

J 6= J ′, the independence of |E(s)
J | and |E(s)

J ′ | follows from the independence of
the outcomes χJ(x), χJ ′(x), and f(x), x ∼ Un.

(b) Let xi∗ ∈ rel(f) ∩ τ - inacc(f). The probability that xi∗ ∈ Is+1 is equal to
the probability that there exists some I∗ ⊆ rel(f) \ {i1, . . . , ir} with i∗ ∈ I∗ that

is selected in round s+1. By part (a), |E(s)
I∗ | and |E(s)

J | are identically distributed
for all nonempty J ⊆ irrel(f). Since there are V (n− d, τ)− 1 such sets J with
|J | ≤ τ , I∗ is selected in round s + 1 with probability at most 1/V (n − d, τ).
The number of sets I∗ ⊆ rel(f) containing i∗ is equal to V (d − 1, τ − 1), so
the probability that i∗ is among the selected variables in round s+ 1 is at most
V (d− 1, τ − 1)/V (n− d, τ).

Since there are at most d variables in rel(f)∩τ - inacc(f), the probability that
Is+1 contains at least one out of these variables is at most as large as claimed
in (4.9).

To avoid too complicated expressions, we confine ourselves to present the
main negative result for τ-Greedy for simple failure only (instead of λ-failure
as in Theorem 4.3.4).
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Theorem 4.4.4. Let f : {0, 1}n → {0, 1} be a concept that is not τ -Fourier-
accessible for some τ ∈ [n], and let d = | rel(f)|. Given a uniformly distributed
sample S for f of arbitrary size, τ-Greedy fails on input S with probability at
least

1− d2 · V (d− 1, τ − 1)

V (n− d, τ)
,

where d = | rel(f)|.

Proof. If τ-Greedy succeeds on input S, then in some round s, τ-Greedy has
to select a set Is ⊆ rel(f) with Is ∩ τ - inacc(f) 6= ∅. The probability that this
happens in round s is at most d · V (d − 1, τ − 1)/V (n − d, τ) by Lemma 4.4.3.
Since the algorithm can run for at most d rounds if it is successful, the claim
follows.

Plugging τ = 1 into Theorem 4.4.4, we recover Theorem 4.3.4 for the case
λ = 1.

Corollary 4.4.5. Let p(τ)(n, d) denote the probability that for any given concept
f : {0, 1}n → {0, 1} with | rel(f)| = d that is not τ -Fourier-accessible and any
uniformly distributed sample S for f , τ-Greedy fails. Then

(a) for fixed d, limn→∞ p(τ)(n, d) = 1 and

(b) for d→∞ and n = n(d) ∈ ω(d2), limd→∞ p(τ)(n, d) = 1.

In both items, τ may vary arbitrarily with growing n and/or d. More precisely,
in (a), τ = τ(n) may be any function τ : N→ [d], while in (b), τ = τ(d) may be
any function τ : N→ N with τ(d) ∈ [d] for all d ∈ N.

4.5 Robustness against Noise

In this section, we investigate the vulnerability of Greedy when the data is
exposed to noise. To our surprise, it turns out that Greedy is extremely robust
with respect to heavy noise. More precisely, let P be a γa-bounded attribute noise
distribution (γa > 0) and η 6= 1/2 be a classification noise rate (see Section 3.2
for definitions). Given a (P, η)-noisy sample S for a Fourier-accessible concept f
of size polynomial in 2d, log(n/δ), γ−da , and γb, Greedy still outputs all relevant
variables of f , where γb = |1− 2η| > 0.

However, it may be the case that the sets Ei that correspond to the relevant
variables do not suffice to explain all edges in E due to noise. Even worse, it
may happen that some edges cannot be explained at all: the sample may contain
contradictive examples. For this reason, we introduce a variant of Greedy
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Algorithm 4.3 Greedyd
1: input S = ((xk1, . . . , x

k
n), y

k)k∈[m]

2: E ← {{k, `} | k, ` ∈ [m], yk 6= y`}
3: R← ∅
4: while |R| < d do

5: for i = 1 to n do

6: Ei ← {{k, `} ∈ E | xki 6= x`i}
7: select xi 6∈ R with maximum |Ei|
8: E ← E \ Ei
9: R← R ∪ {xi}
10: output Greedyd(S) = R

that is given the number d of relevant attributes as a parameter and outputs
exactly d variables. We denote this algorithm by Greedyd. It is presented as
Algorithm 4.3.

We adjust definition (4.2) of the probabilities αabI and define for a, b ∈ {0, 1}

βabI = Pr[xI ⊕ ξI = a ∧ f(x)⊕ ζ = b] , (4.11)

where ξ ∼ P , Pr[ζ = 1] = η, and Pr[ζ = 0] = 1− η.
While in the noise-free scenario, the expectation of |EI | is αI(m − 1)m, the

expectation of |EI | is now equal to βI(m− 1)m with

βI = β00
I β

11
I + β10

I β
01
I . (4.12)

The next lemma is completely analogous to Lemma 4.2.2:

Lemma 4.5.1. There exist c1, c2 > 0 such that for all f : {0, 1}n → {0, 1}, given
a uniformly distributed (P, η)-noisy sample S of size m for f , for all I ⊆ [n] and
arbitrary ε with 0 ≤ ε ≤ 1,

Pr
[∣∣|EI | − βIm2

∣∣ > εm2
]
< c1e

−c2ε2m .

Proof. The proof is identical to that of Lemma 4.2.2, except that every α has to
be replaced with β and the sets AabI , a, b ∈ {0, 1}, have to be replaced with sets

Bab
I = {k ∈ [m] | (xkI ⊕ ξkI , yk ⊕ ζk) = (a, b)} .

Proving an analog of Lemma 4.2.3 requires some more computation:
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Lemma 4.5.2. Let f : {0, 1}n → {0, 1} and I ⊆ [n] with I 6= ∅. Let P be an
attribute noise distribution and η be a classification noise rate. Then

βI = 1
2

(
(1− 2η)2 Var[f ] + η(1− η) + (1− 2η)2(1− 2pI)

2f̂(I)2
)

(4.13)

with pI = Prξ∼P [ξI = 1] (as defined in (3.4)).

Proof. We first express βabI in terms of αabI , pI , and η. According to (4.11), we
have

βabI = Pr[xI = a ∧ f(x) = b ∧ ξI = 0 ∧ ζ = 0]

+ Pr[xI = a ∧ f(x) = 1− b ∧ ξI = 0 ∧ ζ = 1]

+ Pr[xI = 1− a ∧ f(x) = b ∧ ξI = 1 ∧ ζ = 0]

+ Pr[xI = 1− a ∧ f(x) = 1− b ∧ ξI = 1 ∧ ζ = 1]

= αabI (1− pI)(1− η) + αa,1−bI (1− pI)η
+α1−a,b

I pI(1− η) + α1−a,1−b
I pIη . (4.14)

Since αa,1−bI = 1
2
− αa,bI , we further obtain

βabI = αabI [(1− pI)(1− η)− (1− pI)η] + 1
2
(1− pI)η

+α1−a,b
I [pI(1− η)− pIη] + 1

2
pIη

= αabI (1− pI)(1− 2η) + α1−a,b
I pI(1− 2η) + 1

2
η .

Now we plug this into (4.12) and obtain

βI =
(
α00
I (1− pI)(1− 2η) + α10

I pI(1− 2η) + 1
2
η
)

·
(
α11
I (1− pI)(1− 2η) + α01

I pI(1− 2η) + 1
2
η
)

+
(
α10
I (1− pI)(1− 2η) + α00

I pI(1− 2η) + 1
2
η
)

·
(
α01
I (1− pI)(1− 2η) + α11

I pI(1− 2η) + 1
2
η
)

= α00
I α

11
I [(1− pI)2(1− 2η)2 + p2

I(1− 2η)2]

+α00
I α

01
I [pI(1− pI)(1− 2η)2 + pI(1− pI)(1− 2η)2]

+α10
I α

11
I [pI(1− pI)(1− 2η)2 + pI(1− pI)(1− 2η)2]

+α10
I α

01
I [p2

I(1− 2η)2 + (1− pI)2(1− 2η)2]

+1
2
η(1− 2η) (α00

I + α11
I + α10

I + α01
I ) + 1

2
η2

= αI (p2
I + (1− pI)2) (1− 2η)2

+ (α00
I α

01
I + α10

I α
11
I ) · 2 · pI(1− pI)(1− 2η)2

+1
2
η(1− 2η) + 1

2
η2 .
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We obtain an easier expression for α00
I α

01
I + α10

I α
11
I using (4.6) and the equation

α01
I − α11

I = α10
I − α00

I , which follows from α00
I + α01

I = 1
2

= α10
I + α11

I :

αI − f̂(I)2 = α00
I α

11
I + α10

I α
01
I − (α01

I − α11
I )2

= α00
I α

11
I + α10

I α
01
I − (α01

I − α11
I )(α10

I − α00
I )

= α00
I α

01
I + α10

I α
11
I .

Plugging this into the above formula, we obtain

βI = αI
[
(p2
I + (1− pI)2)(1− 2η)2 + 2pI(1− pI)(1− 2η)2

]
−2f̂(I)2pI(1− pI)(1− 2η)2 + 1

2
η(1− 2η) + 1

2
η2

= αI(1− 2η)2 − 2f̂(I)2pI(1− pI)(1− 2η)2 + 1
2
η(1− η) .

Finally, (4.5) yields

βI = 1
2
Var[f ](1− 2η)2 + f̂(I)2

(
1
2
− 2pI(1− pI)

)
(1− 2η)2 + 1

2
η(1− η) .

Since 1
2
− 2pI(1− pI) = 1

2
(1− 2pI)

2, the claim follows.

Theorem 4.3.1 generalizes to the scenario of noisy data as follows:

Theorem 4.5.3. There is a polynomial p such that the following holds. Let
f : {0, 1}n → {0, 1} be a Fourier-accessible concept, d = | rel(f)|, P be a γa-
bounded attribute noise distribution, η be a classification noise rate satisfying
|1 − 2η| ≥ γb > 0, and δ > 0. Let S be a uniformly distributed (P, η)-noisy
sample S for f of size

m ≥ p
(
2d, log n, log(1/δ), γ−da , γ−1

b

)
.

Then Greedyd(S) = rel(f) with probability at least 1− δ.

Proof. Let xi1 , . . . , xid be the sequence of variables output by Greedyd. For
s ∈ [d], let Rs = {i1, . . . , is}. The proof is similar to the proof of Theorem 4.3.1,
so we only point out the differences. First, ε has to be chosen as 2−3d−3γ2d

a γ
2
b .

For each I ⊆ [n] with 1 ≤ |I| ≤ d, we have

Pr
[∣∣|EI | − βIm2

∣∣ > εm2
]
< c1e

−c2ε2m

for some constants c1, c2 > 0 by Lemma 4.5.1. Consequently,

∀I ⊆ [n] such that 1 ≤ |I| ≤ d :
∣∣|EI | − βIm2

∣∣ ≤ εm2 (4.15)

with probability at least ρ = 1 − nd · c1e−c2ε
2m (since V (n, d) − 1 ≤ nd). In

the following, we assume that (4.15) holds. Thus, all subsequent consequences
of (4.15) hold with probability at least ρ.
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Next, the calculation of |E(s)
i∗ | − |E

(s)
j | has to be adjusted:

|E(s)
i∗ | − |E

(s)
j | = 2−s

∑
∅⊆I⊆Rs

(|EI∪{i∗}| − |EI∪{j}|)

≥ 2−s
∑

∅⊆I⊆Rs

(
(βI∪{i∗} − ε)m2 − (βI∪{j} + ε)m2

)
≥ 2−s

∑
∅⊆I⊆Rs

(
1
2
(1− 2η)2 Var[f ] + 1

2
η(1− η)

+1
2
(1− 2η)2(1− 2pI)

2f̂(I)2 − ε
−1

2
(1− 2η)2 Var[f ]− 1

2
η(1− η)− ε)

≥ 2−s
(

1
2
(1− 2η)2(1− 2pI)

2f̂(I0 ∪ {i∗})2 + 2s · (−2ε)
)
m2

≥ (2−3d−1γ2
bγ

2d
a − 2ε)m2 ≥ 2−3d−2γ2

bγ
2d
a m

2 > 0 .

Finally, it suffices to choose m ≥ m1 = c−1
2 · γ−4d

a γ−2
b · 26d−6(d lnn+ ln(c1/δ))

to have ρ ≥ 1− δ. This is polynomial in 2d, log n, log(1/δ), γ−da , and γ−1
b .

As learning without noise can be considered as a special case of learning under
noise, the lower bound stated in Theorem 4.3.4 is also valid for the noisy scenario,
in the sense that there exists a noise distribution (namely, with P (0n) = 1 and
η = 0) such that Theorem 4.3.4 holds. So far, however, we cannot exclude
that there may be noise distributions for which it turns out that strictly more
concepts may be learned under non-degenerate noise (in the sense that some
data are flipped with positive probability) than can be learned without noise.
This counter-intuitive possibility is ruled out in the following by extending also
the negative result of Section 4.3.2 to the noisy scenario.

First, we observe that Lemma 4.3.3 also holds if S is a uniformly distributed
(P, η)-noisy sample. To see this, one may replace all occurrences of x with x⊕ ξ
and all occurrences of f(x) with f(x) ⊕ ζ in the proof of Lemma 4.3.3 (a).
The only place where the proof becomes invalid is equation (4.8). However,
using (4.14), it is easy to see that

β01
i − β11

i = β10
i − β00

i = (1− 2pi)(1− 2η)f̂(i) .

Since pi 6= 1/2 and η 6= 1/2, this quantity vanishes if and only if f̂(i) does.
Hence, this generalizes the proof for noisy samples.

Now Theorem 4.3.4 and Corollary 4.3.5 also hold for uniformly distributed
(P, η)-noisy samples, using exactly the same proofs.
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Algorithm 4.4 Greedy Ranking

1: input S = ((xk1, . . . , x
k
n), y

k)k∈[m]

2: E ← {{k, `} | k, ` ∈ [m], yk 6= y`}
3: R← ∅
4: for i = 1 to n do

5: Ei ← {{k, `} ∈ E | xki 6= x`i}
6: while E 6= ∅ do

7: select xi 6∈ R with maximum |Ei|
8: E ← E \ Ei
9: R← R ∪ {xi}
10: output Greedy Ranking(S) = R

4.6 Greedy Ranking

In this section, we present Greedy Ranking (Algorithm 4.4), an even easier
variant of Greedy. Recall that Greedy dynamically recomputes the sets Ei
after each round. In contrast, the static variant Greedy Ranking simply ranks
the sets Ei by their size only once in the beginning. Then it successively selects
the variables corresponding to the largest sets Ei until all edges of the functional
relations graph are covered.

Even though this strategy can be arbitrarily bad for the Set Cover problem
in terms of its approximation ratio, it turns out that applied to the problem of
learning relevant attributes, Greedy Ranking often performs equally well as
Greedy.

Since we have already seen in Section 4.2 that the expectation of |Ei| is
1
2
(Var[f ] + f̂(i)2)m(m − 1), it is not very surprising that Greedy Ranking

succeeds with high probability, provided that the target concept f is 1-low (see
Definition 2.4.1):

Theorem 4.6.1. There is a polynomial p such that the following holds. Let
f : {0, 1}n → {0, 1} be a 1-low concept, d = | rel(f)|, and δ > 0. Let S be a
uniformly distributed sample for f of size

m ≥ p(2d, log n, log(1/δ)) .

Then Greedy Ranking(S) = rel(f) with probability at least 1− δ.

Proof. For the same reasons that were presented in the proof Theorem 4.3.1,
Greedy Ranking outputs at least d variables with probability at least 1− δ,
provided that m ≥ m0 = 22d+1 ln(2n/δ).

For each i ∈ [n], we have

Pr
[∣∣|Ei| − αim2

∣∣ > εm2
]
< c1e

−c2ε2m
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for some constants c1, c2 > 0 by Lemma 4.2.2. Consequently,

∀i ∈ [n] :
∣∣|Ei| − αim2

∣∣ ≤ εm2 (4.16)

with probability at least ρ = 1− n · c1e−c2ε
2m.

Let ε = 2−2d−2. Let xi ∈ rel(f) and xj ∈ irrel(f). Then f̂(j) = 0 (by

Lemma 2.3.4) and |f̂(i)| ≥ 2−d (by Lemma 2.3.6). Assuming that (4.16) holds,
we have

|Ei| − |Ej| ≥ (αi − ε)m2 − (αj + ε)m2

= 1
2

(
Var[f ] + f̂(i)2 − ε

)
m2 − 1

2

(
Var[f ] + f̂(j)2 + ε

)
m2

≥ 1
2
f̂(i)2 − ε ≥ 2−2d−1 − ε > 0 .

Consequently, each set |Ei|, xi ∈ rel(f), is larger than all sets |Ej|, xj ∈ irrel(f).
Hence, Greedy Ranking selects all relevant variables and then halts.

It suffices to choose m ≥ m1 = c−1
2 ·24d−2(lnn+ln(2c1/δ)) to have ρ ≥ 1−δ/2.

In total, we can choose m = max{m0,m1} to guarantee that Greedy Ranking
outputs exactly the relevant variables of f . This amount is polynomial in 2d,
log n, and log(1/δ).

A characterization of 1-lowness is provided by Lemma 2.4.2, examples of 1-
low functions are given in Example 2.4.4. Specifically, a concept with symmetric
base function is 1-low if and only if it is Fourier-accessible. Hence, Greedy and
Greedy Ranking perform equally well for symmetric target concepts.

Furthermore, having in mind the proof of Theorem 4.3.4 which states that
Greedy fails for all concepts that are not Fourier-accessible, it is not hard to
see that Greedy Ranking fails for concepts that are not 1-low.

Theorem 4.6.2. Let f : {0, 1}n → {0, 1} be a concept that is not 1-low and
λ ≥ 1. Given a uniformly distributed sample S for f of arbitrary size, Greedy
Ranking λ-fails on input S with probability at least

1− λd2

n− λd
,

where d = | rel(f)|.

Proof. Let xi be a variable that is not 1-low for f . Applying Lemma 4.3.3 (a)

with s = 0 yields that |Ei| = |E(0)
i | and |Ej| = |E(0)

j |, xj ∈ irrel(f), are inde-
pendent and identically distributed. Thus, in each round r of the while-loop,
conditional to having output only relevant variables in rounds 1, . . . , r − 1, the
probability that Greedy Ranking outputs xi is at most 1/(n− r+1). Having
at most d non-1-low variables and λ · d rounds available, Greedy Ranking
succeeds with probability at most λ·d2

n−λ·d .
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Algorithm 4.5 τ-Greedy Ranking.

1: input S = ((xk1, . . . , x
k
n), y

k)k∈[m]

2: E ← {{k, `} | k, ` ∈ [m], yk 6= y`}
3: R← ∅
4: for I ⊆ [n] with 1 ≤ |I| ≤ τ do

5: EI ← {{k, `} ∈ E | xkI 6= x`I}
6: while E 6= ∅ do

7: select I ⊆ [n], 1 ≤ |I| ≤ τ, with maximum |EI |
8: E ← E \

⋃
i∈I Ei

9: R← R ∪ {xi | i ∈ I}
10: output τ-Greedy Ranking(S) = R

Also the extension of Greedy Ranking to τ-Greedy Ranking (Algo-
rithm 4.5) that ranks all sets |EI |, 1 ≤ |I| ≤ τ , follows the same line as the
extension of Greedy to τ-Greedy.

Theorem 4.6.3. There is a polynomial p such that the following holds. Let
f : {0, 1}n → {0, 1} be a τ -low concept, 1 ≤ τ ≤ d = | rel(f)|, and δ > 0. Let S
be a uniformly distributed sample for f of size

m ≥ p(2d, log n, log(1/δ)) .

Then τ-Greedy Ranking(S) = rel(f) with probability at least 1− δ.

Proof. The proof is very similar to the proof of Theorem 4.6.1 and a detailed
description therefore omitted; see also the proof of Theorem 4.4.2, which is the
extension of Theorem 4.3.1 to τ -Fourier-accessible concepts.

Also the lower bound for τ-Greedy Ranking and its proof are almost
identical to the proof of the corresponding results for τ-Greedy, Theorem 4.4.4
(with the aid of Lemma 4.4.3) and Corollary 4.4.5. Thus, we leave out detailed
descriptions of the proofs of the following statements.

Theorem 4.6.4. Let f : {0, 1}n → {0, 1} be a concept that is not τ -low for some
τ ∈ [n]. Given a sample S for f of arbitrary size, τ-Greedy Ranking fails on
input S with probability at least

1− d2 · V (d− 1, τ − 1)

V (n− d, τ)
,

where d = | rel(f)|.
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Algorithm 4.6 Greedy Rankingd
1: input S = ((xk1, . . . , x

k
n), y

k)k∈[m]

2: E ← {{k, `} | k, ` ∈ [m], yk 6= y`}
3: R← ∅
4: for i = 1 to n do

5: Ei ← {{k, `} ∈ E | xki 6= x`i}
6: while |R| < d do

7: select xi 6∈ R with maximum |Ei|
8: E ← E \ Ei
9: R← R ∪ {xi}
10: output Greedy Rankingd(S) = R

Corollary 4.6.5. Let p(τ)(n, d) denote the probability that for any given concept
f : {0, 1}n → {0, 1} with | rel(f)| = d that is not τ -Fourier-accessible and any
uniformly distributed sample S for f , τ-Greedy Ranking fails. Then

(a) for fixed d, limn→∞ p(τ)(n, d) = 1 and

(b) for d→∞ and n = n(d) ∈ ω(d2), limd→∞ p(τ)(n, d) = 1.

In both items, τ may vary arbitrarily with growing n and/or d. More precisely,
in (a), τ = τ(n) may be any function τ : N→ [d], while in (b), τ = τ(d) may be
any function τ : N→ N with τ(d) ∈ [d] for all d ∈ N.

If noise is introduced, then—as for Greedy—also Greedy Ranking has to
be modified by providing the number of relevant attributes as an additional pa-
rameter, resulting in Greedy Rankingd, which is presented as Algorithm 4.6.

Theorem 4.6.1 can be extended to the scenario of noisy data in the same way
as we have extended Theorem 4.3.1 to Theorem 4.5.3:

Theorem 4.6.6. There is a polynomial p such that the following holds. Let
f : {0, 1}n → {0, 1} be a 1-low concept, d = | rel(f)|, P be a γa-bounded attribute
noise distribution, η be a classification noise rate with |1 − 2η| ≥ γb > 0, and
δ > 0. Let S be a uniformly distributed (P, η)-noisy sample for f of size

m ≥ p(2d, log n, log(1/δ), γ−da , γ−1
b ) .

Then Greedy Rankingd(S) = rel(f) with probability at least 1− δ.

Also the lower bound can be generalized to the noisy scenario for Greedy
Ranking, i.e., Theorem 4.6.2 is valid for (P, η)-noisy samples as well. We omit
the proof.
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4.7 Modest Ranking

—the Opposite of Greedy Ranking

We have shown in Subsection 4.3.3 that the characterization we have found for
the setting of uniformly distributed attributes cannot be generalized to non-
uniformly distributed attributes. In the latter case, it can even happen that
the opposite strategy to greedy is applicable: here, attributes that correspond
to smallest set cardinalities are selected first. Such an algorithm works cor-
rectly with high probability if the sets Ei for relevant attributes are likely to be
smaller than the sets Ei for the irrelevant attributes. Instead of being greedy,
this algorithm rather behaves modestly, so we call it Modest Ranking. The
pseudocode for Modest Ranking is the same as for Greedy Ranking (Al-
gorithm 4.4), except that in line 7, a set of minimum size is selected.

For uniformly distributed examples, this strategy is of no use since the sets Ei
for xi ∈ rel(f) are always at least as large as the sets Ej for xj ∈ irrel(f) (in
expectation).

In terms of their ability to find small set covers, none of the strategies
Greedy, Greedy Ranking, and Modest Ranking outperforms the other
two on all instances. In other words, for each of the strategies, it is possible to
construct (even small) set cover instances such that this strategy finds a minimal
cover, whereas the other two strategies fail to do so.

To see that Modest Ranking is indeed applicable in some situations,
consider the following scenario. Let f : {0, 1}n → {0, 1} with base function
f ′ : {0, 1}d → {0, 1} defined by f(x1, . . . , xd) = x1 ∧ · · · ∧ xd, let d∗ ∈ [0, 1], and
let D be the product distribution for which all rates are equal to d∗. We have
shown [AR03, Theorem 4] that if d∗ ≤ 1/2, then Greedy Ranking is successful
with high probability (the case d∗ = 1/2 is also covered by Theorem 4.6.1) and
that if d∗ > 1/2, then Modest Ranking is successful with high probability.
The same ideas apply to the OR-function, except that we have to substitute
1− d∗ for d∗.
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CHAPTER 5

The Fourier Method

In this chapter, we devise Fourier-based algorithms that learn the class of τ -
low concepts in the presence of quite general attribute and classification noise.
In particular, we show how to produce accurate hypotheses (instead of merely
learning the relevant attributes). As an application, the class of monotone jun-
tas can be learned efficiently in this setting. We generalize the Fourier approach
to non-uniformly distributed attributes and show that the relevant attributes of
monotone juntas and of parity juntas can be learned efficiently in the general
noise model under consideration. It turns out that the construction of a suit-
able hypothesis is a lot more intricate in this situation than it is for uniformly
distributed attributes. Nevertheless, we do obtain some positive results.

After reviewing how to learn juntas via the Fourier method in the noise-free
case in Section 5.1, we show in Section 5.2 how the noisy case can be handled as
an application of known results, using a sample size of roughly nd. In Section 5.3,
we show how to learn the relevant attributes from a sample size that grows only
logarithmically in n. The overall learning algorithm including the construction
of the hypothesis is described in Section 5.4. We extend our results to non-
uniformly distributed attributes in Sections 5.5, 5.6, and 5.7.

In this chapter, all concepts map to the range Ω = {−1,+1}. As a conse-
quence, classification noise bits ζ are also supposed to be elements of {−1,+1},
drawn with Pr[ζ = −1] = η and Pr[ζ = +1] = 1 − η for some classification
noise rate η ∈ [0, 1], which we indicate by ζ ∼ η. The classification y of a ran-
dom example (x, y) ∈ {0, 1}n × {−1,+1} is then multiplied by ζ. Thus, each
classification is independently affected by noise with probability η.

83
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Algorithm 5.1 τ -Fourierd
1: input S = ((xk1, . . . , x

k
n), y

k)k∈[m]

2: R← ∅
3: for I ⊆ [n] with 1 ≤ |I| ≤ τ do

4: β ← 1
m
·
∑m

k=1 χI(x
k) · yk

5: if |β| ≥ 2−d−1

6: then R← R ∪ {xi | i ∈ I}
7: output τ-Fourierd(S) = R

5.1 Review of the Noise-free Case

In this section, we review the “Fourier algorithm” for the noise-free scenario, as
described by Mossel et al. [MOS04]. We first look at how one can learn monotone
juntas and then show how to extend the method to learn larger subclasses of
juntas. This will be helpful to make clear why we are interested in τ -low juntas
(which we have introduced in Definition 2.4.1) and to understand the methods
presented in Section 5.2.

Let f : {0, 1}n → {−1,+1} be a monotone d-junta. Then f is correlated
with all of its relevant variables [MOS04], i.e., f̂(i) 6= 0 for all xi ∈ rel(f).
This fact may be exploited to infer the relevant variables of f from (uniformly
distributed) random examples (xk, f(xk)), xk ∈ {0, 1}n, k ∈ [m], as follows:
simply approximate the Fourier coefficients f̂(i) by the empirical coefficients f̃(i)
defined in (3.2). If sufficiently many independent examples are available, then
with high probability, the relevant variables are exactly those for which f̃(i) is
sufficiently far away from zero, i.e., |f̂(i)| ≥ ρ for some threshold ρ > 0.

Once we have correctly inferred the relevant variables, it is easy to de-
rive a consistent hypothesis: we obtain an appropriate truth table by restrict-
ing the given examples to the relevant variables. With high probability (see
Lemma 3.5.1), there is only one hypothesis having the same set of relevant vari-
ables and being consistent with the function table, namely the target concept f .

Clearly, the approach also works for non-monotone concepts with the prop-
erty that all relevant variables are correlated with the function value, i.e., the
1-low concepts. Moreover, we can use Lemma 2.3.4 to extend the method to
larger classes of Boolean concepts by looking beyond the first level of Fourier
coefficients.

The algorithm (which we call τ -Fourierd) for inferring the relevant vari-
ables of τ -low d-juntas, which has been described by Mossel et al. [MOS04], is
presented as Algorithm 5.1.

Theorem 5.1.1 ([MOS04]). There exist polynomials ps and pt such that the
following holds. Let f : {0, 1}n → {−1,+1} be a τ -low d-junta, δ > 0, and
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S be a uniformly distributed sample of size m ≥ ps(log n, 2
d, log(1/δ)). Then

on input S, τ -Fourierd outputs exactly the relevant variables of f in time nτ ·
pt(n, 2

d, log(1/δ)) with probability at least 1− δ.

5.2 The Noisy Case:

Uniform Attribute Distribution

Now let us see what we can do if the examples contain errors. Throughout the
remainder of this section, we fix an attribute noise distribution P : {0, 1}n →
[0, 1] and a classification noise rate η ∈ [0, 1]. As we have already discussed in
Section 3.2, it is reasonable to assume that η 6= 1/2. Thus, we assume that there
exists some bound γb > 0 such that |1− 2η| ≥ γb.

Recall the definition pI = Prξ∼P [χI(ξ) = −1]. As we will approximate Fourier
coefficients from noisy examples, it is also necessary to require the probabilities pI
to be different from 1/2 for all I ⊆ [n] with |I| ≤ d, see Lemma 3.3.2. Moreover,
such a restriction is even necessary for an information-theoretic reason: we have
seen in Theorem 3.7.3 that pI = 1/2 may cause the concept class to be impossible
to learn under attribute noise distribution P . In the following, we will require
P to be γa-bounded for some fixed γa > 0 (see Definition 3.2.6) since we believe
that this is the most important case. Recall that γa-bounded attribute noise
distributions P include product distributions with rates p1, . . . , pn that satisfy
|1−2pi| ≥ γa for all i ∈ [n]. Extending our results to more general distributions P
satisfying pI 6= 1/2 is straightforward: all statements and proofs remain valid if
we substitute

λt = min{|λI | | I ⊆ [n], |I| ≤ t}

for γta in all places.
Furthermore, we fix a confidence parameter δ ∈ (0, 1], an accuracy param-

eter ε ∈ (0, 1], and a target concept f : {0, 1}n → {−1,+1}. Let S denote a
uniformly distributed (P, η)-noisy sample of size m for f . All probabilities are
taken over the possible outcomes of S for a fixed sample size m.

Since d-juntas have all of their Fourier weight located in levels 0, . . . , d (by
Lemma 2.3.4), we obtain a first result for learning the class J n

d of n-ary d-
juntas from noisy examples by applying Noisy-LMNT (x) (Algorithm 3.1) with
T = {I ⊆ [n] | |I| ≤ d}.

Theorem 5.2.1. The class J n
d is exactly learnable with confidence 1 − δ from

uniformly distributed (P, η)-noisy samples, using sample complexity and running
time

nd · poly
(
n, log(1/δ), γ−da , γ−1

b

)
.
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Algorithm 5.2 τ -Noisy-Fourierd.

1: input S = ((xk1, . . . , x
k
n), y

k)k∈[m], γa, γb
2: R← ∅
3: for I ⊆ [n] with 1 ≤ |I| ≤ τ do

4: β ← (γ
|I|
a · γb)−1 · 1

m
·
∑m

k=1 χI(x
k) · yk

5: if |β| ≥ 2−d−1

6: then R← R ∪ {xi | i ∈ I}
7: output τ-Noisy-Fourierd(S) = R

Proof. We choose ε = 2−d−1 and Tε = {I ⊆ [n] | |I| ≤ d} (since f̂(I) = 0 for all
I of size larger than d) and apply Theorem 3.6.3. By assumption,

λ = min{|λI | | I ∈ Tε} ≥ γda ,

and the claim follows.

Unfortunately, with this approach, sample and time complexity do not drop
for subclasses such as the monotone juntas since the Fourier weight may be
spread evenly over all Θ(nd) nonzero coefficients (as it is the case for example
for monomials, see e.g. [O’D03, Section 3.3]).

In the sequel, we show how to combine the method just described with the
idea of first detecting the relevant attributes, as we did in the noise-free case.
In Theorem 5.4.1, we show that this significantly reduces the sample complexity
from O(nd+O(1)) to poly(log n, 2d). In addition, for τ -low d-juntas with τ < d,
also the running time decreases from O(nd+O(1)) to O(nτ+O(1)).

5.3 Learning Relevant Attributes from

Uniformly Distributed Examples

The detection of relevant variables works similarly as in the noise-free case.
The following modifications to τ -Fourierd (Algorithm 5.1) vaccinate it against
noise; the resulting algorithm τ -Noisy-Fourierd is presented as Algorithm 5.2.

First, the noisy version has to obtain some information about the noise pa-
rameters. In the variant presented here, it receives the bounds γa, γb as addi-
tional inputs. Next, to ensure that in line 5 of the algorithm, β is an appropriate
measure to decide whether the Fourier coefficient f̂(I) vanishes, we divide the

expression given in the noise-free setting by γ
|I|
a · γb, which is a lower bound for

|1− 2pI | · |1− 2η|.
Additionally to the adaptations of the algorithm, the number of examples

that have to be drawn increases by a factor of 4 ·(γτa ·γb)−2. Furthermore, instead
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of receiving a noise-free sample, the algorithm now obtains a noisy sample as
input. In particular, in line 1 of τ -Noisy-Fourierd, x

k = x′k⊕ξk and yk = y′k·ζk
for appropriate noise-free data x′k, y′k and noise ξk, ζk.

Theorem 5.3.1. Let f be a τ -low d-junta and

m ≥ 8 · ln(2n/δ) · 22d · (γτa · γb)−2 .

Then τ -Noisy-Fourierd(S) = rel(f) with probability at least 1 − δ. Further-
more, τ -Noisy-Fourierd(S) runs in time nτ · poly(m,n).

Proof. Let ρ = 2−d. Algorithm τ -Noisy-Fourierd classifies xi as “relevant” if
and only if |f̃S(I)| ≥ (1/2) · γ|I|a · γb · ρ for some I of size at most τ with i ∈ I.
By Lemma 3.3.2, for every I ⊆ [n] of size at most τ ,

|f̃S(I)− (1− 2pI)(1− 2η)f̂(I)| ≤ 1
2
· γτa · γb · ρ (5.1)

with probability at least 1− δ/n.
Consider some variable xi ∈ rel(f). Since f is τ -low, there exists an I ⊆ [n]

of size at most τ such that i ∈ I and f̂(I) 6= 0. By Lemma 2.3.6, |f̂(I)| ≥ 2−d.
In particular, if (5.1) is satisfied, then

|f̃S(I)| ≥ |1− 2pI | · |1− 2η| · |f̂(I)| − 1
2
· γτa · γb · ρ ≥ 1

2
· γτa · γb · ρ ,

i.e., |β| ≥ ρ/2, so xi is classified as “relevant” with probability at least 1− δ/n.
Now consider some variable xi 6∈ rel(f). Thus, f̂(I) = 0 for all I ⊆ [n] with

i ∈ I by Lemma 2.3.4. By (5.1), with probability at least 1− δ/n,

|f̃S(I)| ≤
1

2
· γτa · γb .

We conclude that xi is correctly classified with probability at least 1− δ/n.
Finally, the probability that at least one out of the n variables is not classified

correctly is at most n · (δ/n) = δ.

5.4 Constructing a Hypothesis from

Uniformly Distributed Examples

Learning juntas (in the sense of constructing an accurate hypothesis) from noisy
data proceeds in two phases: in the first phase, we infer all relevant variables
with high probability. In the second phase, we build up the truth table of a
suitable hypothesis. The main difference to the algorithm used in the noise-free
setting is that we cannot simply read off the truth table from the examples since
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Algorithm 5.3 τ -Noisy-Learnd
1: input S = ((xk1, . . . , x

k
n), y

k)k∈[m], P, γa, η
2: γb ← |1− 2η|
3: R← τ-Noisy-Fourierd(S, γa, γb)
4: T ← P(R)
5: output hypothesis

τ-Noisy-Learnd(x) = Noisy-LMNT (S, P, η)(x)

these may contain inconsistencies (even if not, such a truth table is unlikely to
be correct).

Fortunately, we have seen in Section 3.6 how to build a good hypothesis in
the presence of attribute noise. The trick is that we do not apply Theorem 3.7.4
to the whole given sample, but restrict the sample to the variables classified as
relevant in the first phase. As a consequence, the sample and time complexity
for the second phase do not depend on n anymore, but only on the number d of
relevant variables.

This results in an algorithm for learning the class J n
d in the presence of

attribute and classification noise with sample complexity growing only polyno-
mially in log n and 2d (instead of nd as in Theorem 3.7.4). Moreover, for the
class J n

d (τ) of τ -low d-juntas, the factor of nd in the running time reduces to nτ .
Precisely, the algorithm, which we call τ -Noisy-Learnd, is presented as Algo-
rithm 5.3.

Theorem 5.4.1. Algorithm τ -Noisy-Learnd exactly learns the class J n
d (τ)

with confidence 1− δ

• from uniformly distributed (P, η)-noisy samples of size
poly(log n, 2d, log(1/δ), γ−da , γ−1

b )

• with running time nτ · poly(n, 2d, log(1/δ), γ−da , γ−1
b ).

Proof. Let f ∈ J n
d (τ). As we have shown in Theorem 5.3.1, with probability at

least 1− δ/2, τ -Noisy-Fourierd successfully infers the relevant variables of f ,
provided that

m ≥ 8 · ln(4n/δ) · 22d · (γτa · γb)−2 .

By Theorem 3.6.3, choosing ε = 2−d−1 and Tε = P(rel(f)), again with probability
at least 1 − δ/2, the output hypothesis exactly coincides with f , provided that
m ≥ poly(|Tε|, 1/λ, 1/ε, 1/|1 − 2η|) with λ as defined in (3.14). Since |Tε| ≤ 2d,
λ ≤ γ−da , and ε−1 = 2d+1, τ -Noisy-Learnd succeeds in exactly learning the
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target concept with probability at least 1 − δ, provided that the sample size
is p(log n, 2d, log(1/δ), γ−da , γ−1

b ) for some sufficiently large polynomial p. The
claimed running time follows from Theorem 5.3.1 and Theorem 3.6.3.

For the class of all d-juntas and the class of monotone d-juntas, we obtain

Corollary 5.4.2. (a) The class J n
d can be exactly learned with confidence 1− δ

• from uniformly distributed (P, η)-noisy samples of size
poly(log n, 2d, log(1/δ), γ−da , γ−1

b )

• with running time nd · poly(m,n).

(b) The class MONn
d can be exactly learned with confidence 1− δ

• from uniformly distributed (P, η)-noisy samples of size
poly(log n, 2d, log(1/δ), γ−da , γ−1

b )

• with running time poly(m,n).

5.5 The Noisy Case:

Non-uniform Attribute Distributions

In this section we generalize our results to product attribute distributions (not
to be confused with attribute noise distributions). We confine ourselves to pre-
senting results for 1-low concepts only. The more delicate task of studying the
general applicability of the methods to τ -low juntas is left for future investiga-
tions.

The examples are now distributed according to an attribute distribution
D : {0, 1}n → [0, 1] which we assume to be a product distribution with rates
d1, . . . , dn. Let σi =

√
di · (1− di) be the standard deviation of variable xi. To

avoid pathological cases, we assume that there exists a constant γc ∈ (0, 1/2)
such that for all i ∈ [n], di ∈ [γc, 1 − γc]. The learning algorithm now has ac-
cess to D-distributed (P, η)-noisy samples (see Definition 3.2.1). When using
methods from the uniform setting, we now approximate expectations with re-
spect to D instead of Un. Consequently, we have to adjust the inner product
on our concept space and choose an appropriate orthonormal basis, as has been
presented in Section 2.2. In this setting, we work with the D-biased inner prod-
uct 〈f, g〉D = Ex∼D[f(x)g(x)], the orthonormal basis

(
χDI | I ⊆ [n]

)
, and the

D-biased Fourier coefficients f̂(I) =
〈
f, χDI

〉
D
, using the same notation as in the

uniform case. The fact that Lemma 2.3.4 has been formulated in this D-biased
setting paves the way to carry over techniques from the uniform setting, at least
for noise-free data.
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In the noisy setting, the main problem is that in general,

χDI (x⊕ ξ) 6= χDI (x) · χDI (ξ) .

Hence, we cannot simply approximate Ex∼D,ξ∼P,ζ∼η
[
χDI (x⊕ ξ) · f(x) · ζ)

]
and

proceed as in the uniform case. On the other hand, using χUn
I , we obtain

Ex∼D,ξ∼P,ζ∼η
[
χUn
I (x⊕ ξ) · f(x) · ζ)

]
= (1− 2pI) · (1− 2η) ·

〈
f, χUn

I

〉
D
,

but
〈
f, χUn

I

〉
D

does not properly work together with the definition of biased
Fourier coefficients. The way out is provided by a combination of biased Fourier
coefficients, the inner product 〈· , ·〉D, and the “unbiased” parity functions χUn

I ,
presented in Lemma 5.5.1. Its proof relies on explicit calculations of the biased
Fourier coefficients of the unbiased parity functions.

Lemma 5.5.1. Let f : {0, 1}n → R and I ⊆ [n]. Then

f̂(I) =
(∏

i∈I(2σi)
)−1 ·

〈
f, χUn

I

〉
D
−

∑
J(I

∏
i∈I\J

1−2di

2σi
· f̂(J) .

Before we prove Lemma 5.5.1, we calculate
〈
χUn
I , χDJ

〉
D
. This may be of in-

dependent interest for other applications since these are the entries of the change
of basis matrix for converting coordinates with respect to the unbiased basis(
χUn
I | I ⊆ [n]

)
to coordinates with respect to the D-biased basis

(
χDI | I ⊆ [n]

)
.

Lemma 5.5.2. Let J ⊆ I ⊆ [n]. Then〈
χUn
I , χDJ

〉
D

=
∏
i∈J

(2σi) ·
∏
i∈I\J

(1− 2di) .

Proof. We have

χUn
i (x) · χDi (x) = (−1)xi · di − xi

σi
=

{
di

σi
if xi = 0,

1−di

σi
if xi = 1.

Hence, using χDI =
∏

i∈I χ
D
i , we obtain

〈
χUn
I , χDJ

〉
D

=
∑

x∈{0,1}n

D(x) · χUn
I (x) · χDJ (x)

=
∑

x∈{0,1}n

∏
i∈[n]

(
dxi
i · (1− di)1−xi

)
·

∏
i∈J :xi=0

di

σi
·

∏
i∈J :xi=1

1−di

σi
·

∏
i∈I\J

(−1)xi

=
∑

x∈{0,1}n

∏
i∈[n]\J

(
dxi
i · (1− di)1−xi

)
·
∏
i∈J

σi ·
∏
i∈I\J

(−1)xi
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=
∑

x∈{0,1}n

∏
i∈[n]\I

(
dxi
i · (1− di)1−xi

)
·
∏
i∈J

σi ·
∏
i∈I\J

(
(−1)xi · dxi

i · (1− di)1−xi
)

=
∏
i∈J

σi ·
( ∑
x|J∈{0,1}J

1
)
·
( ∑
x|[n]\I∈{0,1}[n]\I

∏
i∈[n]\I

(
dxi
i · (1− di)1−xi

))
·
( ∑
x|I\J∈{0,1}I\J

∏
i∈I\J

(
(−1)xi · dxi

i · (1− di)1−xi
))

= 2|J | ·
∏
i∈J

σi ·
∑

x∈{0,1}I\J

∏
i∈I\J

(
(−1)xi · dxi

i · (1− di)1−xi
)

= 2|J | ·
∏
i∈J

σi ·
(

Pr
x∼D

[χUn

I\J = 1]− Pr
x∼D

[χUn

I\J = −1]
)

= 2|J | ·
∏
i∈J

σi · (1− 2dI\J) =
∏
i∈J

(2σi) ·
∏
i∈I\J

(1− 2di) ,

where, analogously to pI , we define dI = Prx∼D
[
χUn
I = −1

]
for I ⊆ [n]. By

Lemma 3.2.5 (applied to D instead of P ), 1− 2dI =
∏

i∈I(1− 2di).

Proof of Lemma 5.5.1. We first show that 〈χUn
I , χDJ 〉D = 0 for all J 6⊆ I:

χDI =
∏
i∈I

χDi =
∏
i∈I

(2σi)
−1 ·

(
χUn
i + (2di − 1) · 1

)
∈

〈
χUn
J | J ⊆ I

〉
implies

〈
χDJ | J ⊆ I

〉
⊆

〈
χUn
J | J ⊆ I

〉
. Since both sides of this relation are

subspaces of R{0,1}n
of equal dimension, the spaces coincide. In particular, χUn

I ∈〈
χDJ | J ⊆ I

〉
. Consequently,

〈
χUn
I , χDJ

〉
D

= 0 for all J 6⊆ I. Now〈
f, χUn

I

〉
D

=
〈
f,

∑
J⊆[n]

〈
χUn
I , χDJ

〉
D
· χDJ

〉
D

=
∑
J⊆I

〈
f, χDJ

〉
D
·
〈
χUn
I , χDJ

〉
D

=
∑
J⊆I

f̂(J) · χ̂Un
I (J) =

∑
J(I

f̂(J) · χ̂Un
I (J) + f̂(I) · χ̂Un

I (I) .

Hence,

f̂(I) = χ̂Un
I (I)−1 ·

(
〈f, χUn

I 〉D −
∑
J(I

f̂(J) · χ̂Un
I (J)

)
.

The claim now follows from Lemma 5.5.2. 2

5.6 Learning Relevant Attributes from

Non-uniformly Distributed Examples

The threshold to recognize nonzero Fourier coefficients is given by the least
absolute value of the considered nonzero coefficients. Thus, we define the Fourier
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Algorithm 5.4 Noisy-Product-Fourierd
1: input S = ((xk1, . . . , x

k
n), y

k)k∈[m], D, P, η, ρ
2: R← ∅
3: φ0 ← 1

(1−2η)·m
∑m

k=1 y
k

4: for i = 1 to n do

5: φi ← (1− 2di) · φ0

6: ψi ← 1
(1−2pi)·(1−2η)·m

∑m
k=1 y

k · χUn
i (xk)

7: βi ← ψi−φi

2·
√
di·(1−di)

8: if |β| ≥ ρ/2
9: then R← R ∪ {xi}
10: output Noisy-Product-Fourierd(S,D, P, η, ρ) = R

threshold thrD(f) of f with respect to D by

thrD(f) = min
{∣∣f̂(i)

∣∣ ∣∣∣ xi ∈ rel(f)
}
. (5.2)

For concepts f that are not 1-low (with respect to D), thrD(f) = 0. If D = Un
is the uniform distribution, then for 1-low concepts f , thrD(f) ≥ 2−| rel(f)| by
Lemma 2.3.6.

For the next theorem, we stick to the notation fixed in Section 5.2, except
that S is now assumed to be a D-distributed (P, η)-noisy sample of size m.

Theorem 5.6.1. Let f : {0, 1}n → {−1,+1} be a d-junta with ρ = thrD(f) > 0
and

m ≥ 2 · ln(4n/δ) · ρ−2 · (γa · γb)−2 · (γc · (1− γc))−1 .

Then
Noisy-Product-Fourierd(S,D, P, η, ρ) = rel(f)

with probability at least 1− δ. Furthermore, the algorithm runs in time

poly(n, log(1/δ), γ−1
a , γ−1

b , γ−1
c , ρ−1) .

Proof. The proof is an extension of the proof of Theorem 5.3.1. By Lemma 5.5.1,

f̂(i) = (2σi)
−1 · 〈f, χUn

I 〉D −
1− 2di

2σi
· f̂(∅) .

Since Ex∼D,b∼η[f(x) · b] = (1 − 2η) · f̂(∅), it follows analogously to the proof of
Lemma 3.3.2 that with probability at least δ/(2n),

|φi − (1− 2di) · f(∅)| ≤ σi · ρ/2 ,
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provided that

m ≥ 2 · ln(4n/δ) · 4(1− 2di)
2

(1− 2η)2 · σ2
i · ρ2

. (5.3)

Moreover, we have

Ex∼D,ξ∼P,b∼η[f(x) · b · χUn
I (x⊕ ξ)] = (1− 2pi) · (1− 2η) · 〈f, χUn

I 〉D .

Thus, with probability at least 1− δ/(2n),

|ψi − 〈f, χUn
I 〉D| ≤ σi · ρ/2 ,

provided that

m ≥ 2 · ln(4n/δ) · 4

(1− 2pi)2 · (1− 2η)2 · σ2
i · ρ2

. (5.4)

The number of examples in the claim dominates both numbers given in (5.3)
and (5.4). Thus, with probability at least 1− δ/n,

∣∣βi − f̂(i)
∣∣ =

∣∣∣∣∣ψi − φi2σi
− 〈f, χ

Un
I 〉D − (1− 2di)f̂(∅)

2σi

∣∣∣∣∣ ≤ ρ · σi
2 · σi

= ρ/2 .

Noisy-Product-Fourierd classifies xi as “relevant” if and only if |βi| ≥ ρ/2.
If f̂(i) = 0, then |βi| < ρ/2 with probability at least 1 − δ/n, and if f̂(i) 6= 0,
then |βi| ≥ ρ/2 with probability at least 1− δ/n (since f̂(i) ≥ ρ by assumption).
Consequently, all variables are classified correctly with probability at least 1− δ.

For monotone concepts, we obtain

Lemma 5.6.2. Let f : {0, 1}n → {−1,+1} be a monotone Boolean concept.
Then

thrD(f) ≥ 2 · min
xi∈rel(f)

σi ·
∏

xj∈rel(f)\{xi}

min{dj, 1− dj} .

In particular,

thrD(f) ≥ 2 ·
∏

xi∈rel(f)

min{di, 1− di} .
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Proof. Let xi ∈ rel(f). Then

f̂(i) =
∑

x∈{0,1}n

D(x) · f(x) · di − xi
σi

=
∑

x′∈{0,1}[n]\{i}

D(x′) ·
(

(1− di) · fxi=0(x
′) · di

σi
− di · fxi=1(x

′) · 1− di
σi

)
= σi ·

∑
x′∈{0,1}[n]\{i}

D(x′)(fxi=0(x
′)− fxi=1(x

′))

= σi ·
∑

x′∈{0,1}rel(f)\{i}

D(x′)(f ′xi=0(x
′)− f ′xi=1(x

′)) ,

where for J ⊆ [n] and x ∈ {0, 1}J , we define D(x) =
∏

j∈J d
xi
i · (1 − di)

1−xi ,

and for g : {0, 1}J → R, g′ : {0, 1}rel(g) → R denotes the restriction of g to its
relevant variables (see Definition 2.3.2). If f is monotone, then fxi=0 ≥ fxi=1 or
fxi=0 ≤ fxi=1. If, in addition, xi is relevant to f , then fxi=0(x

′) 6= fxi=1(x
′) for

at least one x′ ∈ {0, 1}[n]\{i}. Hence,

|f̂(i)| ≥ 2 · σi · min
x′∈{0,1}rel(f)\{i}

D(x′) = 2 · σi ·
∏

xj∈rel(f)\{xi}

min{dj, 1− dj} .

We conclude the proof by showing σi ≥ min{di, 1 − di}. If di ≤ 1/2, then
σi =

√
di · (1− di) ≥ di = min{di, 1 − di}. If di ≥ 1/2, then σi ≥ 1 − di =

min{di, 1− di}.

The lemma also holds for locally monotone concepts.
While under the uniform distribution, the parity function χI is |I|-low but

not (|I|−1)-low, the situation is entirely different for non-uniform distributions:

Lemma 5.6.3. Let f : {0, 1}n → {−1,+1} be a parity function, i.e., f = χI for
some I ⊆ [n]. Then

thrD(f) = 2 ·min
i∈I

(
σi ·

∏
j∈I\{i}

|1− 2dj|
)
.

In particular, if D is a non-degenerate θ-bounded product distribution (i.e., for
all i ∈ [n], |1− 2di| ≥ θ > 0, see Definition 3.2.6 and Lemma 3.2.5), then

thrD(f) ≥ 2 · γc · θd−1 . (5.5)

Proof. Let i ∈ rel(f) = I. By Lemma 5.5.2,

FD(χI)(i) = 〈χUn
I , χDi 〉D = 2σi ·

∏
j∈I\{i}

(1− 2dj) ,
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which proves the equation in the claim. To see the inequality (5.5), note that
σi ≥

√
γc(1− γc) ≥ γc (since 1− γc > γc).

In particular, if di 6∈ {0, 1
2
, 1} for all i ∈ [n], then the relevant variables of

parity functions can be inferred via the Fourier approach (even in the presence
of noise). Furthermore, since the relevant variables already determine the target
concept in this case, the learning problem is as easy as the detection of relevant
variables.

For the class of monotone d-juntas and the class of parity d-juntas we obtain

Corollary 5.6.4. (a) The relevant variables of monotone d-juntas can be ex-
actly learned with confidence 1− δ

• from D-distributed (P, η)-noisy samples of size

m ≥ poly(log n, log(1/δ), γ−1
a , γ−1

b , γ−dc )

• with running time poly(m,n).

(b) If D is θ-bounded, then the class PARn
d of parity d-juntas can be exactly

learned with confidence 1− δ

• from D-distributed (P, η)-noisy samples of size

m ≥ poly(log n, log(1/δ), γ−1
a , γ−1

b , γ−1
c , θ−d)

• with running time poly(m,n).

Proof. Part (a) follows from Theorem 5.6.1 and Lemma 5.6.2; part (b) follows
from Theorem 5.6.1 and Lemma 5.6.3. Note that a parity function f is uniquely
determined by rel(f).

5.7 Constructing a Hypothesis from

Non-uniformly Distributed Examples

Next we describe how to construct a hypothesis for general concepts. We use
Lemma 5.5.1 to successively approximate all biased Fourier coefficients level by
level. Given a D-distributed (P, η)-noisy sample S = (xk, yk)k∈[m] and having
inferred the set R of relevant variable indices, we compute for each I ⊆ R the
value

βI =
(
(1−2pI)(1−2η)

∏
i∈I

2σi

)−1

· 1

m
·
m∑
k=1

ykχI(x
k)−

∑
J(I

∏
i∈I\J

1− 2di
2σi

βJ . (5.6)
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Finally, we build the hypothesis h(x) = sgn
∑

I⊆R βI · χDI (x).

To ensure that βI approximates f̂(I) well enough, reasonably good approx-
imations of all coefficients f̂(J) for J ⊆ I are required. This feedback effect
leads to a necessary sample size of 2ω(| rel(f)|). In case that |1 − 2di| ≤ σi, the
following theorem provides upper bounds on the sample and time complexity for
learning monotone juntas from product distributed examples in the presence of
γa-bounded attribute noise and classification noise (with η 6= 1/2). Note that
|1− 2di| ≤ σi if and only if |1− 2di| ≤ 1/

√
5, i.e., di ∈ [0.2764, 0.7236].

Theorem 5.7.1. Let f : {0, 1}n → {−1,+1}. Let |1 − 2di| ≤ 1/
√

5 for all
xi ∈ rel(f) such that in addition, ρ = thrD(f) > 0. Then f can be exactly
recovered with confidence 1− δ from D-distributed (P, η)-noisy samples of size

m ≥ poly(log n, 2d
2

, log(1/δ), γ−da , γ−1
b , ρ−1)

with running time poly(m,n).

Before we prove Theorem 5.7.1, we show that a suitable hypothesis can be
build, provided that the set of relevant variables is already known:

Lemma 5.7.2. Let |1−2di| ≤ 1/
√

5 for all xi ∈ rel(f). Let S be a D-distributed
(P, η)-noisy sample of size

m ≥ poly
(
2d

2

, log(1/δ), γ−da , γ−1
b

)
,

where d = | rel(f)|. Let βI as defined in (5.6). Then with probability at least
1− δ, the hypothesis h defined by

h(x) = sgn
∑
I⊆R

βI · χDI (x)

coincides with f .

Proof. We first prove by induction on |I| that |βI − f̂(I)| ≤ ε with probability
at least 1− δ, provided that

m ≥ 8 · 2|I|2 · ln
(
2|I|+1/δ

)
· γ−2|I|

a · γ−2
b · ε

−2 . (5.7)

We have

β∅ = (1− 2p∅) · (1− 2η) · 1

m

m∑
k=1

yk .

By the Hoeffding bound (Lemma 3.1.2), with probability at least 1− δ,

|β∅ − f̂(∅)| ≤ ε, provided that m ≥ 2 · ln (2/δ) · 1

(1− 2η)2 · ε2
,
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which is clearly dominated by (5.7).
Now consider I ⊆ [n] with |I| ≥ 1 and assume that the claim holds for all

J ⊆ [n] of size at most |I| − 1. Let

ψI =
(
(1− 2pI) · (1− 2η) ·

∏
i∈I\J

2σi

)−1

· 1

m

m∑
k=1

yk · χUn
I (xk)

and

φI =
∑
J(I

( ∏
i∈I\J

1− 2di
2σi

)
· βJ .

The remainder of the proof is a bit technical, so we provide a brief overview
first: we show that with probability at least 1 − δ · 2−|I|, (5.8) holds, and that
with probability at least 1−δ ·(1−2−|I|), (5.9) holds for all J ( I. Putting these
things together, we will obtain that with probability at least 1−δ, |βI−f̂(I)| ≤ ε.

We have Ex∼D,ξ∼P,b∼η[f(xk) ·bk ·χUn
I (xk⊕ξk)] = (1−2pI) · (1−2η) · 〈f, χUn

I 〉D.
Thus, with probability at least 1− δ · 2−|I|,∣∣∣ψI − (∏

i∈I

2σi
)−1 ·

〈
f, χUn

I

〉
D

∣∣∣ ≤ ε/2 , (5.8)

provided that

m ≥ 2 · ln
(2 · 2|I|

δ

)
· 4

(1− 2pI)2 · (1− 2η)2 · (
∏

i∈I 2σi)2 · ε2
.

Again, this is dominated by (5.7) since |1 − 2di| ≤ σi implies σi ≥ 1/
√

5 and

thus
(∏

i∈I 2σi
)−1 ≤ (

√
5/2)|I| ≤ 2|I|

2
.

Furthermore, by induction hypothesis, we have that for each J ( I, with
probability at least 1− δ · 2−|I|,

|βJ − f̂(J)| ≤ ε · 2−|J |−1 , (5.9)

provided that

m ≥ 8 · 2|J |2 · ln
(
2|I|+1/δ

)
· γ−2|J |

a · γ−2
b ·

(
ε · 2−|J |

)−2
.

Therefore, since we assume that |1− 2di| ≤ σi,∣∣∣φI −∑
J(I

( ∏
i∈I\J

1− 2di
2σi

)
· f̂(J)

∣∣∣ ≤ ∑
J(I

∣∣∣ ∏
i∈I\J

1− 2di
2σi

∣∣∣ · |βJ − f̂(J)|

≤
∑
J(I

2−|I\J | · 2−|J |−1 · ε = ε/2
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with probability at least 1− δ · 2|I|−1
2|I|

, provided that

m ≥ 8 · 2(|I|−1)2 · ln
(
2|I|+1/δ

)
· γ−2(|I|−1)

a · γ−2
b · ε

−2 · 22(|I|−1)

= 8 · 2|I|2−2|I|+1+2|I|−2 · ln
(
2|I|+1/δ

)
· γ−2(|I|−1)

a · γ−2
b · ε

−2

= 4 · 2|I|2 · ln
(
2|I|+1/δ

)
· γ−2(|I|−1)

a · γ−2
b · ε

−2 .

The latter sample bound is again dominated by (5.7). Finally,

|βI − f̂(I)| =
∣∣∣ψI − φI − ((∏

i∈I

2σi
)−1 ·

〈
f, χUn

I

〉
D
−

∑
J(I

( ∏
i∈I\J

1− 2di
2σi

)
· βJ

)∣∣∣
≤ ε/2 + ε/2 = ε

with probability at least 1− δ. This finishes the induction proof.
Now we apply this result to estimate how closely h approximates f . Assume

that |βI − f̂(I)| ≤
√

2−d · ε for all I ⊆ R. Similarly to the end of the proof of
Theorem 3.6.3, the standard LMN analysis (see Linial et al. [LMN93]) yields

Pr
x∼D

[h(x) 6= f(x)] ≤
∑
I⊆R

(βI − f̂(I))2 ≤ 2d · (2−dε) = ε .

Let ε = 2−2d. Then, with probability at least 1− δ,

Pr
x∼D

[h(x) 6= f(x)] ≤ 2−2d <
∏
i∈R

min{di, 1− di} = min
x∈{0,1}R

D(x)

(note that min{di, 1− di} > 1/4). This implies h = f . Thus, we can request

m ≥ poly
(
2d

2

, log(1/δ), γ−da , γ−1
b , 23d/2

)
= poly

(
2d

2

, log(1/δ), γ−da , γ−1
b

)
examples to guarantee h(x) = f(x) for all x ∈ {0, 1}n with probability at least
1− δ.

Now we can prove Theorem 5.7.1:
Proof of Theorem 5.7.1. By Theorem 5.6.1, we can infer the set of relevant
attributes correctly with probability at least 1− δ/2, provided that we are given
a sample of size m ≥ poly(log n, log(1/δ), γ−1

a , γ−1
b , γ−1

c , ρ−1). By Lemma 5.7.2,
f can be exactly recovered from

poly
(
2d

2

, log(1/δ), γ−da , γ−1
b

)
examples with probability at least 1−δ/2. Combining these bounds, the claimed
sample complexity follows. The claimed running time obviously suffices. 2



5.7 Constructing a Hypothesis from Non-uniformly Distributed Examples 99

Corollary 5.7.3. If for all i ∈ [n], |1 − 2di| ≤ 1/
√

5, then the class MONn
d of

monotone d-juntas can be exactly learned with confidence 1− δ

• from D-distributed (P, η)-noisy samples of size

m ≥ poly(log n, 2d
2

, log(1/δ), γ−1
a , γ−1

b , γ−dc )

• with running time poly(m,n).

The restriction di ∈ [0.2764, 0.7236] may seem a bit unnatural. However, if
we allow |1− 2di|/σi to become arbitrarily large, then for all J ( I, f̂(J) has to
be approximated too accurately in order to obtain a good estimate for f̂(I), thus
forcing an unreasonably large sample size. One possible way out is to consider
the quotient |1 − 2di|/σi as an additional parameter. As the statements of the
preceding results are already considerably technical, we forbear from introducing
yet another parameter in this chapter.
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CHAPTER 6

Learning Parity Juntas from Noisy Data

In the previous two chapters, we have analyzed two groups of algorithms that
are based on quite different ideas. Nevertheless, it turned out that the frontier
of what can be learned efficiently by these algorithms (or by their extensions)
is the same for both paradigms. In particular, both approaches fail to learn the
class of parities of up to d variables from uniformly distributed samples unless
they consider all sets |EI | (respectively, Fourier coefficients f̂(I)) for |I| ≤ d.
Noticeably, for non-degenerate θ-bounded product attribute distributions (with
θ > 0), we could show that PARn

d is efficiently learnable, see Section 5.5. A
similar result is exploited in Feldman’s algorithm for (randomized) learning of
parities from poly(log n) unadaptively chosen membership queries [Fel05].

In this chapter, we discuss whether alternative approaches can learn parity
juntas from uniformly distributed samples in the presence of noise. The uniform
distribution seems to be the hardest input distribution for this problem.

Learning parity juntas under noise splits into two subproblems that already
appear to be hard to solve: learning parity juntas from poly(log n) (even noise-
free) examples and learning parities in the presence of noise. Concerning the
latter problem, we will see that we can restrict ourselves to studying classification
noise only.

While in general, algorithms for learning in the presence of pure classification
noise cannot be used to learn in the presence of attribute noise, we present such a
reduction for parity juntas. Angluin and Laird [AL88] have proposed the method
of minimizing the number of disagreements between the hypothesis and the sam-
ple to solve the learning problem under pure classification noise. Thus, we can
use this method as a third approach to learn parity juntas in the presence of

101
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attribute and classification noise (next to the greedy and the Fourier approach).
The fastest known algorithm that implements the disagreement minimization
method needs as many steps as d-Greedy or d-Fourier. While the disagree-
ment minimization is applicable in the distribution-free scenario, the attribute
distribution has to be known in order to apply the Fourier algorithm. Concerning
the greedy algorithm, the attribute distribution does not matter for the purpose
of applying it. However, it is not clear for which non-uniform distributions and
concepts it succeeds in finding the relevant attributes.

In Section 6.1, we review the state of the art concerning the learnability of
parity functions under the constraint of few relevant variables or the presence
of noise. The reduction of attribute noise to pure classification noise and the
method of minimzing the number of disagreements between the hypothesis and
the input data are presented in Section 6.2. In Section 6.3, we study the noise
stability of and the noisy distance between parity concepts. The computation
of the noisy distance is used to show a lower bound for learning subclasses of
parities in Section 6.4. In that chapter, we also present a lower bound that shows
that for some γa-bounded product distribution P , Ω(γ−da ) examples are needed
to learn from uniformly distributed (P, 0)-noisy samples.

In this chapter, the parities map to {−1,+1}, i.e., we deal with the func-
tions χI , I ⊆ [n].

6.1 State of the Art

The standard PAC learning algorithm for parities draws a sample

S = (xk, yk)k∈[m] ∈ ({0, 1}n × {−1,+1})m

of size m = Θ(n). Then it solves the corresponding system of linear equations

Xv = y (6.1)

over the two-element field GF(2) = {0, 1}, where

X = (xki )k∈[m],i∈[n]

denotes the (m × n)-matrix of attribute values, i.e., the left part of the matrix
representation (3.1) of a sample. There is a one-to-one correspondence between
solutions v ∈ {0, 1}n for (6.1) and parity functions χI that are consistent with S:
Xv = y if and only if χI with I = {i ∈ [n] | vi = 1} is consistent with S. With
high probability, a consistent parity is ε-close to the target parity by Blumer
et al. [BEHW87], see also Lemma 3.1.8. Thus, the class PARn is learnable
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distribution-freely from Θ(n) examples. This approach has been proposed by
Helmbold et al. [HSW92].

From a lower bound due to Blumer et al. [BEHW89], it follows that Ω(n)
examples are needed to PAC learn PARn (since the VC-dimension of PARn is
equal to n). As a consequence, the problem of learning arbitrary parities from
noise-free examples is completely settled: on the one hand, Ω(n) examples are
needed to learn for information-theoretic reasons. On the other hand, O(n)
examples suffice to learn in polynomial time, even in the original distribution-
free PAC learning model of Valiant [Val84].

The questions now are:

1. Can we obtain such tight results also for parities that depend on at most d
out of n variables?

2. What happens if noise is introduced?

In the following, we present known partial answers to these questions.

6.1.1 Learning Parity Juntas from Noise-free Data

Let f = χI ∈ PARn
d , i.e., I ⊆ [n] with |I| ≤ d. If the number of examples is

allowed to be Θ(n), then the algorithm for general parities will do the job. This
algorithm is fast, but not attribute-efficient. The size of PARn

d is V (n, d) since
PARn

d consists exactly of the parity functions χI with I ⊆ [n] and |I| ≤ d. By
Lemma 3.1.8, any hypothesis h ∈ PARn

d that is consistent with a sample S for f
of size

1

ε
ln
|PARn

d |
δ

≤ d

ε
ln
n

δ

is ε-close to f . Thus, all we have to do for attribute-efficient distribution-free
learning is to produce a parity function that is consistent with S. This is equiva-
lent to finding a solution v of (6.1) of Hamming weight at most d. In general, this
is the Maximum-Likelihood Decoding problem, which has been shown to
be NP-complete by Berlekamp, McEliece, and van Tilborg [BMvT78]. However,
in the learning problem, we do not have to cope with worst-case instances, but
with random instances. This raises the question for average-case hardness results
(see Levin [Lev86] for an introduction to average-case completeness). As far as
we know, no such results with implications for the complexity of learning parity
juntas are known. In another direction, fixed-parameter tractability results (see
Downey and Fellows [DF99]) may yield efficient learning algorithms, even if we
assume that P 6= NP. However, Downey, Fellows, Vardy, and Whittle [DFVW99]
have shown that Maximum-Likelihood Decoding is W[1]-hard. This means
that it is unlikely that there exists a deterministic algorithm that finds a solution
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of (6.1) of Hamming weight at most d with worst-case running time T (d) · nc,
where c is a constant independent of d and T is some arbitrary function.

If P = NP, then Maximum-Likelihood Decoding can be solved in poly-
nomial time, and thus, PARn

d can be learned from O(d log n) examples in poly-
nomial time, even in the distribution-free PAC learning model. The weaker
assumption that the W-hierarchy collapses with FPT = W[1] yields a learning
algorithm for learning PARn

d from O(d log n) examples in time T (d) · nc. By
contraposition, showing that PARn

d cannot be learned efficiently from O(d log n)
examples would imply strong complexity theoretic results such as P 6= NP or
FPT 6= W[1].

Blum et al. [BKW03] have provided a hardness result for a restricted learn-
ing paradigm. They have shown that any statistical query algorithm must make
Ω(nd/3) queries to learn d-parities. The statistical queries model has been in-
troduced by Kearns [Kea98]. Blum et al.’s lower bound transfers to Ω(nd/3)
examples needed for any learning algorithm that is exclusively based on the
evaluation of expected values. In particular, the attempt to learn a target parity
χI by computing ĝ(I) = 〈g, χI〉 for suitable functions g is essentially a statistical
query algorithm and hence requires a (too) large number of random examples.

On the positive side, Uehara, Tsuchida, and Wegener [UTW97] have shown
how to learn d-parities from d log(n/d) +O(d) membership queries. This meets
the information theoretic lower bound of Turán [Tur93] for this model. The tech-
nique of Uehara et al. uses binary search based on so-called splitters. However,
it seems crucial that they can query very specific points. Feldman [Fel05] showed
how to learn PARn

d from O(d log n) unadaptively chosen membership queries.

Concerning the learnability from random examples, PARn
d is efficiently learn-

able from (strictly) non-uniformly distributed examples, as we have shown in
Section 5.5. The lowest known sample bound that allows polynomial-time learn-
ing of PARn

d from arbitrarily distributed examples is due to Klivans and Serve-
dio [KS06]. They have shown that for d ∈ o(log n), PARn

d is PAC learnable from
a sample of sublinear size in polynomial time. Their algorithm simply ignores
a random set of attributes and solves a system of linear equations restricted to
the remaining attributes. If there is no solution, the process is repeated. With
high probability, all ignored attributes are indeed irrelevant (after a small num-
ber of repetitions). The second trick of Klivans and Servedio is to enlarge the
hypothesis space from parities of d variables to parities of up to n1−1/d variables.
This still requires only sublinearly many examples, but simultaneously permits
to output an arbitrary solution of the equation system provided that n− n1−1/d

variables have been ignored. On the other hand, the fastest known attribute-
efficient algorithm for learning PARn

d from arbitrarily distributed examples is
due to Spielman (as reported by Klivans and Servedio [KS06]). It has a running
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time of nd/2 · poly(n, d). For the setting of uniformly distributed examples, no
better bounds are known.

6.1.2 Learning Parity Functions from Noisy Data

In the presence of classification noise with rate η < 1/2, the method of minimiz-
ing disagreements proposed by Angluin and Laird [AL88] needs only

O(log(|C|/δ)(1− 2η)−2ε−2)

examples to learn the class C with confidence 1 − δ and accuracy 1 − ε. How-
ever, the task of computing such a minimizing hypothesis is in general compu-
tationally hard: it is equivalent to the NP-hard Nearest Codeword prob-
lem [ABSS97], which is closely related to Maximum-Likelihood Decoding
mentioned above. As we have argued already, the caveat is that we do not really
deal with worst-case instances, but with randomly drawn instances with restric-
tions on the number of relevant attributes. However, there do not seem to be
any average-case or fixed-parameter results for this problem yet. Similarly as
for learning d-juntas, one can reason that P = NP would imply that PARn is
efficiently learnable in the presence of classification noise. By contraposition,
lower sample bounds of size ω(d log n) for learning parities from noisy examples
would imply strong complexity theoretic results.

Blum, Kalai, and Wasserman [BKW03] showed how to learn parities that
depend only on variables among the first k ones from 2O(k/ log k) queries with ar-
bitrary classification noise (η < 1/2). For k = log n, this is an example of a class
that is learnable from random noisy examples but not learnable from statistical
queries. Their technique is roughly described as follows: from a sufficiently large
sample, additional examples of the form (ei, χI(ei) · ζ) are generated as linear
combinations of other examples (since we use values −1,+1 for classifications,
these have to be multiplied). The probability that ζ = −1 is slightly smaller
than 1/2, and thus it can eventually be inferred whether i ∈ I or not (with high
probability). However, it seems that this technique will not lead to improved
estimates for d-parities. It seems difficult to design a more efficient algorithm
for d-parities based on solving systems of linear equations.

For the class PARn, as we will show in Section 6.2, it is possible to reduce
product attribute noise to well-behaved classification noise for the case of uni-
formly distributed attributes and product attribute distributions with rates that
are smaller than one half.

To the best of our knowledge, there has been very little research linking parity
juntas and learning from noisy data yet. The only result we know of is due to
Feldman, Gopalan, Khot, and Ponnuswami [FGKP06]. They have shown that



106 Chapter 6. Learning Parity Juntas from Noisy Data

one can reduce the problem of learning d-juntas from uniformly distributed noise-
free examples to the problem of learning d-parities from uniformly distributed
noisy examples.

6.2 The Disagreement Minimization Method

In this section, let f = χI : {0, 1}n → {−1,+1} for some I ⊆ [n], i.e.,

f(x) = (−1)
P

i∈I xi

for all x ∈ {0, 1}n. Moreover, fix an attribute noise distribution P and a classi-
fication noise rate η < 1/2.

A general method to learn in the presence of pure classification noise has
been proposed by Angluin and Laird [AL88], generalizing a result of Blumer et
al. [BEHW87]. Angluin and Laird proved that a concept class C can be learned
distribution-freely from (−, η)-noisy samples with confidence 1− δ and accuracy
1− ε from a sample of size

m ≥ 2

ε2(1− 2ηb)2
ln

(
2|C|
δ

)
,

where ηb ∈ [0, 1/2) is an upper bound on the classification noise rate η. Specifi-
cally, any hypothesis minimizing the number of disagreements between the given
examples and h’s prediction satisfies Prx∼D[f(x) 6= h(x)] < ε with probability at
least 1− δ.

In the presence of attribute noise, this method fails in general. This is because
it can happen that for an example (x ⊕ ξ, f(x)), one cannot decide whether
Pr[f(x ⊕ ξ) = f(x)] is smaller or larger than 1/2 (or even equal to 1/2) unless
one already knows the target concept f . For the class PARn

d , however, it is
possible to reduce attribute noise to pure classification noise, as we describe in
the following.

Lemma 6.2.1. Let x ∼ Un, ξ ∼ P , and ζ ∼ η. Then (x⊕ ξ, f(x) · ζ) is equally
distributed as (x, f(x) · f(ξ) · ζ). Viewing the latter pair as an example with pure
classification noise, the classification noise rate is

ηI = 1
2
(1− (1− 2pI)(1− 2η)) . (6.2)

Thus, ηI 6= 1/2 if and only if pI 6= 1/2 and η 6= 1/2.

Proof. By Lemma 3.2.4, if x ∼ Un, ξ ∼ P , and ζ ∼ η are independent random
variables, then (x ⊕ ξ, f(x) · ζ) and (x, f(x ⊕ ξ) · ζ) are identically distributed.
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Since for f = χI , f(x ⊕ ξ) = f(x) · f(ξ), we may consider (x, f(x ⊕ ξ) · ζ) =
(x, f(x) · f(ξ) · ζ) as an example with pure classification noise. The classification
noise bit is then f(ξ) · ζ, the distribution of which is determined by

Pr
ξ∼P,ζ∼η

[f(ξ) · ζ = −1] = pI(1− η) + (1− pI)η

= 1
2
(1− (1− 2pI)(1− 2η)) .

The next theorem states under which conditions the disagreement minimiza-
tion method is successful for concept classes C ⊆ PARn. Recall that λI = 1−2pI
is the eigenvalue of the noise operator TP associated with the eigenfunction χI .

Theorem 6.2.2. Let C ⊆ PARn and δ, ε > 0. Let P be an attribute noise
distribution such that pI < 1/2 for all I ⊆ [n] with χI ∈ C. Let

λ = min{|λI | | I ⊆ [n] ∧ χI ∈ C} . (6.3)

The disagreement minimization method distribution-freely learns the class C with
confidence 1− δ and accuracy 1− ε from

m ≥ 2

ε2λ2(1− 2η)2
ln

(
2|C|
δ

)
(P, η)-noisy examples.

Proof. Let
ηb = max{ηI | I ⊆ [n] ∧ χI ∈ C}

with ηI as defined in (6.2). Then

1− 2ηb ≥ min{(1− 2pI) · (1− 2η) | I ⊆ [n] ∧ χI ∈ C} = λ · (1− 2η) .

The claim now follows from Angluin and Laird’s result described in the beginning
of this section.

The advantage of the disagreement minimization method is that it requires
no a priori knowledge about the attribute distribution. For uniformly distributed
examples, we obtain

Corollary 6.2.3. Let P be a product distribution such that there exists a con-
stant γa > 0 with pi < (1− γa)/2 for all i ∈ [n]. Let δ, ε > 0. Then the disagree-
ment minimization method exactly learns the class PARn

d with confidence 1 − δ
from

m ≥ d · 22d+3 · ln(2n/δ) · γ−da · (1− 2η)−2

uniformly distributed (P, η)-noisy examples.
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Proof. As we have mentioned before, exact learning of d-juntas from uniformly
distributed examples is equivalent to learning with accuracy ε = 2−d−1, see
Lemma 2.3.7. Furthermore, |PARn

d | ≤ nd. Finally, the restrictions on P guar-

antee that λI ≥ γ
|I|
a for all I ⊆ [n]. Specifically,

min{λI | I ⊆ [n] ∧ |I| ≤ d} ≥ γda .

The claim follows from Theorem 6.2.2.

As mentioned before, there are no algorithms available to solve disagreement
minimization efficiently. The fastest method seems to be a brute-force search
through all n-ary parities of up to d variables to find some disagreement min-
imizing hypothesis. This takes nd · poly(m,n) steps in the worst case. Thus,
the performance of disagreement minimization is identical to the performance of
d-Greedy or d-Fourier for uniformly distributed (P, η)-noisy examples. How-
ever, disagreement minimization works distribution-freely, whereas the Fourier
method only works for a known attribute distribution. On the other hand, to
successfully apply disagreement minimization, we have to require that pI < 1/2
for all χI ∈ C, whereas such a restriction is not necessary for the other methods.

6.3 Noise Stability versus Noisy Distance of

Parity Functions

We first compute the noise stability of a class C ⊆ PARn. Recall that the noise
stability of C with respect to the attribute noise distribution P is defined as

ΓP (C) = min{ΓP (f) | f ∈ C} ,

where

ΓP (f) = min

{ ∣∣1− 2 Pr
ξ∼P

[f(x⊕ ξ) 6= f(x)]
∣∣ | x ∈ {0, 1}n }

.

Lemma 6.3.1. Let C ⊆ PARn. Then ΓP (C) = λ with λ as defined in (6.3).

Proof. By (3.12), ΓP (f) = min{|TP (f)(x)| | x ∈ {0, 1}n. By Lemma 3.4.2 (a),
TP (χI) = λI · χI . Consequently, |TP (χI)(x)| = |λI | for all x ∈ {0, 1}n and thus,
ΓP (f) = λ.

In other words: the noise stability ΓP (C) is equal to the smallest eigenvalue
of the noise operator TP (in absolute value). The lemma shows that if λI ≥ 0 for
all I ⊆ [n] with χI ∈ C, then the performance of the disagreement minimization
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method depends on the noise stability. For C = PARn
d , the same is true for the

Fourier algorithm since we have to be able to divide by 1 − 2pI for all I ⊆ [n]
with |I| ≤ d.

Is there a noise distribution such that PARn
d is in principle learnable but

not via disagreement minimization or the Fourier algorithm? We answer this
question affirmatively by comparing the noise stability ΓP (PARn

d) and the noisy
distance ∆ε

P (PARn
d). As we have proved in Section 3.7, learning in the presence

of noise is possible if and only if ∆ε
P (C) > 0. Let us first show that the exact

choice of the accuracy parameter ε plays no role:

Lemma 6.3.2. Let C ⊆ PARn. Then, for all ε ∈ [0, 1/2), ∆ε
P (C) = ∆0

P (C).

Proof. It is clear from the definition that ∆ε
P decreases as ε decreases. Therefore,

it remains to show that ∆ε
P (C) ≤ ∆0

P (C). Let I, J ⊆ [n] with χI , χJ ∈ C and
∆P (χI , χJ) > 0. Then I 6= J , and χI and χJ differ in exactly half of all inputs
x ∈ {0, 1}n. This is because χI(x) 6= χJ(x) if and only if χI4J(x) = −1. Unless
I = J , the latter happens with probability 1/2 for x ∼ Un. Since ε < 1/2,
∆ε
P (C) ≤ ∆P (χI , χJ). Consequently, ∆ε

P (C) ≤ ∆0
P (C).

Now we compute the noisy distance ∆ε
P between two parity functions χI

and χJ .

Lemma 6.3.3. Let I, J ⊆ [n] with I 6= J and P : {0, 1}n → [0, 1] be a probability
distribution. Then

∆P (χI , χJ) = 1
2
max{|λI |, |λJ |} .

Proof.

∆P (χI , χJ) = 1
2

∑
x

Ex∼Un [|Eξ∼P [χI(x⊕ ξ)− χJ(x⊕ ξ)]|]

= 2−n−1
∑

x∈{0,1}n

∣∣∣ ∑
ξ∈{0,1}n

P (ξ)(χI(x⊕ ξ)− χJ(x⊕ ξ))
∣∣∣

= 2−n−1
( ∑
x:χI(x)=χJ (x)

∣∣∣ ∑
ξ∈{0,1}n

P (ξ)(χI(ξ)− χJ(ξ))
∣∣∣

+
∑

x:χI(x) 6=χJ (x)

∣∣∣ ∑
ξ∈{0,1}n

P (ξ)(χI(ξ) + χJ(ξ))
∣∣∣) .

Since I 6= J , χI(x) = χJ(x) for exactly half of the x ∈ {0, 1}n. Consequently,

∆P (χI , χJ) = 1
4
(|λI − λJ |+ |λI + λJ |) = 1

2
max{|λI |, |λJ |} .
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Corollary 6.3.4. Let C ⊆ PARn with |C| ≥ 2 and ε ∈ [0, 1/2). Then

∆ε
P (C) = 1

2
min

{
max{|λI |, |λJ |}

∣∣ I, J ⊆ [n], χI , χJ ∈ C, I 6= J
}
,

i.e., ∆ε
P (C) is equal to half the second smallest |λI | of the functions χI in C.

In particular, 2∆ε
P (PARn) is equal to the second smallest eigenvalue of the

noise operator TP (in absolute value). If P is a γa-bounded distribution (see
Definition 3.2.6), then

2∆ε
P (PARn

d) ≥ ΓP (PARn
d) ≥ γda .

In the proof of the following theorem, we construct a simple concept class C
and an attribute noise distribution P for which ∆ε

P (C) > 0 but ΓP (C) = 0 (in
particular, P cannot be a product distribution). For such a class, the method of
minimizing the number of disagreements fails although C is in principle learnable
from uniformly distributed (P, 0)-noisy samples by Theorem 3.7.2.

Theorem 6.3.5. There is a concept class C ⊆ PARn and an attribute noise
distribution P such that ∆0

P (C) > 0, but ΓP (C) = 0.

Proof. Let P (0n) = 1/2 and P (ei) = 1
2n

for i ∈ [n]. Let C = {χ∅, χ[n]}. Then
λ∅ = 1/2 and λ[n] = 0. Hence ∆0

P = 1 by Corollary 6.3.4 and ΓP (C) = 0 by
Lemma 6.3.1.

In the previous proof, for the target concept χ[n], the disagreement mini-
mization algorithm will output any of the two admissible concepts with proba-
bility 1/2. In contrast, the concept χ∅ will be correctly identified almost surely.
A trivial learning algorithm for C classifies samples constantly labeled by ones
as originating from the concept χ∅ and all other samples as coming from the
concept χ[n]. The probability of misclassification is 2−n in case that the target
concept is χ[n] and 0 otherwise. Thus, we only need O(log(1/δ)) examples to
exactly learn the class C with confidence 1− δ.

6.4 Lower Bounds via the Noisy Distance

Bshouty et al. [BJT03, Theorem 6] proved that if P (ξ) is superpolynomially
small for all ξ ∈ {0, 1}n, then ∆ε

P (PARn) is also superpolynomially small, yield-
ing that PARn is not learnable from uniformly distributed (P, 0)-noisy samples
of polynomial size. By Corollary 6.3.4, this means that for any such probability
distribution P , there exists a set I ⊆ [n] such that Prξ∼P [χI(ξ) = −1] is super-
polynomially close to 1/2. We now show that the result of Bshouty et al. can
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be directly inferred from the calculation of ∆ε
P (PARn), thus avoiding the detour

made in the original proof [BJT03] via the α-attenuated power spectrum sP (as
defined in (3.11), see also [BJT03]). However, our computation also needs some
Fourier analysis.

Theorem 6.4.1. Let C ⊆ PARn with |C| ≥ 2 and ε ∈ [0, 1/2). Then

∆ε
P (C) ≤ 1

2
·
(

2n

|C| − 1
·max {P (ξ) | ξ ∈ {0, 1}n}

)1/2

.

Proof. Recall that λI = 2nP̂ (I) (see (3.7). In the following, all norms are taken
with respect to the uniform distribution. By Parseval’s equation (2.10), we have

2−n ·
∑

ξ∈{0,1}n

P (ξ)2 = ‖P‖22 =
∑
I⊆[n]

P̂ (I)2

and

‖P‖22 = 2−n ·
∑

ξ∈{0,1}n

P (ξ)2 ≤ 2−n · max
ξ∈{0,1}n

P (ξ) ·
∑

ξ∈{0,1}n

P (ξ) = 2−n · max
ξ∈{0,1}n

P (ξ) .

Let J ⊆ [n] such that |P̂ (J)| is the second smallest among all |P̂ (I)| with χI ∈ C.
Then

P̂ (J)2 ≤ ‖P‖22
|C| − 1

since otherwise ‖P‖22 ≥ 0 + (|C| − 1) · P̂ (J)2 > ‖P‖22. Now

2·∆ε
P (C) = |λJ | = 2n·|P̂ (J)| ≤ 2n

(|C| − 1)1/2
·‖P‖2 ≤

(
2n

|C| − 1
· max
ξ∈{0,1}n

P (ξ)

)1/2

.

Setting C = PARn in the previous theorem, we obtain

∆ε
P (PARn) ≤ (1 + o(1)) ·

(
max

ξ∈{0,1}n
P (ξ)

)1/2

and hence recover the result of Bshouty et al. [BJT03, Theorem 6] that the
number of examples needed to learn the class of parity functions from uniformly
distributed examples under attribute noise is inversely polynomially related to
the highest probability of a noise vector. For instance, if P is a product distribu-
tion with rates pi ∈ [ρ, 1− ρ] for some constant ρ ∈ (0, 1/2] that is independent
of n, then

max
ξ∈{0,1}n

P (ξ) ≤ (1− ρ)n
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is exponentially small in n.
We close this chapter by showing that the factor γ−da that appears in all of

our positive noise-tolerant learning results is in fact necessary:

Theorem 6.4.2. Let P be a product distribution with rates

p1 = · · · = pn = p ∈ [0, 1] \ {1/2} .

Let γa = |1− 2p|. Then P is γa bounded and Ω(γ−da ) examples are necessary to
learn PARn

d from uniformly distributed (P, 0)-noisy examples. The same is true
for arbitrary superclasses of PARn

d such as J n
d .

Proof. Clearly, P is γa-bounded. Let I, J ∈ [n] with |I| = |J | = d and I 6= J .
Then

∆0
P (χI , χJ) = max{|λI |, |λJ |} = |1− 2p|d = γda .

Thus, ∆0
P (PARn

d) = γda . By Theorem 3.6.1, Ω(γ−da ) examples are needed to
learn PARn

d from uniformly distributed (P, 0)-noisy samples. For a superclass
C ⊇ PARn

d , we have ∆0
P (C) ≤ ∆0

P (PARn
d). Hence, also C requires Ω(γ−da ) exam-

ples to be learned successfully.
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Conclusion

We have investigated two approaches to learn the relevant attributes of a target
concept in the presence of attribute and classification noise. On the one hand,
we have presented a mathematically sound characterization of a simple greedy
algorithm that has been successfully used in practice. Our analysis provides an
accurate way of determining whether the greedy algorithm can learn the relevant
attributes of a given target concept or not, yielding a sharp dichotomous result.
In spite of their importance (at least from a theoretical point of view), results
of this type seem quite rare in the literature. We have seen that the greedy
approach can be extended to cope with the class of τ -Fourier accessible functions.
In addition, the greedy algorithm has turned out to be very robust against noise
present in the input data.

On the other hand, we have developed Fourier-based algorithms for learning
the class of τ -low juntas from few examples in time roughly nτ . While the design
of such an algorithm is straightforward for the noise-free setting, we have seen
that it takes some “detours” to extend the ideas to the noisy scenario. Con-
sidering τ as a parameter, we have shown that the sequence of classes of τ -low
d-juntas, 1 ≤ τ ≤ d, is learnable by the sequence of algorithms τ-Fourier
(respectively, their noise-tolerant counterparts). Already for τ = 1, many im-
portant concepts can be addressed. For τ = 2, interesting concepts such as the
not all equal function are added to the set of feasible concepts. As τ increases,
more and more d-juntas can be learned (in time nτ ), reaching the class of all
d-juntas for τ = d.

Moreover, we have seen that a generalization to cope with non-uniformly
distributed data is possible—albeit with quite a little effort. In particular, we

113



114 Chapter 7. Conclusion

have shown that monotone and parity juntas are efficiently learnable from few
noisy examples when the attributes are non-uniformly distributed.

Overall, we could show that the class of all d-juntas is in principle learnable
under almost arbitrary attribute and classification noise, the running time being
roughly nd. While this was our initial goal for the Fourier-based approach, it
seemed not at all clear that the greedy approach would yield algorithms that are
applicable to the same classes of concepts. A major research goal for the future
is to devise noise-tolerant learning algorithms for arbitrary d-juntas that run in
time nc·d for some constant c < 1.

In our Fourier-based approach for finding the relevant attributes, we search
for nonzero Fourier coefficients up to level τ for some τ ∈ [d], thus being able
to learn the class of τ -low concepts. At a first glance, one may thus think
that the Fourier approach fails for concepts that are τ -accessible but not τ -low.
This is true for τ-Fourier, but a slight modification of the algorithm fixes
this shortcoming: each time a relevant variable xi is identified, the algorithm
can recurse for the subconcepts fxi=0 and fxi=1. It is not hard to see that
this modified Fourier algorithm exactly learns the class of τ -Fourier-accessible
concepts. For the noise-free case, this algorithm has (implicitly) been proposed
by Mossel et al. [MOS04].

To learn the class PARn
d of n-ary parity functions of up to d variables from

noisy examples, we have proposed to use the method of minimizing disagreements
between the sample and the hypothesis. This method had been introduced by
Angluin and Laird [AL88] to cope with pure classification noise. To use it in
our noise scenario, we had to reduce attribute noise to pure classification noise.
Although the idea of this method is entirely different from the greedy method
and the Fourier method, it is not known whether it can be implemented more
efficiently since the underlying minimization problem is generally believed to be
computationally hard. The best upper bound on the running time that we can
provide is roughly nd.

We have compared the noise stability and the noisy distance of subclasses
of parity juntas. It has turned out that all methods proposed may fail to learn
parity juntas in spite of principle learnability. In contrast, these methods are
successful if the attribute noise distribution is γa-bounded. We have general-
ized a lower bound of Bshouty et al. [BJT03]. Finally, we have shown a lower
bound of Ω(γ−da ) on the number of examples to learn PARn

d , showing that the
corresponding factor in our positive learning results cannot be improved.

Apart from learning juntas, we have proved a generalization of Bshouty et
al.’s result for a noise-tolerant LMN-style algorithm [BJT03]. In addition, we
have provided a characterization for general learnability of concept classes in the
presence of random attribute and classification noise.
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7.1 Multi-valued Attributes and Classifications

It is straightforward to generalize the greedy algorithm to settings in which
attributes and classifications take more than two values. However, it is not clear
how to analyze the algorithm in this case. Instead of looking at properties of
Fourier spectra, it seems more reasonable to consider correlations between the
target concept and certain functions of the attributes. These notions do not
coincide any more for functions f : {0, . . . , r − 1}n → R with r ≥ 3. Thus, also
the Fourier approach should be recast as a purely statistical approach. In this
way, however, we lose some algebraic structure. As a consequence, it is not clear
whether an algorithm with nontrivial running time can be constructed as in the
case r = 2. The exhaustive search algorithm still runs in roughly nd steps for
arbitrary r.

Alternatively, if the classification is non-Boolean but still has finite range, one
can code this range by a set of Boolean classifications. The relevant variables
may then be inferred by learning the relevant attributes of each subconcept
corresponding to one classification bit.

7.2 Fourier Transform and Group

Representations

In the beginning of Section 2.2, we have presented the set of Dirac functions as
a natural candidate for an othonormal basis of R{0,1}n

with respect to a natural
inner product. We have then argued that the Hadamard basis is more useful for
us. The whole Fourier analysis on the hypercube (under uniform distribution)
was based on this basis. One may now step back and ask: “Wouldn’t it make
sense to consider different orthonormal bases? What is so special about the
Hadamard basis?” One answer is of course that “it works remarkably well and
helps to solve a lot of problems.” Nevertheless, we will present another answer
from a more structural standpoint: we describe why the Hadamard basis is
a canonical choice and how it fits into the very general framework of group
representations and character theory. The investigation of different orthonormal
bases may nonetheless be a worthy aspect of future research.

In a certain sense, the theory of Fourier analysis on the hypercube unfolds
its entire beauty only when considered from a higher standpoint, i.e., if one
embeds it into the theory of complex group representations. For our purposes,
we are concerned with the Abelian group G = Zn

2 . The dual group or character
group Ĝ is the set of group homomorphisms from G to C∗, the multiplicative
group of nonzero complex numbers. Equipped with pointwise multiplication,
the set Ĝ becomes an Abelian group. Since for finite G, all elements of G
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are of finite order, any such homomorphism maps into the group T of complex
numbers with modulus one. Moreover, since all elements of Zn

2 are of degree 2,
these homomorphisms even map to {−1,+1}, the group of units in R. Let
ρ : G→ C∗ be a group homomorphism. An element ρ(g) can be viewed as being
a multiplication factor and thus affecting the complex plane by a combination
of a dilation and a rotation. If G is finite, then the dilation factor is 1, and ρ(g)
becomes an element of U(1), the group of unitary operations on C1. In general,
a group representation of a group G is a group homomorphism ρ : G→ GL(Cn).
This allows one to interpret elements g from G as linear isomorphisms on Cn.
The dimension of ρ is defined to be n. The representation ρ is called irreducible if
Cn has no non-trivial G-invariant subspaces, i.e., whenever we have a subspace
U ⊆ Cn with ρ(g)(u) ∈ U for all g ∈ G and all u ∈ U , then U = {0} or
U = Cn. By Maschke’s Theorem, every representation of a finite group G can
be decomposed into a direct sum of irreducible representations. The character χρ
of ρ is defined by χρ : G→ C,

χρ(g) = tr(ρ(g)) for g ∈ G ,

where tr denotes the trace of the homomorphism ρ(g), i.e., the sum of the diag-
onal entries in any matrix representation of ρ(g). Characters are helpful in clas-
sifying group representations up to isomorphisms since two representations with
the same character are isomorphic. Moreover, if a representation is decomposed
into irreducible representations ρ1, . . . , ρr, then the corresponding characters χρi

are orthonormal with respect to the inner product

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g)

for functions f1, f2 : G → C. Note that this inner product is induced by the
uniform distribution µ on G, i.e., 〈f1, f2〉 =

∫
G
f1f2dµ. In general, one can define

a canonical inner product by means of the (normalized) Haar measure on locally
compact groups. This is the unique measure that satisfies certain properties such
as invariance under left-translation by elements from G and regularity.

For one-dimensional representations, χρ(g) is the only matrix entry of the
matrix representation of ρ(g). It can be shown that for Abelian G, every irre-
ducible representation is one-dimensional. Thus, in this case, we can interpret
the elements of the character group Ĝ as the irreducible characters of G. In this
sense, for the uniform distribution, the Fourier expansion formula (2.8) describes
how to decompose an arbitrary complex-valued function on the hypercube into
a linear combination of the irreducible characters of Zn

2 . In order to deal with
non-uniform distributions, we have to abandon the translation invariance of the
measure and adjust the theory accordingly.
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For a brief and accessible introduction to group representations, we recom-
mend Artin [Art91, Chapter 9].

7.3 Open Problems

7.3.1 The Greedy Method

The first issue left for future research is a deeper investigation of the greedy
algorithm and its variants for non-uniformly distributed attributes.

The second issue is to stick to the scenario of uniformly distributed attributes
and investigate further variants of the greedy heuristic: for which functions
can greedy algorithms that use a different weighting scheme find the relevant
variables? In our case, the weight of variable xi is equal to the number of edges
in the functional relations graph that can be covered by xi. However, if an edge
is labeled by exactly one variable, then this variable has to be selected in order to
explain the sample. For this reason, Almuallim and Dietterich [AD94] proposed
to assign the weight

∑
e∈Ei

1
|c(e)|−1

to xi and then find a set cover by selecting

variables of maximum weight. Since for n � | rel(f)|, each edge is labeled by
roughly n/2 irrelevant variables, such a weighting is unlikely to help much during
the first rounds of the algorithm. Consequently, it is not clear whether the class
of functions for which this heuristic succeeds becomes any larger.

7.3.2 The Fourier Method

Concerning the Fourier approach, the canonical open problem is to improve
the bounds on sample complexity and running time in case of non-uniformly
distributed attributes. Furthermore, one could try to embed {0, 1}n into a group
different from Zn

2 and consider the characters associated with the irreducible
representations of that group.

Another direction is to impose constraints on the knowledge of the attribute
distribution. While distribution-free PAC learning of n-ary d-juntas seems to
be hard even in the noise-free case, it may well be that partial knowledge on
the distribution suffices in many situations. However, the case of parity juntas,
which are learnable under non-uniform distribution but apparently difficult to
learn under uniform distribution, seems to draw limits.

7.3.3 Learning Parity Juntas from Noisy Data

The major open question certainly is “Are parity juntas really hard to learn
attribute-efficiently under uniform distribution?” If so, this would mean a strong
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dichotomic result since we have shown that parity juntas are learnable from noisy
examples that are generated by product distributions with rates bounded away
from 1/2. For another positive learning result, consider the function f : {0, 1}n →
{0, 1} defined by f(x) = 1 if |x| mod k 6= 0 and f(x) = 0 otherwise. If f = 2,
then f is the parity function. If k ≥ 3, then f is 1-low under the uniform
distribution and thus efficiently learnable. More strongly, it may well be that
all symmetric concepts are 3-low unless they are parity functions. Approaching
from different learning models, learning parity juntas from membership queries
is easy, even if the queries have to be chosen non-adaptively in advance [Fel05].

The problem of learning parities from uniformly drawn noisy examples is
related to notoriously open problems in the theory of error-correcting codes.
Advances in the field of average case complexity and its relationship to worst
case complexity may shed more light on these issues.

7.3.4 Beyond Known Methods

The hope is to find an algorithm that significantly outperforms τ-Greedy and
τ-Fourier insofar as it runs in polynomial time and is able to learn the rele-
vant attributes of concepts that are not O(1)-Fourier-accessible. For noise-free
learning of parity juntas (which are not even (d−1)-Fourier-accessible), such al-
gorithms are known, at least if one drops the requirement of attribute-efficiency
(see Chapter 6). However, if τ ∈ Θ(n), but τ < n, then it is not known whether
the class of τ -low juntas is efficiently learnable at all. See Blum [Blu03] for con-
crete candidates of juntas that seem to be hard to learn already from noise-free
data. For the case of noise-affected data, any algorithm with running time nc·d

with c < 1 would be a substantial progress.
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d class of monotone d-juntas f : {0, 1}n → Ω; p. 23
n number of attributes
N set of nonnegative integers N = {0, 1, 2, 3, . . .}
P attribute noise distribution; p. 36
PARn class of parity functions f : {0, 1}n → Ω; p. 16
PARn

d class of parity d-juntas f : {0, 1}n → Ω; p. 23
pi short for p{i}; also: rate for ξi if P is a product distribution;

p. 37
pI p. 38, Equation (3.4)
P([n]) power set of [n], i.e., set of all subsets of [n]
pλ(n, d) probability that Greedy λ-fails for non-Fourier-accessible

n-ary d-juntas; p. 67, Corollary 4.3.5
p(τ)(n, d) probability that τ-Greedy fails for non-τ -Fourier-accessible

n-ary d-juntas; p. 72, Corollary 4.4.5
Pr probability
R set of real numbers
rel(f) set of relevant variables of f ; p. 23, Definition 2.3.1
S sample; noise-free: p. 33, Definition 3.1.1;

noisy: p. 36, Definition 3.2.1

supp(f̂) Fourier support of f ; p. 21, Definition 2.2.1
T , Tε set of Fourier coefficients used for LMN-style learning; p. 48
TP noise operator corresponding to noise distribution P ;
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p. 42, Definition 3.4.1
thrD(f) Fourier threshold of f w.r.t. D, i.e., minimal absolute value of

first-level Fourier coefficients; p. 92, Equation (5.2)
Un uniform distribution on {0, 1}n; p. 18
Var[X] variance of random variable X
V (n, d) volume of Hamming ball of radius d in {0, 1}n;

p. 17, Equation (2.1)
x attribute vector x ∈ {0, 1}n, distributed according to D
xI expanded variable with value

⊕
i∈I xi; p. 22, Definition 2.2.2

x|I restriction of x to I; p. 17
xk attribute vector of kth example
y mostly: classification y = f(x)
yk classification of kth example
Z set of integers
αI value related to |EI |: |EI | ≈ αIm

2 for noise-free data;
p. 61, Equation (4.3)

αabI Pr[xI = a ∧ y = b] in a noise-free example; p. 60, Equation (4.2)
βI value related to |EI |: |EI | ≈ αIm

2 for noisy data;
p. 73, Equation (4.12)

βabI Pr[xI = a ∧ y = b] in a noisy example; p. 73, Equation (4.11)
γa lower bound for |1− 2pi|; p. 39, Definition 3.2.6
γb lower bound for |1− 2η|
γc lower bound for |di| and |1− di|; p. 89
δ confidence parameter, p. 36, Definition 3.2.2
∆P (f, g) noisy distance between concepts f and g; p. 44, Equation (3.9)
∆ε
P (C) minimum noisy distance between ε-far concepts in C;

p. 44, Equation (3.10)
ΓP (C) noise stability of class C under noise distribution P ;

p. 46, Definition 3.4.6
ΓP (f) noise stability of function f under noise distribution P ;

p. 46, Definition 3.4.6
ε mostly: accuracy parameter; p. 36, Definition 3.2.2
ζ classification noise bit ζ ∈ Ω; p. 36, Definition 3.2.1
ζk classification noise bit of kth example
η classification noise rate; p. 36
θ lower bound for |1− 2di|; p. 94, Lemma 5.6.3
λ degree of success/failure for the greedy algorithm;

p. 58, Definition 4.1.4
λI p. 40, (3.6); also: eigenvalue of TP ; p. 42, Lemma 3.4.2
ξ attribute noise vector ξ ∈ {0, 1}n, distributed according to P ;
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p. 36, Definition 3.2.1
ξk attribute noise vector of kth example
σi standard deviation of xi ∈ {0, 1} w.r.t. attribute distribution D;

p. 19
τ parameter for the level of lowness/Fourier-accessibility;

p. 26, Definition 2.4.1 and p. 31, Definition 2.4.9
χI {−1,+1}-parity of bits indexed by I; p. 19, Equation (2.5)
Ω Boolean range, either Ω = {0, 1} or Ω = {−1,+1}; p. 15
[n] [n] = {1, . . . , n}
⊕ exclusive or ( = sum modulo 2); p. 16
4 symmetric difference of sets; p. 16
∼ distributed according to
〈· , ·〉D inner product on R{0,1}n

induced by distribution D on {0, 1}n;
p.18, Equation (2.2)

〈f | f ∈ C〉 real linear span of functions f ∈ C ⊆ R{0,1}n

‖ · ‖D norm induced by 〈· , ·〉D; p. 18, Equation (2.3)
‖ · ‖p p-norm (p ≥ 1) induced by distribution D on {0, 1}n;

p. 20, Equation (2.9)
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[AR06] Jan Arpe and Rüdiger Reischuk. Learning Juntas in the Presence
of Noise. In Jin-Yi Cai, S. Barry Cooper, and Angsheng Li, editors,
Theory and Applications of Models of Computation, Third Annual
Conference, TAMC 2006, Beijing, China, May 2006, Proceedings,
volume 3959 of Lecture Notes in Comput. Sci., pages 387–398, 2006.
Invited to appear in special issue of TAMC 2006 in Theoret. Comput.
Sci., Series A.

[Art91] Michael Artin. Algebra. Prentice Hall, 1991.

[AS92] Noga Alon and Joel Spencer. The Probabilistic Method. Wiley-
Intersci. Ser. Discrete Math. Optim. John Wiley and Sons, 1992.

[Bah61] Raghu Raj Bahadur. A Representation of the Joint Distribution
of Responses to n Dichotomous Items. In Herbert Solomon, editor,
Studies in Item Analysis and Prediction, pages 158–168. Stanford
University Press, Stanford, California, 1961.

[BCJ93] Avrim Blum, Prasad Chalasani, and Jeffrey C. Jackson. On Learn-
ing Embedded Symmetric Concepts. In Leslie G. Valiant and Man-
fred K. Warmuth, editors, Proceedings of the Sixth Annual ACM
Conference on Computational Learning Theory (COLT 1993), July
26-28, 1993, Santa Cruz, CA, USA, pages 337–346. ACM, 1993.

[Bec75] William Beckner. Inequalities in Fourier Analysis. Ann. of Math.
(2), 102(1):159–182, July 1975.



BIBLIOGRAPHY 129

[BEHW87] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Man-
fred K. Warmuth. Occam’s Razor. Inform. Process. Lett., 24(6):377–
380, April 1987.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Man-
fred K. Warmuth. Learnability and the Vapnik-Chervonenkis Di-
mension. J. ACM, 36(4):929–965, October 1989.

[Ber98] Anna Bernasconi. Mathematical Techniques for the Analysis of
Boolean Functions. PhD thesis, Università degli Studi di Pisa, Di-
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“Berechnung sekundärer Koeffizientengruppen
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