Iron-Based, Freestanding Films Fabricatedby Magnetron Sputtering for BiodegradableImplant Applications

In the work structured pure iron, iron-gold and binary FeMn alloys with different Mn contents are successfully fabricated by magnetron sputtering and characterized. For the characterization of the microstructure X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) was applied. In addition, the mechanical properties were determined by uniaxial tensile tests. Electrochemical polarization and immersion test were performed in Hanks solution in order to determine the corrosion rates. Furthermore, vibrating sample magnetometry was used in order to characterize the material in terms of its magnetic properties. It was found that in general the sputtered material exhibits a high mechanical strength compared to literature values for comparable materials. This is mainly attributed to the fine grained microstructure of sputtered material. A significant acceleration of the corrosion rates were reached by the addition of gold, due to the formation of micro galvanic elements. Against expectations the corrosion rates of FeMn alloys were found to be slower than pure iron. However, the low corrosion rate is compensated by the superior strength up to 1242 MPa. Additionally it was shown that the Mn concentrations > 15 % are sufficient in order to stabilize the non- ferromagnetic epsilon and gamma phase and in turn distinctly enhance the magnetic resonance imaging compatibility of the material. The work proofed the concept of using magnetron sputtering in combination with UV-lithography as promising alternative fabrication method of filigree structured, biodegradable iron based implants. Due to the advantages, the method offers a great potential to tailor the material properties.

In der Arbeit wird gezeigt, dass Magnetron-Kathodenzerstäubung (Sputtern) in Kombination mit UV-Lithografie, eine geeignete Methode zur Herstellung von Eisen basierten biodegradierbaren Implantaten darstellt. Die Nutzung dieser Art der Herstellung bietet viele Vorteile. Zunächst einmal besitzt gesputtertes Material eine einzigartige Mikrostruktur und somit auch Materialeigenschaften. Darüber hinaus können neben der Abscheidung aller Arten von Legierungen auch Systeme aus nicht mischbaren Komponenten hergestellt werden. In dieser Arbeit wurden strukturierte Filme aus Reineisen, Eisen-Gold sowie verschiedene binäre Eisen-Mangan Legierungen erfolgreich hergestellt und charakterisiert. Es wurde gezeigt, dass im Vergleich zu Literaturwerten vergleichbarer Materialien, das gesputterte Material eine allgemein hohe Festigkeit besitzt. Dies ist hauptsächlich auf die charakteristische feinkörnige Mikrostruktur zurückzuführen. Weiterhin wurde eine signifikante Steigerung der Korrosionsrate durch das Einbringen von Goldausscheidungen erreicht, da diese als mikrogalvanische Elemente fungieren. Entgegen den Erwartungen, führte das Hinzulegieren von Mn führte zu einer geringfügigen Abnahme der Korrosionsrate. Dies wird jedoch durch die sehr hohe Festigkeit von bis zu 1147 MPa kompensiert. Zusätzlich konnte gezeigt werden, dass Mn Konzentrationen >15 %ausreichen, um die nicht-ferromagnetischen Epsilon und Gamma Phasen zu stabilisieren, was die Materialkompatibilität mit Magnet Resonanz Tomographie Untersuchungen deutlich verbessert. Die Arbeit zeigt, dass es möglich ist Magnetronsputtern in Kombination mit UV-Lithografie als alternatives Herstellungsverfahren für feinstrukturierte Implantate zu nutzen. Durch die Vorteile dieser Herstellungstechnik erscheint diese als vielversprechend um die Materialeigenschaften gemäß den Anforderungen zu optimieren.

Rechte

Nutzung und Vervielfältigung:

Keine Lizenz. Es gelten die Bestimmungen des deutschen Urheberrechts (UrhG).

Bitte beachten Sie, dass einzelne Bestandteile der Publikation anderweitigen Lizenz- bzw. urheberrechtlichen Bedingungen unterliegen können.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.