Manganese biogeochemistry in the sunlit ocean

The trace metal manganese (Mn) plays a significant role in seawater as it is bio-essential for phytoplankton. Mn plays a critical role as a redox center in Photosystem II (PSII) during the conversion of water to oxygen in photosynthesis. It is also essential in other redox related enzymatic processes; in particular Mn is important as the active metal center in superoxide dismutase (SOD) which provides intracellular protection against oxidative stress due to photochemically produced superoxide (O2 ). Mn exists in seawater in three redox states: soluble and prevalent Mn(II), insoluble Mn(III) and Mn(IV)-oxides. In the euphotic zone the biogeochemical cycling of Mn is strongly influenced by reactive oxygen species (ROS). The highly reactive and short-lived superoxide (O2 ) and hydrogen peroxide (H2O2) can both act as oxidants and reductants, and they play a key role in the Mn processes in seawater. For example the dominant Mn sources to the open ocean are the Mn-oxides which are present in atmospheric dust which are reduced to soluble Mn(II) by photochemically produced H2O2. While these processes have been crudely identified, the dominant reactions and mechanisms of Mn and ROS in seawater are poorly understood. This lack of knowledge demands investigations into the in-situ dissolution processes of Mn from dust and into studying the exact reaction mechanisms between Mn and ROS in the euphotic zone. This thesis comprises four manuscripts. Manuscripts 1 and 2 (Wuttig et al., subm., 2013a; Wuttig et al., subm., 2013b) focus on the cycling and reaction mechanisms of Mn and ROS. Manuscript 3 (Wuttig et al., in prep., 2013) addresses differences in the input and distribution of cadmium (Cd), iron (Fe) and Mn in the Eastern Tropical Atlantic Ocean off Cape Verde, and manuscript 4 (Wuttig et al., 2013) describes Mn cycling after dust additions in a trace metal clean mesocosm experiment in the Mediterranean Sea. This study has conclusively shown that Mn and organic matter are the dominant sinks for O2 in the Eastern Tropical North Atlantic (manuscripts 1; Wuttig et al., subm., 2013a). Mn dominates this decay especially in the surface waters which are influenced by high atmospheric dust deposition and near the sediment/water interface due to Mn sediment resuspension. This contrasts with current knowledge based on findings from the Mn poor Southern Ocean where copper (Cu) was shown to be the major sink. In manuscript 2 it is demonstrated that O2 decays by reaction with inorganic Mn(II) in seawater following a first order loss rate which appears to involve a catalytic reaction involving the Mn(II)/MnO2+ couple, in which MnO2+ is a manganous superoxide complex (Wuttig et al., subm., 2013a). Thus in sunlit and oxygenated waters Mn(III) is unlikely to be found in significant concentrations when strong Mn(III) binding ligands are not present. In other studies Mn(III) was found under anoxic conditions in the presence of unknown strong Mn(III) binding ligands. Therefore, in contrast to the Mn(II)/MnO2+ pair, Mn(III) cannot act as a SOD in the oxygenated surface ocean. In the Eastern Tropical North Atlantic Ocean atmospheric dust is the main source of Mn to surface waters (manuscript 3; Wuttig et al., in prep., 2013). However this study provides clear evidence that equatorial upwelling and sediment resuspension are important Mn sources in this region. In contrast to findings from the Eastern Tropical Pacific, where unexpected high surface concentrations were observed, no secondary Mn(II) maximum was found in the Eastern Tropical North Atlantic Ocean. This could have been introduced by a combination of lateral transport of Mn rich waters from the coastal margins and reduction of Mn-oxides. While Aeolian sources were predominantly influencing Mn and also Fe cycling in the Eastern Tropical Atlantic, Cd was not controlled by dust deposition (manuscript 3; Wuttig et al., in prep., 2013). These biologically relevant elements exhibited contrasting distribution patterns. For Fe and Mn, atmospheric depositions masked a classical nutrient type profile, while Cd was very depleted at the surface and concentrations steadily increased with depth. Cd was highly correlated to Phosphate (hereafter referred to as P). The Cd/P ratio was mainly controlled by P with elevated concentrations at depth resulting in strongly differing ratios in surface and subsurface layers of 16.6 pmol / µmol and 237 pmol / µmol, respectively. The complex photochemical processes during the dissolution of Mn dust are also subject of manuscript 4. This paper describes a mesocosm project in the Mediterranean with two consecutive additions of evapocondensed dust conducted. The data also show that the dissolution and loss rates of Mn were comparable during both seedings. The calculated fractional solubilities for the first and the second dust addition were 41 ± 9 % and 27 ± 19 %, respectively. The results presented in this thesis have significantly improved our understanding of Mn distribution and especially cycling in the euphotic zone. An insight into the mechanisms between Mn and ROS and into the dissolution processes from dust is given.

Das Spurenelement Mangan (Mn) ist von zentraler Bedeutung im Meer, da es ein essenzieller Mikronährstoff für Phytoplankton ist. Es spielt eine wichtige Rolle im Photosystem II (PSII) bei der Sauerstoffbildung aus Wasser in der Photosynthese. Des Weiteren ist Mn wichtig für weitere enzymatische Redoxprozesse, insbesondere als aktives Metallzentrum in Superoxiddismutase (SOD), welche als intrazelluläre Schutzmechanismen vor oxidativem Stress durch photochemisch produziertes Superoxid (O2 ) fungieren. Im Meerwasser kommt Mn in drei Oxidationsstufen vor: in erster Linie als lösliches Mn(II), als unlösliches Mn(III) und als Mn(IV)-Oxide. Der biogeochemische Kreislauf von Mn im lichtdurchfluteten Ozean ist signifikant durch reaktive Sauerstoffspezies (ROS) beeinflusst. Hierbei können das stark reaktive und kurzlebige Superoxid (O2 ) und seine Tochterprodukt Wasserstoffperoxid (H2O2) gleichermaßen eine oxidierende als auch eine reduzierende Wirkung haben und spielen somit eine Schlüsselrolle für Mn Prozesse im Meerwasser. Im offenen Ozean beispielsweise ist atmosphärischer Staub die Haupteintragsquelle für Mn und das in oxidierter Form vorliegende Mn im Staub kann durch photochemisch gebildetes H2O2 reduziert und als Mn(II) im Wasser gelöst werden. Obwohl die groben Zusammenhänge dieser Prozesse bekannt sind, sind die Hauptreaktionen und Mechanismen des Zusammenspiels von Mn und ROS im Meerwasser kaum verstanden. Die Dissertation umfasst vier Manuskripte. Manuskripte 1 (Wuttig et al., subm., 2013a) und 2 (Wuttig et al., subm., 2013b) konzentrieren sich auf Kreisläufe und Reaktionsmechanismen von Mn und ROS. Manuskript 3 beschreibt die Unterschiede zwischen den Eintragsprozessen und der Verteilung von Cd, Fe und Mn im östlichen tropischen Atlantik nahe den Kapverdischen Inseln (Wuttig et al., in prep., 2013). Manuskript 4 (Wuttig et al., 2013) widmet sich der Untersuchung des Mn Kreislaufs in Folge der wiederholten Staubzugabe in das oligotrophe Oberflächenwasser von spurenmetall-sauberen Mesokosmen im Mittelmeer. Im Gegensatz zu früheren Beobachtungen im Südpolarmeer, konnte in dieser Studie klar gezeigt werden, dass im östlichen tropischen Atlantik Mn und organische Substanzen als vorwiegende Senken für O2 darstellen (Manuskript 1; Wuttig et al., subm., 2013a). Mn dominiert diesen Zerfall besonders im Oberflächenwasser, welches stark durch atmosphärischen Staubfluss beeinflusst ist, und nahe dem Meeresboden durch die Resuspension aus dem Sediment. Zudem konnte gezeigt werden, dass der Abbau von O2 durch Reaktion mit anorganischem Mn(II) in Seewasser einer Zerfallsrate erster Ordnung folgt (Manuskript 2, Wuttig et al., subm., 2013b). Diese scheint eine katalytische Reaktion des Mn(II)/MnO2+ Paars zu beinhalten, wobei MnO2+ der Superoxidkomplex ist. Des Weiteren ist es in der euphotischen und sauerstoffreichen Zone unwahrscheinlich, nennenswerte Mn(III) Konzentrationen aufzufinden, welche ohne starke Mn(III) bindende Liganden nur unter anoxischen Bedingungen erwartet werden. Somit kann Mn(III) im Gegensatz zum Mn(II)/MnO2+ Paar im sauerstoffreichen Oberflächenwasser nicht als SOD agieren. Atmosphärischer Staub ist die Haupteintragsquelle von Mn im Oberflächenwasser des östlichen tropischen Atlantiks (Manuskript 3; Wuttig et al., in prep., 2013). Jedoch wurden in dieser Region zusätzlich auch Einträge von Mn durch äquatorialen Auftrieb und Resuspension aus dem Sediment beobachtet. Zusätzlich wurde hier kein sekundäres Mn(II) Maximum gefunden, welches bei gleichen Untersuchungen im östlichen tropischen Pazifik in 200 m Tiefe der Fall war und vermutlich durch eine Kombination aus Einträgen durch atmosphärischen Staub und laterale Transportprozesse verursacht wurde. Während atmosphärische Quellen dominierend den Mn und Fe Kreislauf beeinflussen, sind Cd Konzentrationen im tropischen Atlantik nicht durch Staubeintrag kontrolliert (Manuskript 3; Wuttig et al., in prep., 2013). Generell zeigten diese Spurenelemente unterschiedliche Verteilungsmuster. Während die für biologisch relevante Elemente zu erwartenden typischen nährstoffähnlichen Tiefenprofiele durch den atmosphärischen Eintrag von Fe und Mn überlagert wurden, waren die Cd Konzentrationen im Oberflächenwasser sehr niedrig und nahmen mit der Tiefe zu. Das Cd/P Verhältnis wurde dabei in erster Linie durch die in der Tiefe erhöhten P Konzentrationen bestimmt und wies dort ein Cd/P Verhältnis von 237 pmol / µmol gegenüber 16.6 pmol / µmol im Oberflächenwasser aus. Auch im Manuskript 4 (Wuttig et al., 2013), welches sich mit der Löslichkeit und dem Kreislauf von Mn nach zwei Zugaben prozessierten Staubs während eines Mesokosmen Projektes im Mittelmeer beschäftigt, spielen die komplexen photochemischen Experimente eine zentrale Rolle. Hinzukommend zeigen die Daten, dass die Mn Löslichkeits- und Verlustraten nach den beiden Staubzugaben vergleichbar sind. Die anteilige Löslichkeit von Mn aus dem Staubmaterial betrug 41 ± 9 % für die erste Staubzugabe und 27 ± 19 % für die zweite Staubzugabe.

Rechte

Nutzung und Vervielfältigung:

Keine Lizenz. Es gelten die Bestimmungen des deutschen Urheberrechts (UrhG).

Bitte beachten Sie, dass einzelne Bestandteile der Publikation anderweitigen Lizenz- bzw. urheberrechtlichen Bedingungen unterliegen können.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.