CっONSTRUCTOR UNIVERSITY

Synthesis, Structure and Catalysis of Polyoxo-Noble-Metalates (Pt, Au, Pd) and Noble Metal (Pt, Rh)-Containing Polyoxometalates
 by

Jiayao Zhang

a Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemistry

Approved Dissertation Committee

Prof. Dr. Ulrich Kortz - Constructor University (Mentor)

Prof. Dr. Nikolai Kuhnert - Constructor University

Dr. Bassem S. Bassil - Constructor University

Prof. Dr. Jens Beckmann - University of Bremen

Statutory Declaration

Family Name, Given/First Name	Zhang, Jiayao
Matriculationnumber	20332369
What kind of thesis are you submitting: Bachelor-, Master- or PhD-Thesis	PhD-Thesis

English: Declaration of Authorship

I hereby declare that the thesis submitted was created and written solely by myself without any external support. Any sources, direct or indirect, are marked as such. I am aware of the fact that the contents of the thesis in digital form may be revised with regard to usage of unauthorized aid as well as whether the whole or parts of it may be identified as plagiarism. I do agree my work to be entered into a database for it to be compared with existing sources, where it will remain in order to enable further comparisons with future theses. This does not grant any rights of reproduction and usage, however.

The Thesis has been written independently and has not been submitted at any other university for the conferral of a PhD degree; neither has the thesis been previously published in full.

German: Erklärung der Autorenschaft (Urheberschaft)

Ich erkläre hiermit, dass die vorliegende Arbeit ohne fremde Hilfe ausschließlich von mir erstellt und geschrieben worden ist. Jedwede verwendeten Quellen, direkter oder indirekter Art, sind als solche kenntlich gemacht worden. Mir ist die Tatsache bewusst, dass der Inhalt der Thesis in digitaler Form geprüft werden kann im Hinblick darauf, ob es sich ganz oder in Teilen um ein Plagiat handelt. Ich bin damit einverstanden, dass meine Arbeit in einer Datenbank eingegeben werden kann, um mit bereits bestehenden Quellen verglichen zu werden und dort auch verbleibt, um mit zukünftigen Arbeiten verglichen werden zu können. Dies berechtigt jedoch nicht zur Verwendung oder Vervielfältigung.

Diese Arbeit wurde in der vorliegenden Form weder einer anderen Prüfungsbehörde vorgelegt noch wurde das Gesamtdokument bisher veröffentlicht.

22/06/20023 Tyen

Acknowledgements

This work has been carried out under the guidance of Prof. Ulrich Kortz at Constructor University. First of all, I would like to express my deep gratitude and appreciation to my mentor, Prof. Kortz, for his unwavering support, guidance, and encouragement throughout my PhD studies. His expertise, insights, and feedback were invaluable to the success of my research. I would also like to thank Prof. Nikolai Kuhnert, Dr. Bassem S. Bassil and Prof. Dr. Jens Beckmann for their precious time and agreement to be committee members of my PhD defense. I gratefully appreciate Dr. Saurav Bhattacharya for XRD support and productive discussions, Dr. Xiang Ma and Dr. Anusree Sundar for their patient instructions on instruments and for being so helpful in many ways, Dr. Ali S. Mougharbel and Dr. Ananthu Rajan for lab and work assistance, Mahmoud Elcheikh Mahmoud and Bahaa Eddin Khsara for catalysis experiments. Great acknowledgements go to Dr. Xiang Ma for his great help during my early days in the lab. I am, of course, thankful to all of my lab fellows who have provided a stimulating and supportive academic environment for their countless assistance during the time of research. I would also like to convey thanks to Sihana Ahmedi for being part of my research project as undergraduate student with hard work.

I sincerely acknowledge the following collaborators: (i) Prof. Nikolai Kuhnert, Mrs. Anja B. Müller for ESI-MS analysis (Constructor University, Germany); (ii) Prof. Veit Wagner, Dr. Talha Nisar for XPS analysis (Constructor University, Germany).

I am delighted to extend my great gratitude to China Scholarship Council (CSC) for a doctoral fellowship. A special note of my appreciation goes to Prof. Xiao-Ming Liu
(Jiaxing University, P.R. China) and Prof. Ming-Xing Li (Shanghai University, P.R. China) for their all-time support. My warm gratitude also goes to the support given by my friends in both Germany and China.

Last but not least, my whole hearted thanks go to my family members especially my parents for their love, encouragement and support throughout my academic journey, and to my boyfriend Shengquan Lu for his constant encouragement and loving company during my PhD education. Their patience, understanding, and belief in me have been the foundation of my success.

Abstract

Polyoxometalates (POMs) are discrete, anionic, soluble polynuclear metal-oxygen clusters forming a distinct class of compounds which can be finely tuned at the molecular level. POMs can be subdivided in isopoly- and heteropolyanions and are usually comprised of (distorted) octahedral MO_{6} building blocks, where M is tungsten, molybdenum, or vanadium, and less frequently niobium or tantalum in high $\left(\mathrm{d}^{0}, \mathrm{~d}^{1}\right)$ oxidation states. The large number of POM structures and compositions result in many different physicochemical properties (fine tuning of compositional, structural, electronic, magnetic, redox, photochemical, and thermal properties is possible) which can result in applications ranging from catalysis and material science to bio-medicine. Noble metal-containing POMs including palladium, platinum, rhodium and iridium are of distinct interest as catalysts for organic transformations, including industrially relevant processes. Examples include the activation of readily available "green" oxidants O_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}$, as well as (selective) hydrogenations and $\mathrm{C}-\mathrm{C}$ coupling reactions.

This thesis is divided into six chapters. Chapter I generally introduces the historical background, structural aspects, properties, and applications of POMs, the state of the art of polyoxo-noble-metalates, noble-metal-containing POMs and arsenic compound, as well as the motivation to perform this work. Chapter II includes the information of applied analytical techniques and synthetic procedures for the used POM and organorhodium(III) precursors.

Chapter III is devoted to polyoxoplatinate, polyoxopalladate and mixed polyoxo-noblemetalates, and 7 novel polyoxo-noble-metalates have been obtained with the following highlights: (i) The first $\mathrm{Pt}^{\mathrm{IV}}$-containing discrete polyoxoplatinate(II)

$\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pt}_{6}^{\mathrm{II}} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2-}\left(\mathrm{Pt}_{7}\right)$ and polyoxopalladate(II) $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pd}^{\mathrm{II}}{ }_{6} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2-}$ (PtPd $)$ have been prepared and characterized in the solid-state, in solution, and in the gas phase; (ii) The first discrete mixed platinum(IV)-gold(III) oxoanion $\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}\left(\mathrm{Pt}_{2} \mathrm{Au}_{3}\right)$ was structurally characterized in the solid state by single-crystal XRD and TGA, and in solution by multinuclear ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{195} \mathrm{Pt}\right) \mathrm{NMR}$, indicating that polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ is stable in solution, which was confirmed by ESI-MS studies. The sodium salt of $\mathbf{P t}_{2} \mathbf{A u}_{3}$ undergoes a clean single-crystal-to-single-crystal (SCSC) structural transformation upon rehydration and dehydration; (iii) the mixed noble metal gold(III)-palladium(II)-oxo nanocluster $\left[\mathrm{Pd}^{\mathrm{II}}{ }_{10} \mathrm{Au}^{\mathrm{III}}{ }_{4} \mathrm{O}_{12}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{10}\right]^{2-}\left(\mathbf{A u}_{4} \mathbf{P d}_{10}\right)$ with a central cube shaped $\left[\mathrm{Pd}_{4} \mathrm{O}_{4}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]$ unit, connected to two tetrameric bowl shaped $\left[\mathrm{AuPd}_{3} \mathrm{O}_{4}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]$ units by two square-planar coordinated gold atoms on each side; (iv) Two $\mathbf{M} \cdot(\mathbf{P d} 16) 4$ type palladium oxo clusters incorporating $3 \mathrm{~d} \mathrm{Sc}^{\text {III }}$ and $\mathrm{Zn}^{\mathrm{II}}$ as guest metal M have been prepared.

Chapter IV presents 3 novel Platinum(II/III)-containing isopolytungstates. The polyoxoanion $\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}\left(\mathrm{Pt}_{3} \mathbf{W}_{11}\right)$ consists of three $\left\{\mathrm{W}_{3} \mathrm{O}_{13}\right\}$ and one $\left\{\mathrm{W}_{2} \mathrm{O}_{10}\right\}$ fragments connected by three $\mathrm{Pt}(\mathrm{II})$ atoms forming linear $\left\{\mathrm{Pt}_{3} \mathrm{O}_{12}\right\}$ triad involved in direct $\mathrm{Pt}-\mathrm{Pt}$ bonding (2.64 to $2.68 \AA$). The polyoxoanion $\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]^{4-}\left(\mathbf{P t}^{\mathrm{II}} \mathbf{W}_{5}\right)$ and $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]^{4-}\left(\mathbf{P t}^{\mathrm{III}} \mathbf{W}_{5}\right)$ both consists of one lacunary Lindqvist fragments $\left\{\mathrm{W}_{5} \mathrm{O}_{18}\right\}^{6-}$ coordinated by two $\mathrm{Pt}(\mathrm{II})$ in square planar coordination and two $\mathrm{Pt}(\mathrm{III})$ in square-pyramidal coordination with direct $\mathrm{Pt}-\mathrm{Pt}$ bonding $(2.64 \AA)$, respectively. Chapter V describes the synthesis of three all-inorganic platinum arenate(III) compound. The first two full inorganic discrete platinum arsenate(III) clusters: $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-}$ $\left(\mathbf{P t A s}_{6}\right)$ and $\left[\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-}\left(\mathrm{Pt}_{4} \mathbf{A s}_{8}\right)$, have been synthesized in aqua media. In

PtAs6, one Pt atom is coordinated by two $\left[\mathrm{As}_{3} \mathrm{O}_{6}\right]^{3-}$ units via O atoms, in which $\mathrm{PtAs}_{3} \mathrm{O}_{6}$ rings are formed. In $\mathrm{Pt}_{4} \mathbf{A s s}$, Each Pt atom is coordinated by two O atoms and two As atoms from AsO_{3} group forming square-planar $\mathrm{PtO}_{2} \mathrm{As}_{2}$ involved in direct bonding between $\mathrm{As}^{\text {III }}$ E and $\mathrm{Pt}^{\mathrm{II}}$ orbitals $(\mathrm{Pt}-\mathrm{As}=2.31 \AA)$, resulting an open cage structure. And a platinum arsenate(III) heteropolytungstate $\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right]^{10-}\left(\mathrm{Pt}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}\right)$ has been synthesized in aqua media and characterized by ${ }^{195} \mathrm{Pt} \mathrm{NMR}$. Each Pt atom is coordinated by one $\mu_{3}-\mathrm{O}$ atom and three As atoms from AsO_{3} group forming square-planar PtOAs_{3} with $\mathrm{Pt}-\mathrm{As}$ bonding.

Chapter VI deals with the synthesis and characterization of two RhCp^{*}-containing heteropolytungstates, $\left[\mathrm{Na}\left(\mathrm{Rh}^{\mathrm{III}} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4} \mathrm{As}_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right]^{5-}$ and $\left[\mathrm{Na}\left(\mathrm{Rh}^{\mathrm{III}} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4} \mathrm{P}_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right]^{5-}$, which are composed of two equivalent $\mathrm{AsW}_{5} \mathrm{O}_{22}$ or $\mathrm{PW}_{5} \mathrm{O}_{22}$ fragments linked via corners and a Na^{+}templating ion, and capped by four $\mathrm{RhCp} *$ units.

Table of Contents

Acknowledgements III
Abstract V
List of Figures XII
List of Tables XIX
List of Compounds Obtained with Codes XXI
Chapter I Introduction 1
1.1 Polyoxometalates (POMs) 1
1.2 Polyoxo-noble-metalates 4
1.3 Platinum-containing POMs 7
1.4 Arsenic(III) Compounds 8
1.5 The RhCp*- and IrCp *-Containing POMs 10
1.6 Catalysis 12
Chapter II Experimental Details 13
2.1 Instrumentations 13
2.1.1 Single-Crystal X-Ray Diffraction 13
2.1.2 Fourier Transform Infrared (FT-IR) Spectroscopy 14
2.1.3 Elemental and Thermogravimetric Analyses 14
2.1.4 Nuclear Magnetic Resonance (NMR) Spectroscopy 14
2.1.5 Electrospray-Ionization Mass Spectrometry (ESI-MS) 15
2.1.6 X-ray photoelectron spectroscopy (XPS) 15
2.1.7 Powder X-ray diffraction (PXRD) 16
2.1.8 Sorption Measurements 16
2.1.9 Batch Reactor 16
2.1.10 Gas chromatography (GC) 17
2.1.11 Bond Valence Sum (BVS) Calculations 17
2.2 Synthesis of $\left(\mathrm{RhC}_{5} \mathrm{Me}_{5} \mathrm{Cl}_{2}\right)_{2}$ and POM Precursors 18
2.2.1 Synthesis of $\left(\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right)_{2}$ 18
2.2.2 $\mathrm{Na}_{9}\left[A-\alpha-\mathrm{As}^{\mathrm{V}} \mathrm{W}_{9} \mathrm{O}_{34}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$ 18
2.3 Synthesis of Mesoporous Supports 19
2.3.1 Synthesis of SBA15 19
2.3.2 Synthesis of Aminopropyl-Modified SBA15 (SBA15-apts) 19
Chapter III Polyoxo-noble-metalates 20
$3.1 \quad \mathrm{Pt}^{\mathrm{IV}}$-Containing hexaplatinate(II) and hexapalladate(II) 20
3.1.1 Synthesis 21
3.1.2 Single-Crystal XRD Data 23
3.1.3 Bond Valence Sum Calculations 24
3.1.4 Results and Discussion 25
3.1.5 Conclusions. 45
3.2 $\mathrm{Au}(\mathrm{III})$-containing noble metal-oxo clusters 46
3.2.1 Synthesis 46
3.2.2 Single-Crystal XRD Data 50
3.2.3 Bond Valence Sum Calculations 52
3.2.4 Results and Discussion 53
3.2.5 Conclusions 69
$3.3 \mathrm{Sc}(\mathrm{III})$ and $\mathrm{Zn}(\mathrm{II})$-containing 16-palladium(II)-oxo cluster 71
3.3.1 Synthesis 71
3.3.2 Single-Crystal XRD Data 72
3.3.3 Bond Valence Sum Calculations 73
3.3.4 Results and Discussion 75
3.3.5 Conclusions 77
Chapter IV Platinum(II/III) Isopolytungstates 78
4.1 Synthesis 78
4.2 Single-Crystal XRD Data 82
4.3 Bond Valence Sum Calculations 83
4.4 Results and Discussion 83
4.4.1 Solid-State Structure 83
4.4.2 Multinuclear NMR Study 90
4.5 Conclusions 92
Chapter V Platinum(II/IV) Arsenate(III) Clusters 94
5.1 Synthesis 94
5.2 Single-Crystal XRD Data 97
5.3 Bond valence sum calculations. 98
5.4 Results and Discussion 99
5.4.1 Solid-State Structure 99
5.4.2 ${ }^{195} \mathrm{Pt}$ NMR Study 108
5.4.3 Powder XRD Study 108
5.4.4 XPS Study 112
5.4.5 Infrared Spectroscopy Study 113
5.4.6 Conclusions 114
Chapter VI Organorhodium(III)-containing POMs 115
6.1 Synthesis 115
6.2 Single-Crystal XRD Data 117
6.3 Results and Discussion 118
6.3.1 Solid-State Structure 118
6.3.2 Multinuclear NMR Study 120
6.4 Conclusions 121
Chapter VII Summery and Outlook 123
Appendix. 126
References. 127

List of Figures

Figure 1.1. POM structural types: Keggin, Wells-Dawson, Strandberg (edge-shared and corner-shared); Lindqvist, Anderson, Allman-Waugh, Weakley-Yamase (edge-shared) and Dexter-Silverton (face-shared and corner-shared).

Figure 1.2. View of 5 isomers of Keggin type polyanions. Color codes: original $\left\{\mathrm{M}_{3} \mathrm{O}_{13}\right\}$ polyhedrons, blue; after rotating $\left\{\mathrm{M}_{3} \mathrm{O}_{13}\right\}$ polyhedrons, green.

Figure 1.3. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pd}^{\mathrm{II}}{ }_{13} \mathrm{As}^{\mathrm{V}}{ }_{8} \mathrm{O}_{34}(\mathrm{OH})_{6}\right]^{8-}$ (a), $\left[\mathrm{Na} \subset \mathrm{Pd}^{\mathrm{II}}{ }_{15} \mathrm{O}_{40}\left(\mathrm{P}^{\mathrm{V}} \mathrm{O}\right)_{10}\right]^{19-}$ (b) and $\left[\mathrm{Cu}^{\mathrm{II}}{ }_{2} \mathrm{Pd}^{\mathrm{II}}{ }_{22} \mathrm{P}^{\mathrm{V}}{ }_{12} \mathrm{O}_{60}(\mathrm{OH})_{8}\right]^{20-}$ (c). Color code, balls: Pd (pale blue), Cu (sky blue), Na (blue), O (red); polyhedra: $\left\{\mathrm{AsO}_{4}\right\}$ (green), $\left\{\mathrm{PO}_{4}\right\}$ (light blue). 5

Figure 1.4. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{II}}{ }_{12} \mathrm{O}_{8}\left(\mathrm{~S}^{\mathrm{VI}} \mathrm{O}_{4}\right)_{12}\right]^{4-}$. Color code, balls: Pt (orange), O (red); polyhedra: $\left\{\mathrm{SO}_{4}\right\}$ (yellow).

Figure 1.5. Ball-and-stick representation of (a) $\left[\mathrm{Au}^{\mathrm{III}}{ }_{4} \mathrm{As}^{\mathrm{V}}{ }_{4} \mathrm{O}_{20}\right]^{8-}$ and (b) $\left\{\mathrm{Cl}_{4} \mathrm{Na}_{5}\left[\mathrm{Au}^{\text {III }}{ }_{4} \mathrm{As}^{\mathrm{V}} \mathrm{CO}_{20} \mathrm{H}_{2.5}\right]_{2}\right\}^{10-}$ dimeric fragment. Color code: Au, yellow; As, light blue; O , red; Na , blue. Chlorides and solvent molecules have been omitted for clarity.

Figure 1.6. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{W}_{6} \mathrm{O}_{24}\right]^{8-}$ (left), $\left[\mathrm{H}_{2} \mathrm{Pt}^{\mathrm{IV}} \mathrm{V}_{9} \mathrm{O}_{28}\right]^{5-}$ (middle) and $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{Nb}_{6} \mathrm{O}_{19}\right)_{2}\right]^{12-}$ (right). Color code: Pt (orange), O (red), H (green), $\left\{\mathrm{WO}_{6}\right\}$ (blue), $\left\{\mathrm{VO}_{6}\right\}$ (sky blue), $\left\{\mathrm{NbO}_{6}\right\}$ (green).7

Figure 3.1. FT-IR spectrum of KNa-Pt7 (red) and Na-PtPd6 (blue). 22
Figure 3.2. Thermograms of $\mathbf{K N a} \mathbf{P t}_{7}$ (left) and $\mathbf{N a - P t P d} \mathbf{P}_{6}$ (right) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere.

Figure 3.3. The symmetry unit of solid-state interaction of polyanions with Na^{+}and K^{+} counter cations in Pt_{7} (left) and Na^{+}counter cations in PtPd_{6} (right), respectively (50\% probability ellipsoids).26

Figure 3.4. Structural representation of $\mathbf{P t}_{7}$ (left) and $\mathbf{P t P d}_{6}$ (right). Color code: Pt (orange), Pd (dark red), O (red), C (gray), $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ (blue tetrahedra), hydrogens omitted for clarity. 27

Figure 3.5. ${ }^{1} \mathrm{H}$ (a) and ${ }^{13} \mathrm{C}(\mathrm{b}) \mathrm{NMR}$ spectra $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of Pt_{7} and $\mathbf{P t P d} 6$ compared to spectra of the references cacodylic acid ($\mathrm{H}-\mathrm{cac}$) and sodium cacodylate ($\mathrm{Na}-\mathrm{cac}$). The * represents free cacodylate ions 28

Figure 3.6. Enlarged ${ }^{1} \mathrm{H}$ spectrum $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of $\mathrm{KNa}-\mathrm{Pt} 7$. 29

Figure 3.7. Time dependent ${ }^{1} \mathrm{H}$ spectra $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{N a - P t P d} \mathbf{d}_{6}$
Figure 3.8. ${ }^{1} \mathrm{H}$ spectrum $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{K N a - P t} 7$ after 2 months... 30
Figure 3.9. ${ }^{195} \mathrm{Pt}$ NMR spectra of $\mathbf{K N a}-\mathrm{Pt}_{7}$ (left) and $\mathbf{N a - P t P d}{ }_{6}$ (right). 30

Figure 3.10. ESI-MS spectrum (full scan) of an aqueous solution of $\mathbf{K N a - P t} 7$ in the negative-ion mode.. 31

Figure 3.11. Left: Simulated (bottom panel) and experimental ESI-MS spectrum (top panel) of a doubly charged $\left[\mathrm{Pt}_{7} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{2-}$ ion (expanded view); right: Simulated (bottom panel) and experimental ESI-MS spectrum (top panel) of a singly charged $\left[\mathrm{HPt}_{7} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}$ion (expanded view) 32

Figure 3.12. Left: ESI-MS spectrum (full scan) of an aqueous solution of Na-PtPd ${ }_{6}$ in the negative-ion mode; Right: Simulated (bottom panel) and experimental ESI-MS spectrum (top panel) of a doubly charged $\left[\mathrm{PtPd}_{6} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{2-}$ ion (expanded view)............ 33

Figure 3.13. X-ray photoelectron spectra and fits for $\mathrm{Pt}^{4} \mathrm{f}_{7 / 2}$ and $4 \mathrm{f}_{5 / 2}$ doublet of $\mathbf{K N a}$-Pt ${ }_{7}$.

Figure 3.14. X-ray photoelectron spectra and fits for $\mathrm{Pt}^{4} \mathrm{f}_{7 / 2}$ and $4 \mathrm{f}_{5 / 2}$ doublet of $\mathbf{N a - P t P d} 6$ (top), and Pd $3 \mathrm{~d}_{5 / 2}$ and $3 \mathrm{~d}_{3 / 2}$ doublet of Na-PtPd 6 (bottom)... 34

Figure 3.15. Schematic representation of the catalytic hydrogenation of o-xylene using the catalyst KNa-Pt7@SBA15-apts.

Figure 3.16. N_{2} sorption isotherms of the SBA15 support before and after modification, after immobilization with $\mathbf{K N a}-\mathrm{Pt}_{7}$ and after calcination and catalysis.

Figure 3.17. ${ }^{1} \mathrm{H}$ spectrum of the filtrate obtained after immobilizing $\mathbf{K N a}-\mathrm{Pt}_{7}$ on the modified SBA15 support.

Figure 3.18. FT-IR spectra of $\mathbf{N a - P t} \mathbf{2 A u}_{3}$ (red) and K-Pt $\mathbf{2 A u}_{3}$ (blue). 48

Figure 3.19. Thermograms of $\mathbf{N a}^{2} \mathrm{Pt}_{2} \mathrm{Au}_{3}$ (red) and $\mathrm{K}_{-\mathrm{Pt}_{2} \mathbf{A u}_{3} \text { (blue) from room }}$ temperature to $500^{\circ} \mathrm{C}$ under N_{2}.

Figure 3.20. FT-IR spectrum of $\mathbf{P d}_{7}$ from $400-4000 \mathrm{~cm}^{-1}$ on KBr pellets. 49

Figure 3.21. FT-IR spectrum of $\mathbf{N a}-\mathbf{A u}_{4} \mathbf{P d}_{10}$ from $400-4000 \mathrm{~cm}^{-1}$ on KBr pellets. 49

Figure 3.22. Thermograms of $\mathbf{N a}-\mathbf{A u}_{4} \mathbf{P d}_{10}$ from room temperature to $500^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} .50$

Figure 3.23. Combined ball-and-stick/polyhedral representation and Ball-and-stick representation (side view) of $\mathbf{P t}_{2} \mathbf{A u}$. Color code: $\left\{\mathrm{PtO}_{6}\right\}$ orange octahedra, $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ blue tetrahedra, Au yellow, Pt orange, As sky blue, O red, C grey. Hydrogen atoms omitted for clarity 54

Figure 3.24. The symmetry unit of solid-state interaction of polyanion $\mathbf{1}$ with Na^{+}counter cations in $\mathbf{N a - P t} \mathbf{2 A}_{2} \mathbf{u}_{3}$ (top left) and $\mathbf{N a - P t} \mathbf{P t}_{2} \mathbf{A u}_{3}(\mathbf{a})$ (top right), as well as K^{+}counter cations in K-Pt $\mathbf{A l u}_{3}$ (bottom), respectively (50% probability ellipsoids). Hydrogen atoms omitted for clarity 55

Figure 3.25. Solid state structure of $\mathbf{N a}^{\mathbf{P}} \mathbf{P t}_{2} \mathrm{Au}_{3}$ highlighting the supramolecular 2D
\qquad

Figure 3.26. Combined ball-and-stick/polyhedral representation and Ball-and-stick representation (side view) of $\mathbf{A u}_{\mathbf{4}} \mathbf{P d}_{\mathbf{1 0}}$. Color code: $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ blue tetrahedra, Pd green, Au yellow. Hydrogen atoms omitted for clarity.57

Figure 3.27. The symmetry unit of solid-state interaction of polyanion $\mathbf{A u}_{4} \mathbf{P d}_{10}$ with Na^{+} counter cations in $\mathbf{N a - A u 4 P d} \mathbf{1 0}$ (50\% probability ellipsoids). Hydrogen atoms omitted for clarity

Figure 3.28. ${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}$ (right) NMR spectra of $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ and $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A} \mathbf{u}_{3}$ dissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ compared to spectra of the sodium cacodylate reference.

Figure 3.29. pH -dependent ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)$ of $\mathbf{N a}-\mathrm{Pt}_{2} \mathrm{Au}_{3}$.

Figure 3.30. ${ }^{195} \mathrm{Pt}$ NMR spectra of $\mathbf{N a - P t} t_{2} \mathrm{Au}_{3}$ and $\mathbf{K - P t} \mathbf{2}_{2} \mathrm{Au}_{3}$ dissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} \ldots 61$

Figure 3.31. ${ }^{195} \mathrm{Pt}$ NMR spectra of fresh synthesis solutions of $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ after stirring at room temperature for 10 min (top left, 4510 scans) and for 40 min (top right, 3018 scans), as well as at $40^{\circ} \mathrm{C}$ for 30 min (bottom left, 3052 scans) and the same solution after a longer measurement time (bottom right, 126693 scans).

Figure 3.32. ESI-MS spectrum (full scan) for aqueous solutions of $\mathbf{N a - P t} \mathbf{2 A u} \mathbf{A}_{3}$ in the negative-ion mode (identical result for $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A u}_{3}$)

62

Figure 3.33. Simulated ESI-MS spectrum of $\mathbf{N a - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$ and $\mathbf{K - P t}_{2} \mathbf{A u}_{3}$ in negative-ion mode (top) and experimental ESI-MS spectrum (bottom) of the singly-charged polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ (expanded view).

Figure 3.34. Simulated ESI-MS spectrum of $\mathbf{N a - P t} \mathbf{t}_{2} \mathrm{Au}_{3}$ in positive-ion mode (bottom) and experimental ESI-MS spectrum (top) of the doubly-charged $\left[\mathrm{Na}_{3} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2+}$ ion (expanded view). ... 63

Figure 3.35. The fully reversible SCSC transition of $\mathbf{N a - P t} \mathbf{2 A}_{2} \mathbf{A u}_{3}$ to $\mathbf{N a}^{2} \mathrm{Pt}_{2} \mathrm{Au}_{3}$. Left: ball-and-stick representation; right: packing diagrams for $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ (AA mode) and $\mathbf{N a}$ $\mathrm{Pt}_{2} \mathrm{Au}_{3}(\mathbf{a})$ (AB mode). Color code: Au yellow, Pt orange, O red, C grey, N blue, As light blue, Cl light green, Na pink, H light grey. 65

Figure 3.36. Experimental and simulated PXRD patterns of $\mathbf{N a - P t} \mathbf{2 A}_{2} \mathbf{u}_{3}(\mathbf{a})$ and $\mathbf{N a - P t} \mathbf{A u}_{3}$ during a dehydration process by air drying (simulated diffraction patterns derived from single-crystal data) 66

Figure 3.37. PXRD patterns for $\mathbf{N a - P t} \mathbf{2 A u}_{3}$ in the presence of water vapor for different periods of time at RT.

Figure 3.38. Thermograms of air-dried and partially rehydrated (several hours) $\mathbf{N a - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$ from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere. Complete rehydration of the bulk material $\mathbf{N a - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$ results in partial dissolution.

Figure 3.39. FT-IR spectra of air-dried and rehydrated Na-Pt $\mathbf{2 A u}_{3}$ from $400-4000 \mathrm{~cm}^{-1}$ on KBr pellets.

Figure 3.40. Time-dependent PXRD spectra of $\mathbf{N a - P t} \mathbf{2}_{2} \mathrm{Au}_{3}$ under blue light irradiation. 69

Figure 3.41. Time-dependent ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{N a - P t} \mathbf{2}_{2} \mathbf{A u}_{3}$ without (left) and with (right) blue light irradiation.

Figure 3.42. FT-IR spectra of Sc-Pd16 (red) and Zn-Pd ${ }_{16}$ (blue) from $400-4000 \mathrm{~cm}^{-1}$ on KBr pellets.

Figure 3.43. Structural representation of the disk-shaped $\mathbf{P d}_{16}$ (top left), view of H -bond interaction in $\mathbf{S c}-\mathbf{P d}_{16}$ (top right (along b axis) and bottom left (along c aixs) and $\mathbf{Z n}-\mathbf{P d}_{16}$ (bottom right (along c aixs)). Color code: Pd green, O (red), H grey, $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ blue tetrahedra, $\left\{\mathrm{ScO}_{6}\right\}$ green octahedra, $\left\{\mathrm{ZnO}_{4}\right\}$ orange tetrahedron. 76

Figure 4.1. FT-IR spectra of $\mathbf{K N a}-\mathrm{Pt}_{3} \mathbf{W}_{\mathbf{1 1}}$ (orange), $\mathbf{K N a}-\mathbf{P t}^{\mathrm{II}_{2} \mathbf{W}_{5}}$ (blue) and $\mathbf{K N a}-$ $\mathbf{P t}^{\mathrm{III}_{2} \mathbf{W}_{5}}$ (purple).

Figure 4.2. Thermograms of $\mathbf{K N a}-\mathbf{P t}_{3} \mathbf{W}_{11}$ (top), $\mathbf{K N a} \mathbf{- P t}{ }^{\mathrm{II}_{2}} \mathbf{W}_{\mathbf{5}}$ (bottom left) and $\mathbf{K N a}$ $\mathbf{P t}^{\mathrm{III}} \mathbf{W}_{\mathbf{2}} \mathbf{W}_{5}$ (bottom right) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere.

Figure 4.3. Crystal shape of $\mathbf{K N a}-\mathrm{Pt}_{3} \mathbf{W}_{11}, \mathbf{K N a}-\mathrm{Pt}^{\mathbf{I I}} \mathbf{2}_{\mathbf{2}} \mathbf{W}_{5}$ and $\mathbf{K N a}-\mathbf{P t}^{\mathrm{HI}_{2}} \mathbf{W}_{5}$ (small cube crystals) from left to right. 84

Figure 4.4. The symmetry unit of solid-state interaction of polyanion with Na^{+}and K^{+} counter cations in $\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I}_{2}} \mathbf{W}_{5}$ (top) and $\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I I}_{2} \mathbf{W}_{5}}$ (bottom). (50% probability ellipsoids). 84

Figure 4.5. The symmetry unit of solid-state interaction of polyanion with Na^{+}and K^{+} counter cations in $\mathbf{K N a - P t} \mathbf{3}^{2} \mathbf{W}_{11}$ (top), Na^{+}and Cl^{-}counter ions in $\mathbf{P t}_{\mathbf{2}}$ (bottom). (50\% probability ellipsoids). 85

Figure 4.6. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}$ polyanion. Pt red, $\left\{\mathrm{WO}_{6}\right\}$ blue and green octahedra, $\left\{\mathrm{WO}_{5}\right\}$ orange square-pyramids... 86

Figure 4.7. Combined polyhedral/ball-and-stick representation of $\left\{\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}\right\}_{n}$ chain. Pt red, $\left\{\mathrm{WO}_{6}\right\}$ and $\left\{\mathrm{WO}_{5}\right\}$ blue octahedra.87

Figure 4.8. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]^{4-}$ anion (left) and $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]^{4-}$ anion (right). Pt red, $\left\{\mathrm{WO}_{6}\right\}$ blue octahedra, $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ green tetrahedra. .. 88

Figure 4.9. Combined polyhedral/ball-and-stick representation of $\left\{\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{5}\right]^{+}\right\}_{n}$ chain. Pt red, $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ green tetrahedra......................... 90

Figure 4.10. Simulated and experimental PXRD patterns of $\mathbf{K N a}-\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$ upon dehydration and rehydration. (simulated diffraction pattern derived from single-crystal data)... 90

Figure 4.11. Time-dependent ${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}$ (right) NMR spectra $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$ compared to spectra of the reference sodium cacodylate ($\mathrm{Na}-\mathrm{Cac}$).

Figure 5.1. FT-IR spectrum of Na-PtAs6.. 96

Figure 5.2. FT-IR spectrum of Na-Pt $\mathbf{2}^{\mathbf{A} \mathbf{A s}_{6} \mathbf{W}_{4} \text {. ... } 96}$

Figure 5.3. Thermograms of $\mathbf{N a - P t A s 6}$ (left) and $\mathbf{N a}^{\mathbf{N a}} \mathbf{P t}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}$ (right) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere.

Figure 5.4. The symmetry unit of solid-state interaction of polyanion with Na^{+}counter cations in Na-PtAs6 (top left) and $\mathbf{N a - P t} 2 \mathbf{A s} 6 \mathbf{W}_{4}$ (top right), as well as K^{+}counter cations
in K-Pt 4 Ass (bottom left) and K-Pt4As8 (dehy) (bottom right), respectively (50\% probability ellipsoids). .. 100
Figure 5.5. Ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-}$ polyanion. Pt orange, As light blue, O red101

Figure 5.6. Crystal packing diagram of PtAss, showing the layered structure (left) and 3D framework (right) self-assembled by the $\left[\mathrm{Pt}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-}$ moieties via Na^{+}ions. $\left\{\mathrm{PtO}_{6}\right\}$ orange octahedra, $\left\{\mathrm{NaO}_{7}\right\}$ pink polyhedra, As light blue, O red.................................... 101

Figure 5.7. Ball-and-stick representation of $\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right]^{10-}$ polyanion. Pt orange, W green, As light blue, O red 102

Figure 5.8. Ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{II}} 4\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-}$ polyanion (left) and the $\left[\mathrm{K}_{2}\left(\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right)_{4}\right]^{6-}$ fragment (middle). 3D lattice structure of $\mathbf{K}-$ Pt 4 Ass (right). Color code: Pt orange, As light blue, K violet, O red, H sky blue.

Figure 5.9. H-bond interactions (orange dotted bonds) within the $\mathbf{K}_{2}\left(\mathbf{P t}_{4} \mathbf{A s} \mathbf{s}_{\mathbf{8}}\right)_{4}$ fragment. Pt orange, As light blue, K violet, O red, H sky blue.

Figure 5.10. H-bond interactions (orange dotted bonds) in the $\mathbf{K - P t}_{4} \mathbf{A s s}$ crystal packing along b and c axis. 105

Figure 5.11. Crystal packing diagram of $\mathrm{Pt}_{4} \mathbf{A s s}$, Pt orange, As light blue, O red. H atoms are not shown.106

Figure 5.12. $\mathrm{Pt} \cdots \mathrm{Pt}$ distance in $\mathbf{K}_{2}\left(\mathbf{P t}_{4} \mathbf{A s} 8\right)_{4}$ fragment. $\left\{\mathrm{AsO}_{3}\right\}$ sky blue tetrahedra, $\left\{\mathrm{KO}_{8}\right\}$ purple polyhedral, Pt orange.

Figure 5.13. ${ }^{195} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)$ NMR spectra of $\mathbf{N a - P t} \mathbf{A}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}$ 108

Figure 5.14. Top: Packing diagrams for K-Pt4Ass (top) along b and c axis. Bottom: the $\left\{\mathrm{K}\left(\mathrm{Pt}^{\mathrm{II}}{ }_{4}\left(\mathrm{AsO}_{3}\right)_{8}\right)_{8}\right\}$ fragment (left) and packing diagram (right) along c axis of $\mathbf{K - P t} \mathbf{H}_{4} \mathbf{A s s}_{8}$ (dehy). $\left\{\mathrm{KO}_{8}\right\}$ purple polyhedron. 109

Figure 5.15. Simulated and experimental PXRD patterns (left) of K-Pt4Ass and K-Pt4As8 (dehy) upon dehydration and rehydration. (simulated diffraction patterns derived from single-crystal data)

Figure 5.16. PXRD patterns K-Pt4Ass upon dehydration by air drying and heating

Figure 5.17. TGA curves of freshly prepared, dehydrated, and rehydrated compound K$\mathrm{Pt}_{4} \mathrm{As} 8$

Figure 5.18. FT-IR spectrums of freshly synthesized and dehydrated K-Pt $\mathbf{H A s s}^{\mathbf{A s}}$.

Figure 5.19. X-ray photoelectron spectra and fits for $\mathrm{Pt}_{3 / 2}$ and $\mathrm{d}_{5 / 2}$ doublet (left) and As 3p doublet (right) of $\mathbf{P t}_{4} \mathbf{A s s}$. 113

Figure 5.20. FT-IR spectrums of K-Pt4Ass. 114

Figure 6.1. FT-IR spectra of $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ (red) and $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$ (blue). 116

Figure 6.2. Thermograms of $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ (red) and $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ (blue) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere.

Figure 6.3. Polyhedral representation of the structure of $\mathbf{R h}_{4} \mathbf{A s}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ (left) and $\mathbf{R} \mathbf{h}_{\mathbf{4}} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ (right). Color code: Rh (dark red), As (yellow), P (purple), Na (green), O (red), C (grey), WO_{6} (blue octahedra). 120

Figure 6.4. ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{R} \mathbf{h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ (top) and $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$ (bottom). 121

Figure 6.5. ${ }^{31} \mathrm{P}$ NMR spectra $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$.

List of Tables

Table 3.1. Crystal data and structure refinement for $\mathbf{K N a}^{\mathbf{N a}} \mathbf{P t}_{7}$ and $\mathbf{N a - P t P d} 6$ 23
Table 3.2. BVS values for μ_{3}-bridging oxygen atoms in $\mathbf{K N a}-\mathrm{Pt}_{7}$ and $\mathbf{N a - P t P d} 6$. 25
Table 3.3. Computationally predicted NMR chemical shifts ($\delta_{\text {calc }}$) in ppm for $\mathbf{P t}_{7}$ and $\mathbf{P t P d}_{6}$ using different methods 36
Table 3.4. Cartesian Coordinates of computationally optimized structures for $\mathbf{P t}_{7}$ andPtPd $_{6}$ anions (Ångström, \AA).. 36

Table 3.5. o-xylene hydrogenation at $300{ }^{\circ} \mathrm{C}$ and 90 bar H_{2} pressure using different supported catalyst materials (support $=$ SBA15-apts).42

Table 3.6. Variation of the surface area and pore size of the prepared materials after modification, $\mathbf{P t}_{7}$ immobilization, calcination and after catalysis.43
 and $\mathbf{N a - A u 4 P d}{ }_{10}$.51
Table 3.8. BVS values for μ_{2}-bridging oxygen atoms in $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$, $\mathbf{N a}^{2} \mathbf{P t}_{2} \mathbf{A u} \mathbf{u}_{3}(\mathbf{a})$, and \mathbf{K} - $\mathbf{P t}_{2} \mathrm{Au}_{3}$. 53
Table 3.9. BVS values for μ_{3}-bridging oxygen atoms in $\mathbf{N a}$ - $\mathbf{A u}_{4} \mathbf{P d}_{10}$. 53
Table 3.10. Peak assignments of the ESI-MS spectra of $\mathbf{N a - P t} \mathbf{2 A}_{2} \mathbf{A u}_{3}$ and $\mathbf{K - P t} \mathbf{t a n}_{2}$. 64
Table 3.11. Crystal data and structure refinement for $\mathbf{S c}_{\mathbf{- P d}}^{16}$ and $\mathbf{Z n}-\mathbf{P d}_{16}$. 72
Table 3.12. BVS values for μ_{2} - and μ_{4}-bridging oxygen atoms in $\mathbf{S c - P d} \mathbf{1 b}_{16}$ and $\mathbf{Z n}$-Pd ${ }_{16}$ 73
Table 4.1. Crystal data and structure refinement for $\mathbf{K N a}-\mathbf{P t}_{3} \mathbf{W}_{\mathbf{1 1}}, \mathbf{K N a}-\mathbf{P t}^{\mathrm{II}} \mathbf{W}_{5}, \mathbf{K N a}$ 82
Table 5.1. Crystal data and structure refinement for Na-PtAs6, K-Pt $\mathbf{4 A s s}_{8}$, K-Pt $\mathbf{H}_{4} \mathbf{A s 8}$ (dehy) and $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}$. 97Table 5.2. Bond valence sum values for different types of bridging oxygen atoms andterminal oxygen atoms for $\mathbf{K - P t}_{4} \mathbf{A s s}$ and $\mathbf{N a - P t} \mathbf{2}_{\mathbf{2}} \mathbf{A s}_{\mathbf{6}} \mathbf{W}_{4}$98

Table 5.3. Bond valence sum values for Pt and As atoms for $\mathbf{K - P t} 4 \mathbf{A s s}$. 107

Table 6.1. Crystal data and structure refinement for $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ and $\mathbf{N a - R h} \mathbf{4}_{2} \mathbf{W}_{10}$. .117

List of Compounds Obtained with Codes

1	$\mathrm{KNa}\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pt}^{\text {II }} 6 \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathrm{NaNO}_{3} \cdot \mathrm{NaAsO}_{2}\left(\mathrm{CH}_{3}\right)_{2} \cdot 21 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{K N a - P t}{ }_{7}$
2	$\mathrm{Na}_{2}\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pd}^{\mathrm{II}} \mathbf{6} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot 2 \mathrm{NaNO}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	Na-PtPd 6
3	$\mathrm{Na}\left[\mathrm{Pt}^{\text {IV }}{ }_{2} \mathrm{Au}^{\text {III }} 3 \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathrm{NaCl} \cdot \mathrm{NaNO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{N a - P t} \mathbf{2}_{2} \mathbf{u}_{3}$
4		$\mathbf{K - P t} \mathbf{2}_{2} \mathbf{A u}_{3}$
5	$\mathrm{Na}_{2}\left[\mathrm{Pd}^{\text {II }}{ }_{10} \mathrm{Au}^{\text {III }}{ }_{4} \mathrm{O}_{12}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{10}\right] \cdot \mathbf{1 7} \mathrm{H}_{2} \mathrm{O}$	Na-Au4Pd ${ }_{10}$
6	$\left.\left.4\left[\mathrm{Pd}_{16} \mathrm{O}_{24}(\mathrm{OH}) \mathbf{8}_{((\mathrm{CH}}^{3}\right)_{2} \mathrm{As}\right)_{8}\right] \cdot \mathrm{NaSc}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{As}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot \mathbf{x H}_{2} \mathrm{O}$	Sc-Pd ${ }_{16}$
7	$4\left[\mathrm{Pd}_{16} \mathrm{O}_{24}(\mathrm{OH})_{8}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{A s}\right)_{8}\right] \cdot \mathrm{Na}_{2} \mathrm{Zn}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{A s}\right)_{4} \cdot \mathbf{x H}_{2} \mathrm{O}$	$\mathbf{Z n - P d}{ }_{16}$
8	$\mathrm{K}_{3} \mathrm{Na}_{7}\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{K N a - P t}{ }_{3} \mathbf{W}_{11}$
9	$\mathrm{Na}_{2} \mathrm{~K}_{2}\left[\mathrm{Pt}^{\text {III }} \mathrm{W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{K N a - P t ~}{ }^{\text {II }} \mathbf{2} \mathbf{W}$
10	$\mathrm{Na}_{2} \mathrm{~K}_{2}\left[\mathrm{Pt}^{\text {III }} \mathbf{2}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4} \cdot \mathbf{x H}_{2} \mathrm{O}\right.$	$\mathbf{K N a - P t ~}{ }^{\text {III }} \mathbf{2} \mathbf{W}_{5}$
11	$4\left[\mathrm{Pt}^{\text {III }} \mathbf{2}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{5}\right] \cdot 2\left[\mathrm{PtCl}_{4}\right] \cdot \mathrm{Na}_{2}\left[\mathrm{PtCl}_{4}\right] \cdot \mathbf{x H}_{2} \mathrm{O}$	$\mathbf{P t}_{2}$
12	$\mathrm{Na}_{2}\left[\mathrm{Pt}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$	Na-PtAs6
13	$\mathrm{K}_{2}\left[\mathrm{Pt}_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right] \cdot \mathbf{5} \mathrm{H}_{2} \mathrm{O}$	K-Pt4As8
14	$\mathbf{N a 1 0}\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right] \cdot \mathbf{1 8 H 2} \mathbf{O}$	Na-Pt2As6 ${ }_{6}{ }_{4}$
15	$\mathbf{N a 5}\left[\mathbf{N a}\left(\mathrm{Rh}^{\text {III }} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}\left(\right.\right.$ cis $\left.\left.-\mathrm{As}^{\mathbf{V}}{ }_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right)\right] \cdot \mathbf{1 2 H} \mathbf{H}_{2} \mathrm{O}$	$\mathbf{N a - R h 4 A s 2 ~}{ }_{2} \mathbf{W}_{10}$
16	$\mathbf{N a 5}\left[\mathbf{N a}\left(\mathrm{Rh}^{\text {III }} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}\left(\right.\right.$ trans $\left.\left.-\mathrm{P}^{\mathbf{V}}{ }_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right)\right] \cdot \mathbf{1 2 H} \mathbf{H}_{2} \mathrm{O}$	$\mathbf{N a - R h}{ }_{4} \mathbf{P}_{2} \mathbf{W}_{10}$

Chapter I Introduction

1.1 Polyoxometalates (POMs)

Polyoxometalates (POMs), often described as discrete and soluble polynuclear metaloxygen cluster anions, which contain highly symmetrical core assemblies of MO_{x} units, where M is usually tungsten or molybdenum, less frequently vanadium, niobium or tantalum, or mixtures of these elements, at high $\left(\mathrm{d}^{0}, \mathrm{~d}^{1}\right)$ oxidation states. ${ }^{1}$ POMs include two families of isopolyanions $\left(\left[\mathrm{M}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}\right]^{\mathrm{n}-}\right)$ and heteropolyanions $\left(\left[\mathrm{X}_{\mathrm{x}} \mathrm{M}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}\right]^{\mathrm{m}-}\right)(\mathrm{X}=$ heteroatom, e.g. As, P, Si and $\mathrm{M}=$ metallic elements in their high oxidation numbers). The structure of POMs is defined primarily by either corner sharing (one bridging μ_{2}-oxo group) or edge sharing (two bridging μ_{2}-oxo groups) of MO_{6} octahedrals. Occasionally it can be also defined by sharing of three bridging μ_{2}-oxo groups (face sharing). ${ }^{2}$ Eventually connection of polyhedrals in different fashions leads to various structures (Figure 1.1), for example, Keggin type, ${ }^{3}$ Wells-Dawson type, ${ }^{4}$ Anderson-Evans type, ${ }^{5}$ Lindqvist type, ${ }^{6}$ Allmann-Waugh type (1:9), ${ }^{7}$ Strandberg, ${ }^{8}$ Dexter-Silverton type (1:12), ${ }^{9}$ and WeakleyYamase. ${ }^{10}$

POMs show great promise in terms of their applications, including in catalysis, biotechnology, medicine, electrochemistry, material sciences and molecular magnetism etc. ${ }^{11}$ These applications stem from the noticeable features of POMs, such as: (1) possessing high solubility in various media, thermal and oxidative stability; (2) displaying a wide variety of well-defined sizes and shapes, usually with highly symmetric topologies; (3) having interesting redox properties (e.g. recognized as electron reservoirs because of their high capacity to bear and release electrons) that can be tuned to great extent by the

POM skeletons modifications; and (4) containing sufficient charge density at their surface oxygens to incorporate either functional organic moieties or additional metallic centers from the d and f blocks. ${ }^{12}$

Figure 1.1. POM structural types: Keggin, Wells-Dawson, Strandberg (edge-shared and corner-shared); Lindqvist, Anderson, Allman-Waugh, Weakley-Yamase (edge-shared) and Dexter-Silverton (face-shared and corner-shared).

The Keggin anion, first to be reported was 12-tungstophosphoric acid $\left[\mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40}\right]$ in 1933. ${ }^{3 c}$ Ever since that, Keggin structure motif has become the archetypical polyoxometalate (POM) and one to which the majority of POM-related publications are devoted. The Keggin structure consists of four $\left\{\mathrm{M}_{3} \mathrm{O}_{13}\right\}$ triads of edge-sharing octahedra, surrounding a central tetrahedral oxoanion XO_{4} with a charge that can range from 2- $(\mathrm{X}=$ $\left.\mathrm{S}^{\mathrm{VI}}\right)^{13}$ to $7-\left(\mathrm{X}=\mathrm{Cu}^{\mathrm{I}}\right) .{ }^{14}$ The original (α) Keggin anions isomer can undergo 60° rotations of one, two, three and four $\left\{\mathrm{M}_{3} \mathrm{O}_{13}\right\}$ units to respectively give the β, γ, δ, and ε isomers (see the Figure 1.2). ${ }^{15}$ The rearrangement of the triads affects not only the overall electronic and atomic structure but also the electrostatic repulsion between these units. The Keggin anions
are preferred to adopt α and β forms, especially the most stable α one $(\alpha>\beta)$, whereas the γ, δ, and ε frameworks are thermodynamically unstable. ${ }^{16}$ And the δ and ε isomers can only be obtained in a reduced state when bound to a transition metal ion. The energy grows as well as the number of rotated triads of the metal-oxide core in the order $\alpha<\beta<\gamma<\delta<\varepsilon$, a trend that does not hold for the reduced clusters. ${ }^{17}$ Indeed, some V^{IV}-containing Kegginbased anions have been used as qubits for molecular spintronics ${ }^{18}$ or as molecular magnets. ${ }^{19}$

Figure 1.2. View of 5 isomers of Keggin type polyanions. Color codes: original $\left\{\mathrm{M}_{3} \mathrm{O}_{13}\right\}$ polyhedrons, blue; after rotating $\left\{\mathrm{M}_{3} \mathrm{O}_{13}\right\}$ polyhedrons, green.

Primitively, POMs have been prepared and isolated from conventional aqueous and nonaqueous solutions and hydrothermal synthesis. Based on the information obtained over the years, chemists are making efforts to re-evaluate their synthetic approach and employ new approaches, such as "superheating" microwave synthesis, ionothermal method, and solid-phase synthetic protocol. ${ }^{20}$ Generally, a small number of steps, or even just one step (one-pot synthesis) are required to produce POM-based clusters, during which the
acidification is a main factor that drives the condensation reaction. There are some crucial experimental variables for the formation of specific molecular species, and need to be taken into consideration during the synthesis, such as: (1) concentration/type of metal oxide anion, (2) pH , (3) ionic strength, (4) heteroatom type/concentration, (5) presence of additional ligands, (6) reducing environment, (7) temperature and pressure of reaction (e.g., microwave, hydrothermal, refluxing), (8) counter-ion and metal-ion effect and (9) processing methodology (one-pot, continuous flow conditions, 3D printed reactors). ${ }^{21}$

1.2 Polyoxo-noble-metalates

Recently, an entirely new family of POM clusters which are based on non-traditional metal centers, is the family of palladates. Like all the other noble metals, Pt and Au, discussed in this section, the square-planar $\mathrm{Pd}^{\mathrm{II}}$ ions can assemble into POM-like molecular structures bridged with oxygen ligands, containing heteroatom capping groups or both ligand and heteroatom capping groups. To date, more than 80 polyoxopalladates(II) with a large compositional and structural variety (e.g. cube, star, bowl, dumbbell, wheel, and open-shell archetypes) have been prepared by using various external capping groups $\mathrm{RXO}_{3}{ }^{\mathrm{n}-}\left(\mathrm{X}=\mathrm{P}^{\mathrm{V}}\right.$, $\mathrm{As}^{\mathrm{V}}, \mathrm{Se}^{\mathrm{IV}}, \mathrm{V}^{\mathrm{V}} ; \mathrm{R}=\mathrm{O}, \mathrm{Ph}$, lone pair) and many different central metal ion guests $\mathrm{M}(\mathrm{M}=s$, p, d or f element). ${ }^{22}$ There have been a series of $\left\{\mathrm{Pd}_{\mathrm{x}}\right\}$ species which are first examples of polyoxopalladate(II) reported by Kortz group of different nuclearities, such as $\left\{\operatorname{Pd}_{13}\right\},{ }^{23}$ $\left\{\mathrm{Pd}_{15}\right\}^{24}$ and $\left\{\mathrm{Pd}_{22}\right\}^{25}$ (Figure 1.3). Recently, the same group demonstrated the ability of $\left[\mathrm{Pd}^{\mathrm{II}}{ }_{13} \mathrm{As}^{\mathrm{V}}{ }_{8} \mathrm{O}_{34}(\mathrm{OH})_{6}\right]^{8-}$ to be used as secondary building blocks for the formation of the first stable heterogeneous noble metal-based metal-organic framework exhibiting interesting sorption and catalytic properties. ${ }^{26}$ In 2021, Kortz group reported the first
examples of neutral palladium(II)-oxo clusters (POCs), $\left[\mathrm{Pd}_{16} \mathrm{O}_{8}(\mathrm{OH})_{8}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{8}\right]$ $\left(\mathbf{P d}_{16}\right),\left[\mathrm{Pd}_{16} \mathrm{O}_{8}(\mathrm{OH})_{5} \mathrm{Cl}_{3}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{8}\right]\left(\mathbf{P d}_{16} \mathbf{C l}\right),\left[\mathrm{Pd}_{24} \mathrm{O}_{12}(\mathrm{OH})_{8}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{16}\right]\left(\mathrm{Pd}_{24}\right)$, and $\left.\left[\mathrm{Pd}_{40} \mathrm{O}_{24}(\mathrm{OH})_{16}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{16}\right]\left(\mathbf{P d}_{40}\right)$, by using dimethylarsinate as capping group. ${ }^{27}$ Later, the first two examples of cationic palladium(II)-oxo clusters (POCs) by incorporating f-metal ions, $\left[\mathrm{Pd}^{\mathrm{II}}{ }_{6} \mathrm{O}_{12} \mathrm{M}_{8}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{4+}\left(\mathrm{M}=\mathrm{Ce}^{\mathrm{IV}}, \mathrm{Th}^{\mathrm{IV}}\right),{ }^{28}$ as well as the mixed-valent palladium(IV/II)-oxoanion $\left[\mathrm{Pd}^{\mathrm{IV}} \mathrm{O}_{6} \mathrm{Pd}^{\mathrm{II}}{ }_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{2-}$ were also syntheized by Kortz group. ${ }^{29}$ When reacting $\mathrm{Pd}^{\text {II }}$ and $\mathrm{Au}^{\text {III }}$ ions at the same time with the arsenate capping group, the first fully inorganic, mixed gold-palladium-oxoanion $\left[\mathrm{NaAu}^{\mathrm{III}}{ }_{4} \mathrm{Pd}^{\mathrm{II}}{ }_{8} \mathrm{O}_{8}\left(\mathrm{AsO}_{4}\right)_{8}\right]^{11-}\left(\mathrm{Au}_{4} \mathbf{P d}_{8}\right)$ could be obtained. ${ }^{30}$ In 2016, Kortz group reported on the rational synthesis of the first examples of noble metal-capped bimetallic silver(I)-palladium(II)-oxo nanoclusters $\left\{\mathbf{A g}_{4} \mathbf{P d}_{\mathbf{1 3}}\right\}$ and $\left\{\mathbf{A g}_{5} \mathbf{P d}_{\mathbf{1}}\right\}$ in a fully inorganic assembly, featuring an unprecedented host-guest mode. ${ }^{31}$
(a)

Figure 1.3. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pd}^{I I}{ }_{13} \mathrm{As}^{\mathrm{V}}{ }_{8} \mathrm{O}_{34}(\mathrm{OH})_{6}\right]^{8-}$ (a), $\left[\mathrm{Na} \subset \mathrm{Pd}^{\mathrm{II}}{ }_{15} \mathrm{O}_{40}\left(\mathrm{P}^{\mathrm{V}} \mathrm{O}\right)_{10}\right]^{19-}$ (b) and $\left[\mathrm{Cu}^{\mathrm{II}}{ }_{2} \mathrm{Pd}^{\mathrm{II}}{ }_{22} \mathrm{P}^{\mathrm{V}}{ }_{12} \mathrm{O}_{60}(\mathrm{OH})_{8}\right]^{20-}$ (c). Color code, balls: Pd (pale blue), Cu (sky blue), Na (blue), O (red); polyhedra: $\left\{\mathrm{AsO}_{4}\right\}$ (green), $\left\{\mathrm{PO}_{4}\right\}$ (light blue).

Moving to the larger and more kinetically inert Pt, the reported examples are limited to the structure published by Wickleder group in 2004 with the formula $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{12} \mathrm{O}_{8}\left(\mathrm{~S}^{\mathrm{VI}} \mathrm{O}_{4}\right)_{12}\right]^{4-}$ (Figure 1.4) where the Pt atoms lie on the corners of an icosahedron formed by six dumbbell-shaped $\left\{\mathrm{Pt}_{2}\right\}^{6+}$ units. ${ }^{32}$ Obviously, the reactivity of Au with comparable ionic
radius proved to be more diverse. In 2010 Kortz group successfully synthesized the first ever members of polyoxoaurate $\left[\mathrm{Au}^{\mathrm{III}}{ }_{4} \mathrm{As}^{\mathrm{V}} 4_{4} \mathrm{O}_{20}\right]^{8-}$ and its dimeric adducts $\left\{\mathrm{Cl}_{4} \mathrm{Na}_{5}\left[\mathrm{Au}^{\text {III }}{ }_{4} \mathrm{As}^{\mathrm{V}}{ }_{4} \mathrm{O}_{20} \mathrm{H}_{2.5}\right]_{2}\right\}^{10-}$ and $\left\{\left(\mathrm{NO}_{3}\right)_{4} \mathrm{Na}_{5}\left[\mathrm{Au}^{\text {III }}{ }_{4} \mathrm{As}_{4}{ }_{4} \mathrm{O}_{20} \mathrm{H}_{2.5}\right]_{2}\right\}^{10-}$ are shown in Figure 1.5. ${ }^{33}$ The main polyanionic skeleton consists of a tetrameric structure with four square-planar coordinated $\mathrm{Au}^{\text {III }}$ ions linked by four oxo and arsenate/selenite bridging ligands. ${ }^{34}$

Figure 1.4. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pt}^{1 I I}{ }_{12} \mathrm{O}_{8}\left(\mathrm{~S}^{\mathrm{VI}} \mathrm{O}_{4}\right)_{12}\right]^{4-}$. Color code, balls: Pt (orange), O (red); polyhedra: $\left\{\mathrm{SO}_{4}\right\}$ (yellow).

Figure 1.5. Ball-and-stick representation of (a) $\left[\mathrm{Au}^{\mathrm{III}}{ }_{4} \mathrm{As}^{\mathrm{V}}{ }_{4} \mathrm{O}_{20}\right]^{8-}$ and (b) $\left\{\mathrm{Cl}_{4} \mathrm{Na}_{5}\left[\mathrm{Au}^{\text {III }}{ }_{4} \mathrm{As}^{\mathrm{V}}{ }_{4} \mathrm{O}_{20} \mathrm{H}_{2.5}\right]_{2}\right\}^{10-}$ dimeric fragment. Color code: Au, yellow; As, light blue; O, red; Na, blue. Chlorides and solvent molecules have been omitted for clarity.

1.3 Platinum-containing POMs

The coordination chemistry of platinum has a long history and can be regarded as classics, but surprisingly little is known about incorporation of $\mathrm{Pt}(\mathrm{IV})$ or $\mathrm{Pt}(\mathrm{II})$ to polyoxometalates (POM). Moreover, some reports on supposedly Pt-coordinated POM remain controversial. In terms of platinum-containing POMs, well established examples of Pt containing POM are sparse and are essentially restricted to a series of $\mathrm{Pt}(\mathrm{IV})$-containing Anderson-type clusters with various degrees of protonation reported in the course of years, such as $\left[\mathrm{H}_{3} \mathrm{Pt}^{\mathrm{IV}} \mathrm{W}_{6} \mathrm{O}_{24}\right]^{5-35}$ and $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Mo}_{6} \mathrm{O}_{24}\right]^{8-}$ (Figure 1.6). ${ }^{36}$ In 2003, the Lee group also reported a double Pt-substituted silicotungstate $\left(\mathrm{C}_{\left(\mathrm{NH}_{2}\right)_{3}}\right)_{8}\left[\mathrm{SiPt}^{\mathrm{VV}}{ }_{2} \mathrm{~W}_{10} \mathrm{O}_{40}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O} \cdot{ }^{37}$ Later it was, however, suggested that this formulation was incorrect, the product being instead the guanidinium salt of monolacunary $\left[\mathrm{SiW}_{11} \mathrm{O}_{39}\right]^{8-38}$. In 2011, a $\mathrm{Pt}^{\mathrm{IV}}$-containing Keggin-type tungstophosphate anion $\alpha-\left[\mathrm{PW}_{11} \mathrm{O}_{39}\left\{\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2}\right]^{3-}$ was proposed, based on ${ }^{1} \mathrm{H}$ and ${ }^{183} \mathrm{~W}$ NMR spectra. ${ }^{39}$ This suggestion was confirmed very recently by single-crystal XRD on $\mathrm{Cs}_{3}\left[\alpha-\mathrm{PW}_{11} \mathrm{O}_{39}\left\{\text { cis }-\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$, which demonstrated that the $\left\{\right.$ cis $\left.-\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right\}$ groups are attached to the lacunary polyanion. ${ }^{40}$ Platinum-containing $\left[\mathrm{ZnWPt}^{\mathrm{II}}{ }_{2}\left(\mathrm{ZnW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{12-}$ complexes are represented but not yet fully characterized. ${ }^{41}$

Figure 1.6. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{W}_{6} \mathrm{O}_{24}\right]^{8-}$ (left), $\left[\mathrm{H}_{2} \mathrm{Pt}^{\mathrm{IV}} \mathrm{V}_{9} \mathrm{O}_{28}\right]^{5-}$ (middle) and $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{Nb}_{6} \mathrm{O}_{19}\right)_{2}\right]^{12-}$ (right). Color code: Pt (orange), O (red), H (green), $\left\{\mathrm{WO}_{6}\right\}$ (blue), $\left\{\mathrm{VO}_{6}\right\}$ (sky blue), $\left\{\mathrm{NbO}_{6}\right\}$ (green).

In 2012, $\mathrm{Pt}(\mathrm{II})$-containing dimeric POM complex $\left[\mathrm{Pt}_{2}\left(\mathrm{~W}_{5} \mathrm{O}_{18}\right)_{2}\right]^{8-}$ was reported, containing two lacunary Lindqvist isopoly fragments $\left[\mathrm{W}_{5} \mathrm{O}_{18}\right]^{6-}$ linked by two square planar $\mathrm{Pt}(\mathrm{II})$ centers. ${ }^{42}$ In the family of group 5 POM the only example of a Pt-containing complex is $\mathrm{Na} 5\left[\mathrm{H}_{2} \mathrm{Pt}^{\mathrm{IV}} \mathrm{V}_{9} \mathrm{O}_{28}\right] \cdot 21 \mathrm{H}_{2} \mathrm{O}$ (Figure 1.6). ${ }^{43}$ The ${ }^{51} \mathrm{~V}$ and ${ }^{195} \mathrm{Pt}$ NMR chemical shifts for $\left[\mathrm{H}_{2} \mathrm{Pt}^{\mathrm{IV}} \mathrm{V}_{9} \mathrm{O}_{28}\right]^{5-}$ were successfully modeled by DFT methods. ${ }^{44}$ In 2015, the first platinum polyniobates was characterized by Abramov and Sokolov groups. ${ }^{45}$ Reaction of $\left[\mathrm{Nb}_{6} \mathrm{O}_{19}\right]^{8-}$ with $\left[\mathrm{Pt}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ in a 1:1 molar ratio upon heating yielded a dimeric complex $\left[\mathrm{Nb}_{6} \mathrm{O}_{19}\left\{\mathrm{Pt}^{\mathrm{IV}}(\mathrm{OH})_{2}\right\}\right]_{2}{ }^{12-}$. Increasing the $\mathrm{Pt} / \mathrm{Nb}_{6}$ molar ratio to $1: 2$ yielded a mixture of $\left[\mathrm{Nb}_{6} \mathrm{O}_{19}\left\{\mathrm{Pt}^{\mathrm{IV}}(\mathrm{OH})_{2}\right\}\right]_{2}{ }^{12-}$ and a sandwich type complex $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{Nb}_{6} \mathrm{O}_{19}\right)_{2}\right]^{12-}$ (Figure 1.6). The first examples of dimeric, di- $\mathrm{Pt}^{\mathrm{II}}$-containing heteropolytungstates are reported, the two isomeric diplatinum(II)-containing 22-tungsto-2-phosphates anti- and $\operatorname{syn}-\left[\mathrm{Pt}^{I I}{ }_{2}(\alpha-\right.$ $\left.\left.\mathrm{PW}_{11} \mathrm{O}_{39}\right)_{2}\right]^{10-} .{ }^{46}$ Another $\mathrm{Pt}(\mathrm{II})$-containing POM also has been reported, $\left[\alpha-\mathrm{PW}_{11} \mathrm{O}_{39}\{\right.$ cis$\left.\left.\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{Me}_{2} \mathrm{ppz}\right)\right\}\right]^{5-}\left(\mathrm{Me}_{2} \mathrm{ppz}=N, N^{\prime}\right.$-dimethylpiperazine $) .{ }^{47}$ Later, there are several reports describing very interesting electrocatalytic activity of single-atom Pt-containing POM and $\left[\mathrm{Pt}_{2}\left(\mathrm{~W}_{5} \mathrm{O}_{18}\right)_{2}\right]^{8-}$ in the hydrogen evolution reaction (HER). ${ }^{48}$ Hence the preparation and reliable characterization of Pt-containing POM (this is also more or less true for other noble metals) still remains a considerable challenge.

1.4 Arsenic(III) Compounds

Transition metal oxoarsenates(III) are of interest due to the presence of the $4 s^{2}$ electron lone pair E situated at the $\mathrm{As}^{\text {III }}$ atom. The spatial arrangement of corresponding ψ tetrahedral $\mathrm{AsO}_{3}{ }^{3-}$ groups may result in compounds with non-centrosymmetric crystal structures exhibiting interesting physical properties like pyroelectricity, piezoelectricity,
ferroelectricity, or non-linear optical (NLO) properties. ${ }^{49}$ Moreover, oxoarsenates(III) are possible sources or intermediates of natural arsenic compounds in the lithosphere. In particular, arsenic(III) compounds are considered as the main and most toxic pollutants in drinking or ground waters with high arsenic concentrations in some areas of the earth. ${ }^{50}$ Finally, a large number of water-containing and anhydrous oxoarsenates is known from nature as minerals. ${ }^{51}$ In combination with the different valence states of the transition metals, it exists a variety of ternary compounds. Representatives of oxoarsenates(V) are well known. However, representatives of oxoarsenates(III) are comparatively scarce. Although, the classical coordination chemistry of platinum has a long history and is replete with interesting compounds, only limited work has been reported on the cluster of $\mathrm{Pt}^{\mathrm{IV}}$ or $\mathrm{Pt}^{\mathrm{II}}$. For example, in the 1990s oxonitro-complexes comprising di- and/or tetravalent platinum ions (e.g. $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pt}^{\mathrm{II}}{ }_{3} \mathrm{O}_{3}\left(\mathrm{NO}_{2}\right)_{9}\right]^{5-},\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pt}^{\mathrm{II}} \mathrm{O}_{6}\left(\mathrm{NO}_{2}\right)_{12}\right]^{8-}$) were reported. ${ }^{52}$ In 1988, a mixed-valence tetranuclear platinum $(\mathrm{I}, \mathrm{II})$ complex $\left(\left[\mathrm{Pt}_{2}^{\mathrm{I}} \mathrm{Pt}^{\mathrm{II}}{ }_{2}\left(\mu_{3}-\mathrm{O}\right)_{2}(\mathrm{DMSO})_{6} \mathrm{Cl}_{2}\right]\right)$ with a $\operatorname{Pt}(\mathrm{I})-\mathrm{Pt}(\mathrm{I})$ bond was reported. ${ }^{53}$ In 2015 polynuclear hydroxy-bridged platinum(IV) nitrato complexes, $\left[\mathrm{Pt}^{\mathrm{IV}} 4(\mathrm{OH})_{6}\left(\mathrm{NO}_{3}\right)_{10}\right]$ and $\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{6}(\mathrm{OH})_{10}\left(\mathrm{NO}_{3}\right)_{12}\right]$, were reported. ${ }^{54} \mathrm{An}$ important milestone in the area of polyoxo-noble-metalates was the discovery of polyoxo-12-platinate(III) (POPt), $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{12} \mathrm{O}_{8}\left(\mathrm{SO}_{4}\right)_{12}\right]^{4-}$, by Wickleder and co-workers in 2004 (using rather extreme experimental conditions), which is the only polyoxoplatinate known till date, as mentioned above. In 2022, the first polythioplatinate(II), $\left[\mathrm{Pt}^{\mathrm{II}} \mathrm{S}_{2}\left(\mathrm{SO}_{3}\right)_{6}\right]^{10-}$ was synthesized by Kortz group. ${ }^{55}$

Besides, it is very rare that lone pair electron (E) containing cations bond directly to transition-metal cations as ligands. A few examples known so far involve the As^{3+} ions of pyramidal $E \mathrm{AsO}_{3}$ groups, which are bonded to $\mathrm{Cu}^{+}\left(\mathrm{d}^{10}\right)$ ions to form tetrahedral clusters
with short $\mathrm{Cu}-\mathrm{As}$ bonds, and to low-spin $\mathrm{Fe}^{2+}\left(\mathrm{d}^{6}\right)$ ions to form octahedral clusters with short As-Fe bonds; such as the tetrahedral CuAs_{4} cluster of dixenite with $\mathrm{As}-\mathrm{Cu}=2.240$ and $2.336 \AA,{ }^{56}$ the tetrahedral $\mathrm{CuAs}_{2} \mathrm{Cl}_{2}$ cluster of freedite with $\mathrm{Cu}-\mathrm{As}=2.32 \AA$, and the tetrahedral $\mathrm{CuCl}_{3} \mathrm{As}$ cluster of $\mathrm{Pb}_{6} \mathrm{Cu}\left(\mathrm{AsO}_{3}\right)_{2} \mathrm{Cl}_{7}$ with $\mathrm{As}-\mathrm{Cu}=2.34 \AA .{ }^{57}$ In the octahedral FeAs 6 clusters of nanlingite, ${ }^{58}$ the low-spin $\mathrm{Fe}^{2+}\left(\mathrm{d}^{6}\right)$ ion is surrounded by six As^{3+} ions with $\mathrm{As}-\mathrm{Fe}=2.40 \AA$. To the best of our knowledge, although many oxide compounds that contain $\mathrm{AsO}_{3}{ }^{3-}$ ions have been prepared, and most metal ions in such types of compounds are transition- and rare-earth-metal ions, nearly nothing is known about the platinum. In particular, the only known compound is the arsenoplatin, $\left[\mathrm{Pt}\left(\mu-\mathrm{NHC}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right)_{2} \mathrm{ClAs}(\mathrm{OH})_{2}\right]$ with $\mathrm{Pt}-\mathrm{As}=2.27 \AA \mathrm{~A}^{59}$

1.5 The RhCp^{*} - and $\operatorname{IrCp}{ }^{*}$-Containing POMs

In recent years there has been a growing interest in the chemistry of organometallic oxides, not least the organometallic clusters derived from polyoxometalates, a field which has been developed by W. G. Klemperer, W. Knoth, and R. G. Finke. ${ }^{1 b, 60}$ Various organometallic groups, for example, $\left[M\left(C p^{*}\right)\right]^{2+}\left(M=R h\right.$, Ir; $\left.C p^{*}=\eta^{5}-C_{5} \mathrm{Me}_{5}\right),\left[\mathrm{M}(\mathrm{CO})_{3}\right]^{+}(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$, $\left[\mathrm{M}(\mathrm{CO})_{2}\right]^{+}(\mathrm{M}=\mathrm{Rh}, \mathrm{Ir}),\left[\mathrm{Ru}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+},\left[\mathrm{Rh}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]^{+}$, and $\left[\mathrm{Ir}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)^{+}\right.$, have been employed to assemble the oxide clusters. The derivatives can serve as models for metal oxide surfaces and thus help to provide a basic understanding of catalyst-to-support interactions in heterogeneous catalytic processes. Recent in situ EXAFS ${ }^{61}$ and FT-IR ${ }^{62}$ studies show that RhCp* derivatives supported on inorganic oxide surface are more active and selective for hydroformylation than classical impregnation catalysts. However, and despite such potential, the chemistry (e.g. catalysis) of RhCp^{*} - and $\mathrm{IrCp} *$-containing POMs has not
been extensively investigated.
At an early stage, most of these studies have employed niobium incorporated heteropolytungstates as the support system, namely Klemperer and Day's [RhCp*(cis$\mathrm{Nb}_{2} \mathrm{~W}_{4} \mathrm{O}_{19}$) $]^{2-}$ (the first RhCp^{*}-containing POMs in 1984), ${ }^{63}$ in which the cis $-\mathrm{Nb}_{2} \mathrm{~W}_{4} \mathrm{O}_{19}{ }^{4-}$ ion behaves as a tridentate ligand utilizing a triangle of bridging oxygen atoms for the rhodium binding site, and Finke's Keggin $\mathrm{SiW}_{9} \mathrm{Nb}_{3} \mathrm{O}_{40}{ }^{7-}$ and Dawson $\mathrm{P}_{2} \mathrm{~W}_{15} \mathrm{Nb}_{3} \mathrm{O}_{62}{ }^{9-}$ systems. ${ }^{60 b}$, 63-64 Finke's work was followed up in 1996 by Nomiya with the synthesis of $\mathrm{Na} 5\left[\mathrm{RhCp}^{*} \mathrm{SiW}_{9} \mathrm{Nb}_{3} \mathrm{O}_{40}\right] \cdot 3 \mathrm{DMSO} \cdot 2 \mathrm{H}_{2} \mathrm{O} .{ }^{65}$ The report of $\left(\mathrm{MCp}^{*}\right) 4 \mathrm{~V}_{6} \mathrm{O}_{19}(\mathrm{M}=\mathrm{Rh}, \mathrm{Ir})$ constituted the first example of a vanadium-substituted polyoxoanion-supported organometallic groups $\left[\mathrm{M}\left(\mathrm{Cp}^{*}\right)\right]^{2+},{ }^{66}$ and only three other examples of trivanadium polyoxoanion-supported organometallics group $\left[\mathrm{RhCp}^{*}\right]^{2+}$, $\left(\mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{~N}\right)_{5}\left[\left(\mathrm{RhCp}^{*}\right)_{2} \mathrm{P}_{2} \mathrm{~W}_{15} \mathrm{~V}_{3} \mathrm{O}_{62}\right]$, $\quad\left[\left(\mathrm{RhCp}^{*}\right)\left(\alpha-1,4,9-\mathrm{PW}_{9} \mathrm{~V}_{3} \mathrm{O}_{40}\right)\right]^{4-} \quad$ and $\left(\mathrm{NBu}_{4}\right)_{6}\left[\left(\mathrm{RhCp}^{*}\right)\left(\alpha-1,2-\mathrm{P}_{2} \mathrm{~W}_{16} \mathrm{~V}_{2} \mathrm{O}_{62}\right)\right]$, have since reported by Nomiya group. ${ }^{67}$ In 1993, five organorhodium $\left[\mathrm{RhCp}^{*}\right]^{2+}$ oxomolybdenum complexes had been reported by Gouzerh group, the $\left[\mathrm{Mo}_{5} \mathrm{O}_{13}\left(\mathrm{OCH}_{3}\right)_{4}(\mathrm{NO})\right]^{3-}$ anion of which can be viewed as a lacunary Lindqvisttype species. In 2017, Jin had introduced two noble metal-containing POMs, the $\mathrm{H}_{3}\left[\left(\mathrm{RhCp}^{*}\right)_{4} \mathrm{PMo}_{8} \mathrm{O}_{32}\right] \cdot 14 \mathrm{H}_{2} \mathrm{O}$ and the $\mathrm{H}_{5}\left[\mathrm{Na}_{2}\left(\mathrm{IrCp}^{*}\right)_{4} \mathrm{PMo}_{8} \mathrm{O}_{34}\right] \cdot 13 \mathrm{H}_{2} \mathrm{O} .{ }^{68}$ They were chemically adsorbed and successfully nanostructured on the nanofiber surface and proved to be active electrocatalytic materials. In 2003, Nishikawa reported the triple cubane- and windmill-type isomers of an organorhodium tungsten oxide clusters $\left[(\mathrm{Cp} * \mathrm{Rh})_{4} \mathrm{~W}_{4} \mathrm{O}_{16}\right] .{ }^{69}$ Later, the $\left[\mathrm{H}_{8}\left\{\mathrm{Rh}\left(\mathrm{Cp}^{*}\right)\right\}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}\right] \cdot 23 \mathrm{H}_{2} \mathrm{O}$ and its iridium analogue the $\left[\mathrm{H}_{4}\left\{\operatorname{Ir}\left(\mathrm{Cp}^{*}\right)\right\}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}\right] \cdot 17.33 \mathrm{H}_{2} \mathrm{O}$ were synthesized by Niu group. ${ }^{70}$ In 2015 , two new hybrid complexes of niobium and tantalum Lindqvist-type anions, $\left[\mathrm{M}_{6} \mathrm{O}_{19}\right]^{8-}$, with
organometallic $\left[\mathrm{RhCp}^{*}\right]^{2+}$ fragments, were reported by Abramov group. ${ }^{71}$ Recently, Blanchard group have described the synthesis of a new organometallic derivative of POMs, $(\mathrm{TBA})_{3}\left[\alpha-\mathrm{H}_{2} \mathrm{PW}_{11} \mathrm{O}_{39}\left\{\mathrm{Rh}^{\text {III }} \mathrm{Cp} *\left(\mathrm{OH}_{2}\right)\right\}\right]$, presenting an accessible coordination site on the Rh ${ }^{\text {III }}$ center. ${ }^{72}$ Furthermore, in 2021, four organometallic RhCp^{*} - and IrCp^{*}-containing 20Tungstobismuthates(III) and -Antimonates(III) were reported by Kortz group. ${ }^{73}$

1.6 Catalysis

The hydrogenation of arenes provides a direct and retrosynthetically simple route towards saturated carbo- and heterocycles. This is an important industrial process with a wide range of applications ranging from the production of functional materials, important intermediates in organic synthesis, and pharmaceuticals to the improvement of diesel fuel quality. ${ }^{74}$ Metals, especially noble metals and their nanoparticles, have been found to be highly effective catalysts in this area. The reduction of noble metal salts and the decomposition/reduction of organometallic compounds are both common methods for forming noble metal nanoparticles. ${ }^{75}$ In both cases, the resulting nanoparticles are typically stabilized by ligands or capping groups such as polymers, dendrimers, ionic liquids, and surfactants, in order to prevent uncontrolled aggregation. Recently, the anionic templateassisted method was used to synthesize a series of silver nanocrystals (NCs) with different sizes and shapes. ${ }^{76}$ However, these methods do not allow for an elegant control over the size and shape of the resulting nanoparticles. Therefore, our aim has been to design and synthesize discrete noble metal-based oxo clusters having a particular size, shape, and nuclearity, and subsequently loading them onto stable and catalytically inert supports with high surface area.

Chapter II Experimental Details

2.1 Instrumentations

2.1.1 Single-Crystal X-Ray Diffraction

Data for crystals were collected at 100 K on a Bruker D8 APEX II CCD single-crystal diffractometer equipped with kappa geometry (graphite monochromator, $\lambda_{\mathrm{Mo}} \mathrm{K} \alpha=0.71073$ Å) by using APEX III software package, ${ }^{77}$ except for $\mathbf{K N a}-\mathbf{P t}_{\mathbf{3}} \mathbf{W}_{\mathbf{1 1}}, \mathbf{K N a}-\mathbf{P t}^{\mathbf{I I}} \mathbf{W}_{\mathbf{5}}, \mathbf{K N a}$ $\mathbf{P t}^{\mathbf{I I I}} \mathbf{2 W}_{5}$ and K-Pt4Ass(dehy) which were collected at 100 K on a Rigaku XtaLAB Synergy, Dualflex, HyPix single-crystal diffractometer equipped with kappa geometry (graphite monochromator, $\lambda_{\mathrm{Mo} \mathrm{K} \alpha}=0.71073 \AA$) by using CrysAlis ${ }^{\text {Pro }}$ software package. ${ }^{78}$ The crystals were mounted in a Hampton cryoloop with paratone-N oil. Multi-scan absorption corrections were applied using the SADABS^{79} and $\mathrm{ABSPACK}^{80}$ program, respectively. The structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using the APEX III software in conjunction with SHELXL-2014..81 The hydrogen atoms of the organic groups and hydroxyl groups were placed in calculated positions and refined using a riding model and the remaining nonhydrogen atoms were refined with anisotropic displacement parameters. The H atoms of the crystal waters were not located. Refinements were conducted by full-matrix least squares against $|\mathrm{F}|$ using all data. Images of the crystal structures were generated by Diamond, version 3.2 (software copyright, Crystal Impact GbR). Some of the lattice water molecules were too disordered and thus the disagreeable reflections were removed by the SQUEEZE command in PLATON. ${ }^{82}$

Chapter II Experimental Details

2.1.2 Fourier Transform Infrared (FT-IR) Spectroscopy

By virtue of characteristic metal-oxygen vibrations, FT-IR spectroscopy provides valuable structural information of every polyanion, especially in the fingerprint region (1000 to 400 cm^{-1}). All the spectra were recorded on KBr disks using a Nicolet-Avatar 370 spectrometer between 400 and $4000 \mathrm{~cm}^{-1}$. The abbreviations used in the thesis to assign the peak intensities are as follows: $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, and $\mathrm{w}=$ weak.

2.1.3 Elemental and Thermogravimetric Analyses

The elemental analyses were performed by Zentrallabor, Technische Universität Hamburg (TUHH), Am Schwarzenberg-Campus 1, 21073 Hamburg (heavy atoms) and Analytische Laboratorien, Industriepark Kaiserau (Haus Heidbruch), 51789 Lindlar, Germany (CHN). The K and Na analyses were performed in house by atomic absorption (AA) spectroscopy carried out on a Varian SpectrAA 220 spectrometer.

In order to evaluate the thermalstability of obtained polyanions, thermogravimetric analyses were carried out on a TA Instruments SDT Q600 thermobalance with a 100 mL $\min ^{-1}$ flow of nitrogen, with the temperature being ramped from $20-500^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

2.1.4 Nuclear Magnetic Resonance (NMR) Spectroscopy

The solution stability of all the polyanions was examined by multinuclear NMR spectroscopy after redissolution of their alkali metal salts in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$. The corresponding NMR spectra were recorded on a 400 MHz JEOL ECX instrument at room temperature or by heating, using $5-\mathrm{mm}$ tubes for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ with respective resonance frequencies of $399.78 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 100.71 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right), 162.14 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$ and 85.94 MHz
$\left({ }^{195} \mathrm{Pt}\right)$. The chemical shifts are reported with respect to the references $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right), 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ and $\mathrm{Na}_{2} \mathrm{PtCl}_{6}\left({ }^{195} \mathrm{Pt}\right)$.

2.1.5 Electrospray-Ionization Mass Spectrometry (ESI-MS)

To better assess the solution behavior of as-synthesized compounds, High-resolution ESIMS spectra were recorded using a Bruker Daltonics Q-TOF Impact instrument employing both negative and positive electrospray ionization modes. MicrOTOF Focus mass spectrometer (Bruker Daltonics) was fitted with an ESI source and external calibration was achieved with 10 mL of 0.1 M sodium formate solution. The instrument ion source and tubing were rinsed with methanol. The calibration was carried out using the enhanced quadratic calibration mode. All ESI-MS measurements were performed in both negative and positive ion modes. Samples were measured as direct infusions at a concentration of $100 \mu \mathrm{~g} / \mathrm{mL}$ in deionized water at a flow rate of $180 \mu \mathrm{~L} / \mathrm{min}$. The spectral simulations were carried out in Data Analysis 4.1 (Bruker Daltonics, Bremen).

2.1.6 X-ray photoelectron spectroscopy (XPS)

The oxidation states of atoms in compound were ascertained using X-ray photoelectron spectroscopy (XPS) measurements. The samples were dispersed in acetone and spin-coated onto the as prepared substrates at a rotation speed of 1000 rpm . The ultra-high vacuum vessel, which had a vacuum pressure of $\sim 1 \times 10^{-8} \mathrm{mbar}$, was equipped with a water-cooled X-ray gun with a double $\mathrm{Mg} / \mathrm{Al}$ anode (Specs XR 50) and a hemispherical electron analyzer (Specs Phoibos 100). $\mathrm{Mg} \mathrm{K} \alpha_{1,2}$ radiation $(\mathrm{E}=1253.6 \mathrm{eV}$) was used as a source of excitation. The photoelectrons were detected in the large area lens mode and fixed analyzer
transmission at a pass energy of 50 eV . The measured data were analyzed using the CASAXPS software. The positions of the peaks were in the expected regions.

2.1.7 Powder X-ray diffraction (PXRD)

Powder X-ray diffraction data were acquired on a Rigaku Miniflex 600 (Rigaku Corporation, Tokyo, Japan) using a primary beam $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.541838 \AA)$ at 40 kV and 15 mA . The instrument scanning 2θ range was from 5 to 50° in steps of 0.02°, with a scan speed of $5^{\circ} \mathrm{min}^{-1}$.

2.1.8 Sorption Measurements

N_{2}-adsorption (physisorption) measurements for surface area and pore size analysis were performed at 77 K on a Quantachrome NOVA 4000e surface area and pore size analyzer and a Quantachrome Autosorb-1 analyzer (Figure 3.6). Samples were placed in 9 mm Quantachrome cells and degassed under vacuum at $100{ }^{\circ} \mathrm{C}$ for 16 hours prior to measurements. The surface area was estimated using the Brunauer-Emmett-Teller (BET) theory and pore size was determined using Barrett-Joyner-Halenda (BJH) method.

2.1.9 Batch Reactor

Hydrogenation reactions were also performed in a 100 mL Parr 5500 stainless steel highpressure compact reactor coupled with Parr 4848 reactor controller, allowing operation at high temperature (up to $350{ }^{\circ} \mathrm{C}$) and pressure (up to 180 bar). In a typical reaction, the reactor was loaded with 50 mL substrate solution and 50 mg of the supported catalyst (noble metal loading is always indicated). The reactor was purged with pure H_{2} prior to each reaction. The progress of the reaction was followed by monitoring the drop in
hydrogen pressure. The reaction mixture was analyzed using a GC-FID from Shimadzu after each reaction.

2.1.10 Gas chromatography (GC)

Gas chromatography (GC) analysis was performed in a Shimadzu GC-2010 equipped with a flame ionization detector (FID) in order to measure the substrate conversion and selectivity of the obtained products via a HP-5 column ($15 \mathrm{~m} \times 0.25 \mathrm{~mm}$, I.D. $0.25 \mu \mathrm{~m}$) with the carrier gas being He .

2.1.11 Bond Valence Sum (BVS) Calculations

To determine the oxidation states of incorporated metal ions as well as the protonation states of oxygen ligands in obtained polyanions, bond valence sum (BVS) calculations were performed with a program copyrighted by Chris Hormillosa \& Sean Healy and distributed by I. D. Brown. ${ }^{83}$

Chapter II Experimental Details

2.2 Synthesis of $\left(\mathrm{RhC}_{5} \mathrm{Me}_{5} \mathrm{Cl}_{2}\right)_{2}$ and POM Precursors

All the mentioned POM precursors in the thesis were synthesized according to the published procedures and the identity of the products was confirmed by NMR and FT-IR spectroscopy. The amount of crystal water present in each compound was determined by thermogravimetric analysis.

2.2.1 Synthesis of $\left(\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right)_{2}$

The RhCp * dimers were synthesized according to the published procedures. ${ }^{84}$ In a 50 mL round bottom flask, a sample of 1.0 g of $\mathrm{RhCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ (Sigma-Aldrich) was dissolved in 30 mL of methanol followed by the addition of $690 \mu \mathrm{~L}$ of 1,2,3,4,5pentamethylcyclopentadiene $\left(\mathrm{Cp}^{*} \mathrm{H}\right)$. The flask was connected to a condenser and flushed with nitrogen for about 5 min , then refluxed at $73^{\circ} \mathrm{C}$ in an oil bath for 48 hours during which the setup was constantly flushed with nitrogen. After cooling to room temperature, the solution was filtered to isolate a red microcrystalline material. The filtrate was concentrated to about 5 mL on a rotary evaporator and some additional product crystallized out during the evaporation. The obtained crystals were then added to the previously filtered material and the combined batch was washed with 10 mL of diethyl ether and dried under air. (Yield: 95% based on Rh)

2.2.2 $\quad \mathrm{Na} 9\left[A-\alpha-\mathrm{As}^{\mathrm{V}} \mathrm{W}_{9} \mathrm{O}_{34}\right] \cdot \mathbf{1 8 H}_{2} \mathrm{O}$

To a solution of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(45 \mathrm{~g}, 136 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL}), \mathrm{Na}_{2} \mathrm{HAsO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(4.7$ $\mathrm{g}, 15 \mathrm{mmol}$) and 8.7 mL of pure acetic acid were successively added. The solid which precipitated gradually was filtered, washed with ethanol and air-dried with aspiration. Yield: $38 \mathrm{~g}\left(90 \%\right.$ based on W). ${ }^{85}$

Chapter II Experimental Details

2.3 Synthesis of Mesoporous Supports

2.3.1 Synthesis of SBA15

A modified synthetic procedure was used to synthesize the Santa Barbara Amorphous-15 (SBA15). ${ }^{86}$ In a typical synthesis, 120.0 g of Pluronic ${ }^{\circledR}$ P123 (Mn ~ 5,800, Sigma Aldrich) stirred in a mixture of 3.6 L of water and 100 ml of $37 \% \mathrm{HCl}$ until complete dissolution (~ 4 hours). To this solution, 270 mL of TEOS were added dropwise. The resulting solution was stirred in a water bath for 16 hours at $36{ }^{\circ} \mathrm{C}$, and then aged at $95^{\circ} \mathrm{C}$ under static conditions for 3 days. The white precipitate was collected by filtration, dried in air for 2 days followed by calcination at $550{ }^{\circ} \mathrm{C}$ under air for 6 hours with a heating rate of $1^{\circ} \mathrm{C}$ $\min ^{-1}$ to remove the template.

2.3.2 Synthesis of Aminopropyl-Modified SBA15 (SBA15-apts)

SBA15 (33.0 g) and (3-Aminopropyl)triethoxysilane (18 mL) were refluxed for 5 hours in 1 L of toluene and filtered at room temperature. The resulting white powder was dried at $100^{\circ} \mathrm{C}$ for 5 hours.

Chapter III Polyoxo-noble-metalates

Chapter III Polyoxo-noble-metalates

polyoxopalladates(II) represent a significant subclass of the polyoxo-noblemetalate family and are continually developing. No platinum analogues of polyoxopalladates(II) have been reported to date, except the first polyoxoplatinate $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{12} \mathrm{O}_{8}\left(\mathrm{SO}_{4}\right)_{12}\right]^{4-}$. The polyoxoaurates
 the polyoxoplatinate and polyoxoaurate chemistry has been stagnant ever since the reports of the early members. However, by now no polyoxoanion containing both platinum(IV) and gold(III) centers has been reported. As a part of our ongoing research interests to expand the polyoxo-noble-metalates system, in this chapter, 6 novel polyoxo-noblemetalates are presented in an effort to push the area to a higher synthetic and analytical level.

3.1 $\mathrm{Pt}^{\mathrm{IV}}$-containing hexaplatinate(II) and hexapalladate(II)

In this work, the first $\mathrm{Pt}^{\mathrm{IV}}$-containing discrete polyoxoplatinate(II) $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pt}^{\mathrm{II}}{ }_{6} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2-}\left(\mathrm{Pt}_{7}\right)$ and polyoxopalladate(II) $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pd}^{\mathrm{II}}{ }_{6} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2-}$ (PtPd6) have been prepared and characterized in the solid-state (single-crystal XRD, FTIR spectroscopy, elemental and thermogravimetric analyses), in solution (multinuclear $\left.\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{195} \mathrm{Pt}\right) \mathrm{NMR}\right)$, and in the gas phase (ESI-MS spectroscopy). Catalytic studies were performed on $\mathbf{P t}_{7}$ supported on SBA15-apts for o-xylene hydrogenation at $300^{\circ} \mathrm{C}$ and 90 bar H_{2} pressure and indicated excellent activity and recyclability with low activation temperature.

3.1.1 Synthesis

$\mathrm{KNa}\left[\mathrm{Pt}^{\mathrm{IV}} \mathbf{P t}_{6}{ }^{\mathrm{II}} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathrm{NaNO}_{3} \cdot \mathrm{NaAsO}_{2}\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathbf{2 1 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { KNa } ^ { 2 } - \mathrm { Pt } _ { 7 })}$

$\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}(9 \mathrm{mg}, 0.03 \mathrm{mmol})$ was dissolved in 0.1 mL of 1 M NaOH . This solution was added to 2 mL of 2 M sodium dimethylarsinate buffer (pH 7) containing $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ (75 mg , 0.18 mmol), and stirred for 1 h at $80^{\circ} \mathrm{C}$. After two weeks, red block-shaped crystals were collected by filtration and washed with 96% ethanol. Yield: 9 mg (10% with respect to $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}$ as limiting reagent). Elemental Analysis: Calculated (\%) for KNa-Pt7: Pt 46.00 , As 17.67, K 1.32, Na 2.32, C 5.66, H 2.85, N 0.47. Found (\%): Pt 46.00, As 18.40, K 1.38, Na 2.28, C 5.13, H 2.52 , N 0.43 . FT-IR ($\left.\mathrm{KBr} / \mathrm{cm}^{-1}\right): 3600-3300(\mathrm{~s})\left[v(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 3003-$ 2922 (w) [$\mathrm{v}(\mathrm{C}-\mathrm{H})$ methyl groups of cacodylate], 1633 (m) [$\mathrm{H}_{2} \mathrm{O}$ bending fundamental mode $\delta], 1383(\mathrm{~s})\left[\delta(\mathrm{C}-\mathrm{H})\right.$ methyl groups of cacodylate], $1267(\mathrm{~m})\left[\delta_{\text {in-plane }}(\mathrm{O}-\mathrm{H})\right], 1056$ (w) $\left[v_{\text {symm }}(\mathrm{N}-\mathrm{O})\right.$ of $\left.\mathrm{NO}_{3}{ }^{-}\right], 898(\mathrm{w})\left[\delta_{\text {out-of-plane }}(\mathrm{O}-\mathrm{H})\right], 794-604(\mathrm{~s})[v(\mathrm{Pt}-\mathrm{O})], 505(\mathrm{~m})[v(\mathrm{As}-$ C)].

$\mathrm{Na}_{2}\left[\mathbf{P t}^{\mathrm{IV}} \mathbf{P d}^{\mathrm{II}_{6}} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathbf{2 N a N O} \mathbf{N a}^{\mathbf{9}} \mathbf{H}_{2} \mathrm{O}\left(\mathbf{N a} \cdot \mathrm{PtPd}_{6}\right)$

$\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}(9 \mathrm{mg}, 0.03 \mathrm{mmol})$ was dissolved in 0.1 mL of 1 M NaOH . This solution was added to 2 mL of 2 M sodium dimethylarsinate buffer $(\mathrm{pH} 7)$ containing $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(43 \mathrm{mg}$, $0.18 \mathrm{mmol})$, and stirred for 1 h at $80^{\circ} \mathrm{C}$. After ten days, red needle-shaped crystals were collected by filtration and washed with 96% ethanol. Yield: 30 mg (47% with respect to $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}$ as limiting reagent). Elemental Analysis: Calculated (\%) for Na-PtPd6: Pt 9.16, Pd 29.98, As 21.11, Na 4.32, C 6.77, H 2.56, N 1.32. Found (\%): Pt 8.90, Pd 29.80, As 21.70, Na 4.11, C 7.13, H 2.28, N 1.01. FT-IR $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right): 3600-3300(\mathrm{~s})\left[v(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right]$, 3007-2853 (w) [$v(\mathrm{C}-\mathrm{H})$ of methyl groups of cacodylate], 1639 (m) [$\mathrm{H}_{2} \mathrm{O}$ bending
fundamental mode $\delta], 1384(\mathrm{~s})[\delta(\mathrm{C}-\mathrm{H})$ of the methyl groups of cacodylate $], 1268(\mathrm{~m})\left[\delta_{\text {in }}\right.$ plane $(\mathrm{O}-\mathrm{H})], 1050(\mathrm{w})\left[\mathrm{v}_{\text {sym(N-O) }}\right.$ of $\left.\mathrm{NO}_{3}{ }^{-}\right], 904(\mathrm{w})\left[\delta_{\text {out-of-plane }}(\mathrm{O}-\mathrm{H})\right], 806-581(\mathrm{~s})[\mathrm{v}(\mathrm{Pt}-$ O), $v(\mathrm{Pd}-\mathrm{O})], 514-491(\mathrm{~m})[v(\mathrm{As}-\mathrm{C})]$.

KNa-Pt7@SBA15-apts

The $\mathbf{K N a}-\mathbf{P t}_{7}(20 \mathrm{mg}, 0.0067 \mathrm{mmol})$ was dissolved in 100 mL of deionized water followed by the slow addition of 380 mg of the SBA15-apts to the resulting orange coloured solution under stirring. The quantities of the $\mathbf{K N a}-\mathbf{P t}_{7}$ and support were taken such that the resultant composite material would have $\mathrm{a} \sim 5 \mathrm{wt} \% \mathrm{Pt}$-loading. After refluxing for 2 h , the mixture was filtered under vacuum and the residue was washed three times with deionized water and air-dried. The filtrate was found to be colourless, which indicated quantitative loading. The dried $\mathbf{K N a}-\mathbf{P t} \mathbf{7}^{@}$ SBA15-apts composite material was then calcined at $250^{\circ} \mathrm{C}$ for 4 h (heating rate $=0.5^{\circ} \mathrm{C} / \mathrm{min}$) in order to obtain the calcined pre-catalyst that was eventually reduced in situ under H_{2} inside the Parr compact reactor to generate the catalyst for the hydrogenation of arenes.

Figure 3.1. FT-IR spectrum of $\mathbf{K N a}^{\mathbf{N a}} \mathrm{Pt}_{7}$ (red) and $\mathbf{N a - P t P d} 6$ (blue).

Figure 3.2. Thermograms of $\mathbf{K N a}^{\mathbf{N a}} \mathbf{P t}_{7}$ (left) and $\mathbf{N a - P t P d} 6$ (right) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere.

3.1.2 Single-Crystal XRD Data

Table 3.1. Crystal data and structure refinement for $\mathbf{K N a}-\mathrm{Pt}_{7}$ and $\mathbf{N a}-\mathrm{PtPd} 6$.

Compound	$\mathbf{K N a - P t}{ }_{7}$	Na-PtPd ${ }_{6}$
empirical formula ${ }^{a}$	$\mathrm{KNa}_{3} \mathrm{Pt}_{7} \mathrm{As}_{7} \mathrm{C}_{14} \mathrm{H}_{84} \mathrm{O}_{44} \mathrm{~N}$	$\mathrm{Na}_{4} \mathrm{PtPd}_{6} \mathrm{As}_{6} \mathrm{C}_{12} \mathrm{H}_{54} \mathrm{O}_{33} \mathrm{~N}_{2}$
$\mathrm{fw},{ }^{,} \mathrm{g} \mathrm{mol}^{-1}$	2968.86	2129.64
crystal system	Orthorhombic	Triclinic
space group	Pcca	P1
$a(\mathrm{Å})$	26.8981(9)	6.71005(9)
$b(\AA)$	13.4671(4)	15.14730(18)
$c\left(\begin{array}{l}\text { A }\end{array}\right.$	19.6627(7)	15.2445(2)
$\alpha\left({ }^{\circ}\right)$	90	62.3352(13)
$\beta\left({ }^{\circ}\right)$	90	86.3984(12)
$\gamma\left({ }^{\circ}\right)$	90	88.6937(11)
$V\left(\AA^{3}{ }^{3}\right.$	7122.6(4)	1369.56(3)
Z	4	1
Dc ($\mathrm{g} \mathrm{cm}^{-3}$)	2.499	2.532
abs coeff, mm^{-1}	16.603	8.171
$\mathrm{F}(000)$	4768	971

Chapter III Polyoxo-noble-metalates

θ range for data collection, deg	2.206 to 26.477	2.680 to 25.027	
completeness to $\Theta_{\text {max }}$	99.8 \%	99.9\%	
index ranges	$\begin{aligned} & -33=<\mathrm{h}=<33, \\ & -16=<\mathrm{k}=<16 \\ & -22=<1=<24 \end{aligned}$	$\begin{aligned} & -7=<\mathrm{h}=<7 \\ & -18=<\mathrm{k}=<18 \\ & -18=<1=<18 \end{aligned}$	
reflns collected	56395	91736	
indep reflns	7294	9526	
R (int)	0.1190	0.0851	
abs corn	Semi-empirical from equivalents	Semi-empirical from equivalents	
data/restaints/param	7294/18/302	9526 / 3 / 575	
GOF on F^{2}	1.020	1.046	
$R_{1},{ }^{b} w R_{2}{ }^{c}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0465, 0.1188	0.0339, 0.0922	
$R_{1},{ }^{b} w R_{2}{ }^{c}$ (all data)	0.0860, 0.1356	0.0353, 0.0934	
Absolute structure parameter	/	0.479(6)	
Largest diff peak and hole, e $\AA^{\circ}{ }^{-3}$	1.533 and -2.517	3.133 and -2.588	
${ }^{a}$ The entries are the actual formula units and weights as obtained from bulk elemental analysis. ${ }^{{ }^{b} R_{1}=\Sigma \\|\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\| / \Sigma\left\|F_{\mathrm{o}}\right\| \cdot{ }^{c} w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2} .}$			

3.1.3 Bond Valence Sum Calculations

In $\mathbf{K N a}-\mathbf{P t}_{7}$ and $\mathbf{N a}-\mathbf{P t P d}_{6}$, the BVS values for the central Pt atoms are 3.992 and 3.867, respectively. In $\mathbf{K N a} \mathbf{- P t} \mathbf{7}$, the BVS values for the six surrounding Pt atoms range from 1.990 to 1.943 . In Na-PtPd6, the BVS values for the six surrounding Pd atoms range from 2.030 to 2.183 . The BVS values for different types of μ_{3}-bridging oxygens are presented in Tables 3.2. These values show that these oxygens are not protonated and therefore the central Pt ion is in the $4+$ oxidation state and the surrounding Pt and Pd ions are in the $2+$ oxidation state, respectively.

Table 3.2. BVS values for μ_{3}-bridging oxygen atoms in $\mathbf{K N a}^{-P_{7}}$ and $\mathbf{N a - P t P d} 6$.

$\mu_{3}-\mathrm{O}$	Bond distance($($ Å)	BVS value	$\mu_{3}-\mathrm{O}$	Bond distance($\left(\begin{array}{l}\text { ® }\end{array}\right.$	BVS value
$\mathbf{K N a - P t}{ }_{7}$					
O1	Pt1-O1 (2.0336)	1.682	O3	Pt3-O4 (2.0307)	1.680
	Pt2-O1 (2.0253)			Pt4-O4 (2.0151)	
	Pt3-O1 (2.0064)			Pt1-O4 (2.0243)	
O2	Pt2-O2 (1.9984)	1.697			
	Pt4-O2 (2.0262)				
	Pt1-O2 (2.0314)				
$\mathrm{Na}-\mathrm{PtPd}_{6}$					
O1	Pd1-O1 (2.0736)	1.699	O4	Pd3-O4 (1.9815)	1.826
	Pd6-O1 (1.9911)			Pd4-O4 (1.9708)	
	Pt1-O1 (2.0393)			Pt1-O4 (2.0618)	
O 2	Pd1-O2 (1.9885)	1.866	O5	Pd4-O5 (1.9864)	1.850
	Pd2-O2 (1.9928)			Pd5-O5 (1.9820)	
	Pt1-O2 (2.0124)			Pt1-O5 (2.0326)	
O3	Pd2-O3 (2.0078)	1.773	O6	Pd5-O6 (1.9953)	1.721
	Pd3-O3 (1.9921)			Pd6-O6 (2.0301)	
	Pt1-O3 (2.0486)			Pt1-O6 (2.0570)	

3.1.4 Results and Discussion

3.1.4.1 Solid-State Structure

Single-crystal XRD studies revealed that $\mathbf{P t}_{7}$ crystallizes as a mixed potassium-sodium salt, $\mathrm{KNa}\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pt}_{6}{ }_{6} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathrm{NaNO}_{3} \cdot \mathrm{NaAsO}_{2}\left(\mathrm{CH}_{3}\right)_{2} \cdot 21 \mathrm{H}_{2} \mathrm{O} \quad\left(\mathbf{K N a}-\mathrm{Pt}_{7}\right), \quad$ in the orthorhombic space group Pcca and PtPd6 crystallizes as a sodium salt, $\mathrm{Na}_{2}\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pd}_{6}^{\mathrm{II}} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot 2 \mathrm{NaNO}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(\mathbf{N a}-\mathbf{P t P d} \mathbf{~})$, in the triclinic space group P 1 , respectively. The symmetry unit of solid-state interaction of polyanions are showed in

Figure 3.3. Both novel polyanions $\mathbf{P t}_{7}$ and $\mathbf{P t P d} \mathbf{d}_{6}$ are isostructural, displaying a central distorted $\mathrm{Pt}^{\mathrm{IV}} \mathrm{O}_{6}$ octahedron surrounded by a ring of six square-planar $\mathrm{MO}_{4}\left(\mathrm{M}=\mathrm{Pt}^{\mathrm{II}}, \mathrm{Pd}^{\mathrm{II}}\right)$ units with six terminal dimethylarsinate (also known as cacodylate, cac) ligands, resulting in a disk-shaped structure with idealized $\mathrm{D}_{3 d}$ symmetry (Figure 3.4). All seven metal centers in both polyanions are coplanar forming a regular $\mathrm{Pt}^{\mathrm{IV}}$-centered M_{6} hexagon $(\mathrm{M}=$ $\left.\mathrm{Pt}^{\mathrm{II}}, \mathrm{Pd}^{\mathrm{II}}\right)$ with metal-metal distances $\mathrm{Pt}^{\mathrm{II}} \ldots \mathrm{Pt}^{\mathrm{II}} 3.065-3.129 \AA$ and $\mathrm{Pt}^{\mathrm{IV}} \ldots \mathrm{Pt}^{\mathrm{II}} 3.083-3.094 \AA$ in $\mathbf{P t}_{7}$ and $\mathrm{Pd}^{\mathrm{II}} \ldots \mathrm{Pd}^{\mathrm{II}}$ 3.016-3.103 $\AA ; \mathrm{Pt}^{\mathrm{IV}} \ldots \mathrm{Pd}^{\mathrm{II}}: 3.047-3.076 \AA$ in $\mathbf{P t P d}_{6}$, respectively. The octahedral coordination environment of the central $\mathrm{Pt}^{\mathrm{IV}}$ ions is formed exclusively by $\mu_{3}-$ oxo groups and the $\mathrm{Pt}^{\mathrm{IV}}-\mathrm{O}$ bond distances are in the range of $2.023-2.033 \AA$ in $\mathbf{P t}_{7}$, and in the range of 2.012-2.063 \AA in PtPd6. The square-planar coordination environments of the $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ ions in $\mathbf{P t}_{7}$ and $\mathbf{P t P d}_{6}$, respectively, are formed by two μ_{3}-oxo groups and two cacodylate oxygens ($\mathrm{Pt}^{\mathrm{II}}-\mathrm{O}: 1.998-2.071 \AA$ $\AA \mathrm{Pd}^{\mathrm{II}}-\mathrm{O}: 1.972-2.095 \AA$). The average $\mathrm{Pt}^{\mathrm{IV}}-\mathrm{O}$ bond length in $\mathbf{P t}_{7}$ of $2.029 \AA$ and in $\mathbf{P t P d}_{6}$ of $2.042 \AA$ is comparable with that of $2.01 \AA$ observed in $\left[\mathrm{H}_{3} \mathrm{PtW}_{6} \mathrm{O}_{24}\right]^{5-} .{ }^{35}$ Bond valence sum (BVS) calculations suggest no protonation for any of the oxygen atoms in $\mathbf{P t}_{7}$ and $\mathbf{P t P d} 6$ (Tables 3.2).

Figure 3.3. The symmetry unit of solid-state interaction of polyanions with Na^{+}and K^{+} counter cations in Pt_{7} (left) and Na^{+}counter cations in PtPd6 (right), respectively (50\% probability ellipsoids).

Figure 3.4. Structural representation of $\mathbf{P t}_{7}$ (left) and $\mathbf{P t P d}_{6}$ (right). Color code: Pt (orange), Pd (dark red), O (red), C (gray), $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ (blue tetrahedra), hydrogens omitted for clarity.

3.1.4.2 Multinuclear NMR Study

To complement our solid-state XRD results on Pt7 and PtPd6 with solution studies, we performed ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{195} \mathrm{Pt}$ NMR measurements on $\mathbf{K N a}-\mathrm{Pt}_{7}$ and $\mathbf{N a}-\mathbf{P t P d} 6$ redissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$. The ${ }^{1} \mathrm{H}\left(\mathrm{D}_{2} \mathrm{O}\right)$ NMR spectrum of sodium cacodylate (Na-cac) exhibits sharp peaks at 4.70 and 1.41 ppm , respectively, corresponding to the protons of the crystal water molecules and cacodylate methyl groups, respectively (Figure 3.5a). The ${ }^{1} \mathrm{H}\left(\mathrm{D}_{2} \mathrm{O}\right)$ NMR spectra of $\mathbf{P t}_{7}$ and $\mathbf{P t P d}_{6}$ exhibit theexpected two peaks at 2.36 and 1.60 ppm for $\mathbf{P t}_{7}$ and 2.38 and 1.60 ppm for $\mathbf{P t P d}_{6}$, respectively, corresponding to the two structurally and hence magnetically inequivalent cacodylate methyl groups (Figure 3.5a). The small peak at 1.64 ppm for $\mathbf{P t}_{7}$ corresponds to the methyl groups of co-crystallized cacodylate (Figure 3.6). On the other hand, the small peak at 1.62 ppm for PtPd6 can be assigned to free cacodylate, which is formed in situ by partial decomposition of PtPd6. This observation is further supported by the time-dependent ${ }^{1} \mathrm{H}$ spectrum of PtPd $_{6}$ (Figure 3.7). The ${ }^{1} \mathrm{H}$ NMR
spectrum of $\mathbf{P t}_{7}$ remained unchanged even for two months, which indicates the high solution stability of this polyanion (Figure 3.8).

Figure 3.5. ${ }^{1} \mathrm{H}$ (a) and ${ }^{13} \mathrm{C}(\mathrm{b}) \mathrm{NMR}$ spectra $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{P t}_{7}$ and $\mathbf{P t P d} 6$ compared to spectra of the references cacodylic acid ($\mathrm{H}-\mathrm{cac}$) and sodium cacodylate ($\mathrm{Na}-\mathrm{cac}$). The * represents free cacodylate ions.

The ${ }^{13} \mathrm{C}\left(\mathrm{D}_{2} \mathrm{O}\right)$ NMR spectrum of Na-cac exhibits a narrow peak at 17.4 ppm , whereas the ${ }^{13} \mathrm{C}\left(\mathrm{D}_{2} \mathrm{O}\right)$ NMR spectrum of Pt_{7} exhibits peaks at 18.7 and 15.7 ppm , corresponding to the two crystallographically inequivalent cacodylate methyl groups (Figure 3.5b). For PtPd6, the expected two signals were observed with chemical shift values of 20.3 and 16.7 ppm , respectively. In analogy to the ${ }^{1} \mathrm{H}$ NMR spectrum, there is also a small peak at 17.3 ppm for this compound. The ${ }^{195} \mathrm{Pt}$ spectrum of $\mathbf{P t}_{7}$ shows a broad signal at 727 ppm (Figure 3.9), which is assigned to $\mathrm{Pt}^{\mathrm{II}}$. On the other hand, we could not observe any signal for the $\mathrm{Pt}^{\mathrm{IV}}$ centers for the low concentration. However, the ${ }^{195} \mathrm{Pt}$ NMR spectrum of PtPd 6 revealed the expected singlet at 4080 ppm , which is unequivocally due to the central $\mathrm{Pt}^{\mathrm{IV}}$ ion (Figure 3.9). The chemical shift of ${ }^{195} \mathrm{Pt}$ NMR of polyainons Pt_{7} and PtPd_{6} were confirmed by DFT calculations (vide infra). In any case, the combination of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra is fully
consistent with the solid-state structures of $\mathbf{P t}_{7}$ and $\mathbf{P t P d}_{6}$, providing clear evidence for the presence of the polyanion in solution.

Figure 3.6. Enlarged ${ }^{1} \mathrm{H}$ spectrum $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{K N a}$-Pt7.

Figure 3.7. Time dependent ${ }^{1} \mathrm{H}$ spectra $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{N a}-\mathrm{PtPd} 6$.

Figure 3.8. ${ }^{1} \mathrm{H}$ spectrum $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{K N a}-\mathrm{Pt}_{7}$ after 2 months.

Figure 3.9. ${ }^{195} \mathrm{Pt}$ NMR spectra of $\mathbf{K N a}-\mathbf{P t}_{7}$ (left) and $\mathbf{N a}-\mathbf{P t P d}_{6}$ (right).

3.1.4.3 ESI-MS Analysis

ESI-mass spectra of $\mathbf{K N a}^{\mathbf{N a}} \mathbf{P t}_{7}$ and $\mathbf{N a}_{\mathbf{a}} \mathbf{P t P d}_{6}$ were acquired from aqueous solutions in the negative ion mode. For $\mathbf{P t} 7$, two groups of signals centered around $m / z 1141$ and 2284 were observed (Figure 3.10). As a starting point for spectra assignment, we assumed the presence of the core structure $\left[\mathrm{Pt}^{I V} \mathrm{Pt}^{I I} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2-}\left(\mathbf{P t}_{7}\right)$ as established by XRD, and the
observed isotope pattern is in full agreement with this structure. The signal centered around $m / z 1141$ can be assigned to a doubly-charged species based on the spacing of the isotope peaks (Figure 3.11). The simulated mass spectrum is in good agreement with the experimentally observed spectrum. The signal centered at around $m / z 2284$ can be assigned to a singly-charged ion accompanied by a proton, suggesting that the charge of the oxocluster is reduced from 2- to 1- (Figure 3.11). For the structural analogue $\mathbf{P t P d}_{6}$, one signal was observed in the negative ion mode centered at $\mathrm{m} / \mathrm{z} 875$ with isotope patterns expected for the structure (Figure 3.12). Following spectral simulations, we assigned these signals to the doubly-charged species $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pd}^{\mathrm{II}}{ }_{6} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2-}\left(\mathbf{P t P d}_{6}\right)$ (Figure 3.12).

Figure 3.10. ESI-MS spectrum (full scan) of an aqueous solution of $\mathbf{K N a}^{\mathbf{N a}} \mathbf{P t}_{7}$ in the negative-ion mode.

Figure 3.11. Left: Simulated (bottom panel) and experimental ESI-MS spectrum (top panel) of a doubly charged $\left[\mathrm{Pt}_{7} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{2-}$ ion (expanded view); right: Simulated (bottom panel) and experimental ESI-MS spectrum (top panel) of a singly charged $\left[\mathrm{HPt}_{7} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}$ion (expanded view).

Figure 3.12. Left: ESI-MS spectrum (full scan) of an aqueous solution of Na-PtPd 6 in the negative-ion mode; Right: Simulated (bottom panel) and experimental ESI-MS spectrum (top panel) of a doubly charged $\left[\mathrm{PtPd}_{6} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{2-}$ ion (expanded view).

3.1.4.4 XPS Spectroscopy

X-ray photoelectron spectroscopy (XPS) measurements were performed on both $\mathbf{K N a} \mathbf{P t}_{7}$ and $\mathbf{N a}-\mathbf{P t P d}_{6}$ in order to ascertain the oxidation states of Pt and Pd . Both $\mathbf{P t}_{7}$ and PtPd6 exhibited a $\mathrm{Pt}^{4} \mathrm{f}_{7 / 2}$ band at $\sim 74.9 \mathrm{eV}$, which is typical for Pt in the $4+$ oxidation state. The XPS spectrum of $\mathbf{P t}_{7}$ exhibited characteristic $4 \mathrm{f}_{7 / 2}$ peaks at $\sim 72.5 \mathrm{eV}$ and $\sim 74.9 \mathrm{eV}$ with a
ratio of $6: 1$, indicating that Pt is present in the $2+$ and $4+$ oxidation states, respectively (Figure 3.13). The XPS spectrum of PtPd $_{6}$ exhibited the characteristic Pd $3 \mathrm{~d}_{5 / 2}$ band at 337.2 eV , which is typical for Pd in the $2+$ oxidation state (Figure 3.14). These observations were also corroborated by bond valence sum (BVS) calculations on Pt and Pd in Pt7 and PtPd6, which indicated that the central Pt ion is in the $4+$ oxidation state and the surrounding Pt and Pd ions are in the $2+$ oxidation state.

Figure 3.13. X-ray photoelectron spectra and fits for $\mathrm{Pt}^{4} \mathrm{f}_{7 / 2}$ and $\mathrm{ff}_{5 / 2}$ doublet of $\mathbf{K N a}$-Pt ${ }^{\text {. }}$

Figure 3.14. X-ray photoelectron spectra and fits for $\mathrm{Pt}^{4} \mathrm{f}_{7 / 2}$ and $4 \mathrm{f}_{5 / 2}$ doublet of $\mathbf{N a}$-PtPd $\mathbf{6}$ (top), and $\operatorname{Pd} 3 \mathrm{~d}_{5 / 2}$ and $3 \mathrm{~d}_{3 / 2}$ doublet of Na-PtPd 6 (bottom).

Chapter III Polyoxo-noble-metalates

3.1.4.5 Computational Study

The structures of the anions Pt_{7} and PtPd_{6} have been computationally optimized using Density Functional Theory (DFT) methods (B3LYP ${ }^{87}$ and OPBE^{88}) together with the basis sets $6-3 \lg (\mathrm{~d}, \mathrm{p})^{89}$ for light atoms $(\mathrm{H}, \mathrm{O}$ and C$)$ and LANL2 DZ^{90} with corresponding Effective Core Potentials for the heavier elements (Pt, Pd and As), the aqueous environment has been simulated through a continuum model, namely PCM, ${ }^{91}$ as implemented in Gaussian. ${ }^{92}$ The geometries obtained for $\mathbf{P t}_{7}$ where compared with the available crystal structures, a root-mean-square deviation (RMSD) of 0.24 and $0.22 \AA$ (without hydrogens) was found respectively using B3LYP and OPBE functionals, indicating that both functionals provide geometries similar to the crystal structures (note calculations are in aqueous solution). To simulate the ${ }^{195} \mathrm{Pt}$ NMR spectra of these two anions, ADF^{93} calculations with different functionals together with the TZ2P ${ }^{94}$ basis set, relativistic spinorbit ZORA, ${ }^{95}$ simulation of the water environment with COSMO 96 and Gaussian nuclear distribution model ${ }^{97}$ were run on the previously optimized structures, and the selected results are presented in Table 3.3. Computationally derived NMR chemical shifts ($\delta_{\text {cal }}$) are strongly dependent on the methodology used. ${ }^{98,} 22 \mathrm{a},{ }^{55}$ For $\mathbf{P t}_{7}$ and $\mathbf{P t P d}_{6}$ the best results compared to experiment were achieved using SSB-D ${ }^{99}$ and OPBE methods on B3LYP geometries, similarly to previously reported results ${ }^{55}$ on similar systems. Predicted NMR shifts show errors from few ppm to few hundreds of ppm. However, the difference on the NMR chemical shifts of $\mathrm{Pt}^{\mathrm{IV}}$ in $\mathbf{P t P d} 6$ and the average of the six $\mathrm{Pt}^{\mathrm{II}}$ in $\mathbf{P t}_{7}$ shows only a small error. This difference of the two signals is 3408 ppm with SSB-D and 3548 ppm with OPBE, which are both close to the experimentally measured difference of 3354 ppm . This suggests that the predicted signal for $\mathrm{Pt}^{\mathrm{IV}}$ in $\mathbf{P t}_{7}$ should appear in the range above 4080 and
below 4500 ppm , whereas the $\mathrm{Pt}^{\mathrm{II}}$ signals in this type of complex should appear around 700 ppm. It can be concluded that the assignments of the experimental ${ }^{195} \mathrm{Pt}$ NMR chemical shifts described in this work are correct.

Table 3.3. Computationally predicted NMR chemical shifts ($\delta_{\text {calc }}$) in ppm for $\mathbf{P t}_{7}$ and $\mathbf{P t P d}_{6}$ using different methods. ${ }^{\text {a }}$

Compound	$\mathbf{P t P d}_{\mathbf{6}}$	$\mathbf{P t}_{7}$		
Metal center	$\mathrm{Pt}^{\mathrm{IV}}$	$\mathrm{Pt}^{\mathrm{II}}$	$\mathbf{P t}^{\mathrm{IV}}$	$\mathbf{P t}^{\mathrm{IV}}-\mathbf{P t}^{\mathrm{II} \boldsymbol{b}}$
SSB-D/B3LYP c	3854	446	4057	3408
SSB-D/OPBE c	4415	802	4696	3613
OPBE/B3LYP c	4307	759	4538	3548
BP86/B3LYP c	4503	895	4628	3763
Experimental	4080	726	---	3354

${ }^{\text {a }}$ All chemical shifts $\delta_{\text {calc }}$ (in ppm) correspond to differences between the predicted ${ }^{195} \mathrm{Pt}$ NMR shielding for indicated species and NMR shielding of ${ }^{195} \mathrm{Pt}$ NMR reference $\mathrm{PtCl}_{6}{ }^{2-}$ both at the same level of theory.
${ }^{\mathrm{b}}$ Difference between the averaged signal of the unique $\mathrm{Pt}^{\mathrm{IV}}$ in the $\mathbf{P t P d}_{\mathbf{6}}$ anion and the signal of the six $\mathrm{Pt}^{\mathrm{II}}$ nuclei in the $\mathbf{P t}_{7}$ anion.
${ }^{\text {c }}$ Notation Method1/Method2 corresponds to: Method 1 is the method used for NMR calculations in ADF, Method 2 is the method used for geometry optimization in Gaussian.

Table 3.4. Cartesian Coordinates of computationally optimized structures for $\mathbf{P t}_{7}$ and PtPd $_{6}$ anions (Ångström, \AA)

B3LYP optimized structures							
$\mathbf{P t}_{7}(\mathrm{E}=-2704.39024651$ hartree $)$				$\operatorname{PtPd}_{6}(\mathrm{E}=-2749.86031087$ hartree)			
C	11.51219	6.239557	18.44955	C	11.39559	6.498758	18.34859
As	10.50165	5.096236	17.26097	As	10.45199	5.235408	17.22419
C	10.91647	3.241424	17.66648	C	10.96543	3.438359	17.7616
O	8.176254	5.478381	14.59704	Pd	9.873097	4.526939	14.14562
O	8.852169	5.422103	17.57968	O	8.152834	5.508683	14.57717
Pt	6.914744	4.663864	13.12553	Pd	7.500233	4.47664	16.19603
O	5.089541	5.628471	13.52218	O	8.790046	5.473892	17.51617
O	2.182657	5.88283	12.62032	Pt	6.914316	4.663366	13.12523
As	1.597772	5.544079	14.19216	O	5.124642	5.661876	13.52186
C	0.18277	6.821166	14.52109	Pd	3.955518	4.799657	12.10487
O	4.007069	3.545437	16.92919	O	2.259894	5.920341	12.62311
As	5.109231	3.721234	18.22578	As	1.673971	5.680136	14.20487
C	4.570963	2.426579	19.55789	C	0.360642	7.068432	14.5199

Chapter III Polyoxo-noble-metalates

O	7.092346	5.969835	8.407972	Pd	4.546458	4.64399	15.17685
As	8.720354	5.606762	8.025285	O	4.035215	3.475189	16.84168
C	9.258767	6.901622	6.69345	As	5.122597	3.572353	18.15025
O	11.0918	3.563482	10.8006	C	4.611103	2.18297	19.39877
As	12.23139	3.78237	12.05904	Pd	6.328489	4.850115	10.0545
C	13.6459	2.504751	11.73011	O	7.069297	6.028457	8.487547
O	5.653247	3.849397	11.65387	As	8.706296	5.755584	8.100259
O	7.567455	5.650409	11.38869	C	9.217179	7.146487	6.853178
O	8.739777	3.69909	12.72889	Pd	9.282223	4.682889	11.07361
O	2.737441	5.763643	15.45039	O	10.99651	3.510461	10.80274
O	6.26214	3.677434	14.86258	As	12.15469	3.646564	12.04574
O	2.807023	3.840724	10.57302	C	13.46801	2.258277	11.73059
As	3.327892	4.23187	8.990302	O	5.675785	3.818082	11.67328
C	2.912962	6.086949	8.586048	O	7.558418	5.694587	11.42924
O	4.977381	3.906242	8.671427	O	8.70397	3.664952	12.72855
O	9.822914	5.781609	9.32173	O	2.832361	5.816689	15.44762
O	11.64623	3.44368	13.63078	O	6.270259	3.632169	14.82127
O	11.02251	5.486292	15.67804	O	2.861444	3.797617	10.62434
O	6.737465	3.358743	17.84365	As	3.37676	4.091196	9.026359
C	0.857935	3.748354	14.26124	C	2.862789	5.888262	8.489435
C	8.851441	3.824467	7.262627	O	5.038676	3.853014	8.73421
C	4.977342	5.503759	18.98777	O	9.793478	5.852009	9.409041
C	12.97198	5.577788	11.99033	O	11.56851	3.405951	13.62736
C	2.317425	3.089276	7.800959	O	10.9674	5.528601	15.62618
H	11.2369	6.022412	19.48314	O	6.759352	3.2981	17.7629
H	12.57877	6.058012	18.30561	C	0.781473	3.956177	14.32458
H	11.28078	7.280277	18.21729	C	8.896938	4.037435	7.208476
H	0.43681	3.574013	15.25338	C	4.933184	5.29146	19.04043
H	0.077853	3.653919	13.50313	C	13.04733	5.370492	11.92656
H	1.661099	3.036951	14.06437	C	2.433304	2.827959	7.901691
H	-0.24495	6.642815	15.50926	H	11.12643	6.327214	19.39234
H	0.600778	7.828078	14.47644	H	12.47132	6.367917	18.21826
H	-0.59001	6.708497	13.75848	H	11.10979	7.510557	18.05628
H	5.640752	5.571441	19.8524	H	0.355056	3.841589	15.32319
H	5.276204	6.227479	18.22822	H	-0.01078	3.908382	13.57479
H	3.945376	5.685281	19.29461	H	1.513219	3.167667	14.14135
H	5.232548	2.497683	20.42291	H	-0.0688	6.943576	15.51548
H	3.542254	2.627233	19.86237	H	0.853663	8.039537	14.45064
H	4.638473	1.427856	19.12362	H	-0.42668	7.000936	13.76688
H	10.342	2.603759	16.99327	H	5.58771	5.31744	19.91396
H	10.64679	3.033318	18.70398	H	5.214903	6.081959	18.34298
H	11.98563	3.07608	17.5189	H	3.894635	5.423396	19.35055
H	1.25081	3.270234	7.945426	H	5.261989	2.224677	20.27389
H	2.592279	3.30758	6.767488	H	3.57343	2.33192	19.70275
H	2.549346	2.048423	8.032094	H	4.715542	1.213875	18.90805
H	8.187795	3.757364	6.398125	H	10.4371	2.718859	17.13399

H	8.552582	3.100489	8.021924	H	10.69578	3.28537	18.80845
H	9.883279	3.64278	6.955446	H	12.0433	3.319463	17.63461
H	13.75202	5.671771	12.74854	H	1.357549	2.958707	8.031925
H	13.39329	5.752099	10.99826	H	2.702564	2.999716	6.858003
H	12.1691	6.289513	12.18721	H	2.71914	1.816121	8.193829
H	3.486987	6.724105	9.260119	H	8.24267	4.011797	6.334737
H	3.183129	6.295982	7.548865	H	8.615535	3.246136	7.905156
H	1.8437	6.251978	8.73324	H	9.935657	3.906417	6.898523
H	14.07389	2.683109	10.74206	H	13.83933	5.418119	12.67663
H	14.41857	2.616955	12.49289	H	13.4741	5.485201	10.92811
H	13.22747	1.498004	11.77449	H	12.31558	6.159032	12.10967
H	10.28738	6.700793	6.388766	H	3.390896	6.607774	9.117218
H	8.597003	6.830891	5.828543	H	3.132237	6.041672	7.442603
H	9.1916	7.900272	7.127956	H	1.784893	6.006711	8.616612
Pt	9.326223	4.676608	11.04055	H	13.89759	2.383351	10.7351
Pt	9.925286	4.527493	14.16508	H	14.25523	2.325594	12.48373
Pt	7.513271	4.48679	16.25082	H	12.97496	1.287162	11.79956
Pt	4.50324	4.650833	15.21052	H	10.25495	6.998315	6.549141
Pt	3.904085	4.799758	12.08601	H	8.566385	7.105302	5.977962
Pt	6.316257	4.84148	10.00037	H	9.112243	8.115054	7.34483
OPBE optimized structures							
$\mathrm{Pt}_{7}(\mathrm{E}=-2705.17432490$ hartree $)$				$\mathbf{P t P d}_{6}(\mathrm{E}=-2750.69303880$ hartree)			
C	11.47118	6.121321	18.42001	C	11.4185	6.365309	18.32927
As	10.42179	5.043911	17.18433	As	10.40688	5.184731	17.15538
C	10.79332	3.162327	17.56194	C	10.8495	3.345255	17.65431
O	8.159759	5.492543	14.58296	Pd	9.83157	4.503789	14.12603
O	8.77158	5.449789	17.53036	O	8.148858	5.519401	14.55793
Pt	6.914664	4.663749	13.12555	Pd	7.496901	4.483092	16.15243
O	5.115941	5.646567	13.52137	O	8.744183	5.52071	17.47217
O	2.261141	5.908973	12.59224	Pt	6.914275	4.664213	13.12559
As	1.705035	5.496465	14.18138	O	5.154073	5.688683	13.52662
C	0.224131	6.712078	14.52491	Pd	3.997078	4.824284	12.12495
O	4.013904	3.521851	16.84438	O	2.328995	5.997216	12.60185
As	5.146666	3.770679	18.13293	As	1.756223	5.653898	14.19288
C	4.592372	2.537361	19.533	C	0.349696	6.956994	14.53884
O	7.042362	5.992429	8.474761	Pd	4.584516	4.647498	15.15179
As	8.682854	5.556934	8.118349	O	4.041913	3.443528	16.77509
C	9.237036	6.790147	6.718138	As	5.153666	3.618279	18.08314
O	10.99777	3.53721	10.78393	C	4.619807	2.290848	19.40529
As	12.1244	3.831255	12.0699	Pd	6.331962	4.844293	10.09885
C	13.60539	2.61576	11.72633	O	7.02074	6.04374	8.529012
O	5.669511	3.834983	11.66813	As	8.674681	5.710244	8.167727
O	7.56194	5.674447	11.41721	C	9.207786	7.039237	6.846866
O	8.713415	3.680988	12.72978	Pd	9.243756	4.680834	11.09925
O	2.83166	5.790437	15.46738	O	10.92541	3.478238	10.7825
O	6.267403	3.653089	14.83389	As	12.07189	3.674072	12.05753

Chapter III Polyoxo-noble-metalates

O	2.842653	3.830109	10.64305	C	13.47839	2.370972	11.71139
As	3.407529	4.283605	9.066867	O	5.679871	3.808681	11.69341
C	3.035853	6.165159	8.689259	O	7.549365	5.711353	11.44912
O	5.05772	3.877664	8.720822	O	8.674349	3.639669	12.72445
O	9.815607	5.805928	9.406911	O	2.902491	5.849776	15.4681
O	11.56827	3.418693	13.65902	O	6.279099	3.617209	14.8021
O	10.98665	5.49744	15.60816	O	2.870661	3.797965	10.69423
O	6.787124	3.335164	17.7765	As	3.422825	4.140448	9.095399
C	1.010892	3.670216	14.24077	C	2.980192	5.978999	8.593154
C	8.804944	3.741572	7.40414	O	5.08578	3.804359	8.779961
C	5.024716	5.586035	18.84717	O	9.786365	5.884394	9.475859
C	12.81849	5.657523	12.01047	O	11.49945	3.330679	13.64867
C	2.358128	3.20617	7.831208	O	10.95806	5.530063	15.55676
H	11.18415	5.874784	19.44717	O	6.807349	3.283664	17.72204
H	12.53448	5.909575	18.26924	C	0.936113	3.878387	14.26083
H	11.27037	7.178403	18.22088	C	8.858553	3.950289	7.332234
H	0.590678	3.490816	15.23597	C	4.970382	5.37884	18.91755
H	0.232391	3.569975	13.47715	C	12.89219	5.449493	11.98926
H	1.832952	2.977642	14.04225	C	2.412158	2.957558	7.923032
H	-0.19456	6.500003	15.51385	H	11.13359	6.171465	19.36829
H	0.599063	7.739578	14.49192	H	12.48841	6.177	18.19457
H	-0.5434	6.570866	13.75736	H	11.18744	7.402444	18.06753
H	5.692717	5.665252	19.71129	H	0.509316	3.726296	15.25766
H	5.324638	6.290207	18.06676	H	0.148526	3.827369	13.50172
H	3.988881	5.769354	19.15151	H	1.702975	3.125232	14.06012
H	5.256276	2.648849	20.39617	H	-0.07958	6.771179	15.52856
H	3.561569	2.762426	19.82447	H	0.785098	7.960399	14.50454
H	4.654977	1.516135	19.14496	H	-0.42587	6.861626	13.7721
H	10.21796	2.546016	16.86623	H	5.623488	5.420118	19.79555
H	10.49944	2.950687	18.59546	H	5.260683	6.146915	18.19547
H	11.86655	2.988426	17.43022	H	3.926507	5.517984	19.21757
H	1.294803	3.417402	7.98247	H	5.276879	2.363935	20.27767
H	2.644646	3.453196	6.804028	H	3.582805	2.476325	19.70282
H	2.559484	2.149104	8.02988	H	4.705794	1.296111	18.95729
H	8.136813	3.662252	6.540131	H	10.29573	2.658369	17.00846
H	8.505269	3.037365	8.184606	H	10.56897	3.188158	18.70102
H	9.840753	3.558418	7.099606	H	11.92695	3.19736	17.52658
H	13.59703	5.75778	12.77404	H	1.34209	3.144985	8.057757
H	13.23864	5.836906	11.01524	H	2.69667	3.150466	6.883737
H	11.99643	6.3501	12.20901	H	2.644272	1.920955	8.185952
H	3.609971	6.781513	9.385957	H	8.205798	3.909406	6.45396
H	3.331127	6.377204	7.656219	H	8.567937	3.181855	8.053818
H	1.962359	6.338596	8.819501	H	9.902557	3.811266	7.032629
H	14.02412	2.827989	10.73744	H	13.68008	5.500507	12.74805
H	14.37287	2.756928	12.49395	H	13.31862	5.601347	10.99223
H	13.23053	1.58823	11.75917	H	12.12552	6.202811	12.19013

Chapter III Polyoxo-noble-metalates

H	10.26796	6.565271	6.426924	H	3.534126	6.667009	9.237666
H	8.573317	6.67829	5.854875	H	3.260686	6.134193	7.546148
H	9.174122	7.811454	7.105914	H	1.902772	6.127262	8.720673
Pt	9.281532	4.677239	11.07435	H	13.90759	2.556787	10.72165
Pt	9.871547	4.524299	14.14672	H	14.254	2.466371	12.47808
Pt	7.500076	4.482871	16.19599	H	13.04303	1.367547	11.74573
Pt	4.547902	4.65042	15.17689	H	10.24522	6.855303	6.549869
Pt	3.957779	4.803242	12.10448	H	8.551355	6.966086	5.97401
Pt	6.329235	4.844681	10.05512	H	9.120283	8.033468	7.295695

3.1.4.6 Catalytic Study

The efficacy of the porous silica-supported $\mathbf{P t}_{7}$ has been investigated as a heterogeneous precatalyst in the hydrogenation of o-xylene (Figure 3.15). In a typical catalytic reaction, 50 mg of the catalyst (0.005 mmol Pt content) was introduced into a 100 mL stainless-steel high-pressure Parr Compact reactor and 50 mL of a 0.5 M solution of the monocyclic arenes in n-hexane was added. The catalyst was then reduced in situ under $\mathrm{H}_{2}(\sim 50 \mathrm{bar})$ at $250^{\circ} \mathrm{C}$ and stirred for 1 min . And subsequently the reaction was started by increasing the temperature to $300^{\circ} \mathrm{C}$ and stirring the reaction mixture at 1000 rpm keeping the initial H_{2} pressure at ~ 90 bar. Instead of using milder H_{2} pressures, a high reaction pressure of ~ 90 bar was used in order to drive the reaction forward using the Le Châtelier's principle. The progress of the reaction was followed by monitoring the consumption of H_{2} (pressure decrease) and gas chromatography (GC) analysis and the completion of the reaction was correlated with no further decrease in the H_{2} pressures. Recyclability experiments on the catalyst were performed by filtering off and drying the used catalyst and utilizing it again in subsequent catalytic cycles under the same reaction conditions.

The o-xylene was chosen as a model substrate to study the efficacy of the KNa$\mathbf{P t}_{7} @$ SBA15-apts catalyst because the reaction rate for o-xylene was the slowest among the monocyclic arenes (p-xylene $>m$-xylene $>o$-xylene). ${ }^{100}$ For the catalytic studies, KNa-
$\mathbf{P t}_{7}$ was used as the precursor, and the supported precatalyst KNa-Pt $\mathbf{7} @$ SBA15-apts was obtained by dissolving $\mathbf{K N a - P t} \mathbf{7}_{7}$ in water and slowly adding the 3aminopropyltriethoxysilane (apts)-modified SBA15 (SBA15-apts) to the stirred solution, which was subsequently refluxed for 2 h (Pt loading $\approx 5 \mathrm{wt} \%$. The mixture was filtered, and the residue was washed multiple times with deionized water, air-dried, and subsequently calcined at $250^{\circ} \mathrm{C}$ for 4 h (heating rate $=0.5^{\circ} \mathrm{C} / \mathrm{min}$) in order to obtain the precatalyst KNa-Pt $\mathbf{7}^{(}$@SBA15-apts that was eventually reduced in situ under H_{2} inside the Parr reactor, thereby generating the actual catalyst for the hydrogenation of arenes. It was found that for o-xylene as the substrate, the reaction was complete in $\sim 10 \mathrm{~min}$ with a $\sim 96 \%$ conversion and a cis/trans ratio $\left(\mathrm{S}_{\mathrm{c} / \mathrm{t}}\right)$ of 67:29, which is opposite of the selectivity of the favored trans-1,2-DMCH with Pd-based catalysts (Table 3.5).

Figure 3.15. Schematic representation of the catalytic hydrogenation of o-xylene using the catalyst $\mathbf{K N a}-\mathrm{Pt}_{7} @ \mathbf{S B A 1 5}-\mathrm{apts}$.

Such observations are also in line with those reported for o-xylene hydrogenation over supported Pd and Ni and Pt catalysts. ${ }^{101}$ The nature of the catalyst and the operation conditions have a strong effect on the product stereoselectivity, like temperature, metal dispersion. ${ }^{102} \mathrm{O}$-xylene is believed to adsorb parallel to the surface of metals because of the interaction between π-electrons in the aromatic ring and the unoccupied d-metal orbitals. ${ }^{103}$ To reduce the repulsive effect, the two methyl substituents in o-xylene should be oriented away from the surface, and consequently cis-DMCH should be obtained. Hence,
the cis stereoisomer is the kinetically favored product. While the cis stereoisomer is thermodynamically favored. ${ }^{102 a}$ The increased selectivity to trans-isomer as a function of temperature and increased metal dispersion has intensively been explained by roll-over mechanism proposed by Inuone group, ${ }^{104}$ where the model well explained the exchange of hydrogen atoms on both sides of cyclopentane molecule (over Pd catalysts). Therefore, the cis/trans ratio of the final product is opposite for the Pt-based and Pd-based catalysts.

Table 3.5. o-xylene hydrogenation at $300{ }^{\circ} \mathrm{C}$ and 90 bar H_{2} pressure using different supported catalyst materials (support $=$ SBA15-apts).

Pre-Catalyst	M loading (mmol)	Activation Method	Reaction Time (min)	Conversion (\%)	Selectivity ($\mathrm{S}_{\mathrm{c} t \mathrm{t}}$)	References
$\mathbf{K N a - P t}{ }_{7}$	0.005	$250{ }^{\circ} \mathrm{C}$ air calcination (4 h)	10	$\begin{gathered} \sim 96\left(1^{\text {st }} \text { cycle }\right) \\ \sim 99\left(2^{\text {nd }} \text { cycle }\right) \\ \sim 100\left(3^{\text {rd }} \text { cycle }\right) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{cct}}=67 / 29 \\ & \mathrm{~S}_{\mathrm{cct}}=66 / 33 \\ & \mathrm{~S}_{\mathrm{c} / \mathrm{t}}=65 / 35 \end{aligned}$	This work
$\mathrm{Pd}_{40}-\mathrm{SiW}_{12}$	0.009	$250{ }^{\circ} \mathrm{C}$ air calcination (4 h)	55	~99	37/63	27b
$\mathrm{Pd}_{13} \mathrm{Ass}_{8}$	0.01	Chemical reduction by hydrazine, $650^{\circ} \mathrm{C}$ air calcination (4.5 h)	960	~ 100	40/60	105
$\mathrm{Pd}_{13} \mathrm{Se}_{8}$	0.01	$550{ }^{\circ} \mathrm{C}$ air calcination (4.5 h)	50	~ 100	43/57	
$\mathrm{NiPd}_{12} \mathrm{Se}_{8}$	0.01	$550{ }^{\circ} \mathrm{C}$ air calcination (4.5 h)	25	~ 100	40/60	
$\mathrm{Pd}_{15.4} \mathrm{P}_{10}$	0.01	$550{ }^{\circ} \mathrm{C}$ air calcination (4.5 h)	15	~ 100	40/60	
$\mathrm{Na}_{10}\left[\mathrm{Pt}_{3} \mathrm{~S}_{2}\left(\mathrm{SO}_{3}\right)_{6}\right]$	0.006	$425{ }^{\circ} \mathrm{C}$ air calcination (1 h)	150	$\begin{aligned} & \sim 100\left(150{ }^{\circ} \mathrm{C}\right) \\ & \sim 100\left(350^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 70 / 30 \\ & 75 / 25 \end{aligned}$	55
$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	0.002	$500{ }^{\circ} \mathrm{C}$ air calcination (12 h)	180	$27.4\left(250{ }^{\circ} \mathrm{C}\right)$	-	106
Silicalite-1@Pt/ α $\mathrm{Al}_{2} \mathrm{O}_{3}$	0.1	$500{ }^{\circ} \mathrm{C}$ air calcination (4 h)	240	$80.7\left(200{ }^{\circ} \mathrm{C}\right)$	-	107
$\mathrm{Pt} / \mathrm{C}_{12} \mathrm{MCM}-41$	0.013	$300{ }^{\circ} \mathrm{C} \mathrm{H} \mathrm{H}_{2}$ reduction (2 h)	120	$38\left(110{ }^{\circ} \mathrm{C}\right)$	25/13	108

The reaction of arenes with SBA15-apts alone did not show any hydrogenation activity.
The catalyst was also found to be recyclable up to 3 consecutive reaction cycles with a slightly increase in the reaction conversion (Table 3.5). Also, N_{2} sorption measurements
were performed on the precatalyst before and after loading/calcination and after catalysis in order to investigate the effect on the surface area (Figure 3.16, Table 3.6). We found that both the surface area and pore volume of the SBA15 support ($434 \mathrm{~m}^{2} / \mathrm{g}$ and $0.691 \mathrm{cc} / \mathrm{g}$) decrease after modification with apts ($377 \mathrm{~m}^{2} / \mathrm{g}$ and $0.535 \mathrm{cc} / \mathrm{g}$), as expected.

Table 3.6. Variation of the surface area and pore size of the prepared materials after modification, Pt_{7} immobilization, calcination and after catalysis.

Materials	Surface Area (m²/g)	Pore Volume (cc/g)
SBA15	434	0.619
SBA15-apts	377	0.535
Pt $_{7} @$ SBA15-apts (1 wt\% Pt-basis)	300	0.500
$\mathbf{P t}_{7} @$ SBA15-apts (1 wt\% Pt-basis)		
calcined at $250^{\circ} \mathrm{C}$		

Immobilization of $\mathbf{K N a}-\mathbf{P t}_{7}$ on the modified SBA15 further decreases the surface area and pore volume, which indicates that the pores are partially blocked upon loading, as expected. These values increase again upon calcination due to loss of the aminopropyl arms from the silica surface. After catalysis, there is a subsequent decrease in the surface area and pore volume, probably due to partial blocking of the pores by the Pt nanoparticles. The ${ }^{1} \mathrm{H}$ NMR spectrum of the filtrate obtained after loading the $\mathbf{K N a}-\mathbf{P t}_{7}$ on the modified SBA15 support only exhibited one peak at 4.7 ppm , corresponding to water, confirming that during the loading process the $\mathbf{P t}_{7}$ polyanion has been adsorbed qunatitatively into the pores of the SBA-15 (Figure 3.17). The activity of $\mathbf{K N a}-\mathrm{Pt}_{7}$ as a heterogeneous hydrogenation precatalyst has been compared with the other Pt-based catalysts, and various
polyoxopalladates (POPs) supported on SBA15-apts (Table 3.5). KNa-Pt $@$ SBA15-apts has the distinct advantage of requiring a much lower activation temperature with excellent activity and recyclability.

Figure 3.16. N_{2} sorption isotherms of the SBA15 support before and after modification, after immobilization with $\mathbf{K N a}-\mathbf{P t}_{7}$ and after calcination and catalysis.

Figure 3.17. ${ }^{1} \mathrm{H}$ spectrum of the filtrate obtained after immobilizing $\mathbf{K N a}-\mathrm{Pt}_{7}$ on the modified SBA15 support.

Chapter III Polyoxo-noble-metalates

3.1.5 Conclusions

In summary, the first mixed-valent polyoxo-platinate(IV,II) $\mathbf{P t}_{7}$ and the first $\mathrm{Pt}^{\mathrm{IV}}$ containing polyoxopalladate(II) PtPd6 as discrete inorganic oxo complexes by using simple open beaker and aqueous solution synthetic conditions have been synthesized and structurally characterized. Both polyanions $\mathbf{P t}_{7}$ and $\mathbf{P t P d} 6$ were fully characterized in the solid state and the oxidation states of the noble metal ions were unequivocally identified. The solution (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{195} \mathrm{Pt} \mathrm{NMR}$) and gas phase studies also support the existence of the two polyanions. In fact, $\mathbf{P t}_{7}$ was shown to be stable in solution for several months, which provides much potential for further studies and applications, e.g. in the catalytic or biomedical directions. The $\mathbf{P t}_{7}$ polyanion supported on porous silica can be an effective heterogeneous catalyst for the hydrogenation of arenes. This work can be considered as a synthetic breakthrough in polyoxoplatinate (POPt) and platinumcontaining polyoxopalladate (POPd) chemistry, and besides performing catalytic studies (e.g. hydrogenation of olefins using the novel polyanions homogeneously or as bottom up precursors for supported noble metal nanoparticles) the synthesis of more derivatives of this family of polyoxo-noble-metalates in the future is also the aim.

Chapter III Polyoxo-noble-metalates

3.2 Au(III)-containing noble metal-oxo clusters

3.2.1 Synthesis

$\mathrm{Na}\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{I \mathrm{III}} \mathbf{3}_{\mathbf{6}}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathrm{NaCl} \cdot \mathrm{NaNO}_{3} \cdot \mathbf{6 H} \mathbf{2} \mathbf{O}\left(\mathbf{N a}-\mathrm{Pt}_{2} \mathrm{Au}_{3}\right)$

$\mathrm{H}\left[\mathrm{AuCl}_{4}\right](0.061 \mathrm{~g}, 0.18 \mathrm{mmol})$ was dissolved in 1.5 mL aqueous sodium cacodylate buffer (2 M , adjust pH to 7 by adding $68 \% \mathrm{HNO}_{3}$), leading to an orange solution. Then $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}$ $(0.036 \mathrm{~g}, 0.12 \mathrm{mmol})$ was dissolved in 0.4 mL 1 M NaOH solution, and added to the resulting orange solution while heating at $80^{\circ} \mathrm{C}$. During the dropwise addition of $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}$, the color of the reaction mixture changed from orange to orange-red. The obtained solution was stirred at $80^{\circ} \mathrm{C}$ for 30 min . Slow evaporation of the filtrate at room temperature in an open vial resulted in yellow hexagonal crystals within 2 days. The obtained crystals $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ were collected after 5 days by filtration and air dried for 2
 transformed to the crystalline phase in the mother liqour $\mathbf{N a}^{-\mathbf{P t}_{2} \mathbf{A u}_{3}(\mathbf{a}) \text { (see main text for }}$ details). Polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ can also be synthesized using the reagents in stoichiometric ratio in water (instead of cacodylate buffer), but the yield was only 35%. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-}$ $\left.{ }^{1}\right): 3529-3143(\mathrm{~s})\left[v(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 3000-2800(\mathrm{w})$ [$v(\mathrm{C}-\mathrm{H})$ of methyl groups of cacodylate], $1597(\mathrm{~m})\left[\mathrm{H}_{2} \mathrm{O}\right.$ bending fundamental mode $\left.\delta\right], 1381(\mathrm{~m})[\delta(\mathrm{C}-\mathrm{H})$ of the methyl groups of cacodylate], $913(\mathrm{w})\left[\delta_{\text {out-of-plane }}(\mathrm{O}-\mathrm{H})\right], 803(\mathrm{~s})[\mathrm{v}(\mathrm{Au}-\mathrm{O})], \quad 679-646(\mathrm{w})[\mathrm{v}(\mathrm{Pt}-$ O)], 566-452 (m) [v(As-C)]. Elemental analysis (\%) calcd for Na-Pt2Au3: Au 27.18, Pt 17.95, As 20.68, Na 3.17, Cl 1.63, N 0.64, C 6.63, H 2.23; found: Au 26.80, Pt 18.90, As 20.80, Na 3.35, Cl 2.60, N 0.73, C 6.65, H 2.18.

$\mathbf{K}\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}} \mathbf{3}_{\mathbf{3}} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathrm{KCl} \cdot \mathrm{KAsO}_{2}\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathbf{1 8} \mathbf{H}_{2} \mathrm{O}\left(\mathrm{K}^{\left(\mathrm{Pt}_{2} \mathrm{Au}_{3}\right)}\right.$

$\mathrm{H}\left[\mathrm{AuCl}_{4}\right](0.061 \mathrm{~g}, 0.18 \mathrm{mmol})$ was dissolved in 1.5 mL aqueous cacodylic acid buffer (2 M , adjust pH to 7 by adding solid KOH), leading to an orange solution. Then $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}$ $(0.036 \mathrm{~g}, 0.12 \mathrm{mmol})$ was dissolved in 0.4 mL 1 M KOH solution, and added to the orange solution while heating at $80^{\circ} \mathrm{C}$. During the dropwise addition of $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}$, the color of the reaction mixture changed from orange to orange-red. The obtained solution was stirred at $80^{\circ} \mathrm{C}$ for 30 min . Slow evaporation of the filtrate at room temperature in an open vial resulted in yellow rod-shaped crystals within 1 month. The obtained crystals were collected by filtration and dried in air. Yield: $0.068 \mathrm{~g}(46 \%$ based on Au$)$. FT-IR $\left(\mathrm{KBr}\right.$ pellet, $\left.\mathrm{cm}^{-1}\right)$: 3407 (s) [$v(\mathrm{O}-\mathrm{H})$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 3019-2924(\mathrm{w})$ [$v(\mathrm{C}-\mathrm{H})$ of methyl groups of cacodylate], 1668$1643(\mathrm{~m})\left[\mathrm{H}_{2} \mathrm{O}\right.$ bending fundamental mode $\left.\delta\right], 1411(\mathrm{~m})[\delta(\mathrm{C}-\mathrm{H})$ of the methyl groups of cacodylate], $915(\mathrm{w})\left[\delta_{\text {out-of-plane }}(\mathrm{O}-\mathrm{H})\right], 810(\mathrm{~s})[v(\mathrm{Au}-\mathrm{O})], 702-648(\mathrm{w})[v(\mathrm{Pt}-\mathrm{O})], 523$ (m) $[v(\mathrm{As}-\mathrm{C})]$. Elemental analysis (\%) calcd for K-Pt2Au3: Au 23.51, Pt 15.53, As 20.87, K 4.67, C 6.69, H 2.13; found: Au 23.50, Pt 15.70, As 20.60, K 4.37, C 6.62, H 2.60.

$\mathrm{Na}_{2}\left[\mathrm{Pd}^{\mathrm{II}}{ }_{10} \mathrm{Au}^{\mathrm{III}}{ }_{4} \mathrm{O}_{\mathbf{1 2}}\left(\mathrm{AsO}_{\mathbf{2}}\left(\mathrm{CH}_{3}\right)_{2}\right)_{10}\right] \cdot \mathbf{1 7} \mathrm{H}_{\mathbf{2}} \mathrm{O}\left(\mathbf{N a}-\mathrm{Au}_{4} \mathrm{Pd}_{10}\right)$

$\mathrm{H}\left[\mathrm{AuCl}_{4}\right](0.034 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in 3 mL aqueous sodium cacodylate buffer (2 M , adjust pH to 7 by adding $68 \% \mathrm{HNO}_{3}$), leading to an orange solution. Then $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}$ $(0.057 \mathrm{~g}, 0.25 \mathrm{mmol})$ was added to the resulting orange solution. The obtained deep-red solution was stirred at $80{ }^{\circ} \mathrm{C}$ for 60 min . Slow evaporation of the filtrate at room temperature in an open vial resulted in dark red rod-like crystals within 2 days. Then decant the supernatant and the rod crystals were washed with 96% ethanol $\left(\left(\mathbf{P d} 7^{29}\right.\right.$ determinated by FT-IR and single crystal XRD, yield: 20% (based on Pd)). Later, slow evaporation of the supernatants leads to formation of dark red blocky crystals $\mathbf{N a}-\mathbf{A u}_{4} \mathbf{P d}_{10}$ within two
weeks, which were collected by filtration. yield: 5% (based on Pd). FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3500-3200 (s) [v(O-H) of $\left.\mathrm{H}_{2} \mathrm{O}\right], 3013-2920(\mathrm{w})[v(\mathrm{C}-\mathrm{H})$ of methyl groups of cacodylate], $1638(\mathrm{~m})\left[\mathrm{H}_{2} \mathrm{O}\right.$ bending fundamental mode $\left.\delta\right], 1384(\mathrm{~m})[\delta(\mathrm{C}-\mathrm{H})$ of the methyl groups of cacodylate], $1264(\mathrm{w})\left[\delta_{\text {in-plane }}(\mathrm{O}-\mathrm{H})\right], 916-890(\mathrm{w})\left[\delta_{\text {out-of-plane }}(\mathrm{O}-\mathrm{H})\right], 803(\mathrm{~s})[\mathrm{v}(\mathrm{Au}-\mathrm{O})]$, $649(\mathrm{~m})[v(\mathrm{Pd}-\mathrm{O})], 518(\mathrm{~m})[v(\mathrm{As}-\mathrm{C})]$.

Figure 3.18. FT-IR spectra of $\mathbf{N a - P t} \mathbf{2 A u}_{3}$ (red) and $\mathbf{K - P t} \mathbf{P A}_{2} \mathbf{A u}_{3}$ (blue).

Figure 3.19. Thermograms of $\mathbf{N a - P t} \mathbf{2}_{2} \mathbf{A u}_{3}$ (red) and $\mathbf{K - P t} \mathbf{2}_{2} \mathbf{A u}_{3}$ (blue) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2}.

Figure 3.20. FT-IR spectrum of $\mathbf{P d}_{7}$ from $400-4000 \mathrm{~cm}^{-1}$ on KBr pellets.

Figure 3.21. FT-IR spectrum of $\mathbf{N a}-\mathbf{A u}_{4} \mathbf{P d}_{10}$ from $400-4000 \mathrm{~cm}^{-1}$ on KBr pellets.

Figure 3.22. Thermograms of $\mathbf{N a}-\mathbf{A u}_{4} \mathbf{P} \mathbf{P}_{10}$ from room temperature to $500^{\circ} \mathrm{C}$ under N_{2}.

3.2.2 Single-Crystal XRD Data

The solvent masking was done using the SQUEEZE command of Platon, ${ }^{82}$ the results of which have been added to the CIF files in the section titled "SQUEEZE RESULTS". From the calculations, it can be seen that the solvent accessible void of the crystal structure Na$\mathbf{P t}_{2} \mathbf{A u}_{3}(\mathbf{a})$ is $\sim 739 \AA^{3}$, and the electron count in the solvent accessible void is ~ 291. Considering $\mathrm{Z}=2$, this roughly comes out to be around $14 \mathrm{H}_{2} \mathrm{O}$ molecules, which is larger as compared to what is observed from TGA analysis and elemental analysis (this air-dried material actually corresponds to the compound $\mathbf{N a - P t} \mathbf{t a n}_{\mathbf{2}}$). This is typically due to the facile removal of the lattice water molecules (converting $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u} \mathbf{3}(\mathbf{a})$ to $\mathbf{N a - P t} \mathbf{A u}_{\mathbf{3}}$), which has been carefully studied using SXRD, PXRD and TGA. Similarly, for $\mathbf{K - P t} \mathbf{P A}_{2} \mathbf{u}_{3}$, a solvent accessible void of $\sim 148 \AA^{3}$ was observed, and the electron count in the solvent accessible void to be ~ 90. Considering $Z=2$, this roughly comes out to be around $5 \mathrm{H}_{2} \mathrm{O}$ molecules. If we add this to the $11 \mathrm{H}_{2} \mathrm{O}$ molecules already assigned from XRD, we get 16 lattice $\mathrm{H}_{2} \mathrm{O}$ molecules, which is very close to what is observed from TGA analysis and
elemental analysis (~ 18 lattice $\mathrm{H}_{2} \mathrm{O}$ molecules). For $\mathbf{N a - P t} \mathbf{2}_{2} \mathbf{A u}_{3}(\mathbf{a})$, two Au positions are disordered within the structure due to thermal motion, with partial occupancies of 47:3. For $\mathbf{K - P t} \mathbf{2 A u}_{3}$, two As positions of free cacodylate ions are disordered within the structure due to thermal motion, with partial occupancies of 80:20. The disorder on the Au atom in Na$\mathbf{P t}_{2} \mathbf{A u}_{3}(\mathbf{a})$ has been modelled by using the PART function and allowing for free refinement of the occupancies of the disordered atoms as well as their thermal parameters. This indicated $\mathrm{a} \sim 6 \%$ disorder on the Au atom. Based on our observations from PXRD studies, we seem to form a mixture of two closely related crystalline phases differing in the amounts of lattice water molecules ($\mathbf{N a - P t} \mathbf{2}_{2} \mathbf{A u}_{3}$ and $\mathbf{N a - P t} \mathbf{2 A}_{2} \mathbf{u}_{3}(\mathbf{a})$). Even a slight exposure to air results in the removal of some of the lattice water molecules, which may lead to the observed disorder in the Au atoms as such a phase change appears to be facile.

Table 3.7. Crystal data and structure refinement for $\mathbf{N a - P t} \mathbf{2 A}_{3}, \mathbf{N a}_{\mathbf{2}} \mathbf{P t}_{2} \mathbf{A u}_{3}(\mathbf{a}), \mathbf{K - P t}_{2} \mathbf{A u}_{3}$ and $\mathbf{N a - A u 4 P d} 10$.

Compound	$\mathrm{Na}-\mathrm{Pt}_{2} \mathrm{Au}_{3}$	$\mathrm{Na}-\mathrm{Pt}_{2} \mathrm{Au}_{3}(\mathrm{a})$	$\mathrm{K}-\mathrm{Pt}_{2} \mathrm{Au}_{3}$	$\mathrm{Na}-\mathrm{Au}_{4} \mathrm{Pd}_{10}$
empirical formula	$\begin{aligned} & \mathrm{Na}_{3} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{As}_{6} \mathrm{C}_{12} \mathrm{H}_{48} \\ & \mathrm{O}_{27} \mathrm{NCl}^{a} \end{aligned}$	$\begin{aligned} & \mathrm{Na}_{3} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{As}_{6} \mathrm{C}_{12} \mathrm{H}_{36} \\ & \mathrm{O}_{27} \mathrm{NCl} \end{aligned}$	$\begin{aligned} & \hline \mathrm{K}_{3} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{As}_{77} \mathrm{C}_{14} \mathrm{H}_{78} \mathrm{O} \\ & { }_{38} \mathrm{Cl}^{a} \end{aligned}$	$\begin{aligned} & \mathrm{NaPd}_{5} \mathrm{Au}_{2} \mathrm{As}_{5} \mathrm{C}_{10} \mathrm{H}_{30} \\ & \mathrm{O}_{18} \end{aligned}$
fw, $\mathrm{g} \mathrm{mol}^{-1}$	2173.51^{a}	2161.44	$2513.00^{\text {a }}$	1761.86
crystal system	Hexagonal	Hexagonal	Triclinic	Triclinic
space group	P $\overline{6}$	$\mathrm{P}_{3} / \mathrm{m}$	P $\overline{1}$	P $\overline{1}$
$a(\AA)$	10.933(3)	10.9156(7)	13.5559(16)	12.910(2)
$b(\AA)$	10.933(3)	10.9156(7)	14.1105(16)	14.335(2)
$c(\AA)$	20.585(5)	26.8948(18)	16.6726(19)	14.431(2)
$\alpha\left({ }^{\circ}\right.$	90	90	75.614(3)	62.125(3)
$\beta\left({ }^{\circ}\right.$	90	90	66.913(3)	71.102(4)
$\gamma\left({ }^{\circ}\right.$	120	120	85.534(3)	73.751(4)
$V\left(\AA^{3}\right)$	2130.9(12)	2775.2(4)	2841.1(6)	2207.0(6)
Z	1	2	2	2
Dc $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.684	2.587	2.790	2.651

Chapter III Polyoxo-noble-metalates

abs coeff, mm^{-1}	10.817	16.612	17.013	12.391
θ range for data collection, deg	3.667 to 24.850	3.719 to 26.382	2.970 to 25.790	1.626 to 27.460
completeness to $\Theta_{\text {max }}$	99.2\%	99.5\%	99.6\%	99.8\%
index ranges	$\begin{aligned} & -12=<\mathrm{h}=<12, \\ & -12=<\mathrm{k}=<12, \\ & -20=<1=<24 \end{aligned}$	$\begin{aligned} & -13=<\mathrm{h}=<12, \\ & -13=<\mathrm{k}=<13, \\ & -33=<1=<33 \end{aligned}$	$\begin{aligned} & -16=<\mathrm{h}=<16, \\ & -17=<\mathrm{k}=<17, \\ & -18=<\mathrm{l}=<20 \end{aligned}$	$\begin{aligned} & -16=<\mathrm{h}=<16, \\ & -18=<\mathrm{k}=<18, \\ & -18=<1=<18 \end{aligned}$
reflns collected	22878	36290	33904	28170
indep reflns	2531	1944	10846	10055
R (int)	0.1073	0.0735	0.0896	0.0944
abs corrn	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
data/restraints/param	2531 / 57 / 84	1944 / 0 / 98	10846 / 33 / 632	10055 / 12 / 389
GOF on F^{2}	1.061	0.891	0.969	1.057
$R_{1},{ }^{b}{ }^{\text {w }} w R_{2}{ }^{c}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0606, 0.1538	0.0274, 0.0685	0.0490, 0.1077	0.0688, 0.2111
$R_{1},{ }^{b} w R_{2}{ }^{c}$ (all data)	0.0713, 0.1632	0.0331, 0.0723	0.0785, 0.1212	0.1046, 0.2513
Largest diff peak and hole, e \AA^{-3} ${ }^{a}$ The values are the act ${ }^{b} R_{1}=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma \mid F$	5.723 and -3.135 al formula units and we \|. ${ }^{c} w R_{2}=\left[\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)\right.$	$1.407 \text { and }-1.045$ ghts as obtained from b $\left./ \Sigma w\left(F_{0}^{2}\right)^{2}\right]^{1 / 2}$.	$2.442 \text { and }-2.096$ 1 k elemental analysis.	4.811 and -5.087

3.2.3 Bond Valence Sum Calculations

In $\mathbf{N a - P t} \mathbf{2}_{\mathbf{A}} \mathbf{u}_{3}$ and $\mathbf{N a - P t} \mathbf{2 l u}_{\mathbf{3}} \mathbf{(a)}$, the BVS values for the independent gold atom are 2.911 and 2.592 , and the values for the independent platinum atom are 3.798 and 4.348 , respectively. The BVS values for different types of μ_{2}-bridging oxygens are presented in Table 3.8. These values show that these oxygens are not protonated and therefore polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ is a true gold(III)-platinum(IV) oxo species. In $\mathbf{K}-\mathbf{P t} \mathbf{t}_{2} \mathbf{A u}_{3}$, the BVS values for the three gold atoms range from 2.609 to 2.665 , and the values for the two platinum atoms are 4.209 and 4.228 , respectively, supporting the +3 oxidation state of gold and +4 oxidation state of platinum in polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$. In $\mathbf{N a - A u 4 P d} \mathbf{1 0}$, the BVS values for the two gold atoms are 2.413 and 2.760, respectively, and the values for the five palladium atoms range from 2.114 to 2.265 , supporting the +3 oxidation state of
gold and +2 oxidation state of palladium in polyanion $\mathbf{A u}_{\mathbf{4}} \mathbf{P d}_{\mathbf{1 0}}$. The BVS values for different types of μ_{3}-bridging oxygens in $\mathbf{N a - A} \mathbf{u}_{4} \mathbf{P d} \mathbf{d}_{10}$ are presented in Table 3.9.

Table 3.8. BVS values for μ_{2}-bridging oxygen atoms in $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}, \mathbf{N a - P t} \mathbf{I A}_{\mathbf{2}} \mathbf{A} \mathbf{(a)}$, and $\mathbf{K - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$.

Compound	$\mu_{2-}-\mathrm{O}$	BVS value
$\mathbf{N a - P t} \mathbf{A u}_{3}$	$\mathrm{Au}-\mathrm{O} 2-\mathrm{Pt}$	1.433
$\mathbf{N a - P t} \mathbf{2 l u}_{3}(\mathbf{a})$	$\mathrm{Au}-\mathrm{O} 1-\mathrm{Pt}$	1.498
$\mathbf{K - P t} \mathbf{2 A u}_{3}$	Au1-O1-Pt2	1.494
	Au1-O3-Pt1	1.492
	Au2-O5-Pt1	1.476
	Au2-O7-Pt2	1.470
	Au3-O9-Pt2	1.558
	Au3-O10-Pt1	1.509

Table 3.9. BVS values for μ_{3}-bridging oxygen atoms in $\mathbf{N a}$ - Au4Pd ${ }_{10}$.

$\mu_{3}-\mathrm{O}$	Bond distance((A)	BVS value	$\mu_{3}-\mathrm{O}$	Bond distance($\left(\begin{array}{l}\text {) }\end{array}\right.$	BVS value
O1	Pd1-O1 (1.9984)	1.714	O5	Au1-O5 (2.0010)	1.739
	Pd2-O1 (2.0106)			Pd4-O5 (2.0063)	
	Au1-O1 (2.0264)			Pd3-O5 (2.0120)	
O 2	Pd1-O1 (1.9915)	1.674	O6	Au1-O6 (2.0007)	1.703
	Pd2-O1 (2.0322)			Pd5-O6 (2.0190)	
	Au1-O1 (2.0392)			Pd4-O6 (2.0259)	
07	Au2-O7 (1.9572)	1.805	O8	Au2-O8 (1.9530)	1.814
	Pd3-O7 (2.0053)			Pd5-O8 (2.0048)	
	Pd1-O7 (2.0244)			Pd2-O8 (2.0239)	

3.2.4 Results and Discussion

3.2.4.1 Solid-State Structure

The first example of a discrete mixed platinum(IV)-gold(III) oxoanion, $\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}\left(\mathrm{Pt}_{2} \mathrm{Au}_{3}\right.$, see Figure 3.23), which was synthesized in aqueous medium at $80{ }^{\circ} \mathrm{C}$ and isolated as a hydrated sodium salt,
$\mathrm{Na}\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right] \cdot \mathrm{NaCl} \cdot \mathrm{NaNO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{N a}-\mathrm{Pt}_{2} \mathbf{A u} \mathbf{u}_{3}\right)$ or a potassium salt, $\mathrm{K}\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right] \cdot \mathrm{KCl} \cdot \mathrm{KAsO}_{2}\left(\mathrm{CH}_{3}\right)_{2} \cdot 18 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{K}-\mathrm{Pt}_{2} \mathbf{A u}_{3}\right)$ in good yield. The symmetry units of solid-state interaction of polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ are showed in Figure 3.24. The polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ was prepared by reaction of $\mathrm{H}_{2}\left[\mathrm{Pt}(\mathrm{OH})_{6}\right]$ with hydrogen tetrachloroaurate $\mathrm{H}\left[\mathrm{AuCl}_{4}\right]$ in a pH 7 sodium dimethylarsinate buffer, resulting in a rapid color change (the initial orange solution color becomes orange-red). It is well known that an acidification of a $\left[\mathrm{Au}(\mathrm{OH})_{4}\right]^{-}$solution leads to the formation of insoluble $\mathrm{Au}(\mathrm{OH})_{3}$, and that chloride ions do not compete with OH^{-}for $\mathrm{Au}^{\text {III }}$ in neutral or slightly alkaline solutions $(\mathrm{pH} 7.0$ to 8.5$) .{ }^{109}$ In this case, the in situ formed tetrahydroxogold(III) ion $\left[\mathrm{Au}(\mathrm{OH})_{4}\right]^{-}$(or a closely related derivative) reacts smoothly with $\left[\mathrm{Pt}(\mathrm{OH})_{6}\right]^{2-}$ in the presence of cacodylate ions, which act as capping groups, thereby terminating the condensation process.

Figure 3.23. Combined ball-and-stick/polyhedral representation and Ball-and-stick representation (side view) of $\mathbf{P t}_{2} \mathbf{A u}_{3}$. Color code: $\left\{\mathrm{PtO}_{6}\right\}$ orange octahedra, $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ blue tetrahedra, Au yellow, Pt orange, As sky blue, O red, C grey. Hydrogen atoms omitted for clarity.

Figure 3.24. The symmetry unit of solid-state interaction of polyanion $\mathbf{1}$ with Na^{+}counter cations in $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ (top left) and $\mathbf{N a - P t} \mathbf{P}_{2} \mathbf{A u}_{3}(\mathbf{a})$ (top right), as well as K^{+}counter cations in K-Pt $\mathbf{A u}_{3}$ (bottom), respectively (50\% probability ellipsoids). Hydrogen atoms omitted for clarity.

The polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ possesses a waterwheel structure with two Pt ions linked by three square-planar coordinated Au ions and terminally coordinated by six cacodylate ligands, resulting in an assembly with $\mathrm{C}_{3 h}$ symmetry (Figure 3.23). In $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A} \mathbf{u}_{3}$, the average $\mathrm{Au}-$ O bond lengths are 1.953(9) \AA for the oxo ligands and 2.017(9) \AA for the oxygen atoms of the cacodylate fragments. Bond valence sum (BVS) calculations showed no protonation
for any bridging oxygen atoms (Table 3.6). The average $\mathrm{Au}-\mathrm{O}$ bond lengths in $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ $(1.986 \pm 0.010 \AA)$ are comparable to those in other known gold(III)-oxo complexes, such as the square-planar $\mathrm{Au}_{2} \mathrm{O}_{2}$ core of $\left[\mathrm{Au}_{2}\left\{\mathrm{~N}_{2} \mathrm{C}_{10} \mathrm{H}_{7}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)-6\right\}_{2}(\mu-\mathrm{O})_{2}\right]^{2}\left[\mathrm{PF}_{6}\right]_{2}(1.976(3)$ and $1.961(3) \AA),{ }^{110}$ the $\left.\operatorname{SrAu}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{8}\right)(1.979 \pm 0.008) \AA,{ }^{111}$ or the polyoxoaurate $\mathrm{Au}_{4} \mathrm{As}_{4}(1.980 \pm 0.023 \AA),{ }^{33}$ and quite a bit shorter than the $\mathrm{Au}-\mathrm{O}$ distance in dimethylgold(III) hydroxide $\left((2.154 \pm 0.148) \AA \AA^{1}\right) .{ }^{112}$ The $\mathrm{Au} \cdots \mathrm{Au}$ distance in $\mathbf{K - P t}_{2} \mathbf{A u}_{3}$ $(3.973 \pm 0.070 \AA)$ is significantly longer than in $\mathrm{Au}_{4} \mathrm{As}_{4}(3.246 \pm 0.024 \AA)$. The $\mathrm{Pt}-\mathrm{O}$ bond lengths around the octahedrally coordinated Pt centers are quite regular, ranging from 1.960(9) to 2.063(9) \AA. The same applies for the sodium salt $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$. The three Au ions in $\mathbf{1}$ are located in the same plane and exhibit a slightly distorted square-planar coordination. The oxo ligands bridging to the platinum centers are situated on both sides of this $\left\{\mathrm{Au}_{3}\right\}$ plane, while all $\mathrm{O}-\mathrm{As}-\mathrm{O}$ bridges connect a Pt and an Au atom. In the solid-state lattice of $\mathbf{N a}-\mathrm{Pt}_{2} \mathbf{A u}_{3}$, the polyanions are surrounded by a belt of six Na^{+}ions, three $\mathrm{NO}_{3}{ }^{-}$ions, and three Cl^{-}ions, resulting in a supramolecular 2D layer with a hexagonal pattern (Figure 3.25).

Figure 3.25. Solid state structure of $\mathbf{N a}^{\mathbf{P}} \mathrm{Pt}_{2} \mathrm{Au}_{3}$ highlighting the supramolecular 2D
layered plane.
Single-crystal X-ray analysis revealed that the polyanion $\mathbf{A u 4 P d}_{10}$ comprises 10 squareplanar oxo-coordinated $\mathrm{Pd}^{\mathrm{II}}$ ions and 4 square-planar oxo-coordinated $\mathrm{Au}^{\text {III }}$ ions, which can be subdivided in a central cube shaped $\left[\mathrm{Pd}_{4} \mathrm{O}_{4}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]$ unit, connected to two tetrameric bowl shaped $\left[\mathrm{AuPd}_{3} \mathrm{O}_{4}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]$ units by two square-planar coordinated gold atoms on each side, resulting in a mixed palladium(II)-gold(III) oxoanion $\left[\mathrm{Pd}^{\mathrm{II}}{ }_{10} \mathrm{Au}^{\mathrm{II}}{ }_{4} \mathrm{O}_{12}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{10}\right]^{2-}\left(\mathbf{A u}_{4} \mathbf{P d}_{10}\right)$ (Figure 3.26). The symmetry unit of solidstate interaction of polyanion $\mathbf{A u}_{\mathbf{4}} \mathbf{P d}_{\mathbf{1 0}}$ is showed in Figure 3.27. In $\mathbf{N a - A u 4} \mathbf{P d} \mathbf{1 0}$, the average $\mathrm{Au}^{\mathrm{III}}-\mathrm{O}$ bond lengths are $1.967(6) \AA$ for the oxo ligands linked to central cube $\left[\mathrm{Pd}_{4} \mathrm{O}_{4}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]$ unit and $2.017(3) \AA$ for the oxygen atoms from the $\left[\mathrm{AuPd}_{3} \mathrm{O}_{4}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]$ unit. The $\mathrm{Pd}-\mathrm{O}$ distances range from 1.991(5) to 2.059(1) \AA. To the best of our knowledge, this is the second example of mixed gold-palladium polyoxo-noble-metalate, except for $\left[\mathrm{NaAu}^{\mathrm{III}}{ }_{4} \mathrm{Pd}_{8}^{\mathrm{II}}{ }_{8} \mathrm{O}_{8}\left(\mathrm{AsO}_{4}\right)_{8}\right]^{11-.}{ }^{30}$

Figure 3.26. Combined ball-and-stick/polyhedral representation and Ball-and-stick representation (side view) of $\mathbf{A u}_{\mathbf{4}} \mathbf{P d}_{\mathbf{1 0}}$. Color code: $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ blue tetrahedra, Pd green, Au yellow. Hydrogen atoms omitted for clarity.

Figure 3.27. The symmetry unit of solid-state interaction of polyanion $\mathbf{A u}_{4} \mathbf{P d}_{10}$ with Na^{+} counter cations in $\mathbf{N a - A u 4 P d} 10$ (50\% probability ellipsoids). Hydrogen atoms omitted for clarity.

3.2.4.2 Multinuclear NMR Study

To complement our solid-state XRD results on $\mathbf{P t}_{2} \mathbf{A u}_{3}$ with solution studies, we performed ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{195} \mathrm{Pt}$ NMR measurements on $\mathbf{N a}-\mathbf{P t}_{2} \mathrm{Au}_{3}$ and $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A} \mathbf{u}_{3}$ redissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reference Na-Cac in water exhibits sharp peaks at 4.7 and 1.4 ppm , respectively, corresponding to the protons of the cacodylate methyl groups and crystal water molecules. On the other hand, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{N a - P t} \mathbf{2}_{\mathbf{2}} \mathbf{A u}_{\mathbf{3}}$ exhibits peaks at 2.1 and 1.7 ppm that correspond to the two structurally and hence magnetically inequivalent cacodylate methyl groups (Figure 3.28). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{K - P t} \mathbf{2}_{2} \mathbf{A u}_{3}$ exhibits three distinct peaks at 2.1, 1.7, and 1.6 ppm , respectively. The two downfield signals belong to $\mathbf{P t}_{2} \mathbf{A u}_{3}$, whereas the peak at 1.6 ppm corresponds to the methyl
protons of free cocrystallized cacodylate ions. We also investigated the pH stability of polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ by NMR and the pH -dependent ${ }^{1} \mathrm{H}$ NMR spectra show that polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ is stable at pH 2 to 10 (Figure 3.29).

Figure 3.28. ${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}$ (right) NMR spectra of $\mathbf{N a - P t} \mathbf{2 A u}_{3}$ and $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ dissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ compared to spectra of the sodium cacodylate reference.

Figure 3.29. pH-dependent ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)$ of $\mathbf{N a - P t} \mathbf{2}_{2} \mathrm{Au}_{3}$.

Chapter III Polyoxo-noble-metalates

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ exhibits peaks at 22.8 and 17.1 ppm that correspond to the two structurally inequivalent cacodylate methyl groups (Figure 3.28). The ${ }^{13} \mathrm{C}$ NMR spectrum of Na-Cac exhibits a narrow peak at 17.3 ppm . The ${ }^{13} \mathrm{C}$ NMR spectrum of \mathbf{K} $\mathbf{P t}_{2} \mathbf{A u}_{3}$ exhibits three distinct sharp peaks (in analogy to its ${ }^{1} \mathrm{H}$ NMR spectrum) at 22.8, 17.2, and 17.4 ppm corresponding to the methyl groups of the two structurally inequivalent cacodylate methyl groups of $\mathbf{1}$ and free cocrystallized cacodylate ions, respectively. Next, ${ }^{195} \mathrm{Pt}$ NMR measurements were performed on $\mathbf{N a - P t} \mathbf{2 A}_{\mathbf{2}}$ and $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ redissolved in water. This technique had been applied earlier for the platinum(IV)-containing decavanadate $\left[\mathrm{H}_{2} \mathrm{Pt}^{\mathrm{IV}} \mathrm{V}_{9} \mathrm{O}_{28}\right]^{5-}$, exhibiting a clean signal at $\delta=3832 \mathrm{ppm} .{ }^{43}$ We located the expected singlet for $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ and $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ at 3140 and 3142 ppm , respectively (Figure 3.30). The corresponding ${ }^{195} \mathrm{Pt}$ NMR signal for the precursor $\mathrm{H}_{2}\left[\mathrm{Pt}(\mathrm{OH})_{6}\right]$ appeared more downfield at 3294 ppm . We also performed time and temperature dependent ${ }^{195} \mathrm{Pt}$ NMR
 room temperature for 10 min and 40 min there are two peaks at 3316 and 3142 ppm , respectively, corresponding to the reagent $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}$ and polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$. However, after heating at $40^{\circ} \mathrm{C}$ for 30 min , the spectrum exhibits only a narrow peak at 3141 ppm , indicating that $\mathbf{P t}_{2} \mathbf{A u}_{3}$ is formed cleanly as the only product during the reaction procedure, suggesting a reaction yield of essentially 100%, which is extremely rare in POM chemistry. The combination of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{195} \mathrm{Pt}$ NMR is fully consistent with the solid-state structure of $\mathbf{K - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$ and $\mathbf{N a - P t} \mathbf{2 A u}_{3}$ and hence provides unequivocal evidence for the presence of polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ also in solution.

Figure 3.30. ${ }^{195} \mathrm{Pt}$ NMR spectra of $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u} \mathbf{3}$ and $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A u} \mathbf{u}_{3}$ dissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$.

Figure 3.31. ${ }^{195} \mathrm{Pt}$ NMR spectra of fresh synthesis solutions of $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ after stirring at room temperature for 10 min (top left, 4510 scans) and for 40 min (top right, 3018 scans), as well as at $40^{\circ} \mathrm{C}$ for 30 min (bottom left, 3052 scans) and the same solution after a longer measurement time (bottom right, 126693 scans).

3.2.4.3 ESI-MS Analysis

Furthermore, the sodium and potassium salts of polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ were investigated by ESI-MS in the positive and negative ion modes (Figure 3.32). In the negative ion mode, signals centered around $m / z 1898.55$ were observed for both $\mathbf{N a - P t} \mathbf{A l u}_{3}$ and $\mathbf{K - P t} \mathbf{P A}_{\mathbf{2}} \mathbf{u}_{3}$. These could be clearly assigned to the singly-charged title polyanion $\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}\left(\mathbf{P t}_{2} \mathbf{A u} 3\right)$, see Figure 3.33. In the positive ion mode spectrum of $\mathbf{N a - P t} \mathbf{2 A}_{2} \mathbf{A u}_{3}$, a main group of signals was observed centered around m / z 983.75, corresponding to a doubly-charged species with an elemental composition of $\left[\mathrm{Na}_{3} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2+}$ (Figure 3.34). The isotope distribution was fully confirmed by comparison of the experimental spectrum to a simulated spectrum. Thus, the ESI-MS spectra of $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ and $\mathbf{K - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$ corroborate the solid-state structural analysis and show that polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ is structurally intact in solution, even under ESI conditions. Additional MS assignments for $\mathbf{N a - P t} \mathbf{2}_{\mathbf{A}} \mathbf{u}_{\mathbf{3}}$ and $\mathbf{K - P t} \mathbf{2}_{\mathbf{2}} \mathbf{A u}_{\mathbf{3}}$ are summarized in Table 3.10.

Figure 3.32. ESI-MS spectrum (full scan) for aqueous solutions of $\mathbf{N a}^{\mathbf{P a t}} \mathbf{2 A}_{\mathbf{2}} \mathbf{A u}_{3}$ in the negative-ion mode (identical result for $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A u}_{3}$).

Figure 3.33. Simulated ESI-MS spectrum of $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ and $\mathbf{K}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ in negative-ion mode (top) and experimental ESI-MS spectrum (bottom) of the singly-charged polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ (expanded view).

Figure 3.34. Simulated ESI-MS spectrum of $\mathbf{N a}^{-P_{2}} \mathbf{A u}_{3}$ in positive-ion mode (bottom) and experimental ESI-MS spectrum (top) of the doubly-charged $\left[\mathrm{Na}_{3} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2+}$ ion (expanded view).

Table 3.10. Peak assignments of the ESI-MS spectra of $\mathbf{N a - P t} \mathbf{P A}_{3}$ and $\mathbf{K - P t} \mathbf{P l u}_{3}$.

$\mathrm{Na}\left[\mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathrm{NaCl} \cdot \mathrm{NaNO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{N a}-\mathrm{Pt}_{2} \mathrm{Au}_{3}\right)$				
Formula	Target Mass (amu)	Measured Mass (amu)		
$\left[\mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{-}$	1898.9887	1898.7804		
$\left[\mathrm{Na}_{2} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{+}$	1944.9682	1944.4715		
$\left[\mathrm{Na}_{3} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2+}$	983.979	983.7274		
$\mathrm{~K}\left[\mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right] \cdot \mathrm{KCl} \cdot \mathrm{KAsO}_{2}\left(\mathrm{CH}_{3}\right)_{2} \cdot 18 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}^{2}-\mathrm{Pt}_{2} \mathrm{Au}_{3}\right)$				
Formula $^{\text {Target Mass (amu) }}$				Measured Mass (amu)
$\left[\mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{-}$	1898.9887	1898.8694		
$\left[\mathrm{~K}_{2} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{+}$	1977.1853	1976.4124		
$\left[\mathrm{~K}_{3} \mathrm{Pt}_{2} \mathrm{Au}_{3} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2+}$	1008.1418	1007.6855		

3.2.4.4 Powder XRD Study

Single-crystal-to-single-crystal (SCSC) transformations consititute solid-state phase transitions induced by external stimulus, such as light, heat, guest, and mechanochemical forces. ${ }^{113}$ While SCSC transformations in metal-organic frameworks (MOFs) and coordination polymers (CPs) are well-documented, reports on SCSC transformations at the discrete clusters remain scarce. Such transformations in discrete clusters are challenging because they usually involve the breakage and formation of chemical bonds, as well as the rearrangement of structures in the solid state, which can destroy the crystalline state of the molecules. To our knowledge, only five other thermally induced processes have been described, involving high-, room- and low temperature polymorphic transitions ${ }^{114}$ or structural variations by dehydration. ${ }^{115}$
$\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ undergoes a reversible single-crystal-to-single-crystal (SCSC) transformation in the solid state upon rehydration and dehydration, where rehydration was achieved by keeping the sample in an atmosphere of water vapor at room temperature and dehydration
was achieved by air drying for one day. The polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ crystallizes in the centrosymmetric space group $\mathrm{P}_{3} / \mathrm{m}$ when in the mother liquor ($\mathbf{N a}^{\mathbf{- P t}} \mathbf{P t}_{\mathbf{2}} \mathbf{A} \mathbf{u}_{3}(\mathbf{a})$), but after air drying for one day, it transforms to the non-centrosymmetric space group P $\overline{6}$ (Na$\left.\mathbf{P t}_{2} \mathbf{A u} 3\right)$. The two crystal structures show the exact same polyanion as confirmed by singlecrystal XRD, but the unit cell volume shrinks significantly from 2775.2(4) to 2130.9(12) \AA^{3} upon air-drying for a day, and the packing arrangement is significantly different, because the layer sequence is AAA in $\mathbf{N a - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$ and ABA in $\mathbf{N a}^{\mathbf{- P}} \mathbf{P t}_{\mathbf{2}} \mathbf{A u}_{\mathbf{3}}(\mathbf{a})$ (Figure 3.35).

Figure 3.35. The fully reversible SCSC transition of $\mathbf{N a - P t} \mathbf{2 A}_{3}$ to $\mathbf{N a}^{2} \mathrm{Pt}_{2} \mathrm{Au}_{3}$. Left: ball-and-stick representation; right: packing diagrams for $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ (AA mode) and $\mathbf{N a}$ $\mathrm{Pt}_{2} \mathrm{Au}_{3}(\mathbf{a})$ (AB mode). Color code: Au yellow, Pt orange, O red, C grey, N blue, As light blue, Cl light green, Na pink, H light grey.

The structural transformation of $\mathbf{N a - P t} \mathbf{2} \mathbf{A u} \mathbf{3}(\mathbf{a})$ to $\mathbf{N a - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$ upon dehydration by air drying was also confirmed by powder-XRD (PXRD) measurements (Figure 3.36 and 3.37),
due to significantly different stacking of the 2D layers. A pure phase of $\mathbf{N a - P t} \mathbf{A u}_{\mathbf{3}}(\mathbf{a})$ is obtained in the crystals in the mother liquor, but after drying in air for one day, a transformation to the new phase $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ occurs. After 2 days, a completely pure phase
 reversible during a rehydration and dehydration process. Rehydration of $\mathbf{N a}-\mathrm{Pt}_{2} \mathbf{A u}_{3}$ in the presence of water vapor at room temperature results in $\mathbf{N a}-\mathrm{Pt}_{2} \mathbf{A u}_{3}(\mathbf{a})$ within half an hour. The rehydration behavior of $\mathbf{N a}-\mathrm{Pt}_{2} \mathbf{A u}_{3}$ was also demonstrated by thermogravimetric analysis (TGA) and infrared spectroscopy (FT-IR) on $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ (Figures 3.38 and 3.39).

Figure 3.36. Experimental and simulated PXRD patterns of $\mathbf{N a - P t} \mathbf{t}_{2} \mathbf{A u}_{3}(\mathbf{a})$ and $\mathbf{N a - P t} \mathbf{A l}_{3}$ during a dehydration process by air drying (simulated diffraction patterns derived from single-crystal data).

Figure 3.37. PXRD patterns for $\mathbf{N a - P t} \mathbf{2}_{2} \mathbf{A u}_{3}$ in the presence of water vapor for different periods of time at RT.

Figure 3.38. Thermograms of air-dried and partially rehydrated (several hours) $\mathbf{N a - P t} \mathbf{2 A u}_{3}$ from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere. Complete rehydration of the bulk material $\mathbf{N a}-\mathrm{Pt}_{2} \mathrm{Au}_{3}$ results in partial dissolution.

Figure 3.39. FT-IR spectra of air-dried and rehydrated $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A u}_{3}$ from $400-4000 \mathrm{~cm}^{-1}$ on KBr pellets.

3.2.4.5 Light irradiation

We have also investigated the stability of solid $\mathbf{N a - P t} \mathbf{2 A}_{2} \mathbf{A u}_{3}$ under blue light $(\lambda=450-480$ nm, blue LED lamp LED PAR30, E-27). The PXRD spectra revealed that the crystal structure maintains a high degree of crystallinity up to at least 4 h (Figure 3.40). Regarding solutions of $\mathbf{N a - P t} \mathbf{2 A u}_{3}$ in water upon irradiation with blue light, ${ }^{1} \mathrm{H}$ NMR revealed that the free cacodylate signal at 1.6 ppm gradually increased from the original 0% to $2,3,6$, 14,17 and 20% after 5, 15, 30, 60, 120 and 240 min , respectively (Figure 3.40). Without irradiation, ${ }^{1} \mathrm{H}$ NMR demonstrated that there is only a 2% decomposition of $\mathbf{N a - P t} \mathbf{A u}_{\mathbf{3}}$ after 1 day (Figure 3.41).

Figure 3.40. Time-dependent PXRD spectra of $\mathbf{N a}-\mathrm{Pt}_{2} \mathrm{Au}_{3}$ under blue light irradiation.

Figure 3.41. Time-dependent ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{N a - P t} \mathbf{t}_{2} \mathbf{A u}_{3}$ without (left) and with (right) blue light irradiation.

3.2.5 Conclusions

We have synthesized and structurally characterized the first discrete mixed gold-platinumoxoanion $\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}\left(\mathbf{P t}_{2} \mathrm{Au}_{3}\right)$ by using simple one-pot open-beaker techniques. The ${ }^{195} \mathrm{Pt}$ NMR spectrum of redissolved solid 1 in water demonstrates solution stability, which provides much potential for further applications of $\mathbf{P t}_{2} \mathbf{A u}_{3}$ in catalysis and
biomedicine. The reversible single-crystal-to-single-crystal transformation of Na$\mathbf{P t}_{2} \mathbf{A u}_{3}(\mathbf{a})$ to $\mathbf{N a - P t} \mathbf{2}_{2} \mathbf{A u}_{3}$ upon dehydration and rehydration is of particular interest, as concern solid state applications (sorption etc). The polyanion $\mathbf{P t}_{2} \mathbf{A u}_{3}$ merges the areas of polyoxoplatinate and polyoxoaurate chemistry and pushes the area of polyoxo-noblemetalate chemistry to a higher synthetic and analytical level. Further studies in this area are ongoing.

3.3 Sc(III) and Zn (II)-containing 16-palladium(II)-oxo cluster

3.3.1 Synthesis

$4\left[\mathrm{Pd}_{16} \mathrm{O}_{24}(\mathrm{OH})_{8}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{As}\right)_{8}\right] \cdot \mathrm{NaSc}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{As}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot \mathbf{x H}_{2} \mathrm{O}\left(\mathbf{S c}^{\left.-\mathrm{Pd}_{16}\right)}\right.$

$\mathrm{Sc}\left(\mathrm{NO}_{3}\right)_{3}(7 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{3}(43 \mathrm{mg}, 0.18 \mathrm{mmol})$ were dissolved in 4 mL aqueous sodium cacodylate buffer (0.5 M , adjust pH to 7 by adding $68 \% \mathrm{HNO}_{3}$), and stirred at RT for 1 day leading to deep-red solution. Slow evaporation of the filtrate at room temperature in an open vial resulted in dark red crystals after 45 days. But the yield is too low to collect sample for elemental analysis. FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3414-3241(\mathrm{~s})[v(\mathrm{O}-\mathrm{H})$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 3003-2924(\mathrm{w})$ [$\mathrm{v}(\mathrm{C}-\mathrm{H})$ of methyl groups of cacodylate], $1617(\mathrm{~m})\left[\mathrm{H}_{2} \mathrm{O}\right.$ bending fundamental mode $\delta], 1408(\mathrm{~m})[\delta(\mathrm{C}-\mathrm{H})$ of the methyl groups of cacodylate], $1269(\mathrm{w})$ $\left[\delta_{\text {in-plane }}(\mathrm{O}-\mathrm{H})\right], 906(\mathrm{w})\left[\delta_{\text {out-of-plane }}(\mathrm{O}-\mathrm{H})\right], 828-645(\mathrm{~s})[\mathrm{v}(\mathrm{Pd}-\mathrm{O})], 503(\mathrm{~m})[\mathrm{v}(\mathrm{As}-\mathrm{C})]$.

$4\left[\mathrm{Pd}_{16} \mathrm{O}_{24}(\mathrm{OH})_{8}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{As}\right)_{8}\right] \cdot \mathrm{Na}_{2} \mathrm{Zn}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{As}\right)_{4} \cdot \mathbf{x H}_{2} \mathrm{O}\left(\mathrm{Zn}^{-P d}{ }_{16}\right)$

The compound was prepared by exactly the same procedure as $\mathbf{S c - P d} \mathbf{1 6}$, but with $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ $(6 \mathrm{mg}, 0.03 \mathrm{mmol})$ instead of $\mathrm{Sc}\left(\mathrm{NO}_{3}\right)_{3}$. Dark dark red crystals were obtained. But the yield is too low to collect sample for elemental analysis. FT-IR $\left(\mathrm{KBr}\right.$ pellet, $\left.\mathrm{cm}^{-1}\right): 3500-3200$ (s) $\left[v(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 3001-2921(\mathrm{w})[\mathrm{v}(\mathrm{C}-\mathrm{H})$ of methyl groups of cacodylate], $1639(\mathrm{~m})$ [$\mathrm{H}_{2} \mathrm{O}$ bending fundamental mode δ], 1408-1386 $(\mathrm{m})[\delta(\mathrm{C}-\mathrm{H})$ of the methyl groups of cacodylate], $1265(\mathrm{w})\left[\delta_{\text {in-plane }}(\mathrm{O}-\mathrm{H})\right], 903(\mathrm{w})\left[\delta_{\text {out-of-plane }}(\mathrm{O}-\mathrm{H})\right], 829-647(\mathrm{~s})[v(\mathrm{Pd}-\mathrm{O})]$, 586-499 (m) [v(As-C)].

Figure 3.42. FT-IR spectra of $\mathbf{S c - P d}_{16}$ (red) and $\mathbf{Z n}^{-P_{16}}{ }_{16}$ (blue) from $400-4000 \mathrm{~cm}^{-1}$ on KBr pellets.

3.3.2 Single-Crystal XRD Data

Table 3.11. Crystal data and structure refinement for $\mathbf{S c}_{\mathbf{- P d}}^{16}$ and $\mathbf{Z n}-\mathbf{P d}_{16}$.

Compound	Sc-Pd ${ }_{16}$	$\mathbf{Z n - P d}{ }_{16}$
empirical formula	$\mathrm{Na}_{10} \mathrm{Pd}_{64} \mathrm{ScAs}_{36} \mathrm{C}_{72} \mathrm{H}_{216} \mathrm{O}_{160}$	$\mathrm{Na}_{8} \mathrm{Pd}_{64} \mathrm{ScAs}_{36} \mathrm{C}_{72} \mathrm{H}_{216} \mathrm{O}_{160}$
$\mathrm{fw}, \mathrm{g} \mathrm{mol}^{-1}$	13408.14	13398.44
crystal system	Tetragonal	Tetragonal
space group	I4 ${ }_{1} / \mathrm{a}$	I4 ${ }_{1} / \mathrm{a}$
$a(\AA)$	39.276(3)	39.205(3)
$b(\AA)$	39.276(3)	39.205(3)
$c(\AA)$	22.279(2)	22.283(2)
$\alpha\left({ }^{\circ}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	90	90
$\gamma\left({ }^{\circ}\right)$	90	90
$V\left(\AA^{3}\right)$	34367(6)	34250(7)
Z	4	4
$D c\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	2.598	2.598
abs coeff, mm^{-1}	6.795	6.866
θ range for data collection, deg	1.466 to 20.884	1.469 to 20.892

completeness to $\Theta_{\text {max }}$	99.7\%	99.6\%
index ranges	$\begin{aligned} & -39=<\mathrm{h}=<39, \\ & -38=<\mathrm{k}=<38, \\ & -23=<1=<23 \end{aligned}$	$\begin{aligned} & -39=<\mathrm{h}=<38, \\ & -39=<\mathrm{k}=<39, \\ & -22=<1=<21 \end{aligned}$
reflns collected	132540	153891
indep reflns	9060	9027
$R(\mathrm{int})$	0.1347	0.1495
abs corrn	Semi-empirical from equivalents	Semi-empirical from equivalents
data/restraints/param	9060 / 7 / 780	9027 / 1/787
GOF on F^{2}	1.160	1.131
$R_{1},{ }^{a} w R_{2}{ }^{b}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0844, 0.2264	0.0903, 0.2394
$R_{1},{ }^{a} w R_{2}{ }^{\text {b }}$ (all data)	0.1541, 0.3190	0.1512, 0.3232
Largest diff peak and hole, e \AA^{-3}	3.927 and -2.997	4.743 and -3.728

3.3.3 Bond Valence Sum Calculations

In $\mathbf{S c}-\mathbf{P d}_{16}$, the BVS values for the independent Pd atom range from 2.039 to 2.345. And the values for the independent Pd atom $\operatorname{In} \mathbf{Z n}-\mathbf{P d} \mathbf{d}_{16}$ range from 1.996 to 2.349. The BVS values for different types of bridging oxygens are presented in Table 3.12.

Table 3.12. BVS values for μ_{2} - and μ_{4}-bridging oxygen atoms in $\mathbf{S c}-\mathbf{P d}_{16}$ and $\mathbf{Z n}$ - $\mathbf{P d}_{16}$.

Sc-Pd ${ }_{16}$					
$\mu_{2}-\mathrm{O}$	Bond distance((\AA)	BVS value	$\mu_{2}-\mathrm{O}$	Bond distance(\AA ($)$	BVS value
O1	Pd9-O1 (2.0111)	1.081	O21	Pd9-O21 (2.0064)	1.092
	Pd13-O1 (2.0281)			Pd11-O21 (2.0250)	
O5	Pd10-O5 (2.0185)	1.068	O25	Pd13-O25 (2.0216)	1.074
	Pd12-O5 (2.0297)			Pd2-O25 (2.0228)	
O28	Pd16-O28 (2.0014)	1.124	O26	Pd15-O26 (1.9872)	1.104
	Pd12-O28 (2.0087)			Pd10-O26 (2.0379)	
O29	Pd11-O29 (2.0019)	1.072	033	Pd15-O33 (2.0127)	1.084

	Pd3-O29 (2.0446)			Pd16-O33 (2.0281)	
$\mu_{4}-\mathrm{O}$	Bond distance((\AA)	BVS value	$\mu_{4}-\mathrm{O}$	Bond distance(\AA)	BVS value
O6	Pd14-O6 (2.0044)	2.192	011	Pd1-O11 (1.9979)	2.154
	Pd5-O6 (2.0085)			Pd9-O11 (2.0172)	
	Pd11-O6 (2.0197)			Pd8-O11 (2.0320)	
	Pd15-O6 (2.0263)			Pd12-O11 (2.0377)	
07	Pd4-O7 (2.0028)	2.180	014	Pd5-O14 (1.9726)	2.163
	Pd8-07 (2.0164)			Pd7-O14 (2.0109)	
	Pd13-O7 (2.0214)			Pd3-O14 (2.0392)	
	Pd12-O7 (2.0260)			Pd15-O14 (2.0566)	
O8	Pd1-O8 (1.9923)	2.179	016	Pd4-O16 (1.9631)	2.269
	Pd2-O8 (2.0109)			Pd16-O16 (1.9912)	
	Pd10-O8 (2.0226)			Pd6-O16 (2.0278)	
	Pd9-O8 (2.0427)			Pd13-O16 (2.0288)	
O 10	Pd2-O10 (1.9549)	2.232	017	Pd6-O17 (1.9744)	2.192
	Pd14-O10 (1.9999)			Pd7-O17 (2.0171)	
	Pd11-O10 (2.0407)			Pd16-O17 (2.0276)	
	Pd10-O10 (2.0427)			Pd3-O17 (2.0424)	
$\mathbf{Z n}-\mathrm{Pd}_{16}$					
$\boldsymbol{\mu}_{2}-\mathrm{O}$	Bond distance($\left(\begin{array}{l}\text { ® }\end{array}\right.$	BVS value	$\mu_{2}-\mathrm{O}$	Bond distance(\AA)	BVS value
O2	Pd8-O2 (1.9819)	1.103	011	Pd8-O11 (2.0130)	1.103
	Pd3-O2 (2.0281)			Pd11-O11 (2.0118)	
O3	Pd5-O3 (2.0151)	1.078	O25	Pd13-O25 (2.0216)	1.074
	Pd11-O3 (2.0226)			Pd2-O25 (2.0228)	
O4	Pd2-O4 (2.0036)	1.081	O26	Pd15-O26 (1.9872)	1.104
	Pd4-O4 (2.0366)			Pd10-O26 (2.0379)	
O5	Pd12-O5 (1.9971)	1.136	033	Pd15-O33 (2.0127)	1.084
	Pd4-O5 (2.0055)			Pd16-O33 (2.0281)	
$\mu_{4}-\mathrm{O}$	Bond distance((\AA)	BVS value	$\mu_{4}-\mathrm{O}$	Bond distance(\AA)	BVS value

Chapter III Polyoxo-noble-metalates

O12	Pd15-O12 (1.9559)	2.172	O23	Pd9-O23 (1.9911)	2.144
	Pd16-O12 (2.0147)			Pd2-O23 (2.0142)	
	Pd11-O12 (2.0451)			Pd1-O23 (2.0165)	
	Pd12-O12 (2.0657)			Pd5-O23 (2.0741)	
018	Pd5-O18 (1.9936)	2.194	O24	Pd10-O24 (1.9666)	2.235
	Pd1-O18 (2.0006)			Pd6-O24 (1.9770)	
	Pd7-O18 (2.0296)			Pd4-O24 (2.0319)	
	Pd13-O18 (2.0350)			Pd3-O24 (2.0625)	
O19	Pd9-O19 (1.9650)	2.178	O27	Pd13-O27 (1.9679)	2.260
	Pd10-O19 (2.0313)			Pd11-O27 (1.9989)	
	Pd3-O19 (2.0330)			Pd15-O27 (2.0002)	
	Pd2-O19 (2.0435)			Pd7-O27 (2.0505)	
O22	Pd14-O22 (1.9906)	2.212	O28	Pd16-O28 (1.9950)	2.159
	Pd6-O22 (2.0062)			Pd14-O28 (1.9984)	
	Pd8-O22 (2.0163)			Pd12-O28 (2.0434)	
	Pd4-O22 (2.0331)			Pd8-O28 (2.0469)	

3.3.4 Results and Discussion

3.3.4.1 Solid-State Structure

Single-crystal X-ray analysis revealed that both $\mathbf{S c}-\mathbf{P d}_{16}$ and $\mathbf{Z n}-\mathbf{P d}_{16}$ crystallize in the tetragonal space group $\mathrm{I}_{1} / \mathrm{a}$ (Table 3.11), and their asymmetric units consist of $1 / 4 \mathrm{Sc}^{\text {III }}$ and $\mathrm{Zn}^{\mathrm{II}}$ ions, respectively, along with one $\mathbf{P d} 16$ unit which was reported by Kortz group. ${ }^{27 \mathrm{a}}$ The Pd16 comprises 16 square-planar oxo-coordinated palladium-(II) ions, which can be subdivided in a central $\left[\mathrm{Pd}_{8} \mathrm{O}_{8}(\mathrm{OH})_{8}\right]^{8-}$ square-antiprismatic unit, encircled by a cyclic $\left[\mathrm{Pd}_{8} \mathrm{O}_{16}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{As}\right)_{8}\right]^{8+}$ unit, resulting in the neutral, discrete metal oxo cluster $\mathbf{P d}_{16}$ (Figure 3.42). The $\mathbf{P d}_{16}$ has idealized $D_{4 d}$ point group symmetry with the C_{4} principal rotation axis passing through the central $\left[\mathrm{Pd}_{8} \mathrm{O}_{8}(\mathrm{OH})_{8}\right]^{8-}$ square-antiprismatic unit. Bond valence sum
(BVS) calculations on the $\mu_{2}-\mathrm{OH}$ groups yields values of $1.068-1.136$ (Table 3.12), confirming that these oxygens are monoprotonated. Therefore, in the solid state, the molecular clusters are composed of four $\mathbf{P d}_{16}$ units, and one octahedral coordinated $\mathrm{Sc}^{\text {III }}$ ion with four cacodylate ligands and two water ligands and tetrahedral coordinated $\mathrm{Zn}^{\mathrm{II}}$ ion with four cacodylate ligands, respectively, which are linked to each other through weak C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Figure 3.43).

Figure 3.43. Structural representation of the disk-shaped Pd16 (top left), view of H-bond interaction in Sc-Pd ${ }_{16}$ (top right (along b axis) and bottom left (along c aixs) and $\mathbf{Z n}$-Pd ${ }_{16}$ (bottom right (along c aixs)). Color code: Pd green, O (red), H grey, $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ blue tetrahedra, $\left\{\mathrm{ScO}_{6}\right\}$ green octahedra, $\left\{\mathrm{ZnO}_{4}\right\}$ orange tetrahedron.

3.3.5 Conclusions

Two $\mathrm{M} \cdot\left(\mathrm{Pd}_{16}\right)_{4}$ type palladium oxo clusters incorporating $3 \mathrm{~d} \mathrm{Sc}{ }^{\mathrm{III}}$ and $\mathrm{Zn}^{\mathrm{II}}$ as guest metal M have been prepared. Further structural characterization needs to be studied. Without forming internal coordination mode via metal-oxo interactions, such results confirm that, the guest metal ions can be introduced via host-guest interaction.

Chapter IV Platinum(II/III) Isopolytungstates

The coordination chemistry of platinum has a long history and can be regarded as classics, but surprisingly little is known about coordination of $\mathrm{Pt}(\mathrm{IV})$ or $\mathrm{Pt}(\mathrm{II})$ to polyoxometalates (POM). Moreover, some reports on supposedly Pt-coordinated POM remain controversial. ${ }^{116}$ Hence the preparation and reliable characterization of Pt-containing POM (this is also more or less true for other noble metals) still remains a considerable challenge. To further extend the research of this area, in this chapter, three new platinum(II/III) isopolytungstate, $\quad\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-} \quad\left(\mathbf{P t}_{3} \mathbf{W}_{11}\right), \quad\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]^{4-} \quad\left(\mathbf{P t}^{\mathrm{II}} \mathbf{W}_{5}\right)$, $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]^{4-} \quad\left(\mathbf{P t}^{\mathrm{III}} \mathbf{2}_{5}\right)$, and one dimeric $\mathrm{Pt}(\mathrm{III})$ compound $\left\{\left[\mathrm{Pt}^{\mathrm{III}} 2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{5}\right]^{+}\right\}_{n}\left(\mathbf{P t}_{2}\right)$ are presented. The hydrated salts of all three compounds were characterized in the solid state by single-crystal XRD, FT-IR spectroscopy, elemental and thermogravimetric analyses. Their aqueous solution behaviors of $\mathbf{P t} \mathbf{I I}_{\mathbf{2}} \mathbf{W}_{\mathbf{5}}$ were studied by multinuclear (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and $\left.{ }^{195} \mathrm{Pt}\right)$ NMR.

4.1 Synthesis

$\mathrm{K}_{3} \mathrm{Na}_{7}\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right] \cdot \mathbf{1 6} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{KNa}_{\mathbf{2}}-\mathrm{Pt}_{3} \mathrm{~W}_{11}\right)$ and $\mathrm{Na}_{2} \mathrm{~K}_{2}\left[\mathrm{Pt}_{2}{ }^{\mathrm{II}} \mathrm{W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right] \cdot \mathbf{9} \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{KNa}-\mathrm{Pt}_{2} \mathrm{IH}_{2} \mathrm{~W}_{5}$)
$\mathrm{K}_{2} \mathrm{PtCl}_{4}(41.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{WO}_{4}(33.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ were added in aqueous sodium cacodylate buffer ($2 \mathrm{~mL}, 0.5 \mathrm{M}$, adjust pH to 7 by adding $68 \% \mathrm{HNO}_{3}$), then stirred for 20 min at $80^{\circ} \mathrm{C}$. The initial orange-red solution colour first becomes light brown and then changes to deeper brown. Colorless and grey grennish crystals which is paratungstate came out overnight, then filtrated after 2 days. After several days, dark red block crystals

Chapter IV Platinum(II/III) Isopolytungstates

 decant the supernatant and the crystals were washed with 2 M sodium cacodylate buffer and finally with 96% ethanol. Since the crops of $\mathbf{K N a}-\mathbf{P t}_{\mathbf{3}} \mathbf{W}_{11}$ crystals practically always contained crystalline grey-greenish crystals, we can mechanically separate them under a microscope (relatively easy because of the different color). Anal. Calcd (\%) for KNa$\mathbf{P t}_{3} \mathbf{W}_{11}$: Pt 15.28, W 52.80, K 3.06, Na 4.2. Found: Pt 16.30, W 50.60, K 3.07, Na 3.79. FT-IR $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right): 3600-3200(\mathrm{~s})\left[\mathrm{v}(\mathrm{O}-\mathrm{H})\right.$ of structural $\left.\mathrm{H}_{2} \mathrm{O}\right], 1622(\mathrm{~m})\left[\delta(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right]$, $1380(\mathrm{w})\left[\delta_{\text {in-plane }}(\mathrm{O}-\mathrm{H})\right], 933(\mathrm{~m})[v(\mathrm{~W}-\mathrm{O}($ terminal $))], 890-768(\mathrm{~m})[v(\mathrm{~W}-\mathrm{O}$ (bridging) $)]$, $713(\mathrm{~m})[v(\mathrm{Pt}-\mathrm{O})], 497(\mathrm{w})[v(\mathrm{Pt}-\mathrm{O})]$. Later, slow evaporation of the supernatants leads to formation of red rod crystals $\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I}_{\mathbf{2}} \mathbf{W}_{5} \text {, within } 2 \text { d, which were collected by filtration }{ }^{\text {, }} \text {, }}$ (Method 1). yield: 14\% (based on Pt). Anal. Calcd (\%) for KNa-Pt $\mathbf{I I}_{2} \mathbf{W}_{5}$: Pt 18.08, W 42.60, As 6.94, K 3.62, Na 2.13, C 2.23, H 1.40. Found: Pt 19.00, W 42.40, As 7.62, K 3.56, Na 2.46, C 2.77, H 1.39. FT-IR (KBr/cm $\left.{ }^{-1}\right): 3600-3200(\mathrm{~s})\left[v(\mathrm{O}-\mathrm{H})\right.$ of structural $\mathrm{H}_{2} \mathrm{O}$, 3026-2853 (w) [v(C-H) of methyl groups of cacodylate], $1629(\mathrm{~m})\left[\delta(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 1384$ (s) $[\delta(\mathrm{C}-\mathrm{H})$ methyl groups of cacodylate $], 1271(\mathrm{w})\left[\delta_{\text {in-plane }}(\mathrm{O}-\mathrm{H})\right], 925(\mathrm{~m})[v(\mathrm{~W}-\mathrm{O}$ (terminal) $)], 863(\mathrm{~m})[v(\mathrm{~W}-\mathrm{O}($ bridging $))], 802(\mathrm{~s})[v(\mathrm{As}-\mathrm{O}-\mathrm{Pt})], 700-514(\mathrm{~s})[v(\mathrm{Pt}-\mathrm{O})]$, 406 (m) [v(As-C)].

Method 2 for $\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I}} \mathbf{2}_{\mathbf{5}}: \mathbf{K}_{2} \mathrm{PtCl}_{4}(16.6 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{WO}_{4}(33.0 \mathrm{mg}, 0.1$ mmol) were added in aqueous sodium cacodylate buffer ($2 \mathrm{~mL}, 1 \mathrm{M}$, adjust pH to 7 by adding $68 \% \mathrm{HNO}_{3}$), then stirred for 20 h at RT , then stirred for another 30 min at $80^{\circ} \mathrm{C}$. slow evaporation of the orange solution leads to formation of colorless block and orange rod crystals within 2 weeks. Red-orange crystals were collected by filtration. Yield: 10%
(based on Pt). This material is identical to that produced by Method $\mathbf{1}$ as based on FT-IR and single crystal XRD.

$\mathrm{Na}_{2} \mathrm{~K}_{2}\left[\mathrm{Pt}^{\mathrm{III}} \mathbf{2}_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4} \cdot \mathbf{x H}_{2} \mathrm{O}\left(\mathrm{KNa}-\mathrm{Pt}^{\left.\mathrm{III}_{2} \mathrm{~W}_{5}\right)}\right.\right.$

$\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I}} \mathbf{2}_{\mathbf{2}} \mathbf{W}_{5}(30 \mathrm{mg}, 0.01 \mathrm{mmol})$ were added in aqueous sodium cacodylate buffer (1.5 $\mathrm{mL}, 0.5 \mathrm{M}$, adjust pH to 7 by adding $68 \% \mathrm{HNO}_{3}$), then stirred at $80^{\circ} \mathrm{C}$ for 20 min . Slow evaporation of the orange solution leads to formation of orange $\operatorname{rod}\left(\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I}} \mathbf{2} \mathbf{W}\right)$ and red cube crystals $\left(\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I I}}{ }_{2} \mathbf{W}_{5}\right)$ within one week. The yield of $\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I I}}{ }_{2} \mathbf{W}_{\mathbf{5}}$ is very low, thus we can't collect the sample for elemental analysis. FT-IR ($\mathrm{KBr} / \mathrm{cm}^{-1}$): 3600-3200(s) [$v(\mathrm{O}-\mathrm{H})$ of structural $\mathrm{H}_{2} \mathrm{O}, 3026-2936(\mathrm{w})[\mathrm{v}(\mathrm{C}-\mathrm{H})$ of methyl groups of cacodylate], 1629 $(\mathrm{m})\left[\delta(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 1405(\mathrm{~s})\left[\delta(\mathrm{C}-\mathrm{H})\right.$ methyl groups of cacodylate], $1274(\mathrm{w})$ [$\delta_{\text {in }}$ plane $(\mathrm{O}-\mathrm{H})]$, 964-935 (m) [$\mathrm{v}(\mathrm{W}-\mathrm{O}$ (terminal) $)$], $862(\mathrm{~m})[\mathrm{v}(\mathrm{W}-\mathrm{O}$ (bridging))], 802 (s) [$v(\mathrm{As}-\mathrm{O}-\mathrm{Pt})], 700-514(\mathrm{~s})[v(\mathrm{Pt}-\mathrm{O})], 400(\mathrm{~m})[v(\mathrm{As}-\mathrm{C})]$.

$4\left[\mathrm{Pt}^{\mathrm{III}} \mathbf{2}_{\left.\left.\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{5}\right] \cdot \mathbf{2}\left[\mathrm{PtCl}_{4}\right] \cdot \mathrm{Na}_{2}\left[\mathrm{PtCl}_{4}\right] \cdot \mathbf{x H}_{2} \mathrm{O}\left(\mathrm{Pt}_{2}\right),{ }^{2}\right)}\right.$

$\mathrm{K}_{2} \mathrm{PtCl}_{4}(75 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{Mn}(\mathrm{OAc})_{3}(9 \mathrm{mg}, 0.03 \mathrm{mmol})$ were added in aqueous sodium cacodylate buffer ($2 \mathrm{~mL}, 1 \mathrm{M}$, adjust pH to 7 by adding $68 \% \mathrm{HNO}_{3}$), then stirred for 3 h at $80^{\circ} \mathrm{C}$. Slow evaporation of the red solution leads to formation of red rod crystals (Pt) within 2 months. The yield of $\mathbf{P t}_{\mathbf{2}}$ is very low, thus we can't collect the sample for elemental analysis. FT-IR $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right): 3500-3200(\mathrm{~s})\left[\mathrm{v}(\mathrm{O}-\mathrm{H})\right.$ of structural $\mathrm{H}_{2} \mathrm{O}, 3000-$ $2900(\mathrm{w})$ [$\mathrm{v}(\mathrm{C}-\mathrm{H})$ of methyl groups of cacodylate], $1624(\mathrm{~m})\left[\delta(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 1405(\mathrm{~s})$ [$\delta(\mathrm{C}-\mathrm{H})$ methyl groups of cacodylate], $1286(\mathrm{w})$ [$\left.\delta_{\text {in-plane }}(\mathrm{O}-\mathrm{H})\right], 806(\mathrm{~s})[v(\mathrm{As}-\mathrm{O}-\mathrm{Pt})]$, 701-519 (s) $[v(\mathrm{Pt}-\mathrm{O})], 427(\mathrm{~m})[v(\mathrm{As}-\mathrm{C})]$.

Figure 4.1. FT-IR spectra of $\mathbf{K N a}-\mathrm{Pt}_{3} \mathbf{W}_{\mathbf{1 1}}$ (orange), $\mathbf{K N a}-\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$ (blue) and $\mathbf{K N a}$ $\mathbf{P t}^{\mathrm{HII}_{2} \mathbf{W}_{5}}$ (purple).

Figure 4.2. Thermograms of $\mathbf{K N a}-\mathrm{Pt}_{3} \mathbf{W}_{11}$ (top), $\mathbf{K N a} \mathbf{- P t}{ }^{\mathrm{II}}{ }_{2} \mathbf{W}_{5}$ (bottom left) and $\mathbf{K N a}$ $\mathbf{P t}^{\mathbf{I I I}}{ }_{2} \mathbf{W}_{5}$ (bottom right) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere.

4.2 Single-Crystal XRD Data

Table 4.1. Crystal data and structure refinement for $\mathbf{K N a}-\mathbf{P t}_{3} \mathbf{W}_{11}, \mathbf{K N a}^{\mathbf{P I}} \mathbf{H I}_{\mathbf{2}} \mathbf{W}_{5}$, $\mathbf{K N a}$ $\mathbf{P t}^{\mathbf{I I I}}{ }_{2} \mathbf{W}_{5}$ and $\mathbf{P t}_{2}$.

Compound	$\mathbf{K N a - P t}{ }_{3} \mathrm{~W}_{11}$	$\mathrm{KNa}-\mathrm{Pt}^{\mathrm{H}} \mathrm{C}_{2} \mathrm{~W}_{5}$	$\mathrm{KNa}-\mathrm{Pt}^{\mathrm{II}} \mathrm{C}_{2} \mathrm{~W}_{5}$	Pt_{2}
empirical formula	$\mathrm{K}_{3} \mathrm{Na}_{7} \mathrm{Pt}_{3} \mathrm{~W}_{10} \mathrm{O}_{16} \mathrm{H}_{32}{ }^{\text {a }}$	$\begin{aligned} & \mathrm{K}_{2} \mathrm{Na}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{5} \mathrm{As}_{2} \\ & \mathrm{O}_{31} \mathrm{C}_{4} \mathrm{H}_{30}{ }^{a} \end{aligned}$	$\begin{aligned} & \mathrm{K}_{2} \mathrm{Na}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{5} \mathrm{As}_{4} \mathrm{O}_{3} \\ & { }_{7} \mathrm{C}_{8} \mathrm{H}_{24} \end{aligned}$	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{Pt}_{11} \mathrm{As}_{20} \mathrm{Cl}_{12} \\ & \mathrm{O}_{42} \mathrm{C}_{40} \mathrm{H}_{120} \end{aligned}$
fw, $\mathrm{g} \mathrm{mol}^{-1}$	$3829.92^{\text {a }}$	$2157.64{ }^{\text {a }}$	2445.56	5389.12
crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
space group	P $\overline{1}$	P2/n	C2/c	$\mathrm{P} 2_{1} / \mathrm{n}$
$a(\AA)$	12.6266(3)	16.9228(3)	17.2840(3)	20.9500(11)
$b(\AA)$	13.6378(4)	11.8389(2)	11.6921(2)	11.0222(5)
$c(\AA)$	17.5633(4)	17.8814(3)	22.3889(4)	$32.2968(13)$
$\alpha\left({ }^{\circ}\right.$	82.104(2)	90	90	90
$\beta\left({ }^{\circ}\right.$	82.452(2)	93.2993(17)	93.0538(14)	102.515(3)
$\gamma\left({ }^{\circ}\right.$	64.519(3)	90	90	90
$V\left(\AA^{3}\right)$	2695.47(13)	3576.56(12)	4518.08(13)	7280.6(6)
Z	1	4	4	2
Dc $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	4.459	4.003	3.595	2.458
abs coeff, mm^{-1}	31.401	25.999	22.056	15.314
$\mathrm{F}(000)$	3102	3776	4344	4880
θ range for data collection, deg	2.349 to 25.026	2.411 to 25.025	2.318 to 31.677	1.292 to 26.400
completeness to $\Theta_{\text {max }}$	99.9\%	99.9 \%	99.9\%	99.9\%
index ranges	$\begin{aligned} & -15=<\mathrm{h}=<15, \\ & -16=<\mathrm{k}=<16, \\ & -20=<1=<20 \end{aligned}$	$\begin{aligned} & -19=<\mathrm{h}=<20, \\ & -14=<\mathrm{k}=<14, \\ & -21=<1=<21 \end{aligned}$	$\begin{aligned} & -24=<\mathrm{h}=<24, \\ & -16=<\mathrm{k}=<16, \\ & -32=<1=<33 \end{aligned}$	$\begin{aligned} & -26=<\mathrm{h}=<21, \\ & -13=<\mathrm{k}=<12, \\ & -40=<1=<37 \end{aligned}$
reflns collected	31292	25593	57273	61624
indep reflns	9501	6320	6818	14874
R (int)	0.0616	0.0463	0.0406	0.1130
abs corrn	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents

Chapter IV Platinum(II/III) Isopolytungstates

data/restaints/para m	$9501 / 30 / 658$	$6320 / 0 / 443$	$6818 / 6 / 281$	$14874 / 36 / 604$
GOF on F^{2}	1.039	1.064	1.099	1.030
$R_{1}{ }^{b}{ }^{b} w R_{2}{ }^{c}[\mathrm{I}>2 \sigma(\mathrm{I})]$	$0.0487,0.1304$	$0.0300,0.0726$	$0.0295,0.0630$	$0.0665,0.1658$
$R_{1}{ }^{b}{ }^{b} w R_{2}{ }^{c}($ all data $)$	$0.0595,0.1384$	$0.0336,0.0739$	$0.0361,0.0651$	$0.1031,0.1827$
Largest diff peak	4.389 and -3.800	1.922 and -2.000	7.618 and -2.147	6.813 and -3.797
and hole, e \AA^{-3}				

4.3 Bond Valence Sum Calculations

The BVS values for the W atoms range from 5.749 to 6.236 . In $\mathbf{K N a} \mathbf{-} \mathbf{P t}^{\mathbf{I I}} \mathbf{2}_{\mathbf{5}} \mathbf{5}$, the BVS values for two Pt atoms are 2.080 and 2.073, respectively. In $\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I I}} \mathbf{W}_{\mathbf{2}} \mathbf{W}_{5}$, the BVS values for Pt atom is 3.292. $\mathrm{In} \mathrm{Pt}_{2}$, the BVS values for Pt atoms range from 3.098 to 3.211 .

4.4 Results and Discussion

4.4.1 Solid-State Structure

A new tri-Pt(II)-contaning isopolyoxotungstate $\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}\left(\mathbf{P t}_{3} \mathbf{W}_{11}\right)$ was synthesized by reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in aqueous medium with rapid colour change overnight (the initial orange-red solution colour first changes to brown and then becomes deeper). Slow evaporation of the solution leads to formation of gray-greenish and dark red blocky crystals (Figure 4.3), which were separated by fractional crystallization. The hydrated salts of $\mathbf{P t}_{3} \mathbf{W}_{\mathbf{1 1}}$ was isolated as a mixed potassium-sodium salt, $\mathrm{K}_{3} \mathrm{Na}_{7}\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{K N a}-\mathrm{Pt}_{3} \mathbf{W}_{\mathbf{1 1}}\right)$. After collecting the $\mathbf{N a}-\mathbf{P t}_{3} \mathbf{W}_{11}$ crystals, a new di-Pt(II)-contaning isopolyoxotungstate $\quad\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]^{4-} \quad\left(\mathbf{P t}_{2} \mathbf{I H}_{2} \mathbf{W}_{5}\right)$ was obtained from the filtration, forming red rod-like crystals. The hydrated salts of $\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$
was isolated as a mixed potassium-sodium salt, $\mathrm{K}_{2} \mathrm{Na}_{2}\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (KNa-Pt ${ }^{[\mathrm{II}} \mathbf{2} \mathbf{\mathbf { W } _ { 5 }}$). Then another di-Pt(III)-contaning isopolyoxotungstate $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]^{4-}\left(\mathbf{P t}^{\mathrm{III}} \mathbf{2}_{\mathbf{5}}\right)$ was synthesized by reaction of $\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I}} \mathbf{W}_{5}$ with $\mathrm{Na}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}$ in aqueous medium, forming red cubiod crystals. The hydrated salts of $\mathbf{P t}^{\mathbf{I I I}} \mathbf{W}_{5}$ was isolated as a mixed potassium-sodium salt, $\mathrm{K}_{2} \mathrm{Na}_{2}\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right] \cdot \mathrm{XH}_{2} \mathrm{O}\left(\mathbf{K N a}-\mathbf{P t}^{\mathrm{III}} \mathbf{W}_{2} \mathbf{W}_{5}\right)$. The symmetry units of solidstate interaction of polyanion with Na^{+}and K^{+}counter cations are shown in Figure 4.4 and 4.5.

Figure 4.3. Crystal shape of $\mathbf{K N a}-\mathrm{Pt}_{3} \mathbf{W}_{\mathbf{1 1}}, \mathbf{K N a}-\mathbf{P t}^{\mathbf{I I}} \mathbf{2}_{\mathbf{2}} \mathbf{W}_{5}$ and $\mathbf{K N a}-\mathbf{P t}^{\mathbf{I I I}} \mathbf{W}_{\mathbf{5}}$ (small cube crystals) from left to right.

Figure 4.4. The symmetry unit of solid-state interaction of polyanion with Na^{+}and K^{+} counter cations in $\mathbf{K N a}-\mathbf{P t}^{\mathrm{II}_{2} \mathbf{W}_{5}}$ (top) and $\mathbf{K N a}-\mathbf{P t}_{\mathbf{I I}}^{\mathbf{2}} \mathbf{W}_{5}$ (bottom). (50% probability ellipsoids).

Figure 4.5. The symmetry unit of solid-state interaction of polyanion with Na^{+}and K^{+} counter cations in $\mathbf{K N a}-\mathrm{Pt}_{3} \mathbf{W}_{11}$ (top), Na^{+}and Cl^{-}counter ions in $\mathbf{P t}_{\mathbf{2}}$ (bottom). (50% probability ellipsoids).

The cluster $\mathbf{P t}_{3} \mathbf{W}_{\mathbf{1 1}}$ crystallized in the triclinic lattice with space group $\mathrm{P} \overline{1}$. This is a unique complex, first of this type in the chemistry of polyoxotungstates. The $\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}$ polyanion encapsulated by metal-oxo $\left\{\mathrm{W}_{11} \mathrm{O}_{41}\right\}$ ring constructed by one corner-sharing $\mathrm{W}_{3} \mathrm{O}_{13}$ groups, two corner-sharing WO_{5} groups and three corner-sharing $\mathrm{W}_{2} \mathrm{O}_{10}$ groups (Figure 4.6). Three $\mathrm{W}_{2} \mathrm{O}_{10}$ groups and two $\left\{\mathrm{WO}_{5}\right\}$ square-pyramids are alternating. A linear $\left\{\mathrm{Pt}_{3} \mathrm{O}_{12}\right\}$ triad is located on the central axis of the $\left\{\mathrm{W}_{11} \mathrm{O}_{41}\right\}$ ring, indicating that the
$\left\{\mathrm{Pt}_{3} \mathrm{O}_{12}\right\}$ unit may induce an inter templating effect, resulting in an assembly with C_{s} symmetry, is also believed to be a driving force for the formation of square-pyramidal $\left\{\mathrm{WO}_{5}\right\}$ moiety. The $\mathrm{W}_{3} \mathrm{O}_{13}$ group consists of three edge-sharing WO_{6} octahedra. The central Pt atom is coordinated by four oxygen atoms from three $\left\{\mathrm{W}_{3} \mathrm{O}\right\}$ and one $\left\{\mathrm{W}_{2} \mathrm{O}\right\}$ corners. The other two Pt atoms are each coordinated by four oxygen atoms from three $\left\{\mathrm{W}_{3} \mathrm{O}\right\}$ and one $\left\{\mathrm{W}_{2} \mathrm{O}\right\}$ terminals. The Pt-Pt bonds in $\mathrm{Pt}_{3} \mathbf{W}_{11}$ are contracted to some 2.636(2) and 2.674(4) A, suggesting metal-metal bonding interactions between the three Pt atoms. ${ }^{117}$ The $\mathrm{Pt} \cdots \mathrm{O}$ distances between $\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}$ polyanions are 2.368(1) and $2.630(1) \AA$, which are shortest distances of the fifth position found by now. In the solid state, the $\left\{\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right\}$ units bridge each other via two pairs of weak $\mathrm{Pt}-\mathrm{O}$ bonds consistent with [4+1] coordination geometry forming a zig-zag chain (Figure 4.7).

Figure 4.6. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}$ polyanion. Pt red, $\left\{\mathrm{WO}_{6}\right\}$ blue and green octahedra, $\left\{\mathrm{WO}_{5}\right\}$ orange square-pyramids.

Figure 4.7. Combined polyhedral/ball-and-stick representation of $\left\{\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}\right\}_{n}$ chain. Pt red, $\left\{\mathrm{WO}_{6}\right\}$ and $\left\{\mathrm{WO}_{5}\right\}$ blue octahedra.

In platinum(II) chemistry, It is well-known that the number of coordination five complexes is generally less common compared to coordination four complexes. The reason is related to the well-known tendency of this d^{8} ion to form a favorable square-planar geometry ($s p$) maintaining the coordinative unsaturation. Nevertheless, it is possible to obtain fivecoordinate complexes through a rational design of the coordination environment, mainly based on the steric destabilization of the $s p$ geometry, like cisplatin and its secondgeneration derivatives, ${ }^{118}$ which mainly with halides, ${ }^{119}$ pseudohalides, ${ }^{120}$ hydride, ${ }^{121}$ hydrocarbyl ${ }^{122}$ or organometal fragments ${ }^{123}$) and neutral (nitrogen- ${ }^{124}$ or sulfurcontaining ligands). ${ }^{125}$ Whereas, no structures of five-coordinated complexes with oxygen atoms occupying the five positions in the coordination sphere were found. By contrast several examples were found of the metal complexes containing the oxygen atom located inside the coordination sphere or outside but at a short distance from the metal centre (range Pt \cdots O 2.734-3.275 $\AA,{ }^{126}$ significantly longer than those found for $\mathbf{P t}_{\mathbf{3}} \mathbf{W}_{\mathbf{1 1}}$) suggesting a
weak bonding interaction between the metal center and the oxygen atom, consistent with a [4+1] coordination.

In the crystal structure of $\mathbf{P t}^{I I} \mathbf{W}_{\mathbf{2}}$, the centrosymmetric $\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]^{4-}$ anions comprise two platinum(II) ions in the square-planar environment; each $\mathrm{Pt}(\mathrm{II})$ coordinates two chelating cacodylate ligands and $\left\{\mathrm{W}_{5} \mathrm{O}_{18}\right\}^{6-}$ anion with monolacunary Lindquist structure by two terminal oxygen atoms (Figure 4.8). A minor distortion in the $\mathrm{Pt}(\mathrm{II})$ environment is required to coordinate neighbouring oxygen atoms of POM ligands. In $\mathbf{P t}^{\mathbf{I I}} \mathbf{2}_{\mathbf{2}} \mathbf{W}_{5}$, the $\mathrm{O}-\mathrm{Pt}-\mathrm{O}$ angles are $86.7(3)-91.8(3)^{\mathbf{o}}$, the larger angles corresponding to bonding to the $\left\{\mathrm{W}_{5} \mathrm{O}_{18}\right\}$ moiety. And the diagonal angles are 173.0(3)-176.8(3) ${ }^{\circ}$. The distances $\mathrm{Pt}-\mathrm{O}$ vary in the range of $1.970(7)-2.044(7) \AA$. The Pt atoms are spaced by 2.983(8) \AA, which is by $0.15 \AA$ shorter than the $\mathrm{Pt} \cdots \mathrm{Pt}$ separation of $3.13 \AA$ reported for $\left[\mathrm{Pt}_{2}\left(\mathrm{~W}_{5} \mathrm{O}_{18}\right)_{2}\right]^{8-} .{ }^{42}$ This distance should be regarded as nonbonding.

Figure 4.8. Combined polyhedral/ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]^{4-}$ anion (left) and $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]^{4-}$ anion (right). Pt red, $\left\{\mathrm{WO}_{6}\right\}$ blue octahedra, $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ green tetrahedra.

In $\mathbf{P t}^{\mathbf{I I I}} \mathbf{2}_{\mathbf{W}}$, the centrosymmetric $\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]^{4-}$ anions also comprise two platinum(II) ions coordinated with two chelating cacodylate ligands and $\mathrm{W}_{5} \mathrm{O}_{18}{ }^{6-}$ anion (Figure 4.8). But each Pt atom has an extra monodentate cacodylate ligand leading to square-pyramidal coordination symmetry with direct Pt-Pt bonding (2.642(4) Å), Which is common in $\left\{\mathrm{Rh}_{2}\right\}$ and $\left\{\mathrm{Pt}_{2}\right\}$ dimers, each $\mathrm{Rh}^{\mathrm{II}}$ or $\mathrm{Pt}^{\mathrm{III}}$ center typically binds to four equatorial ligands and one axial ligand. ${ }^{127}$ The $\mathrm{O}-\mathrm{Pt}-\mathrm{O}$ angles are 79.8(2)-91.7(2) ${ }^{\circ}$, the larger angles corresponding to bonding to the $\left\{\mathrm{W}_{5} \mathrm{O}_{18}\right\}$ moiety. The diagonal angles are 171.51(2)-172.51(2) ${ }^{\mathbf{o}}$, which are smaller than that in $\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$. Additionally, the $\mathrm{O}-\mathrm{Pt}-\mathrm{Pt}-$ O bonds are not colinear, with value of $169.6(1)^{\circ}$ for the angles at Pt atom due to the steric crowding by the polyoxometalate ligand. The distances $\mathrm{Pt}-\mathrm{O}$ vary in the range of 1.978(4)$2.157(5) \AA$, the longest distance corresponding to bonding to the mono-dentate cacodylate ligand. In the solid state, the discrete anions are surrounded by K^{+}and Na^{+}cations, which coordinate both oxygen atoms of cacodylate ligands as well as of solvate water molecules. And we also synthesized the dumbbell $\mathbf{P t}_{2}$ with cacodylate ligands. In contrast to the discrete anions in $\mathbf{P t}^{\mathbf{I I}}{ }_{2} \mathbf{W} 5$, the monodentate $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}{ }^{-}$ions are connected to further $\mathbf{P t}_{2}{ }^{+}$ions in a chelating way leading to chains of the composition $\left\{\left[\mathrm{Pt}^{\mathrm{III}} 2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{5}\right]^{+}\right\}_{n}$ (Figure 4.9). The lacunary Lindqvist pentatungstate has typical geometric characteristics; $\mathrm{W}=\mathrm{O}, \mathrm{W}-\mu-\mathrm{O}$ and $\mathrm{W}-\mu_{5}-\mathrm{O}$ bond lengths are 1.719(6)-1.786(8), 1.802(4)-2.009(4) and $2.229(7)-2.3541(8) \AA$, respectively, being in good agreement with the $\left[\mathrm{Pt}_{2}\left(\mathrm{~W}_{5} \mathrm{O}_{18}\right)_{2}\right]^{8-}$. Powder X-ray diffraction (PXRD) studies on $\mathbf{K N a - P t} \mathbf{I I}_{2} \mathbf{W}_{5}$ indicated that the compounds were crystalline and pure as evidenced from the fact that the PXRD spectra of freshly prepared samples matched well with the simulated PXRD spectra (calculated from the SCXRD data, see Figure 4.10).

Figure 4.9. Combined polyhedral/ball-and-stick representation of $\left\{\left[\mathrm{Pt}^{\mathrm{III}} 2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{5}\right]^{+}\right\}_{n}$ chain. Pt red, $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right\}$ green tetrahedra.

Figure 4.10. Simulated and experimental PXRD patterns of $\mathbf{K N a}-\mathbf{P t}_{\mathbf{I I}}^{\mathbf{2}} \mathbf{W}_{5}$ upon dehydration and rehydration. (simulated diffraction pattern derived from single-crystal data).

4.4.2 Multinuclear NMR Study

To complement the solid-state XRD results on $\mathbf{P t}^{I I}{ }_{2} \mathbf{W}_{5}$ with solution studies, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{195} \mathrm{Pt}$ NMR measurements were performed on $\mathbf{K N a}-\mathbf{P t}^{\mathrm{II}} \mathbf{W}_{5}$ redissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of sodium cacodylate (Na-cac) exhibits sharp peaks at 4.7 and 1.4 ppm , respectively, corresponding to the protons of the crystal water molecules and cacodylate methyl groups, respectively. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P t}^{\mathbf{I I}} \mathbf{W}_{\mathbf{2}}$ exhibit the expected two
peaks at 1.8 and 1.6 ppm , corresponding to the two structurally and hence magnetically inequivalent cacodylate methyl groups (Figure 4.11). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$ remained unchanged even for 5 days, which indicates the high solution stability of this polyanion. The ${ }^{13} \mathrm{C}$ NMR spectrum of Na -cac exhibits a narrow peak at 17.4 ppm , whereas the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W} \mathbf{5}$ exhibits peaks at 19.4 and 16.6 ppm , corresponding to the two crystallographically inequivalent cacodylate methyl groups (Figure 4.11).

Figure 4.11. Time-dependent ${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}$ (right) NMR spectra $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$ compared to spectra of the reference sodium cacodylate ($\mathrm{Na}-\mathrm{Cac}$).

Next, we performed ${ }^{195} \mathrm{Pt}$ NMR measurements on $\mathbf{K N a}-\mathbf{P t}^{\mathrm{II}_{2} \mathbf{W}_{5}}$ redissolved in water (Figure 4.12). We located the expected singlet for $\mathbf{K N a}-\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$ at 610 ppm . The corresponding ${ }^{195} \mathrm{Pt}$ NMR signal for the precursor $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ appeared more upfield at -1616 ppm. In 1996, Kuznetsova et al. observed a ${ }^{195} \mathrm{Pt}$ NMR singlet of an aqueous reaction of $\left[\mathrm{PW}_{11} \mathrm{O}_{39}\right]^{7-}$ with $\left[\mathrm{PtCl}_{4}\right]^{2-}$ at $-1179 \mathrm{ppm} .{ }^{128}$ In 2011, Lefebvre and co-workers reported a ${ }^{195} \mathrm{Pt}$ NMR chemical shift of -3962 ppm for a DMSO solution of the $\left[\mathrm{SiW}_{12} \mathrm{O}_{40}\right]^{4-}$ Keggin ion with $\left[\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{CH}_{3}\right)(\mathrm{COD})\right]^{+}$moieties grafted on its surface. ${ }^{129}$ Later, Kato and co-workers observed the broad signals of ${ }^{195} \mathrm{Pt}$ NMR spectra of $\mathrm{Pt}^{\mathrm{II}}$-incorporating POMs $[\alpha-$
$\left.\mathrm{PW}_{11} \mathrm{O}_{39}\left(\operatorname{cis}-\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right)_{2}\right]^{3-40,} 130$ and $\left[\mathrm{PW}_{11} \mathrm{O}_{39}\left\{\operatorname{cis}-\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{Me}_{2} \mathrm{ppz}\right)\right\}\right]^{5-}\left(\mathrm{Me}_{2} \mathrm{ppz}=N, N^{\prime}-\right.$ dimethylpiperazine). ${ }^{47}$ By now, no $\mathrm{Pt}(\mathrm{II})$-containing solid POM showed discernible ${ }^{195} \mathrm{Pt}$ NMR peaks under all conditions studied, likely due to severe chemical shift anisotropy of four-coordinate $\mathrm{Pt}^{\mathrm{II}}$ species. Importantly, this is the first report on the successful use of ${ }^{195} \mathrm{Pt}$ NMR in $\mathrm{Pt}(\mathrm{II})$-containing POM.

Figure 4.12. ${ }^{195} \mathrm{Pt}$ NMR spectrum $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{P t}^{\mathrm{II}_{2}} \mathbf{W}_{5}$.

4.5 Conclusions

Three new platinum(II/III) isopolytungstate: $\quad\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-} \quad\left(\mathbf{P t}_{3} \mathbf{W}_{11}\right)$, $\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]^{4-}\left(\mathbf{P t}^{\mathrm{II}} \mathbf{W}_{5}\right), \quad\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]^{4-}\left(\mathbf{P t}^{\left.\mathrm{III}_{2} \mathbf{W}_{5}\right), \text { have }}\right.$ been synthesized in aqua media and characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{195} \mathrm{Pt}$ NMR spectra. The polyoxoanion $\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}$ consists of three $\left\{\mathrm{W}_{3} \mathrm{O}_{13}\right\}$ and one $\left\{\mathrm{W}_{2} \mathrm{O}_{10}\right\}$ fragments connected by three Pt atoms forming linear $\left\{\mathrm{Pt}_{3} \mathrm{O}_{12}\right\}$ triad involved in direct $\mathrm{Pt}-\mathrm{Pt}$ bonding (2.64 to $2.68 \AA$). The distance between the metal and the oxygen from neighbouring $\mathbf{P t}_{3} \mathbf{W}_{\mathbf{1 1}}$ cluster ($\mathrm{Pt} \cdots \mathrm{O}$ distances, 2.34 and $2.65 \AA$), consistent with [4+1] coordination for outer platinum centers in compound, showing a weak bonding interaction. The polyoxoanion
$\mathbf{P t}^{\prime \mathrm{II}_{2}} \mathbf{W}_{5}$ and $\mathbf{P t}^{\mathbf{I I}} \mathbf{W}_{\mathbf{2}}$ both consists of one lacunary Lindqvist fragments $\left\{\mathrm{W}_{5} \mathrm{O}_{18}\right\}^{6-}$ coordinated by two $\mathrm{Pt}(\mathrm{II})$ in square planar coordination and two $\mathrm{Pt}(\mathrm{III})$ in square-pyramidal coordination with direct $\mathrm{Pt}-\mathrm{Pt}$ bonding $(2.64 \AA$) , respectively. This work is the first report on the successful use of ${ }^{195} \mathrm{Pt}$ NMR in $\mathrm{Pt}(\mathrm{II})$-containing POM.

Chapter V Platinum(II/IV) Arsenate(III) Clusters

Representatives of oxidoarsenates(V) are well known. However, representatives of oxidoarsenates(III) are comparatively scarce. Although, the classical coordination chemistry of platinum has a long history and is replete with interesting compounds, only limited work has been reported on the cluster of $\mathrm{Pt}^{\mathrm{IV}}$ or $\mathrm{Pt}^{\mathrm{II}}$. although many oxide compounds that contain $\mathrm{AsO}_{3}{ }^{3-}$ ions have been prepared, and most metal ions in such types of compounds are transition- and rare-earth-metal ions, nearly nothing is known about the platinum. In particular, the only known compound is the arsenoplatinum, $[\operatorname{Pt}(\mu-$ $\left.\left.\mathrm{NHC}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right)_{2} \mathrm{ClAs}(\mathrm{OH})_{2}\right]$ with $\mathrm{Pt}-\mathrm{As}=2.27 \AA .{ }^{59}$ While exploring systems containing platinum and arsenic in aqua media, the first two full inorganic discrete platinum arsenate(III) clusters: $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-}(\mathbf{P t A s} 6)$ and $\left[\mathrm{Pt}^{\mathrm{II}}{ }_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-}\left(\mathbf{P t}_{4} \mathbf{A s} \mathbf{8}\right)$, have been synthesized in aqua media. And a platinum arsenate(III) heteropolytungstate $\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right]^{10-}\left(\mathbf{P t}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}\right)$ has been synthesized in aqua media and characterized by ${ }^{195} \mathrm{Pt}$ NMR.

5.1 Synthesis

$\mathrm{Na}_{2}\left[\mathrm{Pt}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right] \cdot \mathbf{7 H _ { 2 }} \mathbf{O}(\mathbf{N a}-\mathrm{PtAs} 6)$

$\mathrm{H}_{2} \mathrm{Pt}(\mathrm{OH})_{6}(50 \mathrm{mg}, 0.167 \mathrm{mmol})$ and $\mathrm{As}_{2} \mathrm{O}_{3}(100 \mathrm{mg}, 0.9 \mathrm{mmol})$ were added in 3 mL of 1 M NaOH and stirred for 1 h at $80^{\circ} \mathrm{C}$. Yellowish blocky crystals came out overnight, and after 3 days crystals were collected by filtration. Yield: 50\% based on Pt. Anal. Calcd (\%) for PtAs6: Pt 19.34, As 44.56, Na 4.56. Found: Pt 18.94, As 44.63, Na 4.31. FT-IR $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right): 3451(\mathrm{~s})\left[v(\mathrm{O}-\mathrm{H})\right.$ of structural $\left.\mathrm{H}_{2} \mathrm{O}\right], 3363-3267(\mathrm{~s})\left[v(\mathrm{O}-\mathrm{H})\right.$ of absorbed $\left.\mathrm{H}_{2} \mathrm{O}\right]$,
$1633(\mathrm{~m})\left[\delta(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 998(\mathrm{w})$ [$\left.\mathrm{v}(\mathrm{As}-\mathrm{O}-\mathrm{Pt})\right], 773(\mathrm{~s})[v(\mathrm{As}-\mathrm{O})], 625-598(\mathrm{~s})$ $\left[v_{\mathrm{as}}\left(\mathrm{AsO}_{3}{ }^{3-}\right)\right], 531-512(\mathrm{~s})[v(\mathrm{Pt}-\mathrm{O}), v(\mathrm{As}-\mathrm{O}-\mathrm{As})]$.

$\mathrm{K}_{2}\left[\mathrm{Pt}_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}^{\left.-\mathrm{Pt}_{4} \mathrm{As} 8\right)}\right.$

$\mathrm{K}_{2} \mathrm{Pt}\left(\mathrm{NO}_{2}\right)_{4}(45.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{As}_{2} \mathrm{O}_{3}(20 \mathrm{mg}, 0.1 \mathrm{mmol})$ were added in 1 mL of 0.5 $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and stirred for 20 min at $80^{\circ} \mathrm{C}$ with copious evolution of brown gas. Yellowish blocky crystals came out overnight, and after 3 days crystals were collected by filtration. Yield: 70\% based on Pt. Anal. Calcd (\%) for Pt4Ass: Pt 40.10, As 30.80, K 4.02. Found: Pt 40.62, As 29.75, K 4.15. FT-IR ($\mathrm{KBr} / \mathrm{cm}^{-1}$): 3600-3300 (s) $\left[v(\mathrm{O}-\mathrm{H})\right.$ of $\mathrm{H}_{2} \mathrm{O}$ and hydroxyl], 2916-2366 (s) [$v(\mathrm{O}-\mathrm{H})$ of unit $\left.\mathrm{Pt}-\mathrm{O}-\mathrm{As}(\mathrm{OH})_{2}\right], 1627(\mathrm{~m})[\delta(\mathrm{O}-\mathrm{H})$ of hydroxyl], $1408(\mathrm{~s})\left[\delta_{\text {in-plane }}(\mathrm{O}-\mathrm{H})\right], 1220(\mathrm{~m})[\delta(\mathrm{As}-\mathrm{OH})], 810(\mathrm{~s})\left[\gamma(\mathrm{O}-\mathrm{H}), \mathrm{v}_{\mathrm{as}}(\mathrm{As}-\mathrm{O})\right], 723(\mathrm{~s})$ $\left[v_{s}(\mathrm{As}-\mathrm{O}), v(\mathrm{Pt}-\mathrm{As})\right], 550-508(\mathrm{~m})[v(\mathrm{Pt}-\mathrm{O})]$.

$\mathrm{Na}_{10}\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right] \cdot \mathbf{1 8 H}_{\mathbf{2}} \mathrm{O}\left(\mathrm{Na}^{\left.-\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4}\right)}\right.$

Method 1: $\mathrm{K}_{2} \mathrm{PtCl}_{4}(41.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{WO}_{4}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ were added in 2 mL of $0.5 \mathrm{M} \mathrm{NaAsO}_{2}$ solution and adjusted pH to 8 by 1 M NaOH , then stirred for 30 min at room temperature. Yellowish rod crystals came out after one week and were collected by filtration. Yield: 50\% based on Pt. Anal. Calcd (\%) for $\mathbf{P t}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}$: Pt 15.14, W 28.53, As 17.44, Na 8.92. Found: Pt 15.40, W 29.00, As 16.80, Na 8.40. FT-IR (KBr/cm $\left.{ }^{1}\right): 3436(\mathrm{~s})\left[\mathrm{v}(\mathrm{O}-\mathrm{H})\right.$ of structural $\left.\mathrm{H}_{2} \mathrm{O}\right], 1670-1636(\mathrm{~m})\left[\delta(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 1384(\mathrm{~s})\left[\delta_{\text {in- }}\right.$ plane $(\mathrm{O}-\mathrm{H})], 937(\mathrm{~m})[v(\mathrm{~W}-\mathrm{O}($ terminal $))], 886(\mathrm{~m})[v(\mathrm{As}-\mathrm{O}-\mathrm{Pt})], 782(\mathrm{~s})[v(\mathrm{As}-\mathrm{O})], 648$ (s) $[v(\mathrm{~W}-\mathrm{O}$ (bridging) $)], 516-458(\mathrm{~s})[v(\mathrm{Pt}-\mathrm{O}), v(\mathrm{As}-\mathrm{O}-\mathrm{As})]$. Method 2. The same polyanion can also be synthesized using a stoichiometric procedure in water as follows: $\mathrm{K}_{2} \mathrm{PtCl}_{4}(41.5 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{WO}_{4}(32.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NaAsO}_{2}(38.0 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ were added in $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and stirred at $70^{\circ} \mathrm{C}$ for 20 min . Yellow rod crystals came
out overnight, and after 3 days crystals were collected by filtration. Yield: 53% based on Pt. This material is identical to that produced by Method 1 as based on FT-IR and single crystal XRD.

Figure 5.1. FT-IR spectrum of Na-PtAs6.

Figure 5.2. FT-IR spectrum of $\mathbf{N a - P t} \mathbf{2 A s}_{6} \mathbf{W}_{4}$.

Figure 5.3. Thermograms of Na-PtAs6 (left) and $\mathbf{N a}^{\mathbf{N a}} \mathbf{P t}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}$ (right) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere.

5.2 Single-Crystal XRD Data

Table 5.1. Crystal data and structure refinement for Na-PtAs6, K-Pt $\mathbf{4 A s}_{8}$, K-Pt4As8 (dehy) and $\mathbf{N a - P t} \mathbf{2}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}$.

Compound	Na-PtAs6	K-Pt4As8	K-Pt ${ }_{4} \mathrm{As}_{8}$ (dehy)	$\mathrm{Na}-\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4}$
empirical formula	$\mathrm{Na}_{2} \mathrm{PtAs}_{6} \mathrm{O}_{20} \mathrm{H}_{16}{ }^{\text {a }}$	$\mathrm{K}_{2} \mathrm{Pt}_{4} \mathrm{As}_{8} \mathrm{O}_{53} \mathrm{H}_{14}{ }^{\text {a }}$	$\mathrm{KPt}_{4} \mathrm{As}_{8} \mathrm{O}_{24}$	$\mathrm{Na}_{10} \mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{46} \mathrm{H}_{36}{ }^{\text {a }}$
$\mathrm{fw}, \mathrm{g} \mathrm{mol}^{-1}$	1026.70 ${ }^{\text {a }}$	1946.05 ${ }^{\text {a }}$	1802.82	2577.20 ${ }^{\text {a }}$
crystal system	Triclinic	Tetragonal	Tetragonal	Triclinic
space group	P $\overline{1}$	P4/nnc	P4/nnc	P $\overline{1}$
$a(\AA)$	6.704(3)	19.3248(7)	16.7915(3)	8.607(3)
$b(\AA)$	7.034(3)	19.3248(7)	16.7915(3)	12.765(4)
$c(\AA)$	8.177(3)	16.9569(7)	18.0190(4)	13.030(4)
$\alpha\left({ }^{\circ}\right)$	100.415(8)	90	90	117.519(8)
$\beta\left({ }^{\circ}\right.$	101.514(8)	90	90	97.633(8)
$\gamma\left({ }^{\circ}\right)$	104.523(8)	90	90	90.295(8)
$V\left(\AA^{3}\right)$	354.8(3)	6332.5(5)	5080.5(2)	1254.7(7)
Z	1	4	8	1
Dc $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	4.281	3.838	4.714	3.375
abs coeff, mm^{-1}	23.904	26.067	32.562	18.803
F(000)	410	6460	6296	1133

θ range for data collection, deg	3.248 to 27.418	1.490 to 25.054	2.261 to 25.020	3.073 to 26.419
completeness to $\Theta_{\text {max }}$	99.8 \%	99.9 \%	99.9 \%	99.8 \%
index ranges	$\begin{aligned} & -8=<\mathrm{h}=<8, \\ & -9=<\mathrm{k}=<9, \\ & -10=<1=<10 \end{aligned}$	$\begin{aligned} & -22=<\mathrm{h}=<23, \\ & -23=<\mathrm{k}=<22, \\ & -20=<1=<20 \end{aligned}$	$\begin{aligned} & -19=<\mathrm{h}=<19, \\ & -19=<\mathrm{k}=<19, \\ & -20=<1=<21 \end{aligned}$	$\begin{aligned} & -10=<\mathrm{h}=<10, \\ & -15=<\mathrm{k}=<15, \\ & -16=<1=<16 \end{aligned}$
reflns collected	6444	54917	40868	21401
indep reflns	1614	2825	2257	5120
R (int)	0.0591	0.1529	0.0590	0.1458
abs corrn	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
data/restaints/param	1614 / 0 / 106	2825 / 145 / 176	2257 / 147 / 168	5120 / 144/313
GOF on F^{2}	1.054	1.093	1.065	1.024
$R_{1},{ }^{b} w R_{2}{ }^{c}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0288, 0.0721	0.0795, 0.1752	0.0805, 0.2246	0.0554, 0.1181
$R_{1}, b w R_{2}{ }^{c}$ (all data)	0.0336, 0.0742	0.1093, 0.1987	0.0935, 0.2383	0.1075, 0.1398
Largest diff peak and hole, e \AA^{-3}	2.100 and -2.247	3.525 and -3.097	6.745 and -3.477	2.350 and -3.236

${ }^{\text {a }}$ The entries are the actual formula units and weights as obtained from elemental analysis.
${ }^{\mathrm{b}} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| .{ }^{c} w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$.

5.3 Bond valence sum calculations.

Table 5.2. Bond valence sum values for different types of bridging oxygen atoms and

0	Bond distance (\AA)	BVS value	0	Bond distance((\AA)	BVS value
$\mathbf{K - P t} \mathbf{4}_{4} \mathbf{A s}_{8}$					
O1	Pt2-O1 (2.076)	1.750	O8	Pt1-O8 (2.066)	1.770
	As1-O1 (1.688)			As3-O8 (1.686)	
O10	Pt2-O10 (2.077)	1.703	O11	Pt1-O11 (2.070)	1.652
	As4-O10 (1.701)			As4-O11 (1.719)	
O2	As1-O2 (1.722)	1.198	O6	As2-O6 (1.709)	1.174
O3	As1-O3 (1.737)	1.089	O7	As3-O7 (1.765)	1.008
O4	As2-O4 (1.562)	1.848	O9	As3-O9 (1.704)	1.257

O5	As2-O4 (1.805)	0.958	O 12	As4-O9 (1.711)	1.234
$\mathrm{Na-Pt} \mathrm{~A}_{\mathbf{S}}^{6} \mathrm{~W}_{4}$					
O3	As2-O3 (1.777)	1.99	O6	W1-O6 (2.194)	1.74
	As3-O3 (1.807)			As1-O6 (1.701)	
07	W2-O7 (2.209)	1.79	08	W1-O8 (1.981)	2.03
	As1-07 (1.681)			As2-O8 (1.727)	
O11	W1-O11 (1.949)	1.84	O12	As3-O12 (1.731)	2.05
	W2-O11 (1.947)			As3-W2 (1.965)	
O1	Pt1-O1 (2.088)	1.57			
	W1-O1 (2.105)				
	W2-O1 (2.143)				

5.4 Results and Discussion

5.4.1 Solid-State Structure

We have discovered first two full inorganic discrete platinum arsenate(III) clusters: $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-} \quad\left(\mathbf{P t A s}_{6}\right), \quad\left[\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-} \quad\left(\mathbf{P t}_{4} \mathbf{A s s}\right)$, and one platinum arsenate(III) heteropolytungstate $\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right]^{10-}\left(\mathbf{P t}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}\right)$. Single-crystal XRD studies revealed that PtAs6 crystallizes as a sodium salt, $\mathrm{Na}_{2}\left[\operatorname{Pt}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (NaPtAs6), in the triclinic space group $\mathrm{P} \overline{1}, \mathbf{P t}_{4} \mathbf{A s} 8$ crystallizes as a potassium salt, $\mathrm{K}_{2}\left[\mathrm{Pt}_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{K}-\mathrm{Pt}_{4} \mathbf{A s s}\right)$, in the Tetragonal space group $\mathrm{P} 4 / \mathrm{nnc}$, and $\mathbf{P t}_{\mathbf{2}} \mathbf{A s}_{6} \mathbf{W}_{\mathbf{4}}$ crystallizes as a sodium salt, $\mathrm{Na}_{10}\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{N a}-\mathbf{P t}_{\mathbf{2}} \mathbf{A s}_{6} \mathbf{W}_{4}\right)$, in the triclinic space group $\mathrm{P} \overline{1}$, respectively. The symmetry unit of solid-state interaction of polyanion with Na^{+}and K^{+}counter cations are shown in Figure 5.4.

Figure 5.4. The symmetry unit of solid-state interaction of polyanion with Na^{+}counter cations in Na-PtAs6 (top left) and $\mathbf{N a - P t 2 A s 6} \mathbf{W}_{4}$ (top right), as well as K^{+}counter cations in K-Pt4Ass (bottom left) and K-Pt4Ass (dehy) (bottom right), respectively (50% probability ellipsoids).

In cluster PtAs6, the central Pt atom in this complex is in an ideal octahedral environment coordinated by two $\mathrm{As}_{3} \mathrm{O}_{6}$ aggregates through three O atoms, generating a ten-membered ring $\mathrm{PtAs}_{3} \mathrm{O}_{6}$ (Figure 5.5). It comprises three crystallographically independent $\mathrm{As}(\mathrm{III})$ sites both possessing distorted tetrahedral environments when taking into account the stereochemically active lone pair. The trivalent ones usually contain ψ-tetrahedral $\mathrm{AsO}_{3}{ }^{3-}$ groups because of the $4 \mathrm{~s}^{2}$-configuration. The cyclic $\left[\mathrm{As}_{3} \mathrm{O}_{6}\right]^{3-}$ anion is formed by three vertex-linked AsO_{3} trigonal pyramids. The average $\mathrm{Pt}-\mathrm{O}$ bond distance is $2.022(4) \AA$. The $\left[\mathrm{Pt}^{\left.\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-} \text { anion is remarkable for that it is the only arsenate(III) of platinum. The }}\right.$
similar structure of $\left[\mathrm{As}_{3} \mathrm{O}_{6}\right]^{3-}$ is cyclic thioarsenate anion $\left[\mathrm{As}_{3} \mathrm{~S}_{6}\right]^{3-}{ }^{131}$ In the solid-state structure of PtAss, three terminal O atoms of the $\left[\mathrm{As}_{3} \mathrm{O}_{6}\right]^{3-}$ units are oriented toward the same side of the $\left[\mathrm{As}_{3} \mathrm{O}_{3}\right]$ ring. The anions are arranged in a tripod-like manner along the b axis with opposite orientations in neighboring tripods. The connectivity of the $\mathrm{Na}-\mathrm{O}$ bonds leads to a 3D framework consisting of $\left[\mathrm{Na}_{2} \operatorname{Pt}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]$ units (Figure 5.6), which interpenetrate the above-mentioned 3D framework by sharing both O vertices and $\mathrm{O}-\mathrm{O}$ edges. The Na^{+}cations are coordinated by seven oxygen atoms with $\mathrm{Na}-\mathrm{O}$ distances in the range $2.421(6)-2.701(5) \AA$.

Figure 5.5. Ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-}$ polyanion. Pt orange, As light blue, O red.

Figure 5.6. Crystal packing diagram of PtAs6, showing the layered structure (left) and 3D framework (right) self-assembled by the $\left[\operatorname{Pt}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-}$ moieties via Na^{+}ions. $\left\{\mathrm{PtO}_{6}\right\}$ orange octahedra, $\left\{\mathrm{NaO}_{7}\right\}$ pink polyhedra, As light blue, O red.

The cluster $\mathbf{N a}-\mathbf{P t}_{2} \mathbf{A s} \mathbf{6} \mathbf{W}_{4}$ crystallized in $\mathrm{P} \overline{1}$. The centrosymmetric $\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right]^{10-}$ anions comprise two platinum(II) ions in the square-planar environment. Each Pt(II) coordinates three AsO_{3} ligands by apex As atoms and one $\left[\mathrm{W}_{2} \mathrm{O}_{10}\right]^{8-}$ ions by one $\mu_{3}-\mathrm{O}$ atom (Figure 5.7). There are two types of AsO_{3} pyramid ligands. Two AsO_{3} units bind to one Pt atom by apex As atom and two W atoms by O atoms. Four AsO_{3} ligands coordinate to one W atom and one Pt atom each employing one O atom and apex As atom, respectively. Two pairs of vertex-linked AsO_{3} trigonal pyramids are sited on the opposite of Pt atoms. Two WO_{6} octahedral share two by two an edge forming $\left[\mathrm{W}_{2} \mathrm{O}_{10}\right]^{8-}$ ion. The Pt atoms are spaced by $2.9797(9) \AA$.

Figure 5.7. Ball-and-stick representation of $\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right]^{10-}$ polyanion. Pt orange, W green, As light blue, O red.

The first example of a fully inorganic arsenous acid platinum(II) cluster, $\left[\mathrm{Pt}_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-}\left(\mathbf{P t}_{4} \mathbf{A s s}\right)$ (Figure 5.8), is synthesized by heating $\mathrm{K}_{2} \mathrm{Pt}\left(\mathrm{NO}_{2}\right)_{4}$ with $\mathrm{As}_{2} \mathrm{O}_{3}$ in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ at $80^{\circ} \mathrm{C}$ for 20 min . It possesses an open cage structure with four square-planar coordinated $\mathrm{Pt}^{\mathrm{II}}$ ions linked by six arsenite ligands. Each Pt atom is coordinated by two O atoms and two As atoms. There are three types of AsO_{3} pyramid
ligands. Two AsO_{3} units bind to three Pt atoms as $\mu_{2}-1,2 \kappa \mathrm{O}: 3 \kappa \mathrm{As}$ bridging ligands. The one remaining O atom is coordinated with K atom. Four AsO_{3} ligands coordinate to two Pt atoms each employing one O atom and apex As atom. The remaining two ligands bind to one Pt atom each only employing the apex As atom, generating the novel $\left[\mathrm{Pt}_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-}\left(\mathbf{P t}_{4} \mathbf{A s s}\right)$ anionic cluster.

Figure 5.8. Ball-and-stick representation of $\left[\mathrm{Pt}^{\mathrm{II}} 4\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-}$ polyanion (left) and the $\left[\mathrm{K}_{2}\left(\mathrm{Pt}^{\mathrm{II}} 4_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right)_{4}\right]^{6-}$ fragment (middle). 3D lattice structure of $\mathbf{K}-$ Pt $\mathbf{4}_{\mathbf{A s}}$ (right). Color code: Pt orange, As light blue, K violet, O red, H sky blue.

In the solid-state structure, four $\mathbf{P t}_{4} \mathbf{A s s}$ tetramers are linked through two potassium cations, resulting in the kaleidoscope-shaped polyanion assembly $\left[\mathrm{K}_{2}\left(\mathrm{Pt}_{4}{ }_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right)_{4}\right]^{6-}$ $\left(\mathbf{K}_{2}\left(\mathbf{P t}_{4} \mathbf{A s s}\right) \mathbf{4}\right)$. Each K atom lies on a 4-fold rotational axis and is connected to eight O atoms of four $\mathbf{P t 4 A s s}$ tetramers and four water molecules to form a coordination polyhedron in the shape of a slightly distorted square antiprism. This arrangement results in the polyanion $\mathbf{K}_{2}\left(\mathbf{P t}_{4} \mathbf{A s s}\right)_{4}$ with idealized $\mathrm{D}_{4 h}$ point-group symmetry. The $\mathrm{K}-\mathrm{O}$ bond distances are $2.637 \AA$ for the water ligands and $2.913 \AA$ for the oxygen atoms of the arsenite groups. The As- O bond lengths appear to be normal for three dihydrogen arsenite group $\mathrm{H}_{2} \mathrm{AsO}_{3}$, with two significantly longer As-OH bonds (1.723-1.758 \AA) and one shorter As-O bonds (1.556-1.685 \AA), whereas the bond lengths of the hydrogen arsenite group HAsO_{3} are atypical: one shorter As-O bond of $1.704 \AA$, one somewhat longer As-OH bond of 1.711 \AA, and one long As-O bond of $1.718 \AA$ are observed.

Furthermore, the introduction of the protonized arsenite groups introduce strong hydrogen bonds in K-Pt4Ass, which in turn leads to stronger intermolecular interactions in 3D space. Thus, each $\mathbf{K}_{2}\left(\mathbf{P t}_{4} \mathbf{A s s}\right) \mathbf{4}$ unit with internal hydrogen bonding is linked to two others leading to a stable 3D hydrogen-bonded inorganic framework (HIF) (Figure 5.9 and 5.10). Hydrogen-bonded organic frameworks (HOFs) ${ }^{132}$ have received increasing attention and are expected to find applications in a wide range of fields. But the HOFs strategy can also be applied to inorganic materials. ${ }^{133}$ The formation of a stable 3D framework in K-Pt4Ass is accompanied by a higher isolated yield and crystallinity as well as aqueous insolubility.

Figure 5.9. H-bond interactions (orange dotted bonds) within the $\mathbf{K}_{2}\left(\mathbf{P t}_{4} \mathbf{A s s}\right) 4$ fragment. Pt orange, As light blue, K violet, O red, H sky blue.

Figure 5.10. H-bond interactions (orange dotted bonds) in the K-Pt4As8 crystal packing along b and c axis.

We have identified three important factors governing the stacking in this series of compounds: interligand steric repulsions, interligand charge-transfer bonding, and $\mathrm{Pt} \cdots \mathrm{Pt}$ bonding. Although $\mathrm{Pt}_{4} \mathbf{A s s}$ is a discrete tetranuclear complex, it interacts with adjacent complexes by weak $\mathrm{Pt} \cdots \mathrm{Pt}$ stacking interactions to form a 1D chain (Figure 5.11 and Figure
5.12). The $\mathrm{Pt} \cdots \mathrm{Pt}$ separation of $3.446(2) \AA$ is comparable with that of the mononuclear platinum complexes with aromatic ligands possessing a Pt $\cdots \mathrm{Pt}$ interaction. ${ }^{134}$ Square planar platinum(II) complexes often form linear-chain materials with striking spectroscopic properties. In these structures, the planar molecules stack with short $\mathrm{Pt} \cdots \mathrm{Pt}$ contacts $(<3.5 \AA)$, and the $\mathrm{Pt} \cdots \mathrm{Pt} \cdots \mathrm{Pt}$ chain is sometimes slightly zigzag: In analogy to hydrogen bonds, this weak bonding interaction between d^{8} metal centers is a potentially useful tool for the controlled assembly of molecules.

Figure 5.11. Crystal packing diagram of $\mathrm{Pt}_{4} \mathbf{A s s}$, Pt orange, As light blue, O red. H atoms are not shown.

Figure 5.12. $\mathrm{Pt}^{\cdots} \mathrm{Pt}$ distance in $\mathbf{K}_{2}\left(\mathrm{Pt}_{4} \mathbf{A s s}\right) 4$ fragment. $\left\{\mathrm{AsO}_{3}\right\}$ sky blue tetrahedra, $\left\{\mathrm{KO}_{8}\right\}$ purple polyhedral, Pt orange.

The closest precedents for the cluster $\mathbf{P t}_{4} \mathbf{A s s}$ are found in arsenious acid complex where the $\mathrm{Pd}^{\mathrm{II} 135}$ and $\mathrm{Pt}^{\mathrm{II} 59}$ centers bind directly to arsenous acid. $\mathrm{In} \mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ complexes, $\mathrm{As}(\mathrm{OH})_{3}$ is bound to the metal as a Lewis base with arsenic in a distorted tetrahedral and pyramidal environment, respectively. While $\mathrm{As}^{\mathrm{III}}$ can act as either a Lewis base or a Lewis acid, in $\mathbf{P t}_{4} \mathbf{A s s}$ As ${ }^{\text {III }}$ acts simultaneously as a Lewis base $(\mathrm{As} \rightarrow \mathrm{Pt})$ and as a Lewis acid $(\mathrm{O} \rightarrow \mathrm{As})$. These multiple intramolecular interactions explain in part the strong $\mathrm{Pt}-\mathrm{As}$ interaction (2.310(6)-2.316(3) \AA) in $\mathbf{P t}_{4} \mathbf{A s s}$. The bond valence sums (BVS) of the As and Pt atoms in $\mathbf{P t}_{4} \mathbf{A s s}$ are summarized in Table 5.3. The As2 atom which only employs the apex As atom engaged in the $\mathrm{Pt}-\mathrm{As}$ bond formation has a larger BVS than does other three As atoms (+4.06 vs. +3.70). It can be explained by the covalent character of Pt-As bond due to the interaction between hybridized $s p$ orbitals of both As and Pt atoms, where part of the bonding density is polarized toward the positively charged arsenic atom leading to a more electropositive As^{3+} center. ${ }^{136} \mathrm{~A}$ high electron transfer in the $\mathrm{As} \rightarrow \mathrm{Pt}$ direction taking place in the $\mathrm{Pt}-$ As mode, in agreement with its higher stability compared with the $\mathrm{Pt}-\mathrm{O}$ mode (mainly because the bond in this case is coordinative).

Table 5.3. Bond valence sum values for Pt and As atoms for $\mathbf{K - P t} t_{4} A s s$.

atom	Bond distance(\AA)	BVS value	atom	Bond distance(\AA)	BVS value
Pt1	O8 (2.064)	2.043	Pt2	O10 (2.073)	2.031
	O11 (2.070)			O1 (2.077)	
	As1 (2.312)			As1 (2.310)	
	As4 (2.316)			As4 (2.314)	
As1	O1 (1.686)	3.710	As2	O4 (1.558)	4.059
	O2 (1.716)			O5 (1.805)	
	O3 (1.730)			O6 (1.711)	
As3	O7 (1.764)	3.677	As4	O10 (1.704)	3.703
	O8 (1.685)			O11 (1.718)	

	O9 (1.697)			O12 (1.711)	

5.4.2 ${ }^{195}$ Pt NMR Study

${ }^{195}$ Pt NMR spectroscopy reveals that the strong Pt-As interaction observed in the solid state persists in aqueous solution (Figures 5.13). We located the expected singlet for $\mathbf{P t}_{2} \mathbf{A s}_{6} \mathbf{W}_{4}$ at -4118 ppm , which confirmed that Pt is in a $2+$ oxidation state.

Figure 5.13. ${ }^{195} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)$ NMR spectra of $\mathrm{Na}-\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4}$.

5.4.3 Powder XRD Study

We discovered that K-Pt4Ass undergoes a reversible single-crystal-to-single-crystal (SCSC) transformation in the solid state upon rehydration and dehydration, where rehydration was achieved by keeping the sample in an atmosphere of water vapor at room temperature for overnight and dehydration was achieved by heating the compound at $80^{\circ} \mathrm{C}$ for 5 h under vacuum. The polyanion $\mathbf{P t} 4 \mathrm{Ass}$ crystallizes in the centrosymmetric space group $\mathrm{P} 4 / \mathrm{nnc}$ when in the mother liquor or dry in air ($\mathbf{K}-\mathrm{Pt}_{4} \mathrm{Ass}$), even after heating under vacuum, the space group keeps the same (K-Pt4Ass (dehy)). The two crystal structures show the exact same polyanion as confirmed by single-crystal XRD, but the unit cell
volume shrinks significantly from 6332.5(5) to $5080.5(2) \AA^{3}$ upon heating, and the packing arrangement is noticeable different (Figure 5.14). In K-Pt4Ass, four $\mathbf{P t}_{4} \mathbf{A s s}$ tetramers are linked through two potassium cations, resulting in discrete $\mathbf{K}_{2}\left(\mathbf{P t}_{4} \mathbf{A s s}\right) 4$ fragment. Whereas in K-Pt4Ass (dehy), each K atom is coordinated by eight $\mathbf{P t}_{4} \mathbf{A s s}$ tetramers resulting a high ordered packing arrangement in the 3D framework.

Figure 5.14. Top: Packing diagrams for K-Pt ${ }_{4}$ Ass (top) along b and c axis. Bottom: the $\left\{\mathrm{K}\left(\mathrm{Pt}^{\mathrm{II}} 4\left(\mathrm{AsO}_{3}\right)_{8}\right)_{8}\right\}$ fragment (left) and packing diagram (right) along c axis of \mathbf{K} $\mathrm{Pt}_{4} \mathrm{Ass}$ (dehy). $\left\{\mathrm{KO}_{8}\right\}$ purple polyhedron.

The structural transformation of K-Pt4Ass to K-Pt $\mathbf{4} \mathbf{A s s}$ (dehy) upon dehydration by heating was also confirmed by powder-XRD (PXRD) measurements (Figure 5.15). A pure phase of K-Pt4Ass is obtained in the crystals when freshly prepared, but after heating at $80{ }^{\circ} \mathrm{C}$
for 5 h , a transformation to the pure new phase K-Pt4As8 (dehy) occurs. The transformation from K-Pt4Ass to K-Pt4Ass (dehy) is fully reversible during a rehydration and dehydration process. Rehydration of K-Pt4Ass (dehy) in the presence of water vapor at room temperature results in K-Pt4Ass within overnight. If we keep the crystals K-Pt4Ass air drying for two days, there is no new phase appeared. And if we heating at $70^{\circ} \mathrm{C}$ for 5 h , we can observe the intermedial state with two phases (Figures 5.16). Thermogravimetric analysis (TGA) studies (Figure 5.17) and infrared spectroscopy (FT-IR) (Figures 5.18) on

K-Pt $4 \mathbf{A s s}$ reiterated the stability of the compound upon dehydration and rehydration. Thus, the interaction of K^{+}ions and direct $\mathrm{Pt}-\mathrm{As}$ bonding into the $\mathbf{K}-\mathrm{Pt}_{4} \mathbf{A s s}$ induces a drastic improvement in the stability and crystallinity of the compound due to the formation of stable extended supramolecular assembly.

Figure 5.15. Simulated and experimental PXRD patterns (left) of K-Pt 4 Ass and K-Pt4Ass (dehy) upon dehydration and rehydration. (simulated diffraction patterns derived from single-crystal data).

Figure 5.16. PXRD patterns K-Pt4Ass upon dehydration by air drying and heating.

Figure 5.17. TGA curves of freshly prepared, dehydrated, and rehydrated compound K-Pt4Ass.

Figure 5.18. FT-IR spectrums of freshly synthesized and dehydrated K-Pt $\mathbf{H A s s}^{\mathbf{A}}$.

5.4.4 XPS Study

X-ray photoelectron spectroscopy (XPS) measurements were performed on $\mathbf{K - P t} \mathbf{t}_{4} \mathbf{A s s}$ in order to ascertain the oxidation states of Pt and As. The cluster exhibited a $\mathrm{Pt} 4 \mathrm{~d}_{5 / 2}$ band at $\sim 316.6 \mathrm{eV}$, which is typical for Pt in a $2+$ oxidation state (Figure 5.19 (left)). The XPS spectrum of As exhibited characteristic 3 p peak at $\sim 145.4 \mathrm{eV}$, indicating that As is in the $3+$ oxidation state (Figure 5.19 (right)). The BVS of Pt^{2+} is calculated to be smaller than +2 (i.e., +0.86) by considering only the $\mathrm{Pt}-\mathrm{O}$ bonds (Table 5.3). To come up with the BVS of +2 for Pt^{2+}, the $\mathrm{Pt}-\mathrm{As}$ bond should contribute the BVS of +0.57 . On the basis of the BVS formula, $s=\exp \left[\left(\mathrm{r}_{0}-\mathrm{r}\right) / \mathrm{B}\right)$ with $\mathrm{s}=0.57, \mathrm{~B}=0.37$ and $\mathrm{r}=2.31 \AA$, we derive $\mathrm{r}_{0}=2.11$ for the $\mathrm{Pt}^{2+}-\mathrm{As}^{3+}$ bond. A similar value of $\mathrm{r}_{0}=1.99$ was extracted for the $\mathrm{Fe}^{2+}-\mathrm{As}^{3+}$ bond from the FeAs_{6} octahedra in nanlingite. ${ }^{58}$

Figure 5.19. X-ray photoelectron spectra and fits for $\mathrm{Pt}_{3 / 2}$ and $\mathrm{d}_{5 / 2}$ doublet (left) and As $3 p$ doublet (right) of $\mathbf{P t}_{4} \mathbf{A s s}$.

5.4.5 Infrared Spectroscopy Study

In FT-IR spectra of K-Pt4Ass (Figure 5.20), the most intense bands are at $803 \mathrm{~cm}^{-1}$ and 723 cm^{-1}, which most likely arise from $\gamma(\mathrm{O}-\mathrm{H})+v_{\text {asym }}(\mathrm{As}-\mathrm{O})\left(803 \mathrm{~cm}^{-1}\right)$ and $v(\mathrm{As}-\mathrm{Pt})+$ $v_{\text {sym }}(\mathrm{As}-\mathrm{O})\left(723 \mathrm{~cm}^{-1}\right)$ vibrations, respectively. In the FT-IR spectrum of an aqueous solution of ATO (i.e., arsenous acid), As-O antisymmetric and symmetric stretches were observed at $800 \mathrm{~cm}^{-1}$ and $750 \mathrm{~cm}^{-1} .{ }^{137}$ Upon complexation, a significant shift of these bands in the FT-IR spectra of $\mathbf{K - P t _ { 4 }} \mathbf{A s s}$ toward lower frequencies is observed. Thus, the presence of this strong vibration at around $700 \mathrm{~cm}^{-1}$ can be used to confirm that the AsO_{3} pyramid is bound directly to platinum(II). To our knowledge, $\mathbf{P t}_{4} \mathbf{A s s}$ is the only cluster to contain arsenous acid moieties coordinated to the platinum(II) centers. Bands at $3558 \mathrm{~cm}^{-1}$ and $3412 \mathrm{~cm}^{-1}$ in the experimental spectrum of $\mathbf{K - P} \mathbf{t}_{4} \mathbf{A s} \mathbf{8}$ are assigned to asymmetric and symmetric stretching vibrations of the $\mathrm{O}-\mathrm{H}$ groups. The bands at 2916 and $2316 \mathrm{~cm}^{-1}$ are due to the two OH stretching frequencies of the unit $\mathrm{Pt}-\mathrm{O}-\mathrm{As}(\mathrm{OH})_{2}$. The large separation of these bands occurs because of the coupling occurring through the heavy central atom. The band at $1627 \mathrm{~cm}^{-1}$ is assigned to the bending vibration of $\mathrm{O}-\mathrm{H}$ groups connecting As
atoms and K atoms. The sharp band observed at $1408 \mathrm{~cm}^{-1}$ is caused by in-plane bending vibration of $\mathrm{O}-\mathrm{H}$ groups. The bending vibration of $\mathrm{As}-\mathrm{OH}$ is at $1220 \mathrm{~cm}^{-1}$ as expected. The stretching vibration of $\mathrm{Pt}-\mathrm{O}$ occurs in 544 and $508 \mathrm{~cm}^{-1}$.

Figure 5.20. FT-IR spectrums of K-Pt4Ass.

5.4.6 Conclusions

In summary, Clusters with arsenite ligands $\left[\mathrm{Pt}^{\mathrm{VV}}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-} \quad(\mathbf{P t A s})$ and $\left[\mathrm{Pt}_{4}^{\mathrm{II}}{ }_{4}\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-}\left(\mathbf{P t}_{4} \mathbf{A s s}\right)$ have been first prepared in aqueous solutions. And a platinum arsenate(III) heteropolytungstate $\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right]^{10-}\left(\mathbf{P t}_{2} \mathbf{A s s}_{6} \mathbf{W}_{4}\right)$ has been synthesized in aqua media and characterized by ${ }^{195} \mathrm{Pt}$ NMR. This result demonstrates that the coordination of $\mathrm{AsO}_{3}{ }^{3-}$ anions to $\mathrm{Pt}^{\mathrm{II}}$ ions with both As and O atoms can be achieved. The reversible single-crystal-to-single-crystal transformation of K-Pt4Ass to K-Pt4Ass (dehy) upon dehydration and rehydration is of particular interest, as concern solid state applications (sorption etc). $\mathbf{P t}_{4} \mathbf{A s s}$ is expected to open a wide field of investigation for exotic platinum arsenate(III) cluster.

Chapter VI Organorhodium(III)-containing POMs

RhCp*-containing heteropolyoxotungstates: $\quad\left[\mathrm{Na}\left(\mathrm{Rh}^{\mathrm{III}} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}\left(\text { cis- } \mathrm{As}^{\mathrm{V}}{ }_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right)\right]^{5-}$ $\left(\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}\right)$ and $\left[\mathrm{Na}\left(\mathrm{Rh}^{\text {III }} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}\left(\text { tran }-\mathrm{P}^{\mathrm{V}}{ }_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right)\right]^{5-}\left(\mathbf{R h}_{4} \mathbf{P}_{2} \mathbf{W}_{\mathbf{1 0}}\right)$, were synthesized by reaction of $\left(\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right)_{2}$ with $\mathrm{Na}_{2} \mathrm{WO}_{4}$ in aqueous pH $7 \mathrm{Na}_{2} \mathrm{HAsO}_{4}$ or $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution at $70^{\circ} \mathrm{C}$. The two polyanions were structurally characterized in the solid state by singlecrystal XRD, FT-IR, and TGA and in solution by ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR.

6.1 Synthesis

$\mathrm{Na} 5\left[\mathrm{Na}\left(\mathrm{Rh}^{\mathrm{III}} \mathrm{C}_{5} \mathrm{Me}\right)_{4}\left(\right.\right.$ cis-As $\left.\left.{ }_{2} \mathbf{W}_{10} \mathrm{O}_{42}\right)\right] \cdot \mathbf{1 2 H}_{2} \mathrm{O}\left(\mathrm{Na}-\mathrm{Rh}_{4} \mathrm{As}_{2} \mathbf{W}_{10}\right)$

Method 1: A mixture of $\left(\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right)_{2}(10 \mathrm{mg}, 0.0162 \mathrm{mmol})$ and $\mathrm{Na} 9[A-\alpha-$ $\left.\mathrm{As}^{\mathrm{V}} \mathrm{W}_{9} \mathrm{O}_{34}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}(46 \mathrm{mg}, 0.0162 \mathrm{mmol})$ was dispersed in 3 mL 2 M sodium acetate solution (pH 8.8). The solution was heated for 30 min at $70{ }^{\circ} \mathrm{C}$, then cooled to room temperature. Orange crystals were collected after two weeks. The yield: 30% (based on Rh).

Method 2: A mixture of $\left(\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right)_{2}(9 \mathrm{mg}, 0.0125 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(32.9 \mathrm{mg}$, 0.1 mmol) was dispersed in $2 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{HAsO}_{4}$ solution (pH 7). The solution was heated for 30 min at $70{ }^{\circ} \mathrm{C}$, then cooled to room temperature. Orange crystals were collected after one week by filtration. The yield: 45\% (based on Rh). Anal. Calcd (\%) for Na-Rh4As2W ${ }_{10}$: Rh 10.29, W 45.97, As 3.75, Na 2.87, C 12.01, H 2.29. Found: Rh 10.30, W 46.00, As 4.00, Na 2.70, C 11.96, H 2.61. FT-IR (KBr/cm $\left.{ }^{-1}\right): 3600-3300(\mathrm{~s})[\mathrm{v}(\mathrm{O}-\mathrm{H})$ of $\mathrm{H}_{2} \mathrm{O}$], 3000-2900 (w) [$v(\mathrm{C}-\mathrm{H})$ of methyl groups], $1640(\mathrm{~m})\left[\mathrm{H}_{2} \mathrm{O}\right.$ bending fundamental mode $\delta], 1451(\mathrm{w})[\mathrm{v}(\mathrm{C}=\mathrm{C})$ of the $\mathrm{Cp} *$ groups $], 1378(\mathrm{~s})[\delta(\mathrm{C}-\mathrm{H})$ of the methyl groups $]$,

1080-1014 (m) [$v(\mathrm{~W}-\mathrm{O}($ terminal $))]$, 931-716 (m) $[v(\mathrm{~W}-\mathrm{O}$ (bridging) $)]$, 609-506 [vibrational modes of Rh with Cp * groups].

$\mathbf{N a 5}\left[\mathbf{N a}\left(\mathrm{Rh}^{\mathrm{III}} \mathrm{C}_{5} \mathrm{Me}_{5}\right) 4\left(\right.\right.$ trans $\left.\left.-\mathrm{P}_{\mathbf{2}} \mathbf{W}_{10} \mathrm{O}_{42}\right)\right] \cdot \mathbf{1 2} \mathrm{H}_{2} \mathrm{O}\left(\mathbf{N a}-\mathrm{Rh}_{4} \mathrm{P}_{2} \mathbf{W}_{10}\right)$

A mixture of $\left(\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right)_{2}(9 \mathrm{mg}, 0.0125 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(32.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dispersed in $2 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution (pH 7). The solution was heated for 30 \min at $70^{\circ} \mathrm{C}$, then cooled to room temperature. Orange crystals were collected after one week by filtration. The yield: 50\% (based on Rh). Anal. Calcd (\%) for Na-2: Rh 10.52, W 47.00 , P 1.58, Na $2.94, \mathrm{C} 12.28$, H 2.35 . Found: Rh 10.36 , W $44.10, \mathrm{P} 1.70$, Na $2.70, \mathrm{C}$ 11.87, H 2.35. FT-IR $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right): 3600-3300(\mathrm{~s})\left[v(\mathrm{O}-\mathrm{H})\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right], 3000-2900(\mathrm{w})[v(\mathrm{C}-$ $\mathrm{H})$ of methyl groups $], 1635(\mathrm{~m})\left[\mathrm{H}_{2} \mathrm{O}\right.$ bending fundamental mode $\left.\delta\right]$, $1447(\mathrm{w})[\mathrm{v}(\mathrm{C}=\mathrm{C})$ of the $\mathrm{Cp} *$ groups $]$, $1380(\mathrm{~s})[\delta(\mathrm{C}-\mathrm{H})$ of the methyl groups $], 1081-1015(\mathrm{~m})[v(\mathrm{~W}-\mathrm{O}$ (terminal))], 930-721 (m) [v(W-O (bridging))], 610-508 [vibrational modes of Rh with Cp* groups].

Figure 6.1. FT-IR spectra of $\mathbf{N a - R h} 4 \mathbf{A s}_{2} \mathbf{W}_{10}$ (red) and $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$ (blue).

Figure 6.2. Thermograms of $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ (red) and $\mathbf{N a - R} \mathbf{h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$ (blue) from room temperature to $500^{\circ} \mathrm{C}$ under N_{2} atmosphere.

6.2 Single-Crystal XRD Data

Table 6.1. Crystal data and structure refinement for $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ and $\mathbf{N a - R h} \mathbf{4}_{2} \mathbf{P}_{2} \mathbf{W}_{10}$.

Compound	$\mathrm{Na}-\mathrm{Rh}_{4} \mathrm{As}_{2} \mathbf{W}_{10}$	$\mathbf{N a - R h}{ }_{4} \mathbf{P}_{2} \mathbf{W}_{10}$
empirical formula ${ }^{a}$	$\mathrm{Na}_{6} \mathrm{Rh}_{4} \mathrm{~W}_{10} \mathrm{As}_{2} \mathrm{C}_{40} \mathrm{H}_{84} \mathrm{O}_{54}$	$\mathrm{Na}_{6} \mathrm{Rh}_{4} \mathrm{~W}_{10} \mathrm{P}_{2} \mathrm{C}_{40} \mathrm{H}_{84} \mathrm{O}_{54}$
$\mathrm{fw},{ }^{a} \mathrm{~g} \mathrm{~mol}^{-1}$	3966.87	3878.97
crystal system	Monoclinic	Monoclinic
space group	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{c}$
$a(\AA)$	14.2654(3)	18.483(2)
$b(\AA)$	18.1929(4)	13.8800(18)
$c(\stackrel{\text { A }}{ }$)	35.6075(9)	18.120(2)
$\alpha\left({ }^{\circ}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	90	106.324(3)
$\gamma\left({ }^{(0}\right)$	90	90
$V\left(\AA^{3}\right)$	9241.2(4)	4461.1(10)
Z	4	2

$D c\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	2.617		2.757		
abs coeff, mm^{-1}	13.868		13.690		
$F(000)$	6552		3346		
θ range for data collection, deg	1.538 to 27.676		1.863 to 23.345		
completeness to $\Theta_{\text {max }}$	100 \%		99.4\%		
index ranges	$\begin{aligned} & -18=<\mathrm{h}=<18, \\ & -23=<\mathrm{k}=<23, \\ & -46=<1=<46 \end{aligned}$		$\begin{aligned} & -20=<\mathrm{h}=<20, \\ & -15=<\mathrm{k}=<15, \\ & -20=<1=<20 \end{aligned}$		
reflns collected	100179		56877		
indep reflns	21368		6446		
R (int)	0.1395		0.0875		
abs corn	Semi-empirical equivalents	from	Semi-empirical equivalents	from	
data/restaints/param	21368 / 60 / 910		6446 / 249 / 456		
GOF on F^{2}	1.072		1.740		
$R_{1},{ }^{b} w R_{2}{ }^{c}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.1036, 0.2940		0.1175, 0.3754		
$R_{1},{ }^{b} w R_{2}{ }^{c}$ (all data)	0.1759, 0.3490		0.1622, 0.4195		
Largest diff peak and hole, e \AA^{-}	8.273 and -9.380		14.745 and -6.593		
${ }^{a}$ The entries are the actual formula units and weights as obtained from bulk elemental analysis. ${ }^{{ }^{b} R_{1}=\Sigma \\|\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\|\Sigma\| F_{\mathrm{o}} \mid \cdot{ }^{c} w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2} .}$					

6.3 Results and Discussion

6.3.1 Solid-State Structure

 $\left(\mathbf{R} \mathbf{h}_{4} \mathbf{A s}_{\mathbf{2}} \mathbf{W}_{10}\right)$ and $\left[\mathrm{Na}\left(\mathrm{Rh}^{\mathrm{III}} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}\left(\operatorname{tran}-\mathrm{P}^{\mathrm{V}}{ }_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right)\right]^{5-}\left(\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}\right.$; Figure 6.3) were synthesized by heating mixture of $\left(\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right)_{2}$ and $\mathrm{Na}_{2} \mathrm{WO}_{4}$ in a 1:8 molar ratio in aqueous $\mathrm{Na}_{2} \mathrm{HAsO}_{4}$ or $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution (pH 7) at $70{ }^{\circ} \mathrm{C}$ for 30 min using conventional "open beaker" methods. The hydrated salts of $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ and $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$ were isolated successively from the same mother liquor as bulk-pure materials,
$\mathrm{Na}_{5}\left[\mathrm{Na}\left(\mathrm{Rh}^{\mathrm{III}} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4} \mathrm{As}^{\mathrm{V}}{ }_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O} \quad\left(\mathbf{N a}-\mathbf{R h}_{4} \mathbf{A s}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}\right) \quad$ and $\mathrm{Na}_{5}\left[\mathrm{Na}\left(\mathrm{Rh}^{\mathrm{III}} \mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4} \mathrm{P}^{\mathrm{V}}{ }_{2} \mathrm{~W}_{10} \mathrm{O}_{42}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O} \quad\left(\mathbf{N a}-\mathrm{Rh}_{4} \mathbf{P}_{2} \mathbf{W}_{\mathbf{1 0}}\right)$, in 45% and 50% yield, respectively.

Single-crystal XRD analysis revealed that $\mathbf{R h}_{4} \mathbf{A s}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ and $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ crystallize in the triclinic lattice with space group $\mathrm{P} 2_{1} / \mathrm{n}$ and $\mathrm{P} 2_{1} / \mathrm{c}$, respectively. Polyanions $\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ and $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$ are isomeric structures both exhibit V-shaped structure which is composed of two $\mathrm{XW}_{5} \mathrm{O}_{22}(\mathrm{X}=\mathrm{As}, \mathrm{P})$ fragments linked via corners, in which there are two unique types of RhCp * moieties. One type of $\mathrm{RhCp} *$ moiety occupies the fourth vacant site of symmetrical pseudo-cuboidal halves arranged by three unique tungsten atoms in a trigonal plane, which thus complete a distorted pseudo-cubane ring. Each of the three oxygen atoms bonded to Rh atom form bridges to two tungsten atoms. For another type, RhCp * moiety is bonded to the cluster via two cisoid terminal oxygen atoms over a face of the distorted cubic core and connect to $\mathrm{X}(\mathrm{X}=\mathrm{As}, \mathrm{P})$ atom by oxygen atom. These two oxygen atoms only form bridges to one tungsten atom. The cavity is occupied by a sodium ion, coordinated by eight oxygens of the inner $\left\{\mathrm{O}_{10}\right\}$ polyhedron, with idealized C_{s} point group symmtry. The main difference between the two polyanions is the relative orientation of the two two $\mathrm{XW}_{5} \mathrm{O}_{22}(\mathrm{X}=\mathrm{As}, \mathrm{P})$ fragments, either pointing in the same directions (cis isomer, $\mathbf{R} \mathbf{h}_{\mathbf{4}} \mathbf{A} \mathbf{s}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$), or in opposite direction (tran isomer, $\mathbf{R} \mathbf{h}_{\mathbf{4}} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$).

Figure 6.3. Polyhedral representation of the structure of $\mathbf{R} \mathbf{h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ (left) and $\mathbf{R h}_{4} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ (right). Color code: Rh (dark red), As (yellow), P (purple), Na (green), O (red), C (grey), WO_{6} (blue octahedra).

6.3.2 Multinuclear NMR Study

To complement our solid-state XRD results on $\mathbf{R} \mathbf{h}_{4} \mathbf{A s}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ and $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ with solution studies, we performed ${ }^{13} \mathrm{C}$ NMR measurements on $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{A s}_{2} \mathbf{W}_{10}$ and $\mathbf{N a}-\mathbf{R h}_{4} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{10}$ redissolved in $\mathrm{D}_{2} \mathrm{O} .{ }^{31} \mathrm{P}$ NMR measurement was also performed on $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{2} \mathbf{W}_{\mathbf{1 0}}$. The ${ }^{13} \mathrm{C}$ NMR spectra of polyanions show the expected four peaks at $8.4,8.0,93.7$ and 92.9 ppm for $\mathbf{R h}_{\mathbf{4}}^{\mathbf{4}} \mathbf{A s}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ and $8.4,8.1,93.5$ and 92.8 ppm for $\mathbf{R} \mathbf{h}_{\mathbf{4}} \mathbf{P}_{\mathbf{2}} \mathbf{W}_{\mathbf{1 0}}$ corresponding to the carbons of two structurally inequivalentthe methyl groups and the $\mathrm{Cp} *$ rings, respectively (Figure 6.4). It is important to mention that the $\mathrm{C}-\mathrm{Rh}$ coupling which is observed for the $\left(\mathrm{RhCp} * \mathrm{Cl}_{2}\right)_{2}$ was not observed when the monomer is coordinated to the POM. The absence of the C-Rh coupling is attributed to the fluxional behavior of the molecule. As shown in Figure 6.5, the ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ exhibits an expected singlet at 2.3 ppm .

Figure 6.4. ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{R} \mathbf{h}_{4} \mathbf{A s} \mathbf{s}_{2} \mathbf{W}_{10}$ (top) and $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{2} \mathbf{W}_{10}$ (bottom).

Figure 6.5. ${ }^{31} \mathrm{P}$ NMR spectra $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{R} \mathbf{h}_{4} \mathbf{P}_{2} \mathbf{W}_{\mathbf{1 0}}$.

6.4 Conclusions

In conclusion, two RhCp^{*}-containing heteropolyoxotungstates have been synthesized and structurally characterized. Both polyanions are composed of two equivalent $\mathrm{AsW}_{5} \mathrm{O}_{22}$ or
$\mathrm{PW}_{5} \mathrm{O}_{22}$ fragments linked via corners and a Na^{+}templating ion, and capped by four RhCp^{*} units, resulting in a structure with idealized C_{s} point group symmetry.

Chapter VII Summery and Outlook

The work presented in this dissertation comprises three research projects, polyoxo-noblemetalates, noble metal-containing heteropoly- and isopoly- oxometalates and platinum(II/IV) arsenate(III) clusters. The obtained 16 novel compounds have been structurally characterized by a combination of solid-state techniques, such as single-crystal XRD, powder XRD, FT-IR spectroscopy, thermogravimetric, elemental analyses and XPS spectroscopy, and their solution stability was validated by multinuclear (e.g., ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$, and $\left.{ }^{195} \mathrm{Pt}\right)$ NMR and ESI-MS spectroscopy.

A total of 16 novel noble metal containing compounds have been discovered, associated with the main highlights as follows:
$>$ Expand the family of polyoxoplatinates and polyoxopalladates by synthesizing the first mixed-valent polyoxoplatinate(IV,II) $\quad \mathbf{P t}_{7}$ and the first $\mathrm{Pt}^{\mathrm{IV}}$-containing polyoxopalladate(II) PtPd6 as discrete inorganic oxo complexes by using simple open beaker and aqueous solution synthetic conditions. In fact, $\mathbf{P t}_{7}$ was shown to be stable in solution for several months, which provides much potential for further studies and applications, e.g. in the catalytic or biomedical directions.
> Synthesize and structurally characterize the first discrete mixed gold-platinumoxoanion $\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}\left(\mathbf{P t}_{2} \mathbf{A u}_{3}\right)$ by using simple one-pot open-beaker techniques. The ${ }^{195} \mathrm{Pt}$ NMR spectrum of redissolved solid $\mathbf{P t}_{2} \mathbf{A u}_{3}$ in water demonstrates solution stability, which provides much potential for further applications of $\mathbf{P t}_{2} \mathbf{A u}_{3}$ in catalysis and biomedicine. The reversible single-crystal-to-single-crystal transformation
of $\mathbf{N a}-\mathrm{Pt}_{2} \mathrm{Au}_{3}(\mathbf{a})$ to $\mathbf{N a}-\mathrm{Pt}_{2} \mathrm{Au}_{3}$ upon dehydration and rehydration is of particular interest, as concern solid state.
$>$ Synthesize three new platinum(II/III) isopolytungstates: $\left[\mathrm{Pt}_{3} \mathrm{~W}_{11} \mathrm{O}_{41}\right]^{10-}\left(\mathbf{P t}_{3} \mathbf{W}_{11}\right)$, $\left[\mathrm{Pt}^{\mathrm{II}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{2}\right]^{4-}\left(\mathbf{P t}^{\mathrm{II}} \mathbf{W}_{5}\right), \quad\left[\mathrm{Pt}^{\mathrm{III}}{ }_{2} \mathrm{~W}_{5} \mathrm{O}_{18}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{4}\right]^{4-}\left(\mathbf{P t}^{\mathrm{III}} \mathbf{2} \mathbf{W}_{5}\right)$ in aqua media. Exhibit a transformation from $\mathbf{P t}^{I I} \mathbf{W}_{5}$ to $\mathbf{P t}^{\mathrm{III}_{2}} \mathbf{W}_{5}$ involving single $\mathrm{Pt}^{\mathrm{III}}-\mathrm{Pt}^{\mathrm{III}}$ bond. $>$ Prepare clusters with arsenite ligands $\left[\mathrm{Pt}^{\mathrm{IV}}\left(\mathrm{As}_{3} \mathrm{O}_{6}\right)_{2}\right]^{2-} \quad(\mathbf{P t A s} 6)$ and $\left[\mathrm{Pt}^{\mathrm{II}} 4_{\left.\left(\mathrm{H}_{2} \mathrm{AsO}_{3}\right)_{6}\left(\mathrm{HAsO}_{3}\right)_{2}\right]^{2-}\left(\mathrm{Pt}_{4} \mathbf{A s s}\right) \text { in aqueous solutions, as well as a platinum }}\right.$ arsenate(III) heteropolytungstate $\left[\mathrm{Pt}_{2} \mathrm{As}_{6} \mathrm{~W}_{4} \mathrm{O}_{28}\right]^{10-}\left(\mathbf{P t}_{\mathbf{2}} \mathbf{A s}_{\mathbf{6}} \mathbf{W}_{4}\right)$ characterized by ${ }^{195} \mathrm{Pt}$ NMR. This result demonstrates that the coordination of $\mathrm{AsO}_{3}{ }^{3-}$ anions to $\mathrm{Pt}^{\mathrm{II}}$ ions with both As and O atoms can be achieved. The reversible single-crystal-to-single-crystal transformation of $\mathbf{K - P t}_{4} \mathbf{A s s}$ to $\mathbf{K - P t} \mathbf{4}_{4} \mathbf{A s s}$ (dehy) upon dehydration and rehydration is of particular interest, as concern solid state applications (sorption etc).

The progress summarized above allows us to gain a deeper understanding of polyoxoplatinate, mixed polyoxo-noble metalates, noble metal containing POMs and platinum arsenate(III) chemistry. These polyanions enrich the class of metal-metal bonded and platinum containing compounds, especially can be considered as a synthetic breakthrough in polyoxoplatinate (POPt) and platinum-containing polyoxopalladate (POPd) chemistry. These discoveries allow us to shed light on design and preparation of desirable noble metal-based compounds as bottom-up precursors for supported noble metal nanoparticles.

The following work could be done as an outlook to future research: (i) synthesis of more derivatives of polyoxoplatinates and mixed polyoxo-noble-metalates; (ii) employ multifunctional ligands to provide a new path to synthesize novel polyoxoplatinates; (iii)
investigate the applications (e.g. catalysis, electrochemistry, HER) of obtained polyoxoplatinate, mixed gold-platinum-oxoanion and platinum containing POMs; (iv) expand the binary noble metal-based clusters by other precious metal ions, in order to produce innovative structures and interesting functionalities.

Appendix

Published Articles

1. Mixed Noble Metal-Oxo Clusters: Platinum(IV)-Gold(III) Oxoanion $\left[\mathrm{Pt}^{\mathrm{IV}}{ }_{2} \mathrm{Au}^{\mathrm{III}}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}$
J. Zhang, S. Bhattacharya, A. B. Müller, L. Kiss, C. Silvestru, N. Kuhnert, U. Kortz, Chem. Commun., 2023. 59, 5918-5921.
2. $\mathrm{Pt}^{\mathrm{IV}}$-Containing Hexaplatinate(II) $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pt}^{\mathrm{II}}{ }_{6} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2-}$ and Hexapalladate(II) $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Pd}^{\mathrm{II}}{ }_{6} \mathrm{O}_{6}\left(\mathrm{AsO}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)_{6}\right]^{2-}$
J. Zhang, S. Bhattacharya, B. E. Khsara, T. Nisar, A. B. Müller, M. Besora, J. M. Poblet, V. Wagner, N. Kuhnert, U. Kortz, Inorg. Chem., 2023. (accepted)

Conferences

Oral Contributions

> Jiayao Zhang, Saurav Bhattacharya, Anja B. Müller, Levente Kiss, Cristian Silvestru, Nikolai Kuhnert, Ulrich Kortz. Discovery of the First Platinum(IV)-Gold(III) Oxoanion: $\left[\mathrm{Pt}^{I V}{ }_{2} \mathrm{Au}^{I I I}{ }_{3} \mathrm{O}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}\right)_{6}\right]^{-}$. The $7^{\text {th }}$ Frontiers in Metal Oxide Cluster Scicence (FMOCS VII), April $11^{\text {th }}-14^{\text {th }}$, 2023. Tarragona, Spain
> Jiayao Zhang, Saurav Bhattacharya, Anja B. Müller, Levente Kiss, Cristian Silvestru, Nikolai Kuhnert, Ulrich Kortz. Discovery of the First Platinum(IV)-Gold(III)
 GDCh-Ortsverband Bremen WiSe, January $23^{\text {rd }}$, 2023. Bremen, Germany

References

1. (a) M. T. Pope, Heteropoly and Isopoly Oxometalates. Springer-Verlag: Berlin, 1983;
(b) V. W. Day, W. G. Klemperer, Science, 1985, 228, 533-541; (c) M. T. Pope, A. Müller,, Angew. Chem. Inr. Ed. Engl., 1991, 30, 34-48.
2. A. Müller, F. Peters, Chem. Rev., 1998, 98, 239-271.
3. (a) J. J. Berzelius, Annalen der Physik, 1826, 6, 369-380; (b) L. Pauling, J. Am. Chem. Soc., 1929, 51, 2868-2880; (c) J. F. Keggin, Nature, 1933, 131, 908-909; (d) J. F. Keggin, Proc.Roy. Soc. A, 1934, 144, 75-100.
4. (a) H. Wu, J. Biol. Chem., 1920, 43, 189-220; (b) B. Dawson, Acta Crystallogr. , 1953, 6, 113-126.
5. (a) J. S. Anderson, Nature, 1937, 140, 850; (b) H. T. Evans-Jr, J. Am. Chem. Soc., 1948, 70, 1291-1292; (c) H. Kondo, A. Kobayashi, Y. Sasaki, Acta Crystallogr., Sect. C: Cryst. Struct. Comтип., 1986, 42, 1115-1118.
6. (a) I. Lindqvist, Arkiv foer Kemi, 1953, 5, 247-250; (b) I. Lindqvist, B. Aronsson, Arkiv foer Kemi, 1954, 7, 49-52.
7. (a) R. D. Hall, J. Am. Chem. Soc., 1907, 29, 5692-5714; (b) J. L. T. Waugh, D. P. Shoemaker, L. Pauling, Acta Cryst., 1954, 7, 438-440.
8. R. Strandberg, Acta Chem. Scand., 1973, 27, 1004-1018.
9. D. D. Dexter, J. V. Silverton, J. Am. Chem. Soc., 1986, 90, 3589-3590.
10. (a) R. D. Peacock, T. J. R. Weakley, J. Chem. Soc. A, 1971, 1836-1839; (b) J. Iball, J. N. Low, T. J. R. Weakley, J. Chem. Soc., Dalton Trans., 1974, 2021-2024; (c) T. Ozeki, M. Takahashi, T. Yamase, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1992, 48, 1370-1374; (d) M. Sugeta, T. Yamase, Bull. Chem. Soc. Jpn., 1993, 66, 444-449.
11. (a) J. T. Rhule, C. L. Hill, D. A. Judd, Chem. Rev., 1998, 98, 327-357; (b) I. V. Kozhevnikov, Chem. Rev., 1998, 98, 171-198; (c) A. Müller, S. Roy, Coord. Chem. Rev., 2003, 245, 153-166; (d) J. M. Clemente-Juan, E. Coronado, A. Gaita-Arino, Chem. Soc. Rev. 2012, 41 (22), 7464-7478; (e) L. Chen, W. L. Chen, X. L. Wang, Y. G. Li, Z. M. Su, E. B. Wang, Chem. Soc. Rev., 2019, 48 (1), 260-284.
12. (a) M. T. Pope, A. Müller, Polyoxometalate Chemistry: From Topology via SelfAssembly to Applications. Kluwer: Dordrecht: The Netherlands, 2001; (b) U. Kortz, A. Müller, J. van Slageren, J. Schnack, N. S. Dalal, M. Dressel, Coord. Chem. Rev., 2009, 253 (19-20), 2315-2327; (c) D. L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. Engl., 2010, 49 (10), 1736-1758; (d) L. Cronin, A. Müller, Chem. Soc. Rev., 2012, 41 (22), 7333-7334.
13. T. Hori, S. Himeno, O. Tamada, J. Chem. Soc., Dalton Trans., 1996, 2083-2087.
14. J. Wang, P. Ma, J. Li, J. Niu, Chem. Res. Chinese U., 2007, 23, 263-267.
15. L. C. W. Baker, J. S. Figgis, J. Am. Chem. Soc., 1970, 92, 3794-3797.
16. (a) D. L. Kepert, Inorg. Chem., 1969, 8, 1556-1558; (b) M. T. Pope, Inorg. Chem., 1976, 15, 2008-2010.
17.(a) X. López, J. M. Poblet, Inorg. Chem., 2004, 43, 6863-6865; (b) X. López, J. J. Carbó, C. Bo, J. M. Poblet, Chem. Soc. Rev., 2012, 41, 7537-7371.
17. J. Lehmann, A. Gaita-Ariño, E. Coronado, D. Loss, Nat. Nanotechnol., 2007, 2, 312317.
18. S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, B. Barbara, Nature, 2008, 453, 203-206.
19. X. Ma, H. Li, L. Chen, J. Zhao, Dalton Trans., 2016, 45 (12), 4935-60.
20. L. Vilà-Nadal, H. N. Miras, Coordination Chemistry in Polyoxometalates and Metal Clusters. In Comprehensive Coordination Chemistry III, Academic Press: Burlington, 2020.
21. (a) N. V. Izarova, N. Vankova, A. Banerjee, G. B. Jameson, T. Heine, F. Schinle, O. Hampe, U. Kortz, Angew. Chem. Int. Ed. Engl. 2010, 49, 7807-7811; (b) M. BarsukovaStuckart, N. V. Izarova, R. Barrett, Z. Wang, J. van Tol, H. W. Kroto, N. S. Dalal, B. Keita, D. Heller, U. Kortz, Chem. Eur. J. 2012, 18, 6167-6171; (c) F. Xu, H. N. Miras, R. A. Scullion, D. L. Long, J. Thiel, L. Cronin, Proc. Natl. Acad. Sci. U. S. A., 2012, 109 (29), 11609-11612; (d) N. V. Izarova, M. T. Pope, U. Kortz, Angew. Chem. Int. Ed. Engl., 2012, 51 (38), 9492-9510; (e) P. Yang, Y. Xiang, Z. Lin, B. S. Bassil, J. Cao, L. Fan, Y. Fan, M. X. Li, P. Jimenez-Lozano, J. J. Carbo, J. M. Poblet, U. Kortz, Angew. Chem. Int. Ed. Engl. 2014, 53, 11974-11978; (f) P. Yang, U. Kortz, Acc. Chem. Res., 2018, 51 (7), 1599-1608.
22. E. V. Chubarova, M. H. Dickman, B. Keita, L. Nadjo, F. Miserque, M. Mifsud, I. W. C. E. Arends, U. Kortz, Angew. Chem. Int. Ed. Engl., 2008, 47 (49), 9542-9546.
23. N. V. Izarova, R. N. Biboum, B. Keita, M. Mifsud, I. W. Arends, G. B. Jameson, U. Kortz, Dalton. Trans., 2009, 9385-9387.
24. M. Barsukova-Stuckart, N. V. Izarova, G. B. Jameson, V. Ramachandran, Z. Wang, J. van Tol, N. S. Dalal, R. N. Biboum, B. Keita, L. Nadjo, U. Kortz, Angew. Chem. Int. Ed. Engl., 2011, 50 (11), 2639-2642.
25. S. Bhattacharya, W. W. Ayass, D. H. Taffa, A. Schneemann, A. L. Semrau, S. Wannapaiboon, P. J. Altmann, A. Pöthig, T. Nisar, T. Balster, N. C. Burtch, V. Wagner, R. A. Fischer, M. Wark, U. Kortz, J. Am. Chem. Soc., 2019, 141, 3385-3389.
26. (a) S. Bhattacharya, U. Basu, M. Haouas, P. Su, M. F. Espenship, F. Wang, A. SoleDaura, D. H. Taffa, M. Wark, J. M. Poblet, J. Laskin, E. Cadot, U. Kortz, Angew. Chem. Int. Ed. Engl., 2021, 60 (7), 3632-3639; (b) S. Bhattacharya, X. Ma, A. S. Mougharbel, M. Haouas, P. Su, M. F. Espenship, D. H. Taffa, H. Jaensch, A. J. Bons, T. Stuerzer, M. Wark, J. Laskin, E. Cadot, U. Kortz, Inorg. Chem., 2021, 60 (22), 17339-17347.
27. S. Bhattacharya, A. Barba-Bon, T. A. Zewdie, A. B. Müller, T. Nisar, A. Chmielnicka, I. A. Rutkowska, C. J. Schurmann, V. Wagner, N. Kuhnert, P. J. Kulesza, W. M. Nau, U. Kortz, Angew. Chem. Int. Ed. Engl., 2022, 61 (25), e202203114.
28. X. Ma, S. Bhattacharya, T. Nisar, A. B. Müller, V. Wagner, N. Kuhnert, U. Kortz, Chem. Соттип., 2023, 59 (7), 904-907.
29. N. V. Izarova, A. Kondinski, N. Vankova, T. Heine, P. Jager, F. Schinle, O. Hampe, U. Kortz, Chem. Eur. J., 2014, 20 (28), 8556-8560.
30. P. Yang, Y. Xiang, Z. Lin, Z. Lang, P. Jimenez-Lozano, J. J. Carbo, J. M. Poblet, L. Fan, C. Hu, U. Kortz, Angew. Chem. Int. Ed. Engl., 2016, 55 (51), 15766-15770.
31. M. Pley, M. S. Wickleder, Angew. Chem. Int. Ed. Engl., 2004, 43 (32), 4168-4170.
33.N. V. Izarova, N. Vankova, T. Heine, R. N. Biboum, B. Keita, L. Nadjo, U. Kortz, Angew. Chem. Int. Ed. Engl., 2010, 49 (10), 1886-1889.
32. M. Delferro, C. Graiff, L. Elviri, G. Predieri, Dalton. Trans., 2010, 39 (19), 4479-4481.
33. U. Lee, A. Kobayashi, Y. Sasaki, Acta Cryst., 1983, C39, 817-819.
34. U. Lee, Y. Sasaki, Chem. Lett., 1984, 1297-1300.
35. U. Lee, H.-C. Joo, K.-M. Park, T. Ozeki, Acta Cryst., 2003, C59, 152-155.
36. V. W. Day, J. C. Goloboy, W. G. Klemperer, Eur. J. Inorg. Chem., 2009, 5079-5087.
37. M. Kato, C. N. Kato, Inorg. Chem. Commun., 2011, 14, 982-985.
38. C. N. Kato, Y. Morii, S. Hattori, R. Nakayama, Y. Makino, H. Uno, Dalton Trans., 2012, 41, 10021-10027.
39. C. M. Tourné, G. F. Tourné, F. Zonnevijlle, J. Chem. Soc. Dalton Trans., 1991, 143155.
40. M. N. Sokolov, S. A. Adonin, E. V. Peresypkina, V. P. Fedin, Dalton Trans., 2012, 41 (39), 11978-11979.
41. U. Lee, H. C. Joo, K. M. Park, S. S. Mal, U. Kortz, B. Keita, L. Nadjo, Angew. Chem. Int. Ed. Engl., 2008, 47 (4), 793-796.
42. N. Vankova, T. Heine, U. Kortz, Eur. J. Inorg. Chem., 2009, 2009 (34), 5102-5108.
43. P. A. Abramov, C. Vicent, N. B. Kompankov, A. L. Gushchin, M. N. Sokolov, Chem. Соттип., 2015, 51 (19), 4021-4023.
44. Z. Lin, N. V. Izarova, A. Kondinski, X. Xing, A. Haider, L. Fan, N. Vankova, T. Heine, B. Keita, J. Cao, C. Hu, U. Kortz, Chem. Eur. J., 2016, 22 (16), 5514-9.
45. C. N. Kato, S. Nagatani, T. Mizuno, Eur. J. Inorg. Chem., 2018, 2019 (3-4), 517-522.
46. F. Y. Yu, Z. L. Lang, L. Y. Yin, K. Feng, Y. J. Xia, H. Q. Tan, H. T. Zhu, J. Zhong, Z. H. Kang, Y. G. Li, Nat. Commun., 2020, 11 (1), 490.
47. (a) M. B. Hamida, M. S. Wickleder, Z. Anorg. Allg. Chem., 2006, 632 (14), 2195-2197;
(b) S. Lösel, H. Hillebrecht, Z. Anorg. Allg. Chem., 2008, 634 (12-13), 2299-2302; (c)
R. David, H. Kabbour, S. Colis, O. Mentre, Inorg. Chem., 2013, 52 (23), 13742-13750;
(d) R. David, H. Kabbour, A. Pautrat, N. Touati, M. H. Whangbo, O. Mentre, Angew. Chem. Int. Ed. Engl., 2014, 53 (12), 3111-3114.
48. P. L. Smedley, D. G. Kinniburgh, Appl. Geochem., 2002, 17, 517-568.
49. (a) P. A. O'Day, Elements, 2006, 2 (2), 77-83; (b) J. Majzlan, P. Drahota, M. Filippi, Reviews in Mineralogy and Geochemistry, 2014, 79 (1), 17-184.
50. (a) V. I. Privalov, V. V. Lapkin, V. P. Tarasov, Y. A. Buslaev, Applied Magnetic Resonance, 1990, 1, 445-456; (b) D. Min, R. D. Larsen, K. Emerson, E. H. Abbott, Inorg. Chem., 1990, 29 (1), 73-76.
51. P. Betz, A. Bino, J. Am. Chem. Soc., 1988, 110, 902-903.
52. D. Vasilchenko, S. Berdugin, S. Tkachev, I. Baidina, G. Romanenko, O. Gerasko, S. Korenev, Inorg. Chem., 2015, 54 (10), 4644-4651.
53. A. Rajan, M. E. Mahmoud, F. Wang, S. Bhattacharya, A. S. Mougharbel, X. Ma, A. B. Müller, T. Nisar, D. H. Taffa, J. M. Poblet, N. Kuhnert, V. Wagner, M. Wark, U. Kortz, Inorg. Chem., 2022, 61 (30), 11529-11538.
54. T. Araki, P. B. Moore, Am. Mineral., 1981, 66, 1263-1273.
57.F. Pertlik, Monatsh. Chem., 1986, 117, 1257-1261.
55. Z. Yang, G. Giester, K. Ding, E. Tillmanns, Eur. J. Mineral., 2011, 23 (1), 63-71.
56. D. U. Miodragovic, J. A. Quentzel, J. W. Kurutz, C. L. Stern, R. W. Ahn, I. Kandela, A. Mazar, T. V. O'Halloran, Angew. Chem. Int. Ed. Engl., 2013, 52 (41), 10749-10752.
57. (a) P. J. Domaille, W. H. Knoth, Inorg. Chem., 1983, 22, 818-822; (b) R. G. Finke, B. Rapko, P. J. Domaille, Organometallics, 1986, 5, 175-178.
58. K. Asakura, K. Kitamura-Bando, K. Isobe, H. Arakawa, Y. Iwasawa, J. Am. Chem. Soc., 1990, 112, 3242.
59. K. Kitamura-Bando, K. Asakura, H. Arakawa, Y. Sugi, K. Isobe, Y. Iwasawa, J. Chem. Soc., Chem. Commun. , 1990, 253.
60. C. J. Besecker, V. W. Day, W. G. Klemperer, M. R. Thompson, J. Am. Chem. Soc., 1984, 106, 4125.
61. (a) D. J. Edlund, R. J. Saxton, D. K. Lyon, R. G. Finke, Organometallics, 1988, 7, 1962; (b) R. G. Finke, C. A. Green, B. Rapko, Inorg. Synth., 1990, 27, 128; (c) R. G. Finke, D. K. Lyon, K. Nomiya, T. J. R. Weakley, Acta Crystallogr., 1990, C46, 1592.
62. K. Nomiya, C. Nozaki, A. Kano, T. Taguchi, K. Ohsawa, J. Organomet. Chem., 1997, 533, 153-159.
63. (a) H. K. Chae, W. G. Klemperer, V. W. Day, Inorg. Chem., 1989, 28, 1423; (b) Y. Hayashi, Y. Ozawa, K. Isobe, Inorg. Chem., 1991, 30, 1025-1033.
64. (a) K. Nomiya, T. Hasegawa, Chem. Lett., 2000, 29, 410-411; (b) K. Nomiya, Y. Sakai, Y. Yamada, T. Hasegawa, Dalton Trans., 2001, 52-56; (c) K. Nomiya, Y. Sakai, T. Hasegawa, Dalton Trans., 2002, 252-258.
65. V. Singh, P. Ma, M. G. Drew, J. Niu, J. Wang, G.-X. Jin, Inorg. Chem., 2017, 56, 1252012528.
66. K. Nishikawa, K. Kido, J. I. Yoshida, T. Nishioka, I. Kinoshita, B. K. Breedlove, Y. Hayashi, A. Uehara, K. Isobe, Appl. Organomet. Chem., 2003, 17, 446-448.
67. V. Singh, P. Ma, M. G. Drew, J. Wang, J. Niu, Dalton Trans., 2018, 47, 13870-13879.
68. P. A. Abramov, M. Sokolov, A. Virovets, S. Floquet, M. Haouas, F. Taulelle, E. Cadot, C. Vicent, V. Fedin, Dalton Trans., 2015, 44, 2234-2239.
69. M. Girardi, D. Platzer, S. Griveau, F. Bedioui, S. Alves, A. Proust, S. Blanchard, Eur. J. Inorg. Chem., 2019, 387-393.
70. A. S. Mougharbel, S. Ahmedi, S. Bhattacharya, A. Rajan, U. Kortz, ACS Omega, 2021, 6, 34494-34500
71. (a) M. P. Wiesenfeldt, Z. Nairoukh, T. Dalton, F. Glorius, Angew. Chem. Int. Ed. Engl., 2019, 58 (31), 10460-10476; (b) L. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev., 2020, 120 (2), 683-733; (c) C. Gao, F. Lyu, Y. Yin, Chem. Rev., 2021, 121 (2), 834-881.
72. (a) I. Chakraborty, T. Pradeep, Chem. Rev., 2017, 117 (12), 8208-8271; (b) Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev., 2020, 120 (2), 526-622.
73. Q.-M. Wang, Y.-M. Lin, K.-G. Liu, Acc. Chem. Res. , 2015, 48, 1570-1579.
74. APEX suite of crystallographic software, APEX 3, version 2015.5-2. Bruker AXS Inc., Madison, Wisconsin, USA, 2015.
75. CrysAlisPro Software System, Version 1.171.38.41. Rigaku Oxford Diffraction.
76. SAINT, Version 7.56a and SADABS Version 2008/1, Bruker AXS Inc., Madison, Wisconsin, USA, 2008.
77. ABSPACK, SCALE. "Empirical absorption correction." CrysAlis Pro-Software Package, Rigaku Oxford Diffraction, 2022.
78. G. M. Sheldrick, "SHELXL-2014", University of Göttingen, Göttingen, Germany, 2014.
79. A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2010.
80. I. D. Brown, D. Altermatt, Acta Crystallogr., 1985, B41, 244-247.
81. C. White, A. Yates, P. Maitlis, D. Heinekey, Inorg. Synth., 1992, 29, 228-234.
82. R. Contant, R. Thouvenot, Y. Dromzée, A. Proust, P. Gouzerh, J. Clust. Sci. , 2006, 17, 317-331.
83. (a) D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 279, 548-552; (b) D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. , 1998, 120, 6024-6036.
84. (a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785-789; (b) A. D. Becke, J. Chem. Phys.1992, 96, 2155-2160.
85. (a) N. C. Handy, A. J. Cohen, Mol. Phys. 2001, 99, 403-412; (b) W.-M. Hoe, A. J. Cohen, N. C. Handy, Chem. Phys. Lett. 2001, 341, 319-328; (c) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
86. (a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261; (b) P. C. Hariharan, J. A. Pople, Theor. Chem. Acc. 1973, 28, 213-222; (c) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, M. S. Gordon, J. Chem. Phys. 1982, 77, 3654-3665.
87. (a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-83; (b) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-98.
88. E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997,107, 3032-3041.
89. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
90. ADF 2019.306, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
91. E. Van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142-1156.
92. E. Van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99 (6), 4597-4610. 96. C. C. Pye, T. Ziegler, Theor. Chem. Acc. 1999, 101, 396-408.
93. J. Autschbach, Chem. Phys. Chem. 2009, 10, 2274-2283.
94. (a) M. Pascual-Borràs, X. López, A. Rodríguez-Fortea, R. J. Errington, J. M. Poblet, Chem. Sci. 2014, 5, 2031; (b) A. Kondinski, N. Vankova, F. Schinle, P. Jäger, O. Hampe, U. Kortz, T. Heine, Eur. J. Inorg. Chem. 2014, 3771-3778; (c) M. Pascual-Borràs, X. López, J. M. Poblet, Phys. Chem. Chem. Phys. 2015, 17, 8723.
95. M. Swart, M. Solà, F. M. Bickelhaupt, J. Chem. Phys. 2009, 131 (9), 094103.
96. A. Stanislaus, B. H. Cooper, Catal. Rev.: Sci. Eng., 1994, 36 (1), 75-123.
97. (a) M. Viniegra, G. Córdoba, R. Gómez, J. Mol. Catal., 1990, 58, 107; (b) R. A. Saymeh, H. M. Asfour, W. A. Tuaimen, Asian J. Chem., 1997, 9, 350; (c) A. K. Neyestanaki, P. Mäki-Arvela, H. Backman, H. Karhu, T. Salmi, J. Väyrynen, D. Y. Murzin, Journal of Molecular Catalysis A: Chemical, 2003, 193, 237-250.
98. P. G. Menon, Chem. Rev., 1994, 94, 1021-1046.
99. J. W. Peck, B. E. Koel, J. Am. Chem. Soc., 1996, 118, 2708.
100. Y. Inuone, J. M. Herrmann, H. Schmidt, R. L. Burwell, J. B. Butt, J. B. Cohen, J. Catal., 1978, 53, 401.
101. W. W. Ayass, J. F. Minambres, P. Yang, T. Ma, Z. Lin, R. Meyer, H. Jaensch, A. J. Bons, U. Kortz, Inorg. Chem., 2019, 58, 5576-5582.
102. J. Wang, L. Huang, Q. Li, Applied Catalysis A: General, 1998, 175, 191-199.
103. Y. Wu, Y. Chai, J. Li, H. Guo, L. Wen, C. Liu, Catal. Commun., 2015, 64, 110-113.
104. F. Letellier, J. Blanchard, K. Fajerwerg, C. Louis, M. Breysse, D. Guillaume, D. Uzio, Catal. Lett., 2006, 110, 115-124.
105. (a) G. Jander, G. Krien, Z. Anorg. Allg. Chem., 1960, 304, 154-163; (b) P. G. Jones, H. Rumpel, E. Schwarzmann, G. M. Sheldrick, Acta Crystallogr., Sect. B., 1979, 35, 1435-1437; (c) D. Vlassopoulos, S. A. Wood, Geochimica et Cosmochimica Acta, 1990, 54, 3-12.
106. M. A. Cinellu, G. Minghetti, M. V. Pinna, S. Stoccoro, A. Zucca, M. Manassero, M. Sansoni, J. Chem. Soc., Dalton Trans., 1998, 1735-1741.
107. P. G. Jones, Acta Crystallogr. Sect. C., 1984, 40, 804-805.
108. (a) M. G. Miles, G. E. Glass, R. S. Tobias, J. Am. Chem. Soc., 1966, 88, 5738-5744;
(b) G. E. Glass, J. H. Konnert, M. G. Miles, D. Britton, R. S. Tobias, J. Am. Chem. Soc., 1968, 90, 1131-1138; (c) S. J. Harris, R. S. Tobias, Inorg. Chem., 1969, 8, 2259-2264.
109. (a) A. Chaudhary, A. Mohammad, S. M. Mobin, Cryst. Growth Des., 2017, 17, 28932910; (b) F. Hu, X. Bi, X. Chen, Q. Pan, Y. Zhao, Chem. Lett., 2021, 50 (5), 1015-1029;
(c) E. Fernandez-Bartolome, A. Martinez-Martinez, E. Resines-Urien, L. PiñeiroLopez, J. S. Costa, Coord. Chem. Rev., 2022, 452, 214281.
110. (a) S. Reinoso, M. H. Dickman, A. Praetorius, U. Kortz, Acta Crystallogr., 2008, E64, m614-m615; (b) L.-Z. Zhang, W. Gu, Z. Dong, X. Liu, B. Li, CrystEngComm, 2008, 10 (10), 1318-1320.
111. (a) A. Iturrospe, L. San Felices, S. Reinoso, B. Artetxe, L. Lezama, J. M. GutiérrezZorrilla, Cryst. Growth Des., 2014, 14 (5), 2318-2328; (b) L. Fernández-Navarro, A. Iturrospe, S. Reinoso, B. Artetxe, E. Ruiz-Bilbao, L. S. Felices, J. M. Gutiérrez-Zorrilla, Cryst. Growth Des., 2020, 20, 3499-3509.
112. M. Tahmasebi, M. Mirzaei, A. Frontera, Inorganica Chimica Acta, 2021, 523, 120410.
113. A. Kondinski, Nanoscale, 2021, 13, 13574-13592.
114. (a) V. G. Albano, Coord. Chem. Rev., 1994, 133, 67-114; (b) A. Annunziata, M. E.

Cucciolito, R. Esposito, G. Ferraro, D. M. Monti, A. Merlino, F. Ruffo, Eur. J. Inorg. Chem., 2019, 2020, 918-929.
119. (a) F. P. Fanizzi, F. P. Intini, L. Maresca, G. Natile, M. Lanfranchi, A. Tiripicchio, J. Chem. Soc. Dalton Trans., 1991, 1007-1015; (b) M. Benedetti, V. Lamacchia, D. Antonucci, P. Papadia, C. Pacifico, G. Natile, F. P. Fanizzi, Dalton Trans., 2014, 43, 8826-8834.
120. (a) V. G. Albano, M. Monari, I. Orabona, A. Panunzi, F. Ruffo, J. Am. Chem. Soc., 2001, 123, 4352-4353; (b) V. G. Albano, M. Monari, I. Orabona, A. Panunzi, G. Roviello, F. Ruffo, Organometallics, 2003, 22, 1223-1230.
121. (a) V. De Felice, A. De Renzi, F. Ruffo, D. Tesauro, Inorg. Chim. Acta, 1994, 219, 169-178; (b) V. G. Albano, C. Castellari, M. L. Ferrara, A. Panunzi, F. Ruffo, J. Organomet. Chem., 1994, 469, 237-244.
122. (a) V. G. Albano, D. Braga, V. De Felice, A. Panunzi, A. Vitagliano, Organometallics, 1987, 6, 517-525; (b) M. E. Cucciolito, V. De Felice, A. Panunzi, A. Vitagliano, Organometallics, 1989, 8, 1180-1187.
123. (a) V. G. Albano, C. Castellari, V. De Felice, A. Panunzi, F. Ruffo, J. Organomet. Chem. , 1992, 425, 177-188; (b) V. G. Albano, C. Castellari, M. Monari, V. De Felice, M. L. Ferrara, F. Ruffo, Organometallics, 1995, 14, 4213-4221.
124. A. Sanchez, C. Castellari, A. Panunzi, A. Vitagliano, V. D. Felice, J. Organomet. Chem., 1990, 388, 243-252.
125. L. Calvanese, M. E. Cucciolito, A. D'Amora, G. D'Auria, A. Esposito, R. Esposito, L. Falcigno, F. Ruffo, Eur. J. Inorg. Chem., 2015, 2015, 4068-4075.
126. A. Romerosa, J. Suarez-Varela, M. A. Hidalgo, J. C. Avila-Rosón, E. Colacio, Inorg. Chem., 1997, 36, 3784.
127. (a) F. A. Cotton, R. A. Walton, Multiple Bonds Between Metal Atoms. Wiley: New York, 1982; (b) M. N. Sokolov, V. S. Korenev, E. V. Peresypkina, V. P. Fedin, Russ. J. Coord. Chem., 2011, 37, 133-136.
128. N. I. Kuznetsova, L. G. Detusheva, L. I. Kuznetsova, M. A. Fedotov, V. I. Likholobov, J. Mol. Catal. A: Chem., 1996, 114, 131-139.
129. N. Legagneux, E. Jeanneau, A. Thomas, M. Taoufik, A. Baudouin, A. de Mallmann, J.-M. Basset, F. Lefebvre, Organometallics, 2011, 30, 1783-1793.
130. M. Kato, C. N. Kato, Inorg. Chem. Commun., 2011, 14 (6), 982-985.
131. (a) J.-H. Chou, M. G. Kanatzidis, Inorg. Chem., 1994, 33 (24), 5372-5373; (b) J. A. Hanko, J.-H. Chou, M. G. Kanatzidis, Inorg. Chem., 1998, 37, 1670-1671; (c) Y. Pan, Q. Jin, J. Chen, Y. Zhang, D. Jia, Inorg. Chem., 2009, 48 (12), 5412-5417; (d) C. Tang, F. Wang, W. Jiang, Y. Zhang, D. Jia, Inorg. Chem., 2013, 52 (19), 10860-10868.
132. (a) Z. Li, L.-Z. Wu, Hydrogen Bonded Supramolecular Structures. Springer: 2015; (b) I. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Angew. Chem. Int. Ed., 2019, 58, 1116011170; (c) R.-B. Lin, Y. He, P. Li, H. Wang, W. Zhou, B. Chen, Chem. Soc. Rev., 2019, 48, 1362-1389.
133. M. Igarashi, T. Nozawa, T. Matsumoto, F. Yagihashi, T. Kikuchi, K. Sato, Nat. Соттип., 2021, 12, 7025.
134. W. B. Connick, R. E. Marsh, W. P. Schaefer, H. B. Gray, Inorg. Chem., 1997, 36, 913922.
135. M. N. Sokolov, A. V. Virovets, D. N. Dybtsev, E. V. Chubarova, V. P. Fedin, D. Fenske, Inorg. Chem., 2001, 40, 4816-4817.
136. D. Cortes-Arriagada, M. P. Oyarzun, L. Sanhueza, A. Toro-Labbe, J. Phys. Chem. A., 2015, 119, 6909-6918.
137. (a) H. A. Szymanski, L. Marabella, J. Hoke, J. Harter, Appl. Spectrosc., 1968, 22, 297304; (b) J. Liu, H. Cheng, R. L. Frost, F. Dong, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2013, 103, 272-275.

