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1 Introduction 

1.1 Problem Description 

In order to maintain competitive advantage, manufacturing companies aim to reduce inventory 

levels and shorten lead times as much as possible1. Frequent disruptions of the production 

schedule caused by erratic sales, unreliable delivery from suppliers or force majeure can result 

in reduced productivity2. The Supply Chain must therefore interpret and understand customer 

requirements to accurately order raw materials at the right quantity and quality3. Inventory 

typically refers to the components which are assembled or integrated together in order to deliver 

the final product4. A stock out event occurs when there is higher demand than inventory5. To 

avoid stock outs, manufacturing firms carry safety stock in the form of extra raw material and 

packaging6. Safety stock is used to assure timely production and delivery of products in 

production environments with dynamic demand and lead times7. Essentially, it is utilized to 

buffer the firm against unforeseen variations in demand and compensate for forecast 

inaccuracies. This helps to keep customer service and satisfaction levels high. Calculating 

safety stock accurately is therefore pivotal in any planning method, be it Kanban, Re-order 

Point (ROP) or Material Requirement Planning (MRP) etc. 

While some companies such as those in aviation typically hold high inventories of spare parts 

to assure high availability8, this approach can result in an overinvestment in inventory and tie 

up working capital. High levels of inventory can have adverse effects for the firm such as 

concealing inefficiencies in the supply chain like transport delays and poor quality of raw 

1 Cf. (Kumar & Aouam 2019) 
2 Cf. (Sridharan & LaForge 1989) 

3 Cf. (Limère et al. 2012) 

4 Cf. (Greasley 2013) 

5 Cf. (Jain, Rudi & Wang 2015) 
6 Cf. (Monk & Wagner 2012) 

7 Cf. (Ruiz-Torres & Mahmoodi 2010) 

8 Cf. (Khajavi & Holmström 2017) 
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materials from suppliers9. These problems can be mitigated by effectively managing inventory 

levels10. The optimal safety stock level establishes a balance between penalties the firm would 

incur from unfulfilled and/or delayed orders and the holding costs of the safety stock it carries 

to avoid them11. Most safety stock calculation methods require a measure of the forecast error 

uncertainty and assume the errors to be Gaussian independently and identically distributed. A 

deviation from this property may further reduce the accuracy of the safety stock calculation12.  

There are several formulas that have been proposed for safety stock calculation. However, there 

is no universal safety stock formula because they all have their shortcomings. For example, the 

average Safety Stock formula offers a simple way to calculate the safety stock required per unit 

of stock. However, it fails to account for seasonal changes in demand13. Heizer and Render’s 

approach addresses this flaw by considering standard deviation despite overlooking the effects 

of time14. Greasley came up with an elegant method of calculation that considers fluctuations 

in demand and lead times to compensate for inaccuracies in data on demand while still 

maintaining normal distribution15. The McKinsey & Company Method also considers the 

combined effects of demand and replenishment cycle variability16. 

While all these authors and several others like Alicke17, Hermann18 and Gudehus19 have 

proposed different formulae and improvements for the calculation of safety stock, very little 

research has been carried out, to the author’s best knowledge, to make a comparative analysis 

of these methods. In their paper, Schmidt, Hartmann and Nyhuis20 made a simulation-based 

9 Cf. (SCMDojo 2017) 
10 Cf. (Laura 2019) 

11 Cf. (Chaturvedi & Martínez‐de‐Albéniz 2016) 

12 Cf. (Graves & Willems 2000) 

13 Cf. (SCMDojo 2017) 
14 Cf. (Emmanuel-Ebikake 2014) 

15 Cf. (Greasley 2013) 

16 Cf. (SCMDojo 2017) 

17 Cf. (Alicke 2005) 
18 Cf. (Herrmann 2011)  

19 Cf. (Gudehus & Kotzab 2012) 

20 Cf. (Schmidt, Hartmann & Nyhuis 2012) 
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analysis of safety stock formulae. However, their work focused more on investigating the 

effectiveness of different safety stock formulae on different distribution types of data rather 

than demand patterns. Therefore, a knowledge gap remains that must be filled. It is necessary 

to determine which demand patterns each of these formulae is best suited to. This knowledge 

would make it easier for supply chain managers to apply the correct method of safety stock 

calculation and thus optimize their inventory management. 

1.2 Aims of the Study 

The focus of the study is to conduct a comparative analysis of the most widely adopted 

methods of safety stock calculation. Firstly, it aims to identify the most widely adopted 

methods of safety stock calculation and investigate their strengths and weaknesses. Secondly, 

the thesis aims to analyse the demand patterns that operations managers often encounter 

and their behaviours. The safety stock calculations will then be compared to one another 

by running a simulation with different demand patterns using each of them. Finally, 

recommendations will be made on which demand patterns, if any, each of these methods is 

best applied to. 
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2 Literature Review 

In this chapter the concept of safety stock is going to be further explained. The benefits and 

challenges of using safety stock are going to be discussed. Particular attention will be given to 

the uncertainties that supply chain managers encounter and the currently adopted approaches to 

compensate for them. There will also be a discussion about the techniques to calculate safety 

stock where their strengths and weaknesses will be analysed. Finally, the research gap will be 

established. 

2.1 Safety Stock 

There are several models that can be used to determine the ordering policy i.e. the quantity of 

inventory that is required and the frequency of ordering that yields the most efficiency21. The 

Reorder Point (ROP) model employs a predetermined level that marks the time to reorder. This 

level typically includes a quantity of inventory to cover for the Leadtime and delays22.  The 

Economic Order Quantity (EOQ) model seeks to minimize the annual costs of ordering and 

holding inventory by calculating a fixed order volume23. However, its effectiveness has been 

questioned by some scholars because it makes several rather unrealistic assumptions including 

a stable demand, constant item cost regardless of order size and a linear relationship between 

the cost of holding inventory and the number of items held24. The Fixed Order Inventory (FOI) 

Model is used to calculate the amount to order when fixed intervals are used between orders. 

Maximum and minimum levels of inventory can be set where at a fixed period inventory can 

be replenished to the maximum level if it is below the minimum level25. 

It is evident that the more robust of these models consider uncertainties like demand and lead 

time and attempt to attune for them. A common approach is to carry safety stock. Essentially, 

safety stock is excess inventory that is carried to avoid the costs associated with uncertainties 

in supply and demand. Such costs include lost revenues from stock-outs and production delays 

21 Cf. (Zhang et al. 2016) 

22 Cf. (Gonzalez & González 2010) 
23 Cf. (Kostić 2009) 

24 Cf. (Friend, Swift & Ghobbar 2001) 

25 Cf. (Baker & Urban 1991) 



Albert Hunduza | Dynamic Safety Stock Considerations 5 

  

due to depletion of necessary components26. The most apparent of these uncertainties tend to 

be demand and Leadtime27. Demand uncertainty differs between products where demand for 

perennial products like toilet paper is easier to forecast than demand for seasonal products like 

umbrellas. As a rule, products with more demand uncertainty require a stronger safety stock28. 

Leadtime uncertainty is influenced by a myriad of factors among them missing components, 

transport problems, customs clearances and hazards29. Also, an information delay due to the 

structure of supply chains can result in the “bullwhip” effect, whose severity is positively related 

to lead times30. 

The easiest methods used to set safety stock involve the use of gut feelings or hunches by 

operations managers. Others opt to base safety stock levels on a percentage of the cycle stock31. 

These techniques generally yield poor performances. Some techniques with better yields are 

going to be discussed below. 

2.2 Safety Stock Calculation Techniques 

Perhaps the simplest safety stock calculation technique is the aptly named Basic Safety Stock 

formula32. As previously alluded to above, the EOQ model seizes to be effective when there is 

unexpectedly high demand. It is therefore used in conjunction with the Basic Safety Stock 

formula. The average safety stock formula seeks to keep inventory required for a certain amount 

of days as a safety stock. The time to be covered by the safety stock can be arbitrarily chosen. 

For example, if a firm sold an average of 50 units per day and resolved to keep 10 days of 

inventory as safety stock, then they would carry 500 units of safety stock. The calculation for 

safety stock thus becomes: 

 𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑙𝑒 ×  𝑆𝑎𝑓𝑒𝑡𝑦 𝐷𝑎𝑦𝑠 (1) 

 
26 Cf. (Holsenback & McGill 2007) 

27 Cf. (Dolgui & Prodhon 2007) 

28 Cf. (Landeta 2016) 
29 Cf. (Wazed, Ahmed & Nukman 2009) 

30 Cf. (Lee, Padmanabhan & Whang 1997) 

31 Cf. (Markovic & Arvid 2017) 
32 Cf. (Schwarz & Weng 2000) 
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Consequently, the reorder point, also known as the control point, in the EOQ model becomes: 

𝐑𝐞𝐨𝐫𝐝𝐞𝐫 𝐏𝐨𝐢𝐧𝐭 =  𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑆𝑡𝑜𝑐𝑘 × 𝐿𝑒𝑎𝑑𝑡𝑖𝑚𝑒 

However, this technique does not take fluctuations in Leadtime or seasonal demand into 

account. 

The Average Safety Stock Formula is a variation of this method is applicable in situations with 

low demand variability. It uses exponential smoothing or moving averages to create a curve of 

mean demand. The Average Safety Stock formula is as follows: 

𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 =  (𝐷௠௔௫  ×  𝐿𝑇௠௔௫)  −  (𝐷௠௘௔௡ ×  𝐿𝑇௠௘௔௡) (2) 

where: 

𝐿𝑇௠௘௔௡ = Average lead time in days 

 𝐿𝑇௠௔௫ = Maximum lead time in days 

𝐷௠௘௔௡ = Mean demand rate per item   

𝐷௠௔௫ = Maximum demand rate 

King (2011) proposed a technique that elegantly accounts for the variability in demand33. 

According to his approach, the safety stock that is required to guarantee a particular level of 

protection is the product of the standard deviation of demand and the Z-score. The Z-score is 

sometimes referred to as the standard score. Cycle stocks are those inventories that are expected 

to meet the demand before being resupplied34. While in an ideal world all operations managers 

would seek to achieve a Cycle Service Level (CSL) of 100%, higher cycle service levels require 

a disproportionately higher investment of resources. Thusly, typical goals lie within a range of 

between 90 and 98 percent35. In fact, it is statistically impossible to get a CSL of 100%. For 

example, to get a CSL of 95% that is generally considered acceptable, a company must carry 

safety stock equal to 1.65 standard deviations of demand variability. Figure 1 below shows 

33 Cf. (King 2011) 

34 Cf. (Beier 1995) 

35 Cf. (Radasanu 2016) 
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inventory designed for a 95% CSL and figure 2 shows the relates the desired service level to 

the  Z-score. 

 

Figure 1: Inventory designed for 95% service level 

 

Source: (King 2011, p33). 

The results from this technique can be improved by carrying out an ABC analysis of the 

products based on criteria such as strategic importance and profit margin36. In the ABC analysis, 

Class A items are relatively few but constitute a relatively large amount of annual use value, 

while class C items are relatively large in number but constitute a relatively small amount of 

annual use value. Items between the above two classes constitute class B. The Z-scores can then 

be set independently in order to apportion more safety stock to products of more value to the 

business, in this case Class A items.  

 

Figure 2:connection between CSL and Z-score 

 

Source: (King 2011, p34). 

 
36 Cf. (Flores 1986)  
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King’s safety stock formula is: 

𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 = 𝑍 ×  ට𝑃𝐶
𝑇ଵ

ൗ ×  𝜎஽ (3) 

Where: 

Z = Z-score 

PC = performance cycle, another term for total Leadtime 

𝑇ଵ = time increment used for calculating standard deviation of demand 

𝜎஽ = standard deviation of demand 

Building upon this, the variability in Leadtime can be considered by using the following 

formula: 

𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 = 𝑍 ×  𝜎௅் ×  𝐷௔௩௚ (4) 

Where: 

𝜎௅் = standard deviation of lead time 

𝐷௔௩௚= average demand 

When demand and Leadtime variability are not independent of each other, that is, when they 

are influenced by the same factors37, safety stock equals the sum of these two individual 

calculations. 

𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 = (𝑍 ×  𝜎௅் ×  𝐷௔௩௚)  + (𝑍 × ට𝑃𝐶
𝑇ଵ

ൗ × 𝜎஽)  (5) 

However, if they vary independent of each other and they are both normally distributed, the 

safety stock can be calculated by using the equation: 

𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 = 𝑍 × ට(𝑃𝐶
𝑇ଵ

ൗ 𝜎஽
ଶ)  +  (𝜎௅் × 𝐷௔௩௚)ଶ (6) 

Where: 

 Z= Z-score (a statistical figure based on the cycle service level) 

 PC = performance cycle or total lead time (including transport time) 

 𝑇ଵ = time increment used for calculating standard deviation of demand 

37 Cf. (Balakrishnan 1992) 
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 𝜎஽ = standard deviation of demand 

Hermann38 extended these safety stock techniques by introducing the concept of the undershoot 

into the calculation. In periodic review systems, the inventory position is checked at regular 

intervals. When using such a system, the inventory position is usually some amount below the 

reorder point at the time of order placement. This amount below the reorder point is referred to 

as the undershoot39. After introducing the concept of the undershoot into the above pair of 

formulae, they become: 

𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 =  𝑍 × ඥ𝑉𝑎𝑟(𝑈) +  𝐿𝑇 ×  𝜎஽
ଶ        (7) 

 

and: 

 𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 = 𝑍 ×  ට𝑉𝑎𝑟(𝑈)  +  (𝑃𝐶
𝑇ଵ

ൗ 𝜎஽
ଶ)  +  (𝜎௅் × 𝐷௔௩௚)ଶ (8) 

 

 

Where: 

Var(U) = variance of the undershoot 

The effects of demand variability tend to influence safety stock requirements more significantly 

than the effects of Leadtime variability40. Consequently, it is usually more productive to reduce 

demand variability than Leadtime variability41. Another important distinction to note is the 

difference between CSL and fill rate. Many scholars regard fill rate as a better measure of 

inventory performance because it also measures the magnitudes of stockouts on top of just their 

frequency as in the case of cycle service level42.  This means that when there are low standard 

deviations of demand and Leadtime, the fill rate is typically be higher than the cycle service 

 
38 Cf. (Hermann 2011) 

39 Cf. (Baganha et al. 1995) 
40 Cf. (Boute, Disney & Lambrecht 2007) 

41 Cf. (Kampen, Donk & Van Der Zee 2010) 

42 Cf. (Chopra, Dada & Reinhardt 2004) 
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level because the magnitude of the stockouts will be small. In contrast, fill rate tends to be lower 

than cycle service level when there is a high variability of demand and Leadtime43. 

Heizer and Render (2013) offered a technique that is significantly simpler but still takes 

standard deviation of demand into account44. According to them, safety stock can be calculated 

as follows: 

 𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 =  𝑍𝜎ௗ௅் (9) 

Where: 

Z= number of standard normal deviations (Z-score) 

𝜎ௗ௅் = standard deviation of demand during the lead time. 

The approach by Greasley (2013) goes a step further by using lead time as a variable in the 

equation, while maintaining simplicity45. It therefore appears to not only be as comprehensive 

as King’s method but also simpler. Greasley’s equation is: 

 𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 =  𝑍 ×  √𝐿𝑇  × 𝜎ௗ (10) 

Where: 

Z = number of standard deviations from the mean (Z-score) 

LT = lead time 

𝜎ௗ = standard deviation of demand. 

Alicke46 proposed a related calculation rule for safety stock as a function of CSL that substitutes 

the standard deviation of demand with a standard deviation of forecast error. The standard 

deviation of forecast error can be computed from historical data by squaring the mean of the 

difference between forecasted demand and actual demand. This method can therefore be applied 

for any specific distribution of demand. His safety stock formula is: 

 𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 =  𝑍 × 𝜎ி × √𝐿𝑇 (11) 

 

Where: 

 
43 Cf. (King 2011) 
44 Cf. (Heizer, Render & Munson 2008) 

45 Cf. (Greasley 2013) 

46 Cf. (Alicke 2005) 
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Z = Z-score 

𝜎ி = standard deviation of forecast error 

LT = Lead time 

Chopra and Meindl (2013) also proposed a different technique. It is particularly useful to 

optimize the calculation of safety stock in situations where assembly can be delayed until the 

customer confirms the orders47. This model significantly reduces the safety inventory required 

while maintaining a CSL of 95%. Below is the formula they came up with: 

𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 = 𝑁𝑂𝑅𝑀. 𝐼𝑁𝑉 (𝐶𝑆𝐿, 𝐷௅ , 𝜎௅)  − 𝐷௅ (12) 

Where: 

CSL = Desired cycle service level 

LT = lead time 

𝐷௅ = mean demand during lead time 

𝜎௅ = standard deviation of demand during lead time 

Another approach explained by Nahmias calculates safety stock using the following formula: 

𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 = 𝑧ఉ𝜎 (13) 

This formula uses the standardized unit loss integral L(z) which can be calculated by: 

𝐿(𝑧)  = න (𝑡 −  𝑧)∅(𝑡)𝑑𝑡
ାஶ

௭

 

Where: 

∅(𝑡) = cumulative distribution function for the standard normal 

𝛽 = proportion of demand met from stock 

Q = the order quantity 

𝜎 = standard deviation of demand 

The relationship between the variables is: 

47 Cf. (Chopra, Meindl & Kalra 2013) 
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𝐿(𝑧)  =  
(1 −  𝛽)𝑄

𝜎
 

The expected number of units out of stock during an order cycle can be given by 𝜎𝐿(𝑧). 

Finally, a common approach assumes that demand during successive time periods are 

independent and identically distributed random variables. It calculates safety stock by the 

formula: 

 𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒕𝒐𝒄𝒌 =  𝑧ఈ × ඥ𝐸(𝐿)𝜎ଶ
஽ +  (𝐸(𝐷))ଶ𝜎ଶ  

Where: 

𝛼 = service level 

𝑧ఈ= inverse distribution function of a normal distribution with cumulative probability  

E(L) and 𝜎௅= mean and standard deviation of lead time 

E(D) and 𝜎஽ = mean and standard deviation of demand in each unit time period 

Twelve of the fourteen techniques discussed in this section were used in a comparative 

simulation for the study in this paper. They are referred to in the later parts of the paper 

according to the numbers designated to them here. The last two formulae were excluded from 

the study as they are not widely used in inventory management. 

2.3 Demand Forecasting 

The concept of forecasting is vital in inventory management. It is usually “joined at the hip” 

with safety stock calculations because several safety stock formulae use the forecast as a 

variable. Demand forecasting is the process of estimating future demand of products or 

services48. It is especially useful when trying to predict the behaviour of intermittent demand. 

Intermittent demand refers to a series of random values that seem to appear at random 

intervals49. Production planners and inventory managers often face intermittent demand50. 

Forecasting techniques can be either historically oriented or future oriented. They can also be 

 
48 Cf. (Archer 1987) 

49 Cf. (Silver 1981) 

50 Cf. (Watson 1987) 
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either quantitative or qualitative in nature51. For the purposes of this paper, we will focus on 

historically oriented quantitative approaches. These include moving averages, exponential 

smoothing and regression. Moving averages are a technical indicator used to predict future data 

in a time series analysis52.  Moving averages can be exponentially smoothed to increase 

accuracy of the estimation in some situations53. Regression is a widely used too in statistical 

forecasting54. However, it is important to note that forecasts are never accurate. Also, the more 

detailed and further into the future the look, the less reliable they become55. Forecast errors 

show the difference between the actual demand and the forecasted demand. In the calculations 

performed in this study, moving averages, exponential smoothing and regression were used for 

forecasting depending on the demand pattern. The demand patterns in question are discussed 

below 

2.4 Demand Patterns 

As alluded to above, demand variability appears to be the biggest influence on the amount of 

safety stock required. It is therefore essential to get a better understanding of the different 

patterns that firms encounter. There are five patterns that typically appear in time series data. 

These are trend, horizontal, seasonal, cyclical and random56. A trend is a pattern where there is 

growth or decline in the data over time. In contrast, a horizontal pattern has data that is more 

evenly distributed over the entire timeframe57. A seasonal pattern, on the other and, signifies 

that that the data is influenced by seasonal factors such as months of the year or days of the 

week. A seasonal pattern tends to repeat itself at regular intervals. Cyclical data is influenced 

by longer term economic fluctuations such as periods of boom or recession58. Finally, random 

data is data that does not follow any discernible pattern resulting from chance and cannot be 

 
51 Cf. (Goldstone 2008) 
52 Cf. (Hansun 2013) 

53 Cf. (Crane & Crotty 1967) 

54 Cf. (Pankratz 2012) 

55 Cf. (Penner 2002) 
56 Cf. (Bon & Ng 2017) 

57 Cf. (Malpass & Shah 2008) 

58 Cf. (Haltiwanger & Harrington 1991) 
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predicted. However, it is important to note that most real-world data exhibits combinations of 

these different patterns. 

2.5 Research Gap 

In this chapter some of the several approaches currently being used to calculate safety stock 

have been discussed. King’s method appears to be the most comprehensive as it accounts for 

both demand and Leadtime variability. It also allows for the adjustment of safety stock levels 

to different demand levels and the determination of safety levels59. However, it assumes a 

normal distribution and a mean forecasting error close to zero and there is no consideration of 

incoming good variance. Heizer and Render’s technique is simpler although it overlooks time 

as variable in the equation. This weakness also appears to be inherent in Greasley’s formula 

which does not take seasonal fluctuations into account60. Although at first glance the Average 

Safety Stock formula appears too simplistic to be useful, it also offers a convenient way to 

quickly calculate Safety Stock. Finally, Chopra and Meindl’s formula can have applications for 

online retailers whose industry is gaining traction and relevance today61. All these approaches 

have their strengths and weaknesses. However, it is not immediately obvious in which situations 

each formula’s strengths offset its weaknesses enough to justify its use. This is the gap that this 

paper seeks to fill by looking at these approaches from an application point of view. The 

author’s research and simulation-based analysis intends to ascertain which of these techniques 

is the best in different situations. This is particularly in the context of varying demand patterns. 

 
59 Cf. (Radasanu 2016) 

60 Cf. (Emmanuel-Ebikake 2014) 

61 Cf. (Liao et al 2017) 
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3 Methodology 

This chapter describes the spreadsheet-based simulation model that was designed for this study. 

In the first part, the approach of the study and the context of the model will be elaborated along 

with the different variables under investigation. Afterwards, the Key Performance Indicators 

(KPIs) used to evaluate performance in the model will be explained. 

3.1 Approach of the study 

The approach of research that is adopted in a study determines the quality of the research results 

and must be therefore be tailored to suit the research problem. There are several approaches 

that a study can use including the analytical approach, the systems approach and the actor’s 

approach62. This paper uses a balanced approach which is a hybrid of the Inductive approach 

and the deductive approach. The main aim of the inductive approach is to understand the 

phenomenon being researched in its undisturbed state63. The deductive approach typically 

commences with a study of available literature to establish a conceptual framework of the 

relevant variables and their expected relationships. Data is then collected and used to create a 

model64. This paper strives to stay consistent to the principles of the balanced approach 

whenever possible.  

3.2 Spreadsheet-based simulation 

A spreadsheet-based simulation is when a spreadsheet is used as a platform to represent models 

as well as to run simulation experiments65. Spreadsheets offer certain utilities that are especially 

useful for this study. The first of these is the ability to represent mathematical and logical 

relationships among variables in the form of computations and algorithms. This is necessary as 

this simulation relies on calculations using different formulae. Spreadsheets also allow for not 

only the repetition of the model’s computations using a wide range of mathematical and 

62 Cf. (Strömberg & Gustavsson 2018) 
63 Cf. (Hirschman 1986) 

64 Cf. (Golicic Davis & McCarthy 2005) 

65 Cf. (Seila 2005) 
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statistical functions but also the modification of individual variables for each run of the 

simulation. After completing the computations, spreadsheets offer charting and graphing 

capabilities that enable better visualization of the results. It is due these considerations that the 

Microsoft Excel spreadsheet platform was selected for the simulation. 

3.3 Underlying Structure of the Simulation 

The model required a company whose inventory management relies upon customer demand 

and supplier lead times to plan operations. It also required comprehensive data of the company’s 

supply chain activities for at least five products, each following one of the different demand 

patterns that this paper strives to investigate. Unfortunately, companies generally prefer not to 

disclose information about the uncertain demand function to the public domain. This is because 

when confidentiality is maintained, both manufacturers and retailers have an incentive to 

engage in information sharing equally during negotiations where retail competition is intense. 

It allows the supply chain profit to achieve its equilibrium66.  

Due to the unavailability of real-world data, a dataset was created specifically for this study. 

Over the past two decades, the trend in the automotive industry has shifted towards mass 

customization. This requires complicated coordination between suppliers, equipment and 

logistics workers to ensure that the final assembly lines have an uninterrupted workflow67. This 

problem motivated the author to model the datasets for the study in the context of the 

automotive industry.  

The model considers a hypothetical company that supplies tires to luxury automakers. It 

assumes that the company sells 5 types of tires, A, B, C, D and E. Each set of 4 tires, which is 

considered 1 unit in this case, has a price of 200 EUR. It costs 4.80 EUR to store each unit in 

the warehouse for a year. Every time an order is placed the company incurs ordering costs. 

Ordering costs are a flat fee, typically consisting of both fixed and varying expenses, that is 

charged for making an order68. In this case, the ordering costs are taken to be 450 EUR. The 

 
66 Cf. (Lode & Zhang 2008) 

67 Cf. (Boysen et al. 2015) 

68 Cf. (Islam 2013) 
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supplier lead time is assumed to be 15 days. However, the supplier is in the adjacent lot to the 

company therefore the transportation time is negligible. Consequently, the total replenishment 

time is equal to the production lead time of 15 days. 

Each of the 5 products sold by the company in this model exhibits a different demand pattern. 

In order to be as true to life as possible, real world data that is available from independent 

sources was used as a proxy during the dataset creation process. This real-world data was then 

modified where necessary to fit the pattern that were required for the model. The data is in the 

form of a timeseries in which each period represents a month. At last 12 months of data was 

needed in order to capture the behaviour of the model over the full cycle of year. Also, another 

12 periods of data were used to simulate historical data for the calculations in some of the 

equations. The first pattern under investigation is the horizontal pattern. As explained in the 

literature study, a horizontal demand pattern is signified by sales that are constant over time. 

The dataset used for the horizontal pattern was modelled after the sales for the Mercedes E class 

in the United States for the years 2018 and 201969. Over that period the sales figures for this 

model of car fluctuated in a narrow range showing a horizontal pattern. The sales data was 

modified slightly for the purposes of this model. A line chart showing the sales as well as the 

pattern of the data is shown in figure. 3 below. The full spreadsheet of the dataset can be found 

in the appendix section of this paper. 

Figure 3:Line graph showing pattern for Product A 

 

(Own Creation) 

 
69 Cf. (Demandt 2018) 
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The second pattern that is under investigation is the trend pattern. It was established in the 

literature study that a trend is when there is growth or decline over time. This pattern is 

especially relevant because in general, the number of light vehicles sold increases with Gross 

Domestic Product (GDP). Their sales in the United States tend to grow steadily by about 2 to 

3% every year70. It is therefore necessary to capture how effectively different safety stock 

formulae protect automakers against stockouts for this endemic pattern. The line chart of the 

timeseries that was created for this purpose is shown in figure.4.  

Figure 4:Line graph showing demand pattern for Product B 

(Own Creation) 

Thirdly, this study will look at seasonal trends. Seasonality involves predictable but 

uncontrollable variations in demand over time. These are trends in which are influenced by 

seasonal factors including days of the week, weeks of the months and months of the year. In the 

auto industry there is a distinct seasonal pattern that can be observed. The demand for cars in 

the United States, for example, typically has two peak seasons. The first one is in Spring from 

the end of February to the end of May. Sales experience another increase in Fall from September 

to November. This is because automakers normally release new models during this period. The 

70 Cf. (McKean 2020) 
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demand subsides in Demand as the holiday retail season rises to its peak71. This pattern was 

considered when the dataset for product C was generated. The resulting line chart is in figure.5.  

 

 

 

Figure 5:Line graph showing demand pattern for Product C 

 

(Own Creation) 

A cyclic pattern is one that is influenced by the rhythm of longer-term fluctuations in the 

economy such as recessions and booms. This pattern can also be observed in the automotive 

industry. An economic boom is usually followed by a surge in automobile sales while recessions 

affect sales negatively72. This correlation is so strong because demand for cars is elastic 

therefore changes in income has a significant effect on it. This cyclical behaviour can be 

observed in the annual sales of light vehicles in the United States from 1990 to the present 

day73. The timeseries for product D in this study was modelled after this data. Line chart is 

shown in figure. 6. 

 
71 Cf. (Shugan et al. 1999) 

72 Cf. (Barker 2011) 

73 Cf. (Blanchard & Melino 1986) 
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Figure 6:Line graph showing demand pattern for Product D 

 

(Own Creation) 

The final pattern under investigation is one of randomness. In some instances, there reason for 

the fluctuations in the demand cannot be explained by any of the above four patterns. A robust 

inventory management system should be able to keep stockouts at a minimum even in the event 

of random demand. During the creation of the dataset the objective was to create data that is 

comparable to the data for the other pattern while maintaining randomness. To achieve this the 

random number generator in Microsoft Excel was used. It was set to generate randomized 

discrete values between 500 and 4000. The resulting dataset was used to create the line chart in 

figure. 7. 

Figure 7:Line graph showing demand pattern for Product E 

 

(Own Creation) 
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During the creation of the timeseries for 2019, data for 2018 was also created. The 2018 

timeseries was meant to act as historical data in the model. This means that the simulation was 

run for 2019 utilizing forecasts calculated using 2018 data. The details of the actual simulation 

run are elaborated below. 

After generating demand data, attention was turned to the lead time data. As already discussed 

above, the expected lead time was assumed to be 15 days. During safety stock calculations, any 

granularity of time periods can be used for convenience. However, all terms must be expressed 

in the same time period to avoid inconsistency errors74. The lead times were therefore expressed 

as months in order to be consistent with the demand data. The expected lead time was set as 0.5 

months. However, as was established in the literature study, the lead time tends to vary. It was 

also discussed that lead time tends to follow a normal distribution75. The random number 

generator in Microsoft Excel was therefore used again to create random numbers that represent 

lead variability. A mean of 0.5 was chosen along with a standard deviation of 0.03. The literature 

study also theorized that the effects of demand variability on safety stock levels outweigh those 

of lead time variability. A separate distribution of lead time was created in the same way, albeit 

with increased variability to investigate the substance of this thesis. In this case, the mean was 

set at 0.5 and the standard deviation at 0.25 in the random number generator. The two lead time 

timeseries are shown in figure 8. below.  

74 Cf. (De Kok, 2018) 

75 Cf. (Hoque, 2013) 
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Table 1:Leadtimes used in the simulation 

 

(Own Creation) 

3.4 Trial Plan 

In this sub-section, the steps taken in each trial series of the simulation are going to be 

elaborated. Due to the nature of the study, the emphasis of this simulation was not on the number 

of simulation runs but on ensuring that each of the safety stock formulae was sampled with each 

demand pattern under different levels of lead time variability. To achieve this, six steps were 

taken. Firstly, the required safety stock level for 2019 for each of the products A, B, C, D and 

E was calculated using each of the formula. The demand information from 2018 available in 

the datasets was used as historical data necessary for the calculations. For example, the mean 

demand rate used in the calculations was taken from this historical data. Several safety stock 

formulae under investigation use forecasts as variables. The 2018 data was also used for the 

forecasting using an appropriate technique for each demand pattern. For product A which has a 

horizontal pattern, forecasting was done using a 3-period simple moving average. A linear trend 

line was utilized in the case of product B, which follows a trend pattern, to come up with a 
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forecast. Regression was used to forecast for product C which follows a cyclical pattern. The 

forecasting for the seasonal product D was done using Winter’s Method. Finally, a weighted 

moving average was used for the forecasting of product E. Using this information, the safety 

stock required for each product was calculated using 12 different formulae. The 12 safety stock 

formulae used in the study were all discussed in the literature study and are labelled according 

to the numbers designated to them in that section of this paper. 

The simulation was conducted using a Reorder point (ROP) policy. As discussed in the literature 

study, the ROP determines a stock level at which a new order is triggered.  Ideally, this threshold 

must give adequate time to make a new order before the stock runs out. Consequently, the ROP 

considers both safety stock and lead time. The formula for ROP used is: 

𝐑𝐞𝐨𝐫𝐝𝐞𝐫 𝐏𝐨𝐢𝐧𝐭 =  𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑆𝑡𝑜𝑐𝑘 × 𝐿𝑒𝑎𝑑𝑡𝑖𝑚𝑒 

According to the ROP policy, a predetermined amount of stock is ordered every time the stock 

level reaches the ROP. This amount that is ordered must establish a balance between the 

ordering costs and the holding costs of the inventory. The amount is therefore called the 

Economic Order Quantity (EOQ)76. It is calculated by using the formula77: 

 𝑬𝑶𝑸 = ඨ
2𝐴𝐷

𝐻
 

 

 

 Where: 

A = ordering costs per purchase order 

D = demand per year 

H = holding cost per unit per year 

The figure below shows the stock level over time using the ROP policy. 

 

 

 

 

 

 

 
76 Cf. (Park 1987) 

77 Cf. (Cargal 2003) 
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Figure 8:Stock level graph in the ROP model 

Source:(Islam 2013, p9) 

The second and third steps of the study were to calculate the reorder point for each product-

safety stock permutation and the EOQ for each product respectively. Afterwards an assumed 

initial inventory was calculated by summing the EOQ and the Safety Stock. This can be 

considered initializing the simulation as it ensured that each of the trial series that was 

conducted started with a full inventory. In the next step the mean weekly demand over 2019 

was ascertained by dividing the monthly demand by four. This allowed the actual time the ROP 

threshold level was reached to be visualized easier.  

Effectively, in each trial series that was conducted, the company started the year 2019 with a 

full inventory (combination of safety stock and EOQ). As time progressed the stock level began 

to decrease at a rate equal to the mean weekly demand that was calculated in step 5 above. Once 

the stock level reached the ROP, an order of a quantity equal to the EOQ was made. If at this 

moment the demand was such that the stock was below the ROP at the time that the order was 

made, an undershoot would be calculated. The concept of the undershoot was discussed in the 

literature study. It was calculated by subtracting the current stock level (If below the ROP) from 

the ROP. Since the expected lead time is 15 days, the stock would increase after about 2 weeks. 

This process was run over a period that was sufficiently long for the overall behaviour of the 

stock level under a set of parameters to be observed, in this case a full year. It is this stock level 

that was graphed and used to derive conclusions in this study. 

In order to investigate the effects of the lead time variability, two trial runs were conducted for 

each combination of safety stock formula and demand pattern. All variables were kept constant 

between the two runs except for lead time which was the independent variable. The graphs 

created from the stock level yielded from the two cases were compared and analysed. 
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3.5 KPIs used in the study 

Since the objective of this study is to investigate the effectiveness of different safety stock 

techniques in different demand and lead time environments, the KPIs used in the model must 

be able to distinguish the strengths and weaknesses of these techniques. The three main KPIs 

used are the cycle service level, order fill rate and the mean stock level. The difference between 

the CSL and the fill rate was established in the literature study. Essentially, the CSL measures 

the frequency of stock outs while the fill rate measures their severity. In both cases a higher 

result or percentage is considered better as it means a lower frequency of stock outs and less 

severe stock outs respectively. Both these scenarios typically imply that there is adequate safety 

stock to protect the company against most stock outs. The exception to this general rule is the 

reason a third KPI was also used. A good safety stock technique does not only strive to protect 

against stockouts, but it also tries to maintain very low levels of inventory. Consequently, the 

mean stock level was also considered in this study. In situations where there are no significant 

differences between the cycle stock levels and fill rates, the technique that yields the lower 

mean stock level is preferred. 
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4 Results and Critical Reflection 

In this chapter the results from the simulation that was conducted are going to be presented and 

critically analysed. Some trends that were observed will be discussed and explained. The 

chapter will look at the results one product or demand pattern at a time. Afterwards the results 

for the different levels of lead time variability will also be evaluated. Results will primarily be 

given in the form of cycle stock charts. Only the charts for the results on the extreme end of the 

spectrum will be presented in the primary text. In the charts, the cycle stock level is represented 

by the orange line and the safety stock is represented by the blue line. A table with a summary 

of the general behaviours of the different formulas in each situation is attached at the end of 

this chapter. 

4.1 Horizontal Pattern (Product A) 

The results for the horizontal pattern are consistent with expectations. Since this pattern exhibits 

constant demand over the entire timeseries, it is well within expectations that this pattern be 

less complicated to carry safety stock for. The cycle stock charts show that all the formulae for 

calculating safety stock generally yield a good performance. In this study, none of them 

experienced stock outs for this pattern. All the charts followed the textbook pattern where the 

cycle stock graph only touches the safety stock line and finds support to go back up. This is the 

optimal inventory management scenario where everything is working as it should. However, it 

is important to note that despite the absence of stock outs across the board, some formulae still 

perform better than others. The mean stock level is the only KPI that can separate the formulas. 

Formula 9 yields an amount of safety stock that is too high and therefore would tie up too much 

of the company’s capital as well as increase the inventory holding costs to an inefficient level. 

Therefore, in this case, formula 9 is the obvious worst performer while formula 11 is among the 

best performers as it yields a lower mean stock level. 
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Figure 9:Cycle Stock graph Formula 9 Horizontal Pattern 
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Figure 10: Cycle Stock graph Formula 11 Horizontal Pattern 
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4.2 Trend Pattern (Product B) 

Meanwhile, the results for the trend pattern show a contrasting picture. Formula 1 and formula 

4 still manage to maintain stable levels of inventory. In their case the stock level generally 

oscillated between the maximum level and the safety stock line as it should. For both formulae, 

the safety stock was enough to protect the company from stock outs in several instances when 

the demand was higher than normal. The behaviour of the stock level yielded by the remaining 

ten formulae can be divided into three distinct categories. The first is that of mild stock outs 

and critically low inventory (albeit with no stockouts). Such a result, as one displayed by 

formula 2 and 8 among others, can be arguably just as good as or even better than the stock out 

free scenario. This is because although mild stock outs have a significant effect on the cycle 

service level, their impact on the fill rate is not as critical. In some cases, it can be a good trade-

off to deliver a few units short while maintaining a low inventory. However, this is usually 

subjective and dependent on the expectations of customers. The second category is that of 

severe stock outs. This can be observed in the graph of Formula 11. There are several stock outs 

and some of them fall short by a lot of units. Such a performance is not acceptable as it 

negatively influences customer satisfaction. Formulae that yield results in this category would 

generally be bad recommendations to use when planning inventory for products which exhibit 

the trend pattern. Finally, the final category is that of formulae that yield an inventory level that 

is inefficiently high. Formula 9 is an example of these. 

Figure 11: Cycle Stock graph Formula 1 Trend Pattern 

 

(Own Creation) 
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Figure 12:Cycle Stock graph Formula 11 Trend Pattern 

 

(Own Creation) 

4.3 Seasonal Pattern (Product C) 

The results for the Seasonal pattern exhibit a comparable distribution of the categories discussed 

above to the Trend pattern. However, the formulae yielding these results have mostly changed. 

For example, while formula 4 yielded no stock outs in the Trend pattern, it yielded severe stock 

outs in this case. Formula 1 consistently maintained a desirable inventory level while formula 

9 maintained its inefficiently high yields. The pattern of the results distribution is better 

summarized in the table and is further discussed in the final chapter of the paper. 
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Figure 13: Cycle Stock graph Formula 4 Seasonal Pattern 
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Figure 14: Cycle Stock graph Formula 1 Seasonal Pattern 
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4.4 Cyclic Pattern (Product D) 

Interestingly, the results of the cyclic pattern bear a resemblance to those of the horizontal 

pattern. A possible explanation for this is that cyclic patterns usually follow a long-term cycle 

that tends to change gradually rather than drastically. Gradual change is typically easier to 

predict and has less spikes in demand that can cause stock outs. Consequently, most safety stock 
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formulae yield an acceptable result. In this case formula 5 bears the best results while formula 

9 continues its streak of inefficiently high inventory levels. 

Figure 15: Cycle Stock graph Formula 9 Cyclical Pattern 

(Own Creation) 

Figure 16: Cycle Stock graph Formula 5 Cyclical Pattern 
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4.5 Random Pattern (Product E) 

Due to the randomness and unpredictability of, expectations were for these results to display 

some form of chaos. Perhaps staying true to its spontaneous nature, this pattern yielded results 

that were generally more subdued than expected. Most of the formulae performed well with 

only formula 11 experiencing a stock out. An interesting observation is the results of formula 9 

which in this case are closer to the range the other formulae are in than in other patterns.   

 

Figure 17: Cycle Stock graph Formula 11 Random Pattern 

 

(Own Creation) 

 

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Formula 11

Series1 Series2



Albert Hunduza | Dynamic Safety Stock Considerations 33 

  

Figure 18: Cycle Stock graph Formula 9 Random Pattern 
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4.6 Effects of Leadtime Variability 

Notwithstanding the fact that the literature study had hypothesized that the effects of lead time 

variability on safety stock levels are negligible, this study sought to investigate the weight of 

this proposition. To achieve this, the trial run was conducted for a second time albeit using lead 

time data that showed increased variability over the timeseries. The proposition held for four of 

the formulae which do not include the actual lead time, its mean or standard deviation as a 

variable for the computation of safety stock. For these formulae, the safety stock level remained 

constant between the two variabilities of lead time. Contrarily, the safety stock level was 

significantly impacted by the increase in lead time variability in the case of the other eight 

formulae. This is because lead time and its derivatives such as the standard deviation of lead 

time are variables in all these formulae. In general, an increase of 0.2 in the standard deviation 

of lead time translated into an increase in safety stock level of about 13 to 15 percent. This is 

perhaps expected as an increase in lead time variability typically implies lower supplier 

reliability which means that a greater amount of safety stock is required to protect against stock 
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outs. Figure 20 that is attached below shows an example of the difference in behaviour of the 

safety stock formulae under different lead time variabilities. 

 

Table 2:General behaviour of all the formulae 

Behaviour High CSL + High fill 

rate 

Low CSL + 

High fill rate 

Low CSL + 

Low fill rate  

Overstocking 

Horizontal 1,2,3,4,5,6,7,8,10,11,12   9 

Trend 1,4 2,7,8,12 3,5,6,10,11 9 

Seasonal 1,5,2,7 12,8,6 3,4,10,11 9 

Cyclic 2,3,4,5,7 1,6,8,10,11,12  9 

Random 9,12 1,2,3,5,6,7,8,10 4,11  

(Own Creation) 

Table 3: Behavior of Safety Stock Formulae after increased leadtime variability 

Behaviour Decreases 
Required 
Safety Stock  

No Effect on 
required Safety 
Stock 

Increases 
Required 
Safety Stock 

Formula 2 3, 7, 10, 11, 12 1, 4, 5, 6, 8, 9 
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5 Conclusion 

In this study, a comparison was made between the performances of different safety stock 

techniques under different demand patterns and lead time variabilities. This paper further 

substantiated the proposition that there is no universal safety stock formula. To conclude, the 

implications of this paper for not only further study but also practice are going to be explored. 

5.1 Implications for further research 

Although this paper and its underlying study sufficed to bridge the research gap that it strived 

to fill, it was not without its limitations. These limitations can be corrected by making 

improvements in future research. The simulation for this study was conducted using a dataset 

that was created by the author. This was necessitated by the author’s limited access to real-

world supply chain data from companies. The dataset created had all the characteristics that 

were required for the study. However, real-world data seldom exhibits idealistic patterns as in 

the artificial dataset. Actual demand typically shows a combination of two or more patterns. 

Therefore, a more reliable and relevant set of results can be attained from a partnership between 

real companies and researchers. Some of the formulae that were investigated in this study 

included forecasts as variables. Safety stock and forecasting tend to work hand in hand in 

inventory management. Effort was made to match demand patterns to appropriate forecasting 

techniques without digressing too far from the focus of this paper. In these cases, the 

effectiveness of the forecasting technique that was employed will have an impact, however 

minimal, on the results of this study. Safety stock considerations and forecasting are connected 

topics that still require a significant amount of research to optimize. Thusly, an integrated 

research of both topics has the potential to yield results that could profoundly improve inventory 

management practices. The methodology of this study focused on simulating the behaviour of 

inventory levels over a long period of time when a safety stock technique is used. While this 

approach is effective for most demand patterns, it has limitations when investigating random 

patterns. Since the values generated by a random number generator can differ drastically 

between trial runs, the reliability of results for random data can be improved by running the 

simulation many times. Finally, this simulation was also conducted using the ROP policy for 

inventory management. The results of this study can therefore not be extrapolated to other 
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inventory management policies such as MRP and FOI without reservations. This can be 

addressed in the future by running the simulation using different policies.  

5.2 Implications for practice 

In their paper, Schmidt, Hartmann and Nyhuis78 made a supposition that safety stock is not 

meant to protect against uncertainties brought about by demand patterns such as seasonality. 

This is a sentiment that several other scholars share. The most important contribution of this 

paper is the identification of the impact of safety stock techniques in protecting against demand 

variability due to patterns like seasonality. While it is widely accepted that there is no universal 

safety stock formula, this paper has made significant inroads towards the development of a 

comprehensive roadmap that guides operations managers to select the best performing safety 

stock technique for the demand pattern of their inventory. It was found that the simplest patterns 

to conduct inventory management for are the horizontal and cyclic patterns. For these two 

patterns all safety stock techniques generally perform well. Formula 11 and Formula 5 are likely 

to yield the best results for horizontal and cyclic patterns respectively. On the other hand, the 

trend and seasonal patterns were shown to be the most difficult to manage inventory for. It was 

observed that Formula 5 and 11 tend to yield the best results for each of these two patterns 

respectively. Based on the results of the study, the author would recommend avoiding the use 

of Formula 11 for both patterns as well as formula 4 and 10 for the seasonal pattern. Since  

Formula 9 typically yields an overstocking of inventory in all patterns; it is recommended to 

avoid using it as a safety stock technique unless it is for a product that requires a very high 

delivery reliability. For operations managers who prefer to use a single formula regardless of 

the pattern, the paper would recommend using formula 1 as it yields acceptable results across 

the board. It also has the added advantage of being the simplest of all the formulae during 

computations. Finally, the study confirmed that the lead time variability has a significant impact 

on the levels of safety stock and by extension inventory. Consequently, efforts should be made 

to either negotiate a higher delivery date reliability with suppliers or switch to more reliable 

suppliers with less lead time variability. As a disclaimer, it should be noted that the 

78 Cf. (Schmidt, Hartmann & Nyhuis 2012) 
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recommendations made in this paper are subject to several variables such as the expectations 

of the customer. 

For further reading of the Logistics Engineering and Technologies Group please refer to 

Auerbach & Uygun, 2007; Keßler et al., 2007; Keßler & Uygun, 2007; Kortmann & Uygun, 

2007; Droste et al., 2008; Uygun, 2008; Kuhn et al., 2009; Uygun & Wötzel, 2009, Jungmann 

& Uygun, 2010; Keßler & Uygun, 2010; Uygun & Kuhn, 2010; Uygun & Luft 2010; Uygun 

& Schmidt, 2011; Uygun & Wagner, 2011; Liesebach et al., 2012; Uygun et al., 2012; Uygun, 

2012a; Uygun, 2012b; Uygun, 2012c; Uygun & Straub, 2012, Besenfelder et al, 2013a; 

Besenfelder et al 2013b; Güller et al., 2013; Scholz et al., 2013; Uygun, 2013; Uygun & 

Straub, 2013; Güller et al., 2015; Mevenkamp et al., 2015; Uygun et al., 2015; Karakaya et 

al., 2016; Uygun & Reynolds, 2016; Güller et al., 2017; Reynolds, & Uygun, 2018; Uygun & 

Ilie, 2018; Lyutov et al., 2019; Nosheen & Uygun, 2020; Sommerfeld & Uygun, 2020; 

Uygun & Jafri, 2020; Uygun, 2020.
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