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Abstract

We explore a comprehensive framework for gauge and gravity theories, based on a combi-
nation of methods from graded symplectic geometry and from generalized geometry. We
reformulate some well-established gravitational theories in this language and establish a
relation to gauge theories. The models of gravity we consider range from the type II
effective string action for the bosonic fields with NS-NS boundary conditions and other
actions with T-dual stringy fluxes, to General Relativity in the Palatini formulation with
frame fields. A sketch of the technique for reconstructing non-abelian gauge theories is
also given.

The general idea is the following: On the symplectic geometry side, we implement
a grading up to degree 2 that enlarges the set of coordinates in the local chart for the
manifold, so as to naturally support the geometric data of a metric tensor in terms of a
graded symplectic structure. This is essential, since the (pseudo-Riemannian) metric is the
fundamental field for a gravity theory. Then we implement interactions with gauge and
other fields, the metric counted among them, by deforming the canonical Poisson brackets
of the graded phase space coordinates. We do not deform the Hamiltonian but rather
retain the free one. The relation to gauge theory is obtained via a graded version of Moser
lemma: The deformation can be undone by a change of local phase space coordinates. The
graded diffeomorphisms that carry this change of coordinates are parametrized by a gauge
field and are not unique. The freedom is a gauge symmetry. Differential graded manifolds
of the type studied here are classified by higher algebraic structures, such as Lie and
Courant algebroids, which encode the symmetries of the bundle of generalized geometry.
The correspondence stems from derived brackets with the Hamiltonian homological vector
field. In our case the latter is left unchanged by the deformation and all the novelty in
the algebroid can be tracked back to the deformed graded Poisson brackets. Furthermore,
we present a new formulation of generalized differential geometry that together with the
algebroid brackets, enable us to characterize an affine connection, as well as torsion and
curvature tensors on the generalized bundle. In terms of the corresponding Ricci scalar the
generalized gravity actions are obtained in almost the same fashion as the Hilbert-Einstein
action.

Keywords: graded geometry, graded Poisson structures, generalized geometry, Courant
algebroid, Hamiltonian, gravity, supergravity, connection, curvature, torsion, gauge theory,
gauge symmetry.
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Chapter 1

Introduction

More than a century after Einstein’s formulation of General Relativity, from the theo-
retical viewpoint gravity still leaves more intriguing questions than satisfactory answers.
The observations at our energy scales and at solar system or galactic distances confirms
that GR works perfectly fine. Even the most elusive manifestation of the graviton, the
propagation of gravitational waves, remnants of some very energetic phenomena of coa-
lescence and merging of some compact objects, were finally discover by the LIGO-Virgo
collaboration in 2017. Nevertheless the nature of gravity, entirely geometrical rather than
particle-like, made it difficult to perpetuate the quantization program applied to the other
gauge theories of the fundamental forces of the Standard Model. By power-counting,
GR is non-renormalizable being its coupling constant (Newton’s gravitational constant
GN ) dimensionful, hence it would necessitate of an infinite number of counterterms to
cure the divergencies that appear from the loop expansion in the Feynman diagrams for
the self-interactions of a spin-2 particle. An infinite number of counterterms corresponds
to an equal number of parameters due to which the theory hence loses its predictivity.
The coupling to fermions and spin is still debatable on the theoretical basis, and re-
quires increasingly complex theories. These open questions are better tackled through the
implementation of supersymmetry among the other symmetries and the exploitation of
superspaces in the place of ordinary spaces: this culminated in the high energy gravita-
tional theory known as Supergravity. Supergravity is also the effective limit of the various
string theories, which in fact contain a massless spin-2 particle in the spectrum and more-
over are quantizable. Another reasonable setting where the unsolved matters are better
accommodated is a gauge theory of gravity, the Lorentz group playing an important role
in it. A further advance of the strings-inspired geometrical and algebraic methods are dif-
ferential graded manifolds (dg-manifolds) combined together with algebroids, yielding also
a graded Poisson algebra for the gauge theory side. Here we will use this mathematical
setup to provide a unified treatment of a few gravitational theories, starting from NS-
NS Supergravity to end up with (speculations on) some non-UV completed gravitational
theories like gravity with spin connections. It is essentially new to apply and tune these
mathematical foundations to rewrite (part of) some known actions. The method shows
its power in making various gravitational theories at different regimes descend from the
same derivation. A simple and convincing argument comes (as usual!) from relativistic
electromagnetism: a Poisson algebra and a Hamiltonian are a good alternative to the La-
grangian formalism for the charged particle interacting with an external electromagnetic
field. In fact, shifting the canonical momenta by the electromagnetic potential manages
to reproduce the same result in the Hamiltonian theory. The Poisson algebra is deformed
as a non-zero p − p Poisson bracket shows up in this way. A more elegant treatment of
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CHAPTER 1. INTRODUCTION

monopoles is allowed via the Hamiltonian theory too. Being gravity for many aspects
quite similar to electromagnetism, it seems legitimate to extend this reasoning to the for-
mer. But a metric cannot be endowed in the standard symplectic form because it is a
symmetric tensor, hence graded Darboux coordinates come to the rescue.

1.1 Problems addressed and structure of the thesis

Some decades ago it was noticed that it is useful to describe target space with graded
Grassmannian variables. Z2 grading is special in this sense because of its handiness for
supersymmetry, however in our work we were concerned above all with gradings in N or at
most Z. A differential calculus adapted to the presence of commuting and anticommuting
d-dimensional coordinates is also available [1]. Graded phase space i.e. T ∗M, for M
some graded manifold, can host a graded symplectic structure, as much as the standard
counterpart T ∗M is a Poisson manifold. A Hamiltonian function Θ is also present. The
differential originated by Θ and expressed as a Hamiltonian vector field by means of
the brackets, Q = {·,Θ}, Q2 = 0, describes a cohomology which is a twisted de Rham
cohomology. In the degree-2 case, the combination g + B, where g is a non-degenerate
bilinear symmetric form (most of the times a Riemannian metric) and B is a 2-form, can be
used to map some of the Darboux coordinates of degree 1, which in the present situation
are isomorphic to inner products with vector fields ι∂i and differential forms dxi, to a
non-canonical chart. The map is a diffeomorphism of T ∗M and sends ω 7→ ω + dα =: ω′,
coherently with Moser lemma [2]; moreover the Hamiltonian is unchanged under the map.
The geometrical data of the metric g and the 3-form H = dB constitute part of the
graviton multiplet in closed string theory. Anyway in this kind of geometric description
interpretations are still open for the scalar dilaton φ that completes the multiplet. Some
authors prefer to include it through the volume form when they focus on sigma-models
and T-duality. We found at least one way how to incorporate it in the finite map that
pulls back ω′ to the canonical ω. We were able to show this in the first paper [3] where
we had a non-canonical graded Poisson algebra for the degree-2 case. This number is
special because of the equivalence with Courant algebroids on TM ⊕T ∗M pointed out by
Ševera [4] and elucidated by Roytenberg [5]. The algebroid bracket, pairing and anchor
and their relations are determined via derived brackets of the graded Poisson brackets with
the Hamiltonian. Through the introduction of a further piece of geometrical data, namely
a skew-symmetric Lie-like bracket, it was possible to retain from the whole construction a
connection on TM ⊕ T ∗M . The physically relevant setting was obtained by restricting to
TM . Its Ricci tensor, integrated against the non-symmetric combination g − B, yielded
the SUGRA action in 10 dimensions for the NS-NS fields, which is the same as the low
energy action of type II strings. However the biggest achievement we see in our work is
the fact that we got the suitable non-canonical graded Poisson structure for this: it can be
quantized straightforwardly, and as a first type of quantization we will probably see the rise
of Weyl or Clifford algebras, because of the metric being a quadratic form. It is the first
time that degree-2 graded symplectic geometry is applied in the context of Supergravity
actions and in the background of non-geometric Q1 and R tensors, despite being already
known to be equivalent to a Courant algebroid. The overall construction is not completely
based on that type of geometry, however, but needs some further differential geometry
elements of TM ⊕ T ∗M . Differential graded manifolds, in which some of the conditions
are relaxed (e.g. Q2 ≈ 0, in a weaker sense), have instead proven themselves more adapted

1Note that Q refers to the homological vector field, while the italic Q refers to the mixed symmetry
tensor.
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CHAPTER 1. INTRODUCTION

to the task of rephrasing the statement of T-duality [6]. Drawing some inspiration from
this, the second area where we applied our alternative description was “dual” gravity in
the background of Q and R fields T-dual to the Neveu-Schwarz field H ∈ Ω3(M), where
Q ∈ Γ(Λ2TM ⊗ T ∗M) and R ∈ X3(M). Via an educated guess, we provided the Poisson
structure on the same degree-2 symplectic manifold and the respective Courant algebroid
connection. The latter, constrained respectively to TM and T ∗M reproduced, through
its curvature invariants, the NS-NS type II string effective action (with no scalar dilaton)
and GR for an inverse metric (G−1 : Γ(T ∗M) ∨ Γ(T ∗M) 7→ C∞(M)) with R2, QyR and
Q2 terms in the background. This is where our model starts becoming predictive, too.
The latter action in fact did not exist before in the literature, despite enjoying the correct
gauge symmetries. In the end evidences of the inclusiveness of the model will be given,
as it will be applied to reproduce GR and gravity with torsion, both in the metric and in
the vielbein formulation.

The rest of the introduction will present and contextualize the three areas in which
the language of graded Poisson algebras, through dg-manifolds and/or Courant algebroids
was deployed: gravitation, mostly gauge theories, Supergravity for the NS-NS bosonic
fields and gravity with stringy non-geometric fluxes. A fundamental lemma that validates
our whole construction is enunciated at the end of the section. In the body of the text
we will review generalized geometry 2.1 and graded geometry 2.4, while section 3 will
contain a detailed exposition of the results which are collected in the manuscripts [3] and
[7]. After some Conclusions and Outlook 4, the reader can find a short appendix 4.2 with
the derivations of some results used in the main text.

1.2 Gravity: Einstein-Cartan theory and Poincaré gauge
theory

Einstein’s theory is based on Riemannian geometry. The connection is required to be
metric compatible and symmetric (i.e. torsionless), thus it is determined uniquely by the
metric gµν . The Levi-Civita theorem assures its uniqueness. As such, the only dynamical
field is the symmetric tensor gµν , which has 10 independent components in 4 dimensions.
There is a unique action with these ingredients that is invariant under diffeomorphisms,
the Hilbert-Einstein action:

SHE =

∫
M
R[g]

√
−det g d4x.

As a 4-dimensional field theory for the massless spin-2 field gµν , i.e. a representation for
the double cover of SO(1, 3), it propagates just two degrees of freedom: 4 dof’s are fixed
by diffeomorphism invariance, and other 4 by the residual gauge invariance.

Riemann-Cartan geometry, a geometry which consists in the data of a manifold with
a metric and an affine connection independent from each other, but with the requirement
that the covariant derivative of the metric vanishes, can again host the GR action. It is
always possible to write it down upon implementation of a zero torsion constraint: in this
case the action takes the name of Palatini action. However now the 10 components of the
metric are due to an orthonormal frame for TM {eaν∂ν}, a 4×4 matrix, which transforms
under the Lorentz group SO(1, 3), therefore the 6 dof’s of this symmetry must be gauged
away. Riemann-Cartan geometry however allows for more possibilities: in fact the spin
connection ωabµ dx

µ, a tensor-valued form, antisymmetric in the Latin indices a, b which
transforms as well under the Lorentz group, does not need to be uniquely determined by
{ea}, the fiber of the frame bundle.

3



CHAPTER 1. INTRODUCTION

Einstein-Cartan and Poincaré gauge theory achieve the purpose of making gravity more
similar to a gauge theory, building on the Palatini formulation. More specifically the gauge
group is the Poincaré group R4oSO(1, 3) of spacetime symmetries. Then the field strength
for local translations is the torsion tensor and that for local Lorentz transformations is
the curvature; moreover the connection needs not be symmetric. Poincaré gauge theory is
more general than Einstein-Cartan theory as the connection is just affine. Nice exhaustive
reviews are [8] and [9].

Following Trautman [10] and using coframes 1-forms θρ and the language of tensor-
valued differential forms, the connection is the spin connection ωµν = Γµνρθ

ρ (all indices
are spacetime indices, and the SO(1, 3)-indices are omitted, the relation being θµ ≡ θµaea).
The curvature Ωµ

ν and the torsion Θµ are respectively:

Ωµ
ν = dωµν + ωµρ ∧ ωρν , Θµ = dθµ + ωµν ∧ θν .

If nµν := ? (θµ ∧ θν), then the Einstein-Cartan action is

SEC =
1

16π

∫
gνρnµρ ∧ Ωµ

ν , (1.1)

and the quantities with respect to which the variations are computed and successively
Noether theorem is applied are (the matter fields,) the coframe θ and the connection ω,
independently, in the same fashion as in the GR action the metric and the Christoffel
symbols are treated independently. EC theory and Poincaré gauge theory offer some
conceptual advantages: aside from the already mentioned fact that gravity has now a closer
resemblance to the other forces in the Standard Model, it is also evident that dealing with
matter spinors can be done more neatly, and then that the canonical energy-momentum
tensor (which is the Noether current of the translational symmetry) and its symmetric
definition have a more clear understanding. Recall that the other Noether current (for the
Lorentz generators) is the spin density tensor.

As a side comment, notice that the torsion tensor is a non-dynamical field (i.e. the
variational principle returns an algebric equation for it). One can nevertheless build a
kinematical term for it, a Lagrangian of Yang-Mills type, see for example the nicely written
reference [11]

L = −1

8
χµν ρσa bΘ

a
µνΘb

ρσ n,

where χ is the constitutive tensor, and n is the Hodge dual of the unit (hence the volume
form), n ≡ ?1. A connection for which just Θµ 6= 0, while the curvature Ωµ

ν = 0, is
called Weitzenböck connection [12], and arises in the context of gauge theories for the
translational group, T4 in 4 dimensions (whose group manifold is R4).

In the main text we will be interested in using graded geometry and a graded Poisson
algebra instead of the Riemann or Riemann-Cartan geometry as the setup of the gravi-
tational theory. An attempt in this sense can already be found in [13] where the authors
considered T ∗[1]M , in which M has doubled local coordinates {xµ, ζν}. We will instead
prefer to work with standard coordinates only. Another result that relied on an additional
grading worth to be mentioned is [14], where the authors proved that the Maurer-Cartan
equation of a graded Lie algebra (modulo automorphisms) is equivalent to the vacuum
Einstein equations.

1.3 Supergravity in type II effective string theory

Supergravity is a gravitational theory which enjoys local supersymmetry [15]. It stands
on its own right, but it can also be seen as the low-energy effective action of the 5 string
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CHAPTER 1. INTRODUCTION

theories, since in the α′ → 0 limit of large string tension, the massive modes become very
heavy thus not observable anymore, while the massless graviton is kept in the spectrum.
Under these premises, it is therefore a good approximation to replace string theory by
a supergravity theory. In the rest of the thesis we will be giving more geometrical and
algebraic derivations of these actions, in particular the type II strings common sector; for
the moment let us present the general theory following the textbook [16]. Type IIA string
theory has a M-theory origin: the dual theory under S-duality (which roughly speaking
inverts the string coupling constant) of M-theory compactified on a circle is 10-dimensional
type IIA string theory. Hence their supergravity limit are related by dimensional reduction.
The fermionic fields are a pair of gravitini and a pair of dilatini, instead the bosonic fields
are a 10-dimensional metric, a 2-form B (the Kalb-Ramond field), a dilaton, a 1-form A1

and a 3-form A3. The bosonic action includes three distinct types of terms, a NS-NS fields
action, a R-R fields action and a Chern-Simon term.

Type IIB supergravity cannot be reconstructed from dualities and reductions, but
rather through the principles of supersymmetry and gauge invariance. The field content
is the same as in type IIA, apart from the gauge potentials of the R-R fields, which are
instead a 0-, 2-, and 4-form C0, C2, C4. The action splits again in three terms as before,
where the action for the R-R fields and the Chern-Simons term look completely different.
However the action below, for the fields with worldsheet NS boundary conditions, is a
constant presence in both supergravities:

S =
1

2κ2

∫
d10x

√
−det g e−2φ

(
R+ 4∂µφ∂

µφ− 1

12
H2

)
. (1.2)

Generalized complex geometry (GCG), as initiated by Hitchin and Gualtieri, has shown
since the beginning to be a promising framework for getting some useful insights in the
context of strings and supersymmetric sigma models. The correct generalization of a
Lie algebra to this setting is the concept of Courant algebroid, therefore the differential
geometry (exterior derivative, Lie derivative, etc.) is based on the algebroid bracket in
such situation. Moreover in GCG, complex geometry and symplectic geometry are con-
tained as limiting cases. Proving some properties of generalized Kähler structures and
D-branes that for some manifolds could not have been proven otherwise were among the
first achievements of GCG [17], [18].

Aside from gauge theoretical derivations of (1.2), a Generalized Geometry derivation
of the Supergravity action of the NS-NS fields and of the R-R fields has been foreseen quite
soon. Notice that the complex structure is not needed for this task. Since the fundamental
fields mediating the gravitational interactions are the metric alongside with a 2-form field
and a scalar field, a bundle E ∼= TM ⊕ T ∗M fits perfectly for this aim. It has a natural
1-gerbe structure (this concept will be explained right before section 2.3) that dictates how
the B-field is patched over the base manifold. The transition functions are a collection of
1-forms that enjoy themselves a gauge symmetry.

Reference [19] was the first to show that T-duality invariance, diffeomorphism in-
variance, B-field gauge transformations and local Lorentz-invariance of spacetime could
be combined in an action obtained from the Ricci curvature tensor of a connection,
for a reduction of the O(d, d) × R structure group of the extended tangent bundle to
(SO(d− 1, 1)× SO(1, d− 1)) × R. This yields a spacetime with Lorentzian signature,
while the R element is a conformal factor proportional to the scalar dilaton. They asked
the connection to be compatible with the SO(d−1, 1)×SO(1, d−1)-invariant generalized
metric G

G =

(
g −Bg−1B −Bg−1

g−1B g−1

)
, g Riemannian metric, B ∈ Λ2T ∗M, (1.3)

5



CHAPTER 1. INTRODUCTION

and with the dilaton factor. In the local chart, its torsion was also required to be zero. The
connection coefficients are built in terms of natural pairing of vector fields and 1-forms,
and G, however the set of requests did not completely fix the gauge freedom, therefore
some undetermined tensors appeared along the way. By fixing the freedom through some
arbitrary choices, in the end the Ricci curvature tensor is computed and successively
contracted with G. Such action reproduces the SUGRA Lagrangian of (g,H, φ), as the
generalized analogue of the Einstein-Hilbert action.

Waldram et al. in [20] completed the picture by discussing the lift of the connection to
the Spin bundle that hosts the supersymmetric partners (gravitino, dilatino etc.), therefore
implementing supersymmetry in the action and completing the previous action with the R-
R fields contribution. The latter, being sections of the Spin bundle, could be incorporated
and contributed to the generalized Ricci tensor in a Spin(d−1, 1)×Spin(1, d−1)-covariant
manner, by adding the Mukai pairing2 of them. The generalized differential geometry of
(TM ⊕ T ∗M)×R was developed in detail, and to get a unique (and non-null) Ricci tensor
(for the NS-NS fields) its entries were accurately chosen to belong to one of the two
eigenbundles of G, in an alternate fashion. The result coincided with the sum of the beta-
functions of g and B, as computed from the worldsheet theory. Using the gamma matrices
for the Clifford algebra, a curvature scalar could also be furnished, and this reproduced the
type II effective Lagrangian for g,H, φ (1.2) and that for the R-R fields. In a later work
[21] the authors applied these techniques of generalized differential geometry to heterotic
string theory and M-theory too.

In these successful approaches there were however some troubles, caused by the ar-
bitrariness left even after the implementation of all the symmetry conditions and by the
failure of the standard definitions of torsion and curvature tensors to be tensors for the
generalized tangent bundle. This led the community to look for various further improve-
ments. Ševera and Valach [22] and separately Garçia-Fernandez [23] bypassed the problem
of defining a consistent Riemann curvature tensor by focusing directly on the Ricci tensor,
built with the generalized metric (equivalent to having a subbundle of E) and a diver-
gence operator, div : Γ(E) 7→ C∞(M), divfe = fdiv e + ρ(e)f , for f ∈ C∞(M) and
ρ : Γ(E) 7→ Γ(TM). Then the type II supergravity action is retrieved as the Laplacian
acting on a half-density which depends on the dilaton.

In the literature cited so far, the dilaton field is always taken into account via the
volume form e−2φ

√
−det g or declinations of this idea. An alternative proposal regarding

how to incorporate it, in the context of effective strings action but easily extended to
Poisson-Lie T-duality, was made in [24]: there, together with few more conditions omitted
here, the differential of φ shall satisfy:

〈dφ, Z〉 = 〈∇ρ∗(h−1
G (ek))ρ

∗(ek), h−1
G (Z)〉E ,

where ∇ belongs to the class of Levi-Civita connection for E, {ek} local frame, ρ∗ :
Γ(T ∗M) 7→ Γ(E∗) and hG is the following metric on 1-forms:

hG(ζ, σ) := G(ρ∗(ζ), ρ∗(σ)), ζ, σ ∈ Ω1(M).

Inspired by the achievements and the open questions on this topic, we also built upon these
results and managed to ascribe the fields of the common sector of type II Supergravities in

2For spinors Ψ,Ψ′ ∈ Γ(S), the Mukai pairing 〈, 〉 is

〈Ψ,Ψ′〉 =
∑
n

(−)[(n+1)/2] Ψ(d−n) ∧Ψ′(n)

6



CHAPTER 1. INTRODUCTION

degree-2 graded Poisson brackets, whose derived brackets are Courant algebroid brackets.
How we did so will be clear from the paragraph 3.2. Our findings do not rely just on graded
Poisson algebra, as we employed also some further differential (generalized) geometry
objects along the way.

1.4 Gravity and non-geometric fluxes

Another action that we considered interesting to formulate in the language of graded
Poisson algebra, deploying the equivalence of the latter with generalized geometry and
Courant algebroid, is some action for the gravitational field in the background of non-
geometric fluxes. Before reviewing the origins and motivations and the state of the art of
such a theory, for a better understanding there are two main aspects that need a slightly
deeper explanation: T-duality and Double Field Theory (DFT).

1.4.1 T-duality

T-duality is one of the most striking symmetries in string theory. Its existence is a purely
stringy effect, in contrast to the non-extended nature of the point particle. For a first
understanding of T-duality a rough explanation can be the following: a closed string
theory compactified over a circle is equivalent (T-dual) to another closed string theory
where the compactification radius is the inverse of the previous one. T-duality was first
noticed by Buscher [25] for the associated sigma model. His derivation can be summarized
in this way: consider the following model with a metric and a 2-form,

S =
1

4πα′

∫
Σ
dτdσ gijdX

i(τ, σ) ∧ ?dXj(τ, σ) +BijdX
i(τ, σ) ∧ dXj(τ, σ), (1.4)

where Σ is a Riemann surface and X is a smooth differentiable map X : Σ 7→M , for M d-
dimensional manifold, and assume that the metric has an isometry in some directions (i.e. a
Killing vector field). Then there is a set of transformations that shuffles the components
of the metric and those of the 2-form to give another different metric and B field while
keeping the action fixed. If there is a curved metric on Σ, and R(2) is the Ricci scalar
of the Levi-Civita connection, the scalar dilaton can become part of the model through
addition of

1

4π

∫
Σ
dτdσ φR(2) ? 1,

and covariantization of (1.4). Topologically, T-duality exchanges the first Chern class of
the bundle with the fiberwise integral of H, see [26].

Performing successive T-duality on these fields shortly became a very intriguing re-
search question among physicists because of phenomenological reasons. Shelton-Taylor-
Wecht in their comprehensive paper [27] discussed the chain of T-dualities for the NS-NS
flux H

Hijk
Tk−−→ fij

k T j−→ Qi
jk T i−→ Rijk, (1.5)

as well as that for the R-R fields. Already after a second T-duality the geometry is
not globally well defined since the transition functions now must include also T-duality
transformations (i.e. the patching is possible just if one glues together coordinates related
by a T-duality). The third T-duality, which is just formal because there are no isometric
directions left and hence Buscher rules do not apply, but instead one must resort to a
doubling of the coordinates, gives even more bizarre results dubbed non-geometric spaces.
Despite this, the fluxes can be fundamental in the stabilization of string theory vacua.

7
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Intuitively, for example in the case of a T3 torus, two successive T-dualities return a T2

fibration over a circle, see the review [28], section 6.1.

In the rest of the thesis we will not use anything more than what described here. Let
us just mention that nowadays there are other types of T-dualities under study, like those
due to non-abelian isometries and of Poisson-Lie type. Generalized geometry and GCG
are again the perfect setting for them: T-dualities are O(d, d;Z)-transformations, and the
O(d, d;R) group is often taken as structure group of the CA TM ⊕T ∗M . [29] proved that
T-duality is an isomorphism of Courant structures over different base manifolds. Among
the others, [30], [24] and [22] are other good example of how this string theory property
has a more mathematical generalized geometry formulation. How the NS-NS fluxes sit in
generalized geometry is explained by Ellwood in [31].

1.4.2 Double Field Theory

Already in the process of obtaining the R-flux (1.5) it was convenient to double the coordi-
nates of the base manifold. But doubling the number of dimensions shows its potential also
in the formulation of a field theory for the generalized metric and the dilaton, manifestly
invariant under O(d, d)-transformations and in a hidden way invariant under doubled dif-
feomorphisms, as done by Hohm, Hull and Zwiebach in [32]. To follow their conventions,
where in a local chart the coordinates are XM =

(
x̃i, x

i
)
, M = 1, . . . 2d, i = 1, . . . d, let us

call H the generalized metric G (1.3) in which the rows are swapped with the columns in
this sense:

HMN =

(
gij −Bikgkj

gikBkj gij −BikgklBlj

)
.

Let d(X) be a scalar field. Then the action is

SDFT =

∫
dxdx̃ e−2d

(
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂NHKL∂LHMK

− 2∂Md∂NHMN + 4HMN∂Md∂Nd

)
. (1.6)

(Be aware that the indices are always raised with the pairing, not with H.) Compared
to other prior formulations [33] in terms of the combination g + B, that transforms non-
linearly under the O(d, d) group, here it is possible to check the invariance at a first
sight, since e−2d transforms as a scalar and H is a O(d, d)-tensor. The gauge invariance
(diffeomorphisms wrt the doubled coordinates) is then proven by noticing that a gener-
alized Lie derivative can be formed with the help of the rather obvious extension of the
skew-symmetric Courant bracket to DFT, dubbed C-bracket [, ]C−br:

[ξ1, ξ2]MC−br = ξN[1 ∂Nξ
M
2] −

1

2
ξP[1∂

Mξ2]P , ξ1, ξ2 ∈ Γ(TM ⊕ T ∗M).

Therefore

δξHMN = ξP∂PHMN +
(
∂MξP − ∂P ξM

)
HPN +

(
∂NξP − ∂P ξN

)
HMP =: LξHMN ,

while e−2d transform as a density.

The theory is extremely useful for countless applications in string theory. Anyway its
enlarged space cannot be physical and DFT cannot live on its own: some other conditions
have to be imposed on top in order to reconstruct the real physical space, like the “strong
constraint” ∂M ∂̃

M = 0. Apart from these issues, since the introduction of DFT and the

8
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recovery of a consistent action (1.6), many authors developed the geometrical and algebraic
structures associated with it, see among the others the earlier work [34] and the later work
[35].

For what concerns us, we will just exploit the observation that in some low-energy
limits and after solving the strong constraint, the DFT action (1.6) describes an action
for a “dual” graviton (for the moment not better specified) in the background of the non-
geometric fluxes Q and R (1.5).

In the body of this thesis we will encounter an extensive explanation of how dg-
manifolds of degree 2 and their corresponding CA enter the formulation of a Hilbert-
Einstein Lagrangian for a metric G−1 ∈ ∨2TM together with a bivector Π ∈ X2(M). This
was inspired by the results of the companion papers [36] and [37] and the Lie algebroid
derivation in [38]. As already mentioned, the authors found the supergravity limit of the
DFT action: the fields of their theory are given by the combination G−1 + Π, and the
covariant calculus on the doubled space stems from the derivative operator D̃i

D̃i := ∂̃i −Πij∂j .

The action for G−1 + Π was obtained as the following field redefinition:

(g,B, φ) 7→
(
G−1,Π, φ̃

)
,

which can be motivated by T-duality but anyway it is argued to lack a solid mathematical
ground. [38] repaired to this deficiency through a more rigorous formulation via non-
geometric frames for a Lie algebroid on T ∗M , where the manifold M is not doubled. The
action they obtained was formed through invariant combinations of the pullback to T ∗M
of the NS-NS tensors g and H = dB, and the Levi-Civita connection. Contrary to the
other papers [36] and [37], this time there was no connection ∇ : Γ(E) 7→ Γ(T ∗M)⊗Γ(E),
where E = T ∗M for M either a regular manifold or with doubled coordinates, whose Ricci
scalar could be the constitutive Lagrangian. We will encompass both the situations by
giving a CA and graded Poisson algebra formulation of a Hilbert-Einstein action of gravity
in the background of non-geometric fields Q and R.

1.5 Moser lemma

A crucial passage in our results is uncannily Moser lemma. It gives the chance to put the
gauge fields, either abelian and non-abelian, in a prominent position in the Hamiltonian
theory, which otherwise will be the free theory. Alternatively they are expressed through
Legendre transform of the interacting terms in the Lagrangian. The Hamiltonian approach
is complementary to the Lagrangian description but it is more handful for first quantization
aspects, that the physics’ community is nowadays eager to find for the gravitational field.

For the version of the lemma we are going to use3, a good intuition of the result
is the following: for a symplectic manifold M , consider the smooth 1-parameter family
of symplectic forms ωt and a symplectic form of reference ω0, where t ∈ R, t ∈ [0, 1],
ωt=0 ≡ ω0. They differ by an exact 1-parameter dependent 2-form:

ωt = ω0 + dAt,

3There is a version for the volume form, but we will not discuss it.
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where it is understood that dAt=0 = 0. Hence they can be connected via a smooth family
of diffeomorphisms ϕt : M 7→M , which acts on differential forms by pullback. For each t,
ϕt relates them in this way:

ϕ∗tωt = ω0.

The technical formulation can be found in the mathematical preliminaries, section 2.4. The
generators are hence changes of phase space coordinates. Clearly, opportune coordinates
can highlight some aspects and hide others. dAt is an exact 2-form and thus At and
At + dat, which belong to the same cohomology class, yield the same symplectic form.
Hence, if a Hamiltonian function is selected, at ∈ Ω1(M) is a gauge symmetry of the
system. We see that depending on At, various gauge theories can be implemented through
a deformation of the canonical symplectic form: usually, the momenta pi are shifted by the
vector field corresponding to the deformation. Our main concerns will be a Sp(2d)×O(d, d)
graded structure where the coordinates {ξα} labeling the O(d, d) part will be rescaled
and/or shifted: in this case, the vector field for the deformation of the symplectic structure
does not depend on the standard conjugate momenta p. We will later look at other graded
symplectic structures such as T ∗[1]M or T ∗[2]M ⊕ T [1]M . The net effect will always be
to introduce interactions with a gravitational field and other tensor fields, such as the
Neveu-Schwarz field H, the dilaton φ and the non-geometric fluxes Q and R.

Before moving to the next section it is worth pointing out that this version of Moser’s
trick finds a straightforward application in Darboux theorem: in a neighborhood of any
point on the symplectic manifold M the symplectic form restricted to the neighborhood
is symplectomorphic to the canonical symplectic form of R2n ≡M .

10



Chapter 2

Mathematical Preliminaries

2.1 Generalized Geometry and algebroids

This first section of fundamental mathematical preliminaries aims at making the reader
more familiar with generalized geometry, as initiated by Nigel Hitchin [39] and his doctoral
students Gualtieri and Cavalcanti [17]. This kind of geometry unifies aspects of symplectic,
complex and Riemannian geometry, but complex geometry will not be contemplated in
the research questions pursued during the Ph.D. Algebroids, the generalization of the
concept of an algebra to a pointwise algebra, will also be important for the rest of the
thesis. Most of the theoretical work is not original and is well-know among the community;
anyway there will be also a few personal contributions. Although the concepts might be
sometimes quite technical, we will try to keep the exposition accessible to a physicist, and
in the meantime to not lack mathematical rigor.

2.1.1 Algebroids

In order to endow the sections of a vector bundle E over a smooth manifold M with an
algebra, the first big challenge is to make possible that the R-linear product of sections,
the bracket [, ] : Γ(E) × Γ(E) → Γ(E), could respect the Leibniz rule. This requires the
introduction of a linear map of E-sections into vector fields, ρ : Γ(E) 7→ Γ(TM).

Definition 2.1.1. Lie algebroid. [40] A Lie algebroid is a vector bundle E
π−→ M , a

binary operation on sections [·, ·] and a linear map ρ : Γ(E) 7→ Γ(TM) called anchor such
that:

1. [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]], for ei ∈ Γ(E);

2. [e1, fe2] = f [e1, e2] + ρ(e1)f e2, for f ∈ C∞(M);

3. [e1, e2] = −[e2, e1].

Notice that the anchor is a homomorphism of the Lie algebroid bracket with the Lie
bracket of vector fields: ρ([e1, e2]) = [ρ(e1), ρ(e2)]. It follows from compatibility between
the Jacobi identity and the Leibniz rule.

The tangent bundle, taking as anchor map any automorphism ρ : Γ(TM) 7→ Γ(TM)
and as bracket [, ] the Lie bracket of vector fields, is a Lie algebroid over a point. The
cotangent bundle T ∗M constitutes another example [41]. It becomes a Lie algebroid
whenever a bivector β ∈ X2M is assigned, leading to the natural anchor ρ : Γ(T ∗M) 7→

11
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Γ(TM), ρ ≡ β, as the bivector is responsible for raising an index up, and when the bracket
on elements of Γ(T ∗M) is the following

[σ, κ]Koszul = Lβ(σ)κ− ιβ(κ)dσ.

The Jacobi identity holds iff β is a Poisson bivector, alternatively stated as {β, β} = 0 by
Jacobi identity of the Poisson bracket.

With the Lie algebroid bracket and the anchor map the notion of a differential dE can
be shaped analogously to the standard differential geometry one: dE : Ω•(E) 7→ Ω•+1(E),

dE$(U0, . . . , Uk) =
∑
i

(−)i ρ(Ui)$(U0, . . . Ûi, . . . Uk)

+
∑
i<j

$([Ui, Uj ], . . . , Ûi, . . . , Ûj , . . . , Uk), (2.1)

where hatted sections are omitted from the expression.
For most applications it will turn out useful to have a metric on the E-sections, and

at the same time to dismiss the antisymmetry of the bracket. Upon imposing a couple
of more conditions regulating the properties of metric and bracket together, the resulting
algebroid is called Courant algebroid.

Definition 2.1.2. Courant algebroid. [42] A Courant algebroid (CA) is a Lie algebroid
in which the antisymmetry of the bracket is dropped, and furthermore there is a fiber-wise
C∞(M)-linear symmetric form 〈·, ·〉 which respects these compatibility conditions:

1. ρ(e1)〈e2, e3〉 = 〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉;

2. ρ(e1)〈e2, e3〉 = 〈e1, [e2, e3] + [e3, e2]〉.

An example of consistent bracket for this algebroid is the so called Dorfman bracket (see
(2.7)).

The first of these conditions can be rephrased as the invariance of the symmetric
bilinear form 〈, 〉 under the adjoint action. If Le1 is the derivation corresponding to a Lie
derivative built with the CA bracket, and gE := 〈, 〉 : Γ(E) ∨ Γ(E) 7→ C∞(M) it can be
alternatively stated as the Killing vector condition Le1gE = 0. It is surely interesting that
each generalized vector is Killing for the CA metric. In standard Riemannian geometry,
in fact, the Killing vector equation is solved only if the metric has an isometry in the
direction of that vector field.

The last axiom measures the failure of the bracket to be antisymmetric. It can be
alternatively stated with the help of the coboundary operator D : C∞(M) 7→ Γ(E),

D := g−1
E ◦ ρ

∗ ◦ d, ρ∗ : Γ(T ∗M) 7→ Γ(E∗), gE : Γ(E) 7→ Γ(E∗).

Its action on a function is more clearly seen through the following fully contracted formula:

〈Df, e〉 = ρ(e)f, ∀ f ∈ C∞(M). (2.2)

Then item 2 in definition 2.1.2 becomes

[e, e] =
1

2
D〈e, e〉. (2.3)

If however e2, e3 belong to an isotropic subbundle L ⊂ E, which by definition for any
generic element l, l′, 〈l, l′〉 = 0, then the LHS of the axiom is identically zero and antisym-
metry persists, when restricted to the isotropic subbundle.
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Interestingly, for the CA bracket the behavior of the first entry under C∞(M)-multi-
plication can be extracted with the help of D, the lack of antisymmetry for [, ] (item 2
in definition 2.1.2), and the transformation property for the second slot, which is known
from the Lie algebroid definition 2.1.1:

[fe1, e2] = −[e2, fe1] +D〈e2, fe1〉
= −f [e2, e1]− ρ(e2)(f)e1 +Df 〈e1, e2〉+ f D〈e1, e2〉
= f [e1, e2]− ρ(e2)(f)e1 +Df 〈e1, e2〉 (2.4)

Other remarkable properties that concern the coboundary operator are listed below:

[e,Df ] = D〈e,Df〉,
[Df, e] = 0,
〈Dg,Df〉 = 0, for exact CA, (2.5)

The first can be proven contracting the resulting section with another section and then
applying the first axiom listed in 2.1.2 and the homomorphism property of the anchor.
The second descends directly from the failure of antisymmetry of the CA bracket and the
previous result. The third ensures that for the coboundary there is no obstruction to the
cohomology, when (2.5) holds.

Another unexpected feature is that the Leibniz rule for definition 2.1.2 can actually
be omitted: it descends from the first axiom there. Kosmann-Schwarzbach showed this in
[43]. This is not usually remarked in the literature, and therefore the algebraic derivation
will be pointed out here. Ultimately, Leibniz rule for [, ] is a plain consequence of the
product rule for the derivation ρ(e):

ρ(e1)〈fe2, e3〉 = (ρ(e1)f) 〈e2, e3〉+ fρ(e1)〈e2, e3〉.

Applying the first axiom on both sides of the equality, then, yields:

〈[e1, fe2], e3〉+ f〈e2, [e1, e3]〉 = (ρ(e1)f) 〈e2, e3〉+ f〈[e1, e2], e3〉+ f〈e2, [e1, e3]〉;

an elementary rearrangement of the above concludes the proof.

As an example of Courant algebroid it is worth mentioning the double of a Lie bialge-
broid [44]. A Lie bialgebroid is built up with a pair of Lie algebroids: (E, ρ, [, ]E) and the
Lie algebroid involving the dual vector bundle (E∗, ρ∗, [, ]E∗). Together they produce a
Lie bialgebroid when the differential dE∗ (2.1) induced by [, ]E∗ , is a derivation of [, ]E . A
Courant algebroid arises considering as total space E ≡ E ⊕ E∗, for sections the ordered
pairs (e, ε) ∈ Γ(E ⊕ E∗), as pairing the natural contraction

〈(e, ε), (e′, ε′)〉 = ε′(e) + ε(e′),

and the following [, ]E as bracket:

[(e, ε), (e′, ε′)]E :=
(

[e, e′]E + LE∗ε e′ − ιε′dE∗e, [ε, ε′]E∗ + LEe ε′ − ιe′dEε
)
,

while the anchor is ρE(e, ε) = ρ(e) + ρ∗(ε). The axioms of definition 2.1.2 are verified
for (E, [, ]E, 〈, 〉, ρE) in [44]. The converse is true too, and relies on the notion of Dirac
structures. Dirac structures L̂ are isotropic subbundles which are of maximal dimension
(half of the total dimension of the upper space in the bundle) and involutive under [, ]E
(i.e. [L̂, L̂]E ⊂ L̂). Thus given (E, [, ]E, 〈, 〉, ρE), two complementary Dirac structure E1
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and E2 are necessarily isomorphic to their respective dual, E∗1
∼= E2, and can be naturally

given the structure of a Lie bialgebroid, using the already existing objects.

An important notion is that of exact Courant algebroids E. These algebroids stand in
the short exact sequence

0→ T ∗M
j−→ E

ρ−→ TM → 0. (2.5)

Hence j is an injective map while ρ is surjective, and Kerρ = Imj. Notice that generally
Imj ≡ Im(g−1

E ◦ ρ∗) ⊆ Kerρ always. Every exact CA is thus isomorphic to a CA on the
generalized tangent bundle TM⊕T ∗M . The classification of exact CAs was carried out by
Ševera in his famous letters [4], who found that they differ just for a representative in the
[H]-class, H ∈ H3(M,R). We can briefly recall how an element of the third cohomology
class can “label” an exact Courant algebroid.

The image of the inclusion map j from the sequence (2.5) is isotropic because, as
ρ = j∗ ◦ gE ,

〈j(γ), j(σ)〉E = 〈γ, ρ(j(σ))〉 = 0,

where the pairing before the last equality is the canonical pairing of vector fields with forms.
However Imj is not just isotropic: it is maximally isotropic and involutive, [j(γ), j(σ)] =
0 ∈ j(T ∗M), thus it is a Dirac subbundle. This, at least for exact 1-forms, descends
from 0 = [Df,Df ′] = [j(df), j(df ′)]. Thus it is always possible to define an isotropic
splitting (i.e. a connection) s : Γ(TM) 7→ Γ(E), ρ ◦ s = idTM , 〈s(X), s(Y )〉 = 0. Then
s + j : Γ(TM ⊕ T ∗M)

∼−→ E, and thus we can compare the bracket of E with the
homomorphic bracket of TM ⊕ T ∗M . But then using 1) the axioms of the CA, 2) the
observation that the image of s is transverse to the image of j (i.e. 〈s(X), j(σ)〉 = ιXσ),
and 3) the remaining properties of Ims and Imj previously mentioned, it can be proven
that the difference can just be a 3-tensor, which is also completely skew-symmetric.

Hence if U, V ∈ Γ(E), U = X+γ, V = Y +σ, where X,Y ∈ Γ(TM) and γ, σ ∈ Γ(T ∗M),
a generic bracket with some H ∈ H3(M,R) that respects all the CA axioms is the H-twisted
Dorfman bracket :

[U, V ]D,H = LXV − ιY dτ +H(X,Y, ·). (2.6)

In the following we will refer to the untwisted version as [, ]D:

[U, V ]D = [X,Y ] + LXσ − ιY dγ. (2.7)

Exact CAs clearly do not exhaust all the physically important possibilities for a
Courant algebroid. If no such sequence as (2.5) can be found, but instead the anchor
ρ is surjective, the Courant algebroid is said to be transitive, the topic being analyzed
extensively in [45]. E can nevertheless be separated into complementary subbundles, the
isotropic Q such that Q∩Kerρ = {0}, and the isotropic C ⊂ Kerρ, C ∩ Imj = {0}, in this
way:

E = Imj ⊕Q⊕ C.

They are the appropriate setting for heterotic string theory, which is best described by
Imj ≡ T ∗M , Q ≡ TM and the Lie algebra g in place of C: E ∼= TM ⊕ g⊕ T ∗M .

The skew-symmetry of the bracket can be recovered by dismissing another feature:
the new bracket shall not respect the Jacobi identity. Failure to respect it is measured
by the exterior derivative of the Nijenhuis tensor, taken with the coboundary D. There
are a few equivalent definitions of this tensor. It measures the obstruction of an almost
complex structure, J : TM 7→ T ∗M,J 2 = −1, to be originated by a complex structure,
i.e. an integrable J (global). We will recur to a different qualification.
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Definition 2.1.3. Nijenhuis operator. [17] The Nijenhuis operator N : Γ(E)×Γ(E) 7→
Γ(E) on generalized vectors e1, e2, e3 ∈ Γ(E) is

〈N(e1, e2), e3〉 =
1

3
〈[e1, e2], e3〉+ cyclic(e1, e2, e3),

where the bracket employed is the antisymmetric one.

In [17], proposition 3.16, a neat proof that the Jacobiator,

Jac(e1, e2, e3) := [e1, [e2, e3]] + [e2, [e3, e1]] + [e3, [e1, e2]],

is not zero for a skew-symmetric CA bracket, but rather it is given by D〈N(e1, e2), e3〉 =
Jac(e1, e2, e3), can be consulted. Then an example of the bracket that we sought goes
under the name of Courant bracket [, ]C:

[U, V ]C = [X,Y ]Lie + LXσ − LY γ −
1

2
d (ιXσ − ιY γ) . (2.8)

This is nothing but the antisymmetrization of the Dorfman bracket. Under multiplication
with a function f , the bracket transforms to

[U, fV ]C = ρ(U)fV − 1

2
〈U, V 〉Df + f [U, V ]C. (2.9)

It goes without saying that also the axioms, item 1 and item 2 of definition 2.1.2 do not
look the same for the skew-symmetric version of the bracket. In particular, the former is
replaced by

ρ(e1)〈e2, e3〉 = 〈[e1, e2] +D〈e1, e2〉, e3〉+ 〈[e1, e3] +D〈e1, e3〉, e2〉,

while the latter is obviously identically zero (in fact, it tells us that a skew-symmetric
version of the CA bracket must be given by the bracket with no such symmetry, minus
D〈·, ·〉).

2.1.2 Generalized metric

The more ordinary choice for a CA metric, in the isomorphism of an exact CA with the
Whitney sum of tangent and cotangent space E ∼= TM ⊕ T ∗M , is the natural pairing of
vector fields with 1-forms, η,

η =

(
0 1d

1d 0

)
.

The isometries of this off-diagonal block matrix construct the (special) real orthogonal
group of split signature,

O(d, d) = {O ∈ Mat2d |OT ηO = η}.

These matrices can only have determinant detO = ±1. Although well established, it is
nevertheless worth to recall what the generators for the part connected to the identity of
this Lie group are. By virtue of the split into a vector space and its dual, the generator
can be represented as a block matrix with 4 d× d dimensional blocks. The most general
generator o, which satisfies the condition oT η = −ηo, is the following block matrix:

o =

(
a β
B −aT

)
, a ∈ End(TM), B ∈ Λ2T ∗M,β ∈ Λ2TM.
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Hence o(d, d) = End(TM) ⊕ Λ2TM ⊕ Λ2T ∗M . Exponentiation of an element from each
of the classes yields respectively the group elements:

A =

(
A 0
0 A−T

)
, expβ =

(
1 β
0 1

)
, expB =

(
1 0
B 1

)
, (2.10)

where A(x) ≡ exp a ∈ Aut(TM). All the considerations on the symmetry group and
algebra are valid as well for a generic vector space and its dual. An important Weyl
group of the O(d, d) group is O(d, d;Z), i.e. the orthogonal group of split signature with
integer coefficients: it is the group for T-duality transformations among different stringy
backgrounds with isometries (section 1.4.1).

Anyway, many other instances of a CA metric are comprised in definition 2.1.2: there
are no constraints which force us to choose the η pairing. Thus the symmetry group
for the metric varies accordingly, and depending on the purposes, one or the other will
be more convenient. We shall in fact employ some more or less slight deviation to the
O(d, d)-invariant pairing.

Another very useful concept for physicists, aside from the algebroid metric, is that
of the generalized metric. This is a further geometrical structure originated from the
reduction of O(d, d) to its maximal compact subgroup O(d) × O(d). It is also equivalent
to the choice of a d-dimensional subbundle E+ positive definite w.r.t. η. So its existence
assumes the presence of the algebroid standard pairing. On the other hand, splitting E
into E+ and its orthogonal complement E−, grants the presence of a positive definite
metric τ ,

τ(U, V ) = η(U+, V+)− η(U−, V−), (2.11)

where the subscripts denote to which complementary subbundle the vectors belong. An-
other characterization can be E+ = Ker(id − τ). τ is naturally seen as the linear map
τ : Γ(E) 7→ Γ(E), and from the above expression (2.11) it is not difficult to be convinced
that τ2(U) = U . Thus τ is technically an involution. This last statement is also equiv-
alent to express E+ as the graph of (g + B), for g ∈ ∨2T ∗M and B ∈ Λ2T ∗M . Let us
briefly discuss the argument in favor of this observation: E± (the positive and negative
definite subbundles) are maximal, thus of dimension d; but E is also E ∼= TM ⊕ T ∗M ,
η(TM, TM) = 0 = η(T ∗M,T ∗M), implying that neither TM nor T ∗M have a non-
null intersection with E+. This suggests that E+ comes from the graph of an element
of Hom(TM, T ∗M), which has a unique decomposition into symmetric and antisymmet-
ric part, g and B. Hence E+ 3 U+ = X + (g +B) (X), and it can be checked that
η(U+, U+) = 2g(X,X), so g must be positive (η|E+

is). The generic element of E−, being
η(E+, E−) = 0, must then be U− = X−(g −B) (X). Vice versa, namely that the presence
of g and B leaves E± defined, can also be shown to hold true.

From now on, with “generalized metric” we will mostly address a more convenient
object for computations. Since E+ induces g as metric on the tangent space, g as below
is the metric on TM ⊕ T ∗M :

g :=

(
g 0
0 g−1

)
,

and the B-field will enter as a B-transform to construct the (g,B)-dependent metric
G = (expB)T ◦ g ◦ expB.

Definition 2.1.4. Generalized metric. The symmetric bilinear form G : Γ(E) ×
Γ(E) 7→ C∞(M),

G =

(
g −Bg−1B −Bg−1

g−1B g−1

)
. (2.12)
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Notice that G already appeared previously in the introduction. Given that they de-
scend from the B-transform which is an O(d, d) element, the set of all generalized metrics
G is the coset O(d, d)/ [O(d)×O(d)]. This is explained by the O(d, d)-action being tran-
sitive on the set of G, and by O(d)×O(d) being the stabilizer (see also lemma 3.9.2 and
3.9.3 in [46]). Be reminded that the generalized metric in general does not serve as the 〈, 〉
for the Courant algebroid: further restrictions must be applied in order for G to be used
for that purpose.

Let us mention that one could as well choose an element of Hom(T ∗M,TM) to yield
the decomposition E = E+ ⊕E−. This map will have a symmetric part, G−1 : Γ(T ∗M)∨
Γ(T ∗M) 7→ C∞(M), and an antisymmetric one, Π ∈ X2M . Thus (g + B) and G−1 + Π
should be related according to the closed-open strings relations [47]:

(g +B)−1 = G−1 + Π. (2.13)

As before, the generalized metric in terms of G−1 and Π can just be computed from the
β-transform (with Π as bivector):

G =

(
1 0
Π 1

) (
G 0
0 G−1

) (
1 −Π
0 1

)
=

(
G −GΠ

ΠG G−1 −ΠGΠ

)
.

The presence of vector bundles with a metric brings us to the natural question of
setting up a connection and thus transporting generalized vector fields and taking covari-
ant derivative of the tensors, i.e. the natural question of the differential geometry of the
structures seen so far. This is the topic of the next subsection.

2.2 Differential generalized geometry

In the current part and in the subsequent ones we are going to clarify some differential
geometry objects and their properties, in the realm of Generalized Geometry. Some of
the most well-grounded definitions will be given and discussed, however we will mostly
focus on the equivalent (or, for some instances, completely new) denotations provided
in the personal research papers [3] and [7]. There, we introduced new definitions for
a differential (2.14), a skew-symmetric bracket on sections Γ(E) 2.2.2, a torsion tensor
(2.3.1) and curvature tensors (2.25), (2.26). They all shared a closer resemblance to their
counterparts in Riemannian geometry.

A coboundary operator D := g−1
E ◦ ρ∗ ◦ d, where d is the de Rham differential, was

already employed previously with the purpose of making some of the axioms for the
Courant algebroid more transparent. In the course of the thesis we will instead prefer to
resort to a differential dρ (anchor map dependent), whose action on the functions coincides
with that of D, but it is extended to Ω•(E). It is firstly defined to act on the functions
Ω0(E) in a local patch.

Definition 2.2.1. Differential dρ. A differential dρ : Ω0(E) ∼= C∞(M) 7→ Ω1(E),
d2
ρ = 0, is given in a local coordinate patch with ξα ∼=

(
ι∂i , dx

i
)

by:

dρ := ξ̃αρ(ξα), (2.14)

where ξ̃α is the dual coordinate (ξ̃α := gαβE ξβ). According to the scopes, it can also be

intended as dρ = ξαρ̃
(
ξ̃α
)

, ρ̃ : Γ(E∗) 7→ Γ(TM) (however when acting on functions it

then yields a section of E by duality, rather than a 1-form on E).
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As anticipated, the differential acts on functions f ∈ C∞(M) in the same way as D
does (see (2.2)):

〈dρf, e〉 = ρ(e)f, e ≡ eαξα.
On the preferred holonomic basis {ξα}, dρξα vanishes. It squares to zero if the anchor
map is global, e.g. it is a constant projector. Later at the end of section 2.6 we will give
an alternative proof (from graded symplectic geometry) that (2.14) truly yields d2

ρ = 0;
it stems from an isomorphism with a cohomological vector field for the graded Poisson
structure. In the wish to extend the action of dρ to generalized k-forms in the most
obvious way, the generalization of the Lie bracket of vector fields would be the ideal
candidate (section 4 of [3]):

Definition 2.2.2. Generalized Lie bracket. A generalized Lie bracket J, K is a bilinear
operation which is antisymmetric and R-linear: J, K : Γ(E)× Γ(E) 7→ Γ(E),

JU, V K = −JV,UK, JU, fV K = ρ(U)f V + fJU, V K, ∀f ∈ C∞(M),

where ρ : Γ(E) 7→ Γ(TM).

An example of generalized Lie bracket can be constructed first of all in a coordinate-
dependent fashion. Consider the holonomic basis {ξα} for the fiber of E ∼= T ∗[1]M ⊕
T [1]M1 generalized tangent bundle and set Jξα, ξβK = 0, pretty much as the Lie bracket
of tangent vectors is null on the partials. Then on two sections U, V ∈ Γ(E) written in
this basis, a local expression for J, K with arguments Γ(E) 3 U = Uα(x)ξα, V = V α(x)ξα
can be:

JU, V K = (ρ(U)V α(x)− ρ(V )Uα(x)) ξα. (2.15)

On a different, anholonomic basis, the Lie-like bracket will be modified according to the
Leibniz property. Its expression will hence differ from that in the holonomic basis (2.15)
by an antisymmetric 2-tensor. The local expression can be defined globally if in the
overlapping patches (covering the whole manifold) one forces its defining properties of
definition 2.2.2, applying Leibniz rule to the transition functions. The mechanism is
consistent as long as in the triple overlaps ρ is not defined just patch-wise, but globally
(which is always true if ρ is the anchor for an algebroid).

Another way to find a coordinate-independent expression for the Lie-like bracket is
also available. Let ς : E

∼−→ E′ be the tautological 1-form, or soldering form. Then the
ρ-differential on ς, which itself is a 1-form in Ω1(E), can produce a 2-form provided that
a generalized Lie bracket J, K (2.2.2) is employed:

dρς(U, V ) = ρ(U)ς(V )− ρ(V )ς(U)− ς(JU, V K). (2.16)

In the local coordinate chart the soldering form ς has a canonical formula:

ς = dxi ⊗ ∂i ⊕ ∂i ⊗ dxi,

therefore dρς = 0 and thus from (2.16) the expression for J, K in holonomic coordinates
(2.15) is recovered, as Jξα, ξβK = 0.

When the bracket J, K is independently given, rather than determined from the ρ-
differential, dρ would differentiate a form $ ∈ Ωk−1(E) according to:

dρ$(U1, . . . , Uk) =
∑
i

(−)i ρ(Ui)$
(
U1, . . . , Ûi, . . . Uk

)
+
∑
i<j

$
(
JUi, UjK, . . . Ûi, . . . , Ûj , . . . Uk

)
,

1In section 2.4 we will see that the number in the square brackets denotes odd parity of the fibers: a
minus sign appears when commuting a pair of coordinates.
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see the companion formula for a Lie algebroid (2.1). d2
ρ = 0 iff the anchor is a homo-

morphism with the Lie bracket of vector fields and iff J, K respects the Jacobi identity; for
example the bracket (2.15), in the holonomic basis, respects this condition already when
ρ is required to be a homomorphism with the Lie algebra of X1(M).

Example 2.2.3. The standard instance of Dorfman bracket, i.e. the bracket for the CA
(TM ⊕ T ∗M,η, prTM , [, ]D):

[U, V ]D = [X,Y ]Lie + LXσ − ιY dσ,

is partly given by J, K. In fact, setting η := 〈, 〉, one can easily check that

[U, V ]D − JU, V K = 〈dρU, V 〉 , (2.17)

where actually dρU ∈ Ω1(E) (so it is not a 2-form as one may think), as it is given by
dρU = ρ∗(dUα(x))ξα, with ρ∗ that in this case (where ρ = prTM ) just embeds dUα(x) in
E∗. Then the pairing works as the musical isomorphism to lower the index on V β. This
leaves a section of the dual E∗ defined on the RHS. The sides of the equation match when
on the LHS we contract with Γ(E∗) 3 〈·,W 〉, and on the RHS we plug in W , so that on
both sides we are left with a function.

Of the two main notions of differentiation on a smooth manifold, the Lie derivative
and the covariant derivative, we already hinted a bit at the extension of the former to
Courant algebroids. The Dorfman derivative is formally a Lie derivative but built with
the non-skewsymmetric CA bracket. Despite the lack of antisymmetry, it fulfills

LULVW − LV LUW = L[U,V ]DW.

This is, in fact, an equivalent version of the Jacobi identity (in the form given in item 1,
common to definition 2.1.1 and definition 2.1.2). Conversely, in order to get a covariant
derivative a connection is needed. On a Courant algebroid a connection ∇ : Γ(E) 7→
Γ(E∗)⊗ Γ(E) is specified by the properties

∇fUV = f∇UV,
∇UfV = ρ(U)f V + f∇UV,

(2.18)

of any affine connection on a vector bundle. A common request is usually to ask for
compatibility with the pairing:

ρ(U)〈V,W 〉 = 〈∇UV,W 〉+ 〈V,∇UW 〉.

In the next part we will see that this is not an independent requirement but it is rather
related to one of the axiom for a CA, and ultimately is a consequence of having a graded
Poisson algebra associated with the Courant algebroid. The set of all affine connections
compatible with 〈, 〉 has the structure of an affine space modeled on Γ (E∗ ⊗ o(E)), with
o(E) bundle of skew-symmetric endomorphisms of E with respect to 〈, 〉. Another addi-
tional feature that could be implemented is certainly the requirement for the generalized
metric to be covariantly constant, ∇G = 0. This is obviously equivalent to say that
∇ : Γ(E±) 7→ Γ(E∗ ⊗ E±), i.e. the eigenbundles are preserved. From a graded Poisson
algebra viewpoint ∇G = 0 is also an independent requirement. We will see that to get
our results these properties of the connection will be imposed in a different way.

It would be intriguing if the Generalized Geometry analogue of the Levi-Civita theorem
could hold. This is not the case, however. Torsion-free connections (compatible with the
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generalized metric) are proven to exist (see proposition 3.3 in [23]), but there is plenty
of them. According to the just cited reference, connections with a fixed torsion (not
necessarily zero) form an affine space modeled on the space of mixed symmetry 3-tensors
Σ,

Σ = Γ
(
E⊗

3
)
∩ Σ,

where Σ := Γ(E)⊕ Σ0, Γ(E) 3 e with σe(W,U, V ) = 〈W,V 〉〈e, U〉 − 〈W,U〉〈e, V 〉,
Σ0 :=

{
σ ∈ Σ |

∑rank E
i=1 σ(ξi, ξ̃

i, ·) = 0
}
.

(2.19)
As an E∗-valued endomorphism of E, σe is reminiscent of the 1-form valued endomor-
phisms in pseudo-Riemannian geometry, due to the variation of a metric connection
with fixed torsion upon a conformal change of the metric. Later, we will have e =(

0
−(1/3)dφ(x)

)
, φ(x) ∈ C∞(M), in section 3.2, and as just explained it cannot change

the torsion: this claim will also be explicitly verified. Our connection will actually not
belong to the space of torsion-free generalized connections.

However notice that the Levi-Civita theorem, despite being invalid for Generalized
Geometry which is a mixture of complex, symplectic and Riemannian geometry, holds
instead for para-hermitian geometry [48]. This kind of geometry is studied in relation
with DFT (see section 1.4.2) because it can potentially solve many ambiguities of the
latter concerning global aspects. Let us give a short and rather approximate definition.
Para-hermitian manifolds are triples (M,K, η) where M is a manifold of even dimension
endowed with a (1, 1)-tensor field K ∈ End(TM) such that K2 = 1, η is the O(d, d)
pairing and is compatible with K in the following sense: KT ηK = −η, or equivalently
η(K(X), Y ) + η(X,K(Y )) = 0. It thus induces a non-degenerate 2-form ω = η(K(X), Y ),

generally not closed. Also, the subbundles L±, Γ(L±) 3 1

2
(1±K)(X), are required to be

integrable. The topic was recently reviewed in [49].
A nice example of a connection frequently employed in Generalized Geometry is the

Bismut connection. Remind that (g +B) and −(g −B) are the applications whose graph
gives rise to E+ and E− respectively. Call C : E± 7→ E∓ the operator that switches the
two eigenbundles among themselves. Given that the generalized vector U = X+γ ∈ Γ(E)
decomposes in E+ ⊕ E− as

X + γ =
1

2

[
(X+ +X−) +

(
g−1(γ)+ − g−1(γ)−

)
−
(
g−1B(X)+ − g−1B(X)−

) ]
,

where the subscripts underline to which of the mutually exclusive subspaces E± the vectors
belong, then the operator C applied to it yields:

C(X + γ) = X − γ + 2B(X).

Definition 2.2.4. Generalized Bismut connection. [18] The connection ∇ given by

∇WU = [W+, U−]D, (−) + [W−, U+]D,(+) + [C(W+), U+]D,(+) + [C(W−), U−]D,(−).

Interestingly, one can show that the applications (g+B) and (−g+B), if invertible, are
a homomorphism of the Bismut connection with either one of the two regular connections
∇± : Γ(TM) 7→ Γ(T ∗M ⊗ TM),

∇±XY = ∇L.C.
X Y ∓ 1

2
g−1H(X,Y, ·).
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This connection can be taken as starting point to compute the low-energy string effective
action with no dilaton (depicted in section 1.3).

Often we will recur to the possibility to employ a splitting of the CA exact sequence.
Let us collect here some definitions for further reference.

A splitting of the sequence (2.5) is a map s : Γ(TM) 7→ Γ(E) such that ρ(s(X)) = X.
When 〈s(X), s(Y )〉 = 0, it was possible to infer that exact CA are equivalent up to a
choice of a closed 3-form (an element in the third cohomology class). However, non-
isotropic splitting will be relevant too, since they leave us with an induced metric gTM on
regular tangent vector fields:

〈s(X), s(Y )〉 =: gTM (X,Y ).

When a splitting is present, by means of the CA metric and the canonical pairing of vector
fields and forms the dual map is available too, s∗ : Γ(E) 7→ Γ(T ∗M)

〈s(X), U〉E = 〈X, s∗(U)〉;

on the RHS the pairing is the canonical one of vector fields and 1-forms. With s∗ one can
also check whether s∗(j(γ)) = γ, but whether this may hold or not is a rather accessory
feature for the maps.

Dualizing the sequence will also lead to interesting results. It corresponds to consider
this sequence

0→ TM
∆−→ E

∆∗−−→ T ∗M → 0. (2.20)

The procedure is orchestrated in this way: one starts with the usual short exact sequence
and retains the s ≡ ∆ splitting from it, then builds ∆∗ such that Im∆ = Ker∆∗, and
eventually works out a cosplitting r : Γ(T ∗M) 7→ Γ(E), either isotropic or not. In the
latter case, there is an induced metric on forms g(T ∗M):

〈r(γ), r(σ)〉 =: g(T ∗M)(γ, σ).

Furthermore, the generalized tangent bundle has a 1-gerbe structure. This is the higher
geometric analogue of a circle bundle, i.e. a principal S1-bundle with U(1) as structure
group. The exposition follows [50] but in terms of gauge fields in replacement of transition
functions. The 1-form U(1)-field A in the overlap of two patches U(i)∩U(j) 6= {0} behaves
as follows

A(i) = A(j) − df(ij), f = e2πiϕ ∈ C∞(M).

The set of functions, on triple overlaps of open sets Ui ∩ Uj ∩ Uk, shall respect a cocycle
condition:

f(ij) + f(jk) + f(ki) = 1.

This structure generalizes to line bundles over the intersection of two patches, to constitute
a so-called 1-gerbe structure. The gauge field is now a 2-form B field for the CA E ∼=
TM ⊕ T ∗M . On the overlapping local patches Ui ∩ Uj with non-empty intersection,

B(i) = B(j) − dA(ij).

d here is the de Rham differential. Now on intersecting overlaps of a triple of open sets,
Ui ∩Uj ∩Uk 6= {0} a cocycle condition needs to be fulfilled by the cohomological forms A
themselves:

A(ij) +A(jk) +A(ki) = (dh)(ijk) .
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h are smooth functions with values in U(1). Later the 1-gerbe structure will play an
important role when constructing scalar curvatures for the generalized tangent bundle,
because they will be naturally invariant under the gauge symmetry of the B-field (see
3.2).

We just saw that having a gerbe is also equivalent to possess a cohomology class, in
these cases H2(U,Z) and H3(U,Z) (we encountered H3(U,R), but this is just a matter
of rescaling with π factors). Looking at the generalized tangent space in the short exact
sequence (2.20), it is actually more natural to have a homology class H3(U,Z), since there
TM is fibered over T ∗M and not vice versa. The gauge field is the bivector Π, being locally
R = dρΠ for ρ(U) = β(γ), β : Γ(T ∗M) 7→ Γ(TM) and R ∈ X3(M) representative of the
third homology class. As previously, on double overlapping open sets, Π patches according
to Π(i) = Π(j) − dβα(ij), where α ∈ Λ(TM). The cocycle condition in the intersection of
three open sets holds for α:

α(ij) + α(jk) + α(ki) = (dβν)(ijk) .

Invariance under the gauge symmetry of the Π field will be present in curvature scalars
for the generalized tangent bundle (see section 3.3).

2.3 Torsion and curvature tensors

Having a CA bracket which is either non-antisymmetric (Dorfman bracket) or that does
not fulfill the Jacobi identity (Courant bracket [, ]C) puts a serious obstruction to the def-
inition of the torsion tensor and the curvature tensor, borrowed from standard differential
geometry. For the torsion, an alternative definition appeared in [18]:

TC(W,V,U) = 〈∇WV −∇VW − [W,V ]C , U〉+
1

2
(〈∇UW,V 〉 − 〈∇UV,W 〉) . (2.21)

Tensoriality in the first slot is easily checked by means of (2.9), then in the second slot
follows from antisymmetry and in the third is immediate. A similar definition of torsion
tensor can however be furnished with the Dorfman bracket in the place of the Courant
bracket [51]:

TD(W,V,U) = 〈∇WV −∇VW − [W,V ]D, U〉+ 〈∇UW,V 〉. (2.22)

Again, checking that TD is a tensor takes one line of computation and uses the result in
(2.4), antisymmetry among the first two entries, and manifest tensoriality of the third
slot. TC is evidently totally antisymmetric, but it is also quite straightforward to show
that also TD ∈ Λ3E∗: it is sufficient to use one time the axioms 1 and 2 in the definition
2.1.2, which in plain English tell us that the bracket is a derivation of the pairing and that
it fails to be antisymmetric by D (or dρ) of the pairing.

However if a generalized Lie-bracket is at our disposal a new possibility for the torsion
tensor opens up. This is what we used in [3] and its follow-up paper [7].

Definition 2.3.1. Torsion tensor. A torsion tensor for E-vectors T : Λ2E∗ 7→ E,
T (fW, V ) = fT (W,V ) and T (W,V ) = −T (V,W ), can be defined by the following expres-
sion:

T (W,V ) = ∇WV −∇VW − JW,V K. (2.23)
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This torsion is more general than (2.21) and (2.22) since the bracket employed here
fulfills a fewer number of conditions. In the following we will sometimes slightly abuse the
notation and refer with T to the fully contracted expression, T : Λ2E∗ ⊗ E∗ 7→ C∞(M),
T (U, V,W ) = 〈T (U, V ),W 〉. It should not cause confusion. We shall now see that if
the connection depends on the Dorfman bracket for the CA and on the Lie-like bracket,
the torsion TD coincides with T . That is a side remark descending from an observation,
reported here in the form of a proposition. It was proven by ourselves in [3].

Proposition 2.3.2 (Mutual dependence of brackets and connection). Given a non-degenerate
symmetric bilinear form 〈, 〉 on the sections of a vector bundle E and an anchor ρ : E 7→
TM , then a generalized Lie-bracket J, K on E-sections (as in definition 2.2.2), an affine
connection ∇ : Γ(E) 7→ Γ(E∗)⊗ Γ(E) which is also metric and has totally antisymmetric
torsion T ∈ Γ(Λ3E∗), and a bracket [, ] as in definition 2.1.2, but for which the Jacobi
identity in Leibniz form (i.e. as in item 1 of definition 2.1.1) does not necessarily hold,
depend upon each other in this way:

〈[U, V ]− JU, V K,W 〉 = 〈∇WU, V 〉. (2.24)

Proof. (i) Assume to be given [, ] and J, K under the hypotheses of the proposition.
Then their difference shall satisfy the properties of an affine connection (2.18), be metric
for 〈, 〉 and have fully antisymmetric torsion. Tensoriality for W is obvious. Multiplication
of V with a function still transforms the expression as a tensor because the CA bracket [, ]
and the Lie-like bracket change in a way that they compensate each other, see the second
axiom of definition 2.1.1, and definition 2.2.2. Then sending U in fU leads to

〈∇W fU, V 〉 = 〈−ρ(V )f U + dρf〈U, V 〉+ f [U, V ]− fJU, V K + ρ(V )f U,W 〉
= f〈[U, V ]− JU, V K,W 〉+ ρ(W )f〈U, V 〉 = f〈∇WU, V 〉+ ρ(W )f〈U, V 〉,

as expected from an affine connection ∇WU . Metricity follows from the antisymmetry of
J, K and the second axiom for the bracket in definition 2.1.2. The torsion of the connection
is completely antisymmetric because

〈T (U, V ), V 〉 = 〈[V, V ], U〉 − 〈[U, V ], V 〉 =
1

2
ρ(U)〈V, V 〉 − 1

2
ρ(U)〈V, V 〉 = 0.

(ii) Assume now to be given J, K and the metric connection with skew torsion under the
hypotheses of the proposition. Fulfillment of the Leibniz rule for the second entry of the re-
sulting [, ] is a plain consequence of the Leibniz rule for the Lie-like bracket. The first axiom
is fulfilled because of metricity and thanks to 〈T (V,U),W 〉 = −〈T (W,U), V 〉. The second
axiom is then a consequence of ∇ being metric. (iii) Starting with the non-skewsymmetric
bracket and the connection, their difference generates a generalized Lie bracket because
it is antisymmetric, since the lack of antisymmetry of [, ] is compensated by the metric
preserving connection, while fulfillment of the Leibniz rule is a direct consequence of the
same condition on [, ].

�

Proposition 2.3.2 is certainly interesting on its own right. However there is opportunity
for some quite curious consequences, which present themselves whenever we relax some of
the demands for [, ] or ∇. As pointed out below definition 2.1.2, the first axiom (item 1 in
2.1.2) is a bit counterintuitive in usual geometry. Shall you not be interested in requiring
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it for the binary operation [, ], while keeping the other two conditions (i.e. the Leibniz rule
for the second entry and that a coboundary regulates the failure of antisymmetry for [, ]),
then the connection is less restricted. It is still affine (via Leibniz rule of [, ] and J, K)
and metric (this property is associated with the second axiom, item 2 of 2.1.2) but its
torsion is not forcefully skewsymmetric. Instead for the Lie-like bracket, switching from
the maximal to the minimal set of assumptions for [, ] or ∇, does not provide any change
to it. Jacobi identity for the CA bracket is supposedly related to the curvature of the
connection, but further investigations are still pending. These remarks, for a connection
on vector fields arising as the difference of an expG deformation of the bracket and the
bracket itself, G ∈ S2T ∗M , were already presented in [52] and [53].

One immediate striking consequence of the proposition is that for the affine connections
which are the difference between a Dorfman bracket and a generalized Lie bracket the
associated torsion tensor (2.22) is equivalent to the contraction of the one of definition
2.3.1 with a third generalized vector:

TD(U, V,W ) = 〈[V,W ]D− JV,W K, U〉−〈[U,W ]D− JU,W K, V 〉−〈JU, V K,W 〉 ≡ T (U, V,W ).

This is not surprising as both TD and T belong to Λ3E∗.

Notice that example 2.2.3, which was meant to show the presence of the Lie-like bracket
J, K in the standard Dorfman bracket (2.7), falls also into the proposition (2.24): one should
see 〈dρU, V 〉 ∈ Ω1(E) in (2.17) as the contraction of the flat connection ∂U ∈ Γ(E∗ ⊗ E)
with the generalized vector Γ(E∗) 3 〈·, V 〉, which leaves with a section of the dual to
E. The connection due to these choices has no non-trivial connection symbols and zero
curvature.

Although (2.24) will mostly be used to determine a connection on E-sections, it is
essential to remark once again that starting with a given connection and one of the two
types of brackets, that relation leads to the determination of the other bracket, globally.
Showing that the bracket [, ] on E-sections could automatically respect the Jacobi identity,
using (2.24), is still work in progress.

Defining a curvature tensor with the CA-bracket is troubling too. The Riemann cur-
vature of the connection, when mirroring the standard definition of Riemannian geometry,

Riem(W,V )U = ∇W∇V U −∇V∇WU −∇[W,V ]DU, “(wrong)”,

misses anyway a very important point: it fails to be a tensor. This is clear from the
covariant derivative of the commutator, as the latter is given by the Dorfman bracket,
that is known to behave in different ways under C∞(M)-multiplication in the first (2.4)
or second slot (axiom 2 of 2.1.1). Employing [, ]C (2.8) in place of the Dorfman bracket
does not improve the situation either: due to the transformation property under C∞(M)-
multiplication (2.9), Riem with [, ]C would not be a tensor too.

With the Lie-like bracket this task is much more handful.

Definition 2.3.3. Riemann curvature tensor. Given a generalized Lie-bracket J, K
and a CA connection ∇, the Riemann curvature tensor for that connection Riem ∈
Γ
(⊗3E

)
7→ Γ (E) is the commutator of covariant derivatives minus the covariant deriva-

tive of the Lie-like bracket:

Riem(W,V,U) = [∇W ,∇V ]U −∇JW,V KU. (2.25)

Riem is immediately seen to be C∞(M)-linear thanks to the properties of J, K and ∇.
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The Ricci curvature tensor Ric ∈ Γ(E∗ ⊗ E∗) is then, as in standard Riemannian
geometry, the partial trace of Riem, seen as a section of

⊗3E∗ ⊗ E:

Ric(V,U) =
2d∑
α

〈Riem(ξα, V, U), ξ̃α〉. (2.26)

Another smart solution to the puzzle of the Riemann curvature tensor in Generalized
Geometry, suggested almost independently by Ševera, Valach [54] and Garçia-Fernandez
[23], consists in bypassing the latter and instead focusing directly on the Ricci curvature
tensor built by virtue of a divergence operator, div : Γ(E) 7→ C∞(M) that satisfies the
Leibniz rule:

divf e = ρ(e)f + f dive, ∀ e ∈ Γ(E), f ∈ C∞(M).

Thus a good choice can be for example

dive = tr∇e, (2.27)

where tr denotes the trace. Then the generalized Ricci tensor GRic, referring to E+,
with 〈, 〉|E+

non-degenerate (positive-definiteness is not a necessary condition here), as a
pseudo-generalized metric, is defined by the aforementioned authors as:

GRic : Γ(E+)× Γ(E−)→ C∞(M),

GRic(U+, V−) := div[V−, U+]D, (+) − ρ(V−)divU+ − trE+ [[·, V−]D, (−), U+]D, (+).

The subscripts on the Dorfman bracket indicate projection onto the subspaces of the
positive or negative eigenvalues for 〈, 〉. The proof of C∞(M)-linearity in both entries is
the object of proposition 3.2 of [22]. Essentially, it follows from the Leibniz rule for the
divergence and from

trE+ [[·, fV−]D, (−), U+]D, (+) = ftrE+ [[·, V−]D, (−), U+]D, (+) + ρ
(
[V−, U+]D, (+)

)
f ;

then for U+ one must work out the expression for GRic(V−, U+) and use the previous
result. The above formula for GRic is subsequently proven to be equivalent to the Ricci
tensor of a connection metric w.r.t. a Riemannian metric g and with torsion H ∈ Ω3(M),
evaluated on the anchored vector fields.

The first half of mathematical background knowledge needed for the comprehension
of the main body of this thesis finishes here. The next half will remind the reader about
graded spaces and graded Poisson algebras.
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2.4 Graded spaces and Poisson algebras

This section illustrates the second topic of mathematical preliminaries on which our re-
search work was based: graded geometry and Poisson algebras. The review is mostly
based on [55], [56], [57] and [5]. Let us start with some useful definitions about graded
geometry.

2.4.1 Graded Geometry

A first notion to recall is that of graded vector space.

Definition 2.4.1. Graded vector space. A vector space V which is the direct sum of
vector spaces Vi over a ring of characteristic zero, V = ⊕i∈ZVi.

The degree of an element v ∈ V will be denoted by |v|. If for example v = vi1 ∈ Vi1 ,
where i1 = 1 ∈ Z, then the degree (or grading) of v is |v| = 1. In the course of the thesis
we will largely employ the notation V [n] to refer to degree shifting by n ∈ Z of a regular
vector space V . The symmetric and exterior algebra, S(V ) and Λ(V ) respectively, are
easily defined as in the non-graded case upon careful assignation of the degree-dependent
signs. If the tensor algebra is

T (V ) = ⊕n≥0V
⊗n = 1⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . . ,

and we consider the ideals

IS :=
{
v, w ∈ V | v ⊗ w − (−1)|v| |w|w ⊗ v

}
,

IΛ :=
{
v, w ∈ V | v ⊗ w + (−1)|v| |w|w ⊗ v

}
,

then the symmetric algebra and the exterior algebra are the quotients:

S(V ) := T (V )/IS , Λ(V ) := T (V )/IΛ.

Aside from vector spaces, we wish to set up a grading to manifolds as well, so that we
could use some graded differential calculus. This is not too complicated, and requires the
notion of graded algebra.

Definition 2.4.2. Graded algebra. (A, ·) is a graded algebra if A is a graded vector
space and the bilinear associative product · : A ⊗ A 7→ A has degree zero. Graded
commutativity of the algebra is the following condition on the product:

a · b = (−1)|a| |b| b · a, a, b ∈ A.

Definition 2.4.3. Graded manifold. A manifold M and a graded vector space V such
that the graded algebra of polynomial functions O(U) of a contractible open set U of M
is isomorphic to C∞(U)⊗ S(V ), where SV = ⊗i∈2NS(Vi)⊗ Λ(Vi−1).

Graded manifolds will be denoted with curly Latin letters such as M. In order to
know the grading of an element of the algebra O(M) = ⊕i∈NOi(M) it is useful to recur
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to the Euler vector field2 ε:

ε = |xi|xi ∂
∂xi

,

where xi are local coordinates on M, i.e. |xi| = 0 if xi is a coordinate for U , |xi| = j
if xi ∈ Vj . The graded manifold is also said to be technically a N-manifold since the
algebra of polynomial functionsO(M) is graded commutative according to definition 2.4.2,
which roughly speaking means that even coordinates commute, while odd coordinates
anticommute. This terminology will be used from time to time in the thesis.

Notice that if the degrees are 0, 1 ∈ Z2, one talks about supermanifolds: the algebra
of Z2-graded polynomial functions O(U) is isomorphic to C∞(U)⊗ΛV ∗1 , where the super
vector space (Z2-graded) decomposes as V = V0 ⊕ V1.

A straightforward generalization of the concept of graded manifold is that of graded
vector bundle, E[k]: in fact if E

π−→ M is a vector bundle, its graded version is merely a
graded manifold with base M and with algebra of functions O(E[k]) given by

O(E[k]) =

{
Γ(ΛE∗), for odd k

Γ(SE∗), for even k;

For all our purposes, we will pick up graded manifolds which are graded vector bundles.

2.5 Graded Poisson structures

As mentioned in the introduction, Poisson algebras will play a relevant role in the thesis.
The most familiar instance where a Poisson algebra appears in a context of physical
interest is classical Hamiltonian mechanics: the phase space of a particle, combining the
positions and momenta the particle is allowed to take, possesses a natural symplectic
structure. Hamiltonian functions (energy of the system) can be given and the dynamics
is then unveiled via Poisson brackets of the conjugate coordinates with the Hamiltonian.

Applications of Poisson/symplectic structures, above all in the graded case, are very
essential for some other very relevant topics in physics, as illustrated in the remaining
subsections of this section: quantization (BRST quantization and à la Batalin-Vilkovisky)
and sigma models. Let us go through the fundamental preliminaries first.

Caveat: unless explicitly specified, we will always assume that the Poisson manifold is
also symplectic, i.e. that the Poisson bivector is non-degenerate.

First of all, some objects which are well-known in the ungraded situation will be
extended to the graded picture here.

Definition 2.5.1. Graded symplectic form. ω ∈ Λ2T ∗M, non-degenerate and closed
with respect to the de Rham differential (dω = 0), is graded with degree n if Lεω = n (see
footnote2).

Note that in particular, for n = 2 in d dimensions, the putative symmetry group Sp(4d),
due to the graded commutativity of the coordinates, is actually Sp (2d)× SO (d, d).

2the Euler vector field is the infinitesimal generator of the multiplicative action Φ of R on the vector
bundle E:

Φ : (t, e) ∈ R× Γ(E) 7→ Φt(e) := exp(t) · e ∈ Γ(E)

ε :=
d

dt |t=0

Φt(e).

The Euler vector field naturally gives rise to the notion of Euler Lie derivative Lε.
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A graded symplectic manifold has a graded ω of maximal degree. Inversion of the
symplectic form yields a Poisson bracket {, } of opposite degree, i.e. |{, }| = −n. Hence
{Ok(M),Ol(M)} ⊂ Ok+l−n(M). Let us also briefly show the definition of a graded
Poisson algebra:

Definition 2.5.2. Graded Poisson algebra. A triple (A, ·, {, }) where A is a graded
vector space, the product is bilinear and associative and carries no degree, while {, } :
A × A 7→ A has degree −n, is graded skew-symmetric and fulfills the graded Jacobi
identity, in order:

{a, b} = −(−1)(|a|−n)(|b|−n){b, a},
{a, {b, c}} = {{a, b}, c}+ (−1)(|a|−n)(|b|−n){b, {a, c}}, a, b, c ∈ A.

The bracket is also a biderivation of the product:

{a, b · c} = {a, b} · c+ (−1)|b|(|a|−n)b · {a, c}. (2.28)

As a rule of thumb, for n even (resp. odd), the additional minus sign is “activated”
just when both the involved elements of the algebra are odd (resp. even).

A differential structure on graded symplectic manifoldsM is provided by a homological
vector field.

Definition 2.5.3. Homological vector field Q. An element Q ∈ X(M) of odd degree
m < n is a homological vector field if LQω = 0.

Technically, the presence of Q turns a N-manifold into a NQ-manifold. Other names
after which these differential graded symplectic manifolds are called are also dg-symplectic
manifolds and QP-manifolds.

Some unexpected results about graded symplectic manifolds are contained in [5] (lemma
2.2 therein):

1. Any symplectic form of degree n ≥ 1 is necessarily exact:

ω = d

(
1

n
ιεω

)
. (2.29)

(Could be easily proven by graded Cartan identities with the Euler Lie derivative
Lε.)

2. Any vector field X of degree m > −n preserving ω is Hamiltonian:

ιXω = ±
(

1

m+ n
ιXιεω

)
.

Proof: using [ε,X] = mX, the identity [Lε,LX ] = L[ε,X] and the observation that
[Lε, d]ω = 0 (which follows from [d, d] = d2 = 0),

[Lε,LX ]ω = Lεd (ιXω)− LXnω = ∓d (LειXω)− dιXnω
L[ε,X]ω = LXmω

Then the statement follows directly from d ((m+ n)ιXω) = ±d (dιXιεω).

�
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Therefore we can assert that a homological vector field Q by definition induces a Hamil-
tonian function Θ of degree n+m,

Q = {·,Θ},

which then, since Q2 = 0, satisfies the classical master equation by graded Jacobi identity:

{Θ,Θ} = 0. (2.30)

We will later see that working in a local open set with Darboux coordinates, the vector Q
and our differential dρ (2.14) are related.

2.5.1 Classification of degree 1 and 2 symplectic manifolds

Reference [5] nicely illustrates what the symplectic structures are for the degree 1 and
2 cases. Here we present the classification of that paper in a more accessible and less
technical way, mostly by focusing on the local coordinate description.

Degree 1. When the maximal degree is 1, the graded symplectic manifold M is a
vector bundle E

π−→ M where locally the coordinates on the base {xi} have degree 0,
while the fibers χi have degree 1, and are anticommuting. Then the Poisson brackets
(|{, }| = −1), by degree counting, can just be

{xi, xj} ≡ 0, {xi, χj} = δij = −{χj , xi}, {χi, χj} = −{χj , χi} = 0 ⊂ O1(M).

The symplectic form is thus ω = δi
jdxi∧dχj . The classification of this type of graded man-

ifolds is fully exhausted by the shifted cotangent bundle T ∗[1]M . Other results concerning
the Hamiltonian and the associated derived bracket (defined in 2.6.1) are postponed to
section 2.6.

Degree 2. Assigning the second non-trivial degree gives rise to a fibration on M

M2 →M1 →M0,

where the subscript refers to the maximal degree there. In a local chart for the manifold
M0 the coordinates are degree-0 {xi}. Then M1 is locally the trivialization of a vector
bundle, with coordinates {xi, χj}, where the degree-1 {χj} are anticommuting. M2 is
hence the symplectic realization of the latter: basically it “completes the puzzle with the
missing pieces”, i.e. the conjugate coordinates {pi, θj}, respectively of degree 2 and degree
1, so that the symplectic form can have the maximal degree, as prescribed. The Poisson
brackets are thus of even degree −2. Let us write them down for the algebra of functions
for better convenience:

{O0(M),O0(M)} ≡ 0 ≡ {O0(M),O1(M)}, {O1(M),O1(M)} ⊂ O0(M),
{O2(M),O1(M)} ⊂ O1(M), {O2(M),O0(M)} ⊂ O0(M),
{O2(M),O2(M)} ⊂ O2(M), {O2(M),O1(M)} ⊂ O1(M).

Of these, the only non-trivial bracket which is even under parity is thus the first in the
right column: its output must hence be a (non-degenerate) symmetric bilinear form, i.e. a
metric. For the p − p bracket (the last on the left), the degree counting hints at the
fact that O2 shall be a Lie algebra; anyway the Leibniz rule applied to the last bracket
in the right column and the graded Jacobi identity show first of all that the action of
O2 on O1 is that of an anchor map ρ and eventually the former is a Lie algebroid, A
(see definition 2.1.1). Furthermore, since actually O1O1 = Γ(Λ2M∗1 ) acts trivially on the
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polynomial functions of degree 0, as it can be noticed via Leibniz rule, A and Λ2M∗1 sit in
the short exact sequence:

0→ Λ2M∗1 → A
ρ−→ TM0 → 0.

Thus thanks to this sequence we can infer that the graded symplectic structure for the
degree 2 case is completely determined by the vector bundleM1 with metric. The canonical
symplectic form is

ω = δji dpj ∧ dx
i +

1

2
δijdχi ∧ dθj . (2.31)

On the other hand, the opposite implication is also admissible: if a vector bundle with
a metric, (E, 〈, 〉), is given, then a degree-2 symplectic manifold can always be constructed
quite naturally. Let us sketch the procedure. First, shift the degree of E to build the graded
bundle E[1]. This is a Poisson manifold according to the explanation in the classification of
degree 1 symplectic manifolds. Then consider the cotangent space to E[1], T ∗[2]E[1]: this
is the natural symplectic manifold of degree 2 for the Whitney sum of E[1] with its dual.
A projector p : T ∗[2]E[1] 7→ E[1]⊕E∗[1] can always be defined. If ι : E[1] ↪→ E[1]⊕E∗[1]
embeds E[1] into E[1]⊕E∗[1] via 〈, 〉 : E[1] 7→ E∗[1], pulling back T ∗[2]E[1] with ι∗ := ιM
leads to the following commuting diagram:

M T ∗[2]E[1]

E[1] (E ⊕ E∗)[1]

ιM

p̃ p

ι

Thus the minimal symplectic realization of E[1] is the fiber product:

M = T ∗[2]E[1]×(E⊕E∗)[1] E[1].

There are other instances of degree-2 dg-manifolds worth mentioning. They are con-
structed from a vector bundle with a pseudo-Euclidean metric and a connection, and as
such the symplectic form depends on how the connection splits the tangent bundle to
E into vertical and horizontal subspace. This is enunciated in a proposition proven by
Rothstein in [58].

Proposition 2.5.4. For a vector bundle E, endowed with g pseudo-Euclidean metric, and
∇ metric connection, then T ∗[2]M ⊕ E[1] is a graded symplectic manifold with an exact
(g,∇)-dependent symplectic form ω = dν,

ν = π∗1ν0 + π∗2ϑ.

Here π1 (resp.π2) projects onto T ∗[2]M (resp.E[1]), ν0 is the canonical 1-form (the sym-
plectic potential) and ϑ ∈ Ω1(E[1]) annihilates on the horizontal subspace of TE[1], and

on a vertical vector v, ϑ(v) =
1

2
g(v, ·).

Hence the canonical ω, labeling ξa the local coordinates for the fibers and ηab the
constant metric, is

ω = δji dx
i ∧ dpj +

1

2
ηab dξa ∧ dξb. (2.32)

Also E[1]⊕E∗[1] with the duality pairing, and the connection induced from a connec-
tion on E, falls into the hypotheses of the proposition, thus T ∗[2]M ⊕ (E[1] ⊕ E∗[1]) is
another degree-2 symplectic manifold.
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The presentation here concludes the analysis on Poisson manifolds of degree 2; we
hope to have made it clear, although some further mathematical rigor could have been
used in some parts. Later both T ∗[2]E[1] and T ∗[2]M ⊕E[1] will be the starting setup for
our considerations in the “Results” chapter. In particular E[1] is going to be the shifted
tangent space to a manifold M ; moreover we will furnish a non-canonical Poisson algebra
there, as allowed by Moser lemma, by explicitly finding the coordinate transformation that
leads to another non-degenerate and closed 2-form ω′, or by directly suggesting a ω′ under
the conditions of validity for the lemma. The differentiable Q-structure and the relations
to other interesting geometrical objects are faced later in section 2.6. As for now, let us
focus on Moser lemma and its version for graded variables.

2.5.2 Moser lemma for graded manifolds

This lemma is really crucial for our personal novel contributions. In the original version
[2], Jürgen Moser focused mostly on global aspects, using cycles and cocycles in the proof.
Instead we will just need the local version, with exact and closed forms. In fact, as we
are based on graded geometry, there is going to be some small sign differences in the
graded version of the lemma. Since we are mostly concerned with degree-2 manifolds,
and knowing that they are of type T ∗[2]E[1] ≡ M, the lemma will be proven for this
instance of dg-manifold. It will show that any non-degenerate and closed form of degree
2 is symplectic. Be reminded that the de Rham differential d

d : Γ
(

ΛkT ∗M
)
7→ Γ

(
Λk+1T ∗M

)
,

is ungraded, and therefore preserves the total degree.
Suppose hence that a symplectic form is given. Moser lemma justifies to consider defor-

mations of the assigned structure we begin with. They are labeled by the diffeomorphisms
of M.

Theorem 2.5.5. Moser lemma
Consider (T ∗[2]E[1], ω0) graded symplectic manifold with ω0 symplectic form of degree 2.
Take a family of other closed and non-degenerate 2-forms labeled by a real parameter t ∈
[0, 1], ωt, such that locally ωt−ω0 = dAt, for At 1-form. Then at fixed t, ωt is the pullback
of ω0 by some degree-preserving diffeomorphism ϕt of T ∗[2]E[1] ≡M, ϕ : [0, 1]×M 7→M:

ϕ∗tωt = ω0. (2.33)

Proof: The key of the proof is to check whether the diffeomorphism ϕt can really
relate the two forms ωt and ω for each t. This is equivalent to check whether ϕt can be
the flow of a vector field Xt:

d

dt
ϕt = Xt ◦ ϕt.

Differentiating ω0 in (2.33) with respect to t yields:

0 =
d

dt
ϕ∗tωt = ϕ∗t

(
LXtωt +

d

dt
ωt

)
. (2.34)

But since ωt = ω0 + dAt, and employing the graded Cartan’s identity LXt = ιXtd +

(−1)|Xt| dιXt , the above chain of relations reduces to

(−1)|Xt| ιXtωt = Ȧt, (2.35)

where the dot above At obviously denotes derivative w.r.t. t. By non-degeneracy of ωt
(2.35) can always be inverted, implying that a vector field Xt always exists.
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�

This lemma allows hence the construction, by means of a diffeomorphism, of a non-
canonical symplectic form (and hence its Poisson bivector) whose associated vector bundle
will be an exact Courant algebroid. The relation between (T ∗[2]E[1]M,ω) and CA neces-
sitate of the homological vector field Q and will be illustrated in a while. In virtue of the
correspondence, also the local expressions of the structures associated with the CA will
be given in a general basis different than the coordinate basis.

2.6 Derived brackets

In this section all the aspects concerning the differentiable structure of the graded sym-
plectic manifolds (provided by a homological vector field Q) will be carefully explained.
The most general Q vectors and the Hamiltonian functions will also be given. As such the
section complements 2.5.

Graded manifolds of degree 1 and 2 and the Poisson algebra of the functions on them
have interesting relations with non-graded manifolds and other kinds of algebra or alge-
broid there. The relation is enclosed in the derived brackets. In this part of the thesis
we will review this aspect following closely Y. Kosmann-Schwarzbach [59] and eventually
expanding her presentation in some points.

The general definition of a derived bracket is the following:

Definition 2.6.1. Derived bracket. Let (U, [, ],D) be a differential graded Lie algebra,
|[, ]| = −n. Then [, ](D) : U× U 7→ U defined as

[a, b](D) := (−1)n+|a|+1[Da, b]

is a non-antisymmetric bracket of degree n + 1 and fulfills a restricted version of Jacobi
identity, which turns it into what is technically known as a Leibniz bracket3. An odd
(resp. even) graded Lie algebra bracket has an even (resp. odd) derived bracket.

Most often what is used in the derived bracket definition is an element of the algebra
h ∈ U, instead than the interior derivation D, with the requirement that [h, h] = 0:

[[a, h] , b] ≡ [a, b](D). (2.36)

h is then a Hamiltonian function. The attentive reader shall have noticed that this is
completely similar to the homological vector field (definition 2.5.3) and the Hamiltonian
(2.30) introduced in the context of graded manifold with a symplectic structure.

Example 2.6.2. With the celebrated Cartan identities

[LX , ιY ] = [[ιX , d], ιY ] = ι[X,Y ],

it is immediate to notice that the Lie bracket of vector fields on the RHS is a derived
bracket with the de Rham differential, on the space of endomorphisms of Ω•(M).

Some general results relate even or odd Poisson brackets on supermanifolds to Poisson
or Schouten brackets on graded symplectic manifolds. They are stated in the form of two
theorems, due to Voronov [60]:

3there is also a corresponding algebroid, the Leibniz algebroid, which is a Lie algebroid (definition 2.1.1)
whose bracket, as already stressed, does not have a definite symmetry.
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Theorem 2.6.3. For any odd Poisson bracket [, ] on a supermanifold M there exists a
quadratic Hamiltonian S on T ∗M by which

[f, g] = {{f, S}, g}, ∀f, g ∈ C∞(M).

On the RHS f, g are considered as functions of T ∗M that are constant on the fibers.

For local coordinates (xA, pA)4 on T ∗M, the quadratic Hamiltonian S is S =
1

2
SAB(x)pA

pB, where SAB(x) = [xA, xB].

A similar result holds for the even Poisson bracket; the symplectic manifold of reference
will be T ∗ΠM, where Π here means ulterior parity inversion (so if M has even (odd)
coordinates, the conjugate coordinates will be anticommuting (commuting)). Beforehand,
however, let us give a quick look at the Schouten-Nijenhuis bracket on multivector fields.
It is the standard bracket for a Gerstenhaber algebra, but we will not go further with the
latter.

Definition 2.6.4. (Schouten bracket.) Let a1a2 . . . an and b1b2 . . . bm be elements of
X•(M) (the exterior algebra Λ•TM). Then the Schouten bracket [, ]SN is

[a1a2 . . . an, b1b2 . . . bm]SN :=
∑
l,j

(−1)l+j [al, bj ] a1 . . . al−1al+1 . . . anb1 . . . bj−1bj+1 . . . bm,

(2.37)
where the bracket on the RHS is the Lie bracket of vector fields.

Remark 1. The Schouten-Nijenhuis bracket of multivector fields is a Poisson bracket
of degree −1 on T ∗[1]M . In fact, [, ]SN : Xm×Xn 7→ Xm+n−1, and retains both the identity
(2.28), where the product is associative, and the Jacobi identity from the Lie bracket. For
the details about T ∗[1]M being a Poisson manifold please review section 2.5.1.

Remark 2. example 2.6.2 can be extended to multivectors, showing that the Schouten-
Nijenhuis bracket [, ]SN is a derived bracket as well.

Theorem 2.6.5. For any even Poisson bracket {, } on M there exists a quadratic Hamil-
tonian P on T ∗ΠM such that

{f, g} = [[f, P ]SN , g]SN , ∀f, g ∈ C∞(M).

f, g on the right side of the equation are seen as functions of T ∗ΠM which are constant
on the fibers, and [, ]SN is the Schouten-Nijenhuis bracket on multivector fields.

In the local coordinates (xA, π̃A) on T ∗ΠM the Hamiltonian is the Poisson bivector

P =
1

2
PAB(x)π̃Aπ̃B.

In the following we will actually employ the theorems the other way round, i.e. starting
with the symplectic manifolds T ∗M or T ∗ΠM, we will seek a Hamiltonian function, and
hence compute the derived bracket.

The outlined theorems give rise to many interesting relations: first of all the odd
Poisson brackets on M of theorem 2.6.3 are good constituting elements for Lie algebras.
Let us discuss them in an example.

4The use of capital letters, from now on, aims at mirroring thatM can have various sets of coordinates.
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Example 2.6.6. Consider the graded space E∗[1] with local coordinates {ẽi}. The cotan-
gent space to E∗[1] is equipped with the canonically conjugated pair {ẽi, x̃i}. Respectively,
they have degree 1 and −1, so |{, }| = 0 and {ẽi, x̃k} = δki = −{x̃k, ẽi}. The most general
Hamiltonian function H ∈ C∞(T ∗E∗[1]) and homological vector field Q on E[1] are

H =
1

2
Ckij ẽkx̃

ix̃j , Q =
1

2
x̃ix̃jCkij

∂

∂x̃k
.

{H,H} = 0 provided that Ck(ij) = 0.

But then if X(ẽ), Y (ẽ) ∈ C∞(E∗[1]) = Γ(Λ•E),

{{X(ẽ), H}, Y (ẽ)} =− ẽk
{
∂X(ẽ)

∂ẽi
Ck[ij]x̃

j , Y (ẽ)

}
= ẽk

∂X(ẽ)

∂ẽi
Ck[ij]

∂Y (ẽ)

∂ẽj
≡ [X,Y ]SN , see (2.37).

Thus, as theorem 2.6.3 states, E is a Lie algebra with a basis {ei} and structure con-
stants Ckij , and the derived bracket has yielded the Schouten bracket of multivector fields.
Remarkably, the construction can be generalized to the product manifold X × T ∗E∗[1],
where ω|X = dx ∧ dp, and Hamiltonian

H = x̃kAikpi +
1

2
Ckij ẽkx̃

ix̃j .

On the other hand, considering the ungraded T ∗E∗ 3
(
ei, pk

)
and the hamiltonian µ,

µ(ei, ej) := Ckijek, theorem 2.6.5 applies and thus the Poisson bracket on f, g ∈ C∞(E∗)
is the derived bracket

{f, g}µ = [[f, µ]SN, g]SN. (2.38)

On the right side of the equation f, g are interpreted as functions of T ∗E∗ which are
constant on the fibers (no p-dependence).

This last example paves the way for discussing the slightly more complicated general-
ization of a pointwise Lie algebra structure.

Example 2.6.7. Consider T ∗A∗[1], where in a local trivialization for A∗[1] the coordinates
are (xi, α̃a), and |x| = 0, |α̃| = 1. The symplectic manifold is very close to the degree 2
case analyzed previously, however here the parity of the canonically conjugated variables
will be the same of their partner, while the degree will be reverted in sign, so that the
Poisson bracket will be neutral. This situation is more adapted for a particular derived
structure. Later in this same section we will go back to T ∗[2]T [1]M . For now the consistent
conjugated pair that completes the local description of T ∗A∗[1] is built with pi, with
grading 0, and β̃b, with grading −1. The canonical Poisson structure is {xi, pj} = δij =

−{pj , xi}, {α̃a, β̃b} = δba = {β̃b, α̃a}. The most general Hamiltonian H of total degree −1
and Poisson square 0 is:

H = Aia(x)piβ̃
a +

1

2
α̃cC

c
ab(x)β̃aβ̃b, {H,H} = 0.

The differential equation {H,H} = 0 is fulfilled if

A[b|
i(x)∂iA|c]j(x) = −Aaj(x)Cabc(x), C l[m|n(x)Cn|bc](x) +A[m|

i(x)∂iC
l
|bc](x) = 0.

34



CHAPTER 2. MATHEMATICAL PRELIMINARIES

It is not difficult to infer the homological vector field Q:

Q =β̃aAia(x)
∂

∂xi
− ∂kAia(x)piβ̃

a ∂

∂pk
+Aia(x)pi

∂

∂α̃a

+
1

2
β̃aβ̃bCcab(x)

∂

∂β̃c
+

1

2
α̃c∂kC

c
ab(x)β̃aβ̃b

∂

∂pk
.

The derived bracket of the Hamiltonian with u, v ∈ C∞(T ∗ΠA∗[1]) which do not depend

on p, β̃ and for the sake of simplicity let us assume that they are linear in α̃ corresponds
to:

{{u(x, α̃), H}, v(x, α̃)} =

{
−∂iuAia(x)β̃a +

∂u

∂α̃a
Aia(x)pi −

1

2
α̃cC

c
ab(x)

[
∂u

∂α̃a
β̃b − β̃a ∂u

∂α̃b

]
, v

}
=− ∂iuAia(x)

∂v

∂α̃a
+ ∂ivAia(x)

∂u

∂α̃a
− 1

2
α̃cC

c
ab(x)

[
∂u

∂α̃a

∂v

∂α̃b
− ∂v

∂α̃a

∂u

∂α̃b

]
.

(2.39)

As granted by theorem 2.6.3, the derived bracket is hence the Schouten bracket (actually,
in this case where the multivectors are just vector fields, it is the Lie bracket) of u, v ∈
C∞(A∗[1]) = Γ(Λ•A) for the Lie algebroid A

π−→M , where (xi) are coordinates on M , and
(xi, ea) parametrize a trivialization for A. This is is true if

[ea, eb] = Ccab(x)ec. [ea, f(x)] = Aai (x)∂if.

Moreover the properties of [, ]SN for a Lie algebroid, antisymmetry and its behavior under
C∞(M) multiplication, are immediate to test. Jacobi identity stems from Cc[a|l(x)C l|bd](x)+

A[a|
i(x)∂iC

c
|bd](x) = 0.

Example 2.6.8. On the other hand, in the same conditions as in the previous example,
A∗ 3

(
xi, αj

)
hosts a natural Poisson bivector

P = Aia(x)
∂

∂xi
∂

∂αa
+

1

2
αcC

c
ab(x)

∂

∂αb

∂

∂αa
.

Then by theorem 2.6.5, if ψ, ς ∈ Γ(Λ•A) (actually taken of degree 0) the derived bracket
of the Schouten bracket with P is the Poisson bracket of ψ, ς, now seen as functions on
A∗:

[[ψ, P ]SN, ς]SN = {ψ, ς}. (2.40)

The situation analyzed so far was based on supermanifolds, i.e. coordinates of degree
0, 1 and their canonical conjugates of degree 0 and −1, but in the next section 3 it will
be more convenient to focus on graded manifolds, so the coordinates will have grading in
N, at most Z. Upon slight changes in the signs and in the total degrees allowed to the
functions, the derived bracket construction will be pretty much alike.

We are about to close our ascent to increasingly complex algebraic and differential
structures by analyzing, as anticipated, the NQ-manifold T ∗[2]T [1]M 3 (xi, θa, χa, pi) with
respective degree (0, 1, 1, 2). The best reference for this is certainly [5]. For simplicity, call
ξα := (θa, χa), implying that Greek indices will range on a space of doubled dimension.
The most general Hamiltonian shall have total degree 3 = |Q|+ 2,

Θ = ξαρ̃
αi(x)pi +

1

3!
Cαβγ(x)ξαξβξγ . (2.41)
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The functions ρ̃ and C in the Hamiltonian are linear maps, ρ̃ : (T ∗[1]M ⊕ T [1]M)∗ 7→
T ∗[2]M , ρ̃(ηαβξβ) = ρ̃αipi and C ∈

(
⊗3(T ∗[1]M ⊕ T [1]M)

)
. It is indeed the case that Θ

is Hamiltonian as we shall verify through the associated homological vector field Q:

Q =ρ̃αi(x)piηαβ
∂

∂ξβ
+ ξα∂kρ̃

αi(x)pi
∂

∂pk
− ξαρ̃αi(x)

∂

∂xi

+
1

6
∂kC

αβγ(x)ξαξβξγ
∂

∂pk
+

1

2
Cαβγ(x)ξβξγηαδ

∂

∂ξδ
. (2.42)

It is certainly true that ιQω = dΘ for Q in (2.42) and Θ in (2.41) and the canonical
symplectic form, as it can be shown with a straightforward computation paying attention
to the sign switch when the differential d needs to pass over a degree-1 coordinate.

Now we can check the derived bracket, with the given Hamiltonian, of a pair of func-
tions U, V ∈ O1(T ∗[2]T [1]M) ∼= Γ(TM ⊕ T ∗M), so that Uα(x)ξα = Xiχi + γiθ

i ∼=
Xi∂i + γidx

i (and V αξα = Y kχk + σkθ
k). First let us look at the simpler instance of

ρ̃ ≡ η and C ≡ 0 and :

{{U(x),Θ}, V (x)} = Xk∂kV (x)− Y k∂kU(x) + 〈θk∂kU(x), V (x)〉. (2.43)

From Cartan’s magic formula the coordinate-free expression of (2.43) is immediate:

[X,Y ]Lie + LXσ − ιY dγ ≡ [U, V ]D,

by comparison with (2.7). The pairing is naturally assigned via {ξα, ξβ} = ηαβ. Extraction
of the anchor map for the bundle TM ⊕ T ∗M is performed via the derived bracket with a
function in O1, U , and one in O0, f . To see this, assume to have a more general ρ in the
Hamiltonian:

{{U,Θ}, f} = −{{f,Θ}, U} = {ξαρ̃αi∂if, Uβξβ} = ρ(U)i∂if.

If otherwise ρ was fixed to be the projector, in the last equality Xi∂if would had appeared.
Turning the C tensors on yields:

{{U(x),Θ}, V (x)} =Uβ(x)ρβ
i(x)∂iV (x) + η

(
ξαρ̃

αi(x)∂iU(x), V (x)
)
− V β(x)ρβ

i(x)∂iU(x)

− Cαβγ(x)Uµ(x)V ν(x)ηαµηβνξγ = [U, V ]D + C(U, V, ·). (2.44)

It comes with no surprise that it coincides with the Dorfman brackets of generalized
vectors, twisted by C. The derived structure can be shown to fully coincide with that of
an exact CA. The condition of being exact, i.e. that ρ∗(T [1]M) is isotropic subspace of
T ∗[1]M ⊕ T [1]M , was derived in section 4 of [5], where the author also specified what the
master equation {Θ,Θ} = 0 means in terms of the CA axioms. From that, he recovered the
exactness, as already mentioned, as well as that ρ is a homomorphism between T ∗[1]M ⊕
T [1]M and TM , and that if Cαβγ := 〈[ξα, ξβ], ξγ〉 the Jacobi identity is fulfilled. The
concise derivation of this result is not reproduced here: we will instead analyze the master
equation with non-canonical Poisson brackets in the next chapter 3.

Alternatively, the CA bracket is also the derived bracket given by the commutator of
endomorphisms of Ω•(M) with differential the de Rham differential:

[V,W ]D = [[V, d],W ]. (2.45)

This is a simple computation but nevertheless it can be examined in the appendix 4.2.
The above correspondence holds also when the Dorfman bracket is twisted with a closed
3-form H, i.e.

[V,W ]D = [Y,Z] + LY κ− ιZdσ −H(Y, Z, ·),
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upon replacement of d with the operator d−H∧ in the commutator of endomorphisms of
Ω•(M). Notice that [d−H∧, d−H∧] = 0 just because dH = 0.

Now that the local Darboux chart is at our disposal and the most general Q for the
degree-2 manifold T ∗[2]T [1]M is given in (2.42), an issue that still needs some further
explanation concerns the question whether the ρ-differential of the previous section 2.2,
in local coordinates (2.14), is related to Q, and hence square to zero because Q does. The
differential is modeled over (2.41) when C ≡ 0. On the functions in C∞(M) the action of
Q and dρ is exactly the same5:

Qf = {f,Θ} = −ξ̃αρ(ξα)f = −dρf.

Only the third term of Q in (2.42) differentiate f(x). We know that dρ could be defined
to act on forms if a Lie-like bracket is independently provided. Q in the local Darboux
chart for the degree 2 case, is the differential for the cohomology (O(M),Q), but does not
generally build a differential for the exterior algebra of the degree 1 functions Ω•(E) ∼=
Γ (Λ•E∗). One can surely exploit the biderivation rule for the Poisson bracket (2.28) to
compute {$,Θ}, $ ∈ Ωk(E) but the operation does not close in Ω•(E): terms containing
p arise. Hence it would be necessary to ask for the elements due to a p factor to be
identically zero, so that Q$ ∈ Ωk+1(E). In this way, also every contraction 〈ξα, ξβ〉 is
avoided. Otherwise one can start implementing the latter (ξ̃ in the Hamiltonian being in
the orthogonal complement to every ξ in $), so no p term will be found. It is easier to
visualize this with an example:

$ ∈ Ω2(E) ∼= Γ(Λ2E∗), $ =
1

2
$ijθ

iθj , ρ̃(χi) = pi.

For these choices, {$,Θ} = − 1

3!
θiθjθk∂i$jk ∈ Ω3(E). But if instead the 2-form is chosen

as

$ =
1

2
$ijχiχj ,

then we will see the appearance of $ijχipj terms.
We hence believe that, under these assumptions, one could attempt to interpret dρ

(2.14), modulo signs, as the
∂

∂xi
component of Q, that from now on we shall call Q0:

dρ ∼= Q0 := −ξαρ̃αi(x)∂i. (2.46)

Despite having the right behavior on the exterior algebra of the degree 1 functions, Q0 is
not a genuine differential as Q2

0 6= 0. This can also be seen from LQ0
ω 6= 0, i.e. the vector

is not Hamiltonian. What might be tried instead is to consider the degenerate graded
Poisson structure:

{pi, xj} = δji , {ξα, ξβ} = 0, (2.47)

where all the remaining Poisson brackets are zero. Then Q0 (2.46) is homological if the
anchor ρ̃ is actually global (i.e. it is not point-wise dependent).

A degenerate graded Poisson structure as in (2.47) opens up the possibility to furnish
another interpretation for the generalized Lie bracket. Another homological vector field
Q̌ (2.48) that can be assigned to the degenerate Poisson structure can be easily found in:

Q̌ := −ραi(x)pi
∂

∂ξα
. (2.48)

5The minus sign is due to the convention on the Poisson bracket, here {pi, xj} = δi
j .
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The vector field induces a flat connection on the space of degree 1 linear functions, which
are equivalent to sections of a vector bundle E. Then the generalized Lie bracket (2.15)
has the nice interpretation of a derived bracket:

{Q̌U, V } − {Q̌V,U} = JU, V K, U, V ∈ Γ(E). (2.49)

The same expression of the generalized Lie bracket as a derived bracket holds for the
canonical Poisson structure (2.31) too, as stressed in our work [61]. However then the
degree-1 vector field is not Hamiltonian but just nilpotent.

Caveat: the above considerations regard a differential geometry object defined in our
personal work [3], [7] thus they are not compared with the existing literature yet and are
susceptible to a deeper investigation for the moment being.

2.6.1 Gauge symmetries

To implement a gauge symmetry, we look for some infinitesimal transformations that leave
the master equation invariant at first order. Thus the derived algebroid bracket will be
invariant under the symmetry and fulfillment of the defining axioms is ensured. It is not
difficult to see that whichever operator δα that acts on any function F ∈ C∞(M) via
Poisson bracket

δαF = {α, F}, α ∈ C∞ (M) ,

generates the symmetry, leaving the Poisson structure unchanged. In fact δα is a graded
derivation, might it be even or odd, and a consequence of this is that {, } keeps satisfying
the graded Jacobi identity then. The product rule of the derivation δα on {Θ,Θ} on shell,
i.e. using the classical master equation, yields:

{
δα{Θ,Θ} = {α, {Θ,Θ}},
{δαΘ,Θ} ± {Θ, δαΘ} = {{α,Θ},Θ} ± {Θ, {α,Θ}},

=⇒ {δαΘ,Θ} ± {Θ, δαΘ} = {α, {Θ,Θ}},

where the plus (minus) sign is due to an even (odd) degree for δα. So if for Θ the master
equation holds, it holds for Θ + δαΘ too at first order in α (i.e. we do not require that
{δαΘ, δαΘ} = 0, which is not a priori true). The algebra closes irrespective to the total
degree of α, |α| = |β|:

δαδβ − (−)|β|δβδα = {α, {β, ·}} − (−)|β|{β, {α, ·}} = {{α, β}, ·} = δ{α,β}.

A symmetry for the derived brackets, instead, must respect the stronger condition that

the Hamiltonian itself should not be transformed, i.e. δαΘ
!

= 0 [62]. Hence α shall be the
Poisson bracket of the Hamiltonian with a function % of degree |%| = |α| − |Θ| − |{, }|,

α = {%,Θ} (2.50)

The total degree is important for classification of the gauge symmetries implemented
by δα. They are first of all distinguished between degree-preserving (i.e. |α| + |{, }| = 0),
and degree-changing. Here we will just comment on the former. They are the infinitesimal
canonical transformations of the Poisson structure. For dg symplectic manifolds of degree
2, the most general expression of a degree-2 function is [5]

α = ς i(x)pi +
1

2
Mαβ(x)ξαξβ. (2.51)
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It is easy to be convinced that ς i(x)pi generates diffeomorphisms, while the second term
generates O(d, d)-transformations. Mαβ(x)ξαξβ decomposes as Bij(x)θiθj + βij(x)χiχj +
2Aijχiθ

j , where B and β are antisymmetric tensors. In fact:

δαx
i = {xi, α} = −ς(x)i,

δαξγ = Mαβ(x)ηγαξβ,

δαpi = ∂iς
j(x)pj +

1

2
∂iM

αβ(x)ξαξβ.

The above system of equations, which shows that the canonical transformations of a 2-
graded Poisson algebra are the elements of gl(d) and the algebra o(d, d), is well known.
For example one can consult [5], and the system of equations (3.3) in there. However it is
worth stressing something that perhaps is not common knowledge on the matter. When
in the Hamiltonian the coanchor is ρ̃(θi) = ηijpj , and of all the infinitesimal canonical
transformations we consider the following o(d, d) element:

βlm(x) + ηln∂nb
m(x), (2.52)

then in the canonical Poisson brackets, the Hamiltonian does not vary under the above
o(d, d)-transformation. In fact ηij∂jβ

lm(x) = 0, as β is closed, and{
χiη

ijpj ,
1

2
χlχmη

ln∂nb
m(x)

}
=

1

2
χiη

ijχlη
ln∂j∂nb

m(x) = 0, (2.53)

since χiχl = −χlχi. An alternative way to see this is by noticing that the second term in
(2.52) is actually given by a degree-1 function %, {%,Θ}:

1

2
χiχjη

il∂lb
j(x) = {χjbj(x), χiη

ilpl}.

Thus (2.52) describes a gauge transformed β. Gauge symmetries of the bivector β are hence
genuine symmetries of the derived bracket too. Another equivalent way to express this
is by saying that the element χlη

ln∂nb
m(x)χm is in the cohomology of β with differential

Q. The symmetry is still present at the level of the non-canonical Poisson brackets,
implemented by ϕ ∈ Diff(T ∗[2]T [1]M), upon the consequent changes Θ(ξ, p) 7→ Θ(ϕ(ξ, p))
and ϕ∗ (dρb), where b ∈ X1(M) is the same than in (2.52), and dρb ∈ X2(M) is also
informally “δδbΘ = 0”. This observation will be recovered in the end of section 3.3 in
slightly different and specific circumstances.

Example 2.6.9 (Taken and readapted from [63]). The generalized metricH of generalized
geometry defined in 2.1.4 is also retrieved from a canonical transformation involving the
degree-1 coordinates only, provided by the generating function F (θ, θ):

F (θ, θ) = θgθ +
1

2
θBθ − 1

2
θBθ.

In fact, being

χ = −∂F
∂θ

, χ =
∂F

∂θ
,

the conjugate new and old coordinate χ and χ, direct computation yields the coordinate
redefinition:

χ = θB + θg, χ = θg + θB

which is eventually solved for θ and χ:

θ = χg−1 − θBg−1, χ = χg−1B − θBg−1B + θg.

It can be compared to H and seen to agree.
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2.7 AKSZ sigma models

We would now like to shortly comment upon a fruitful topic for applications of the theory of
QP-manifolds. All the graded symplectic and differentiable structures analyzed previously,
such as the symplectic form ω, the homological vector field Q and the Hamiltonian Θ, will
have a nice interpretation as, respectively, Poisson (anti-)brackets, some second order
nilpotent operator and action functionals for the fields in Map(Σ,M). Also, the grading
will become form degree.

Let us start with one of most relevant application of N-manifolds in physics, which
is found in the notorious “AKSZ sigma models” [64]. The idea is to provide the space
Map(Σ,M) with a symplectic structure, with M , Σ some manifolds of various dimensions,
dimΣ < dimM and in particular M can be naturally given a NQ-structure. The general
AKSZ action functional, of which we will make sense in the rest of the section, is

SAKSZ =

∫
ωABϕ

A ∧ dϕB +
1

2
ϕ∗P,

for ω symplectic form on M , ϕ ∈ Map and P Hamiltonian of ω.
As a first example pick up for target space M the N-manifold of degree 1, T [1]N ,

with Poisson bivector P =
1

2
P ij(x)

∂

∂xi
∧ ∂

∂xj
. Now, promote the local coordinates x to

functions ϕ : Σ2 7→ T [1]N (dimΣ2 = 2) and the conjugate anticommuting variables χ
to the connection 1-forms κ ∈ Ω1(Σ2, ϕ

∗T [1]N). The action functional corresponding for
these fields goes under the name of Poisson sigma-model:

SPoisson =

∫
Σ2

κi ∧ dϕi +
1

2
ϕ∗P (κ). (2.54)

The model has the following gauge symmetry with gauge parameter ε:

δϕi = −P ijεj , δκi = dεi + P lm,iκlεm.

The comma refers to partial derivation w.r.t.ϕ. The gauge algebra structure is encoded
in a Lie algebroid [65], with structure functions f ijk = P ij ,k and anchor map ρij = P ij .

Curiously, 2-dimensional Euclidean R2-gravity, where R is the Ricci scalar for the
Levi-Civita connection,

SR2 =
1

4

∫
Σ2

d2x
√

det g

(
1

4
R2 + 1

)
falls into this case of Poisson sigma models [66]. The Poisson structure is a quadratic
modification (in one of the fields) of

{ϕi, ϕj} =

3∑
k=1

εijkϕk.

The triplet of fields is provided by the zweibeins e1, e2, and the spin connection. Locally
the metric g can be shown to be of generalized Schwarzschild form with mass corresponding
to the Casimir function of {, }.

Often (2.54) is modified by the addition of a Wess-Zumino term, which twists the
model by a closed 3-form H ∈ Ω3(M) pulled back to D3, ∂D3 = Σ2 [67]:

SHPSM = SPoisson +

∫
D3

ϕ∗H.
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To keep the theory topological, the Poisson condition for the Poisson bivector is relaxed
to

1

2
[P, P ]SN = ιP⊗P⊗PH.

To know more about the very tight relation between string actions, Poisson sigma models
with Wess-Zumino terms and T-duality the interested reader can consult [68].

As a second instance consider instead the target space to be a N-manifold of degree
2 such as T ∗[2]T [1]M =: E. All the coordinates are now seen as forms of different form
degree: the coordinates for the base become the fields ϕ : Σ3 7→ E, dimΣ3 = 3, what would
be the coordinates ξα ∈ T ∗[1]M⊕T [1]M are instead promoted to be the connection 1-forms
Aα ∈ Ω1(Σ3, ϕ

∗E), and finally the even momenta p become 2-forms Fi ∈ Ω2(Σ3, ϕ
∗T ∗M):

SCourant =

∫
Σ3

Fi ∧ dϕi +
1

2
ηαβAα ∧ dAβ +Aαρ̃

αi ∧ Fi +
1

6
CαβγAα ∧Aβ ∧Aγ .

As one can easily suspect from parallelism with the Poisson sigma model, the conditions
for gauge invariance and on-shell closure of the gauge transformations for the Courant
sigma model were shown to correspond to the axioms of the Courant algebroid [69].

In recent years also sigma models with target space of dimension higher than 3 have
been built. Their set of conditions defines then the higher structure of a Lie algebroid up
to homotopy. The underlying physics behind such sigma model was argued in [70] to be
that of the SL(5) M-theory fluxes and their Bianchi identity.

To conclude, in this short section we discussed how to the geometric and algebraic
data of dg-symplectic manifolds of lowest degree (1 and 2), as well as to the related Lie
algebroids and Courant algebroids, it is possible to attach a topological field theory. How-
ever we did not make sense of the homological vector field in this setup yet: it will emerge
in the realm of BV or BFV quantization of classical field theories which are degenerate
because of a gauge symmetry.

2.7.1 BV-BFV quantization

When the action functional is degenerate due to gauge symmetries, path integral quanti-
zation cannot work: it will sum over gauge equivalent configurations. Perturbation theory
breaks down. A way out of this problem is suggested by BV quantization. Roughly
speaking, BV quantization is a prescription for quantization which consists, first of all,
in enlarging the space of fields with the antifields and the ghosts (and antighosts), which
are scalar or vector fields with an integer number (“the ghost”) attached to them, and
that are in the cohomology of a order 2 nilpotent operator. The original space of fields
is embedded in the new space, and the latter is given an odd symplectic structure ω.
Then the action functional is extended to a new action functional S, with fields, antifields,
ghosts, antighosts, ghosts for ghosts etc... so that ιQω = dS and hence the classical master
equation

{S,S} = 0,

is solved by S. Q is the nilpotent operator, of ghost number 1. The classical master
equation is just the first approximation of the quantum master equation:

1

2
{S,S} − i~∆S = 0,

where ∆ is the BV Laplacian.
By contrast, the BFV formalism concerns instead the first order formulation of the

theory, i.e. it is intrinsically about the Hamiltonian function rather than the Lagrangian.
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The BFV action hence contains information about the first-class constraints, i.e. a La-
grangian submanifold U (ω|U = 0): the cohomology of Q in ghost number zero yields the
reduced phase space of the Hamiltonian formulation.

We can briefly see how BV quantization works effectively applying the technique to
the so called abelian BF model. The example is taken from [71]. The BF model is a
very simple instance of Poisson sigma model. In the most simple case, it is based on a
2-dimensional differentiable manifold M with gauge group G (abelian Lie group), whose
dynamical fields are a scalar field ϕ and a connection 1-form A with values in g, and
associated field strength F = dA:

SBF = −1

2

∫
M
ϕF =

∫
M
Ai(x) ? dϕi(x)

where ? is the Hodge star operator (recall that the model is 2-dimensional), constructed
with the completely antisymmetric pseudotensor (Levi-Civita symbol). The action func-
tional enjoys U(1) gauge symmetry, δAi = dεi, δϕ

i = 0. In the quantization scheme, the
gauge parameter is replaced by the ghost ci, a scalar with odd parity, set to be δc = 0.
Then we must introduce an antifield for each field of the theory, A∗, ϕ∗, c∗ =: Ψ∗. Their
ghost numbers are assigned by the equation

ghΨ + ghΨ∗ = −1.

Next, the odd Poisson structure is defined by requiring that for each type of field, Ψ
should be the respective canonically conjugated coordinate to Ψ∗. Finally the BV action
functional is constructed for the ghost 0 classical action S0:

S = S0 + (−)ghΨ

∫
M

Ψ∗δΨ +O
(
Ψ∗ 2

)
; (2.55)

for the present case of the abelian BF theory the new piece is just made up of

S = SBF +

∫
M
A∗ ∧ dc. (2.56)

The gauge transformations on the missing fields can be worked out with the homological
vector field δ := {S, ·}, for S in (2.56):

δAi(x) = dci, δA∗i(x) = ? dϕi, δϕ∗i (x) = − ? dAi(x), δc∗i = −divA∗i,

where div is the divergence operator.

We will not go deeper in the subject. It is instead time to move to the “Results”
chapter.
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Chapter 3

Results

After having settled the fundamental background knowledge for the understanding of the
research done during the Ph.D. studies, and furthermore having discussed some more
topics of general interest than those strictly necessary for the comprehension of the rest
of the thesis, we are finally ready to present the personal results contained in [3] and
[7]. On the way we will also extend the presentation with some other more less known
interesting results which are not original. The discussion about preexisting literature and
other comments are postponed to chapter 4.

3.1 Non-canonical NQ-T ∗[2]T [1]M

The first inquiry concerned the possibility to equip the generalized tangent space with a
non-canonical graded Poisson algebra that could host the degree of freedom of the dilaton.
We then drove our attention to the implementation of the closed-open string relations
(2.13) in the graded symplectic structure. Thus our starting point was the NQ-manifold
T ∗[2]T [1]M .

3.1.1 Deformation via vielbein

The graded NQ-manifold T ∗[2]T [1]M was in this case given a non-canonical symplectic
form by means of a local invertible map E(x) : T ∗[1]M ⊕T [1]M 7→ T ∗[1]M ⊕T [1]M . Such
application is also a vielbein, i.e. a section of the associated frame bundle FM (where a
doubling of vector fields with forms occurs too), in particular it is the frame in which the
metric on the fibers is some curved generalization of the O(d, d)-invariant pairing η:

G = ET ηE . (3.1)

The linear invertible transformation E(x) is hence a well-behaved diffeomorphism of
T ∗[2]T [1]M therefore Moser lemma applies; the generating vector field is given in the
appendix 4.2. A non-canonical symplectic form ω′ arises as the closed non-degenerate
2-form which is pulled back via E(x) to the canonical one ω0, i.e. ω0 = E∗ω′:

ω′ = dxi ∧ dpi + d
[
ξα
(
E−1

)α
β

]
ηβγ ∧ d

[
ξδ
(
E−1

)δ
γ

]
(3.2)

= dxi ∧ dpi + dξα

[(
E−1

)α
βη

βγ
(
E−T

)
γ
δ
]
∧ dξδ + dxj∂j

(
E−T

)
β
α
[
ξαη

βγ
(
E−T

)
γ
δ
]
∧ dξδ

+ dxj
[
∂j
(
E−T

)
β
α
[
ξαη

βγξδ

]
∂k
(
E−1

)δ
γ

]
∧ dxk. (3.3)
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Defining

Γiα
β(x) :=

(
E−1

)β
γ(x)∂iEγα(x) (3.4)

and using the expression in components of G from (3.1), we can write down the Poisson
brackets, deformed w.r.t. the Darboux chart in use. They are displayed below, together
with their index-free counterpart, where υ(x), ς(x) are linear functions of p, U(x) and
V (x) := V α(x)ξα in O1 and f(x) ∈ C∞(M):

{pi, xj}′ = δi
j , {υ(x), f(x)}′ = υ.f,

{ξα, ξβ}′ = Gαβ(x), {U(x), V (x)}′ = G(U, V ),
{pi, ξα}′ = Γiα

βξβ(x), {υ(x), U(x)}′ = ∇υU,
{pi, pj}′ = 0, {υ(x), ς(x)}′ = [υ, ς]Lie.

(3.5)

An affine connection with null curvature (due to the null p − p bracket) appears. It can
be checked to behave as required under C∞(M)-multiplication thanks to the Leibniz rule
for the Poisson bracket. The connection is metric for G because of Jacobi identity for the
double bracket {ς(x), {U(x), V (x)}′}′. Technically the connection is known as Weitzenböck
connection [12]. Its non-zero connection coefficients are due to the anholonomy of the basis
chosen.

The most general Hamiltonian Θ (2.41) can still be a perfectly consistent object for
the NQ-manifold. It is sufficient to impose the master equation {Θ,Θ}′ = 0, since solving
it puts constraints on the unknown functions ρ and C. Moreover, if a solution was already
worked out for the canonical Darboux chart, namely a specific anchor and specific tensors
C were already found, transforming them with the diffeomorphism E of Moser lemma
would also return consistent maps with which the Hamiltonian satisfies {Θ,Θ} = 0,

ρ̃αi 7→
(
E−1

)α
β ρ̃

βi =: ρ̃αi, Cαβγ 7→
(
Λ3E∗C

)αβγ
=: Cαβγ . (3.6)

In the context where the map E is known, as here, we will adopt such viewpoint, which
simplifies the search for consistent ρ and C. In other situations we will not be able to resort
to it. Suppose hence that in the canonical setting (in particular with O(d, d)-invariant
pairing η) the map ρ̃αi ∈ Γ ((T ∗[1]M ⊕ T [1]M)∗ ⊗ T ∗[2]M) and Cαβγ ∈

⊗3 T ∗[1]M ⊕
T [1]M that solve the master equation with canonical Poisson brackets are given. We are
then interested to compute the derived CA bracket, where the total space of the algebroid
is E ∼= TM ⊕ T ∗M . As discussed in 2.6, this is the derived bracket of {, }′ with Θ and a
pair of generalized vectors U(x), V (x):

{{U(x),Θ}′, V (x)}′ =∇ρ̃(G(U))V (x)−∇ρ̃(G(V ))U(x) + G
(
∇ρ̃(·)U(x), V (x)

)
+ GαδGνβCαβγ(x)U δ(x)V ν(x) = [U, V ]′D. (3.7)

The standard example of Courant algebroid Dorfman bracket (2.43), in components,
is retrieved from (3.7) by plugging in

ρ̃(χk) = pk, ρ̃(θk) = 0; G = η ≡ 〈, 〉; C ≡ 0. (3.8)

It is now interesting to relax the last option in (3.8). This amounts to twist the bracket
by means of the C-tensors. With obvious reference to the stringy fluxes, let us call them

Hijk(x)θiθjθk, fij
k(x)θiθjχk, Qi

jk(x)θiχjχk, Rijk(x)χiχjχk. (3.9)
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Then (2.43) is implemented to its twisted version:

{{U(x),Θ}, V (x)} =[U(x), V (x)]D −X lY m
(
Hlmkθ

k + flm
kχk

)
+X lσm

(
flk

mθk −Qlmkχk
)

+ γlY
m
(
fkm

lθk −Qmlkχk
)

+ γlσm
(
Qk

lmθk −Rlmkχk
)

=[U(x), V (x)]D −H(X,Y, ·)− f(X,Y )
∂

∂x
+ [f(X,σ)− f(Y, γ)] dx

− [Q(X,σ)−Q(Y, γ)]
∂

∂x
+Q(γ, σ)dx−R(γ, σ, ·).

In passing from the first to the second equivalence we tacitly made use of the isomorphism
χi ∼= ι∂i and θi ∼= dxi. In other words, f can be interpreted either as a 2-vectors-valued
vector field or a vector and a 1-form valued 1-form; on the other hand, Q can be seen as
a 2-forms-valued 1-form or a vector and a 1-form valued vector field. Instead H ∈ Ω3(M)
and R ∈ X3(M). The tensors are structure constants of the algebra. Closure of the algebra
implies that they fulfill the Bianchi identities. The algebra closes if the Jacobi identity
holds for [, ]D, but this property is easy to show using graded antisymmetry and the graded
Jacobi identity for {, }. The interested reader can find the derivation of this minor result in
the appendix 4.2. However this is tantamount to impose the master equation, as explained
in detail in that section. The final step of that computation yields in fact:

[U, [V,W ]] ≡ {{U,Θ}, {{V,Θ},W}} = {{Θ, {{Θ, U}, V }},W}+ {{V,Θ}, {{U,Θ},W}}

− 1

2
{{{{Θ,Θ}, U}, V },W}

≡[[U, V ],W ] + [V, [U,W ]]− 1

2
{{{{Θ,Θ}, U}, V },W}.

(3.10)

In reference [72], equation (23), the identities for the fluxes were given employing as
ρ̃-map some map more articulated than the projector: ρ̃(χi) = pi, ρ̃(θi) = βijpj . Moreover
their derivation was performed in the context of Courant algebroids. Our computation
here relies instead on the underlying graded symplectic geometry, and stems from the
computation of the master equation, carried with the simpler projector as anchor. It
gives:

1

3
∂[iHjkl] +

1

2
H[ij|mf|kl]

m = 0

∂[ifjk]
l − 1

2
Q[i|

mlH|jk]m + f[ij|
mfm|k]

l = 0

∂[iQj]
[kl] +

1

2
H[ij]mR

m[kl] +
1

2
f[ij]

mQm
[kl] + 2f[i|m

[k|Qj]
m|l] = 0

1

3
∂iR

[jkl] + fim
[j|Rm|kl] +Qi

[j|mQm
|kl] = 0

R[ij|mQm
|kl] = 0.

(3.11)

These agree with the findings of [72] upon imposition of β ≡ 0 there. A similar derivation
in the context of graded NQ-manifolds was also carried in [73].

The novelty of our approach, that will be highlighted in the subsections 3.2 and 3.3,
relies heavily on the way we treat the mixed symmetry tensors H, f,Q,R. They are
introduced just locally through the gauge potential of the fluxes H and R. In fact, if
dH = 0 locally the 2-form B rises as the gauge potential for H, dB = H; on the other
hand, if the Schouten bracket of the differential dρ (2.14) with R, seen both as multivectors,
is [dρ, R]SN = 0, then the bivector Π serves as the gauge potential for R, R = dρΠ. This can
take place because the non-canonical choice of coordinates and hence the Poisson brackets
too can be made dependent upon the latter tensors. Moreover Π will itself depend on B
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through the open-closed metric relation (2.13). These considerations on the fluxes and
their locality are dominant in our treatment because at the same time the global fluxes,
i.e. the C tensors in the general Hamiltonian, are always set to zero. Note that what is
commonly understood under the term fluxes are tensors non-trivial in the cohomology. We
will anyway keep the terminology. When the deformation is implemented by a vielbein E ,
the proper fluxes C can always be investigated separately thanks to the associativity of
the Poisson bracket and also to the fact that the transformation under E is worked out in
(3.6). Therefore the above analysis on H, f,Q,R concludes the excursion on their global
properties, in this context.

Let us show how our approach works in detail, for a specific choice of the vielbein.
Issues on the globality of the frame are postponed to section 3.3.1, after section 3.3.

3.2 (g,H, φ)-Supergravity

This part reviews the publication [3] in detail, moving on from the generalities of the
construction for an unknown vielbein in the previous section. The aim was to obtain
the (g,H, φ)-Supergravity action as a Poisson gauge theory, in the sense that the gauge
algebra is the graded Poisson algebra of T ∗[2]T [1]M acting on the set of functions. Hence
the relevant gauge fields for the theory must be incorporated by means of E . The invertible
change of degree-1 coordinates we deployed is:

E(x) = λ(x)

(
1 0

g(x)−B(x) 1

)
, (3.12)

where λ(x) := exp

[
−φ(x)

3

]
, φ(x) scalar field to be identified with the dilaton, and g ∈

S2(T [1]M), B ∈ Λ2T [1]M appear on the same footing, like in the string sigma model
(1.4). The Darboux coordinates χi and θi are mapped to new coordinates χ

i
, θi,

χi 7→ λ(x)χi + λ(x)θj (g(x)−B(x))ji ≡ χi, θi 7→ λ(x)θi ≡ θi, (3.13)

while degree-0 positions xi and degree-2 momenta pi are left unchanged. (3.12) could be

also thought as the product of two exponentials, E(x) = exp

[
−φ(x)

3

]
exp(g(x) − B(x)),

where the second exponential acts on a 2d× 2d nilpotent matrix. This is a generalization
of the O(d, d) transformation generated by B, and its effect is to locally reduce the O(d, d)
symmetry to the subgroup (O(d)×O(d))× eB. In fact the local curved metric G (3.1) is
thus

G = λ2

(
2g 1

1 0

)
. (3.14)

The flat η metric has been conformally rescaled with λ2 factors and a non-degenerate
metric for tangent space has also been brought into existence. Having a non-degenerate
entry in the upper left (d-dimensional) block of G is going to be very convenient for our
purposes.

The connection ∇ which arises from this vielbein is

{υ,X + γ}′ = ∇υ (X + γ) = υ. (X(x) + γ(x)) + υiXj
(

Γij
kχk + Γijkθ

k
)

+ υiγjΓ j
i kθ

k,

Γij
k = λ−1∂iλ(x)δj

k, Γ j
i k = λ−1∂iλ(x)δjk, Γijk = ∂i (g +B)jk . (3.15)

Before continuing with the discussion on the Hamiltonian and the derived bracket, it turns
useful to test the model through a simpler but enlightening example.
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Example 3.2.1 (Vielbein with B 6= 0, g = 0 = φ). If in the vielbein we set φ(x) = 0
and g = 0, E(x) implements a symmetry of the η pairing. In fact {ξα, ξβ}′ = ηαβ, and
there is just one non-zero connection symbol, Γijk = ∂iBjk. For the Hamiltonian simply
given by

Θ = θipi, C ≡ 0,

the non-canonical Poisson brackets corresponding to this instance of E(x) yields, in the
derived bracket with a pair of elements in O1 (recall that the linear functions in the degree-
1 coordinates are isomorphic to sections of TM ⊕ T ∗M), the Dorfman bracket twisted by
dB ∈ Ω3(M,R): {

{Uα(x)ξα,Θ} , V β(x)ξβ

}
= [U, V ]D + dB(U, V, ·). (3.16)

This example already highlights that the partial derivatives on B are arranged in such
a way that the exterior derivative is built up. The H-class of the Courant algebroid is
untouched; such vielbein is hence an automorphism of the CA structure. In the rest of
the section we will later see that when the completely symmetric 2-tensor g(x) is turned
on in the derived bracket the derivatives will hit it in such a way that they will form the
Christoffel connection symbols (of first type, i.e. ΓL.C. ∈ Γ(

⊗3 T ∗M)).

To be able to show the previous claim we still need to find a Hamiltonian that solves the
classical master equation with the non-canonical Poisson brackets. A one-line calculation
(omitted here) proves that

Θ = λ−1θipi (3.17)

is a good option. In fact, in virtue of (3.6), this is the vielbein-transformed projector and
C is set to 0 again. An alternative way to see this is by direct comparison between ∂λ−1

from the bracket and the second connection coefficient in (3.15). We can now proceed to
compute the derived bracket:

{{U,Θ}′, V }′ = λXi∂iV (x)− λY i∂iU(x) +Xi∂iλV − Y i∂iλU

+ 2λX [iY j]∂i (g(x) +B(x))jm θ
m + λθiXjY k∂i (g(x) +B(x))jk

+ θi∂iλ
(
2g(X,Y ) +Xjσj + Y jγj

)
+ λ2g(θi∂iX,Y ) + λσjθ

i∂iX
j

+ λY jθi∂iγj . (3.18)

Thus the deformed Dorfman bracket [, ]′D (3.7) becomes in this case

[U, V ]′D = λ[U, V ]D + λ−1ρ(U)λV − λ−1ρ(V )λU + G
(
λ−1ρ(·)λU, V

)
+ λ

[
ΓL.C.(·, X, Y ) + dB(·, X, Y )

]
. (3.19)

Here G is (3.14) and the anchor, given its companion ρ̃ that can be read off from (3.17),
corresponds to

ρ(U) = λX.

The self-explanatory symbol ΓL.C. ∈ Γ
(⊗3 T ∗M

)
refers to the Christoffel symbol of first

kind:

ΓL.C.
kij = ∂kgij + ∂igjk − ∂jgki;

to get the Christoffel symbols of second kind dualization occurs in the last entry.
At this point we want to apply proposition 2.3.2 enunciated in the previous section,

and get a CA connection. For the CA bracket we can plug in the deformed Dorfman
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bracket (3.19), while the Lie-like bracket, written with respect to the Darboux chart of
reference, is

JU, V K
(2.15)

= ρ(U)V − ρ(V )U = λ[U, V ]D + 〈(dρUα(x)) ξα, V 〉. (3.20)

Therefore the connection ∇̃ : Γ(E) 7→ Γ(E∗ ⊗ E) is

G
(
∇̃WU, V

)
= λ2 (2g(X,Y )Z.λ+ 4g(Z, [Y )X].λ) + λ3

[
ΓL.C.(Z,X, Y ) + dB(Z,X, Y )

]
+ λ2

(
Xiσi Z.λ+ ZiσiX.λ

)
+ λ2

(
γiY

i Z.λ− Ziγi Y.λ
)

+ λ2
(
κiY

iX.λ− κiZi Y.λ
)

+ G (ρ(W )U, V ) . (3.21)

In the first row of this expression we placed only the connection symbols of the first kind

which are evaluated against a triplet of vector fields, Γ̃ ∈ Γ
(⊗3 T ∗M

)
. In the second

addend the square bracket denotes antisymmetrization (with a
1

2
−factor) between Y and

X. Out of the whole expression, these connection symbols are the main outcome of our
ansatz for the graded Poisson algebra, as it will be soon clear. The derivatives hitting on

λ make up the E∗-valued endomorphism of (2.19), with e = −1

3

(
0
dφ

)
, where one should

pay attention that the pairing here is (3.14); it could be easier to see this in the regular
connection (3.25) (second and third term).

The derived bracket approach, with the help of a generalized Lie bracket, allows to
start with a curvature-free connection in the graded Poisson algebra and to end up with
a torsionful connection whose curvature is non-zero. Let us compute the Gualtieri torsion
of the connection with the Dorfman bracket TD(U, V,W ) (2.22) (equivalent to the other
torsion definition 2.3.1),

TD(U, V,W ) =〈[V,W ]′D, U〉 − 〈[U,W ]′D, V 〉 − 〈JV,W K, U〉+ 〈JU,W K, V 〉 − 〈JU, V K,W 〉.

It is worth pointing out that this is the general torsion in the presence of no fluxes C and
untwisted p − p Poisson bracket, therefore it can be applied to more general conditions
than the present situation. In the coordinate basis, where the doubled indices α, β, γ
respectively refer to d-dimensional indices i, j, k, some trivial algebraic manipulations allow
to conclude that the generalized Lie bracket is identically zero, derivatives on λ cancel out
with each other, and the rest assembles in this way:

TDαβγ = ΓL.C.
ijk − ΓL.C.

jik + (dB)ijk − (dB)jik = 2(dB)ijk, (3.22)

since in our conventions the Christoffel symbol of the first kind ΓL.C. is symmetric in the
first two indices. This is a glaring peculiarity of our generalized connection: it is not
torsion-free. We find it interesting because it stands out the literature where the only
results known before our analysis regarded the (non-unique!) generalized analogues of the
Levi-Civita one, which is metric and TD-free. Notice moreover that the torsion 3-form on
E is non-trivial just in the component given by a regular 3-form (i.e. TD ∈ Λ3T ∗M). This
confirms that any term of type σe as in (2.19) does not contribute to the torsion.

Now, assume that the generalized vectors are constrained to belong to the tangent
subspace; to make this possible, a splitting of the exact sequence (2.5) is needed. This
splitting s : Γ(TM) 7→ Γ(E) shall be isotropic for η ≡ 〈, 〉 but non-isotropic for G, so that a
non-degenerate metric on tangent vectors could rise. Without it, it would not be possible
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to dualize the connection coefficients and get the connection symbols of the second kind
otherwise. The option we picked up is

s(X) = λ−1X, (3.23)

In fact,
G(s(X), s(Y )) = 2g(X,Y ), 〈s(X), s(Y )〉 = 0.

Notice that the induced metric on tangent space is just twice the Riemannian metric g.
With such a choice of the splitting the CA connection becomes:

G
(
∇̃s(Z)s(X), s(Y )

)
= 2g(Z.X, Y ) + ΓL.C.(Z,X, Y ) + dB(Z,X, Y )

+ 2g(Z, Y ) λ−1X.λ− 2g(Z,X) λ−1Y.λ =: 2g(∇̃ZX,Y ). (3.24)

With an abuse of notation, the connection ∇̃ : Γ(TM) 7→ Γ(T ∗M ⊗ TM) is defined. No
confusion should arise thanks to the different arguments used. We can therefore present the
final expression of this regular connection, which depends upon the Levi-Civita symbols
of second kind

(
ΓL.C.

)
ki
j , the 3-form dB and derivatives on the scalar φ(x):

∇̃ZX = Z.X+

[
−Xi∂i

φ

3
Zkδk

j + gjl∂l
φ

3
gkiZ

kXi + ZkXi

((
ΓL.C.

)
ki
j +

1

2
gjl (dB)kil

)]
∂j .

(3.25)
Before looking at the curvature, it is instructive to follow how J, K (3.20) and [, ]′D (3.19)
transform when their arguments are s-vectors, i.e. vectors rescaled with λ−1 factors: the
former becomes

Js(X), s(Y )K = X.
(
λ−1Y

)
− Y.

(
λ−1X

)
, (3.26)

while the latter is

[s(X), s(Y )]′D = λ−1[X,Y ]Lie + λ−1
{

ΓL.C.(·, X, Y ) + dB(·, X, Y )
}
.

Then the torsion TD(s(X), s(Y ), s(Z)) ∈ Λ3T ∗M on the s-vectors is, in the coordinate ba-
sis, the same 3-form (3.22), as the generalized Lie brackets (which is also an endomorphism-
valued 1-form) match up together so to cancel, and we are left with ΓL.C. and dB.

Let us now emphasize another peculiar aspect of the connection: the natural Koszul
formula. It emerges naturally when constructing the connection, generalizing the Koszul
formula for the Levi-Civita connection to the case of a non-symmetric metric. It includes
the dilaton too. The Koszul formula is already hidden in (3.24). For a better display of this
property it is more instructive to rely on a coordinate-free formulation obtained deploying
the homomorphism property of the vielbein E(x), seen as the map E : (E, [, ]′D,G, ρ′) 7→
(TM ⊕ T ∗M, [, ]D, 〈, 〉, ρ).

E−1[Es(X), Es(Y )]D = E−1
(
[X,Y ]− ιY d (g +B) (X) + LX (g +B) (Y )

)
=λ−1

(
[X,Y ]− (g +B) ([X,Y ])− ιY d (g +B) (X) + LX (g +B) (Y )

)
.

As usual, the first term gets canceled by the Lie-like bracket (3.26) which also introduces
the derivatives on λ. Hence we can determine the Koszul formula with the help of the
Cartan identities:

2g
(
∇̃ZX,Y

)
= +X.(g +B)(Y, Z) + Z.(g +B)(X,Y )− Y.(g +B)(X,Z)

− (g +B)([X,Y ], Z) + (g +B)(X, [Y,Z])− (g +B)(Y, [X,Z])

+ λ−1
(
X(λ)2g(Y, Z)− Y (λ)2g(X,Z)

)
. (3.27)
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It is evident that the above formula yields the Christoffel symbols of the first kind, the
exterior derivative of B, and the endomorphism-valued one form dλ. Contrary to the pure
GR case, now it matters if the Lie bracket of vector fields shows up in the first or second
argument, and (3.27) is the only consistent combination for the sum of a metric and a
2-form. In the λ = 1 case, the Koszul formula was already presented in [74].

We can hence compute the Riemann curvature tensor for the regular connection on
vector fields (3.25); let us begin with relabeling the derivatives on the dilaton

µ ∈ Ω1(M,End(TM)), µ(Y ) = Y jλ−1
(
∂iλδ

k
j − gkl∂lλgij

)
dxi ⊗ ∂k;

and denoting the exact 3-form dB with the field strength H. Notice furthermore that

Riem(s(Z), s(Y ), s(X)) ≡ Riem(Z, Y,X) = [∇̃Z , ∇̃Y ]X − ∇̃[Z,Y ]Lie
X,

however such equivalence of the generalized Riemann tensor (2.25) on the s-vector with
the standard Riemann tensor is not obvious a priori. It rather follows from a careful check
that derivatives on the λ-factors carried by the splitting s cancel between the commutator
and the covariant derivative of J, K. With these premises, Riem(Z, Y,X) is:

Riem(Z, Y,X) =Riem(Z, Y,X) +
1

2
∇L.C.
Z g−1H(Ŷ , X̂, ·)− 1

2
∇L.C.
Y g−1H(Ẑ, X̂, ·)

− 1

4
g−1H(Z, g−1H(Y,X, ·), ·) +∇L.C.

Z µ(Ŷ , X̂)−∇L.C.
Y µ(Ẑ, X̂)

+
1

2
g−1
(
H(Z, µ(Y,X), ·)−H(Y, µ(Z,X), ·)

)
+ µ(Z, µ(Y,X))− µ(Y, µ(Z,X)),

where the hatted vector fields are not subjected to covariant derivation. Riem is the
Riemann tensor for the Levi-Civita connection, and its Ricci curvature will be denoted
Ric. The whole Ricci curvature, in components, corresponds to

Ricij =Ricij +
1

2
∇L.C.
l Hji

l +
1

4
Hjm

lHli
m − 1

2
Hjm

l

(
∇L.C.mφgil

)
− (d− 1)

6
Hji

m∇L.C.
m φ+

(d− 2)

9

(
∇L.C.
i φ∇L.C.

j φ−
(
∇L.C.φ

)2
gij

)
+

(d− 2)

3
∇L.C.
j ∇L.C.

i φ+
1

3
gij
(
∇L.C.

)2
φ. (3.28)

The curvature starts to depend on the dimension of the manifold M because of the trace
of µ. For d = 10 (3.28) is

Ricij =Ricij +
1

2
∇L.C.
l Hji

l +
1

4
Hjm

lHli
m −Hji

m∇L.C.
m φ

+
8

9

(
∇L.C.
i φ∇L.C.

j φ−
(
∇L.C.φ

)2
gij

)
+

1

3

(
8∇L.C.

j ∇L.C.
i φ+ gij

(
∇L.C.

)2
φ
)
.

(3.29)

The bosonic sector of 10-dimensional supergravity, which coincides with the low-energy
effective closed string action of type II (NS-NS sector), is retrieved from the Ricci tensor
integrated against (g − B) (and other factors). In our present situation the Ricci tensor
does not correspond to the sum of the beta functions for g and B, in contrast to what
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some other authors found, see for example [20]. The beta functions, up to zero order in
α′, as computed from the open string sigma model [75]

β(g)ij = Ricij −
1

4
Hjm

lHli
m + 2∇L.C.

i ∇L.C. jφ

β(B)ij = ∇L.C.
l Hji

l − 2Hji
m∇L.C.

m φ.
(3.30)

The function for the dilaton β(φ), apart from a factor dependent on the dimension, is of
order 1 in the string coupling constant α′ and being its explicit expression irrelevant for
the rest of the discussion, it has been omitted. Linear combinations of β(φ) and β(g)ij
(opportunely multiplied with the metric) give rise to the Einstein equations for g, and to
the φ-field equation of motion. This led to assign them a further significance: they are
also the equations of motion due to the variation of the S[g,H, φ] action w.r.t. g and φ,
according to the principle of least action.

The discrepancy between β-functions and Ricci curvature tensor does not cause any
harm because eventually the Lagrangian is obtained from the Ricci tensor (3.28) in d = 10
dimensions contracted with the antisymmetric combination

exp(−2φ) (g −B)ij
√
−det g,

where the metric g is again used to raise indices. New numerical factors which are
dimension-dependent arises in this way. Integrating by parts

−
∫
M

VolM e−2φ(x)Bij

(
1

2
∇L.C.
l Hji

l − 2Hji
l∇L.C.

l φ

)
,

and applying Stokes’ theorem, with ∇L.C.
l Bij =

1

3
Hl

ij , lead to reconstruct the correct
1

12
factor in front of the H square term. The numerical factor in front of the kinetic term for
the dilaton in the action is recovered as well from the trace and integration by parts. Hence
for suitable boundary conditions, in plain words that the fields decay sufficiently fast at
infinity, we have been able to build the SUGRA action for the NS-NS fields from purely
geometric considerations involving a graded Poisson algebra and a generalized tangent
bundle endowed with a Courant algebroid.

We find quite surprising that our 10-dimensional Ricci curvature tensor could reproduce
the action upon contraction with g − B, despite differing from the β-functions (3.30). In
fact, up to boundary terms, it is known that [75]

e−2φ

[
β(g)ijg

ij − 1

2
β(B)ijB

ij

]
≡ L[g,H, φ].

We could instead derive the same Lagrangian via a tensor (Ricij (3.29)) which is definitely

not β(g)ij +
1

2
β(B)ij (3.30).

3.3 Dual gravity action in the background of Q and R fluxes

In the same conditions than before, when implementing another deformation that deals
with both g + B and its inverse (with reverted sign) at the same time, then by con-
struction the derived brackets, in some limit (i.e. through a splitting/projection onto the
appropriate subspace), are expected to yield the cohomological terms which are the dif-
ference between two tensors in H3(M,R) but also between two mixed symmetry tensors
in Γ

(
Λ2T ∗M ⊗ TM

)
, i.e. ρ(ξα)i∂iΠ, for Π ∈ X2(M). In that limit the exterior derivative
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of B ∈ Λ2T ∗M is naturally set to zero. Then the field strength of Π can be locally re-
garded as the stringy Q and R fluxes (although proper fluxes are not globally trivial in the
cohomology) and should participate in building up the curvature. Meanwhile, projection
to TM with a splitting s portrays again (g,H)-SUGRA as in the previous section. This
doubled, mirrored image and the corresponding differential geometry objects are studied
in our forthcoming publication [7]. The machinery is pretty much the same one used for
the previous deformation.

The vielbein is

E(x) =

(
1 (g(x)−B(x))−1

− (g(x) +B(x)) 1

)
. (3.31)

It is invertible because the metric G to which E gives rise, is Riemannian and thus invertible
by definition. Its inverse is:

E−1 =
1

2

(
g−1 (g −B) −g−1

(g −B) g−1 (g +B) (g −B) g−1

)
.

The Darboux coordinates {χi} for T ∗[1]M and {θi} for T [1]M are mapped to new coor-
dinates χ and θ in the following way:

χi 7→ χi − θj (g(x) +B(x))ji =: χ
i
, θi 7→ χj (g(x)−B(x))ji + θi =: θi. (3.32)

Compared to the vielbein of section 3.2, now the degree 1 coordinates are transformed in
a symmetric fashion, one set of coordinates with the map g+B, the other with its inverse
modulo signs. Moreover, the open-closed string relations (2.13) are nicely implemented
in the vielbein itself. Let us clarify once more what is perhaps a point of confusion: the
vielbein we consider is purely local, not global.

The non-flat local metric G associated to this choice for E(x) is

G(x) =

(
−2g(x) 0

0 2 (g +B)−1 g (g −B)−1 (x)

)
. (3.33)

The symmetry group for the metric is hence O(d)×O(d) ⊂ O(d, d). The vielbein E reduced
the orthogonal group of split signature to (the double copy of) the orthogonal group in
d-dimensions. When referring to objects in the cotangent space we will also enforce the
closed-open string relations

(g(x) +B(x))−1 = G−1(x) + Π(x), (3.34)

for G−1(x) ∈ S2(TM) and Π(x) ∈ X2(M). In particular,

G−1 = (g +B)−1 g (g −B)−1 , Π = −(g +B)−1B(g −B)−1,

and we note the appearance of 2G−1 in the lower diagonal block of G (3.33). When we
will be restricting our considerations to cotangent space we will express all the tensors
w.r.t. G−1 and Π. Vice versa, when working in tangent space, our metric and 2-form will
be respectively g and B. For the moment being we will express every formula in terms of
the latter.

The connection ∇ = E−1∂E corresponds to:

{υ,X + γ}′ = ∇υ (X + γ) = υ. (X(x) + γ(x)) + υiXj
(
Γij

kχk + Γijkθ
k
)

+ υiγj

(
Γ j
i kθ

k + Γi
jkχk

)
,

Γij
k =

1

2
gkl∂i (g −B)jl , Γi

jk =
1

2
gkl (g −B)lm ∂i

[
(g +B)

−1
]jm

, (3.35)

Γ j
i k =

1

2

[
(g −B) g−1 (g +B)

]
km

∂i (g +B)
jm
, Γijk = −1

2
(g +B)lk g

ml∂i (g −B)jm .

(3.36)
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The non-canonical Poisson brackets and the corresponding symplectic form are pre-
served by the Poisson action of the following Hamiltonian

Θ =

(
−χi

g

2

ik
+ θi (g −B)ij

g

2

jk
)
pk. (3.37)

Checking that {Θ,Θ}′ = 0 with the above Θ is a lengthy and unwieldy calculation. It is
much easier to use a consistent solution in the canonical setting, as the following projector
ρ̃ : Γ(E∗) 7→ Γ(TM) is:

ρ̃ =

(
0 0
1 0

)
,

and hence map this to a suitable new ρ̃ in virtue of (3.6),

ρ̃ =

 −g
2

−1
0

(g −B)
g

2

−1
0

 , ρ(U) = X + (g +B)−1 (γ) ∈ Γ(TM). (3.38)

The derived brackets [, ]′D are thus steadily obtained from the general formula (3.7)
through the following replacements: ρ̃ as given in (3.38), G as given in (3.33), the connec-
tion symbols (3.35) and (3.36) and C ≡ 0. For the sake of simplicity, it is more convenient
to present their expression exploiting the fact that E is a homomorphism of the CA bracket.

[U, V ]′D = E−1 [EU, EV ]D =
g

2

−1
(g +B) ([ρ(U), ρ(V )])− g

2

−1
Lρ(U) [σ − (g −B) (Y )]

+
1

2
(g −B) g−1 (g +B) ([ρ(U), ρ(V )])

+
g

2

−1
ιρ(V )d [γ − (g −B) (X)]

+ (g +B)
g

2

−1
Lρ(U) [σ − (g −B) (Y )]

− (g +B)
g

2

−1
ιρ(V )d [γ − (g −B) (X)] . (3.39)

A connection for the CA arises when subtracting the generalized Lie bracket (3.20) of
proposition 2.3.2. The connection in its coordinate expression is not particularly mean-
ingful, since the relevant physical fields are put in a dominant place only when we restrict
our considerations to the subspaces TM or T ∗M . However it can be interesting to take
a look at the torsion TD(U, V,W ) of the connection. In coordinates (with indices i, j, k
assigned in this order), this is1

TD(i, j, k) = 3 (g +B)[j|m ∂mΠ|ki] + ∂[iBjk] + 4∂jΠ
ki − 4∂kΠ

ji + 4∂iΠ
jk

− 2 (g −B)il

(
∂[j + (g +B)[j|m ∂m

)
(g +B)|k]l + cyclic in i, j, k. (3.40)

The 3-form component of TD is again just dB; the trivector component (g +B)[j|m ∂mΠ|ki]

will be relevant as well for the rest of the analysis.

The projection onto the physically important subspaces takes place when using a non-
isotropic splitting s : Γ(E) 7→ Γ(TM) for G which is actually isotropic for 〈, 〉:

s(X) = X; G(s(X), s(Y )) = −2g(X,Y ), 〈s(X), s(Y )〉 = 0.

1Antisymmetrization will occur without factors due to combinatorics unless explicit mentioned.
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The induced metric on TM is −2g(x). It is immediate to notice that this option for the
splitting covers the previous case of (g,H, φ)-Supergravity when λ = 1 (i.e. φ = 0): in
fact the connection becomes

G
(
∇̃s(Z)s(X), s(Y )

)
= (g −B) ([X,Y ], Z) + (g −B) (Y, [X,Z])− (g −B) (X, [Y,Z])

−X. (g −B) (Y,Z)− Z. (g −B) (X,Y ) + Y. (g −B) (X,Z)

− 2g(Zi∂iX,Y )

=: − 2g
(
∇̃ZX,Y

)
. (3.41)

We have hence obtained a Koszul formula for the non-symmetric metric (g −B) without
dilaton, in this case. It is remarkable that the two vielbeins have led to very close results
when projecting the CA connection onto TM : this is not trivial even when λ ≡ 1 since
the inverse vielbeins as well as the respective generalized metrics for E differ quite much
from each other. Inversion of (3.41) allows to write down the connection ∇̃ : Γ(TM) 7→
Γ(T ∗M ⊗ TM):

∇̃ZX = Z.X + ZkXi

[(
ΓL.C.

)
ki
j − g

2

jl
(dB)kil

]
∂j .

When focusing on the T ∗M subspace the physics starts to look quite unwieldy com-
pared to what we described so far. Be reminded that now the open-closed strings relations
will be implemented, hence the metric will be G−1 while the 2-form B is replaced by the
bivector Π. In order to proceed, first we must dualize the short exact sequence for the
CA,

0→ TM
∆−→ E

∆∗−−→ T ∗M → 0,

following the prescriptions at the end of subsection 2.2. ∆ is an isotropic map for the
E-metric G. A possibility is:

∆(X) =
(
G−1 −Π

) G
2

(X) +
G

2
(X). (3.42)

Composition of (3.42) with the anchor (3.38), ρ◦∆ : TM 7→ TM , gives the identity of TM .
Then having picked up this ∆-map implies that the specific formula for ∆∗ : E∗ 7→ T ∗M
is

∆∗(U) = −
(
G−1 −Π

)−1
(X) + γ.

Hence a suitable splitting r : T ∗M 7→ E, ∆∗ ◦ r = idT ∗M , non-isotropic for G, is

r(γ) = γ. (3.43)

Clearly, the induced metric on T ∗M is 2G−1(x). The connection in cotangent space
∇̃ : Γ(T ∗M) 7→ Γ(TM ⊗ T ∗M),

2G−1
(
∇̃ζγ, σ

)
≡ 2G

(
[r(γ), r(σ)]′D − Jr(γ), r(σ)K, r(ζ)

)
,

where [, ]′D is given in (3.39), corresponds hence to

2G−1
(
∇̃ζγ, σ

)
= ι[(G−1+Π)(γ),(G−1+Π)(σ)]ζ − ι[(G−1+Π)(γ),(G−1+Π)(ζ)]σ + ι[(G−1+Π)(σ),(G−1+Π)(ζ)]γ

+
(
G−1 + Π

)
(γ).

(
G−1 + Π

)
(ζ, σ)−

(
G−1 + Π

)
(σ).

(
G−1 + Π

)
(ζ, γ)

+
(
G−1 + Π

)
(ζ).

(
G−1 + Π

)
(σ, γ)− 4G−1

((
G−1 + Π

)
([γ).σ], ζ

)
. (3.44)
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The Leibniz rule has been employed to untie the connection into its components. The
last term is the contribution of the Lie-like bracket and the square bracket appearing

there means antisymmetrization with a
1

2
−factor. The whole expression might look very

complicated but it is actually quite easy to simplify it up to (3.45) below, as should be
the case since the connection symbols are formally equivalent to ΓL.C. + g−1dB upon
replacement of:

g 7→ G−1, B 7→ Π, ρα
i = δj

i −→ ρα
i = δj

i +
(
G−1 −Π

)ji
.

The final output is:

∇̃ζγ =
(
G−1 + Π

)
(ζ).γ +

1

2
ζkγiGjl

(
G−1 + Π

)km
∂m
(
G−1 + Π

)il
dxj

+
1

2
ζkγiGlj

[(
G−1 + Π

)im
∂m
(
G−1 + Π

)lk − (G−1 + Π
)lm

∂m
(
G−1 + Π

)ik]
dxj .

(3.45)

For convenience, let us now define:

(ΓG)ki j :=
1

2

[
Gil∂lG

mk +Gkl∂lG
im −Gml∂lGik

]
Gmj ,

Ykij :=
1

2

[
Πil∂lG

mk + Πkl∂lG
im −Πml∂lG

ik
]
Gmj ,

for the symmetric part of the connection. In fact (ΓG)ki j = (ΓG)ik j and Ykij = Y ikj . For
the antisymmetric part it is convenient to name the following quantities

Qkij := ∂jΠ
ki, Rkij := Π[k|m∂mΠ|ij], (3.46)

in agreement with the local expressions of the stringy fluxes Q and R when the closed
3-form H is zero, see for example (3.3) in [70], and hence notice the appearance of

X kil :=
1

2

[
−Qkij + 2GmjG

[i|lQm|k]
l

]
, and

1

2
GjmR

kim.

In the end, the connection symbol Γ̃ associated to ∇̃ is

Γ̃ ki
j = (ΓG)ki j + Ykij + X kij +

1

2
GjmR

kim. (3.47)

In the fully contracted expression for the torsion TD(i, j, k) (3.40) just G−1X and R con-
tribute and build up the trivector, as we hinted at earlier in this subsection. In fact the
same splitting r does not lead to significant changes to the Lie-like bracket, in the coor-
dinate expressions. The connection and its torsion we got here slightly differ from what
was studied in [36], where the authors employed a connection on T ∗M (and its associated
torsion) that depended on a different combination of Q-factors.

Before looking after the consistent curvature tensors, let us combine the developments
so far with a new observation, developed further in [61]. It is another interesting viewpoint
that can shed light on the matter from another angle.

Redefinition of {θ} only. One more deformation can lead to the Courant algebroid
constrained on the r-sections. It is encoded in the vielbein

E =

(
1 G−1 −Π
0 1

)
, (3.48)
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which yields the metric

G =

(
0 1d

1d 2G−1

)
,

as well as the metric connection with symbols Γi
jk = ∂i

(
G−1 −Π

)jk
. If the coanchor and

thus the Hamiltonian are taken to be:

ρ̃αj = −
(
G−1 −Π

)ij
+ δi

j , Θ = −χi
(
G−1 −Π

)ij
pj + θjpj ,

then, by construction, the Hamiltonian has null (deformed) Poisson brackets with itself.
The derived structure can be recovered. The fully contracted Dorfman bracket is

〈[U, V ]′,W 〉′ =
〈(
Xk −

(
G−1 + Π

)
(γ)k

)
∂kY, κ

〉
+
〈(
Xk −

(
G−1 + Π

)
(γ)k

)
∂kσ, Z

〉
+ σiκj

(
Xk −

(
G−1 + Π

)
(γ)k

)
∂k
(
G−1 + Π

)ij
+ 2G−1

((
Xk −

(
G−1 + Π

)
(γ)k

)
∂kσ, κ

)
+ (W → U → V )− (V ↔ U,W ),

〈, 〉 on the RHS denoting the canonical pairing.

Moreover, since the Lie-like bracket corresponds to

JU, V K = ρ(U)V − ρ(V )U − UαV βJξα, ξβK

=
(
Xk −

(
G−1 + Π

)
(γ)k

)
∂kV −

(
Y k −

(
G−1 + Π

)
(σ)k

)
∂kU

the derived connection is also non-trivial on forms and in T ∗M matches (3.45) (the trans-
pose appears when passing from the coordinate description to the index-free notation).

We can now unveil the remaining objects of generalized differential geometry.

A Riemann curvature tensor for a connection on cotangent space can be defined with
no ambiguities from Riem (2.25), as the 1-forms defining the direction of derivation
are always anchored to tangent space with the help of the anchor map, and therefore
the connection ∇̃ ∈ Γ(T ∗M) 7→ Γ(TM ⊗ T ∗M) can actually be interpreted as the map
Γ(T ∗M) 7→ Γ(T ∗M⊗T ∗M). This is glaring in the term of (3.44), involving the generalized
Lie bracket, thanks to an easy manipulation:

2G−1 (. . . , j(ζ)) = 2g
(
G−1 + Π

)
(. . . , ρ(j(ζ))) ,

while the other troublesome term, the first addend in (3.44), can be massaged to

ι[ρ(j(γ)),ρ(j(σ))]ζ ≡ 2G−1

(
G

2
([ρ(j(γ)), ρ(j(σ))]) , ζ

)
= G

(
[ρ(j(γ)), ρ(j(σ))] , G−1(ζ)

)
.

We are hence ready to calculate the Riemann curvature tensor:

Riem(r(ζ), r(γ), r(σ)) =: Riem(ζ, γ, σ) =
[
∇̃ζ , ∇̃γ

]
σ − ∇̃Jr(ζ),r(γ)Kσ.

The coordinate-free expression is quite involved and does not add anything interesting to
the comprehension of the matter. Because of that we will present just the Ricci tensor in
the local coordinate basis. To do so, first we dub D̃G the symmetric part of the connection,

D̃G (κ)ς := κi
((

G−1 + Π
)im

∂mς + ςk

(
Γ ik
G j + Y ikj

)
dxj
)
. (3.49)
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Notice that D̃GG
−1 = 0. In this notation, the Ricci curvature is

Ricjk = RicjkG +
1

2
D̃i
GR

jk
i−

1

4
RjmlR

lk
m+ D̃i

GX jki−
1

2
R(j|m

iX i|k)
m−X jmiX ikm. (3.50)

RicG ∈ Γ(TM ⊗ TM) is the partial trace of the Riemann tensor of D̃G. As in the
previous section 3.2 we now wish to resort to the natural non-symmetric metric for T ∗M ,(
G−1 −Π

)
, with indices raised and lowered with G−1, to build a Lagrangian out of the

Ricci tensor (3.50). In this attempt, one should also observe that an exact multivector
dρα ∈ X•(M) with anchor ρ in (3.38) necessarily has the coordinate expression:

∂i ∧
(
G−1 + Π

)ij
∂jα

k1k2...kd∂k1 ∧ ∂k2 ∧ · · · ∧ ∂kd .

This has a direct consequence on the half-density
√
−detG−1w, where w is some scalar:

dρ

(√
− detG−1w

)
=
(
G−1 + Π

)
.
(√
−detG−1w

)
=

1

2

√
−detG−1

[(
G−1 + Π

)im
∂mGij

]
wj

=
√
−detG−1

[
(ΓG)

i
ij + Yiij

]
wj =

√
−detG−1D̃Gjw

j .

This shows that a divergence ∇̃jwj accompanied with the half-density
√
− detG−1 is exact,

dρ
(√
−detG−1w

)
, similarly to what happens in Riemannian geometry to the volume form

for a curved metric g, √
−det g∇iwi = ∂i

√
−det g wi.

For suitable boundary conditions, dρ
(√
−detG−1w

)
can then be integrated out. Such

observation is extremely helpful as it allows to perform integration by parts, which will
be applied to the terms 1

2D̃
i
GR

jk
i and D̃i

GX jki in (3.50). Notice also that the symmetric

covariant derivative D̃G acting on Πjk gives:

D̃l
GΠjk ≡ GjnGrk

(
G−1 + Π

)lm
∂mΠnr = Gjn

(
1

3
Rlnr +GlmQnrm

)
Grk.

Hence the Lagrangian L[G,Π] describing the dynamics of a metric G−1 and of the (local
expression of) the non-geometric flux R, together with interactions between the Q-flux
and R or Q itself, is:

L[G,Π] =
√

detG−1

[
RG −

1

12
R2 +

3

4

(
Qjnm

(
GpmQlkp − 2QmlpG

pk
))

GjlGnk

−
(

1

6
Qjns +

2

3
GrsG

jpQnrp

)
RslkGjlGnk

]
. (3.51)

Let us stress once more that the trace procedure, with the non-symmetric metric, turned
out to be fundamental in keeping the full Ric tensor and in reconstructing the precise

numerical factors. The Lagrangian (3.51) can be considered “dual” to L[g,B] = R− 1

12
H2

studied previously, given the “duality” transformations

(g,B) 7→
(
G−1,Π

)
,
(
ρ(χi) = ∂i

)
7→
(
ρ(θi) =

(
G−1 + Π

)ij
∂j

)
.

It is quite natural to conjecture that the minimally coupled Lagrangian (3.51) could be
invariant under the gauge symmetries Π 7→ Π+dρP, where P ∈ X(M). We proved already
that this must be the case around equation (2.53). The Lie-like bracket, in any reference
chart, has also the canonical expression (2.49), with Q̌ in (2.48) for the degenerate Poisson
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structure and ρ̃ in (3.38). The gauge transformations of the O(d, d) generators leave J, K
unchanged as well. It can be proved that the degree 1 functions in the cohomology of Π
with Q are also in the cohomology with differential Q̌. We thus are ready to check the
expression of the gauge symmetry of Π, as the vielbeins contain the O(d, d)-generators, and
[, ] and J, K have a canonical formulation. So how do these shifts of Π by exact bivectors look
like in the deformed Poisson algebra? First of all one could think of the gauge symmetries
of the O(d, d) generators altogether: from % (of (2.50), with α in (2.51)) of degree 1 and
hence linear in χ and θ, one should compute

{aiθi + ãiχi,Θ}′

with the rather obvious request that the transformations do depend just on the degree-1
coordinates (as the vielbein does not mix the {ξ} and {p} sets of coordinates). The general
set of equations is the following:{

%α(x)
(
ET
)
α
j pj ≡ 0, ∀pj(

E−1
)αj

∂j%
β(x) + %γ(x)

(
E−1

)β
δ

(
E−1

)αj
∂jEγδ = {%,Θ}.

In our specialized case, the first condition sets ãi to be ãi = −aj
(
G−1 + Π

)ji
(or vice

versa ai = −ãj(x) (g +B)ji). For the second it should first of all be noticed that since
the vielbein shuffles the degree-1 coordinates (3.32), % is going to mix up the gauge trans-
formations of the whole set canonical O(d, d) transformations of the underlying graded
Poisson algebra. Hence one should not expect familiar formulas to appear.

Thus the degree-1 function

% = ak(x)
(
χk −

(
G−1 + Π

)−1

km
θm
)
, (3.52)

yields the following degree-2 function from the Poisson bracket with the Hamiltonian:

{%,Θ}′ =
(
χi
(
G−1 + Π

)ij
+ θj

)[
2∂ja

k(x)gkl

(
θl −

(
G−1 −Π

)lm
χm

)
+ ak(x)

(
2∂jgikθ

i − 2
(
G−1 + Π

)ni
∂jgikχn

)]
.

The gauge transformations of βijχiχj , β 7→ β+ {%,Θ}′ are untied when extracting all the
bivectors:

−Q%|χχ−comp. = −2χi
(
G−1 + Π

)ij
∂j

(
ak(x)gkl

) (
G−1 −Π

)ln
χn. (3.53)

This holds for any other bivector, such as Π in the derived connection ∇̃ (aside from
those due to the anchor map, since it descends from the homological vector field itself).

Being Q̌ = pi
∂

∂χi
+
(
G−1 + Π

)ij
pj

∂

∂θi
, Q̌ acting on % (3.52) is identically zero, hence the

symmetry is a symmetry for the generalized Lie bracket too. We argue then that the

derived objects, i.e. the connection coefficients (X +R)kij =
(
G−1 + Π

)[k
.Πij], are hence

invariant under Π 7→ Π + dρ%, the transformation being applied just when the bivector
does not come from the anchor map.

It should be remarked that with the equivalent deformation (3.48) the computation
is more neat. Since in that circumstances old and new χ coordinates coincide, the gauge
symmetries of Π do not require much effort to be worked out. Invariance of the Lagrangian
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(3.51) under shifts of Π by exact bivectors was inferred in our work [61]. Formula (2.7)
there, if %l(x) ≡ 2glka

k(x), is equivalent to eq. (3.53).

A similar analysis in the context of the T ∗M Lie algebroid, where the action consisted
of a pure Einstein-Hilbert term and the square of the pullback of H ∈ Ω3(M), can be
found in section 4.2 of [38].

3.3.1 Generalized parallelizability

Throughout the whole thesis as soon as the graded manifold of reference was designed, a
local open set and a chart were always considered. In the course of the exposition we never
focused on global aspects of the (ungraded) principal or vector bundles we studied. In
this section of the appendix we wish to comment on the global picture perhaps clarifying
some less transparent point in the presentation. When in section 3.2 and section 3.3
two peculiar examples of frames were chosen, the connection naturally turned out to be a
Weitzenböck connection for T ∗[1]M⊕T [1]M . This type of connection is tailored for spaces
with a global basis of (generalized) vector fields, since it stems from the condition that
the covariant derivative of a global vector along another global vector is zero. However we
never faced the global aspects of our graded manifold with Weitzenböck connection: The
legitimate question, whether the ungraded principal or vector bundles under investigation
were actually trivial, or generalized parallelizable, deserves a few more words.

First of all, generalized parallelizability is a weaker condition than usual paralleliz-
ability. There are some base manifolds whose tangent bundle is definitely not globally a
product manifold, but their generalized tangent bundle is. As Huckleberry and Arial [76]
pointed to us, for the sphere embedded in R

3 the trivial bundle as a real vector bundle
of rank 4 is the direct sum TS2 ⊕ T ∗S2. On the other hand, among the spheres, S1 and
S3, being the group manifolds of some Lie groups, are known to be parallelizable in the
standard sense.S7 is also parallelizable, although it is not associated to a Lie group, but
it is instead the coset space Spin(7)/G2.

In any case, in the graded symplectic structure the graded 2-forms are always exact
(see (2.29)). The construction of non-canonical symplectic forms, via vielbein or through
other deformations, is just local. We simply did not look at the coordinate-free description,
though there is at least one successful attempt in this sense, by Roytenberg [77]. Anyway
this does not mean that an “inverse deformation” that unties the construction brings us
back to the original situation we started with (of a flat manifold and a trivial connection).
There are other data, such as the Hamiltonian, the splitting, the Lie-like bracket, the
induced metric and the tensor with which the trace is taken in the action, that will
undergo further changes. B and Π cannot be gauged away already in the local setting.

The issue of gauging B and Π away was first faced in the context of Generalized
Geometry with non-geometric fluxes in the paper [30]. To deal with global charges, the
authors considered that in the algebra of the CA bracket just structure constants, and
not functions, appears. Therefore the Courant algebra is a Lie algebra h, which thanks to
the axioms forms actually a subalgebra h ⊂ o(d, d), and because of the homomorphism ρ
with the Lie bracket of vector fields, h can be realized in terms of vector fields, of which
some may vanish. The set of generalized vectors that when anchored to TM are null,
constitutes a Lie subalgebra l. The base manifold must hence be the coset space

M = H/K, h = Lie(H), l = Lie(K).

This confirms the statement that generalized parallelizable manifolds are more general
than those parallelizable in the standard sense, shedding a different light on the topic just
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discussed. Furthermore, when the fluxes are turned on, the authors claimed that it was
not possible to arrange them to be all non-zero. In the case of T3, for example the R flux
cannot (it must be zero).

This hence legitimates from another perspective the emergence, in our personal work
described in section 3.3, of Q and R combined with a null H (3.46). This is also stressed
around (4.1) in the Conclusions.

3.3.2 Deformation with curvature

On the graded symplectic T ∗[2]T [1]M there is another class of deformations, more general
than the one that yields the non-canonical symplectic form (3.1). Another non-canonical
2-form, invertible and closed, can thus be studied. With respect to the local Darboux
chart {x, ξ, p}, it is given by:

ω′ = dxi ∧ dpi + dξαG
αβ(x) ∧ dξβ + dxi Γi

αβ(x)ξβ ∧ dξα + dxk ξαR̃
αβ

kj(x)ξβ ∧ dxj .

Gαβ(x) ∈ Γ
(⊗2 T ∗[1]M ⊕ T [1]M

)
is symmetric and bilinear, hence it is a metric on the

space of ξ-coordinates. It can be appealing to see what closure of ω′, dω′ = 0, implies:

Γi
αβ(x) + Γi

βα(x) = ∂iG
αβ(x),

R̃αβij(x) = ∂[iΓj]
αβ(x),

∂[k|R̃
αβ
|ij](x) = 0.

(3.54)

The first relation tells us that the metric should be covariantly constant, as in the previous
deformation. In fact the Γ’s are connection symbols for an affine connection, as Leibniz
rule and Jacobi identity for the corresponding Poisson brackets can better determine. The
second and the third relation remind of the definition of a curvature tensor and its Bianchi
identity, however they do not describe real tensor quantities. The Poisson brackets will
shed some more light on (3.54) and accidentally cure the failure of R̃ to be a tensor. The
brackets are a mere declination of those in (3.5), where on the left column these are given
in their corresponding coordinate notation, while on the right as acting on the functions
υ(x), ς(x), U(x), V (x) and f(x) as in (3.5):

{pi, xj}′ = δi
j , {υ(x), f(x)}′ = υ.f,

{ξα, ξβ}′ = Gαβ(x), {U(x), V (x)}′ = G(U, V ),
{pi, ξα}′ = Γiα

β(x)ξβ, {υ(x), U(x)}′ = ∇υU,
{pi, pj}′ = ξαR

αβ
ij(x)ξβ, {υ(x), ς(x)}′ = [υ, ς]Lie +R(υ, ς).

(3.55)

The Greek indices are raised and lowered with G and Rαβij(x) ∈ Γ
(
Λ2(T ∗[1]M ⊕ T [1]M)⊗2 T ∗[2]M

)
denotes

Rαβij(x) = R̃αβij(x)− Γ[i|
αγGγδ(x)Γ|j]

δβ = ∂[iΓj]
αβ − Γ[i|

αγGγδ(x)Γ|j]
δβ.

Clearly the true curvature tensor is R. The symplectic model is perfectly consistent with
our assumptions. Now a compatible differentiable structure shall be furnished. This is
specified as usual by a Hamiltonian function Θ that solve the master equation {Θ,Θ}′ = 0
with respect to the non-canonical symplectic structure. The set of conditions is now more
challenging to solve than in the previous situation, where the diffeomorphism of Moser
lemma was known:

ρ̃αiGαβ ρ̃
βj = 0,

2ρ̃γi∇iρ̃δj + ρ̃µiGµνC
νγδ = 0,

1

3
ρ̃αi∇iCβγδ +

1

4
CαβσGσµC

µγδ +Rγδij ρ̃
αiρ̃βj = 0.

(3.56)
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The non-contracted Greek indices are meant to be antisymmetrized, as they belong to
either one of the two d-dimensional sets of coordinates which mutually anticommute. The
covariant derivative hits just the Greek indices too, e.g. ∇j ρ̃βi(x) = Γjδ

β ρ̃δi(x)+∂j ρ̃
βi(x).

The last condition is certainly the most intriguing, however let us go in order: the first
row, if G is locally diagonalized by some vielbeins F , claims that the CA is exact, i.e. that
F∗◦ρ∗ should be in the kernel of ρ◦F . The second row relates the metric and its connection
to C and ρ̃, but above all with the latter one can argue that a covariant field strength for
C, taken with ∇+Cy2, is Rγδij ρ̃

αiρ̃βj . It could be as well intended as a generalization of
Bianchi identities, where the de Rham differential is replaced by a covariant derivative and
the inner contraction with C. An obstruction in the cohomology is brought up, due to the
non-zero curvature R of the connection ∇. Thus the metric connection coefficients Γ shall
depend on the C tensors (3.9). The interplay between these objects, in the non-canonical
coordinate chart, is anyway quite subtle and deserves further attention; our insight on the
matter is that deformed Poisson brackets emphasize “exact” 3-generalized tensors, while
C is a twist by generalized tensors of the same degree, but not necessarily “exact”. When
the mutual dependence of Γ and C is settled, exactness, in this case for the short sequence
for the CA, still plays a role, in constraining ρ̃ instead.

With this type of deformation it is therefore much more subtle to deal with the fluxes,
and construct consistent Hamiltonians for the deformed symplectic structure. This diffi-
culty can also be seen from the fact that the diffeomorphism that produces the deformation
is generally not known explicitly. Just the differential equation with the generating vector
field can be worked out with a reasonable effort. Due to this, most of the times we will
just consider “Hamiltonian-like” functions comprising the first term of (2.41) (which is a
sort of Dirac operator), not the C tensors. The choice of the anchor map will be arbitrary
and simple anchors are favored. Although the functions will not fulfill the master equa-
tion, some appealing results can be nevertheless found. This is the content of the next
subsections.

3.3.2.1 Metric connection

In this part we will examine the instance of non-canonical QP T ∗[2]T [1]M , where the
curvature is present (3.55), and study a few concrete examples. Relations with GR and
Einstein-Cartan theory will be on the way. Setting the metric on the (T ∗[1]M ⊕ T [1]M)-
fiber equal to the O(d, d)-invariant pairing η will lead to a symmetric connection.

Let us go in order: consider the following Poisson brackets

{pi, xj}′ = δi
j , {υ(x), f(x)}′ = υ.f,

{χi, θj}′ = δi
j , {U(x), V (x)}′ = η(U, V ),

{pi, χk}′ = Γik
l(x)χl, {υ(x), U(x)}′ = ∇υU,

{pi, θk}′ = −ηmlηkjΓijm(x)θl,
{pi, pj}′ = χlθ

kRlkij(x), {υ(x), ς(x)}′ = [υ, ς]Lie +R(υ, ς)lkχlθ
k.

(3.57)

The minus sign in front of the connection symbol on the θ coordinate ensures that the
double bracket between p, χ, θ fulfills Jacobi identity. The connection is metric for η.
The same consistency request on the p, p, χ (or θ) triplet tells that the only admissible
curvature tensor must contract with a vector field and a 1-form. Other options are available
upon raising or lowering the indices via the invariant pairing. Furthermore its well-known
structure is confirmed thanks to the Jacobi identity:

Rlkij(x)χl = ∂[iΓj]k
l(x) + Γ[i|k

m(x)Γ|j]m
l(x).

2y stands for the inner product with C, taken with G.
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Finding the vector field Xt which generates the flow of the diffeomorphism ϕt, ϕ
∗
tωt = ω0,

is a particularly simple task. In fact it is almost immediate to get the exact 2-form dAt,
ωt − ω0 = dAt:

ω0 = dxi ∧ dpi +
1

2
δij dχi ∧ dθj , ωt = ω0 + d

[
(Γt)il

kθlχk dx
i
]
. (3.58)

Xt is presented in (4.5).
In the Hamiltonian function Θ (2.41) the anchor can be given by the projector, and

for the moment we set the fluxes C to zero, i.e.

Θ = θipi. (3.59)

Under these assumptions, the master equation is solved when

Γij
k = Γji

k, Rl[kij] = 0; (3.60)

interestingly, these symmetry conditions define locally nothing but a torsion-free connec-
tion, whence by the Levi-Civita theorem Γij

k must be the Christoffel symbols, and the
Riemann tensor respects the algebraic Bianchi identity. General Relativity is hence natu-
rally recovered, and the derived bracket with O1(T ∗[2]T [1]M) functions U(x), V (x) is the
covariant Dorfman bracket with Levi-Civita connection ∇U ≡ ∇ρ(U) = ∇X :

[U, V ]′D = ∇UV −∇V U + 〈∇U, V 〉, 〈〈∇U, V 〉,W 〉 = 〈∇WU, V 〉. (3.61)

With this instance of a deformed Dorfman bracket and the standard generalized Lie bracket
a secondary connection ∇̃ can be derived from proposition 2.3.2. Recall that on the three
generalized vector fields U, V,W , ∇̃ is given by this formula:

〈∇̃WU, V 〉 = 〈[U, V ]′D − JU, V K,W 〉.

In the Darboux chart which defines with respect to what the Poisson brackets are deformed,
the Lie-like bracket is symply

JU, V K = ρ(U)V − ρ(V )U = [X,Y ]Lie +X.σ − Y.γ.

It does not contribute to further components for the whole ∇̃. However the connection ∇̃
itself is extremely boring: all its connection coefficients vanish. To prove this statement,
begin with the extraction of ∇̃ : Γ(E) 7→ Γ(E∗ ⊗ E), which requires inversion with the
O(d, d)-pairing. Using then the decomposition U = X + γ, W = Z + κ and the fact that
the connection ∇ preserves the subbundles TM and T ∗M respectively, a useful formula
for ∇̃ can be untied:

∇̃WU =

∇ZX + 〈∇Xdxj , Z〉 ∂j
∇Zγ − 〈∇∂jγ, Z〉 dxj
〈∇X∂j −∇∂jX,κ〉 dxj

 ≡
Zk∂kX + ZkXi Γ̃ki

j ∂j
Zk∂kγ + Zkγi Γ̃ i

k j dx
j

κkX
i Γ̃ k

ij dx
j

 , (3.62)

where the connection symbols Γ̃ for the derived connection can be easily worked out from
the first equality of (3.62): Γ̃ki

j := Γki
j + Γ j

i k, Γ̃ i
k j := Γ i

k j − Γ i
j k and Γ̃ k

ij := Γij
k − Γji

k.
A closer look at them permits to conclude that, when the connection ∇ is Levi-Civita,
∇̃ is flat. In all the rows, using the torsionless condition Γij

k = Γji
k and the metricity

condition w.r.t. the pairing Γ j
i k = −Γik

j , the connection coefficients Γ̃ turn out to be null.
The non-trivial mixing of tangent and cotangent space has led to the trivial connection.
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Even if the derived connection is not particularly intriguing, the Poisson structure
(3.57) with Levi-Civita connection for some metric g(x) : TM ∨ TM 7→ C∞(M) is rele-
vant on its own right. It delivers the graded Poisson theory for the TM ⊕ T ∗M bundle
with connection of [78]. There, the authors deployed as connection the Levi-Civita con-
nection acting on vector fields and forms separately, ∇L.C.

(X,γ)(Y, σ) =
(
∇L.C.
X Y,∇L.C.

X σ
)
.

Through the isomorphism between (χ, θ) and the coordinates (∂, dx) for TM ⊕ T ∗M ,
this is what we are also getting in (3.57). The H-field is then kept by using the general
twisted Dorfman bracket; in our framework using the H-twisted Dorfman bracket implies
that (2.24) is solved for the Lie-like bracket, and the corresponding generalized torsion
T (U, V ) = ∇L.C.

X V −∇L.C.
Y U − JU, V K is non-zero due to H. Hence if as in [78] one wants

to get one of the torsion-free generalized connections, compatible with the pairing (and
also with the metric g on vector fields), a mixed symmetry tensor K ∈ Ω1(E) ⊗ Ω2(E)
must be worked out. The result is in formula (112) of the cited reference. The geometric
action is the effective sting action of type II for the bosonic fields (g,H).

Things get more exciting in the derived brackets if the connection ∇ in the Poisson
brackets is allowed to bear torsion, meant in the usual sense, i.e. upon identification of the
degree-1 coordinates with the local coordinate basis for tangent space. Hence Γij

k−Γji
k 6=

0. The derived Dorfman bracket is formally identical to (3.61), provided that now ∇ is
not Levi-Civita, but just a metric connection. Concerning the differentiable structure,
clearly now Θ in (3.59) does not make a good Hamiltonian, as it cannot solve the master
equation anymore. In fact the first condition in (3.60) is dismissed when the connection
has non-zero torsion. There are however two paths worth to be pursued in the present
situation: find the appropriate Hamiltonian so that a consistent CA is retrieved, or study
the non-topological model described by the differential operator Q2 6= 0.

Let us start with the latter: if our inputs fail to satisfy the master equation, then the
CA bracket does not fulfill the usual restricted version of Jacobi identity. Nevertheless,
proposition (2.3.2) can still be applied, as that property is not required in order to get a
consistent affine connection. We are left with

{Θ,Θ}′ = −2θkΓkm
j(x)θmpj + θkθjRlikj(x)χlθ

k.

This opens up new possibilities: already the Poisson model is not just topological anymore,
but it is possible to give a dynamics to a point particle moving in the graded space, in
analogy with relativistic mechanics. The velocity must be a degree 2 object due to the

Poisson action of the Hamiltonian. The following
dx

dτ

j

does the job:

γ̇j ≡ dx

dτ

j

=
1

2
{Θ, {Θ, xj}′}′ = 1

4
{{Θ,Θ}′, xj}′

= −1

2
θkθlΓkl

j . (3.63)

Then the acceleration is

γ̈ ≡ d2x

dτ2

j

= −1

2
γ̇i
(
θrθkΓir

lΓ[kl]
j + θkθl∂iΓkl

j
)
− 1

4
Γ[cl]

jRciknθ
lθiθkθn

= γ̇i∇iγ̇j +
1

2
θlTcl

j
(
θk∇kγ̇c − θn∇nγ̇c

)
, (3.64)

where the torsion, whose definition coincide with the standard differential geometry one,
is labeled by T ∈ Γ

(
Λ2T ∗M ⊗ TM

)
, Tcl

j := 2Γ[cl]
j . We see that this is the geodesic equa-

tion. It was obtained from purely algebraic manipulations. This concludes the remarks
on the connection ∇ for GR with torsion.
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The secondary connection ∇̃ for the CA, arising from the difference between the de-
formed derived bracket {{O1,Θ}′,O1}′ = [, ]′D (that however does not respects the Jacobi
identity), and J, K, is now non-trivial:

〈∇̃WU, V 〉 = T(X,Y, κ) + T(Y,Z, γ) + T(Z,X, σ) + 〈Z.U, V 〉.

As expected, it depends only on the torsion (we previously saw (3.62) that the result
from the pure Levi-Civita is trivial). Notice that the connection coefficients Γ̃αβ

γ , for the
2d-indices α, β, γ being respectively assigned the d-dimensional labels k, i, j, are hence

Γ̃ki
j = Tki

j , Γ̃ i
k j = Tjk

i, Γ̃ k
ij = Tij

k.

There are three corresponding Riemann tensors available: Riem(1) : Γ(Λ2T ∗M ⊗ TM) 7→
TM , Riem(2) : Γ(Λ2T ∗M ⊗ T ∗M) 7→ T ∗M , Riem(3) : Γ(TM ⊗ T ∗M ⊗ TM) 7→ T ∗M .

(
Riem(1)

)l
mki = ∂[kTi]m

l + T[k|r
lT|i]m

r(
Riem(2)

) m
l ki

= ∂[kTl|i]
m + Tl[k|

rTr|i]
m(

Riem(3)

)
lmk

i = ∂kTlm
i + Tkm

rTlr
i = −

(
Riem(3)

) k

lm i

Now back to the first possibility, namely getting the correct Hamiltonian function
when dealing with a torsionful connection. This issue is much more delicate. A more
articulated anchor map than the projector has to be sought. Such map needs to satisfy,
roughly speaking, the following three conditions: 1) that the coanchor must be in the
kernel of the anchor, 2) ρ̃αi

(
Γiβ

γ ρ̃βj + ∂iρ̃
γj
)

= 0, and 3) ρ̃αiρ̃βjRlkij = 0. These are the
C = 0, G = η version of (3.56). Suppose that an anchor map passing these criteria is
given; then, in the derived bracket, the Dorfman bracket is again the covariant version
(3.61), where the covariant derivative is now just metric, and the anchor definitely does
not just simply project to TM . We might as well write the bracket down, in the presence
of the C-tensors:

{{U(x),Θ}′, V (x)}′ =∇ρ(U)V −∇ρ(V )U + 〈∇ρ(·)U, V 〉

+
1

3!
UαV εηαβηδε

(
Cβγδ − Cβδγ − Cγβδ + Cδβγ + Cγδβ − Cδγβ

)
ξγ

=: [U, V ]′D

Although this CA bracket and the derived geometry of TM⊕T ∗M are surely interesting on
their own, they do not add anything new to the analysis of gravitational model. This non-
canonical T ∗[2]T [1]M is related to a vector bundle which is still too close to the standard
tangent bundle and Riemannian geometry. What is fascinating, instead, is that already
the Poisson brackets (3.57) could undergo some canonical quantization on the lattice, but
we shall not focus on this aspect.

Another peculiar possibility concerns the study of metric-affine theories of gravity,
within this very same framework. In fact it is sufficient to relax the graded Jacobi identity
for the Poisson algebra to produce a non-metric connection. Anyway this will not be
investigated here.

In the forthcoming part a deformation of the Poisson algebra ultimately describing the
spin connection will be addressed. Since its QP-manifold of reference changes slightly, we
first approach such manifold and describe it with more details.
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3.4 Non-canonical NQ-T ∗[2]M ⊕ T [1]M

A very elegant, alternative way to formulate classical gravity relies on a Poisson structure
on the graded manifold T ∗[2]M ⊕ T [1]M . This situation covers the Palatini formulation
of GR, Einstein-Cartan theory and Poincaré gauge theory (the latter just in the instance
where some conditions are relaxed). Compared to the other cases investigated so far, here
the local description is a bit different. The set of coordinates consists of (xi, θa, pi), with
|θ| = 1 anticommuting coordinates for the fiber of T [1]M and |p| = 2 conjugate variables to
x. The most general symplectic structure was already illustrated in the proposition 2.5.4
for a generic E[1] bundle with a metric and a compatible connection. In the canonical
case (2.32) the metric is flat and the metric connection is trivial too.

3.4.1 Spin connection

Rather than just assuming the existence of a connection on T [1]M as in the realm of
proposition 2.5.4 proven in [58], let us find a 2-form, closed and non-degenerate which,
when pulled back by means of a diffeomorphism of the base manifold, corresponds to the
canonical symplectic form. Some of the facts that will be outlined are present in [63],
some other are due to personal research. In the canonical Poisson brackets,

{xi, pj} = δij , {θa, θb} = ηab, {θa, xi} = 0 = {θa, pi} = {pi, pj}, (3.65)

the constant metric on the fibers, η, shall be given Lorentzian signature and shall be
linked to a non-flat metric, by interpreting the degree-1 coordinates as vielbeins. Thus
the anholonomic {θa} are hence a basis of O(1, n − 1)-frames, while θi with spacetime
indices i, j, . . . ranging from 1, . . .dim M , is related to θa thanks to a set of matrices
eia(x) implementing the Lorentz transformations (rotations and boosts):

θi = eia(x)θa. (3.66)

Then the local relation between the curved spacetime metric gij(x) and the Lorentzian η is
the obvious gij(x)θiθj = ηabθ

aθb. We observe that the spin connection ω, a connection 1-
form (endomorphism-valued), is naturally retained in such canonical conditions. Actually
just the spin connection with only spacetime indices will pop up; the transformation
properties to get the one with Lorentz indices are anyway well-known. Let us show how
this happens: recall that the torsion T(e) is the field strength of the frame:

T(e) = ∇e = de+ ω ∧ e.

The Levi-Civita spin connection
◦
ω is given by

◦
ω
a

i b :=
(
e−1
)
b
j∂ie

a
j − eak

(
ΓL.C.

)
ij
k
(
e−1
)j

b.

T(e) = 0 for the Levi-Civita spin connection. The curvature tensor of the connection, a
tensor-valued 2-form, depends on the vielbein e and the spin connection ω, and whenever

the connection is the Levi-Civita one, Ω(e, ω) = d
◦
ω +

◦
ω ∧ ◦ω is equivalent to the Riemann

tensor Riem
[
g,∇L.C.

]
. Thus using (3.66), the symplectic form for (3.65) clearly employs

the Weitzenböck spin-connection (T(e) 6= 0,Ω(e, ω) = 0)

ω = dpi ∧ dxi +
1

2
dθaηab ∧ dθb (3.67)

= dpi ∧ dxi +
1

2
dxkθiω l

k iglj(x) ∧ dθj +
1

2
dθigij(x) ∧ dθj − 1

2
dxkω m

k i θ
igmn(x)θjω n

l j ∧ dxl,
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with ω = e−1de. Next we found that the canonical case seems already a good setting for
describing gravity in the Palatini formalism. In fact Moser lemma allows to consider, in
place of the Poisson brackets (3.65), a graded Poisson algebra where the p − θ bracket is

deformed with the Levi-Civita connection, in spin variables, i.e. eak
(
ΓL.C.

)k
jie

j
b := Γ a

i b:

{xi, pj}′ = δij , {f(x), υ}′ = υ.f,

{θa, θb}′ = ηab(x), {σ, γ}′ = η(σ, γ),
{pj , θa}′ = Γ a

i b(x)θb, {υ, σ}′b = (dσ)b + Γabσa,

{pi, pj}′ =
◦
Rijab(x)θaθb, {υ, ς}′ = [υ, ς]Lie +

◦
R(υ, ς).

(3.68)

Yet one should notice that this is just the simpler instance of a deformation with a generic

spin connection that also bears torsion,
•
ω. The connection is however still metric. Its

Poisson brackets follow:

{xi, pj}′ = δij , {f(x), υ}′ = υ.f,

{θa, θb}′ = ηab(x), {σ, γ}′ = η(σ, γ),

{pj , θa}′ =
•
ω

a

j b(x)θb, {υ, σ}′b = (dσ)b +
•
ω
a

bσa,

{pi, pj}′ =
•
Rijab(x)θaθb, {υ, ς}′ = [υ, ς]Lie +

•
R(υ, ς).

(3.69)

Here
•
R denotes the curvature built with the more general connection

•
ω. Recall that

•
ω− ◦ω ∈

Ω1(M; Λ2T ∗M), i.e. the difference between two metric connections is a 1-form with values

in the exterior algebra of TM, this is called contorsion tensor. The difference between
◦
R

and
•
R can be worked out too. The deformed graded Poisson algebra of T ∗[2]M ⊕ T [1]M

can be the setting of Einstein-Cartan theory, while Palatini gravity is modeled by the
less general case (3.68). The symplectic form ω′ corresponding to the Poisson bivector in
(3.69) can be read off the brackets:

ω′ = dpi ∧ dxi +
1

2
dθaηab ∧ dθb +

1

2
dxi
•
ωi abθ

a ∧ dθb +
1

2
dxi∂i

•
ωj abθ

aθb ∧ dxj . (3.70)

It is not complicated to link the symplectic form for (3.67) to the upper symplectic form.
The 1-parameter dependent exact 2-form dAt = ω′t − ω can be almost directly visualized
from the last two terms of (3.70) [63],

At=1 =
1

2

•
ωiabθ

aθb dxi. (3.71)

To summarize, then, the degree-2 manifold T ∗[2]M⊕T [1]M , since Γ(T [1]M) ∼= Ω1(M)
gives a prominent position to forms (preferring them over tangent vectors) is more suitable
for hosting coframes of the Minkowski metric. This is achieved just by shifting the degree
of the tangent bundle. When the symplectic structure of T ∗[2]M ⊕ T [1]M is taken into
account, the local description of gravity as a gauge theory of the Lorentz group is a
wonderful outcome of such approach, which comprises either Palatini and Einstein-Cartan
theory. Poincaré gauge theory of gravity can only be studied on the premise that the
Poisson algebra does not really close, i.e. Jacobi identity is violated. Fermionic matter
shall be incorporated pretty straightforwardly.

Concerning the differential structure, we would actually like to consider the function
that is Hamiltonian for the symplectic structure in (3.65):

H = θipi.
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This, interpreted as H = θaea
i(x)pi, does not have null non-canonical Poisson brackets

with itself. Instead it constitutes a Dirac operator. The derived brackets, for a wanna-be
algebroid, will hence violate the Jacobi identity. We will not look at the corresponding
Courant algebroid structure. It is already intriguing to see how the geodesic equation will
arise in the vielbein formulation of gravity. So consider

{H,H}′ = p2 + θaδa
i ◦ω

b

i cθ
cpb + θaθb

◦
Rabcdθ

cθd 6= 0. (3.72)

In the first addend the square has Lorentzian signature. The dynamics can be retrieved
thanks to H. What we personally found for the violated master equation is just a first
step, ready to be questioned further.

3.5 Abelian and non-abelian gauge theory

In this part we would like to briefly mention the Poisson brackets for abelian and non-
abelian gauge theory. The exposition will not touch new undiscovered topics, but actually
this section constitutes the main motivation for the treatment of a gravitational theory
as previously done in the text. It should be seen as a reinforcement to the claim that the
geometric data of various metric gravitational theories fit perfectly in graded symplectic
geometry.

U(1)-gauge theory. The symplectic manifold of reference is just phase space, T ∗M .
A U(1)-field A (a 1-form with values in u(1)) can be implemented via Moser lemma with
the generating vector field

Xt = Ai
∂

∂pi
.

Its action shifts the momenta p to p + A, hence the symplectic form becomes ω = dxi ∧
d(pi +Ai(x)),

ω = dxi ∧ dpi + Fij(x)dxi ∧ dxj , Fij(x) =
1

2

(
∂iAj(x)− ∂jAi(x)

)
.

The gauge transformations A(x) 7→ A(x) + dλ(x) coincide with the canonical transfor-
mations of the Poisson structure, which are the transformations that leave the brackets
invariant, as we saw for the degree 2 symplectic manifolds. The coordinate transformation
associated to the gauge transformation is{

x′ = x,

p′ = p+ dλ.

Let us stress once more that the Hamiltonian approach to the U(1)-gauge theory is usually
disfavored to the Lagrangian approach, typically because until recent years it was not
possible to canonically quantize gauge theories. A rare contradiction to the usual approach
is [79] which discusses the first quantization of the brackets for Maxwell theory that we just
outlined, also in the relativistic setting. Nowadays Kontsevich’s deformation quantization
is at hand, thus Hamiltonians and symplectic geometry are an available alternative too.

Non-abelian gauge theory. To study the extension to non-abelian groups the graded
symplectic manifolds should rather be T ∗[2]M⊕E[1], where E is a Lie group, or T ∗[2]E[1].
We refer here to [79] and [63]. Then two closed non-degenerate 2-forms on these manifolds
shall differ by

Aαi (x)Eαdxi, in the circumstances of T ∗[2]M ⊕ E[1],
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and by
A α
i β(x)EαẼβdxi, in the circumstances of T ∗[2]E[1].

It might still be difficult to impose that the product of these graded symplectic manifolds
with the graded manifolds that could be endowed with a O(1, d − 1) ⊂ GL(d) or O(d, d)
structure (such as T ∗[2]T [1]M and T ∗[2]M ⊕ T [1]M) can be graded symplectic itself.
Therefore to the best of our knowledge the theory is still a bit rigid and combining Yang-
Mills with Einstein theory is not straightforward.
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Chapter 4

Discussion and conclusions

We have concluded our examination of Generalized Geometry and graded Poisson algebra
aspects in various gravitational theories. Now a summary of the contents of the previous
chapter 3 is due. In the beginning we have been looking at the deformed graded Poisson
algebra, with unchanged Hamiltonian, of the shifted cotangent to the shifted tangent
space to M , where the canonical Darboux chart of reference was replaced by a chart
resulting from a map E ∈ Hom (T ∗[1]M ⊕ T [1]M), which played also the role of a vielbein.
After commenting upon the feature of the deformed Poisson brackets yielded by E , in full
generality, the focus was switched to two specific instances. First, we characterized E with
the data of a metric g, the Kalb-Ramond field B and exponential factors of the dilaton
φ(x), modifying the anchor map for the Hamiltonian function accordingly. The (free)
Hamiltonian however was fixed, only the Poisson brackets were changed. Subsequently
the derived bracket of the exact Courant algebroid on E ∼= TM ⊕ T ∗M were computed
and proposition 2.3.2 could be applied to that bracket and to a generalized Lie bracket
(3.20), in order to extract a CA connection. With the help of a non-isotropic splitting s it
was projected to TM , yielding the regular connection ∇̃ : Γ(TM) 7→ Γ(T ∗M) ⊗ Γ(TM),
which was therefore used to build the curvature invariants of the manifold. The NS-NS
sector of type II effective string theory arose from the Ricci tensor, contracted with the
non-symmetric combination g −B, and upon integration by parts.

The second version of E we studied carried the data of g and B, as well as their
companions G−1 ∈ ∨2TM and Π ∈ X2(M), specified via the open-closed strings relation
for the inverse of g +B (2.13). Following the same directions as in the first case of study,
we recovered on tangent space the same action than before, although without dilaton, but
this time holding for every arbitrary dimension. Also projection to cotangent space was
at hand: it could be performed via a non-isotropic splitting r of the dual sequence (2.20)
and thus a genuine dual connection ∇̃ : Γ(T ∗M) 7→ Γ(TM)⊗ Γ(T ∗M) could be provided.
A Ricci tensor Ric := Tr Riem, Riem ∈ Γ(TM ⊗3 T ∗M) stemmed from that connection.
An invariant could be found via integration against G−1 − Π but also because with the
differential dρ, and the anchor map in use ρ(r(γ)) =

(
G−1 + Π

)
(γ)i∂i, we could spot the

presence of exact forms, which were hence integrated by parts. The final outcome was
the formulation of an invariant action à la Hilbert-Einstein for the symmetric part of ∇̃,
D̃G (3.49), in the background of the local expression for the Q and R fluxes. These were
defined from the bivector Π. The action has the right gauge symmetries (diffeomorphism
invariance and the gauge symmetries of Π). On the way, we also noticed that a third
vielbein (3.48), the g−B = 0 limit of the previous one (3.31) (though G−1 and Π are still
non-zero), accompanied by the natural generalized Lie bracket for that chart, yielded the
same connection ∇̃ : Γ(T ∗M) 7→ Γ(TM)⊗ Γ(T ∗M) (3.45).
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A follow-up to the modification of the graded Poisson algebra by E was the more
general case presented in section 3.3.2. The Poisson bracket between two linear functions
in the degree-2 momenta was given by a curvature tensor. Though the new symplectic
structure respected the hypotheses of Moser lemma (for graded manifolds), at this point
finding the explicit diffeomorphism responsible for the change was a much more difficult
task. Hence seeking a consistent Hamiltonian became more difficult, and such task could
be accomplished only in very special situations. We gave our viewpoint on the issue below
(3.56), the algebraic and differential equations that {Θ,Θ} = 0 produces. Curiously, asking
that Θ = θipi could solve the master equation when the Poisson bracket of two O1(M)
functions was not deformed by means of a symmetric tensor, but was rather constrained
to be the η pairing (see (3.57)), forced the connection in the Poisson brackets to be the
Levi-Civita one of standard differential geometry. However the derived Courant algebroid
bracket and the Lie-like bracket in this case provided nothing but a flat CA connection,
which has nor torsion neither curvature. Instead, relaxing the request that the function
θipi should be Hamiltonian allowed us to consider a non-topological theory and show that
the geodesic equation of a test particle moving in a space with covariant derivative given in
the Poisson brackets, with torsion and curvature, metric w.r.t. to η, could be reproduced.
The proposition 2.3.2 did not necessarily rely on {Θ,Θ} = 0 either, therefore we could
notice that it depended just on the (regular) torsion.

Some other interesting consequences where found when a non-canonical symplectic
form was given to T ∗[2]M⊕T [1]M . Before that, we pointed out that the Weitzenböck spin
connection is already naturally contained in the canonical symplectic form. Then the Levi-
Civita spin connection and more general types of spin connections could be implemented,
as prescribed by Moser lemma. Again, it was stressed that without further assumptions
and ansatz a cohomological vector field is not easy to suggest. Few comments on Poincaré
gauge theory were made: modeling that theory would require non-associativity of the
Poisson brackets.

In the short section 3.5 we mainly highlighted the inclusiveness of graded Poisson
algebras by discussing U(1) gauge theory in Hamiltonian formalism, and hinting at the
description of non-abelian gauge theories. The exact 1-forms by which one introduces
interactions with the non-abelian gauge fields were displayed.

Let us discuss the main developments of our original work. It comprises the new defi-
nitions in the context of generalized differential geometry too, section 2.1. Though there
are some articles on type II and heterotic Supergravity actions retrieved from Generalized
Geometry arguments, first of all the seminal [20] and [21], but also among the others
[80], [78], [52], [81], [82], [83], and in M-theory [84], [85], and though NQ-manifolds in
this context have attracted some curiosity recently [86], [6], [87], [73], we believe that our
work is really original as it interpolates a lot between dg-symplectic structures, Courant
algebroids and Supergravity actions.

The new generalized differential geometry objects that we have defined can be handled
more easily, as they resembles their counterparts in usual differential geometry. The set
comprises dρ locally given by (2.14), which is closely related to D in the CA picture and
to the homological vector field Q in the dg-symplectic picture, but only when just the

vector field component of Q, −ξ̃αραi
∂

∂xi
, is taken into account, and the Poisson structure

is actually degenerate (see discussion around (2.46)); The generalized Lie bracket (2.2.2),
that could be connected in example 2.2.3 to dρ and the Dorfman bracket [, ]D with anchor
ρ, and which is quite different from the Courant bracket, although it is an antisymmetric
bracket, above all because it respects the Leibniz rule by definition, while the Jacobi iden-
tity descends from the homomorphism property of the anchor; The torsion tensor (2.3.1),
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analogous to the Riemannian geometry counterpart and actually, when the connection
comes from proposition 2.3.2, also equivalent to Gualtieri’s torsion tensor (and thus com-
pletely skewsymmetric); as well the Riemann tensor (2.25) and the Ricci tensor (2.26) had
very clean expressions. In the mathematical preliminaries other viable definitions have
been presented and compared to ours.

The chapter 2.4 instead just featured a review of the literature on the topic of graded
geometry, graded Poisson algebras and differential graded manifolds. The relation with
other non-graded types of algebras and algebroids was given particular relevance, as the
personal research work was based on it. Small original contributions in the section can be
seen in the Q vector fields which were explicitly computed for some cases.

Concerning the body of the manuscript, there are some important novelties introduced
in the first section 3.2 compared to the literature: the vielbein (3.12) is not adapted to
the generalized metric (2.1.4), therefore the CA connection, as a connection 1-form with
values in the Lie algebra of the principal group, does not belong to Ω(E, o(d)× o(d)). Its
Gualtieri torsion is non-zero, nevertheless via the splitting, which projects the connection
to TM , the standard torsion of ∇̃ totally coincides with that of a connection (such as the
Bismut connection of definition 2.2.4) in the family of torsion-free generalized connections,
which are favored in Generalized Geometry. In fact the torsion is given by H ∈ H3(M,R).
Moreover the curvature tensors did not have to be computed for the whole bundle, but just
for tangent space, and integration of the Ricci tensor, which was performed with factors of

λ and g−1 (g −B) g−1, showed that our Ricci tensor in (3.29), Ricij 6= β(g)ij +
1

2
β(B)ij ,

can build up the NS-NS sector of the SUGRA action. Although the β-functions of g and B
can be seen as the equations of motion due to variational principle applied to that action,
there is hence at least another tensor that upon contraction with the same combination
(g −B) gives the Lagrangian of (1.2).

The other soon-to-be-published paper reported in section 3.3 presented some substan-
tial variations with respect to the references we consulted. Apart from the DFT connota-
tion of [36], [37] and [88], where doubled coordinates on the base manifold stand for the
usual coordinates and the winding modes, and therefore to constrain the resulting gravity
action with non-geometric fluxes Q and R to regular spacetime the section condition of
DFT has to be employed, the authors constructed the differential geometry and the covari-
ant derivative for their scopes without referring to NQ-manifolds or Courant algebroids
at all. Furthermore, the g,B tensors underwent a formal “T-duality” and were mapped
to G−1 and Π, which is in fact possible just in the context of DFT. In a follow-up of that
investigation, the authors of [38] managed instead to obtain an equivalent action with the
T ∗M Lie algebroid gathering its symmetries. Our proposal for a gravitational theory with
Q and R tensors starts with the graded Poisson algebra of T ∗[2]T [1]M , and then switches
to the corresponding Courant algebroid E ∼= TM ⊕ T ∗M , the natural connection for E
and the curvature invariants. We do not double the coordinates of M . The non-isotropic
splittings of the direct sequence and the dual one allow to deal with the NS-NS SUGRA
action in one limit, and with the action for the “T-dual” fields G−1, Π in the other limit.
The latter are rather motivated by the closed-open strings relation. Again, the generalized
torsion of the connection is non-zero. Another point to compare with the references is the
anchor map: we use ρ(U) = X +

(
G−1 + Π

)
(γ), instead [38] uses a map ρ′ : TM 7→ TM ,

given by ρ′ = 1+ ΠG.

In both the aforementioned articles the SUGRA action and its “dual” had the right
symmetries (diffeomorphisms and shifts of B (Π) by an exact 2-form dα (exact bivector

−Q%|χχ−comp, % = χia
i(x)−

(
G−1 + Π

)−1

lm
al(x)θm as in (3.53))): this latter type of symme-

try could be checked from the gauge symmetries of the O(d, d) generators (see exposition
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in section 2.6.1), specialized to the respective cases by careful assignation of the degree-1
%. This was much less straightforward to show in other formulations of the dual gravity
action with Q and R. Notice furthermore that in our derivation when these tensors are
present, H is not turned on. Hence rather than employing their more general expressions:

Qk
ij = ∂kΠ

ij + ΠilΠjmHlmk, Rijk = Π[i|l∂lΠ
|jk] + ΠilΠjmΠknHlmn, (4.1)

we saw only the appearance of the H = 0 limit of these expressions in our computations
(3.46).

In regards to the results displayed in section 3.3.2 until the end of subsection 4.1 and
section 3.4, as well as the completely well-known section 3.5, the clue was to deform the
same symplectic manifold giving rise to more intricate deformed Poisson brackets and
their Hamiltonian functions, or to deform other kinds of symplectic manifolds such as
T [2]M ⊕ T [1]M , and then study various (natural) possibilities for both the connection in
the graded Poisson brackets and the derived CA connection. Weitzenböck, Levi-Civita
and a connection with both torsion and curvature, these all appeared under different
circumstances. Their spin connection counterparts too. We actually believe that this
continuous interplay must really have deep reasons. To dismiss metricity of the connection,
instead, the Poisson algebra shall not be associative, i.e. the Jacobi identity shall not hold,
but that was not done here.

We believe that the overall strength of our investigation should be seen in the fact that
we successfully applied the theory of NQ-manifolds, which usually seeks applications to
topological field theories (AKSZ models) and in the quantization techniques of BV and
BFV, or even in the α′ corrections to string theory [89], to construct “by hand” various
gravitational models, not just those motivated by string theory or its DFT formulation
[90], [91]. Among other works dealing with more conservative modifications to GR in the
setting of dg-manifolds, [92] should be mentioned.

We found also beautiful, from the viewpoint of a mathematical relativist, that various
aspects of the theory of gravity as originally formulated (and unsuccessfully extended to
account for electromagnetism too) by Einstein shows up and are somehow unified in our
approach: non-symmetric metric, frame fields, Weitzenböck connection, Levi-Civita con-
nection, spin connection, Koszul formula, geodesic equation, torsion tensor and Riemann
curvature tensor.

4.1 Outlook

The investigation performed here is far from being complete. It leaves some important
questions unanswered. Let us collect those which came to our mind.

First, the C tensors in the Hamiltonian function were always left aside. Taking them
into account would have not added much more to our examination, when the deformation
was carried by a vielbein. Instead when the deformation map was not explicit, having
them or not, as well as working out the full transformation of the Hamiltonian, would
have made a difference. They must be present in order for Θ to fulfill the classical master
equation with non-canonical Poisson brackets, because now the intricate set of algebraic
and differential equations interpolates between the connection symbols and the curvature
on one side, the anchor map and the C tensors on the other. Only when this matter is
settled, the derived CA bracket can be computed in full consistency (i.e. the respect of all
the defining axioms is granted). It would be suitable, then, to provide a full classification of
general deformed Poisson algebras and the corresponding Hamiltonian functions permitted
for the brackets. Such a classification perhaps might work as a generating system for

72



CHAPTER 4. DISCUSSION AND CONCLUSIONS

actions with diffeomorphism invariance and other kind of symmetries, and it might as well
help in finding concrete examples of T-dual manifolds (T-duality in Generalized Geometry
has the clean interpretation of isomorphism classes of Courant algebroids [93]).

Moreover, it is still unclear to us how the R-R fluxes, known to be spinor bundle
representations, can be incorporated in the graded Poisson setting. First of all a spin
structure exists if the second Stiefel-Whitney class of M , w2(M) ∈ H2(M,Z2), is non-
zero. Anyway it might not be possible to comprise them, via their gauge fields, in the
vielbein (as done for the metrics g or G−1 and the Kalb-Ramond field B or the bivector
Π).

It would also be good to know how graded symplectic structures can be attached to
transitive CAs, i.e. the anchor is just surjective, or equivalently Imρ∗ is not the whole kernel
of ρ. It is clear that a differentiable structure for the graded Poisson manifolds cannot
exist if we want to get transitive CAs: Q2 = 0 was verified provided that ρ∗ ◦ gE ◦ ρ = 0.

We have not been able to settle yet which conditions will be placed on the connection
of proposition 2.3.2 if the Jacobi identity for the bracket of the bundle is assumed to hold.
Our guess is that its curvature could have some symmetries (e.g. the algebraic Bianchi
identity).

Furthermore, we did not establish whether the complex structure naturally existing in
Generalized Geometry may play a role here. How these can be included in the graded pic-
ture was studied by Grabowski [94]. The construction goes as follow: take a Hamiltonian
function H for a graded symplectic manifold of degree 2, and try to find a two-parameter
family of solutions to the classical master equation:

{aH + bK, aH + bK} = 0, ∀ a, b ∈ Z.

A class of solutions K is given by canonical transformations of H, that are due to a
degree-2 function (actually it is constrained to depend just on the ξ coordinates and not
on the momenta p) acting via Poisson bracket on H, K = {H,J}. To satisfy {K,K} = 0,
however, one should ask for

{{H,J}, J} = cH, c ∈ Z,

as seen from the graded Jacobi identity applied to the master equation. When c = −1,
the smooth function J yields a generalized complex structure on the CA corresponding to
H.1

Another extremely useful study that could be carried over concerns the Courant sigma
models corresponding to every deformed Poisson algebra for T ∗[2]T [1]M , implemented by
the vielbein. In our first paper [3] the sigma model was just outlined in section 5.2.1:
definitely more can be inferred about that, e.g. the quantization. It would be compelling
to relate our deformed structures to the gauged sigma models (of Poisson and Dirac type2)
of [96], [97].

1c = 0 and c = 1 give also some structure of interest, but we will not talk about them.
2The Dirac sigma model involves maps from Σ2 to the Dirac (maximal, isotropic and involutive) sub-

bundle of an exact CA [95].
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4.2 Appendix A

This appendix contains the derivations of some minor results that are used along the
thesis, and which can already be found in the literature. Afterwards the reader can find a
brief discussion on the issue of generalized parallelizability for TM ⊕ T ∗M .

� Proof that the Dorfman algebra [, ] closes, from graded symplectic geometry. Start
with [[U, V ],W ] and use graded antisymmetry and graded Jacobi identity for {, }:

{Θ, {{Θ, U}, V }} = {{Θ, {Θ, U}}, V }+ {{Θ, U}, {Θ, V }}
= {{{Θ,Θ}, U}, V } − {{Θ, {Θ, U}}, V }+ {{Θ, U}, {Θ, V }}

=
1

2
{{{Θ,Θ}, U}, V }+ {{Θ, U}, {Θ, V }}. (4.2)

Notice then that the derived bracket corresponding to [U, [V,W ]] satisfies the follow-
ing relation:

{{U,Θ}, {{V,Θ},W}} = {{{U,Θ}, {V,Θ}},W}+ {{V,Θ}, {{U,Θ},W}} (4.3)

and since {U,Θ} = {Θ, U}, one can use the system of the relations (4.2), (4.3) to
eliminate {{{Θ, U}, {Θ, V }},W} from them and finally get:

[U, [V,W ]] ≡ {{U,Θ}, {{V,Θ},W}} = {{Θ, {{Θ, U}, V }},W}+ {{V,Θ}, {{U,Θ},W}}

− 1

2
{{{{Θ,Θ}, U}, V },W}

≡[[U, V ],W ] + [V, [U,W ]]− 1

2
{{{{Θ,Θ}, U}, V },W}.

(4.4)

Therefore for a NQ-manifold T ∗[2]T [1]M , since by definition the Hamiltonian Θ
respects the master equation, the Dorfman algebra closes. One can also ask for a
weaker condition, namely to restrict the generalized vectors under consideration to
some subspaces for which

1

2
{{{{Θ,Θ}, U}, V },W} = 0, {Θ,Θ} 6= 0.

This is just enough for the purpose of having a well-defined CA that fulfills all the
axioms.

� Proof of (2.45). Let V = Y + ς and W = Z + κ, where Y,Z ∈ Γ(TM) and
ς, κ ∈ Γ(T ∗M). Then

[[Y + ς, d], Z + κ] =[[Y, d], Z + κ] + [[ς, d], Z + κ]

=[[ιY , d], ιZ + κ] + [ς ∧ d+ d (ς∧) , ιZ + κ]

=[LY , ιZ ] + [LY , κ] + ς ∧ dιZ − ιZς ∧ d− ς ∧ dιZ − ιZd (ς∧)

+ ς ∧ d(κ∧)− κ ∧ ς ∧ d+ (dς) ∧ κ− ς ∧ d(κ∧)− κ ∧ d(ς∧)

=ι[Y,Z] + LY κ ∧ −κ ∧ LY − ιZ(dς)∧ ≡ [V,W ]D

� Collection of the vector fields Xt, which generate the flow of the smooth 1-parameter
family of diffeomorphisms ϕt such that ϕ∗tωt = ω0, by Moser lemma:

(section 3.1): for the symplectic manifold T ∗[2]T [1]M , with ϕt ≡ Et, E0 = id, and
ωt=1 ≡ ω′ in (3.2), ωt belongs to the same cohomology class than the canonical ω0 if

dȦt = d
[
Ėtξη−1d (Etξ)

]
.
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Then from ιXtωt = Ȧt the vector field Xt is readily computed:

Xt =
(
Ėt
)β
α
ξβ
(
E−1
t

)α
γ
∂

∂ξγ
.

(section 3.3.2.1): for the same symplectic manifold, but with undeformed O(d, d)
metric and with non-zero curvature, being

dȦt = d
[(

Γ̇t

)
ik

lθkχl dx
i
]
,

the vector field Xt hence corresponds to

Xt =
(

Γ̇t

)
ik

lθkχl
∂

∂pi
. (4.5)

(section 3.4.1): for the symplectic manifold T ∗[2]M ⊕ T [1]M , referring to the
non-canonical (3.70) and to the exact 1-form (3.71), the generating vector field is
immediate:

Xt =
1

2

•
ωi abθ

aθb
∂

∂pi
.
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