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Abstract

The goal of this research is to study, understand, and robustly model and simulate mi-
crowave ablation of liver tumors. This is one of the possible treatments for cancerous
tumors that appear in the liver, and there is room for a better understanding and pre-
diction of how such interventions develop, from a mathematical point of view. The areas
that could benefit from a more rigorous quantification range from planning of the invasive
aspect of the procedure, influence of the vascular system, all the way to predicting the
resulting damage in biological tissue. This would ultimately also benefit clinicians, that
have much to gain from such results, as it would allow them to plan microwave ablation
procedures on a patient-to-patient basis, thus obtaining a better outcome.

This research has been done under the supervision of Prof. Dr. Tobias Preußer, Head of
Modeling and Simulation at Fraunhofer MEVIS, and Professor of Mathematics at Jacobs
University Bremen, as well as Prof. Dr. Marcel Oliver, Professor of Mathematics at
Jacobs University Bremen. I have also been supervised by Dr. Hanne Ballhausen and Dr.
Torben Pätz, from Fraunhofer MEVIS, throughout various phases of my research.
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Chapter 1

Introduction and Motivation

Cancer is a disease which manifests through abnormal cell growth, that has the poten-
tial to spread throughout the body. In 2012, liver cancer was the second most common
cause of death from cancer worldwide, accounting for approximately 9.1% of all cancer
related deaths [9]. Considering that the mortality rate of those diagnosed with cancer
varies wildly, from 10% into the upper 90%, depending on the type and position of the
cancerous cells, there is a real interest to always find better treatment methods, which fit
a wider range of situations, and that provide increasingly better outcomes.

Thermal ablation is one of the medical techniques used to treat cancerous tumors with-
out excision. This is done by heating and destroying the cancer cells, through various
methods. Other ablation techniques might involve freezing the cancer cells, or ablation
by alcohol injection into the cancerous tumor.

Perhaps the most widespread thermal ablation method, radio frequency ablation (RFA),
requires the use of alternating electric current in the radio frequency range. Another
technique involves the use of high intensity focused ultrasound (often abbreviated HIFU),
which has the advantage of being noninvasive [40]. Finally, the method which will be
discussed in the research at hand, is microwave ablation (MWA). This relies on using
electromagnetic waves, as in RFA, but of higher frequency. The differences between RFA
and MWA shall be elaborated on in the following section. Both techniques emanate
the energy into the human body through an antenna placed inside a catheter, visualized
schematically in Figure [1].

Active zone

Handle

Coaxial feeding cable

Figure 1: Sketch of sample catheter used in RFA and MWA procedures.

The tip of the catheter is inserted into the body, the energy emanates from the hashed
area, called the active zone, and the energy is fed into the shaft through a coaxial cable.
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1 INTRODUCTION AND MOTIVATION

The research at hand will focus on mathematically modeling, simulating, and optimizing,
from a mathematical standpoint, scenarios where microwave-frequency electromagnetic
waves are interacting with tissues that share the same properties as the human liver. The
first part of the work will be focused on accurately reproducing such an interaction numer-
ically, by implementing the physical laws and equations that dictate how electromagnetic
waves behave. Secondly, the heat that is generated by such an interaction will be studied,
and its influence on the electromagnetic simulation will be analyzed.

Aside from gaining a better scientific understanding of the process, one of the main reasons
for conducting this research is to provide better tools for clinicians to perform ablation in-
terventions. The present research is part of a larger project, entitled MICROPLAN, which
has been funded by the Deutsche Forschungsgemeinschaft, and has taken place jointly at
Fraunhofer MEVIS and Jacobs University Bremen, with clinical partners in Charité -
Universitätsmedizin Berlin and Medizinische Hochschule Hannover. This project aimed
to provide a complete patient-specific treatment planning tool, aided by modeling and
simulation, and image processing techniques. Deeper knowledge in this area would aid
in prediction and planning of patient-individual procedures. Normally, medical person-
nel rely on generic predictions offered by hardware manufacturers, and have to account
themselves for various factors that might lead to a different result. Some examples of
these factors are: position of blood vessels, position of insertion of the antenna into the
body, pre-existing additional conditions, etc. However, as we shall soon highlight, MWA
can overcome some of these hindering factors to a larger extent than RFA.

It is also of great interest to gain insight into the interaction of electromagnetic waves,
specifically in the microwave frequency range, with healthy and unhealthy tissue in the
human body. This has become a popular topic especially in the context of interaction of
microwave and electromagnetic wave emitters with the human body, for example with the
increase in popularity of cellular phones [30], and household appliances such as microwave
ovens, or wireless communication such as WiFi. A good understanding of their effect on
humans is necessary in order to allow safe manufacturing and usage guidelines.

The ideal scenario of a tumor ablation procedure, or any cancer treatment for that mat-
ter, would consist of 100% of cancerous cells being destroyed, and as little as possible
of the surrounding healthy tissue. Normally, there is a so-called safety margin, of tissue
surrounding the cancerous tumor, which is also ablated as a precaution, as it is not easy
to determine the exact boundary between healthy and cancerous cells. The planning tool
that will incorporate this research would be of interest to clinicians, as it would allow
them to more accurately plan such an intervention. Instead of relying on generic predic-
tions provided by the ablation hardware manufacturers, clinicians could tailor the medical
procedure based on the individual patient’s needs. For instance, relying on predictions
about the shape of the ablated tissue zone might lead to suboptimal results, either in the
form of remaining non-ablated cancer tissue (for example due to cooling done by blood
vessels), too much destroyed healthy tissue, or damage done to so-called risk tissue, such
as blood vessels.

The way in which electromagnetic waves behave and propagate in a medium is dictated
by Maxwell’s equations, which are a set of partial differential equations that lay out the
foundations of classical electromagnetism. Thus, any research conducted into microwave
ablation procedures would have these equations as a starting point for investigations.
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1 INTRODUCTION AND MOTIVATION

Both RFA and MWA rely on ablating tissue through heating produced by electromag-
netic waves. In short, this works by converting some of the electromagnetic energy into
heating energy, where the proportion depends on a material parameter called electrical
conductivity.

One could say that RFA and MWA are competing techniques that have the same goal.
Let us present some of the differences. Specifically in the context of liver tumors abla-
tion, where there are numerous blood vessels, there is a high chance of a heat sink effect
appearing. This means that the flow of blood absorbs the heat generated by the ablation
procedure, functioning as a cooling system. Electromagnetic waves in the microwave fre-
quency seem more able to overcome this effect [26], partly due to their ability to deliver
more energy, creating large zones of ablation even in the vicinity of blood vessels of 10 mm
diameter. In contrast, RFA is less effective around vessels larger than 3 mm in diameter.
The higher success rate of MWA can be also observed in the local recurrence rate, for
example for liver cancer, where the rate is between 1% and 33% [23], whereas for RFA it
can be as high as 82% [24].

Furthermore, RFA heavily relies on the tissue having a high enough conductivity in order
to propagate, and this is dictated mostly by the water content. In radiofrequency appli-
cations, when the temperature rises above the boiling point of water, the conductivity
lowers significantly, making RFA become significantly less effective. Microwave ablation
on the other hand is not as reliant on this aspect. A qualitative plot of temperature versus
application time is presented in Figure [2], based on the data presented in [26], to further
illustrate this difference. The oscillation due to boiling and condensation of the water in
the RFA can be observed.
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Figure 2: MWA vs. RFA temperatures in in-vivo porcine kidneys, based on [26].

One of the disadvantages of both RFA and MWA is the heating taking place in the appli-
cator which is introduced into the organ, due to the generated signal that is transmitted
through the shaft. This effect is illustrated in Figure [3]. One way to solve this would
be to additionally cool down the applicator shaft. This would restrict the cause of abla-
tion to the electromagnetic influence, and not the direct thermal contact with the shaft.
Thus, the ablation pattern inside the organ would remain close to the desirable shape,
and would not become elongated, or tear-shaped.
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1 INTRODUCTION AND MOTIVATION

Liver
TumorÐ

Ò
Shaft

heating

Ablation zone

Figure 3: Schematic of MWA procedure, highlighting shaft heating.

Due to its advantages over RFA, more and more clinicians are choosing MWA as their
procedure of choice for thermal ablation interventions. This furthermore justifies the re-
search at hand in the context of the MICROPLAN project.

A multitude of publications related to MWA refer first of all to 2D axis-symmetric simula-
tions as a model of organs, which assume a homogeneous medium in which the procedure
takes place [1, 2, 4]. This reduces the problem from a 3D to essentially a 2D one, where
the 2D model is rotated around an axis to emulate a 3D model. This is quite far from the
clinical reality, as the organs are highly heterogeneous, for example due to the vascular
system, which does not fit such axis symmetry assumptions.

Fully 3D models that make no homogeneity assumptions, and furthermore couple with
such heat equations, are scarce at best. For example Deshan Yang’s Measurements, An-
tenna Design and Advanced Computer Modeling for Microwave Tissue Ablation [45],
which analyzes the influence of the heat, uses a fully 3D approach, but assumes homo-
geneity of the organ. Models which also assume that the tissue parameters vary with
temperature are even harder to come by, for example Punit Prakash’s Theoretical Mod-
eling for Hepatic Microwave Ablation [32], which does all of the above except assume
heterogeneity.

1.1 Goals

The main goal of this research is to study, within the framework of the Finite Difference
Time Domain method (FDTD), a model and simulation of MWA of the human liver. The
model shall consist of the following:

1. A simulation of Maxwell’s equations

2. A simulation of the bioheat equation

3. A tissue damage model

4. A tissue parameter model

4



1 INTRODUCTION AND MOTIVATION

From this list, we shall focus on the simulation of Maxwell’s equations. The equations
governing items 1-4 above form a set of partial differential equations, which are coupled
through the temperature dependent parameters, and through the fact that the output of
item 1 provides the input for item 2. The emphasis of the present research shall be on
the following:

Time scales. One problem that arises in the setting of coupled electromagnetic and ther-
mal effects is the following: electromagnetic simulations of microwave applications take
place in the frequency range of 915 to 2400 MHz. Therefore they require a very fine spatial
and temporal discretization, whereas the heat equation does not develop significantly on
such a fine temporal level. Thus, one would want to reduce the complexity of the electro-
magnetic simulation, in order to produce some sort of averaged quantity that can be more
rarely plugged into the heat equation. One could do this by taking advantage of the lossy
nature of the medium, and realizing that the simulation stabilizes after some relatively
short time period. The exact mathematical way to determine when the simulation should
be considered stable is yet to be determined. For instance, some averaged quantification of
the electric field could be used as a reference. One could then cut off the electromagnetic
simulation after a certain number of time steps, and plug that state into the heat equation.

Antenna model. An important point of this process shall be accurately modeling the
antenna that delivers the electromagnetic signal. Since antennas are usually mechanically
and geometrically complex, and the simulation relies on having accurate electromagnetic
material properties, one would either have to obtain the exact specifications of such an
antenna, or reverse engineer its properties mathematically. The reverse engineering could
be done by varying the parameters until a similar (or ideally identical) ablation pattern
or heat distribution is obtained. One would need to know the current and charge density
distribution within the antenna, which act as source terms in Maxwell’s equations, and
the electromagnetic properties of all the components, such as the electric permittivity,
the magnetic permeability, and electric resistivity. If such information is not available,
one would have to infer them from some averaged quantities, such as the delivered power
in Watts. As these parameters might change as the temperature changes, temperature-
dependent information in this regard would be of great help in increasing the reliability
of the antenna model.

Tissue parameters. The electromagnetic parameters of the materials that will be part
of the simulation shall be considered to be temperature dependent, and they relate to
several components of this research. Thus, a special emphasis shall be placed on realisti-
cally modeling their influence onto all relevant equations.

Boundary conditions. Suitable boundary conditions shall also be prescribed if nec-
essary, both at the interface between the applicator and the organ, between different
heterogeneous media inside the organ, and at the outer boundary of the computational
domain. It might be the case that at some interfaces, and for some types of media, this
will not be necessary, but in principle, when an electromagnetic wave traverses the inter-
face of two media with different refractive indices, one would expect some reflected and
refracted components. This should mostly be dictated by how far the electromagnetic
field permeates inside each of these types of tissues.
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1 INTRODUCTION AND MOTIVATION

Integration with image data. As part of the patient-specific goal of this research, the
component which fulfills this aspect is the integration of the models and simulations with
patient-specific image data. This shall be the cornerstone of the individual applicability
of this research.

Evaluation. Furthermore, it is envisioned that this simulation will be compared to
clinical data of such procedures, ideally both ex-vivo and in-vivo. The comparison will
be performed firstly in order to adjust the simulation, and secondly (ideally) match the
observed experimental results. The final goal is to obtain a simulation that is able to re-
alistically predict ablation results. This whole package could then be used to plan future
microwave ablation procedures.

Finally, the simulation and optimization shall be included into a software that is to be
used by doctors and clinicians for planning medical interventions. To this end, the mathe-
matical machinery should be incorporated in an intuitive way, allowing key parameters of
the simulation to be specified as input, in order to obtain a user-friendly planning software.

The present thesis shall be structured as follows:

In Chapter 2, the continuous models describing the equations involved will be introduced.

In Chapter 3, the discretization of the electromagnetic equations will be presented, to-
gether with some noteworthy remarks on this discretization process.

In Chapter 4, some aspects related to putting together the building blocks of the entire
simulation pipeline will be discussed.

In Chapter 5, some numerical experiments and results relevant for the discretization pro-
cess will be presented.

In Chapter 6, a simulation incorporating most of the building blocks is showcased, with
real patient data. This is followed by Chapter 7, comprising of the conclusions, discussion,
and foreseeable future research topics.

Within these chapters, Section 3.6 (starting with p. 61), and chapters 4, 5 and 6 consist
primarily of original work. The remaining chapters and sections predominantly contain
results available in literature, which were adapted, expanded and aligned to the goals of
the thesis at hand.
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Chapter 2

Continuous Model

In this chapter we shall discuss the steps that need to be taken before the discretization
process. First, we shall present the equations that govern the behavior of electromagnetic
waves, or radiation. Broadly speaking, electromagnetism is the study of electromagnetic
forces. Electromagnetic forces consist of the electric and the magnetic forces, which are
produced by electric charges, and moving electric charges, respectively. The electromag-
netic field is defined locally as the electromagnetic force.

Electrostatics and magnetostatics refer to the study of electromagnetic fields that are
(approximately or exactly) constant in time, while electrodynamics is the study of time-
varying electromagnetic fields. The reason why we use the word waves in the context of
electromagnetism shall become apparent in the discussion of electrodynamics, when we
shall reach some wave-like equations. These waves explain and quantify several physical
phenomena, including light, X-rays, microwaves, and many other.

Let us first spend some time describing the developments that preceded electrodynamics.
In the context of electrostatics, the equations can be built from the ground up in some
sense, starting with the fundamentals of charges and forces, but the process is of little rel-
evance for the work at hand. Therefore we will simply state these electrostatic equations.
The manner in which they are obtained from the more general electrodynamic equations
shall be clear once the latter are showcased in Section 2.1. Hereon we shall denote vector
quantities with bold symbols for readability. Furthermore, we also denote by

¶
a closed

line integral, by
·

a closed surface integral, and by � the dot product.

∇�H � J , ∇ �B � 0 (1)

∇�E � 0, ∇ �D � ρ

In the above, E is the electric field, E : Ω � r0, tfinals Ñ R3 for some given time in-
terval, with units rEsSI � V

m
. D is the electric flux (or displacement), with units

rDsSI � C
m2 .H ,B : Ω � r0, tfinals Ñ R3 are the magnetic field, and magnetic flux, re-

spectively, with units rHsSI � A
m

, rBsSI � N
Am

. ρ is the electric (volume) charge density,
with units C

m3 , and J is the electric current density, with units rJsSI � A
m2 .

Let us make one final remark before moving forward to electrodynamics. The fact that
the curl of E is zero means that it can be expressed as a gradient of some scalar potential,
or in other words, as a so-called conservative vector field :

7



2 CONTINUOUS MODEL

E � �∇V
since we know that (continuously differentiable) vector fields are conservative if and only
if they are curl-free. Similarly, using the fact that the divergence of any curl of a vector
field is zero ∇ � p∇�Aq � 0, we can express B in terms of a vector potential A:

B � ∇�A
Let us now expand (1). Introducing µ : Ω Ñ R as the magnetic permeability, with units
rµsSI � H

m
� N

A2 , and assuming that B and H are related by H � B
µ

(which will be

motivated within Section 2.1), we have:

∇�B � ∇� p∇�Aq � ∇p∇ �Aq �∇2A � µ0J

Here ∇2 � ∆ is the Laplacian operator, ∆ �
�

B
Bx ,

B
By ,

B
Bz

	
. Since we could now add any

field whose curl is zero to A and not change the physical electric field, one can use these
extra degrees of freedom to specify V and A further, by only allowing zero-divergence
fields for A. Similarly, one could add any constant to V . With this, the equations above
become Poisson’s equation:

∇2A � �µ0J , ∇2V � � ρ

ε0

where ε is the electrical permittivity, and comes up in D � εE. With this we finalize our
discussion of electrostatics.

2.1 Maxwell’s equations

In this section, we shall first introduce the relevant equations, then explain the units
involved, and finally try to present some physical intuition about their behavior. We
start by introducing the equations that govern the propagation of electromagnetic waves:

Ampére’s Law, “fixed”: (integral form)
B
Bt
¼
S

D � dS �
¾
BS

H � dL�
¼
S

J � dS (2a)

(differential form)
BD
Bt � ∇�H � J (2b)

Faraday’s Law: (integral form)
B
Bt
¼
S

B � dS � �
¾
BS

E � dL�
¼
S

M � dS (3a)

(differential form)
BB
Bt � �∇�E �M (3b)

Gauss’ Law, electric field: (integral form)

¿
BΩ

D � dS �
½

Ω

ρdV (4a)

(differential form) ∇ �D � ρ (4b)

Absence of magnetic charges: (integral form)

¿
BΩ

B � dS � 0 (5a)

(differential form) ∇ �B � 0 (5b)

8



2 CONTINUOUS MODEL

These equations are named after Scottish mathematical physicist James Clerk Maxwell,
and have been often called a great unification of electricity, light and magnetism into one
field of electromagnetism. Some standard resources on these equations could be found
for example in John David Jackson’s Classical Electrodynamics [19], or in David J. Grif-
fiths’ Introduction to Electrodynamics [15]. As we shall soon explain, Maxwell modified
Ampére’s original law, creating an altered version which we refer to as “fixed”.

In the above equations, S is an arbitrary compact 2D surface with a piecewise smooth
1D boundary denoted as BS. Moreover, Ω is an arbitrary compact 3D volume, with its
piecewise smooth 2D boundary denoted as BΩ.

Furthermore, σ, ε : Ω Ñ R are the electrical conductivity, and electric permittivity, re-
spectively, with units rσsSI � S

m
, rεsSI � F

m
. We denote by M the magnetic current

density, with units rM sSI � V
m2 .

Note that Faraday’s Law does not normally appear with this magnetic current density,
and the absence of physical magnetic charges would imply that this current cannot exist.
We shall see in a moment the computational reason for introducing this fictitious current.

Now, in order to understand how all the equations are coupled, a relationship linkingD,E
and H ,B pairwise is needed. This is done through the so-called constitutive equations.

D � εE � polarization, H � 1

µ
B �magnetization

This is the most general form of these relations, however human tissues cannot develop
or exhibit either polarization or magnetization, so we shall use the simplified equations:

D � εE, H � 1

µ
B (6)

Before we spend some time discussing the physical interpretation of Maxwell’s equations,
let us mention that usually their differential forms are presented, for readability. The
integral forms are obtained by applying the Kelvin–Stokes Theorem and the Divergence
Theorem, given in (7), to the differential forms of the equations.¾

BS

F dL �
¼
S

∇� F dS,

½
V

p∇ � F q dV �
¿
BV

pF � nq dS (7)

Here n is the outer unit normal vector to the surface BV . Now, let us discuss the physical
interpretation of Maxwell’s equations. Gauss’ Law (4b) states that any divergence in the
electric displacement, and consequently the electric field (due to the constitutive equa-
tions), is given by the electrical charge contained. Equation (5b) tells us that the converse
statement for the magnetic field does not hold. That is, there is no known magnetic charge.

The integral forms of these equations, (4a) and (5a), serve to specify the volumes and
surfaces involved in the statements. In this sense, they help us obtain a more concrete
picture of the statements, and are much more helpful in practice, in order to gain intuition
about all four equations. This will be especially helpful later on, throughout the entire
transition from these analytic statements towards discrete equivalents.

9



2 CONTINUOUS MODEL

Faraday’s Law (3b) states that over a given surface, a changing magnetic flux induces
an electric field around itself, specifically across the boundary of this surface (according
to the right-hand rule). We do not attribute any physical interpretation to the magnetic
current at this point.

We finally arrive at the most interesting equation, Ampére’s Law, “fixed” (2b). Origi-
nally, Ampére’s Law did not contain the so-called displacement current BD

Bt term. This
equation was initially observed in terms of steady state phenomena

� B
Btpany fieldq � 0

�
for the case ∇ � J � 0, which can be retrieved by taking the curl of the equation without
the displacement current.

Maxwell’s addition was to introduce the displacement current Jd :� BD
Bt , motivated by

the suspicion that the equations should be symmetric, as is the case for many phenomena.
That is, he suspected that if a changing magnetic flux can produce an electric field, then
a changing electric flux should produce a magnetic field.

First, let us look at the continuity equation for charge and current:

∇ � J � Bρ
Bt � 0

Now substitute (the time derivative of) Gauss’ Law (4b) into the above:

∇ � J � Bρ
Bt � ∇ �

�
J � BD

Bt


� 0

So Maxwell thought to replace J with J �Jd, which turns Ampére’s Law into a law that
is consistent with time-changing fields. Finally, the remaining current J can be further
split into two terms:

J � J source � J conduction

The source current may be any arbitrarily imposed source, but the fact that an electric
field flowing through a material with σ � 0 generates a current is a well-known fact:

Ohm’s Law: J conduction � σE

We can also interpret this in another way: σ defines the ratio of electric energy that is
lost, and turned into heat. This will be elaborated on later, but in a similar manner, we
can define magnetic losses:

M � Msource � σ�H

Here we introduce the nonphysical magnetic conductivity σ�, with units rσ�sSI � Ω
m
� V

Am
.

This term is a purely theoretical construct, which serves to make the equations symmetric.
With this, we finalize the introduction of Maxwell’s equations.

2.1.1 Field propagation in vacuum and conductors

Let us visualize the electric and magnetic fields for a simple case: plane wave propagation.
One way to categorize types of tissues, from the electromagnetic point of view, is through
their conductivity σ. Tissues with no conductivity, such as vacuum or air, are called
lossless, because none of the electromagnetic energy is “lost” and converted to heat, as

10



2 CONTINUOUS MODEL

can be seen in Ampére’s Law. Tissues that satisfy σ ¡ 0 are coined lossy. One important
remark to make is that in a lossless medium, the electric and magnetic fields are in phase.
The following is an example of a sinusoidal wave propagation along the x�axis, where E
is polarized (oriented) in the z�direction, and B is polarized in the y� direction:

E

B

x

y

z

Figure 4: E and B fields in phase.

We shall derive this soon for more general mediums, but it is known that in vacuum, the
relationship between the amplitudes of the fields is the following:

|Bpxq|
|Epxq| �

1

c

where c is the speed of light in vacuum. Since plane wave propagation through vacuum
is lossless, this ratio is actually preserved pointwise everywhere.

In a lossy material however, this relationship changes. To observe this, let us apply curl
to Faraday and Ampére’s laws. Assuming no source currents or charges are present, we
obtain the following equations:

∇�
�BD
Bt � J conduction



� ∇�∇�H , ∇� BB

Bt � �∇�∇�E

Using the vector identity

∇� p∇� V q � ∇p∇ � V q �∇2V � ∇p∇ � V q �∆V

together with the lack of charge (ρ � 0), which results in zero divergence of both E and
B from (4b) and (5b), we can simplify further:

∇�
�BD
Bt � σE



� �∆H , ∇� BB

Bt � ∆E

Then, applying the constitutive relations (6) in a homogeneous medium yields:

∇�
�
ε
BE
Bt � σE



� �∆

�
B

µ



, µ∇� BH

Bt � ∆E�
σ � ε

B
Bt


p∇�Eq � � 1

µ
∆B,

B
Bt pµ∇�Hq � ∆E

11



2 CONTINUOUS MODEL

Applying (2b) and (3b) once more yields:�
σ � ε

B
Bt

�BB

Bt


� 1

µ
∆B,

B
Bt
�
µε
BE
Bt � µσE



� ∆E

Which finally leads to these two wave equations:

∆E � µε
B2

Bt2E � µσ
B
BtE (8)

∆B � µε
B2

Bt2B � µσ
B
BtB (9)

Equations (8) and (9) admit so-called plane waves as solutions, which are constant fre-
quency electromagnetic waves (of frequency ω), whose wave fronts (surfaces of constant
phase) are infinite planes. These planes are perpendicular to the direction-defining wave
vector k :� kx, which in our case points along the x�axis. The scalar k is usually called
the wave number. With this in mind, let us implicitly define our wave number as:

k̃2 :� µεω2 � iµσω

then the plane waves listed below satisfy our wave equations (8) and (9).

Epx, tq � E0 exp
�
ipk̃x� ωtq

	
Bpx, tq � B0 exp

�
ipk̃x� ωtq

	
If we now solve for k̃ we obtain

k̃ � ω

c
?

2

dc
1�

� σ
εω

	2

� 1� i
ω

c
?

2

dc
1�

� σ
εω

	2

� 1

We notice that the amplitude of the waves decreases with distance due to the imaginary
part of k̃. We denote by =p�q : CÑ R the imaginary part, and <p�q : CÑ R the real part
of a complex number, respectively. We can rewrite the plane wave equations as:

Eypx, tq � Ey0 exp
�
�x=pk̃q

	
exp

�
ip<pk̃qx� ωtq

	
Bzpx, tq � Bz0 exp

�
�x=pk̃q

	
exp

�
ip<pk̃qx� ωtq

	 (10)

Let us note however, that the wave equations impose fewer restrictions than the full
Maxwell equations. For example, we can still gain information about the relative ampli-
tudes of the two fields, by plugging in our solutions (10) into Faraday’s Law. Applying
B
Btp�q to B, and �∇� p�q to E, we obtain:

Bzpx, tq � Eypx, tq k̃
ω

We can observe that the fields remain perpendicular, but there is one qualitative difference
from the lossless case: a difference in phase between the fields has been introduced. To
see this, let us first rewrite k̃.

12



2 CONTINUOUS MODEL

k̃ � |k̃|eiϕ

where |k̃| � ω

d
εµ

c
1�

� σ
εω

	2

, ϕ � tan�1

�
=pk̃q
<pk̃q

�
Therefore, the complex amplitudes of the fields are related as follows:

B0e
iϕB � |k̃|eiϕ

ω
E0e

iϕE

Thus, the phase relationship between the two fields is given by ϕ:

ϕB � ϕE � ϕ

and the real amplitudes of the fields by:

B0

E0

�
d
εµ

c
1�

� σ
εω

	2

Summing up, the real electric and magnetic fields are the following:

Bpx, tq �
�� 0

0
B0

�
exp
�
�=pk̃qx

	
cosp<pk̃qx� ωt� ϕE � ϕq

Epx, tq �
�� 0
E0

0

�
exp
�
�=pk̃qx

	
cosp<pk̃qx� ωt� ϕEq

In the figure below we visualize this phase difference and point out the exponential decay
of the amplitude:

E

B

x

y

z Ð Amplitude decay

Figure 5: Phase shift in lossy (homogeneous) mediums.

Having gained some more intuition about the way electromagnetic fields propagate in
both vacuum and lossy materials, and how their phase and amplitude are affected, we
can proceed to the other relevant equations.

13



2 CONTINUOUS MODEL

2.2 Bioheat equation and tissue damage

In order to simulate the impact of the electromagnetic field on a given biological tissue,
one needs to specify how heat is produced, since temperature is the main quantifier in
the evaluation of tissue damage. To this end, we define the bioheat equation:

ρkgC
BT
Bt � ∇ � pλ∇T q �Q

where ρkg

�
kg
m3

�
is the mass density (to be distinguished from our usual charge density ρ),

C
�
J
K

�
is the heat capacity, T rKs is the temperature, λ

�
W
mK

�
is the thermal conductivity,

and Q
�

J
m3s

�
defines heat sources or heat sinks. Q is further separated into:

Q � Qperfusion �Qsource

where Qperfusion is the heat sink due to blood perfusion in the tissue, and Qsource is the
heat source (or sink), which in our case will be defined pointwise as:

Qsourceprq :� σprq}Eprq}2

Tissue parameter values, both thermal and dielectric (related to the electromagnetic equa-
tions), will be discussed in Section 6. It is worth mentioning that while the area of experi-
mental parameter evaluation is not recent, it is ongoing, and there are numerous biological
tissues that are not completely characterized. As mentioned, heating is the main source
of so-called tissue damage, or tissue coagulation. We will define tissue damage based on
the Arrhenius formalism tissue damage integral [7]:

Dpx, tq � A

t»
0

exp

�
� E

RT px, τq


dτ

where Dr1s is the degree of tissue damage, R
�

J
molK

�
is the universal gas constant, A

�
1
s

�
is a “frequency factor”, E

�
J
mol

�
is the activation energy for irreversible damage, and

T : Ω� r0, ts with units rKs is the temperature.

This is one of the more involved tissue damage models. Other options are the Cumulative
equivalent minutes model, developed by Sapaerto and Dewey [37], which defines thermal
effects in terms of how many minutes of heating at 43 deg Celsius would be needed to
obtain the same result. Probably the simplest option is to define some threshold tem-
perature above which the tissue is considered destroyed, which is what we shall do, as
motivated below.

We shall later compare the temperature distribution produced by our complete electrody-
namic model with that given by another (reference point) model, which employs a static
approximation of Maxwell’s equations. That reference model will use (qualitatively) the
same heat solver, but does not estimate the tissue damage caused by heat. Both heat
solvers perform explicit time-stepping. Thus, for all intents and purposes, the final com-
parison shall be carried out between the resulting temperatures, or equivalently, by looking
at a relevant temperature threshold.

14



2 CONTINUOUS MODEL

2.3 The Field Equivalence Principle

We shall now introduce one of the most important building blocks of both theoretical
and numerical electrodynamics, the Field Equivalence Principle. Intuitively, this method
involves replacing certain sources of electromagnetic fields, with other types of sources.
Consider the following situation:

J

M
J s M s

E1,H1

E1,H1

E2,H2

E1,H1

Ñ
n

Original problem Equivalent problem

Ω

BΩ

Ω

BΩ

Figure 6: Illustration of the FEP.

Assume there are some sources of electromagnetic waves inside Ω, denoted by J and M ,
which radiate fields outwards. The boundary BΩ of Ω is an arbitrary virtual construct,
which does not necessarily have any physical counterpart. Then the Field Equivalence
Principle (hereon FEP) can be phrased in broad terms as follows:

Given the problem on the left in Figure [6], find an “equivalent” problem in the following
sense: the radiated fields outside of Ω must be the same as in the original problem.

Now, as stated, this description is vague, however that is not unexpected, since this is not
a uniqueness statement. There are in fact infinitely many equivalent problems that one
can formulate in such a manner. The way in which this equivalent problem is built, is by
replacing the sources inside Ω with equivalent sources, given by so-called surface current
densities J s and M s, which have units defined by rJ ssSI � mrJsSI, rM ssSI � mrM sSI.
A proper physically meaningful definition will be given in Section 3.2.1. For now let us
mention that they are defined as improper integrals of their volumetric counterparts, over
infinitesimally small volumes or areas.

Let us first acknowledge some historical aspects before we formalize this discussion further.
The principle we have introduced is mentioned under different names, and in different
variations: Field Equivalence Principle, Huygens’ principle, Love’s equivalence principle,
Schelkunoff’s equivalence principle, Volume equivalence principle, etc. The earliest form
of this concept was investigated by Christiaan Huygens, who introduced it in his Traité
de la Lumière [16] in 1690. Silvanus P. Thompson translated Huygens’ work into English
in 1912 [17], which thereafter gave rise to the term Huygens’ principle, stated as follows:

“Each point on a primary wavefront can be considered to be a new source of a secondary
spherical wave and that a secondary wavefront can be constructed as the envelope of these
secondary spherical waves.” [20]

15



2 CONTINUOUS MODEL

This can be interpreted visually in the example below. Huygens did not explain initially
why the wavefronts of the points travel only forward, and there is no backward wavefront
created, and simply assumed this to be the case. The new wavefront, displayed in green,
is comprised of the envelope of all spherical waves present on the old planar wavefront.

Figure 7: Huygens’ principle illustrated.

The first rigorous mathematical analysis of this principle started with Helmholtz in 1859,
which was done for steady-state monochromatic (single-frequency) waves, and then also
by Kirchhoff in 1882 for time-dependent scenarios. In the context of Maxwell’s equa-
tions, the first to investigate an equivalent formulation in terms of the vector quantities
E and H was Augustus Edward Hough Love in 1901 [25]. Love introduced the concept of
equivalent surface current, which would act as the intermediate source of spherical waves,
whose envelope would compose the further wavefront. In his formulation the fields inside
Ω are identically zero.

Schelkunoff extended this result, by allowing arbitrary fields to be present inside Ω (and
thus on both sides of BΩ). This result is known as Schelkunoff’s equivalence principle. If
we now look back at Figure [6], we see that the equivalent problem on the right-hand side
is a formulation of Schelkunoff’s equivalence principle.

Let us continue by formalizing the statement. In the equivalent problem, the sources J
andM are removed, and replaced pointwise locally by equivalent surface current densities,
given by:

J s � n� pH1 �H2q|BΩ (11)

M s � �n� pE1 �E2q|BΩ (12)

The main ingredient needed in proving the FEP, is the inherent boundary condition that
arises at interfaces, which is precisely given by (11) and (12). In order to derive this, let
us consider the following:
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2 CONTINUOUS MODEL

P1 P2

P3P4

P5 P6
n Ω

Ωc

`

R

Ms

#
δ

hkkkkkkkkkkikkkkkkkkkkj∆

Figure 8: Integration contour.

Let us assume that there is a surface separating Ω and its complement (with respect to
the 2D space it is embedded into) Ωc, and a rectangle perpendicular to this surface, given
by the points P1,P2,P3,P4, which form the closed loop ` :� ÝÝÝÝÝÝÝÑP1P2P3P4, enclosing the
rectangular surface R. Assume that the width ∆ of the rectangle is small enough that all
quantities are constant in the direction parallel to the surface.

Let E1} be the parallel (to the surface) component of the electrical field inside Ω, and E2}
the analogue for Ωc. If we apply Faraday’s Law in integral form, we obtain the following:¾

`

E � dL � �
¼
R

M � dS � d

dt

¼
R

B � dS

If we now assume that the height δ of the rectangle R is infinitesimal, then the surface of
RÑ 0, and if B is bounded on this surface, then the rightmost term vanishes.

ñ
P2»
P1

E � dL�
P3»
P2

E � dL�
P4»
P3

E � dL�
P1»
P4

E � dL � �
¼
R

M � dS (13)

If we now implicitly define a surface current density M s through

¼
R

M � dS �
P6»
P5

M s � dL � ∆ �M s

and assume that E is also bounded on R, the two terms on the left-hand side of (13),
which integrate perpendicularly to the interface, cancel out due to the infinitesimal δ.

ñ
P6»
P5

pE1} �E}2q � dL � ∆pE1} �E}2q � �∆M s ô pE1} �E}2q � �M s

In other words, if n is the unit normal pointing from Ωc into Ω:

n� pE1 �E2q � �M s
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2 CONTINUOUS MODEL

which is exactly (12). In a completely analogous manner, one obtains (11). Here we can
note that these currents are a purely mathematical construct, and do not have a physical
equivalent. They are simply tools to correct the discrepancy in fields across the surface,
as far as Maxwell’s equations are concerned.

With this in mind, we see that this new construct satisfies Faraday and Ampère’s laws,
both across the interface, and, assuming this was the case for the original problem, outside
Ω as well. If the newly specified fields E,H inside Ω are also consistent with Maxwell’s
equations (which is true for uniformly zero fields in particular), then both problems are
consistent with Maxwell’s equations.

The applicability of the FEP method is now clear, together with its difficulties. Assume
that the electromagnetic field is known (or can be reliably measured or approximated)
on a surface of the computational domain. Then all physical structures and sources of
energy (contained by this surface) can be replaced by a homogeneous volume with zero
(or otherwise specified) electromagnetic fields. The use case of this for our simulations
will range from numerical proof of concepts, to possibly simulating (or rather replacing)
a physical antenna within tissue.
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2 CONTINUOUS MODEL

2.4 Energy

In this section we shall shortly present the concept of energy in the electromagnetic
context. We know from classical electrodynamics that the expression for electromagnetic
energy density (in vacuum) is the following:

UEM � 1

2

»
Ω

�
ε0E

2 � 1

µ0

B2



dV

where E,B are the (real) amplitudes of the electric and magnetic fields. Let us derive
this. We know from magnetostatics ([15], p. 204) that given a charge q, moving at speed
v inside an electromagnetic field, the net force acting on it is:

F � q rE � pv �Bqs
This equation is known as the Lorentz Force Law, and is a fundamental axiom of
electromagnetism. Now, let us assume we have some charge and current density that
produces the electromagnetic field given by E,B. If within the next infinitesimal time
window dt the charges move with speed v, how much work is done by the electromagnetic
fields on these charges?

For an infinitesimal volume dV we know that the electric charge q � ρdV , and that the
current density is given by the moving charge density J � ρv. If we integrate over a
volume Ω which contains all the charges and currents, this means that the rate of work
shall be:

dW

dt
�
»

Ω

E � JdV

noting that E � J is the work done per unit volume, per unit time, i.e. power per unit
volume, so power density. Let us rewrite this quantity to factor out J , using Maxwell’s
equations. From Ampére’s Law we have:

E � J � 1

µ0

E � p∇�Bq � ε0E � BBtE (14)

Using the following vector identity:

∇ � pV �W q �W � p∇� V q � V � p∇�W q
and applying Faraday’s Law, we obtain:

E � p∇�Bq � �B � BBtB �∇ � pE �Bq
Furthermore, we arrive at the following forms:

B � BBBt � 1

2

B
BtpB

2q, E � BEBt � 1

2

B
BtpE

2q
With this we can rewrite (14) as:

E � J � �1

2

B
Bt
�
ε0E

2 � 1

µ0

B2



� 1

µ0

∇ � pE �Bq
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2 CONTINUOUS MODEL

If we use the Divergence Theorem on the second term from the RHS, and plug it into the
expression of the rate of work, we arrive at:

BW
Bt � � B

Bt
»
Ω

1

2

�
ε0E

2 � 1

µ0

B2



dV � 1

µ0

¾
BΩ

pE �BqdS

This is known as Poynting’s Theorem. The LHS is the power delivered to the volume
Ω, the first term of the RHS is the rate of loss of electromagnetic energy within the volume
BtUEM, and the second term is the rate of energy transport out of the volume (through BΩ).

The Poynting vector, which points in the direction of energy transport, is:

S :� 1

µ0

E �B

which quantifies energy per unit area per unit time. Finally, if we denote by UMEC the
mechanical energy density as given by

BW
Bt � B

Bt
»
Ω

UMECdV

then we can rewrite Poynting’s Theorem in differential form:

B
Bt pUMEC � UEMq � �∇ � S

It is worth mentioning that performing a discrete check of the conservation of UMEC is one
of the heuristics to evaluate numerical schemes solving Maxwell’s equations. Furthermore,
in hyperthermia patient treatment interventions (both computationally and continuously
in the operating room) the input power is defined on a generator. This generator then
transports the energy, usually through a coaxial cable, to the applicator.

The transport of energy is not perfect, and less than 100% of the energy leaving the
generator reaches the tip of the applicator. When simulating a pipeline involving this
generator component, this fact has to be taken into account in order to not overestimate
the delivered thermal dose.

Before we move over to the next section, let us summarize the main equations we shall
be interested in. These are (i) be the bioheat equation, which was not discretized by the
author, but by Tim Kröger, Inga Altrogge and Tobias Preußer [21], with a Finite Element
discretization in space, and various discretization methods in time:

ρkgC
BT
Bt � ∇ � pλ∇T q �Q

and (ii) Maxwell’s equations, which will be our main focus:

BD
Bt � ∇�H � J , BB

Bt � �∇�E �M
∇ �D � ρ, ∇ �B � 0
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Chapter 3

Discretization

In this chapter we shall present the discretization method that we used for Maxwell’s
equations, and various properties and aspects of this process. As mentioned before, once
this is done, the heat solver shall interpret the output of the discrete solutions to Maxwell’s
equations in terms of an isotropic hexahedral Finite Element mesh. We shall also mention
that in this work there is no grid adaptivity implemented, with respect to either the spatial
or temporal discretizations. While possible, adaptivity would be quite technically involved
(requiring work in so-called sub-voxel accuracy and interface matching similar to that of
the FEP). Furthermore, the code written for this research was developed with the end
goal of GPU parallelization in mind.

3.1 Finite-difference time-domain

Arguably the most used discretization method for time-dependent Maxwell’s equations
has been Yee’s scheme, introduced by Kane S. Yee, in his seminal 1966 paper Numerical
Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic
Media [46]. This method is now most often referred to as the finite-difference time-domain
method, or FDTD. It involves a finite difference stencil for both the spatial and temporal
discretizations. In relation to what was available at the time, but also more importantly
to what has been used since, Yee’s scheme has proven to be one of the most widely used.
Some of the major reasons are:

1. Solving for both the electric and magnetic fields simultaneously, as opposed to using
potential methods to reduce Maxwell’s equations to a wave equation, where one
solves for only one of the fields.

2. Simplicity of the discretization.

3. Discrete conservation of the divergence of the fields.

As can be seen below in Figure [9], the main idea of the Yee algorithm is to space out
the electric and magnetic fields as follows: given a hexahedral gridding of the physical
space, the E components are placed on the midpoints of the edges of grid cells, and the
H components are placed in the midpoints of the grid cell faces.

These correspond with the component directions, for example the Ex component is placed
on the midpoint of an edge aligned with the x-axis, the Hx component is placed at the
midpoint of a face perpendicular to the x-axis, and so on.
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EzEz
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HxHx
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Hy
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Figure 9: Yee grid cell, with staggered E and H grids.

Another very important feature to notice, which leads to discrete conservation of the
divergence of the fields, is that not only does this grid provide an intuitive placement
of pointwise evaluation positions, but also of integration contours. Faraday’s Law and
Ampére’s Law can be readily applied to a given component together with the four sur-
rounding dual components.

Furthermore, given a material interface provided by the hexahedral mesh, the continuity
of field components is preserved across the interface as long as it is parallel to one of the
axes (which is readily true when the interface is rasterized by the grid).

In terms of temporal discretization, Yee’s algorithm employs the so-called leapfrog scheme.
Illustrated in Figure [10], this algorithm involves evaluating all E field points at integer
multiples of the temporal step ∆t, and the H field at half-integer points n∆t � 1

2
, n P N.

Each time the electric field is updated, it uses the intermediate magnetic field values, and
vice-versa.

E H t

0 ∆t

2
∆t

3∆t

2
2∆t

5∆t

2

Figure 10: Leapfrog time stepping scheme.

The main importance of this is that it removes the issue of simultaneous evaluation of the
equations given by Faraday and Ampére’s laws, namely the apparent inability to evaluate
both at the same time.

Before specifying the actual algorithm steps, let us define the notation. We note here
that unless necessary, we shall try to keep the assumptions to a minimum, and only make
them locally where needed. Assume Ωh is a cuboid grid of size Nx�Ny�Nz with spacing
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3 DISCRETIZATION

∆x,∆y,∆z, and let ∆t be the temporal step to be used in the leapfrog scheme.

For any analytic or discrete field, or any parameter quantity f (which is a function of
both space and time), the evaluation of this quantity at the grid point pi∆x, j∆y, k∆zq
(with i P t0, ..., Nxu, j P t0, ..., Nyu, k P t0, ..., Nzu), and at the discrete time point n∆t is
denoted by f |ni,j,k, i.e.

f |ni,j,k :� fpi∆x, j∆y, k∆z, n∆tq
Now, we mentioned a finite-difference discretization in space, which is performed as follows
for the derivative in the x-direction, and analogously for the other four directions (y, z, t):

B
Bx f |

n
i,j,k �

fn
i� 1

2
,j,k

� fn
i� 1

2
,j,k

∆x

�Op∆2
xq (15)

which follows immediately from a Taylor series expansion of fppi � 1
2
q∆x, j∆y, k∆zq and

fppi � 1
2
q∆x, j∆y, k∆zq around pi∆x, j∆y, k∆zq. The main importance of this choice of

step size is that a derivative of a field at one point can be computed with the readily
available discrete field values, which are separated by half a step in both time and space.
In the same manner, we can retrieve the corresponding discretization in time:

B
Bt f |

n
i,j,k �

f
n� 1

2
i,j,k � f

n� 1
2

i,j,k

∆x

�Op∆2
t q (16)

As a result of the choice of truncation, one would expect that the numerical scheme is
second order accurate in both space and time. We could of course construct schemes with
larger difference stencils, and thus higher convergence order, but most applications pre-
fer the second order scheme because the smaller stencil allows more geometric flexibility.
With a higher order scheme and a larger stencil, and when dealing with heterogeneities,
it may happen that stencil evaluations partaining to a derivative in one type of material
take place “several materials away”, depending on the geometry. This normally leads to
numerical instability, and would require a nontrivial amount of effort to circumvent.

3.1.1 Yee’s algorithm

The algorithm put forward by Yee consists of the following steps:

1. Discretize all derivatives according to Equation (15) and (16)

2. Transform the resulting equations into update equations by splitting up the contri-
butions of the time derivative to both sides of the equations

3. Given known E field values up to the time point k∆t, evaluate the magnetic field
update equation to obtain Hk� 1

2

4. Evaluate the electric field update equation to obtain Ek�1

5. Repeat steps 3 and 4 until the desired total simulation time is reached

Now, let us see how the first two steps are carried out in practice. Looking at the x-
coordinate of (2b), let us assume that during the time elapsed in our electromagnetic
simulation, the permittivity ε stays constant in time. As we shall observe later, even if
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3 DISCRETIZATION

this may not be exactly true, we still need to make this assumption when breaking down
time (actually temperature) dependence into constant steps. We now have:

B
BtEx �

1

ε

� B
ByHz � B

BzHy � pσEx � Jsource,xq



Let us first write and illustrate this discretization in 1D. This means we are working with
the Ez and Hy fields for example, where Ez are evaluated at integer points in space and
time, and Hy are evaluated at half-integer points. If both conductivities σ, σ� are zero
and we have no source current, the update equation becomes:

ε
Ez|ni � Ez|n�1

i

∆t

�
Hy|n�

1
2

i� 1
2

� Hy|n�
1
2

i� 1
2

∆x

ô

Ez|n�1
i � Ez|ni �

∆t

ε∆x

�
Hy|n�

1
2

i� 1
2

� Hy|n�
1
2

i� 1
2

	
The update idea is illustrated in Figure [11] in 1D, for ease of visualization.

Ez Ez

Hy

Evaluate difference
equation here

Position

T
im

e

Figure 11: Visualization of the time stepping scheme.

Now, without making any assumptions about σ, σ�, and if we consider nonzero electric
and magnetic currents J and M, the 3D update equations for Ez, Hx and Hy are:

Ez|n�1
i,j,k� 1

2
� 1� σ∆t

2ε

1� σ∆t

2ε

Ez|ni,j,k� 1
2
�

�
∆t

ε

1� σ∆t

2ε

���Hy|n�
1
2

i� 1
2
,j,k� 1

2

� Hy|n�
1
2

i� 1
2
,j,k� 1

2

∆x

�
Hx|n�

1
2

i,j� 1
2
,k� 1

2

� Hx|n�
1
2

i,j� 1
2
,k� 1

2

∆y

� Jsource,z|n�
1
2

i,j,k� 1
2

��

(17)

Hx|n�
1
2

i,j� 1
2
,k� 1

2

�
1� σ�∆t

2µ

1� σ�∆t

2µ

Hx|n�
1
2

i,j� 1
2
,k� 1

2

�

�
∆t

µ

1� σ�∆t

2µ

�
Ey|ni,j� 1

2
,k�1 � Ey|ni,j� 1

2
,k

∆z

�
Ez|ni,j�1,k� 1

2
� Ez|ni,j,k� 1

2
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� Msource,x|ni,j� 1
2
,k� 1

2

�
(18)
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Hy|n�
1
2

i� 1
2
,j,k� 1

2

�
1� σ�∆t
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Hy|n�
1
2
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2
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2
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� Msource,y|ni� 1
2
,j,k� 1

2

�
(19)

Before we address the other three update equations, let us take a moment to make a
few remarks. First, the three equations (17),(18),(19) form what is called the transverse
magnetic z case, or TMz case, since the magnetic field is transverse to the z-direction.

This is one of the two ways to define a 2D restriction of Maxwell’s equations. The
analogous formulation is the transverse electric, or TEz case, where Ex, Ey, Hz fields are
considered. The TEz and TMz formulations (or modes, as they are sometimes referred
to) complement each other, and form the full 3D equations.

Furthermore, let us clarify that the following parameter-dependent coefficients

1� σ∆t

2ε

1� σ∆t

2ε

,
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2µ
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,
∆t

ε
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2ε

,

∆t

µ

1� σ�∆t

2µ

are all evaluated at the position of the field whose update equation they are part of, i.e.
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Throughout all of our further use of FDTD, we shall assume that all parameters are
constant in time (only w.r.t the electromagnetic equations). Hence, we suppress the time
index in the coefficients above. It is also noteworthy that the terms of the form σEw,
w P tx, y, zu would normally be evaluated at half integer time steps, and those of the
form σ�Hw at integer steps, contrary to their field value counterparts. What is most
often done is to perform a so-called semi-implicit approximation, namely:

Ew|n�
1
2

i�1wpxq,j�1wpyq,k�1wpzq �
Ew|n�1

i�1wpxq,j�1wpyq,k�1wpzq � Ew|ni�1wpxq,j�1wpyq,k�1wpzq
2

where 1wpxq � 1 if x � w, and 0 otherwise. If we define 0wp�q :� 1�1wp�q, we obtain the
corresponding expression for dealing with the σ�Hw term:
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Hw|ni�0wpxq,j�0wpyq,k�0wpzq �
Hw|n�

1
2

i�0wpxq,j�0wpyq,k�0wpzq � Hw|n�
1
2

i�0wpxq,j�0wpyq,k�0wpzq
2

With this in mind, we can write out the TEz mode equations:
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Once more, we evaluate all coefficients involving σ, σ�, ε, µ at the position of the field being
updated. With these equations, one can easily and independently compute the update
value of either field at a grid vertex, requiring the latest values of both fields. This can
be easily parallelized, which is another major reason for the widespread use of FDTD for
solving Maxwell’s equations.

Finally, we shall mention without proof the necessary condition for stability of the FDTD
numerical scheme. The Courant-Friedrichs-Lewy (CFL) condition was introduced in 1928
by Richard Courant, Kurt Friedrichs and Hans Lewy [8]:

∆t ¤ 1

cmax

b
1

∆2
x
� 1

∆2
x
� 1

∆2
x

where cmax is the maximum speed of light in the computational domain. For a regular
grid, this becomes:

Sc :� cmax∆t

∆x

¤ 1?
3
�: Sc,max

Here Sc is referred to as the Courant number (or ratio), and Sc,max is the upper bound
imposed by the CFL condition. With this we conclude the description of the basic FDTD
building blocks for solving Maxwell’s equations: the finite-difference update equations.

The reader is referred to either Taflove and Hagness’ textbook on Computational Electro-
dynamics [43], or Schneider’s textbook on the Finite-Difference Time-Domain method [38]
for further reading on Yee’s algorithm.
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3.1.2 Divergence conservation

We have previously alluded to a property of Yee’s discretization process without proof,
namely the discrete conservation of divergence. We shall now prove that the numerical
scheme we have introduced thus far preserves the initial divergence, which is given by the
charge density ρ for the electric flux, or zero for the magnetic flux.

Looking at the integral forms, let us integrate (5a) over a Yee cell (Figure [9]) in free space
(vacuum, ε � ε0, µ � µ0). Let us also specify what assumptions we make about quantities
defined on our grid, when investigating them analytically. Any quantity f |i,j,k,n shall be
considered piecewise constant on the cube below, and averaged between such cubes.�
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We shall now replace all time derivatives of Hw terms with the finite differences that
are given by Yee’s algorithm, and define t1 :� Hx|i,j� 1
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t2 �
�
Ex|i� 1

2
,j�1,k�1 � Ex|i� 1

2
,j�1,k

∆z

�
Ez|i�1,j�1,k� 1

2
� Ez|i,j�1,k� 1

2

∆x

�
�

�
�
Ex|i� 1

2
,j,k�1 � Ex|i� 1

2
,j,k

∆z

�
Ez|i�1,j,k� 1

2
� Ez|i,j,k� 1

2

∆x

�
(25)
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Summing these three terms yields:

B
Bt

¿
Yee cell

B � dS � 0 ô
¿

Yee cell

Bptq � dS �
¿

Yee cell

Bp0q � dS � 0

Thus, the magnetic flux preserves its value. The corresponding result for Gauss’ Law is
straightforward, and the divergence given by the initial electrical charge ρ is preserved.

27



3 DISCRETIZATION

3.1.3 Integral interpretation of difference equations

One useful property of Yee’s scheme is the possibility to interpret and visualize the geomet-
ric interaction of the grids in terms of the integral equations. This primarily establishes
an intuition linking the two forms of the equations, differential and integral. In Figure [12]
we illustrate a combination of field components, placed accordingly in staggered grids.

Ez pi, j, k � 1
2
q

Ez

Ey

Ey

Hy

Hy

Hx

Hx

pi, j � 1
2
, k � 1

2
q

C1

S1

Figure 12: TMz integral contour within the Yee grid.

We can observe a “ring” of magnetic field components around Ez, and another one formed
by electric field components around Hx. Denote the magnetic field contour by C1.

Hz
pi� 1

2
, j � 1

2
, kq

Hz

Hy

Hy

Ey
Ey

Ex

Ex
pi� 1

2
, j, kq

C2

S2

Figure 13: TEz integral contour inside the Yee grid.

Analogously, we denote by C2 the electric field integration contour in Figure [13]. One
could name C1 the TMz integral contour, and C2 the TEz integral contour. The (closed)
surfaces enclosed by them are denoted as S1 and S2 respectively. Let us now highlight the
equivalence of the differential and integral forms of the equations on these discrete grids.
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Firstly, we need to apply Ampére’s Law along the contour C1. Now, in the Yee grid, we
assume that field values are constant within the cube of dimensions ∆x�∆y �∆z whose
midpoint is the position of the field component. With this in mind, we compute

B
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¾
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which we recognize as the vacuum version of the Yee update equation. The converse result
for Faraday’s Law and contour C2 is completely straightforward. With this, we finalize the
parallel between the integral formulations and the finite difference grid implementation
of the differential formulations.

As we shall see in the next section, this parallel is also particularly helpful for dealing
with geometric structures which are finer than the available grid. This entire analysis
particularly applies to thin wires, which are often components of electromagnetic antennas.
The continuous analysis can be carried out while embedded into the discrete grid, and
the result distributed correspondingly to discrete field values.
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3.2 Sources and current densities

Let us now discuss ways of introducing energy into our computational domain. This is
required in order to have a computational way to replicate the energy introduced into the
tissue by a MWA applicator. A first method is to essentially define a Dirichlet boundary
condition on one (or several) nodes, which is called a hard source. This needs to be
provided as a time dependent function. For example, at time step n, the following would
be defined at lattice node pi, j, kq:

Ez|ni,j,k � E0 sinp2πf0n∆tq (30)

In 3D, this source would produce a spherical wave, such as that of an infinitesimal length
dipole, but we shall return to this in more depth in the following subsection.

The sine wave in (30) can be replaced by any time-dependent function, however usually
sine or cosine functions are used, or variations of a Gaussian pulse, such as:

Ez|ni,j,k � E0 exp

�
�
�
n� n0

ndecay


2
�

(31)

where the n0 parameter is selected such that n0 ¥ ndecay, and a smooth transition from
zero is achieved.

A third option is to combine (30) and (31), in order to obtain a Gauss-modulated sine
wave, i.e. a wave whose amplitude is given by a Gaussian pulse:

Ez|ni,j,k � E0 exp

�
�
�
n� n0

ndecay


2
�

sinp2πf0pn� n0q∆tq

One problem that arises with this type of energy insertion is the following: when a wave
encounters a node where such a hard source is defined, this node will produce a nonphys-
ical reflection of that wave, due to the tangential component of the electrical field being
specified, without any consideration of incident fields. One can show that this happens
irrespective of the type of pulse (sinusoidal or Gaussian), and irrespective of whether the
value being set as a Dirichlet condition is zero or not.

This can be especially problematic when one wishes to study some harmonic (periodic)
behavior, where such nonphysical reflections can permanently pollute the numerical solu-
tion. One way to fix this issue would be to simply stop introducing energy through such
a source after a given time, essentially “turning it off”. However, this would not work
if the desired inserted energy is periodic. What happens in practice is that a harmonic
source can only be left active for as long as no waves reach the point of origin.

As opposed to Dirichlet conditions, another method of specifying a source of energy at a
grid point is the so-called soft source. This involves defining a Dirichlet condition not on
any of the six E or H components, but on the electric or magnetic currents J and M .

Harmonic example: Jz|ni,j,k � J0 sinp2πf0n∆tq
One important advantage of the soft source over the hard source is that it allows incident
waves to pass through undistorted and unreflected. To observe this, one needs only to
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look at the update equations involving the currents, where their influence can be seen to
be purely additive, and splittable from the usual update formulas.

3.2.1 Current and current densities

Let us now have a closer look at current sources. A quick check of the equations shows
us that J and M are indeed volume current densities, with units:

rJsSI � A

m2
, rM sSI � V

m2

One way to visualize this is the following: imagine a cylinder with infinitesimal cross
sectional area daK which runs parallel to the flow of current, as in Figure [14].

daKJ

Flow

Figure 14: Volume current flowing through a “tube”

It then follows that the total current Itube through this tube (with units rItubesSI � A) is:

Itube �
»

tube

J � dV

One other way to introduce current is through a surface current density, J s (sometimes
also denoted by K), with units A

m
. Here one considers a surface of infinitesimal width dlK,

which is parallel to the flow of current, as illustrated in Figure [15].

dlKK

Flow

Figure 15: Surface current flowing through a surface

In this case we can define the total current through the surface Isurface (with units
rIsurfacesSI � A):
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Isurface �
»

surface

J s � dS

Finally, one can define in an analogous manner a line current density, with units rJ lsSI �
A, where Iline �

³
line
J l � dL. With this in mind, let us understand what happens when

a soft source is defined in a Yee lattice. If one wants to define a current at a given node
pi, j, kq, one assigns time-varying functions to (volume) current density components, such
as J z|ni,j,k � fpn∆tq or M z|ni,j,k � gpn∆tq.

Let us approach this from the point of view of current, and not current density. If one
wants to impose a given current Iz at the node mentioned previously, then the lattice
(grid) current density would have to be defined as:

Jz|i,j,k � Iz|i,j,k
∆x∆y

where ∆x, ∆y are the lattice x� and y�direction steps. This fact shall prove to be useful
later on, when we shall provide a discrete formulation of the Field Equivalence Principle.

3.2.2 The Hertzian dipole and currents

We now introduce a theoretical construct derived from the classical dipole antenna. The
Hertzian dipole consists of an idealized infinitesimal-width cylinder, thus approximated
by a wire or line segment, carrying a constant current I along its entire length. This
is realized by considering two charges, �q and �q, placed at a distance δl apart, as
illustrated in Figure [16].

δl I

�q

�q

Figure 16: Ideal (point) dipole.

This pair of charges constitutes an electric dipole. For such a dipole, we introduce the
notion of dipole moment p:

p :� charge � displacement vector p� 2qδl in our caseq
One should note the vector quantities, since orientation obviously plays a role. It is im-
portant to remark that in our case, when the distance δl Ñ 0, which constitutes this
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idealized, or point dipole, the charges q Ñ 8. This has to happen in such a way that
D limδlÑ8 p, and the norms of the charges are scaled in such a way that maintains the
dipole moment constant, irrespective of the distance between the charges. This is essen-
tially an improper integral, where the domain of integration has infinitesimal size.

This (finite) dipole moment is the crucial quantity that one should refer to when discussing
infinitesimal dipoles. One way to relate this to the current densities we have been working
with is the following: suppose we have a (compact) volume V containing the two charges
defining the dipole moment p, then the following holds:»

V
JdV � dp

dt

Now, the main reason we introduced this infinitesimal dipole, is due to the fact that the
field radiated by such a “point charge” in vacuum, or free space, is known analytically.
Most textbooks formulate this field in terms of a harmonic situation, where all fields vary
according to exp piωtq. However, in the most general case, for a given dipole moment

ppr, tq :� p
�
t� r

c

	
the E and H fields radiated by a point dipole are [6]:

Eprq � 1

4πε0

�
� :p

c2r
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� 3p 9p � rq � r

cr4
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c2r3
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(32)

Hprq � 1
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:p� r
cr2

� 9p� r
r3



(33)

where r is the position where the fields are evaluated, c is the speed of light in vacuum, and
:p, 9p are the second and first-order derivatives of the dipole moment with respect to time.
We suppressed the time dependence of the fields and dipole moment for ease of notation.
Regions of the domain, and thus regions of the fields, are sometimes referred to depend-
ing on their distance from the antenna. These are labeled as near field, intermediate
field, and far field. Depending on this distance from the antenna, applications quite of-
ten ignore several of the terms from the formula above, if they are not the most influential.

Given this information, one would ask the natural question: can we use these analytical
fields to check how accurate the FDTD simulation is? In order to answer this, we need
to first analyze the following two questions:

1. Given an analytical point dipole of moment p, what hard point source Ez do we
need to impose in order to obtain the equivalent numerical electromagnetic field?

2. Assume we find such an equivalent hard source, what would we need to impose on
a pointwise value of the volume current density in order to replicate it? In other
words, how do we build an equivalent soft source?

Let us first note that in essence, if we wish to replicate the field produced by a point
dipole, and assume the length of such a dipole is δl, then for a constant line current

density Il, we have a total current I �
�δl{2³
�δl{2

IldL � δlIl.
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3 DISCRETIZATION

Let us start with question (2), and work our way back to answering (1) as well. What
we have to do now is basically a sub-cell resolution analysis of point sources in the Yee
grid. When one evaluates a current density Jz at a grid point, the question is, what do
we assume about the values between neighboring current nodes?

The natural supposition is that we have piecewise constant values, given by the discrete
grid nodes. If that is the case, then in order to achieve an accurate conservation of quan-
tities, we need a pointwise node evaluation of a field to be assumed constant throughout
the entire Yee cell. For example, if we have a given (source) current impressed at a point
of the grid:

Iz|n∆t
i,j,k � Isourcepn∆tq

then the Jz term in the update equations will become:

Jz|i,j,k �
Iz|n∆t

i,j,k

∆x∆y

�
with units

A

m2



We can now see that for a given Yee cell of volume ∆x∆y∆z, if we integrate both quantities,
we obtain Isource∆z. This gives us a dipole defined by the dipole moment:

pdiscrete :�
» �� »

Yee cell

J � dV
�
dt � »

Isourceptq∆zdt � ∆z

»
Isourceptqdt

By computing the so-called discrete lattice capacitance, and assuming an even grid spacing
∆x � ∆y � ∆z � ∆h, one can derive a relationship between an imposed Dirichlet hard
source Esourceptq and a soft current source given by Isourceptq, at a lattice point pi, j, kq.
This fact has been investigated by Bérenger [11], and goes as follows:

E F

GH

A B

CD

I J

KL

IsourceEz

�q

�q

Figure 17: Isource and Ez placement.

Let �q and �q be two charges centered in
the cubes from Figure [17]. Let there be
an Ez node in the center between the two
lattice cells, and an Isource defined at the
same position.

If we now apply Ampère’s Law (in integral
form) to the total volume of the two cells,
we see that Ez has to be of the form:

Ezptq � � c

ε0∆x∆y

» t
�8

Ispτqdτ

where c is some unknown constant that we
need to determine. To simplify the com-
putations, we assume a uniform spatial dis-
cretization (∆x � ∆y � ∆z � ∆h).
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3 DISCRETIZATION

Let us now take a step back. We want to relate the electrical field on the faces of the
lattice cells to the enclosed charges. Let us start with the definition of capacitance:

C � q

V

where q is the enclosed charge, and V the voltage between the charges. We now state the
continuity equation below for convenience:

∇ � J � �BρBt
where ρ is the charge density (with units rρsSI � C

m3 ). If we consider a filamentary (1D
curve) current source, and apply the continuity equation, then electric charge will be de-
posited at the endpoints of this filament.

Let Ω be a volume that encloses an endpoint of this filament, and thus contains the
deposited charge. Let BΩ be its bounding surface, and qenclosed the deposited charge at
this endpoint, enclosed in Ω. Then we have:

�
» t
�8

��¿
BΩ

Jpr, τq � dS
�
dτ � » t

�8
Ipτqdτ � qenclosedptq

Here Iptq is the total current that enters the volume Ω. Now, if we apply Gauss’ Law in
integral form to a Yee lattice cell, denoted by Λ, containing a charge qenclosed, we obtain:

qenclosed �
½

Λ

ρdV � ε0

¿
BΛ

E � dS � ε0

6̧

i�1

¿
faceipΛq

E � dS � ε0

6̧

i�1

∆2
h

1

∆2
h

¿
faceipΛq

E � dS �

� 6ε0∆2
h ��
¼

faceipΛq

E � dS � 6ε0∆2
h

�������
������� ��
¼

faceipΛq

E � dS

�������
������� � 6ε0∆2

hEface

which we can summarize into:

qenclosed � 6ε0∆2
hEface (34)

Here we have defined Eface as the (vector l2�) norm of the average integral of the electric
field over one cell face:

Eface :� 1

∆2
h

�������
�������
¿

faceipΛq

E � dS

�������
�������

which is the same for all six faces, due to symmetry of the situation (charge at the center
of the lattice cell). Let us see what the voltage would be in the semi-discrete case. If we
have two charges of equal magnitude and opposite sign in adjacent Yee cells, the difference
in potential between them is (p. 189 [43]):

V � 2∆hEface (35)

35



3 DISCRETIZATION

If we now combine (35) and (34), and plug them into the definition of capacitance, we
obtain our discrete grid capacitance:

Cdiscrete � 3ε0∆h

Now, if we observe Figure [17], and assume the two charges are placed on either side of
an electric field component Ezpi, j, kq, we have:

Ezpi, j, k, tq � �2Eface � � qptq
3ε0∆2

h

However, we know that charge is given by the integral of the current in this dipole:

Ezpi, j, k, tq � � 1

3ε0∆2
h

» t
�8

Ispτqdτ

so we have found our constant c � 1
3

from earlier. Note that this final result matches the
intuition of how Ez and Is contribute to the update equations: the electrical field is fixed
at every step, and Is is added to the electric field value at each time step, so one expects
Ez to be some sort of integral of Is.

At this moment we have a workflow to evaluate equivalent hard and soft sources: given a
(z�directed) hard source at a point pi, j, kq, defined by:

Ezpi, j, k, tq � fptq
we can find the equivalent current and current density sources as follows:

Isptq � �3ε0∆2
h

d

dt
Ezptq ô Jzptq � �3ε0

d

dt
Ezptq

This concludes our analysis of equivalent hard and soft sources, and provides the basis to
compare the behavior of these three quantities of interest: electromagnetic field produced
by a hard source, by a soft source, and the analytical result in vacuum. This shall be used
later on for numerical accuracy validation.
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3 DISCRETIZATION

3.3 Total-field/Scattered-field technique

The so-called total-field/scattered-field technique, hereon abbreviated TFSF, was created
as a result of a recurring application necessity: the ability to introduce a plane wave into
an FDTD simulation. This technique can be interpreted as a discrete version of the Field
Equivalence Principle, as we shall highlight later on. Furthermore, this technique allows
significant flexibility when defining sources of energy, which is clearly helpful for our goal
application.

This introduction of TFSF was motivated by the desire to study the interaction of various
plane waves with complex structures. The trivial approach to obtain such an interaction
is to place objects, or scatterers, far away from the electromagnetic sources, such that the
wavefronts are quasi-planar by the time they reach them. However, this procedure has
the obvious drawback of requiring an overly large computational domain.

Furthermore, to cite Taflove [43], several desirable properties were difficult to obtain:

1. The ability to specify an arbitrary direction, polarization, and duration.

2. A perfectly planar wavefront, that is perpendicular to the direction of propagation.

3. A constant amplitude across any plane perpendicular to the direction of propagation.

Yee [46] had some rudimentary implementation of such a plane wave source in his sem-
inal paper, involving setting Dirichlet conditions on all nodes in the lattice. However,
this method still required significantly large computational domains, and suffered from
distortions when interacting with the boundary of the domain. As a result, it has seen
very limited use since.

The breakthrough in defining plane wave sources, which is regularly used to this day,
was brought by the TFSF method, initially formulated in 1980 by Merewether, Fisher
and Smith [27], and then in 1982 by Umashankar and Taflove [44]. The TFSF method
conclusively achieved the goal of introducing long duration and harmonic plane wave
sources.

TFSF Idea

The main ingredient required in formulating the TFSF method is the linearity of Maxwell’s
equations. The crucial idea is to split up both E and H into two parts, the incident and
scattered fields:

Etotal � Eincident �Escattered

Htotal �H incident �Hscattered

The incident fields are those given by the desired incident plane wave, and are assumed
to be known apriori, everywhere in the computational grid. The scattered field is the
unknown field which results from the interaction of the incident field with the physical
structures of interest inside the lattice.
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3 DISCRETIZATION

It is important to remark that these two split components can be updated independently
with the usual FDTD equations. Let us now interpret this splitting visually. In Figure
[18] we introduce the illustration of this scattering idea.

Incident wave

Scatterer

Total-field region

Scattered-field region

TFSF boundary

Ó

Figure 18: Total-field scattered-field sample use case.

Our region of interest is split into two parts (volumes): the total-field (TF) region, and
the scattered-field (SF) region. The boundary surface between the two regions is non-
physical, and should ideally be positioned such that there are no electromagnetic field
nodes exactly on the surface. If the TFSF boundary intersects grid nodes, one is faced
with an ambiguity when deciding which region they belong to.

The plane wave is produced on this TFSF boundary, it then proceeds to interact with
the scatterer, and then finally disappears from the domain. However, the scattered wave
resulting from this interaction remains in the grid.

One can now already identify the analogy to the FEP technique presented earlier. This
TFSF boundary is the correspondent of the boundary delimiting Ω in that case. Specifying
the incident plane wave (through TFSF) inside the total-field region is equivalent to
specifying the fields E,H inside Ω. Discretely, we perform the FDTD updates on the
total field inside the total-field region, and separately on the scattered field inside the
scattered-field region. Let us now analyze a 1D example of this technique, in order to
understand how it is carried out in practice.
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3 DISCRETIZATION

1D TFSF

In Figure [19] we introduce a one-dimensional FDTD grid.

Figure 19: 1D FDTD grid, taken from [43], p. 195.

If we are working in vacuum, we use the following update equation:

Ez|n�1
i � Ez|ni �

∆t

ε0∆x

�
Hy|n�1{2

i�1{2 �Hy|n�1{2
i�1{2

	
This equation is valid if all three field values are contained in the same region (TF or SF).
If we now apply this update at grid point iL on the left side, we obtain

Ez,total|n�1
iL

� Ez,total|niL �
∆t

ε0∆x

�
Hy,total|n�1{2

iL�1{2 �Hy,scattered|n�1{2
iL�1{2

	
which is inconsistent and false. In order to correct this inconsistency, we need to subtract
an additional Hy,incident term from the right-hand side, as follows:

�Hy,total � �Hy,scattered �Hy,incident ñ

Ez,total|n�1
iL

� Ez,total|niL �
∆t

ε0∆x

�
Hy,total|n�1{2

iL�1{2 �Hy,scattered|n�1{2
iL�1{2

	
� ∆t

ε0∆x

Hy,incident|n�1{2
iL�1{2

Now, let us turn to the update equation for the magnetic field, at node iL � 1, where we
will need to perform a similar correction. The usual FDTD update would be:

Hy,scattered|n�1{2
iL�1 � Hy,scattered|n�1{2

iL�1 � ∆t

µ0∆x

�
Ez,total|niL � Ez,scattered|niL�1

�
And the corrected version of the equation is

Hy,scattered|n�1{2
iL�1 � Hy,scattered|n�1{2

iL�1 �
∆t

µ0∆x

�
Ez,total|niL � Ez,scattered|niL�1

�� ∆t

µ0∆x

Ez,incident|niL

This two step correction procedure would have to be performed at the other end of the
TFSF interface (iR) as well, with a change in sign due to the different direction. Let
r�susual denote the unmodified FDTD update expression of the given argument. We can
then write the corrected equations as follows:

Ez|n�1
iR

� �
Ez|n�1

iR

�
usual

� ∆t

ε0∆x

Hy,incident|n�1{2
iR�1{2 (36)

Hy|n�1{2
iR�1{2 �

�
Hy|n�1{2

iR�1{2

�
usual

� ∆t

µ0∆x

Ez,incident|niR (37)
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3 DISCRETIZATION

The results of a 1D simulation employing the corrections (36) and (37) can be seen in
Figure [20]. In the second half, a so-called perfect electric conductor (PEC) is realized in
the center node of the total-field region, by setting a Dirichlet condition of Ez � 0 at that
position. This Dirichlet condition behaves as a mirror for the incident wave.

Figure 20: One-dimensional Yee grid TFSF implementation. Taken from [43], p. 202.
(a): vacuum parameters in the entire grid.
(b): PEC “mirror” placed in the center of the total-field region.

Seeing as this equation correction can be performed as a “post-processing” step, we can
implement the regular FDTD update uniformly in the entire domain, and then correct it
for the necessary nodes. Let us now see how this TFSF update process is applied in 2D.
The transition to 3D will then be very natural.
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3 DISCRETIZATION

In Figure [21], Ω1 represents the total-field zone, and Ω2 the scattered-field zone. We
employ a TMz mode here, i.e. only Ez, Hx and Hy nodes are present. The dotted line
denotes the virtual TFSF boundary between the two zones. The right-oriented arrows
are Hx nodes, the upward ones Hy nodes, and the points are Ez nodes.

TFSF boundary

Ω1
Total-field

i1 i2

j2

j1

Ω2

Hx

Hy

Ez

Figure 21: Two-dimensional TFSF geometry.

The blue Hx, red Hy and purple Ez nodes are those that require a consistency correction,
such that their FDTD update is correct. While determining which nodes require this
correction becomes more and more tedious, especially as is the case for 3D, there is a
simple heuristic we can highlight that simplifies this process.

Let us observe the lower right side of the TFSF boundary in Figure [21]. In order to de-
termine whether we need to make such a consistency correction, we iterate over all nodes
of all fields. We then check the FDTD stencil (denoted here by the dotted rectangles)
used to update that node. If it contains any (spatial) nodes that are not part of the same
region (TF or SF) as the updated node, then they are flagged for correction.

For example, the stencil of the lower right Ez node contains the rightward Hy node, and
the lower Hx node in another region. Let us see what the update equations look like. We
shall assume that the leftmost Ez nodes are located at x-coordinate i1, and the rightmost
at i2. Similarly, the bottom ones are located at y-coordinate j1, and the top ones at j2. It
then follows that the red Hy nodes on the left are positioned at the i1� 1{2 x-coordinate,
and the bottom blue Hx nodes at y-coordinate j1 � 1{2.
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3 DISCRETIZATION

On the left side of the TFSF interface (i1, j P tj1, ..., j2u) we have the following correction:

Ez|n�1
i1,j

� �
Ez|n�1

i1,j

�
usual

� ∆t

ε0∆x

Hy,incident|n�1{2
i1�1{2,j

Due to the change in direction, on the right side (i2, j P tj1, ..., j2u) the correction is:

Ez|n�1
i2,j

� �
Ez|n�1

i2,j

�
usual

� ∆t

ε0∆x

Hy,incident|n�1{2
i2�1{2,j

Similarly, for the bottom side (j1, i P ti1, ..., i2u) we obtain:

Ez|n�1
i,j1

� �
Ez|n�1

i,j1

�
usual

� ∆t

ε0∆y

Hx,incident|n�1{2
i,j1�1{2

And finally the top side (j2, i P ti1, ..., i2u) corrections are the following:

Ez|n�1
i,j2

� �
Ez|n�1

i,j2

�
usual

� ∆t

ε0∆y

Hx,incident|n�1{2
i,j2�1{2

This concludes the consistency corrections for Ez. For Hx we have the following:

pj1 � 1{2, i P ti1, ..., i2uq : Hx|n�1
i,j1�1{2 �

�
Hx|n�1

i,j1�1{2

�
usual

� ∆t

ε0∆y

Ez,incident|n�1{2
i,pj1�1{2q�1{2

pj2 � 1{2, i P ti1, ..., i2uq : Hx|n�1
i,j2�1{2 �

�
Hx|n�1

i,j2�1{2

�
usual

� ∆t

ε0∆y

Ez,incident|n�1{2
i,pj2�1{2q�1{2

Similarly, we correct Hy according to:

pi1 � 1{2, j P tj1, ..., j2uq : Hy|n�1
i1�1{2,j �

�
Hy|n�1

i1�1{2,j

�
usual

� ∆t

ε0∆x

Ez,incident|n�1{2
pi1�1{2q�1{2,j

pi2 � 1{2, j P tj1, ..., j2uq : Hy|n�1
i2�1{2,j �

�
Hy|n�1

i2�1{2,j

�
usual

� ∆t

ε0∆x

Ez,incident|n�1{2
pi2�1{2q�1{2,j

While it can be tedious to follow the signs dictating the corrections, we can observe a
pattern that relates this further to the FEP. Let n � pnx, nyq be the outer normal defined
on the TFSF boundary, pointing from Ω1 into Ω2 (from TF into SF). We then have on
x-aligned boundaries, where n � p0, nyq, the following updates for Ez total field nodes:

Ez|n�1
i,j � �

Ez|n�1
i,j

�
usual

� ny
∆t

ε0∆y

Hx,incident|n�1{2
i,j�ny{2

For y-aligned boundaries (n � pnx, 0q), we have for TF Ez nodes:

Ez|n�1
i,j � �

Ez|n�1
i,j

�
usual

� nx
∆t

ε0∆x

Hy,incident|n�1{2
i�nx{2,j

If we now abuse the notation of the H field slightly, we see that the following holds:

Ez|n�1
i,j � �

Ez|n�1
i,j

�
usual

� ∆t

ε0∆x

n�H incident|n�1{2
i,j

42



3 DISCRETIZATION

Defining Jz :� n� Hincident

∆h

���
z
, and assuming a uniform spatial discretization, we obtain:

Ez|n�1
i,j � �

Ez|n�1
i,j

�
usual

� ∆t

ε0

Jz|n�1{2
i,j

Hence, we have rephrased the TFSF correction as an equation involving a volume cur-
rent density, defined just as in the FEP, where the surface current density is given by
Jz,surface :� n�H incident|z.

Let us now investigate the scattered-field H field nodes:

x-aligned boundaries : Hx|n�1
i,j�ny{2 �

�
Hx|n�1

i,j�ny{2

�
usual

� ny
∆t

ε0∆y

Ez,incident|n�1{2
i,j

y-aligned boundaries : Hy|n�1
i�nx{2,j �

�
Hy|n�1

i�nx{2,j

�
usual

� nx
∆t

ε0∆x

Ez,incident|n�1{2
i,j

Equivalating this to a form involving a cross product and a surface current would be
less revealing, due to the missing field components we have in 2D. However, this analogy
becomes even more evident for the 3D consistency correction formulas. To that end, and
as a straightforward step from 2D, let us state the 3D TFSF correction formulas:

Ex|n�1
i,j,k �

�
Ex|n�1

i,j,k

�
usual

� ny
∆t

ε0∆h

Hz,incident|n�1{2
i,j�ny{2,k

Ex|n�1
i,j,k �

�
Ex|n�1

i,j,k

�
usual

� nz
∆t

ε0∆h

Hy,incident|n�1{2
i,j,k�nz{2

If we now add these two equations, and denote by p�qx the x-component of a vector:

Ex|n�1
i,j,k �

�
Ex|n�1

i,j,k

�
usual

� ∆t

ε0∆h

�
n�H incident|n�1{2

i,j,k

	
x

In the same fashion we obtain the following:

Ey|n�1
i,j,k �

�
Ey|n�1

i,j,k

�
usual

� ∆t

ε0∆h

�
n�H incident|n�1{2

i,j,k

	
y

Ez|n�1
i,j,k �

�
Ez|n�1

i,j,k

�
usual

� ∆t

ε0∆h

�
n�H incident|n�1{2

i,j,k

	
z

ñ E|n�1
i,j,k �

�
E|n�1

i,j,k

�
usual

� ∆t

ε0∆h

n�H incident|n�1{2
i,j,k (38)

Following the same steps, one can retrieve the corresponding magnetic field correction:

H|n�1
i,j,k �

�
H|n�1

i,j,k

�
usual

� ∆t

µ0∆h

n�Eincident|n�1{2
i,j,k (39)

In conclusion, we have found exactly the same equation (in discrete form) for the TFSF
consistency corrections, as for the surface current corrections in the FEP. The sign dis-
crepancy comes from the flipped convention of the normal vector between the TFSF figure
and the FEP one.
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Thus, the main difficulty that arises in translating FEP into a discrete form, namely the
TFSF technique, lies in defining the boundaries for all six fields properly. A very impor-
tant note to make is that while for our TFSF example the virtual separating surface had
a “nice” rectangular shape, in practice there is no such constraint imposed. The virtual
TFSF boundary can be arbitrarily complex, which can lead to issues with sub-voxel ac-
curacy, but also interesting applications (such as replacing antennas).

Finally, we should note that for the Yee grid, it is particularly helpful to define the virtual
TFSF boundary at coordinate values that are not of the form k

2
, k P Z. This eliminates

any ambiguity about which of the two TFSF regions the grid nodes belong to.
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3.4 TFSF application: plane wave

Thus far we have described the TFSF technique, and shown how to derive it from the
FEP. Let us now highlight some details about how to introduce a plane wave into an
FDTD grid. We shall note that essentially, there is nothing restricting us to plane waves
in this entire process. Any electromagnetic fields (whose values we know at any point in
space and time) can be specified as a source of energy with the TFSF method.

For the following discussion, we shall refer to Figure [21] for guidance. We will now
continue our thought process in 2D. Let us consider a rectangular TFSF interface as
displayed in Figure [22]. We shall proceed to specify an incident plane wave, whose
direction of propagation is given by a (normalized) wave vector k � pkx, kyq. The angle
between k and the x-axis is α.

TFSF boundary

Ω1

Ω2

α

k

r

d

P

O pi0, j0q

Figure 22: Incident plane wave on TFSF boundary.

Without loss of generality, let us assume that point O at pi0, j0q would be the first point
of contact of the plane wave with the total field region. Let there be a point in the grid,
P , given by the position vector r. The wave reaches this point after noffset time steps:

noffset � d∆h

ṽppαq
where d is the distance along the direction of the wave propagation, from O to P , defined
by d :� k � r. Furthermore, ṽppαq is the numerical propagation speed of the wave for an
angle of α. The way in which ṽppαq differs from the speed of light in vacuum shall be
detailed in Section 3.6. The wavevector and position vector can be expressed as follows:

k � nx cospαq � ny sinpαq
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r � piP � i0qnx � pjP � j0qny
where nx,ny are coordinate vectors. The incident E and H fields can be computed an-
alytically everywhere on and around the TFSF boundary. Normally this can be quite
numerically intense, however there is an adaption we can employ which is only valid for
this plane wave case. We can simulate a 1D wave propagation on an auxiliary grid, and
interpolate the results. We shall then need to polarize (distribute) these 1D fields to our
3D fields. This process will then only require us to numerically evaluate the analytical
formulas at the 1D grid origin.

Furthermore, as will be detailed in Section 3.6, the numerical wave velocity is smaller than
the physical one. This discrepancy also varies in magnitude according to the direction of
travel of the wave. Hence, when we perform the FDTD update in 1D, we are required to
take this into account through a factor that scales up the speed of propagation:

Eincident|n�1
i � Eincident|ni �

∆t�
ṽppα�0�q
ṽppαq

	
εo∆h

�
Hincident|n�1{2

i�1{2 �Hincident|n�1{2
i�1{2

	

Hincident|n�1{2
i�1{2 � Hincident|n�1{2

i�1{2 �
∆t�

ṽppα�0�q
ṽppαq

	
µo∆h

�
Eincident|ni � Eincident|ni�1

�
This update is performed at a position i in the 1D grid. We remark that the first node of
the 1D grid, Eincident|i0 , has to coincide with the “first” electrical field node in the bottom
left of the 2D total-field region.

Let us now see how we can interpolate the 1D values, in order to match them to the 2D
grid. If t�u is the floor function (txu :� maxtm P Z|m ¤ xu), let us define the following:

dR,E :� d� tdu

dR,H :� d� 1

2
�
Z
d� 1

2

^
Eincident|nd � p1� dR,EqEincident|ni0�tdR,Eu � dR,EEincident|ni0�tdR,Eu�1

(40)

Hincident|n�1{2
d � p1� dR,HqHincident|i0�1{2�tdR,Hu � dR,HHincident|i0�1{2�tdR,Hu (41)

Now that we have interpolated the 1D field values, we can compute the 2D vector fields:

Ez,incident|nd � Eincident|nd

Hx,incident|n�1{2
d � Hincident|n�1{2

d sinpαq

Hy,incident|n�1{2
d � �Hincident|n�1{2

d cospαq
where Eincident and Hincident are taken from (40) and (41). This concludes the theoretical
preparations for the plane-wave TFSF application. Let us now turn to some visual results.
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3 DISCRETIZATION

In Figure [23], a perfect electric conductor (PEC) rectangle is defined in the center (by
enforcing all electrical field components to be zero). The incident wave is introduced at
the bottom left, leaves the domain after reaching the top right, and the reflection off of
the PEC cube remains in the domain.

Figure 23: 2D TFSF plane wave interaction with PEC cube. Taken from [43], p. 214.

We observe that the TFSF boundary is essentially transparent for the scattered wave,
allowing it to travel through unimpeded. With this we conclude the 2D example, and
take the final step to the 3D implementation.
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3 DISCRETIZATION

3D Plane wave

In three dimensions, we have eight possible points of “initial contact” of the incident plane
wave with the TFSF interface. Let us once more assume without loss of generality that
the contact point is the bottom left corner, given by coordinates pi0, j0, k0q. The wave
vector defining our 3D plane wave is illustrated in Figure [24].

α

ϕ

x

y

z

ψ

E

k � nz

k

Constant phase plane

Figure 24: 3D plane wave polarization.

We now have two angles defining the wavevector k, α and ϕ, as follows:

k � nx sinpϕq cospαq � ny sinpϕq sinpαq � nz cospϕq
Defining d :� k �r, we can use the same interpolation method as we have for the 2D case,
in order to obtain the values of the 1D wave at the correct 3D positions. Once this is
done, we can polarize the 1D wave as follows:

Hx,incident|n�1{2
d � Hincident|n�1{2

d psinpψq sinpαq � cospψq cospϕq cospαqq
Hy,incident|n�1{2

d � Hincident|n�1{2
d p� sinpψq cospαq � cospψq cospϕq cospαqq

Hz,incident|n�1{2
d � Hincident|n�1{2

d p� cospψq sinpαqq
(42)

Ex,incident|nd � Eincident|ndpcospψq sinpαq � sinpψq cospϕq cospαqq
Ey,incident|nd � Eincident|ndp� cospψq cospαq � sinpψq cospϕq sinpαqq
Ez,incident|nd � Eincident|ndpsinpψq sinpαqq

(43)

This concludes our section on how to apply the TFSF technique in order to introduce a
plane wave. The values defined in (43) and (42) are used as the analytical solution needed
to define the surface currents in (38) and (39).
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3 DISCRETIZATION

3.5 Perfectly Matched Layer

One important limiting factor of electromagnetic simulations is the size of the domain.
Frequently, one would wish to observe EM phenomena in regions much larger than one
is able to simulate. Due to the unavailability of unbounded computational domains, one
has to rely on computational workarounds in order to overcome this problem.

One possible solution is to introduce some type of dampening (absorbing) material at
the outer edges of the computational domain. The first breakthrough in this direction
was achieved by Jean-Pierre Bérenger’s 1994 paper [3], titled “A perfectly matched layer
for the absorption of electromagnetic waves”, which is the origin of the title of this section.

Previously, methods were developed that could deal with a plane wave incident on a
computational domain face. However, these methods could not properly deal with a non-
planar wave impinging at an arbitrary angle. This is where the Perfectly Matched Layer
(hereon PML) provides an advancement. The idea that Bérenger introduced was to ar-
tificially include an anisotropy of the fields. This would be done by splitting each field
component into two further orthogonal components, and then defining consistent PDEs
on all twelve components.

Afterwards, with the help of this anisotropy, one introduces loss in the direction normal
to the material interface, while not altering tangential propagation. Let us consider a
simple 2D TMz example. Let us consider σx, σ

�
x and σy, σ

�
y to be conductivities associated

with propagation in the x and y directions respectively. We shall now consider the plane
wave incidence illustrated in Figure [25].

ϕE

H

σ, σ�

Figure 25: 2D TMz plane wave.

For a given wave vector k1 �
�
ω
?
µ1ε1 cospϕq

ω
?
µ1ε1 sinpϕq



, the TMz plane wave is defined as follows:

qEincident � nz exp pik1xx� ik1yyq
where we use phasor notation for qE (the expression also has to be multiplied with exppiωtq
to account for time dependence). Within the PML, the propagation is given by:

iωµ2Hy � σ�xHy � BEz
Bx , iωµ2Hx � σ�yHx � �BEzBy

iωε2Ez � σxEz � BHy

Bx � BHx

By

49



3 DISCRETIZATION

As we can see, there is no immediately obvious way to impose anisotropy on the third
equation. It is at this point that we apply Bérenger’s idea, to split the field into two
components (which by themselves are not physically meaningful):

Ez � Ezx � Ezy

These two split components satisfy the following:

iωε2Ezx � σxEzx � BHy

Bx (44)

iωε2Ezy � σyEzy � �BHx

By (45)

At this point, in order to simplify notation, we shall introduce the following functions:

sw � `w � σw
iωε2

, s�w � `w � σ�w
iωµ2

Where `w � 1 for our purposes, and we use the subscript w to denote any of the x, y, z
directions. We can then rewrite (44) and (45) as follows:

iωε2sxEzx � BHy

Bx
iωε2syEzy � �BHx

By
iωµ2s

�
xHy � BpEzx � Ezyq

Bx
iωµ2s

�
yHx � �BpEzx � Ezyq

By
Taking one more partial derivative and substituting, we obtain:

�ω2µ2ε2pEzx � Ezyq �
�

1

s�x

B
Bx

1

sx

B
Bx �

1

s�y

B
By

1

sy

B
By


pEzx � Ezyq

ô
�

1

s�x

B
Bx

1

sx

B
Bx �

1

s�y

B
By

1

sy

B
By


Ez � 0

Let us now define the wave transmission coefficient Γ and the wave reflection coefficient
τ , satisfying τ � 1� Γ. Then for the PML medium, the spatial dependence is as follows:qEz,transmitted � τ exp

�
i
a
s�xsxk2xx� i

a
s�ysyk2yy

�
Furthermore, the following has to be satisfied:

k2
2x � k2

2y � ω2µ2ε2

The spatial dependence of the magnetic field transmitted into the PML is:

qHy,transmitted � 1

iωµ2s�x

BEz,transmitted

Bx � � k2x

ωµ2

c
sx
s�x
Ez,transmitted

The tangential fields must match at the interface, which for the Hy field yields:

1� Γ � µ1k2x

µ2k1x

c
sx
s�x
τ
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3 DISCRETIZATION

If we now use 1� Γ � τ , we can solve for the coefficients:

τ �
2k1x

µ1

k1x

µ1
� k2x

µ2

b
sx
s�x

Γ �
k1x

µ1
� k2x

µ2

b
sx
s�x

k1x

µ1
� k2x

µ2

b
sx
s�x

We expect to have no reflection (Γ � 0). If we first set µ2 � µ1 and ε1 � ε2, we obtain:

k2x �
b
ω2µ2ε2 � k2

2y �
b
ω2µ1ε1 � k2

2y (46)

In order to match the phase along the interface, the following has to hold:a
sys�yk2y � k1y

If we now claim there is no loss tangential to the interface (σy � σ�y � 0), which yields
sy � s�y � 1, we have that k2y � k1y. We can plug this into (46), and obtain k2x � k1x,
and then furthermore:

Γ �
1�

b
sx
s�x

1�
b

sx
s�x

Thus, in order to obtain a perfect match, i.e. no reflection, we require sx � s�x, which

means σx
ε2
� σ�x

µ2
. We can now conclude with the set of all conditions necessary for a perfect

x�direction PML matching condition, from vacuum:

ε1 � ε2

µ1 � µ2

σx
ε2

� σ�x
µ2

σy � σ�y � 0

(47)

When (47) are satisfied, the amplitude of the plane wave traveling through the PML
region is given by:

exp pisxk1xx� ik1yyq � exp

�
i

�
1� σx

iωε1



k1xx� ik1yy



� exp

�
�k1xσx
ωε1



exp pik1xx� ik1yyq

The consequence is that for a nonzero σw, the wave will attenuate exponentially along the
x�direction. One very important note to make is that this entire construct is nonphysical.
In other words, the PML loss-inducing σw has no connection with the physical conductivity
involved in the dielectric loss term J � σE. Let us now investigate an alternative way to
formulate the PML concept.
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3 DISCRETIZATION

3.5.1 Uniaxial PML

Let us consider again the case of a harmonic plane wave, traveling in a 3D region. We
consider a propagation from an isotropic medium in the region x   0, into an anisotropic
medium in x ¡ 0. The x ¡ 0 medium shall be referred to as “uniaxial”, since it is assumed
to only have varying (anisotropic) material properties along the x�axis. More generally,
material parameters associated with propagation in the w�direction (w P tx, y, zu) only
vary along the w�axis. This is defined by the permittivity and permeability tensors

ε2 �
��ε2x 0 0

0 ε2yz 0
0 0 ε2yz

�� µ2 �
��µ2x 0 0

0 µ2yz 0
0 0 µ2yz

��
Using phasor notation, let us assume the plane wave is propagating in region 1 (x   0)

according to |H � H0 expp�ik1 � px, yqq. The wave in region 2 (x ¡ 0) will then also be
a plane wave:

k2 � qE � ωµ2
|H , k2 � |H � �ωε2

qE
ñ k2 � pε2k2q �|H � ω2µ2

|H � 0

which in expanded matrix form is��κ2
2c� k2

2yε
�1
2yz k2xk2yε

�1
2yz 0

k2xk2yε
�1
2yz κ2

2µ
�1
2yz 0

0 0 κ2
2µ2yz � k2

2xε
�1
2yz � k2

2yε2x

��
��� qHxqHyqHz

��� � 0

Here we defined κ2 :� ω
?
µ2xε2x, κ1 :� ω

?
µ21ε1. We can interpret the first two

equations as TEz mode equations, and the third as TMz mode. If we now denote
eik1 :� exp pik1xx� ik1yyq, we can express the fields in zone 1 as:

|H1 � nzH0p1� Γ exp p�2ik1xxqqeik1qE1 �
�
�nx k1y

ωε1x

p1� Γ exp p�2ik1xxqq � ny k1x

ωε1x

p1� Γ exp p�2ik1xxqq


H0eik1

The wave propagated into zone 2 is then:

|H2 � nzH0τ exp pik2xx� ik2yyqqE2 � τ

�
�nx k1y

ωε1x

� ny k1x

ωε1x



H0 exp pik2xx� ik2yyq

Enforcing continuity of the fields at the interface, we obtain:

Γ � k1x � k2xε
�1
2yz

k1x � k2xε
�1
2yz

, τ � 2k1x

k1x � k2xε
�1
2yz

, k2y � k1y (48)

If we look back at the TEz equations, and use the third part of (48), we have:

k2x �
b
κ2

2ε2yzµ2yz � k2
1yε

�1
2x ε2yz

Thus, if we enforce ε1 � ε2, µ1 � µ2, µ2yz � ε2yz, ε
�1
2x � ε2yz, then κ1 � κ2, and furthermore

k2x �
b
pκ2

1 � k2
1yqε2

2yz � ε2yz

b
κ2

1 � k2
1y � ε2yzk1x (49)
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We observe that substituting (49) into (48) leads to Γ � 0 for all x�components of
the wavevector, thus we achieve a reflectionless transmission, regardless of the angle of
incidence. In a completely analogous manner, we can repeat the same computation for
the TMz equation, and obtain ε2yz � µ2yz, µ

�1
2x � µ2yz as the requirements for total

transmission (τ � 1). In other words, the following relationship has to hold:

ε2 � ε1s, µ2 � µ1s; s �
��s�1

x 0 0
0 sx 0
0 0 sx

��
We can specify propagation with these material parameters everywhere in the computa-
tional domain, as follows:

∇� |H � �iωεs qE, ∇� qE � iωµs|H
if we redefine s as

s �
��s�1

x 0 0
0 sx 0
0 0 sx

����sy 0 0
0 s�1

y 0
0 0 sy

����sz 0 0
0 sz 0
0 0 s�1

z

�� �
��s�1

x sysz 0 0
0 sxs

�1
y sz 0

0 0 sxsys
�1
z

��
Let us now see how well this PML layer should theoretically dampen waves. Let us assume
a PML thickness of d voxels on each side of the computational domain. We shall now
use a plane wave solution, and plug it into the modified propagation equations within the
UPML. One can show ([43], p. 306) that the total reflection for the round-trip to the the
outer wall of the domain is the following, for an incidence angle of ϕ:

Rpϕq � exp

�
�2η

�» d
0

σwpxqdx



cospϕq


� exp

�
� 2η0?

εr

�» d
0

σwpxqdx



cospϕq



(50)

where η is the wave impedance inside the PML region, η0 is wave impedance of vacuum,
and εr is the relative permittivity. We see that the closer ϕ approaches 90�, the stronger
the reflected wave. However, with a linear increase in d or η we have an exponential
decrease in the reflection amplitude. Hence, in principle we will want to maximize σw,
especially to mitigate the influence of the angle.

As is the case for the PML, the UPML is not applicable to lossy mediums in its current
formulation. However, it would be able to handle inhomogeneous materials that have
varying permittivity ε. If we look at the modified equations involving the s tensors, with
some work one can show that Gauss’ Law (or rather, a slightly modified version that has
to hold in this case) does not hold if s is discontinuous in the transversal directions, inside
the UPML. Of course, our σw is arbitrarily defined, and one could for example modify
it locally as to maintain all sw continuous in the tangential direction. An easier solution
would be to instead define sw in terms of the vacuum permittivity:

sw � `w � σw
iωε0

This definition is allowed, since our choice of sw was arbitrary. However, this does change
the propagation behavior through the material, leading to a modified reflection:

Rpϕq � exp

�
�2η0

?
εr

�» d
0

σwpxqdx



cospϕq
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Hence, if we wish to have a permittivity-independent absorption behavior within the
UPML, we need to scale (normalize) the σw’s. For this modified sw definition, we shall
divide the conductivities by the relative permittivity.

σ1wprq :� σwprqa
εrprq

ñ sw :� `w � σ1w
iωε0

In this form, the s tensors would be able to yield the desired absorption behavior, inde-
pendent of the local permittivity within the UPML.

Discrete UPML notes

In principle, one can deal with any change in material parameters across a PML interface,
and still maintain a reflectionless absorption. However, in a discrete grid the large step
discontinuity in σw leads to so-called spurious wave reflection at this interface. One way
to subvert this is to gradually increase this parameter within the PML volume.

There are arbitrarily many ways of grading the parameters in the PML. Two of the most
popular are polynomial and geometric. The most widespread is polynomial (of order m),
which involves defining the s tensor as follows:

σxpxq �
�x
d

	m
σx,max, `xpxq � 1� p`x,max � 1q

�x
d

	m
given for a PML thickness d. This ramps up σx � 0 at the interface to σx,max at the outer
boundary, and `x � 1 at the boundary to `xpdq � `x,max. For this grading, the reflection
factor is given by the following, according to (50):

Rpϕq � exp

�
�2ησx,maxd cospϕq 1

m� 1



In most applications, m P r3, 4s is cited to be favorable [43]. For example, assume one
knows d,m, and the desired reflection factor at normal incidence Rp0q. Then one can
compute σx,max as:

σx,max � �pm� 1q lnpRp0qq
2ηd

Geometric grading involves defining the conductivity as:

σxpxq � pg 1
∆h qxσx,0, `xpxq � pg 1

∆h qx

where g is a scaling constant, ∆h the spatial discretization spacing, and σx,0 is the con-
ductivity at the interface with the computational domain. The resulting reflection is

Rpϕq � exp

�
�2ησx,0∆hpg

d
∆h � 1qcospϕq

lnpgq



If, as for the polynomial grading, we assume g, d and Rp0q to be known beforehand, we
can compute the required σx,0 to achieve that reflection coefficient (usually g P r3, 4s):

σx,0 � � lnpgq lnpRp0qq
2η∆hpg

d
∆h � 1q
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Given this information, if one desires a factor of attenuation of exp p�16q for outgoing
waves, i.e. Rp0q � exp p�16q, with a 10�cell thick polynomially-graded PML at the outer
boundary, one needs to define the “optimal” σx,max as [43]:

σx,optimal � �pm� 1qp�16q
2η10∆h

� 0.8pm� 1q
η∆h

FDTD UPML implementation

To simplify notation and computations, we shall assume that we are dealing with periodic
fields (with the remark that this does not restrict the applicability of the result to such
fields). Then we can formulate Ampére’s Law as:����

B qHz
By � B qHy

Bz
B qHx
Bz � B qHz

Bx
B qHy
Bx � B qHx

By

���� � iωε

��s�1
x sysz 0 0

0 sxs
�1
y sz 0

0 0 sxsys
�1
z

��
���qExqEyqEz

���
We can also rewrite the constitutive relationships as follows:

qDx � εsz
sx

qEx, qDy � εsx
sy

qEy, qDz � εsy
sz
qEz

ñ

����
B qHz
By � B qHy

Bz
B qHx
Bz � B qHz

Bx
B qHy
Bx � B qHx

By

���� � iω

��sy 0 0
0 sz 0
0 0 sx

��
��� qDxqDyqDz

���
We shall require one more step in order to arrive at a time-domain expression: an
iωfpωq Ñ B

Btfptq inverse Fourier transform:��� BHz
By � BHy

Bz
BHx
Bz � BHz

BxBHy
Bx � BHx

By

��� � B
Bt

��`y 0 0
0 `z 0
0 0 `x

����Dx

Dy

Dz

��� 1

ε

��σy 0 0
0 σz 0
0 0 σx

����Dx

Dy

Dz

�� (51)

We can now discretize (51) according to the Yee scheme. The loss terms `w and σw are
averaged in time. For Dx, this leads to the following explicit update:

Dx|n�1
i�1{2,j,k �

2ε0`y � σy∆t

2ε0`y � σy∆t

Dx|n�1
i�1{2,j,k �

2ε0∆t

2ε0`y � σy∆t

�

�
�
Hz|n�1{2

i�1{2,j�1{2,k �Hz|n�1{2
i�1{2,j�1{2,k

∆y

�
Hy|n�1{2

i�1{2,j,k�1{2 �Hy|n�1{2
i�1{2,j,k�1{2

∆z

� (52)

If we now expand the constitutive relation for qDx, we obtain:

qDx

�
`x � σx

iωε0



� ε qEx�`x � σx

iωε0


���� � iω, inverse Fourier transform

ô B
Btp`xDxq � σx

ε0

Dx � ε

� B
Btp`zExq �

σz
ε0

Ex
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We can now formulate the following update equation:

Ex|n�1
i�1{2,j,k �

2ε0`z � σz∆t

2ε0`z � σz∆t

Ex|n�1
i�1{2,j,k �

1

εp2ε0`z � σz∆tq �

�
�
p2ε0`x � σx∆tqDx|n�1

i�1{2,j,k � p2ε0`x � σx∆tqDx|ni�1{2,j,k
	 (53)

Overall, we observe that the usual single equation that was needed for the update of
Ex has now turned into two sequential steps. The first is (52), and the second is (53).
Similarly, one obtains the two-step update equations for the magnetic field.

Bx|n�1{2
i,j�1{2,k�1{2 �

2ε0`y � σy∆t

2ε0`y � σy∆t

Bx|n�1{2
i,j�1{2,k�1{2 �

2ε0∆t

2ε0`y � σy∆t

�

�
�
Ez|ni,j�1,k�1{2 � Ez|ni,j�1,k�1{2

∆y

� Ey|ni,j�1{2,k�1 � Ey|ni,j�1{2,k�1

∆z

�

Hx|n�1{2
i,j�1{2,k�1{2 �

2ε0`y � σy∆t

2ε0`y � σy∆t

Hx|n�1{2
i,j�1{2,k�1{2 �

1

µp2ε0`z � σz∆tq �

�
�
p2ε0`x � σx∆tqBx|n�1{2

i,j�1{2,k�1{2 � p2ε0`x � σx∆tqBx|n�1{2
i,j�1{2,k�1{2

	
The corresponding equations for Ey, Ez, By, Bz are completely analogous. Let us shortly
discuss the advantages and disadvantages that the UPML delivers. The main disadvan-
tage is the doubling of the memory requirements, since we introduce two more fields that
need to be stored and updated, B and D. Furthermore, one also needs to take special
care that heterogeneities (only w.r.t. permittivity) of the medium are properly accounted
for. If this involves changes in conductivity, an extension of the model (as in [43], p. 332)
will also be required.

The most important advantage of the UPML is the ability to absorb electromagnetic
waves reaching the grid outer boundary. A clear advantage over the regular PML is the
ability to have a uniform definition of the update equations throughout the computational
domain. All that has to be ensured is that the values of the sw’s change from 0 inside the
physical computational domain, to whatever ramping is used inside the UPML subsets.
With this we finalize the introduction of the UPML.
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3.6 Numerical loss and numerical phase velocity

There are numerous sources treating the discussion on numerical phase velocity for lossless
materials, see for example Taflove and Hagness’ textbook [43]. Simply put, the discrete
velocity of EM waves differs from the physical one. The same is true for dielectric loss. In
the chapter at hand we shall quantify this discrepancy for the case of lossy materials, with
a focus on numerical loss. Hereon in this section we shall use [42] for guidance, and fill in
some of the gaps. Let us start our analysis with the 1D case. When we use time-averaging
to evaluate the electrical field at non-integer time points in Maxwell’s equations (which is
desirable in order to preserve second order convergence in time), we obtain Yee’s update
equations, repeated here for convenience:

En
y pxjq �

1� σ∆t

2ε

1� σ∆t

2ε

En�1
y pxjq �

∆t

ε

1� σ∆t

2ε

H
n� 1

2
z pxj� 1

2
q �H

n� 1
2

z pxj� 1
2
q

∆x

H
n� 1

2
z pxj� 1

2
q � H

n� 1
2

z pxj� 1
2
q � ∆t

µ

En
y pxj�1q � En

y pxjq
∆x

If we now consider a plane wave propagating through a lossy medium (σ � 0), then the
electric and magnetic fields will have the following form:

Eypx, tq � Ey0 exp
�
ipk̃x� ωtq

	
(54)

Hzpx, tq � Hz0 exp
�
ipk̃x� ωtq

	
(55)

where we denote with tilde discrete quantities that may differ from their physical coun-
terparts. One knows from the analytical case that in lossy media the wave attenuates at
a rate given by the imaginary part of the wavenumber [15]:

Eypx, tq � Ey0 exp pip<pkqx� ωtqq exp p�=pkqxq

Hzpx, tq � Hz0 exp pip<pkqx� ωtqq exp p�=pkqxq

where k � <pkq � i=pkq �: β� � iα�

We can define the discrete equivalent of k, denoted by k̃, which is given by the discrete
analogue of Equations (54) and (55):

Eypj∆x, n∆tq � Ey0 exp pipωn∆t � βj∆xqq exp p�αj∆xq (56)

Hz ppj � 1{2q∆x, n∆tq � Hz0 exp pipωn∆t � β pj � 1{2q∆xqq exp p�α pj � 1{2q∆xq (57)

where k̃ � β � iα

One can work out α�, β� (p. 394 [15]) by applying curl (∇�) to Faraday and Ampére’s
laws, and plugging in the plane wave solutions (54) and (55):

α� � ω
1

c
?

2

dc
1�

� σ
εω

	2

� 1 (58)

β� � ω
1

c
?

2

dc
1�

� σ
εω

	2

� 1

�
σ�0� ωσµ

2α�



(59)
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It is also readily apparent that one retrieves the usual lossless formulas by plugging in
σ � 0 into the above.

The next step is to plug in (56) and (57) into Yee’s 1D update equations. If we do so,
and afterwards divide by exp pipωn∆t � βj∆xqq, we obtain:

Ey0

�
1� e�iω∆t

1� σ∆t

2ε

1� σ∆t

2ε

�
�Hz0

∆t

ε

∆x

�
1� σ∆t

2ε

�e� iω∆t
2

�
e�

k̃∆x
2 � e

k̃∆x
2

	
� 0

Ey0
∆t

µ∆x

�
e�k̃∆x � 1

	
�Hz0e

� k̃∆x
2

�
e
iω∆t

2 � e�
iω∆t

2

	
� 0

Which can be written as��e iω∆t
2 � e�

iω∆t
2

1�σ∆t
2ε

1�σ∆t
2ε

∆t
ε

∆xp1�σ∆t
2ε q

�
e�

k̃∆x
2 � e

k̃∆x
2

	
∆t

µ∆x

�
e�

k̃∆x
2 � e

k̃∆x
2

	
e
iω∆t

2 � e�
iω∆t

2

���Ey0

Hz0

�
� 0

ô

���e iω∆t
2 � e�

iω∆t
2

1�σ∆t
2ε

1�σ∆t
2ε

eiϕ
�

2
∆t
ε

∆xp1�σ∆t
2ε qsinh

�
k̃∆x

2

	

2 ∆t

µ∆x
sinh

�
k̃∆x

2

	
eiϕ
�
e
iω∆t

2 � e�
iω∆t

2

	
����Ey0

Hz0

�
� 0 (60)

Where eiϕ is the phase difference between the magnetic and electric field, due to the
complex wavenumber k. To solve (60) we set the determinant of the matrix to zero, and
notice that the phase difference cancels out, thus does not play a role any further:�

e
iω∆t

2 � e�
iω∆t

2
1� σ∆t

2ε

1� σ∆t

2ε

�
i sin

�
ω∆t

2



� 4∆2

t

µ∆2
xpσ∆t � 2εqsinh2

�
k̃∆x

2

�

We temporarily define c :� 1�σ∆t
2ε

1�σ∆t
2ε

for ease of notation, perform the following steps:

ô
�
p1� c� cqe iω∆t

2 � ce�
iω∆t

2

	
i sin

�
ω∆t

2



� 4∆2

t

µ∆2
xpσ∆t � 2εqsinh2

�
k̃∆x

2

�

ô
�
p1� cqe iω∆t

2 � 2ic sin

�
ω∆t

2




i sin

�
ω∆t

2



� 4∆2

t

µ∆2
xpσ∆t � 2εqsinh2

�
k̃∆x

2

�

With a bit more work, we reach the following more readable form:

ô � sin2

�
ω∆t

2


�
1� c� ip1� cq

tan
�
ω∆t

2

�� � 4∆2
t

µ∆2
xpσ∆t � 2εqsinh2

�
k̃∆x

2

�
(61)

Applying <p�q and =p�q to (61), we obtain:

p1� cq sin2

�
ω∆t

2



� 2∆2

t

µ∆2
xpσ∆t � 2εqp1� coshpα∆xq cospβ∆xqq

p1� cq sinpω∆tq � 4∆2
t

µ∆2
xpσ∆t � 2εqsinhpα∆xq sinpβ∆xq

58



3 DISCRETIZATION

If one follows the same steps with a plane wave in 3D, the resulting equations will be:

p1� cq sin2

�
ω∆t

2



� 2∆2

t

µpσ∆t � 2εq
¸

wPtx,y,zu

1� coshpαw∆wq cospβw∆wq
∆2

w

p1� cq sinpω∆tq � 4∆2
t

µpσ∆t � 2εq
¸

wPtx,y,zu

sinhpαw∆wq sinpβw∆wq
∆2

w

If we move now a bit further with the 1D equations, re-expanding c yields:

2εµ sin2

�
ω∆t

2



� ∆2

t

∆2
x

p1� coshpα∆xq cospβ∆xqq (62)

σ sinpω∆tq � 2∆t

µ∆2
x

sinhpα∆xq sinpβ∆xq (63)

Now would be a good point to note that, as seen in (58), if σ � 0, then equation (63) is
identically zero. Furthermore, (62) retrieves the lossless variant of the numerical dispersion
equation. Let us also rewrite the equations slightly.

ω2

c2

sin2
�
ω∆t

2

��
ω∆t

2

�2 � 2p1� coshpα∆xq cospβ∆xqq
∆2
x

Ó ∆t Ñ 0 Ó ∆x Ñ 0

ω2

c2
β2
� � α2

�

ô ω2

c2
� β2

� � α2
�

Where α� and β� are the physical loss and dispersion, given by <pkq,=pkq in (58), (59).

σωµ
sinpω∆tq
ω∆t

� 2α�β�
sinhpα∆xq
α∆x

sinpβ∆xq
β∆x

Ó ∆t Ñ 0 Ó ∆x Ñ 0

σωµ 2α�β�

ô σωµ � 2α�β�

Now, in 3D both α and β are vectors, and need not point in the same direction. This
would mean that while the wave propagates in one direction, the exponential decay of
the amplitude is at its strongest in another direction, and only a fraction of that (given
by the angle between the two vectors) happens in the direction of propagation.

Let us assume that propagation happens along a diagonal in several dimensions (where

∆x � ∆y � ∆z), and that pαx, αy, αzq �
�

α?
d
, α?

d
, α?

d

	
�: α ‖ β :�

�
β?
d
, β?

d
, β?

d

	
�

pβx, βy, βzq. Then we can simply replace ∆x Ñ ∆x?
d

in equations (62) and (63) (where

d P t1, 2, 3u):
2εµ sin2

�
ω∆t

2



� d∆2

t

∆2
x

�
1� cosh

�
α∆x?
d



cos

�
β∆x?
d




σ sinpω∆tq � 2d∆t

µ∆2
x

sinh

�
α∆x?
d



sin

�
β∆x?
d




59



3 DISCRETIZATION

Or equivalently

cosh

�
α∆x?
d



cos

�
β∆x?
d



� 1� 2εµ∆2

x

d∆2
t

sin2

�
ω∆t

2



(64)

sinh

�
α∆x?
d



sin

�
β∆x?
d



� σµ∆2

x

2d∆t

sinpω∆tq (65)

We shall expand upon (64) and (65) in order to solve for α and β separately:

cosh2

�
α∆x?
d



cos2

�
β∆x?
d



�
�

1� 2εµ∆2
x

d∆2
t

sin2

�
ω∆t

2



2

(66)

sinh2

�
α∆x?
d



sin2

�
β∆x?
d



�
�
σµ∆2

x

2d∆t

sinpω∆tq

2

(67)

cos2

�
β∆x?
d



�

�
1� 2εµ∆2

x

d∆2
t

sin2
�
ω∆t

2

�	2

1� sinh2
�
α∆x?
d

	 (68)

sin2

�
β∆x?
d



�

�
σµ∆2

x

2d∆t
sinpω∆tq

	2

sinh2
�
α∆x?
d

	 (69)

ô 1 �

�
1� 2εµ∆2

x

d∆2
t

sin2
�
ω∆t

2

�	2

1� sinh2
�
α∆x?
d

	 �

�
σµ∆2

x

2d∆t
sinpω∆tq

	2

sinh2
�
α∆x?
d

	
If we define S � sinh

�
α∆x?
d

	
, we obtain:

S4�S2

�
1�

�
1� 2εµ∆2

x

d∆2
t

sin2

�
ω∆t

2



2

�
�
σµ∆2

x

2d∆t

sinpω∆tq

2
�
�
�
σµ∆2

x

2d∆t

sinpω∆tq

2

�0

Further using c � 1?
µε

, sc � c∆t

∆x
, we retrieve:

ô S4�S2

�
1�

�
1� 1� cospω∆tq

ds2
c


2

�
�
σµ∆2

x

2d∆t

sinpω∆tq

2
�
�
�
σµ∆2

x

2d∆t

sinpω∆tq

2

� 0

(70)
Keeping up with the usual quantities of interest on this subject, we define the following:

st �
sin
�
ω∆t

2

�
sc
?
d

(71)

`tan� � σ

ωε
(72)

`tan �
�
ω∆t

2

�
tan

�
ω∆t

2

�`tan� (73)
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Here `tan� is referred to as the physical loss tangent, and `tan the discrete loss tangent.
Using these newly defined terms, we rewrite (70) as follows:

sinh2

�
α∆x?
d



� 2s2

t

�
s2
t � 1� s2

t `tan2 �
b
p1� `tan2qps4

t `tan2 � p1� s2
t q2q



(74)

Similarly, one can obtain the expression for the numerical phase:

sin2

�
β∆x?
d



� 2s2

t

�
1� s2

t p1� `tan2q �
b
p1� `tan2qps4

t `tan2 � p1� s2
t q2q



If we solve for the numerical loss, we choose the positive solution, and obtain:

α �
?
d

∆x

ln

�d
2s2

t

�
s2
t � 1� s2

t `tan2 �
b
p1� `tan2qps4

t `tan2 � p1� s2
t q2q



�

�
d

1� 2s2
t

�
s2
t � 1� s2

t `tan2 �
b
p1� `tan2qps4

t `tan2 � p1� s2
t q2q


�

Now, a quantity of interest that is usually defined is the penetration depth δ of the electro-
magnetic waves into a lossy medium. This is defined as the depth at which the amplitude
of the waves has decreased by 1

e
� 0.368, i.e.

Find δ s.t. exp p�αδq � exp p�1q ñ δ � 1

α

At this point, we have an expression for the discrete loss α, which depends on: the dis-
cretization parameters ∆x,∆t, the frequency ω, the dimension d, and the tissue properties
σ, ε, and µ (through the Courant number).

A relevant question to pose in this context is: How well is the penetration depth ap-
proximated discretely? In other words, how does the quantity below change with the
discretization parameters, for example ∆x?

|δ� � δ| �
���� 1

α�
� 1

α

���� (75)

First of all, it is important to note that if one is to respect the Courant stability criterion,
then when the spatial discretization becomes infinitely fine, so must the temporal one.

∆x Ñ 0 ñ ∆t Ñ 0

For ease of notation, let us define

Q :� 2s2
t

�
s2
t � 1� s2

t `tan2 �
b
p1� `tan2qps4

t `tan2 � p1� s2
t q2q



Then the following holds:

α �
?
d ln

�?
Q�?

Q� 1
�

∆x
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With this we can rewrite (75) for 1D as

���� 1

α�
� 1

α

���� �
��������

1

ω
a

εµ
2

cb
1� � σ

εω

�2 � 1

� ∆x

ln
�?
Q�?

Q� 1
�
�������� (76)

Before we continue, using the fact that limxÑ0
tanpxq
x

� limxÑ0
sinpxq
x

� 1, and evaluating

the limit
st
∆x

� sin
�
ω∆t

2

�
ω∆t

2

�
ω∆t

2

∆x
c∆t

∆x

∆xÑ0ÝÝÝÝÝÑ
ô∆tÑ0

ω

2c
, we can analyze lim∆xÑ0

?
Q

∆x

:

lim
∆xÑ0

d
2
s2
t

∆2
x

�
s2
t � 1� s2

t `tan2 �
b
p1� `tan2qps4

t `tan2 � p1� s2
t q2q



Ó Ó Ó Ó Ó
ω2

2c2
0 0 0 1

So what we are left with is:

lim
∆xÑ0

?
Q

∆x

� ω?
2c

cb
1� `tan2

� � 1 � ω?
2c

dc
1� σ2

ω2ε2
� 1 � α� (77)

Thus we have retrieved the physical value of α from Griffiths [15] as the limit of
?
Q

∆x
.

This yields information about lim∆xÑ0 α. Returning to (74), let us apply the square root,
divide by α∆x on both sides, and take the limit w.r.t. ∆x:

lim
∆xÑ0

sinh pα∆xq
α∆x

� 1 � lim
∆xÑ0

?
Q

α∆x

ô lim
∆xÑ0

α∆x

sinh pα∆xq � 1 � lim
∆xÑ0

α∆x?
Q

Which reveals the following:

lim
∆xÑ0

α∆x?
Q

� lim
∆xÑ0

?
Q

∆x

� 1 � α� � lim
∆xÑ0

�
α∆x?
Q

�
?
Q

∆x



� lim

∆xÑ0
α

Hence, as one would expect,

lim
∆xÑ0

α � α�

Let us now go back to (76). We shall define α̃ :� lnpα�∆x�
?
α2
�∆

2
x�1q

∆x
and δ̃ � 1{α̃.

lim
∆xÑ0

1

∆2
x

�
δ̃ � δ�

	
� lim

∆xÑ0

1

∆2
x

�
∆x

ln
�
α�∆x �

a
α2�∆2

x � 1
� � 1

α�

�
(78)

At this point, due to (77), one might be tempted to claim that finding the limit above is
our goal. However, even though

?
Q � α�∆x asymptotically, as we shall see soon,

R�
� Q c1 � lim

∆xÑ0

1

∆2
x

�
δ̃ � δ�

	
� lim

∆xÑ0

1

∆2
x

pδ� � δq � c2 P R�
�

Thus both limits exist, but they are not the same. Let us now evaluate both of them.
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Theorem 1 (Cazacu). The asymptotic approximation of the numerical penetration depth
δ̃p∆xq converges to the physical penetration depth δ� at the rate of ∆2

x, in particular:

lim
∆xÑ0

δ̃ � δ�
∆2
x

� α�
6

Proof. By our previous equation (78), we have:

lim
∆xÑ0

δ̃ � δ�
∆2
x

� lim
∆xÑ0

�
1

∆x ln
�
α�∆x �

a
α2�∆2

x � 1
� � 1

∆2
xα�

�

ô lim
∆xÑ0

δ̃ � δ�
∆2
x

� lim
∆xÑ0

α�∆x � ln
�
α�∆x �

a
α2�∆2

x � 1
�

α�∆2
x ln

�
α�∆x �

a
α2�∆2

x � 1
�

And since limxÑ0
lnpx�1q

x
� 1, we can rewrite this as

lim
∆xÑ0

δ̃ � δ�
∆2
x

� lim
∆xÑ0

α�∆x � ln
�
α�∆x �

a
α2�∆2

x � 1
�

α�∆2
x

�
α�∆x �

a
α2�∆2

x � 1� 1
�

If we now employ L’Hôpital’s rule three times, we obtain:

lim
∆xÑ0

δ̃ � δ�
∆2
x

� lim
∆xÑ0

�
d

d∆x

	3 �
α�∆x � ln

�
α�∆x �

a
α2�∆2

x � 1
��

�
d

d∆x

	3 �
α�∆2

x

�
α�∆x �

a
α2�∆2

x � 1� 1
��

ô lim
∆xÑ0

δ̃ � δ�
∆2
x

� lim
∆xÑ0

fp∆xq
gp∆xq

where

fp∆xq :� α3
� � 2α5

�∆
2
x

pα2�∆2
x � 1q5{2

gp∆xq :� 6α�

�
α� � α2

�∆xa
α2�∆2

x � 1

�
� 6α�∆x

�
α2
�a

α2�∆2
x � 1

� α4
�∆

2
x

pα2�∆2
x � 1q3{2

�
�

�α�∆2
x

�
3α6

�∆
3
xa

α2�∆2
x � 1

� 3α4
�∆x

pα2�∆2
x � 1q3{2

�

Let us note that neither f nor g have a singularity at 0, thus we can evaluate:

ô lim
∆xÑ0

δ̃ � δ�
∆2
x

� lim
∆xÑ0

fp∆xq
gp∆xq �

fp0q
gp0q �

α3
�

6α2�
� α�

6

We can also evaluate the validity of this claim numerically. We shall use a short Python
script that fits a linear function to the log-log data of δ̃ � δ� versus ∆x P t λ

20
� 1

2i
|i P

t0, 1, . . . , 12uu, using NumPy’s polyfit function [31]. Since we are computing the linear
fit of lnpδ̃ � δ�q versus lnp∆xq, with slope m and constant c, the fit will have the form
exp pm lnp∆xq � cq. Thus, the slope m will yield the numerically computed convergence
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rate, and exppcq will be the numerically computed limit of δ̃�δ�
∆m
x

. The printout of the

polyfit result is presented in Figure [26].

Figure 26: Output of Python script which checks convergence rate numerically (with δ̃).

We observe that the limit from Theorem 1 is reached within 1.02% relative error, computed
as α��exppcq

α�
, and the convergence rate is approximated as 1.9988. Let us now check what

happens in the case of δ.

Theorem 2 (Cazacu). The numerical penetration depth δp∆xq converges to the physical
penetration depth δ� at the rate of ∆2

x, in particular:

lim
∆xÑ0

δ� � δ

∆2
x

� α�
6

�
1� α2

�c
2 � ω2

2α2�c2 � ω2



Proof.

lim
∆xÑ0

δ� � δ

∆2
x

� lim
∆xÑ0

ln
�?
Q�?

Q� 1
�� α�∆x

α�∆2
x ln

�?
Q�?

Q� 1
�

In order to proceed, let us find the (Taylor or Laurent) series expansion of
?
Q�?Q� 1.

Q � 2s2
t

�
s2
t � 1� s2

t `tan2 �
b
p1� `tan2qps4

t `tan2 � p1� s2
t q2q



We shall break this down into steps by rewriting:

Q � 2s2
t

�
A�

?
B
	

Now note that ω∆t

2
� ω∆x

2c
. Furthermore, since we expect second order convergence, we

shall only list terms of up to order 3, and denote the power series by Σr�s.

ΣrBs �
�

1� `tan2
�Σ

� �
ω∆x

2c

�2

tan2
�
ω∆x

2c

��� �
�
�
`tan2

�Σ

��
ω∆x

2c


2

sin2

�
ω∆x

2c



cos2

�
ω∆x

2c


�
� Σ

��
1� sin2

�
ω∆x

2c



2
��

For ease of notation, we shall rewrite the argument ∆x as x in the following series expan-
sions. After performing some coefficient matching, we obtain:

ΣrBs � �
`tan2

� � 1
�� x2 pp4`tan2

� � 3qω2q
6c2

� x4ω4 p15`tan4
� � 61`tan2

� � 25q
240c4

�O
�
x5
�

Σr
?
Bs �

b
`tan2

� � 1� x2 pp4`tan2
� � 3qω2q

12
�
c2
a
`tan2

� � 1
	�

� ω4x4 p45`tan6
� � 148`tan4

� � 138`tan2
� � 30q

1440c4 p`tan2
� � 1q3{2

�O
�
x5
�
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ΣrAs � �1� x2 p` tan2
� ω

2 � ω2q
4c2

� x4ω4 p3` tan2
��1q

48c4
�O

�
x5
�

ñ ΣrQs �
x2
�a

` tan2
��1ω2 � ω2

	
2c2

�

�
ω4x4

�
3
a
` tan2

��1` tan2
��5` tan2

��4
a
` tan2

��1� 4
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��1
�O

�
x5
�

Thus, we arrive at the following expression:

Σr?Q�?
Q� 1s � 1�

x

c�?
` tan2

��1�1
	
ω2

c2?
2

�
x2
�a

` tan2
��1ω2 � ω2

	
4c2

�

�
x3ω2

�
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a
` tan2

��1` tan2
��5` tan2

��4
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��1� 4
	c�?
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��1�1
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��1
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��1� 1

	 �

�
x4ω4

�
3
a
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��1` tan2
��4` tan2

��2
a
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To proceed, one can either apply L’Hôpital’s rule once, or compute Σ
�
lnp?Q�?

Q� 1q�:
Σ
�
lnp?Q�?

Q� 1q� �x
c�?

` tan2
��1�1

	
ω2

c2?
2

�

�
x3ω2` tan2

�

c�?
` tan2

��1�1
	
ω2

c2

24
?

2c2
a
` tan2

��1
�O

�
x5
�

With this we can compute the following ratio:

Σ
�
ln
�?
Q�?

Q� 1
�� α�x

�
Σ
�
α�x2 ln

�?
Q�?

Q� 1
�� �

` tan2
� ω

2x3

d�?
` tan2

� �1�1



ω2

c2

24
?

2c2
?
` tan2

��1
�O px5q

x3
�?

` tan2
��1ω2�ω2

	
2c2

�O px5q

ñ Σ

�
ln
�?
Q�?

Q� 1
�� α�x

α�x2 ln
�?
Q�?

Q� 1
� � � ` tan2

� ω

12
?

2c
a
` tan2

��1

c�a
` tan2

��1� 1
	 �O

�
x2
�

ô Σ

�
ln
�?
Q�?

Q� 1
�� α�x

α�x2 ln
�?
Q�?

Q� 1
� � � α�

6

�
1� α2

�c
2 � ω2

2α2�c2 � ω2



�O

�
x2
�

Taking the limit of xÑ 0 (∆x Ñ 0), we obtain the result in the claim.
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We can also indirectly test this claim numerically, by altering the Python script to perform
the linear fit of ln pδ� � δq versus ln p∆xq. The output is illustrated in Figure [27].

Figure 27: Output of Python script checking convergence for δ� � δ.

Thus, we observe that this limit is approximated within 0.53% by the numerical algorithm.

In order to conclude, we must highlight the fact that this discussion has been carried out
for a plane wave traveling along an axis-aligned direction. In reality, microwave appli-
cators produce fields that are (potentially significantly) closer to purely spherical waves
(“elliptical” wavefronts), which cover the entire range of possible directions.

Furthermore, with spherical wavefronts, the so-called energy isosurfaces, or surfaces of
constant integrated energy, are the surfaces of a sphere centered on the source. Their
radius increases at the same speed as the electromagnetic wave propagation. This means
that in the case of a point dipole in a lossy material, the amplitude of the fields also
decays proportionally with 1

r3 , in addition to the exponential decay due to σ. Hence, the
numerical loss error would be further scaled according to this proportionality.
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Chapter 4

Combined Workflow

In this chapter we shall discuss various challenges involved in combining the discrete
workflow pieces together, while incorporating realistic input data. The main components
are the electromagnetic simulation and the (bio)heat simulation.

4.1 Material parameters

In order to obtain a complete simulation workflow, from an electromagnetic solver leading
up to temperature and damage influence on tissue, we need to take a closer look at how
exactly this interaction between all computational components takes place.

As we mentioned before, the output from the electromagnetic (EM) solver is given as
input into a bioheat equation solver. This is done roughly every 1 second, based on how
often it is considered that “relevant changes in heat” occur, and based on simulation time
considerations. To this end, we take the stabilized state of the EM solver as input for the
next step.

After the bioheat solver is finished, the resulting output is a change in temperature. Ide-
ally, and in order to obtain the most realistic result, this temperature change should result
in a change in material parameters. It is well known in medical practice and in the elec-
trical engineering community that tissue dielectric parameters change with temperature.

In an optimal scenario, for every type of material or tissue present in the simulation
pipeline, there would be an available analytic expression giving all dielectric parameters
of that tissue, for any given temperature. This is not the case however, and in the clinical
world, there are active efforts to run sufficiently many experiments, in order to properly
characterize all clinically relevant tissue types (for example [18]).

One major drawback is that many such experiments are conducted in scenarios that do
not match the reality of medical electromagnetic interventions. A plethora of experiments
are performed ex-vivo, in particular ignoring the influence of blood perfusion on the entire
process. It is known that proper accounting of perfusion plays a major role in how well
numerical experiments are able to replicate reality [13], [36]. In particular, not taking it
into account leads to an underestimation of the required temperature needed to achieve
a given coagulation state.
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4 COMBINED WORKFLOW

There have been advances in terms of emulating the influence of perfusion during ex-vivo
dielectric experiments, with procedures that artificially pump liquids or even blood into
resected organs (such as that performed in [41]). However, there are still difficulties in the
way of performing such measurements in realistic scenarios. Ideally, in order to obtain
representative clinical data, the measurements would have to be done at all given points
of a particular organ or tissue, and at all temperature points that are within the clini-
cally/numerically reached range. However, current experimental technology is not yet at
this advanced stage, and most experimental dielectric tissue measurements are conducted
with some type of one-ended coaxial probe, to be placed on a “half-space” of tissue [22].

There are several difficulties with this attempt to, in a manner of speaking, perform
a 1D measurement of a 3D volume of tissue. In terms of results, there are significant
differences reported ([22]) as taking place when only altering the geometric distribution
of tissue sub-components (fat, water, etc.) while preserving their volumetric ratios.

4.2 Time scale discrepancy

One potential issue that arises in the final (combined) workflow, involving both an elec-
tromagnetic and a heat solver, is the discrepancy in time scales that one has to deal with.
Within the EM solver, one works with frequencies in the range of r0.915, 2.45s GHz. This
means that if one is to satisfy the stability criteria, a time step in the range of r10�12, 10�9s
seconds is to be used. Meanwhile, for the heat deposition component, we wish to evaluate
changes in temperature in significantly larger time steps, due to simulation time consid-
erations.

As previously mentioned, we would have to simulate billions of time steps from of the
EM solver for each � 1s of simulated heat change, which can be very costly in terms of
simulation time. A viable way to circumvent this problem is, given the right conditions,
to expect that the EM simulation reaches a steady or quasi-steady state sooner than after
billions of time steps. One would then stop this simulation, and obtain some output based
on the quasi-steady state, to pass on to the heat solver.

The natural question that now has to be answered is, in what conditions can we expect
a quasi-steady state to be reached? We have seen before that one can use a PML for
example to terminate the computational grid. Given a thick enough such layer, we can
expect “negligible” (which should be quantified properly) fields to accumulate within the
PML. Modulo the efficiency of this absorbing outer boundary, and when dealing with
harmonic sources, one would intuitively expect that eventually, the electromagnetic field
is periodic within the entire domain.

The caveat here is to define exactly if and when this periodicity will happen. The first
question that arises (and whose answer may not be immediately obvious) is: given a source
oscillating at a given frequency ω, say a hard electrical field source Epx, tq � E0 exp piωtq,
and a computational domain Ωh containing various heterogeneous regions (in terms of
material parameters), should we expect that the entire computational domain reaches a
periodic (quasi) steady state, oscillating at the same frequency ω?
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That is to say, is it true that, for a given compact Ω:

Dtstabilized s.t. @x P Ω, @t ¡ tstabilized,Epx, tq � E
�
x, t� 2π

ω



,Hpx, tq �H

�
x, t� 2π

ω



?

It is trivial to prove this for a domain filled with vacuum, or in fact any homogeneous
tissue parameters. The only difficulty that can arise is due to heterogeneities. If there are
heterogeneities, there are material interfaces. We know from the construct that was made
in Section 2.3 that the tangential component of the electrical field has to be continuous
across such an interface. Therefore, for any incoming wave on an interface, the incident,
reflected and refracted wave vectors will all lie in the same plane.

Let us assume that we have an incident plane wave impinging on a material interface,
given by Ei � Ei0 exp pipωit� kirqq for some distance r from the point of origin. The
refracted and transmitted waves can be written out as well: Er � Er0 exp pipωrt� krrqq,
Et � Et0 exp pipωtt� ktrqq. This refraction is visualized in Figure [28].

αi αr

αt

Ei Er

Et

σ1, ε1, µ1

σ2, ε2, µ2

Figure 28: Refraction at an interface.

The point now is to ascertain whether during this process the frequency stays constant.
In other words, is it true for this scenario that

ωi � ωr � ωt ?

Let us remark that for each one of the three waves the following holds:

E � E‖ �EK

Since the tangential components at the interface must be matched, and the total waves
cannot oscillate at a different frequency from their tangential component, it must fol-
low that the frequency stays constant throughout refraction. The important takeaway
message is the following: given a finite “window” which is our computational grid, we
can expect that with a source of energy of a given frequency ω, after a finite time, the
electromagnetic field will be periodic at the same frequency.
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4 COMBINED WORKFLOW

The next step we have to consider is defining the output of the EM solver, and thus the
input of the heat equation solver. The immediate idea is to stop the EM simulation after it
has reached a quasi steady state, and use that instantaneous electromagnetic status as the
input for the bioheat solver. The issue with this approach is that since the temperature
changes much more slowly, the temperature spatial distribution will not capture the time
variation of the electromagnetic field. Instead, it will represent a time-averaged version of
the electromagnetic state. Hence, using the instantaneous version of the electromagnetic
field as input would predictably produce undesirable results.

Instead, we should look to work with some averaged fields. In principle, averaging over
an entire period would give us the best information, since then we would be using the
envelope of the maximum amplitude of the field. However, since we are utilizing the norm
of the electrical field as input for the heat solver, the complete information is actually
already contained in one quarter of a period, due to:

�
2π»
0

| sinptq|dt � �
π
2»

0

| sinptq|dt

This fact has significant utility, because evaluating the average over past time steps in-
volves saving the full 3D state of all twelve field components (Ex,y,z, Hx,y,z, Dx,y,z, Bx,y,z)
and many other data structures, as many times over as the number of time points we wish
to save. For example, let us assume we have a discretization with 160 points per period,
which is quite realistic for real data. This number is inversely proportional to the smallest
refractive index in the computational domain, which may very well be close to that of
vacuum. This would mean the memory requirement is 160 times the above mentioned
fields, versus 40 if we use a quarter of a period.

4.3 Time averaging errors

In this section we shall have a quick look at how we can quantify the difference in behavior
of the heat solver input, depending on whether we average the electric field over the last
period after the EM solver is finished.

First, in order to talk about continuous LppΩ, Lqr0, tfinalsq norms involving a modified (av-
eraged) heat equation (HE) source term, we need to interpolate the results of the FDTD
Maxwell solver Eh, Hh, which are only given pointwise at their respective grid vertices. If
we define the grid Ωh of size Nh � Nx�Ny�Nz, which discretizes the 3D space of extent
Ω :� r0, xmaxs � r0, ymaxs � r0, zmaxs.

We shall have to map the discrete fields to their continuous counterparts Ehh, Hhh:

RNh Q Eh Ñ ΠkEh �: Ehh : Ω Ñ R3

RNh Q Hh Ñ ΠkHh �: Hhh : Ω Ñ R3

where Πk is some polynomial interpolant of order k. Now, the output Ehh becomes the
input fh for the heat equation. Here, we have at least the following two options for
selecting a heat equation input f based on Ehh.
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1. The final (instantaneous) state of the field: fh1px, tq � σhpx, tq|Ehhpx, tq|2

2. The average of the field over the past period: fh2px, tq � σhpx, tq
�
�³t
t�T |Ehhpx, tq|

	2

Note that the conductivity is assumed constant throughout an EM simulation step, and
thus can be pulled out of the integral. Now, most (apriori) error estimates involving the
source term of the heat equation involve evaluating the input in some norm of the form

} � }LpLq :� } � }Lqp0,tfinal;LppΩqq :�
�� tfinal»

0

} � }qLppΩq

�

1
q

�

��� tfinal»
0

��»
Ω

} � }p
�
q
p

��

1
q

The argument that comes in deals with the difference f � fh, where f is the analytical
source term. In our case however, this would be the “analytical” output of the EM solver,
i.e. the analytical solution, whose closed form is usually impossible to find for problems
involving inhomogeneous media.

The best form one can hope to arrive at, is by using L1L1 norms, comparing

I1 :�
» t

0

»
Ω

fh1 vs.

» t
0

»
Ω

fh2 :� I2

In this case, one can formulate a very concrete statement. Let us start with I1:

I1 �
»

Ω

» t
0

fh1 �
»

Ω

» t
0

σhpx, tq|Ehhpx, tq|2

Once more, assuming σhpx, tq stays constant throughout an EM simulation, we have:

I1 �
»

Ω

σhpxq
» t

0

|Ehhpx, tq|2

For the integral which involves averaging over the last period I2 the following holds:

I2 �
» t

0

»
Ω

σhpxq
�

2

π
}|Ehhpx, tq|}L8pt,t�T q


2

where we denote tfinal by t for ease of notation. Since r0, ts includes several periods, we
can observe that }|Ehhpx, tq|}L8pt�T,tq � }|Ehhpx, tq|}L8p0,tq due to periodicity.

I2 �
» t

0

»
Ω

σhpxq 4

π2
}|Ehhpx, tq|}2

L8pt,t�T q

One further assumption that we can make now, which is easy to enforce, is that t � kT ,
for some k P N (where T is the period of the source). We define the following two integrals,
and check pointwise in space:

i1pxq :� σhpxq
» t

0

|Ehhpx, tq|2 � σhpxqk
» T

0

|Ehhpx, tq|2

i2pxq :� σhpxq
» t

0

�
�
» t
t�T

|Ehhpx, tq|

2

� σhpxqk
» T

0

�
�
» T

0

|Ehhpx, tq|

2
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So what we are left to compare is:

i1pxq
σhpxqk vs.

i1pxq
σhpxqk ô

» T
0

|Ehhpx, tq|2 vs.

» T
0

�
�
» T

0

|Ehhpx, tq|

2

Now using the fact that |Ehhpx, tq| is of the form }|Ehhpx, tq|}L8p0,T q| sinpωtq|, since we
assumed a (stabilized) periodic behavior in the foreseeable past of the EM simulation, we
are left to compare:

}|Ehhpx, tq|}L8p0,T q
» 2π

0

| sinptq|2dt vs. }|Ehhpx, tq|}L8p0,T q
» 2π

0

�
�
» 2π

0

| sinptq|

2

» 2π

0

| sinptq|2dt � π vs.
8

π
�
» 2π

0

�
2

π


2

�
» 2π

0

�
�
» 2π

0

| sinptq|

2

π2 ¡ 8 ô I1 ¡ I2 ô
» t

0

»
Ω

fh1 ¡
» t

0

»
Ω

fh2

So in conclusion, }fh1}L1L1 ¡ }fh2}L1L1 , but this does not reveal much about terms of the
form }f � fh1}LpLq . Let us have a look at an apriori error estimate for FDTD. Let E
be the analytical solution of the FDTD Maxwell equations (in vacuum). Let Eh be the
discrete (defined pointwise at grid points) solution.

Theorem 3 (Monk, Süli, 1992 [29]). For E and H in C3, H t P C2, and all derivatives
continuous in time, then @T ¡ 0, DC � CpT q s.t.

}E � Eh}E � }H �Hh}H ¤ CpT qh2

The norms are defined in the case of evenly spaced grids as follows:

}E � Eh}2
E :�

¸
i

h3
�pExpxiq � Exhpxiqq2 � pEypxiq � Eyhpxiqq2 � pEzpxiq � Ezhpxiqq2

�

ô
�¸

i

h3}Ei � Ehi}2
l2

� 1
2

�
�¸

i

h3}Hi �Hhi}2
l2

� 1
2

¤ Ch2 (79)

This result is presented in the discrete L2 norm, but one would expect that it holds in all
equivalent norms, for example any combination of p, q P t1, 2,8u.

Note that the above is basically a statement about pointwise values of E and Eh. In
other words, the discrete L2 error estimate is built by projecting on a finite dimensional
space with locally constant basis functions ϕi � 1

8
, such that integrating them over their

support yields h3 for a homogeneous grid.

With this in mind, if we want to look at “true” L2 error estimates, we have to use the
full information of E and interpolate somehow the pointwise values of Eh, in order to be
able to integrate the norm of the difference everywhere.

Let Πk be an interpolation operator using basis functions of degree k, i.e.

Πk : RN Ñ L2pΩq (some Lp space, when the values are bounded)

Then what we want to make a statement about, or relate the error estimate (79) to, is:
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}E � ΠkEh}L2pΩq �: }E � Ehh}L2pΩq

}E � Ehh}2
L2 �

»
Ω

}E � ΠkE � ΠkE � Ehh}2
l2

∆ ineq.
¤

∆ ineq.
¤

»
Ω

p}E � ΠkE}l2 � }ΠkE � Ehh}l2q2
am-gm
¤

»
Ω

2
�}E � ΠkE}2

l2 � }ΠkE � Ehh}2
l2

�
We now denote by “Πk error” the (local) interpolation error given by }E � ΠkE}2

l2 .

�
»

Ω

2
�
Πk error� }ΠkpE � Ehq}2

l2

� � »
Ω

2
�
Πk error� }ΠkpE � Ehq}2

l2

�
� 2}Πk error}L2 � 2

»
Ω

}ΠkpE � Ehq}2
l2 (80)

So the last term in equation (80) is what we are interested in.»
Ω

}ΠkpE � Ehq}2
l2 � }}ΠkpE � Ehq}l2}2

L2 �
»

Ω

¸
i

ϕi}pEi � Ehiq}2
l2

(If ϕi � 1
8

locally, such that @i ³
Ω
ϕi � h3)

�
¸
i

»
Ω

ϕi}pE � Ehq}2
l2 �

¸
i

»
Ω

ϕi}pEi � Ehiq}2
l2 �

¸
i

h3}pEi � Ehiq}2
l2

The right-hand side is exactly the term from the error estimate (79). So in summary,

}E � Ehh}L2pΩq ¤
�
Πk error2 � }E � Eh}2

E

� 1
2

}E � Ehh}2
L2pΩq ¤ Πk error2 � }E � Eh}2

E

(16)¤ Πk error2 � Ch4

ô }E � Ehh}2
L2pΩq ¤ C1h

2 � C2h
4

since we expect a first order convergence rate for piecewise constant interpolants ([33] p.
346). Alternatively, if we choose piecewise affine ϕ1is that also integrate to h3, and such
that the interpolation error is also second order, we obtain:

ô }E � Ehh}L2pΩq ¤ pC1 � C2qh2

Therefore we observe that the number of degrees of freedom in choosing the interpolating
functions only allow us accuracy of order up to 2, but the semidiscrete error is order 2 as
well. So even if we could increase the accuracy of the interpolation, it would be dominated
by the other term.

To conclude, there are two reasons why this error analysis cannot reveal meaningful error
information or improved estimates in usual cases. Firstly, one needs to know the analytical
solution of the EM problem. Secondly, information for this particular form of source term
is not easily extractable in norms other than L1L1. This is severely limiting because most
heterogeneous electromagnetic problems do not have a closed form analytical solution,
and most error estimates are done in norms belonging to Hilbert spaces, i.e. L2L2.
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Chapter 5

Numerical Experiments

In this chapter we will describe various discretized scenarios that should shed light on
some numerical aspects which were discussed so far in the continuous context.

5.1 Truncation error

In the present section we will look at the convergence of the numerical scheme. In order
to do this, we shall need a reference analytical solution. This can be most easily achieved
by working in vacuum, or air, since there are readily available analytical solutions in quite
a few sources (the clearest of which we consider [6]).

The simplest way to construct an error rate test is to try and replicate the field produced
by a dipole. As we remember from Section 3.2.1, the simplest ways in which the field can
be reproduced is with hard and soft point sources. Furthermore, since we will be work-
ing in vacuum, we would expect total reflection to take place within the computational
domain, without any absorbing boundary condition.

To this end we shall use the UPML presented earlier. Now, the Yee scheme is quoted as
having a second order convergence rate in space and in time, which is in 2D [12]:

}E � Eh} � }H �Hh} ¤ Cp∆2
x �∆2

y �∆2
t q (81)

where ∆x is the spatial discretization step, and ∆t is the temporal discretization step.
The precise norm }�} is yet to be defined, but we expect that in theory all norms should be
equivalent (for finite dimensional spaces of the same dimension). For example, we should
obtain the same order of convergence in space in any of the following norms:

} � }L1pΩq :�
»

Ω

|Eanalytic � ΠkEdiscrete|

} � }L2pΩq :�
�»

Ω

|Eanalytic � ΠkEdiscrete|2

 1

2

} � }L8pΩq :� max
Ω

|Eanalytic � ΠkEdiscrete|
where we need to perform some interpolation process as in Section 4.3 to evaluate the
discrete values at non-grid points. These spatial norms will of course have to be coupled
with some method of incorporating behavior in time, such as:
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} � }LppΩqLqpt1,t2q :�
�» t2

t1

��»
Ω

} � }pdx

 1

p

�q

dt

� 1
q

In order to quantify the truncation error in vacuum, we need to set up a source, say a
point hard Ez source, with a dipole moment given by a function of our choice. Two of the
most popular dipole moments are the sine, and the Gaussian pulse. Let us first discuss
the case of a sine wave excitation.

There are several issues to be raised when trying to evaluate the truncation error with a
sinusoidal wave:

1. If we initialize the domain to zero, then the turn-on discontinuity at t � 0 causes
a nonphysical pulse (often called transient, since it is only temporary) that signif-
icantly deviates the numerical solution from the analytical one. We then have to
wait for a few wavelengths to pass through until the behavior starts to align to the
expected one. This however means that we require one of the following: an absorb-
ing boundary condition to eliminate this transient, or a large enough computational
domain such that the reflected transient does not return too early.

2. If we simulate an infinite domain, and evaluate the error within a finite volume
around a periodic source, we would expect to eventually reach periodic behavior
within this finite volume. This can be achieved by either a very large domain (in
relative terms to the wavelength), or through an absorbing boundary condition, such
as a PML. Otherwise, the reflection with the computational domain’s outer walls
would interfere with the fields we wish to quantify.

3. One way to mitigate this turn-on discontinuity is to smoothen the jump, with the
aid of a Gaussian pulse for example. However, this introduces a quasi-static field
that results in a larger final error after stability is reached. Similarly, using a soft
point source or introducing the pulse via a TFSF boundary results in a smaller
turn-on error than the hard source. However it also produces a larger final error in
the periodic state.

4. Finally, one would wish to obtain a wave that is at least reasonably resolved by
the grid; in most applications, this requires at least 20 spatial discretization points
per wavelength. Since waiting several wavelengths without seeing reflections would
imply an impractically large computational domain, most of the time one chooses
to use a PML (or other absorbing boundary conditions). This allows for a signif-
icantly smaller domain, and a faster testing cycle. However, this also means that
in reality, when one evaluates }E � Eanalytic} numerically, one is actually looking
at the combined error of both the truncation and PML. Furthermore, one should
note that these two error sources can interact constructively or destructively, also
inhomogeneously so.

Since it would be practically impossible to completely separate these two error influences
within a scenario containing a PML, the best one could hope for is to maintain one of the
errors constant somehow while varying the other, when looking for convergence rates.

The common way to check for convergence rate with respect to some quantity, is to vary it
while “keeping everything else constant”. This is usually fairly straightforward to define,
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however it is important to note that for equations involving waves, the quantity of interest
is not just the discretization step, but its ratio to an intrinsic physical parameter of the
wave, namely its wavelength. In this context, one usually defines resolution in terms of
points per wavelength. Hereon we abbreviate points per wavelength as ppw.

Thus, one way to check convergence with respect to spatial discretization refinements, is
to take a wave of a given frequency and then refine the grid. Of course, one needs to take
special care for maintaining certain physical invariants constant, such as the volume in
which the error is evaluated, the distance from the source and the PML, and so on. How-
ever, one significant disadvantage of this straightforward approach is that computational
time increases cubically with increasing refinements.

Since the invariant of interest is the number of points per wavelength, one could instead
maintain a constant resolution, and just vary the wavelength of the source wave. This
would also eliminate concerns about maintaining exact ratios of volumes when dealing
with integer divisions and so on. Moreover, only varying the frequency of the source would
in general reduce the overhead, in terms of defining and maintaining constant physical
invariants in the problem. The issue that would have to be treated with care is evaluating
the error norm over the same (absolute) time interval, and over the same relative (to the
wavelength) volume regions.

The latter issue would however require us to adjust the absolute size of the grid, returning
us to cubic size and time increases. In Figure [29], we qualitatively illustrate the geometric
setting of our further experiments.

Ez
source

L2 error
³

PML

Figure 29: Partition of computational grid for hard point source scenario, 2D slice.

We shall initially run the simulations for ten periods of the sinusoidal source, in order to
evaluate results over the same fixed amount of time. Afterwards, we will average the L2

error in time over the final three periods, to iron out the oscillations caused by the source:

ErrorL2pppwq :� �
» tfinal

tfinal�3T

}E �Eanalytic}L2pΩq

where T is the period for a given sampling rate (ppw), and Eanalytic is given by (32). Since
the temporal discretization is not varied, evaluating the convergence in this norm should
produce the same result as the non-averaged (in time) version.
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5 NUMERICAL EXPERIMENTS

We also have to adjust the final L2 error by the square root of the integrated volumes’
ratio (since the L2 norm scales with

?
integrated volume), which varies slightly due to

the integer divisions involved. Furthermore, as we can infer from the section on sources
and currents (3.2), if we define a hard source in one Yee cell, the total current contained
inside (and thus the amplitude of the produced fields) scales with ∆x∆y∆z. In order to
account for this, one has to scale either the amplitude of the source, or the L2 norms.

We shall run each simulation until the L2 error has stabilized, and then use those final
values. We will then assume that the final error values remain constant until the latest
time point we are considering. Finally, we estimate the slope of the error decay with
NumPy’s polyfit function [31], which performs a linear fit within the log� log plot. In
Table [1], we present the stabilized L2 norms of the errors, together with all relevant
parameters and a piecewise slope evaluation. In Figure [30] we present the evolution in
time of the errors.
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Figure 30: L2 error over a volume and several resolutions, with predicted behavior.

In Figure [30], we display with a dashed line the assumed behavior past what is simulated
in order to evaluate the L2L2 norms over the same intervals in time. Since we were varying
the spatial discretization but keeping the temporal one constant, ∆x changes, but ∆t does
not. We specify the resulting Courant ratio Sc � c∆t

∆x
in Table [1], relative to the upper

limit. The first column displays the volume vpSc/Sc,maxq in which we integrate the error,
and for the fourth column we adjust the error by

a
vp0.125q{vpSc{Sc,maxq. In the final

column we evaluate the slope between the current error and the next, in a log� log scale.

Error
³

volume Sc/Sc,max λ{∆h (adjusted) Average L2 error Slope w.r.t. next
2.70 � 10�4 0.125 10 2.610 � 10�6 2.31
2.85 � 10�4 0.250 20 5.259 � 10�7 2.09
2.88 � 10�4 0.375 30 2.249 � 10�7 2.04
2.89 � 10�4 0.500 40 1.252 � 10�7 2.07
2.90 � 10�4 0.625 50 7.885 � 10�8

Table 1: Error produced by varying λ{∆h.
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- Data
- NumPy 2.1704 slope linear fit
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Figure 31: Convergence rate of L2 error.

In Figure [31], we display polyfit ’s [31] estimate of the slope in the log-log plot, which
yields 2.17045. This fits our expectation of second-order convergence. We shall now
discuss ways to mitigate the turn-on discontinuity, whose influence can be observed in
Figure [30]. A first idea would be to ramp up the amplitude of the hard sine (of angular
frequency ω � 2πf) with a Gaussian pulse, until it reaches the full amplitude of unity.
Consider the following hard source:

Ezptq �
#

sinpωtq exp
�
� � t�t0

τ

�2
	
, t   t0

sinpωtq, t ¥ t0

One can define the so-called width τ and delay t0 of the Gaussian in terms of the period of
the sinusoidal source, for example as t0 � m

f
, τ � n

f
, for two arbitrary integers m,n P N

satisfying m ¡ n. This ramping is illustrated in Figure [32].
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Figure 32: Amplitude ramping for sine wave for m � 9, n � 3.
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Let us check how this approach influences the evolution of the L2 error versus the non-
ramped version, for the 20 ppw scenario.
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Figure 33: L2 error evolution in time.

Figure [33] illustrates the expected behavior. Any turn-on discontinuities have a very
small amplitude, thus they do not pollute the solution much. Figure [34] zooms in on the
final three periods, and we observe that the error stabilizes at a very slightly lower error
than the unramped scenario, since there is no large initial spike that has to be absorbed.
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Figure 34: L2 error evolution in time, last three periods.

Overall, this ramping can save us somewhere in the range of three to six periods worth of
simulation time, before reaching (approximately) the same stabilized error.
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Now, let us analyze convergence with respect to the temporal discretization. We use a
spatial discretization of 20 ppw, and keep all quantities constant except ∆t, or equivalently,
the Courant number. In terms of physically relevant quantities, we are in essence varying
the number of points per period (ppp), and discretely r T

∆t
s, where T is the period of the

source. The resulting changes in L2L2 error are displayed in Table [2].

Sc{Sc,max r T
∆t

s λ{∆h Average L2 error Slope w.r.t. next

1.00 35 20 4.8819 � 10�7 �0.18
0.75 47 20 5.1483 � 10�7 �0.12
0.50 70 20 5.4092 � 10�7 �0.03
0.25 139 20 5.5305 � 10�7

Table 2: Error produced by varying T {∆t.

We see that the error does not decrease, and furthermore that it even increases when
decreasing ∆t. This is surprising, despite the known fact that certain errors actually
increase with decreasing Courant number, such as the numerical dispersion error [43].
However, if we have a second look at (81), we note that this is a coarse estimation,
and clearly so due to the discrepancy in units of the spatial and temporal discretization
parameters. To be consistent with respect to units, it should read as:

}E � Eh} � }H �Hh} ¤ C1p∆2
x �∆2

y �∆2
zq � C2∆2

t

We know that if we enforce the Courant condition in 3D, this would turn into

}E � Eh} � }H �Hh} ¤ C1p∆2
x �∆2

y �∆2
zq � C2

∆2
x

3c2

where c � 2.99792458 � 108m
s

is the speed of light in vacuum. Let us find the exact
constants in the error estimate, to get an idea of the orders of magnitude involved, and
whether one coefficient is much larger than the other. We start by performing a Taylor
series expansion with truncation for all derivatives involved in Ampére’s Law (2b). Denote
by Bt,h the discrete finite difference operator

pBt,hfqptq :� f
�
t� ∆t

2

�� f
�
t� ∆t

2

�
∆t

We also define the discrete curl operator ∇h � p�q for a vector field V � pVx, Vy, Vzq:

p∇h � V q :�

���������

Vzpx, y � ∆y

2
, zq � Vzpx, y � ∆y

2
, zq

∆y

� Vypx, y, z � ∆z

2
q � Vypx, y, z � ∆z

2
q

∆z

Vxpx, y, z � ∆z

2
q � Vxpx, y, z � ∆z

2
q

∆z

� Vzpx� ∆x

2
, y, zq � Vzpx� ∆x

2
, y, zq

∆x

Vypx� ∆x

2
, y, zq � Vypx� ∆x

2
, y, zq

∆x

� Vxpx, y � ∆y

2
, zq � Vxpx, y � ∆y

2
, zq

∆y

��������

We have suppressed the arguments on the LHS for typesetting purposes. We will also
shorten Epx, y, z, tq as Et

x,y,z in the following two equations. Using Taylor’s Theorem
with truncation at third order terms, and vector notation to show applicability to all
three vector components, we obtain for some τ1 P rt, t� ∆t

2
s, τ2 P rt� ∆t

2
, ts:

E

�
x, y, z, t� ∆t

2



� Et

x,y,z �
∆t

2

B
BtE

t
x,y,z �

∆2
t

8

B2

Bt2E
t
x,y,z �

∆3
t

48

B3

Bt3Epx, y, z, τ1q
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E

�
x, y, z, t� ∆t

2



� Et

x,y,z �
∆t

2

B
BtE

t
x,y,z �

∆2
t

8

B2

Bt2E
t
x,y,z �

∆3
t

48

B3

Bt3Epx, y, z, τ2q

Subtracting the last two equations, we obtain the truncation error of the centered stencil.

E
�
x, y, z, t� ∆t

2

��E �x, y, z, t� ∆t

2

�
∆t

� B
BtE � ∆2

t

48

B3

Bt3 pEpx, y, z, τ1q �Epx, y, z, τ2qq

Similarly, we obtain the same estimate for the spatial derivatives. For w P tx, y, zu, and
some ξw1 P rw,w � ∆w

2
s, ξw2 P rw � ∆w

2
, ws, we obtain

H
�
x� ∆x

2
, y, z, t

��H �
x� ∆x

2
, y, z, t

�
∆x

� B
BxH�∆2

x

48

B3

Bx3
pHpξx1, y, z, tq�Hpξx2, y, z, tqq

H
�
x, y � ∆y

2
, z, t

	
�H

�
x, y � ∆y

2
, z, t

	
∆y

� B
ByH�∆2

y

48

B3

By3
pHpx, ξy1, z, tq�Hpx, ξy2, z, tqq

H
�
x, y, z � ∆z

2
, t
��H �

x, y, z � ∆z

2
, t
�

∆z

� B
BzH � ∆2

z

48

B3

Bz3
pHpx, y, ξz1, tq�Hpx, y, ξz2, tqq

With this knowledge, let us plug in the Taylor expansions from above into Ampére’s Law,
and move all differential operators to the left-hand side. Let us also define the coefficients
CBxH :� B3

Bx3 pHpξx1, y, z, tq�Hpξx2, y, z, tqq, CByH :� B3

By3 pHpx, ξy1, z, tq�Hpx, ξy2, z, tqq,
CBzH :� B3

Bz3 pHpx, y, ξz1, tq �Hpx, y, ξz2, tqq, CBtE :� B3

Bt3 pEpx, y, z, τ1q �Epx, y, z, τ2qq.

ε

� B
BtE � Bt,hE



� p∇�H �∇h �Hq � 1

48

��∆2
yCByHz �∆2

zCBzHy � ε∆2
tCBtEx

∆2
zCBzHx �∆2

xCBxHz � ε∆2
tCBtEy

∆2
xCBxHy �∆2

yCByHx � ε∆2
tCBtEz

�
 (82)

Putting this into words, what we have found is the truncation error of Ampére’s Law. We
can perform the same steps to obtain the analogue result for Faraday’s Law.

µ

� B
BtH � Bt,hH



� p∇�E �∇h �Eq � 1

48

��∆2
zCBzEy �∆2

yCByEz � µ∆2
tCBtHx

∆2
xCBxEz �∆2

zCBzEx � µ∆2
tCBtHy

∆2
yCByEx �∆2

xCBxEy � µ∆2
tCBtHz

�

We need to take a few more steps in order to have an idea of the orders of mag-
nitude. Let us assume that we are dealing with a plane wave in vacuum given by
E � E0 exp pk � r � ωtq, H � H0 exp pk � r � ωtq, along the x�axis, such that k �
pkx, ky, kzq �

�
ω
c
, 0, 0

�
. If we have a Courant number of c∆t

∆x
� 1?

3
, and the electric field

is polarized in the z�direction, and the magnetic field in the y�direction, we can rewrite
(82) as follows:

ε0

� B
BtE � Bt,hE



� p∇�H �∇h �Hq � 1

48

�� 0
0

∆2
xCBxHy � ε0∆2

tCBtEz

�

ô LHS � 1

48

�� 0
0

∆2
xpHy,xxxpξx1q �Hy,xxxpξx2qq � ε0∆2

t pEz,tttpξt1q � Ez,tttpξt2qq

�
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Here we used a shortened notation where only the part of the argument differing from
x, y, z, t was given, and fwww denotes the third partial derivative of f w.r.t. w. We now
use the fact that in vacuum |E| � η0|H |, where η0 � 1

cε0
is the impedance of free space.

ô LHSz � 1

48

�
∆2
x

ω3

c3
pHypξx1q �Hypξx2qq � ε0

∆2
x

3c2
p�ω3qpEzpξt1q � Ezpξt2qq




ô LHSz � 1

48

�
∆2
x

ω3

c3
pHypξx1q �Hypξx2qq � ε0

∆2
x

3c2
p�ω3q 1

cε0

pHypξt1q �Hypξt2qq



ô LHSz � ω3∆2
x

48c3

�pHypξx1q �Hypξx2qq � S2
c pHypξt1q �Hypξt2qq

�
We selected a Courant number Sc � 1?

3
that ensures stability for arbitrary 3D propaga-

tion, however this scenario is essentially a 1D propagation, which means Sc � 1 would
suffice. This implies that the truncation errors due to the spatial and temporal derivatives
are in the same order of magnitude:

ô LHSz � ω3∆2
x

48c3

��Hypξx1q �Hypξx2qloooooooooomoooooooooon
Bx error

�Hypξt1q �Hypξt2qlooooooooomooooooooon
Bt error

�

Let us now carry out the same process for Faraday’s Law.

µ0

� B
BtH � Bt,hH



� p∇�E �∇h �Eq � 1

48

�� 0
∆2
xCBxEz � µ0∆2

tCBtHy
0

�

ô LHS � 1

48

�� 0
∆2
xpEz,xxxpξx1q � Ez,xxxpξx2qq � µ0∆2

t pHy,tttpξt1q �Hy,tttpξt2qq
0

�


ô LHSy � 1

48

�
∆2
x

ω3

c3

1

cε0

pHypξx1q �Hypξx2qq � µ0
∆2
x

c2
p�ω3qpHypξt1q �Hypξt2qq




ô LHSy � ω3∆2
x

48c2

�
1

c2ε0

pHypξx1q �Hypξx2qq � µ0pHypξt1q �Hypξt2qq



However c2 � 1
ε0µ0

, thus:

LHSy � µ0ω
3∆2

x

48c2

��Hypξx1q �Hypξx2qloooooooooomoooooooooon
Bx error

�Hypξt1q �Hypξt2qlooooooooomooooooooon
Bt error

�

Once more, we find that the spatial and temporal truncation errors are also in the same
order of magnitude for Faraday’s Law. At this point, in order to advance further, one
would need to translate these local equation-wide error estimates into global field error
estimates. That is, to investigate the contribution of the spatial and temporal errors in
}E � Eh}, }H � Hh}, or their sum. This was done using so-called energy estimates in
the context of the semi-discrete equations by Monk and Süli [29]. However, Monk and
Süli made use of the fact that the temporal derivative was not discretized. Due to time
constraints, we shall depart from this topic and pronounce it as future work.
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5.2 TFSF error

We now run a similar analysis to the one of the previous section, but this time with a
TFSF surface, a cube, which introduces the energy into the grid. This TFSF surface
will impose electric and magnetic currents J,M such that the fields produced by a point
source at the middle of the grid are emanated. The grid is partitioned in two ways:

TF

SF

TF

SF

L2 error
³

PML

L2 error
³

PML

Figure 35: Partition of computational grid for TFSF source scenario, 2D slices.

where TF is the total-field region, and SF is the scattered-field region. In theory, the
fields produced by the TFSF boundary currents cancel out inside the SF region, however
in practice that is not true, as we will see in a moment. These fields pollute the solution
and produce a higher final error. We will verify what happens when we increase the
size of the SF region, and thus the TFSF interface on which we allocate currents. What
is described in literature as leakage of the TFSF, namely the error introduced by this
method, which in our case is the lack of cancellation inside the SF region, increases with
the size of the SF region.
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Figure 36: TFSF vs. hard point source errors.
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5.3 TFSF plane wave

In this section we shall present an example scenario of the plane wave introduced by a
TFSF surface, as illustrated in Figure [37]. We use a grid of size 97 � 97 � 97, where an
outer layer of thickness NPML � 14 is defined as a UPML. The innermost cube inside is
designed as the total field (TF) volume.

UPML

SF

TF

Ñ

Figure 37: TFSF plane wave setup, 2D slice.

A Gaussian pulse is inserted from the bottom left corner of the TF zone, in the diagonal
direction, as shown by the white arrow in Figure [37]. We shall present the visualization
from this corner, and note that the contrast of the images is scaled to the range of values
(hence the variation). In Figure [38], we plot the maximum value of the norm over time,
with the note that the wave has exited the TF zone by time step 200, and higher values
are shown in darker colors, due to printing considerations. In Figure [39] we shall visualize
the norm of the electric field through a 2D slice in the domain.
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Figure 38: Time evolution of }E}L8 within the entire domain.
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Figure 39: Diagonal propagation of plane wave in 3D, }E} (2D slices).

As we see both in the maximum value of the norm, and in the figures above, the error
produced by the TFSF, which is slowly absorbed by the UPML. Let us now also observe
what happens when we introduce a perfect electric conductor in the center of the grid by
enforcing zero electric fields, to scatter our plane wave. This is illustrated in Figure [40].
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Figure 40: PEC cube scattering by plane wave, }E} (2D slices).

We can observe the quasi-spherical wavefront generated from the scattering, and with this
we conclude the exposition of the TFSF plane wave implementation example.
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5.4 PML error

As we have mentioned in the previous sections, the two main ways in which the PML
introduces errors are through the (remainder of the) reflected wave, and the numerical
artifacts that arise from the staircasing of the PML parameters. In the continuous setting,
if we have a conductivity grading given by σxpxq along the x�coordinate, the theoretical
reflection for a wave impinging on a PML of thickness d at the angle of ϕ is given by
Equation (50). In particular, for a polynomial grading of order three of σw we obtain:

Rpϕq � exp
�
�2η cosϕ

σx,max

4

	
Particularly, in the case of what is referred to in literature as the “optimal” σw,max, for
which an attenuation of e�16 for 10�cell thick PML takes place, we obtain:

Rpϕq � exp

�
�1.6

cosϕ

∆h



where ∆h is the spatial discretization step size. We now wish to check the sensitivity of
the two error types introduced by the PML. We shall do this within the following scenario:
we use a hard sinusoidal

Ez

�
Nx

2
,
Ny

2
,
Nz

2
, n∆t



� sinpωn∆tq

point source at the center of our computational domain of size Nx�Ny�Nz, use a UPML
of thickness NPML, and vary σw,max (initially � σw,optimal) and NPML slightly. We evaluate
the discrete L2 norm in space, and the discrete L2 norm in time over the last three peri-
ods. We also run the simulation for ten periods, enough that the initial transients due to
the source turn-on discontinuity are absorbed by the PML. Space is discretized at 10 ppw.

In order to define quantities in physically relevant terms, the thickness will be given in
relative terms to the size of the wavelength λ, taking values in the set NPML∆x P tδλ | δ P
t0.3, 0.5, 0.7, 1, 1.3, 1.6, 1.9, 2.2uu. What we expect to see is that the error slightly increases
when going either left or right of the optimal maximum σ, and furthermore that the error
increases when we decrease the size of NPML (due to the shorter distance). We illustrate
the evolution of the errors in Figure [41].
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Figure 41: PML thickness errors.
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If we zoom in on the last three periods from Figure [41], we observe the following:
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Figure 42: PML thickness errors.

We notice that the outlier is the lowest thickness value. However, there is not much
difference between the rest of the thicknesses, although most of their errors stay mainly
above that of the thickness NPML � λ

∆x
. Throughout these tests the sigma profile was

unchanged. Let us now keep the PML thickness fixed, and slightly vary σmax away from
the optimal value. We illustrate the behavior of the errors in Figure [43].
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Figure 43: Error variation due to σmax.

Once again, we cannot distinguish any differences at this scale. We shall proceed by
examining the behavior over the last three periods from Figure [43], illustrated (and
zoomed in) in Figure [44].
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Figure 44: Error variation due to σmax.

Below in Table [3] we list the average error over the last three periods:

σmax

σopt
Stabilized L2 error

0.50 2.021869�10�5

0.75 2.022178�10�5

1.00 2.017653�10�5

1.25 2.018924�10�5

1.50 2.022861�10�5

2.00 2.017115�10�5

Table 3: Error produced by varying σopt.

And we note that a local minimum is attained at the optimal value. However, since the
error decreases past this point for doubling the optimal value of σ, one can assume one
of the following: either the floating point accuracy is comparable to the error introduced
by increasing σ, or there is some destructive interference going on, artificially lowering
the error. In Table [4], we reference the stabilized L2 error rates for the PML thickness
variation.

Resolution NPML∆x{λ Average L2 error
413 0.3 2.0380�10�5

453 0.5 2.0224�10�5

493 0.7 2.0193�10�5

553 1.0 2.0177�10�5

613 1.3 2.0176�10�5

673 1.6 2.0205�10�5

733 1.9 2.0230�10�5

793 2.2 2.0209�10�5

Table 4: Error produced by varying NPML.

Once more, the value of σopt indeed seems to satisfy a local minimum in terms of intro-
duced errors. With this we conclude Chapter 5, and move on to the centerpiece simulation.
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Chapter 6

Simulation with Patient Data

In this chapter we shall test a complete heat-coupled EM simulation on a set of pa-
tient data. The data was provided by Christian Rieder of Fraunhofer MEVIS [39], and
rendered in color with an in-house planning tool for catheter-based interventions named
SAFIR [34]. The data set was produced with the help of Rheinisch-Westfälische Tech-
nische Hochschule Aachen, and it consists of a computer tomography (CT) scan of the
abdominal area of a patient. The data also provides a so-called segmentation of the CT
scan, formatted as a mask that delimits and labels (with integers) all tissue types.

Hereon, in order to visualize 3D data, we shall most often use an orthogonal view, split
into three or four parts, where we render 2D slices perpendicular to the x�, y� and
z�axes respectively. The correspondence between these slices and our two most common
ways of rendering data are labeled in Figure [45]. If displayed, the (yellow or otherwise)
orthogonal lines denote where the other two slices are evaluated.

x�slice y�slice z�slice

�

x y

z

Example 1 Example 2

Figure 45: Visualization interpretation guideline.

We shall often refer to such (scalar) data as images, since they are stored and loaded as
scalar-valued 3D images. Once interpreted as images, we utilize MeVisLab [35], a software
tool that has significant visualization and data manipulation capabilities. Given this short
introduction, we first present a visualization of the full abdominal data set within SAFIR.

The top left image from Figure [46] is a render in which different segmented organs are
colored, where the ribs, liver and lungs are visible. In the remaining three images, we
render the slices according to the legend in Figure [45], Example 2. We also highlight the
liver tumor segmentation with an orange boundary. The integer labeling is visualized in
Figure [47].
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6 SIMULATION WITH PATIENT DATA

Figure 46: Visualization of patient data within SAFIR [34].

Figure 47: Segmentation mask of the patient data, visualized in MeVisLab [35].
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6 SIMULATION WITH PATIENT DATA

The tissue types from the grayscale mask in Figure [47] are listed in Table [5], parametrized
according to: electric conductivity σ, thermal conductivity λ, heat capacity κ, mass den-
sity ρkg, relative electric permittivity εrel. The label image is used as input for our simu-
lation. We allocate different dielectric and thermal parameters to each labeled material.
Most parameter values are taken from the database of The Foundation for Research on
Information Technologies in Society (Zürich, Switzerland) [10].

The tissues whose values are not provided in the database are the following: HV, PV
and HA, which denote the hepatic vein, portal vein, and hepatic artery, respectively.
Furthermore, we shall label as Patient any remaining volume that does not fall into the
other 11 categories from Table [5]. We estimate the parameter values of these four tissue
types based on their similarity (as interpreted by the author) to the tissues with known
values.

Label Tissue type σ
�
S
m

�
εrelr1s λ κ ρkg

�
kg
m3

�
Water content

0 Air 0.000 1.00 0.0260 1005 1.13 0.0000
1 Patient 0.500 30.00 0.5000 3800 1050 0.6431
2 Liver 0.860 46.70 0.5947 3577 1050 0.7146
4 Tumors 1.118 52.77 0.4194 3600 1050 0.7503
5 HV 1.540 61.30 0.5169 3617 1050 0.4950
6 PV 1.540 61.30 0.5169 3617 1050 0.4950
7 HA 1.540 61.30 0.5169 3617 1050 0.4950
8 Kidneys 1.400 58.60 0.5500 3763 1066 0.7947
9 Cartilage 0.789 42.60 0.4900 3568 1100 0.7500

10 Bones 0.145 12.44 0.3200 1313 1908 0.3181
11 Lung 0.460 22.00 0.3874 3886 722 0.8000

Table 5: Patient data registered tissue labels.

From the data in Figure [47], we select a subset containing a large liver tumor. This is
done in order to (significantly) reduce the computational time and memory requirements.
Furthermore, we expect that the amplitude of the electromagnetic waves will fall off
considerably within a short distance from the tumor. This intuition is motivated by the
lossy nature of the materials (σtumor � 1.118 S

m
, σliver � 0.860 S

m
), but also by the spherical

nature of the wavefronts emanated by our energy source. However, the influence of these
two factors is not equal. One could deduce from Section 2.1.1 that the field amplitude
decays by approximately 1% per voxel (thus, per mm). This is nowhere near as influential
as the 1

r3 decay of amplitude due to the spherical shape of the wavefront.

Figure 48: Subset of registered liver tumor patient data, centered on tumor.
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6 SIMULATION WITH PATIENT DATA

In Figure [49] we also render the data from Figure [47] in 3D. The darker volume region
in the center of the image is the segmented tumor. The vascular system and ribs are also
shown, however the liver is not rendered in order to observe the tumor.

Figure 49: Subset of registered liver tumor patient data, 3D render.

The data subset has a resolution of 120�110�80, with a voxel size of 1mm�1mm�1mm.
We shall note however that due to memory limitations, we will not be able to evaluate
stability in terms of whether the computational domain has reached a quasi-periodic state.
However, as we will see shortly, the electromagnetic waves are heavily dampened by the
time they leave the tumor, which also means that a UPML grid termination is unnecessary.

In terms of how we shall model the antenna, there are mainly two options. The first is
to use the TFSF method, and define the physical surface of the antenna as the TFSF
interface. In this case, one would need to impose some currents that recreate a given elec-
tromagnetic field. An intuitive choice is to use the field produced by one or more point
dipoles. While the resulting field inside a lossy medium will obviously be nonphysical,
since we only have the vacuum analytical formula available, it will however be symmetric
and smooth. We shall rescale σ}E}2 to have a fixed power of 40W (which is on the lower
end of power achievable by MWA, but it will suffice for our qualitative analysis) over the
entire domain, which means the amplitudes themselves do not matter, only the spatial
distribution.

There are some practical issues with this approach however. Firstly, the TFSF error
and internal reflections from the SF zone (which would be vacuum) would pollute the
solution, and accumulate in time. Secondly, using the vacuum analytical formula to
define the TFSF fields in a lossy medium would quickly lead to nonphysical currents.
This is clearly the case since the vacuum fields do not satisfy Maxwell’s equations in a
tumor. A workaround could be to define the TFSF surface completely within vacuum,
inside the antenna. However, in this case, the (physically meaningful) refractions and
reflections arising at the vacuum-tumor interface would pollute the solution.
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6 SIMULATION WITH PATIENT DATA

Thus, we have to rely on other ways of introducing electromagnetic energy. The most
desirable option is to simulate a physical antenna, with all of its geometry. While some
antennas have a simple enough structure, if we wish to simulate a realistically large an-
tenna (2�5mm in diameter), the grid resolution we have available would not be sufficient.
Furthermore, modern MWA applicators are significantly geometrically complex, often in-
volving liquid cooling systems. The scope of the research at hand did not include physical
antenna modeling, and this area deserves a lengthy investigation of its own.

Thus, we have one possible energy source left at our disposal: infinitesimal dipoles. It has
long been the case that electrical engineers superimpose such point sources in order to
recreate more complex fields. We shall stack, within the center of the active zone of the
antenna, a line of z�polarized hard sources. Their position is illustrated with white in
Figure [50], and the antenna geometry is rendered in orange. In Figure [51] we visualize
the underlying electrical conductivities, and color blood vessels in blue.

Figure 50: Placement of Ez point dipoles inside antenna.

Figure 51: Placement of the antenna, background given (qualitatively) by σ.

We shall then assume that the interior of the antenna is parametrized by the underlying
physical parameters (thus mostly tumor tissue). For example, in Figure [51] we display
the antenna together with the underlying values of σ. We shall run each FDTD simula-
tion for three periods of the 915MHz source, to obtain the EM fields inside the domain.
This time interval has been visually determined to be sufficient to reach (global) periodic
behavior. We then pass on the average (over the last quarter of a period) σ}E}2 to the
bioheat solver. This power is assumed to be zero within the antenna, and rescaled outside
of it to have a total power of 40W within the domain. The bioheat solver then performs
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6 SIMULATION WITH PATIENT DATA

one explicit time-step of 1s, computes the temperature, adapts the tissue parameters (this
step will be detailed immediately), and feeds them back to the FDTD solver. The EM
solver then resets the fields to zero, and restarts another simulation with the adapted
parameters. We repeat this cycle for 60 steps, or seconds.

We know from medical practice that both RFA and MWA procedures last anywhere be-
tween 3 and 30 minutes, so clearly one minute is not a realistic liver ablation procedure
length. This restriction was imposed due to time constraints, since the FDTD code is
not completely optimized or parallelized on a GPU. In our case, 60 steps worth of three
periods each takes approximately 8 hours on the present data. However, for an initial
proof-of-concept, this one minute runtime already yields sufficient results for interpreta-
tion.

With this being said, let us turn to the temperature dependence of materials. While most
of the material parameters presented in Table [5] do in fact vary with temperature, it is
not within the scope of the work at hand to investigate this aspect exhaustively. We will,
for a proof-of-concept, evaluate the conductivity at different temperatures, due to it being
the most electromagnetically-impactful parameter.

We start by using the conductivity of (healthy) liver tissue as a reference point. Since
the conductivity of different tissue types varies in different ways with temperature, we
shall make a simplifying assumption, relying on the water content. While it is certain
that a multitude of factors influence this parameter, we shall use water content to change
the temperature profiling of the involved materials. We illustrate in Figure [53] how we
assume the liver’s conductivity varies, based on the data presented in Cristopher Brace’s
Temperature-dependent dielectric properties of liver tissue measured during thermal abla-
tion: Toward an improved numerical model [5]. For reference, the data used is presented
in Figure [52].

Figure 52: Temperature curve of σ at 915 MHz, taken from [5], p. 232, c©2008 IEEE.
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Figure 53: Assumed temperature dependence of σ, based on water content.

The closed form of our simplified curve from Figure [53] is:

σpT q �
$&% 0.86p1.57

0.86
� 1q T

58
� 0.86

�
1� 310.15 � 1.57

0.86
�1

58

	
if TP[310.15,368.15]

�0.86p1.57
0.86

� 1qT
5
� 0.86

�
1� 373.15 � 1.57

0.86
�1

5

	
if TP[368.15,373,15]

The starting conductivity at body temperature 310.15K is 0.86 S
m

, which then increases
to 1.57 S

m
five degrees below the boiling point (368.15K), and then decreases due to vapor-

ization close to the original value. We shall clamp this final value to exactly the original
value. Based on this curve, we shall approximate the conductivity profiles (dependence
on temperature) based on the relative water content to that of healthy liver.

Using H.H. Mitchell’s paper [28] as a reference, we claim that the water content of healthy
liver tissue is 71.46%. For a given ratio of water content of another tissue, r, we shall
scale the difference between the maximum achieved σ and the minimal one σmin (=0.86 S

m

for healthy liver) linearly, according to the water content ratio, as follows:

σpT q �
#

0.83 r
0.7146

� σmin
T
58
� σmin

�
1� r

0.7146
310.15 � 0.83

58

�
if TP[310.15,368.15]

�0.83 r
0.7146

� σmin
T
5
� σmin

�
1� r

0.7146
373.15 � 0.83

5

�
if TP[368.15,373.15]

While this model is clearly an oversimplification, we employ it as a proof of concept of how
temperature dependent parameters, in particular σ, are incorporated into our complete
MWA solver. In Figure [54] we illustrate the conductivity map before and after some heat
was applied through the simulation of one EM solver cycle. This heat is highest around
the active zone of the antenna, and as expected, that is also where our conductivity has
increased, as highlighted with red circles. The brighter shades of gray represent higher
values.
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6 SIMULATION WITH PATIENT DATA

Figure 54: Electrical conductivity before (top) and after (bottom) a temperature increase.

Let us now describe the reference simulation that we shall compare our combined FDT-
D/heat solver to. We shall hereon refer to this in-house thermal ablation solver by “Ther-
mal Ablation Simulation” or TAS1 [14]. TAS consists of an electrostatic simulation, cou-
pled with a heat solver. In Figure [55] we present a qualitative image of the output of the
electrostatic solver, and thus the input for the TAS heat solver. The instrument created
has a cross section of 4mm�4mm, where one voxel has dimensions of 1mm�1mm�1mm.

Figure 55: Input power for TAS solver.

The instrument is illustrated in orange, and inserted within the tumor in the same position
as for our simulation. We shall run this simulation with an input power of 40W , for one
minute, and present the temperature values within an x�aligned line segment.

1ThermalAblationSimulation module in MeVisLab
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6 SIMULATION WITH PATIENT DATA

This particular position of the line segment is selected in order to have it intersect the
highest achieved temperature points, as displayed in Figure [56]. We will then render
in Figure [57] the temperature curve through this x�aligned segment, within a 30mm
portion centered on the antenna (thus 25% of the total x�extent of the image).

Figure 56: Temperature evaluation position for TAS solver.
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Figure 57: Temperature evolution resulting from TAS over 60 seconds.

Figure [57] illustrates how the maximum temperature achieved is 365.958 Kelvin, or
92.808� Celsius. Let us also observe that the peak steadily increases throughout the
simulation, which matches the experimental results presented in the introduction. In
figure [58] we visualize the status of the temperature produced by TAS for a simulation
runtime of 60 seconds. We will note that this solver accounts for the nonlinear character-
istics of the generator. Thus, we need to scale the power by a constant to ensure that the
energy actually deposited into the tissue is 2400J (resulting from 40W over 60s). In the
figures to follow, brighter gray values represent higher temperatures.
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6 SIMULATION WITH PATIENT DATA

Figure 58: Temperature profile given by TAS after 1 minute.

Now we shall turn to the result given by our FDTD solver, coupled with the explicit
bioheat solver, hereon referred to as MWA simulation or simply MWAS. We first visualize
the (electrodynamic) power yielded in the last second in Figure [59]. The power produced
in previous seconds (0� 59) is qualitatively the same, but scaled down slightly due to the
smaller σ. Finally, in Figure [60] we illustrate the evolution of the temperature through
the center of the active zone of the antenna (along a segment as done for Figure [57]).

Figure 59: Power input after 60seconds provided by MWAS.
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Figure 60: Temperature evolution resulting from MWAS.
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We shall remark that for both MWAS and TAS, the heat solver has employed a tissue
dehydration model. Broadly speaking, this ramps up the required heating power to obtain
a temperature increase, depending on how much water the tissue lost due to the higher
(or boiling) temperature. We should acknowledge that our MWAS has an arguably unre-
alistically high power gradient, due to the usage of point dipoles as sources. As a result,
a lot of the power is concentrated into very few voxels. Without a dehydration model in
place, this would result in a blow-up of the temperature field (at least without making
any drastic changes to our heat equation modeling). This does mean that we somewhat
underestimate the true heating performed by our MWAS model. However, this cannot
be avoided when using (point) dipoles. In Figure [61] we illustrate the final temperature
field qualitatively.

Figure 61: Resulting temperature from MWAS after 60 seconds.

Let us scale down the contrast in the final temperature image, such that the lowest distin-
guishable value is 355.8K. We display the zoomed-in result in Figure [62]. We notice that
there are large differences in the values across the surface of the applicator, and temper-
ature is not radially symmetric. This fact is due to the poor geometric discretization of
the probe, and to a lesser extent, due to the fact that information does not travel radially
in this rectangular grid. One could counteract this aspect by using a larger probe, which
will be (relatively speaking) better discretized by the grid. However, one would need to
scale up the size of the domain, in order to maintain accurate size ratios of the other
structures, which would be computationally restrictive in our case.

Figure 62: Scaled resulting temperature from MWAS after 60 seconds, zoomed in.

Having interpreted both MWAS and TAS results independently, let us finally turn to their
comparison. Firstly, let us compare the temperature along the x�aligned line segment.
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In Figure [63] we illustrate the final (60-second) temperatures of MWAS and TAS. One
should note that between the two models there is a discrepancy of one voxel in the
discretization of the probe, leading to a slight shift.
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Figure 63: Comparison of final temperature between TAS and MWAS.

Secondly, to mitigate the influence of the dehydration, and the low running time, we shall
threshold the final temperature fields at 60�C. This should be easily reachable by both
models, within a reasonably sized volume. We then refer to any tissue volume that has
reached this temperature as “ablated”, or coagulated. As one can infer from Figure [63],
at this lower temperature point, TAS does cover a larger volume. Let us denote by VATAS

the total ablated TAS volume, and by VAMWA the total MWAS ablated volume. We also
define AMWA as the volume occupied by our MWAS antenna, and the TAS analogue ATAS.
In order to account for the discrepancy in discretization of the antennas, we shall ignore
AMWA

�
ATAS from the discussion ahead. We illustrate the difference in ablated volume

in Figure [64].

Figure 64: Visualization of the set difference VATASzVAMWA.

In terms of distance from the applicator, TAS achieved an average ablated radius of six
voxels, while MWAS reached an average of three. Thus, the radius of the ablated volume
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at the center of the active zone was doubled by TAS. The total volume ablated by TAS
is
��VATAS

�� � 4.422 � 10�6m3, while TAS reports the smaller volume
��VATAS

�� � 0.911 � 10�6m3.
Thus, the difference in ablated volume has the size

��VATASzVAMWA

�� � 3.511 � 10�6m3. For
reference, the total volume of the grid is 0.001056m3. In relative terms,��VATAS

��
|VAMWA|

� 4.85

This significant discrepancy is to be expected for a threshold under 100�C. Medical prac-
tice often mentions the ability to reach more than 100�C as a main motivation to use
MWA instead of RFA. To a limited extent, we have witnessed our MWA simulation’s
ability to reach higher temperatures faster, however the (volumetric) impact is limited
by the large gradient of the electrical field norm. One consequence is that no significant
heating reaches the blood vessels, and we have no estimate on how well their cooling ef-
fect is counteracted. When employing various antennas as sources, one would expect that
more of the heating is produced by electromagnetic energy transport due to their ability
to guide the energy. In the results at hand, it is apparent that MWAS mostly relied on
the thermal diffusion to spread the heat.

Finally, let us provide some concluding remarks based on the results above. The MWAS

simulation presented in the present research is expectedly orders of magnitude slower than
an electrostatic simulation. The property that counteracts this disadvantage is the phys-
ical accuracy of the model. In order to exploit the dynamic capabilities of such FDTD
solvers, we should provide a proper source of electromagnetic energy, such as guiding
antennas. These would provide more heating through electromagnetic energy transport,
rather than relying on thermal diffusion. However, the MWAS simulation we have de-
veloped already provides promising results even when powered by simplistic point dipoles.

Additionally, a proper optimization of the data structures used, and a switch to GPU
parallelization (as opposed to CPU), would bring down the runtime to the order of minutes
(instead of hours). This would suffice for the goal application of liver microwave ablation
planning. Such medical interventions do not require real-time adaptions of the model,
since no significant changes appear between the pre-operative imaging procedures (CT,
MRI, etc.) and the ablation procedure.
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Chapter 7

Conclusions and Discussion

The main motivation for the research within the present thesis, and the MICROPLAN
project, has been to improve the clinical status quo of liver cancer treatment. In section
7.1,we shall first summarize how the research at hand can augment the microwave ablation
intervention, and facilitate the work of medical practitioners. We will also highlight the
questions left unanswered by this thesis, and offer some concluding remarks based on our
initial goals. Finally, in section 7.2 we shall discuss some possibilities for improvement
and ideas for future research in this area.

7.1 Summary and open problems

We have built an electrodynamic FDTD solver in order to dynamically solve Maxwell’s
equations, employing Kane S. Yee’s algorithm. Some aspects of basic electromagnetic
sources were introduced, together with certain usual discretization tools, such as the Per-
fectly Matched Layer and the Total-Field Scattered-Field techniques. The influence of
the discretization on dielectric loss and phase velocity was also quantified, in the context
of plane waves traveling along axis-aligned directions.

An overview of the difficulties involved in coupling electromagnetic and bioheat equations
was showcased, also providing some initial insight into how certain aspects can be prop-
erly quantified. Furthermore, several numerical experiments were investigated, mainly in
order to quantitatively assess the influence of particular components on the FDTD error.

Finally, the FDTD solver we have developed was coupled to an available bioheat equation
solver available in-house at Fraunhofer MEVIS [21]. This heat solver discretized space
with hexahedral Finite Elements, and time with explicit time-stepping. The final result
of the combined solver was then compared to the results produced by an electrostatic
in-house solver, that was also coupled to a heat solver.

The main difficulties that arise in such a process are the implementation of the antenna,
and matching the output of an electromagnetic solver with any following building blocks
in the microwave ablation simulation. We have seen that in spite of their widespread
usage, point dipoles do not provide a satisfactory match to the ablation pattern produced
by MWAS applicators. It is clear that more time would need to be invested into the
research at hand in order to incorporate more realistic energy sources. Furthermore, cer-
tain simplifications have to be made in order to streamline the interaction of the heat and
electromagnetic simulation components. These are mostly related to initial conditions in
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FDTD, but do not pose significant physically meaningful difficulties, since we are solving
for harmonic states.

While it is readily apparent that electrostatic solvers are orders of magnitude faster than
fully dynamic EM solvers, this comes at a cost. The physical accuracy in modeling com-
plex dynamic processes is lost, and this translates into an inability to properly predict
patient-specific results. In principle, the larger the volume of homogeneous lossy tissue
that surrounds the energy source in the domain, the more accurate the prediction of an
electrostatic solver should be. However, as we have seen in the previous chapter, this
quasi-homogeneity is an unrealistic assumption in medical practice.

One clear shortcoming of the numerical model presented in the current work is the incom-
plete characterization of dielectric and thermal material parameters. This of course is an
experimental electrical engineering endeavor, rather than a mathematical one. However,
there are several (physically) qualitative changes that arise in (dielectric and thermal)
tissue characterization. Reversible and irreversible phase transitions take place, tissues
become cauterized, and complex thermodynamic and electromagnetic interactions take
place. Furthermore, the effect of many of these processes is spread across various scales,
and often requires microscopic analysis in order to reach macroscopic claims. In this re-
gard, a proper physical analysis would be necessary, in order to grant thoroughness.

In the pursuit of providing a rigorous and accurate MWA prediction result, complete
parametric characterizations of all involved materials are needed. Their dependence on
frequency, temperature, blood perfusion, medical conditions, coagulation state, and many
other factors would have to be properly quantified. Only then could one be confident in
the accuracy of the numerical result.

With all of the above aspects in mind, let us see to what extent we have achieved the goals
set out in the introduction. Firstly, we have incorporated three of the four components
that were planned. The tissue damage model was not used, due to unavailability of a
comparable result. However, the simulation of Maxwell’s equations was connected to the
bioheat equation to a sufficient degree. The tissue parameter model used was heavily
simplified, and only varied one of the dielectric properties. Nonetheless, there would be
no conceptual difficulty in implementing modified parameter curves.

We have presented one possible solution to the discrepancy in time scales, which does not
introduce additional modeling difficulties, and allows us to retain acceptable simulation
times. A sturdy UPML implementation was presented, which allowed us to handle long-
time vacuum simulations. An extension of this model would be necessary though, in order
to handle fully heterogeneous materials. The ability to integrate our numerical solver with
image-based data was achieved, and allowed for straightforward input of clinical data.

We have not reached an experimental validation phase of the simulation at hand. However
we have provided numerical substantiation of our FDTD solver’s accuracy, both through
numerical experiments and tests using realistic data. In its current state, the MWAS

numerical model requires: a dehydration model that is better adapted to microwave
ablation, an expanded antenna model, and a simulated intervention time longer than one
minute. Only when these prerequisites are satisfied could one hypothesize on the increased
electromagnetic accuracy.
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7.2 Future work

A clear direction in which this work can be extended is the section on numerical loss
and dispersion. The extendability of those results for any arbitrary direction can be
investigated, instead of just diagonals and axis directions. Furthermore, the analysis can
be extended to spherical wavefronts, and not just plane waves. This could allow for an
analogue closed form of discrete penetration depth, in the context of near-field applications
using dipole-like sources. In order to move forward, one would need to pick up the thread
at the beginning of the Section 3.6. Let us rewrite the plane wave equations.

Epr, tq � E0 exp pi pk � r � ωtqq, Hpr, tq �H0 exp pi pk � r � ωtqq
Taking the curl of Faraday’s Law, using the zero divergence property, and then plugging
in a plane wave solution, we obtain:

∆E � µε
B2

Bt2E � µσ
B
BtE ñ �

k2
x � k2

y � k2
z

� � µεω2 � iµσω

For a general complex vector k � β � iα, this yields the system of equations#|β|2 � |α|2 � µεω2

β �α � µσω

2

After investing some time, one would expect to reach a closed form of the numerical loss
and dispersion, parametrized according to the wave vector. The final step will then be
to incorporate the influence of the non-planar isosurfaces on the amplitude. With this,
discrete dispersion and loss would be completely characterized for the types of materials
we have considered in the present thesis.

On another note, geometrically modeling the applicator will undeniably provide more
accurate numerical results. This of course involves the difficulty of demanding a higher
resolution, in order to resolve all fine structures. Such a step might require some type of
grid adaptivity, and (sub-voxel) interface matching of the fields. This should incorporate
the fact that a large number of MWA applicators nowadays are cooled by liquid.

Finally, after tying up the loose ends presented in the current and previous sections, one
could move on to the experimental validation phase. Ideally, one would test the predicted
numerical results against the medical intervention results, within the scope of a large-scale
clinical trial. Covering a wide range of physiologies (fatty liver disease, cirrhosis, etc.) and
geometries would be required in order to yield robust results.

While effortless for us to list, most of these improvements will require a (continued)
significant interdisciplinary effort. A thorough further collaboration between research
scientists, medical practitioners and electrical engineers will be vital, in order to achieve
the desired experimental accuracy. However, given sufficient academic initiative, there is
no doubt that applied mathematics will continue to strengthen not only microwave liver
ablation, but medical practice as a whole.
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