
On the Integration of Array and

Relational Models in Databases

by

Dimitar Mǐsev

A thesis submitted in partial fulfillment for the degree of

Doctor of Philosophy

in

Computer Science

Prof. Dr. Peter Baumann

Jacobs University Bremen

Prof. Dr. Michael Sedlmair

Jacobs University Bremen

Prof. Dr. Tore Risch

Uppsala University

Dr. Heinrich Stamerjohanns

Jacobs University Bremen

Date of defense: May 15th, 2018

Computer Science & Electrical Engineering

d.misev@jacobs-university.de
https://www.jacobs-university.de/department/computer-science-electrical-engineering

Statutory Declaration

Family Name, Given/First Name Mǐsev, Dimitar

Matriculation number 20327580

Type of thesis PhD

English: Declaration of Authorship

I hereby declare that the thesis submitted was created and written solely by myself

without any external support. Any sources, direct or indirect, are marked as such. I am

aware of the fact that the contents of the thesis in digital form may be revised with regard

to usage of unauthorized aid as well as whether the whole or parts of it may be identified

as plagiarism. I do agree my work to be entered into a database for it to be compared

with existing sources, where it will remain in order to enable further comparisons with

future theses. This does not grant any rights of reproduction and usage, however.

This document was neither presented to any other examination board nor has it been

published.

German: Erklärung der Autorenschaft (Urheberschaft)

Ich erkläre hiermit, dass die vorliegende Arbeit ohne fremde Hilfe ausschließlich von

mir erstellt und geschrieben worden ist. Jedwede verwendeten Quellen, direkter oder

indirekter Art, sind als solche kenntlich gemacht worden. Mir ist die Tatsache bewusst,

dass der Inhalt der Thesis in digitaler Form geprüft werden kann im Hinblick darauf, ob es

sich ganz oder in Teilen um ein Plagiat handelt. Ich bin damit einverstanden, dass meine

Arbeit in einer Datenbank eingegeben werden kann, um mit bereits bestehenden Quellen

verglichen zu werden und dort auch verbleibt, um mit zuk̈ıunftigen Arbeiten verglichen

werden zu können. Dies berechtigt jedoch nicht zur Verwendung oder Vervielfältigung.

Diese Arbeit wurde noch keiner anderen Prüfungsbehörde vorgelegt noch wurde sie bisher

veröffentlicht.

Date, Signature

iii

Abstract

Array databases are a quickly expanding category of database management systems that

treat large multidimensional arrays as first-class database citizens. Array data itself is

almost always linked to additional, non-array information, but this is not adequately

handled in today’s systems. Array databases specialize in the management of array data,

while other systems, e.g. relational DBMS, have at best only very basic support for arrays.

As a result, handling array data in practice most often requires either multiple DBMS

with manual data integration and synchronization, or dedicated solutions constrained to

a narrow domain.

This thesis addresses this situation by extending the relatonal data model with support

for multidimensional arrays in a non-intrusive way that is orthogonal to its set semantics.

The array model itself is declarative, optimizable, and minimal, yet powerful enough for

application domains in science, engineering, and business. The algebraic formalization is

materialized into an official standard ISO SQL extension known as SQL/MDA. A proof of

concept mediator implementation of SQL/MDA – utilizing a new array processing engine

optimized for modern hardware and a standard relational DBMS – demonstrates practical

feasibility of the established concepts. All in all, this thesis covers in completeness the

topic of array / relation integration in databases and presents a theoretically sound and

practically viable solution.

Acknowledgements

A PhD thesis – or really the product of any multi-year project – is in fact a result of the

combined effort of many people, not just the primary author; I want to mention here all

the people that in one way or another supported me in bringing this work to life.

Foremost, I want to thank my advisor, Prof. Dr. Peter Baumann, for the patient guidance

and continuous support. Thank you for encouraging me during the tough moments, and

conversely for questioning my findings in the good ones. In addition, I am very grateful

to Dr. Heinrich Stamerjohanns, Prof. Dr. Tore Risch, and Prof. Dr. Michael Sedlmair,

for reviewing my progress and the insightful feedback and suggestions.

The SQL/MDA specification – which comprises one part of this thesis – has evolved into

a robust international standard thanks to all the ISO SQL experts in the ISO/IEC JTC

1/SC 32/WG 3 group. Without their meticulous reviews, comments, and contributions

over the last few years we would have likely been still quite far from achieving this level

of support for multidimensional arrays in SQL.

Big thank you goes to all my present and former colleagues at the L-SIS research group

and rasdaman GmbH for the many discussions, idea exchanges, proof-reading. To the

organizers of the Earth System Science Research School (ESSReS), thank you for the

opportunity to be a part of this amazing group of PhD students and all the workshops

which really helped kick-start my PhD.

I am etternally grateful to my parents and family for unconditionally supporting me

throughout the years. Thank you to my friends for bearing with my general unavailability

and occasional crankiness, inevitable byproducts of being a PhD student.

Lastly, I want to especially thank my fiancée for always being by my side. This would

have been far harder and less fun without her loving and cheerful presence, perceptive

understanding and support. Thank you Mariam.

v

Contents

Declaration of Authorship iii

Abstract iv

Acknowledgements v

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Problem Statement . 4

1.2 Research Direction . 5

1.3 Research Results . 6

1.4 Thesis Outline . 7

2 Algebraic Treatment of Arrays and Relations 9

2.1 Array Model . 10

2.1.1 Array Definition . 10

2.1.2 Array Operations . 15

2.1.2.1 Construction . 15

2.1.2.2 Aggregation . 20

2.1.2.3 Subsetting . 22

2.2 Relational Embedding . 26

2.2.1 Relation Definition . 26

2.2.2 Arrays as Attributes . 29

2.2.3 Array / Relation Conversion . 30

2.2.4 Cross-tuple Array Aggregation . 35

3 Multidimensional Arrays in SQL with SQL/MDA 37

vi

Contents vii

3.1 Introduction . 37

3.1.1 Why consider support for multidimensional arrays in SQL? 37

3.1.2 Array representations . 37

3.1.3 MDA terminology . 39

3.1.4 Use cases for MDA support in SQL 39

3.1.4.1 Array data import, storage and export 40

3.1.4.2 Integrated querying of array and relational data 41

3.1.4.3 Updating stored array data 41

3.1.4.4 Exporting arrays . 42

3.2 SQL/MDA Data Model . 42

3.2.1 MD-array . 42

3.2.2 MD-array type definition . 43

3.2.2.1 Element type . 43

3.2.2.2 MD-dimension . 44

3.2.2.3 MD-axis names . 44

3.2.2.4 MD-axis lower and upper limits 45

3.2.2.5 Putting it all together . 46

3.2.3 MD-array creation . 46

3.2.3.1 Explicit element enumeration 47

3.2.3.2 From SQL table query result 49

3.2.3.3 Construction by implicit iteration 50

3.2.3.4 Decoding a format-encoded array 50

3.2.4 MD-array updating . 51

3.2.4.1 Updating MD-arrays of equal MD-dimension 52

3.2.4.2 Updating MD-arrays of greater MD-dimension 54

3.2.4.3 Updating a single element of an MD-array 54

3.2.5 Exporting MD-arrays . 55

3.2.5.1 Encoding to a data format 55

3.2.5.2 Converting to an SQL table 55

3.3 SQL/MDA Operations . 57

3.3.1 MD-extent probing operators . 58

3.3.2 MD-array element reference . 60

3.3.3 MD-extent modifying operators . 61

3.3.3.1 Subsetting . 61

3.3.3.2 Reshaping . 62

3.3.3.3 Shifting . 63

3.3.3.4 MD-axis renaming . 65

3.3.4 MD-array deriving operators . 65

3.3.4.1 Scaling . 65

3.3.4.2 Concatenation . 67

3.3.4.3 Join MD-arrays on their coordinates 68

Contents viii

3.3.4.4 Induced operations . 68

3.3.5 MD-array aggregation . 72

3.3.5.1 General aggregation expression 72

3.3.5.2 Shorthand aggregation functions 73

3.4 Remote Sensing Use Case . 74

3.4.1 Data setup . 74

3.4.2 Band math . 75

3.4.2.1 NDVI . 76

3.4.2.2 Band Swapping . 80

3.4.3 Histograms . 81

3.4.4 Change Detection . 83

3.4.5 Extracting Features . 84

3.4.6 Data Search and Filtering . 86

3.5 Weather Forecasting Use Case . 86

3.5.1 Rainfall Scenario . 86

3.5.2 Discrete Fourier Transform . 89

3.6 Life Sciences Use Case . 90

3.6.1 Gene expression data management 90

3.6.2 Human brain imaging . 92

4 A Modern Array Database Processing Engine 94

4.1 Evaluation Model . 95

4.1.1 Tile-based Processing . 96

4.1.2 Single-band Tiles . 99

4.2 Logical Query Tree . 101

4.2.1 Type Deduction and Verification 102

4.2.2 Array Constructor Optimization 102

4.2.2.1 Algebraic Transformations 103

4.2.2.2 Parallelization . 107

4.2.2.3 Loop Unrolling . 108

4.2.3 Pushing Reducing Operations Down 108

4.2.4 Band Splitting and Merging . 109

4.2.5 Tile Splitting and Merging . 110

4.3 Evaluation . 111

4.3.1 Array Constructor . 111

4.3.2 Derived and Special Operations . 115

5 SQL/MDA Query Mediator 119

5.1 Evaluation Model . 120

5.2 Performance Evaluation . 126

Contents ix

6 Related Work 130

6.1 The Relational Model . 130

6.1.1 Arrays in Relational Databases . 132

6.2 Array Models . 132

6.2.1 A Call to Order . 133

6.2.2 Array Algebra . 133

6.2.3 AQL . 134

6.2.4 AML . 135

6.2.5 RAM . 137

6.3 Array Databases . 138

6.3.1 rasdaman . 138

6.3.2 PostGIS Raster . 139

6.3.3 SciQL . 140

6.3.4 SciDB . 141

6.3.5 Grid DataBlade . 142

6.3.6 IQL . 143

6.3.7 SciSPARQL . 143

6.3.8 EXTASCID . 144

6.3.9 Ophidia . 144

6.4 Heterogeneous Database Integration . 145

7 Conclusion 148

7.1 Outlook . 149

Bibliography 150

List of Figures

1.1 Sensor revolution [17] . 2

1.2 Multidimensional raster data in geo and life sciences [16] 2

1.3 History of systems for array data management [22] 3

1.4 EO-WCS/EO-WMS services make use of heterogeneous data [51] 4

2.1 caption . 19

3.1 The logical structure of an array encoded in the TIFF format [104]. . . . 38

3.2 Relationships between “MDA” and “SQL/MDA” 42

3.3 The structure of an MD-array value illustrated on a sample 3x3 array. . . 43

3.4 Placement of satellite images of each country on a world map [44] 45

3.5 Example of an SQL table that corresponds to a 3x3 MD-array (Figure 3.3). 49

3.6 Example of an SQL table converted to a 3x3 MD-array with MD-extent
[i(-1:1), j(-1:1)]. The missing elements are set to SQL null values (denoted
as ω on the figure). 50

3.7 The red rectangle is the MD-extent of T , while the white rectangle with
black border is its maximum MD-extent. The green rectangle is the MD-
extent of S. The result MD-array of the update is the rectangle formed
of the red, yellow and green parts; the elements in the yellow subset are
set to null. 53

3.8 Updating a 3-D MD-array with a 2-D source MD-array. 54

3.9 MD-array subsetting examples; blue denotes the original array, while
red shows the subset array. The a) and c) examples preserve the MD-
dimension, i.e. the subset contains only “trims”, while b) removes, or
“slices” one MD-axis and d) slices two MD-axes, resulting in MD-arrays of
smaller MD-dimension. 61

3.10 MD-array reshaping example; the original MD-extent is marked as a gray
rectangle, while the new MD-extent after applying MDRESHAPE is the
yellow (including the gray) rectangle. 63

3.11 MD-array shifting example; the original MD-extent is marked as a gray
rectangle, while the new MD-extent after applying MDSHIFT is the yellow
rectangle. 64

xi

List of Figures xii

3.12 MD-array scaling example; the MD-array on the left is enlarged with
MDSCALE to the MD-array on the right. 66

3.13 The left example shows concatenation along the first MD-axis, and the
example on the right shows concatenation along the second MD-axis. . . . 67

3.14 Example of summing two MD-arrays; the elements of the result MD-array
C are obtained by summing the corresponding elements of the input MD-
arrays A and B. 69

3.15 Visible color (RGB) bands of a Landsat TM scene capturing the shore of
Mississippi/Alabama on October 3, 2011. 76

3.16 NDVI result stretched to the range p0, 255q. 78

3.17 NDVI values between 0.2 and 0.4 shown in white, while everything else is
black. 79

3.18 Color-mapped NDVI result, from dark blue, through grey, to dark green. . 80

3.19 False color image constructed from the near IR, red and green bands. . . 81

3.20 Histogram of the NDVI index of a Landsat TM scene. 82

3.21 A composite image with an NDVI index from different years in each channel. 84

3.22 Natural RGB color of barrier islands area. 85

3.23 Binary image showing isolated islands. 85

3.24 Precipitation distribution in the world on July 2010. 88

3.25 Cloud-free mosaic from Landsat imagery. 88

3.26 Threshold filtering of Drosophila gene expression activity (left: original
slice, right: filtered slice) [112]. 90

3.27 Combination of different channels into an RGB image [112]. 91

3.28 Brain data processing in the NeuroGenerator project [121]. 93

4.1 Array query processing engine workflow. 95

4.2 Parallelized physical node evaluation example for Q1. The tree has been
”reduced” for clearer presentation, in reality it has two more identical
UnionBands nodes (as the rgb array has four tiles). 96

4.3 Benchmark results of evaluating Q1 on a 1 GB 2-D floating-point array. . 97

4.4 Benchmark results of evaluating Q2 on a 1 GB 2-D floating-point array. . 98

4.5 Total CPU utilization of 8 CPU cores (800%) during the evaluation of Q1
and Q2. 99

4.6 Peak memory use during the evaluation of Q1 and Q2; Q3 is equivalent
to MDSUM(Q2). 100

4.7 Applying a unary negation to all elements of a 3-band tile in pixel-
interleaved and band-separated fashion. 101

4.8 Applying a binary plus operation to all elements of two 3-band tiles in
pixel-interleaved and band-separated fashion. 102

4.9 Calculating the sum of all elements of a 3-band tile in pixel-interleaved
and band-separated fashion. 103

List of Figures xiii

4.10 Logical tree corresponding to query Q1 before the type deduction process
(left) and after (right). 104

4.11 Logical tree corresponding to query Q2 before the subset operations are
pushed down (left) and after (right). 109

4.12 Logical tree corresponding to query Q1 after the multi-band arrays are
split into separate bands with ExtractBand operations, and merged at the
end with the UnionBands operation. 110

4.13 Logical tree corresponding to query Q3 after array nodes are replaced with
tile nodes and a corresponding Union operation which merges tiles back
into a single array; note that only two tiles (IDs 1 and 3) are selected by
the subset. 111

4.14 Array constructor performance before and after optimizations. 115

4.15 General operations benchmark comparing rasdaman, SciDB, and the new
array processing engine. 118

5.1 Mediator server integrating diverse databases 120

5.2 Unified mediator model. 121

5.3 Query tree for the example after parsing and initial node classification. . . 124

5.4 Query tree after reclassifying the ambiguous nodes and determining the
query sub-trees T1´ T5. 125

5.5 Query tree corresponding to Q1. 126

5.6 Benchmark results on arrays of different size. 129

6.1 Geometry class hierarchy in Simple Features Access [66] 139

List of Tables

2.1 Array metadata functions in ASQL. 14

2.2 Common induced operations. 17

2.3 Reduce functions. 20

2.4 Relational aggregation functions. 28

2.5 Relation r contains an array at id “ 1 with values 5 and 3 at coordinates 0
and 1, respectively, and a similar array with values 8 and 4 at coordinates
2 and 3. 32

2.6 Relation resulting from unnesting the array attribute a in r. 32

2.7 Relation r contains two arrays both with id “ 1. 35

2.8 Relation p resulting from unnesting the array attribute a in r. 35

2.9 Induced relational aggregation functions: Definition 1 uses a regular ag-
gregation function to aggregate the results of reducing each array, while
Definition 2 nests the array tuples into one big array and applies the
corresponding reduce function (assuming Dw : w R namespAq). 36

3.1 Terms and definitions . 39

3.2 Examples of MD-array type definitions. 47

3.3 Examples of MD-arrays constructed by element enumeration. 48

3.4 Examples of MD-arrays created with the constructor by iteration. 51

3.5 Examples of MD-arrays created from JSON-encoded arrays. 52

3.6 Examples of MD-arrays encoded to JSON arrays. 56

3.7 Result of example UNNEST query. 57

3.8 Result of example UNNEST query specifying WITH ORDINALITY. . . . 57

3.9 Examples with MD-extent probing functions. 59

3.10 Result of MDEXTENT(kernel). 59

3.11 Result of MAX MDEXTENT(kernel). 59

3.12 Examples of referencing a single element in an MD-array. 60

3.13 Examples of MD-array subsetting. 63

3.14 Examples of MD-extent reshaping. 64

3.15 Examples of MD-extent shifting. 65

3.16 Examples of MD-axis renaming. 65

3.17 Interpolation methods defined in ISO 19123 [71]. 66

xiv

List of Tables xv

3.18 Examples of MD-array concatenation. 67

3.19 Examples of MDJOIN. 68

3.20 Examples of induced function application to MD-arrays. 69

3.21 Induced operators in SQL/MDA. 70

3.22 Examples of induced MD-array expressions. 70

3.23 Examples of induced MD-array casting. 71

3.24 Examples of induced CASE expression. 71

3.25 Identity elements for the <md-array aggregation operator>s. 72

3.26 Examples of general MD-array aggregation. 73

3.27 Predefined aggregation operators. A is a numeric MD-array, B is a boolean
MD-array, and C is an MD-array of any element type. All are of the
same MD-dimension d and the same MD-extent D denoted as rN1pLO1 :
HI1q, . . . NdpLOd : HIdqs. 73

3.28 Landsat TM bands. 74

4.1 Benchmark machine specs. 97

4.2 Benchmark machine specs. 101

4.3 Cell expression classes. 105

4.4 Benchmark machine specs. 112

4.5 Array constructor benchmark categories. 112

4.6 Array constructor benchmark queries for each category. 113

4.7 Operations benchmark categories. 115

4.8 Operations benchmark queries for each category; if it is not explicitly
specified in the description we assume that the arrays are 2-D. 116

5.1 Benchmark queries evaluated in ASQLDB and SciQL. 128

Chapter 1

Introduction

“In the 1980s, the PC revolution put computing at our fingertips. In the 1990s, the Internet

revolution connected us to an information web that spans the planet. Now we are facing

the Sensor Revolution.” These are the first lines of a special report on sensors by the

US National Science Foundation [139]. Sensors are becoming more and more powerful

and ubiquitous (Figure 1.1); resolution is steadily increasing while cost and size are

going down. This inevitably leads to data explosion at a rate that exceeds Moore’s law1,

according to Yahoo CEO Marissa Mayer [94]. Big Data is a term that characterizes this

trend perfectly. It is used to describe datasets that grow to be so large and complex

that using standard tools to collect, store, analyze, search, and visualize becomes almost

impossible.

One of the data types prevalent in Big Data are multidimensional arrays. Looking

at scientific data, for example, we find that 1-D sensor data, 2-D satellite images and

microscope scans, 3-D x/y/t image time-series and x/y/z voxel models, 4-D climate

models, and even higher dimensional data are at the very heart of virtually all domains

(Figure 1.2). Existing frameworks, like AFATL Image Algebra [145] and Tomlin’s Map

Algebra [135], commonly used desktop tools like Matlab and R, and supercomputer

code like LAPACK [5] demonstrate that Linear Algebra, image / signal processing,

statistics, etc. on array data are feasible on the operation side. Array computational

paradigms and models specifically tailored to databases have been published since the

early 90’s [11, 12, 41, 82, 84, 93, 137]. They have received more significant attention from

the database research community only recently, however, as the NoSQL and NewSQL

movements have systematically broadened the scope of database models.

1an observation that the number of transistors per square inch on integrated circuits doubles approxi-
mately every two years [27]

1

Chapter 1. Introduction

Figure 1.1: Sensor revolution [17]

Figure 1.2: Multidimensional raster data in geo and life sciences [16]

While contributing massively to Big Data, array data is nowadays mostly maintained

in ad-hoc solutions crafted by data centers, with functionality often constrained to file

download and only gradually increasing functionality portfolios [25, 91, 124, 136, 141].

Alternatively, more general, domain-neutral solutions are available in the form of array

databases that treat multidimensional arrays as first-class database citizens. Among the

pioneers in this field (Figure 1.3) is the rasdaman array database [11]. PostGIS Raster

2

Chapter 1. Introduction

is an extension of PostGIS [106] which adds support for 2-D raster data. SciDB [131] is

a recent attempt at developing a distributed array DBMS, and SciQL [148] is an array

query language, with prototype implementation on top of MonetDB [92]. Both SciDB

and SciQL model arrays like tables in SQL; rasdaman and PostGIS Raster on the other

hand treat arrays as a new attribute type.

Figure 1.3: History of systems for array data management [22]

Today, array databases have achieved a level of maturity making them amenable to

standardization and operational deployment. Real-life use cases have been exercised

in satellite image services [21], climate data analysis [29], gene expression simulation

[112], human brain analysis [121], planetary science [107], and cosmological simulation

[34, 77, 147]. Single databases have exceeded the Petabyte frontier [9, 48], and single array

queries have been split across more than 1,000 cloud nodes [47]. Relevant results exist

on algebraic modelling [12] including expressiveness comparison [18], query language [11]

and optimization [119], adaptive array partitioning [57], and query compilation [76].

3

Chapter 1. Introduction

1.1 Problem Statement

Array databases specialize in handling multidimensional array data and do not provide

adequate support for further data types. Relational databases, on the other hand, have

focused on optimization for the typical business use-cases and lack suitable support for

multidimensional arrays. The need for managing these types of information simultane-

ously, however, arises in many situations.

• Multidimensional raster data typically comes with manifold metadata, which is

naturally amenable to relational modeling. An example of such metadata / array

data integration is the OGC [39] standard, EO-WCS [24] (Figure 1.4).

• A WMS [45] server can publish raster data as map layers, which are similarly

described by various metadata.

Figure 1.4: EO-WCS/EO-WMS services make use of heterogeneous data [51]

• In medical imaging the typical work-flow involves capturing and storing images

(e.g. brain scans), analyzing them with dedicated image processing routines and

associating each image with medical indicators, in order to help diagnosing diseases.

This cannot be achieved using a single database system. The medical imaging

application has to issue queries to several different databases and combine the

results itself for every operation, which potentially leads to complex and inefficient

code. An early example of such a system is NEUROGENERATOR, a database

system for analyzing functional 3-D brain images [121].

4

Chapter 1. Introduction

Many more similar use-cases demonstrate the need for an integration of such multi-type

and multi-source data at the database tier, in order to efficiently and more flexibly cope

with the growing magnitude and complexity of information nowadays.

Traditionally this situation has been addressed by performing the query distinction

and result integration at the application level. Petascope [3], a rasdaman front-end

for several OGC standards, including WCS [15], WCPS [13], and WMS [45], provides

a suitable use-case. The standards implemented by Petascope are built around the

concept of a coverage2, which is inextricably linked to additional geo-spatial information,

beyond the basic metadata inherent to the multidimensional array itself3. Coverages in

Petascope are managed by storing the coverage data in rasdaman, and separately storing

all additional metadata in a relational database. Resolving requests therefore requires

querying the relational system, and based on the information retrieved, building and

sending a corresponding rasql query [115] to rasdaman.

Such an approach incurs several problems. It leads to increased complexity of applications,

as several databases with different interfaces and query languages need to be employed

and managed. There is no guarantee on referential integrity across the systems. Hard-

wiring the data/metadata integration into the code makes it inflexible with respect

to arbitrary user queries – the system can only do what it has been hard-coded to do.

Finally, it compromises efficiency and scalability, as much data processing and integration

is moved from the database to the application level.

1.2 Research Direction

Given the situation described in the previous Section we want to establish an integrated

relational/array database model with a suitable underlying engine as its implementation.

The general research question to address and solve is:

How to combine access to and processing of heterogeneous data, in particular

relational and multidimensional array data, within a single query language,

with evaluation performance comparable to custom-based, hand-crafted solu-

tions?

The research track outlined in this thesis evolved from the initial work on Integrated Query

Language (IQL) by Aiordachioaie [2]. This work starts with a similar premise, but takes

2“digital geo-spatial information representing space/time-varying phenomena” [15]
3dimensionality, integer dimension extents, array cell type

5

Chapter 1. Introduction

on a rather informal and narrow approach to addressing it. Specific practical constraints,

namely integration of PostgreSQL and rasdaman, serve as a general guide, resulting in

a somewhat arbitrary and incomplete query language integration. Optimizations were

not investigated and hence it was of limited practical significance.

Subsequent effort by the author [100] on addressing the open issues in IQL was of limited

success and ultimately lead to developing the direction presented in this thesis. It quickly

became obvious that building a solid foundation with a rigorous theoretical formalization

of an integrated relational / array algebra is necessary [102] (further refined in [103]).

In practice this is materialized with the standardization of an official ISO SQL part

dedicated to multidimensional arrays [96]. Finally, with the SQL/MDA implementation

ASQLDB [101, 103] we have demonstrated performance on par with code that manually

implements the optimal integration path.

1.3 Research Results

The research carried out as part of this thesis work leads to the following statement:

Embedding multidimensional arrays as attributes within the relational model is

a theoretically as well as a practically sound approach to integrating advanced

array analytics and relational query processing.

This claim is supported by the following contributions:

Integration of extended Array Algebra with Relational Algebra. Published in

[102] and [103], and covered in full depth in Chapter 2.

The array model and algebra is laid out, based on concepts from the most successful

approaches in existence: mainly Array Algebra [11], but also the WCPS standard [13],

SciQL [148] and SciDB [131]. This is then integrated into the relational model following

the “array-as-attribute” approach, where arrays are embedded as relational attributes.

A more native integration is established with concepts such as support for conversion

between arrays and relations and cross-tuple array aggregations, that bridge the gap

with “array-as-table” approach. Finally, we consider potential bottlenecks that could

arise particularly as a result of the integrated query evaluation and identify algebraic

optimizations that can be applied.

SQL/MDA: multidimensional array analytics in standard SQL. Published in

[102] and [103], as a technical report [126], and a standard to be published soon [96]; a

summary is provided in Chapter 3.

6

Chapter 1. Introduction

We have successfully translated the integrated array / relational model into SQL/MDA

as an official addition to SQL, the most popular relational database query language. This

was carried out with the support and meticulous reviewing by the members of the ISO

SQL standardization body (ISO/IEC JTC 1/SC 32, WG 3). The significance of this

effort to the thesis is that it provides a validation to the practical significance of our

approach. Furthermore, as discussion with the SQL experts unfolded it lead to several

improvements and refinements of the theoretical model itself.

Efficient array query processing on modern hardware. Covered in Chapter 4,

with a publication in preparation.

An SQL/MDA implementation can only be as efficient as the relational and array DBMS

technology underneath. We advance the state of the art in Array Database research by

investigating the optimal strategies for large array query processing. Of prime importance

are maximizing utilization of computing resources distributed in multi-core multi-device

fashion and minimizing main memory usage. Furthermore, we payed close attention at

optimizing general array construction which is the core operator of Array Algebra. In

benchmarks our modern array processing engine often demonstrated orders of magnitude

improvement over the leading array databases rasdaman and SciDB.

Efficient mediator implementation of SQL/MDA. Published in [103], discussed

in Chapter 5.

To demonstrate that the integrated model can be actually used on data cubes in real-world

environments, we investigated what would be the most sensible approach to implementing

it. This materialized with the development of an open-source mediator system, ASQLDB

[101]. It fully implements the SQL/MDA standard by optimally splitting queries into

relational and array sub-queries. The first are evaluated internally in HSQLDB [62], the

system ASQLDB is based on, and the later are evaluated in rasdaman [114]. Several

benchmarks demonstrated that ASQLDB mostly outperforms the implementation of

SciQL, and that its performance matches hand-written code that manually implements

the most optimal query integration.

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 lays out an algebraic formalization of the

array model, along with its integration into the relational model and optimizations. The

SQL/MDA extension of the SQL standard is presented in Chapter 3. Chapter 4 discusses

a novel array query processing engine built from the ground-up with support for modern

hardware in mind. The design, implementation and evaluation of a mediator SQL/MDA

system is covered in Chapter 5. Chapter 6 presents an overview of the relevant literature

7

Chapter 1. Introduction

and how it relates to the contributions made in this thesis, focusing on the relevant bits

of relational and array systems, and existing work in the field of mediators and federated

databases. Finally conclusion and outlook are given in Chapter 7.

8

Chapter 2

Algebraic Treatment of Arrays

and Relations

In this Chapter we lay out the notation and algebraic formalization of the integrated

array / relational model ASQL. The array model that we have defined is inspired by

the work on Array Algebra [11, 12], an algebra particularly tailored to database query

languages. We have chosen it as a basis for several reasons:

— Array Algebra, while offering a rich set of operations, is a ”minimal language” which

relies on only two essential primitives. This makes it particularly handy as a uniform for-

mal basis describing querying, optimization, storage organization, distributed processing,

etc.

— Other array models can be described through Array Algebra (see [18, 123] for a

study on the most prominent array models).

— As opposed to approaches using an ”array as table” approach, Array Algebra with

its ”array-as-attribute” model offers a separation of concerns which eases its embedding

in whatever overarching data model; implementation evidence for this statement exists

for the relational model [11], XML [13, 14], and RDF-based ontologies [6].

— Array Algebra is implemented in the Array DBMS rasdaman1 (”raster data man-

ager”) where its practical applicability has been proven repeatedly in numerous multi-

Petabyte operational installations.

1www.rasdaman.org

9

Chapter 2. Algebraic Treatment of Arrays and Relations

In ASQL we extend Array Algebra with concepts that experience in the meantime has

shown are very useful, like axis names instead of axis position numbers, and then integrate

it into the relational model in the following Section.

2.1 Array Model

This Section defines the multidimensional array data-structure and operations supported

on it. But first, let us establish the list / tuple notation that is ubiquitously used further

on. Given a d-tuple2 v “ pv1, . . . , vd q:

— |v| “ d denotes its size (or degree);

— πipvq :“ vi :“ vi references the i-th element;

— t P v iff D 1 ď i ď d : t “ vi;

— w Ď v iff @ 1 ď i ď |w| : wi P v;

— vzn is similar to set difference, resulting in a tuple without the elements n;

A list w “ rw1, . . . , vd s is similarly an ordered collection of elements, with the addi-

tional restriction, however, that they have to be all of the same type. The notation is

mostly shared, except that square brackets are used as an in-place constructor, instead

of parentheses.

2.1.1 Array Definition

Informally, a dense multidimensional array is an ordered collection of equally-typed

elements that are uniquely referenceable through their coordinates limited by a certain

spatial extent. Following are the parts building a more formal definition.

Definition 2.1 (Spatial extent) A spatial extent E (also called bounding box or shape),

is defined as a list of loi and hii integer pairs such that loi ď hii for 1 ď i ď d, d ą 0:

E :“ rr lo1, hi1 s, . . . , r lod, hid ss

For notational clarity we prefer to write E as r lo1 : hi1, . . . , lod : hid s; loi and hii are the

lower and upper limits, respectively, of the i-th axis (or dimension) of E. r s denotes a

0-dimensional spatial extent with no axes.

2The term d-tuple is used interchangeably with tuple.

10

Chapter 2. Algebraic Treatment of Arrays and Relations

Given two spatial extents E1 “ r lo
1
1 : hi11, . . . , lo

1
d : hi1d s and E2 “ r lo

2
1 : hi21, . . . , lo

2
d : hi2d s

of the same dimension d, the notion that E1 is within E2 is defined as:

E1 Ď E2 ô @ 1 ď i ď d : lo1i ě lo2i ^ hi
1
i ď hi2i

We define the union E1 Y E2 as:

E1 Y E2 :“ rminplo11, lo
2
1q : maxphi11, hi

2
1q, . . . ,minplo

1
d, lo

2
dq : maxphi1d, hi

2
dqs

The set of valid d-dimensional spatial extents Ed is called spatial extent type:

Ed :“

#

E` d ą 0

r s d “ 0

where

E` :“ tE : E “ r lo1 : hi1, . . . , lod : hid s, loi, hii P Z, loi ď hii, 1 ď i ď du

E denotes the set of valid spatial extents of any dimension:

E :“ tEd : d P N0 u

Definition 2.2 (Spatial domain) Let rr lo : hi ss :“ ti : i P Z, lo ď i ď hiu denote the

closed interval of all integers from lo to hi for some lo ď hi. We define δ : pZˆZqd Ñ Zd,

d ě 0 to be a d-dimensional Euclidean interval generating function:

δpEq :“

$

’

&

’

%

d
Ś

i“1
rr loi : hii ss d ą 0

tr su d “ 0

D “ δpEq is essentially a set of coordinates (or points) filling a d-dimensional axis-parallel

data cube, and is otherwise known as spatial domain. We use the same notation for a

spatial domain as for the spatial extent. A spatial domain D1 is within another spatial

domain D2 if D1 Ď D2.

The set of all valid d-dimensional spatial domains Dd Ď PpZdq is known as spatial

domain type:

Dd :“ tD : D “ δpEq, E P Ed u

D denotes the set of valid spatial domains of any dimension:

D :“ tDd : d P N0 u

11

Chapter 2. Algebraic Treatment of Arrays and Relations

Remark. While the term “spatial” fits well in the abstract algebra being established

here, it is worth noting that the axes of the extent/domain can often be of non-spatial

nature in practical applications, representing various phenomena such as time, pressure,

wavelength, etc.

Definition 2.3 (Array base type) Array elements can be of arbitrary element type V ,

also known as the array’s base type (domain in the relational model); for example, V

could be the natural numbers N0, integers Z, real numbers R, complex numbers C, or

Boolean values B. We denote with T the set of all admissible base types.

Definition 2.4 (Array) An array, then, can be defined as a function

a : D Ñ V

which maps elements from a spatial domain D P D to a non-empty value set V P T .

Each x “ rx1, . . . , xd s P D establishes a coordinate position. We call a pair px, v q with

x P D and v P V a cell, or element, with coordinate x and value v. Thus, a V -valued

multidimensional array on domain D can equivalently be defined as:

A :“ tpx, apxqq : x P D, apxq P V u

A distinguishing feature is the support for potentially negative integer coordinates. This

allows safe array extension in any direction without changing existing values’ coordinates,

which would invalidate all potential outside references to locations within the array.

Furthermore, some arrays naturally have negative indices. Filter kernels for example

extend around the origin of the Cartesian coordinate system.

Non-integer coordinates (real numbers, strings, etc.), however, are not supported for

several reasons. Firstly, such a generalization entails conceptual problems, bringing an

unnecessary burden to the model. Adding real-valued coordinates for purposes such as

modeling of geographic positions, for example, does not take into account the diverse and

complex practice of irregular grids or different Coordinate Reference Systems (CRS) [23];

burdening a domain-agnostic approach with such domain-specific details is impractical

and infeasible. Secondly, any finite totally ordered set can be mapped to the integers

in an order-preserving way; common practice is to do this by ornamenting the arrays

appropriately through separate metadata, such as dimension hierarchies in OLAP or

geographic coordinates for a particular CRS.

Definition 2.5 (Array type) An array type T :“ 〈E, V 〉 is the set of all arrays with

a spatial extent within E P E and a base type V P T :

〈E, V 〉 :“
ď

E1ĎE

tA : A “ tpx, v q : x P δpE1q, v P V uu

12

Chapter 2. Algebraic Treatment of Arrays and Relations

A denotes the set of all arrays of any dimension and base type:

A :“
ď

EPE

ď

V PT
〈E, V 〉

Definition 2.6 (Scalar) A 0-dimensional array is otherwise known as a scalar. By

definition, we take the single element that the array contains to be equivalent to the

whole array:

tpx, apxqq : x P D0, apxq P V u ” tpr s, v “ apr sqqu ” v

Remark. Array Algebra does not support 0-dimensional arrays and scalars are just regular

values. With the modified definition presented here we achieve a more consistent array

model, especially with respect to operations like slicing (Definition 2.27), so that A is

closed under all operations on arrays.

So far, we have recapitulated Array Algebra, with the slight modification to allow 0-

dimensional arrays and treat them as scalars. Next, we introduce support for axis names,

i.e. associating the i-th axis with a unique identifier ni. This allows us to abstract axes

away from their order in operations that reference them, such as subsetting.

Definition 2.7 (Extended array) Let n “ rn1, . . . , nd s be a list of pairwise unique

identifiers; the array definition (2.4) can be extended to take into account the axis names

n as follows:

A :“ pn, Aq :“ pn, D Ñ V q

To simplify notation, we will consider A to be equivalent to A, except when referencing

the axis names n. The spatial extent (Definition 2.1) is extended to include axis names:

E :“ rrn1, lo1, hi1 s, . . . , rnd, lod, hid ss

E :“ rn1p lo1 : hi1 q, . . . , ndp lod : hid qs

Given two spatial extents E1 and E2 of the same dimension d, the notion that E1 is

within E2 is updated as well:

E1 Ď E2 ô @ 1 ď i ď d : lo1i ě lo2i ^ hi
1
i ď hi2i ^ n

1
i “ n2i

In addition, for d ą 0, the d-dimensional spatial extent type E` is redefined as:

E` :“ tE : E “ rn1p lo1 : hi1 q, . . . , ndp lod : hid qs, loi, hii P Z,

loi ď hii, ni P Σ˚, ni ‰ nj , i ‰ j1 ď i, j ď du

Σ˚ denotes the set of all strings over an alphabet set Σ (the Kleene closure of Σ).

13

Chapter 2. Algebraic Treatment of Arrays and Relations

Finally, it is necessary to define the handling of missing information; e.g. how to represent

the values at positions over land in an array that measures only sea-surface temperature?

Array Algebra [11] uses a null value specific to the base type of the array for this purpose.

Similarly, data formats used in science typically encode missing information by choosing a

value within the range set of the data type. In NetCDF [116] for example, a missing value

can be specified with a “ FillValue” attribute for any variable in the dataset. Reserving

a value from the value set for this purpose is an unnecessary restriction especially in

database contexts; in data exchange formats, this is mostly done for reasons of efficiency

and convenience.

Definition 2.8 (Null value) We adopt the concept of a special null value marker ω, as

introduced and in use by the relational model [38]. In SQL, ω corresponds to the NULL

keyword. By definition we allow px, ωq P A for any x P D, even though ω is a special

marker rather than any value and ω R V . With this it becomes possible for arrays to

have empty holes, allowing for the representation of sparse arrays in general.

Definition 2.9 (Metadata Operators) For a d-dimensional array A : D Ñ V , we define

several shorthand functions in Table 2.1 that can be used to obtain information about

the array’s spatial domain, axis names, or base type. The max and min functions return

the maximum and minimum values, respectively, from a set of integers.

Table 2.1: Array metadata functions in ASQL.

Function Definition Description

sdompAq tx : px, apxqq P Au Spatial domain of A.

basepAq V Base element type of A.

dimpAq |x| for Dx P sdompAq Denotes the array’s dimension.

namespAq

namespEq

A1

rπ1pE1q, . . . , πdpEdqs, d “ |E|

Returns the axis names. When

it is clear enough, we use n in-

stead of namespAq.

indexnpAq

indexnpEq

D i : namespAqi “ n

D i : namespEqi “ n
The index of axis named n.

lonpAq

lonpEq

minptxi : x P sdompAq,

i “ indexnpAquq

π2pEiq, i “ indexnpEq

Lower limit of axis n.

hinpAq

hinpEq

maxptxi : x P sdompAq,

i “ indexnpAquq

π3pEiq, i “ indexnpEq

Upper limit of axis n.

14

Chapter 2. Algebraic Treatment of Arrays and Relations

extentpAq
rn1p lo1pAq : hi1pAqq, . . . ,

ndp lodpAq : hidpAqqs
Spatial extent of A.

|A|
d
ś

i“1
phiipAq ´ loipAq ` 1q Denotes the array’s cardinality.

2.1.2 Array Operations

Choosing a suitable set of operations is an important yet difficult task - the manifold

array-intensive applications employ different operations on a widely varying level of

complexity. Array Algebra bases its operation set on three fundamental operators: an

array constructor, array condenser, and an array hyperplane sorter. Together these allow

us to express a large part of multi-dimensional image and signal processing. The sort

operation has never been implemented in practice, and in ASQL converting an array to a

relation and applying ORDER BY is an even more flexible and powerful way to achieve

the same functionality; for this reason we drop support for this operation.

2.1.2.1 Construction

Definition 2.10 (Array constructor) Given a spatial extent E P E and a cell expression

en (n “ namespEq) that produces a value of type V P T for every coordinate x P δpEq,

the array constructor results in an array of type 〈E, V 〉:

ARRAYEpenq :“ pn, tpx, apxqq : x P δpEq, apxq “ ρn,xpenquq

The expression en contains zero or more free occurrences of any ni, 1 ď i ď |E|, which

for a particular coordinate are substituted by the corresponding xi with the help of a

substitution map defined as

ρn,x :“ tn Ñ xu :“ tn1 Ñ x1, . . . , nd Ñ xd u

and is then evaluated to a scalar that is the cell value of the result array at coordinate x.

Arrays are built by iterating over the target domain, rather than the source domain of

eventual operand arrays. This ensures, in a natural and transparent way, that all cells

are assigned a value, and establishes a clear complexity limit on the array operations.

Array languages typically follow this approach, although this is not usually discussed as

a conscious decision.

15

Chapter 2. Algebraic Treatment of Arrays and Relations

The previous Definition requires that the cell expression produces a scalar value for each

coordinate in the given spatial extent. Below we define a general array constructor that

allows array-producing cell expressions.

Definition 2.11 (Generalized array constructor) Given a spatial extent E P E and a

cell expression en (n “ namespEq) that produces an array value of type 〈F, V 〉 such

that namespF q Ď namespEq, the generalized array constructor is defined as:

ARRAYEpenq :“ pn, tpx, apxqq : x P δpEq, apxq “ ρn,xpenquq

Definition 2.12 (Constant array) An array such that the value of every cell is equal

to a scalar S is called a constant array:

CONSTEpSq :“ ARRAYE S

Definition 2.13 (Aligned arrays) Two arrays A and B are aligned if extentpAq “

extentpBq.

Definition 2.14 (Scalar aligning) The SALIGNEpSq operation converts S to a constant

array of extent E if it is a scalar; otherwise it returns S unmodified:

SALIGNEpSq :“

#

CONSTEpSq dimpSq “ 0

S dimpSq ą 0

Definition 2.15 (Induced operations) Common arithmetic, trigonometric, comparison,

logical, and other operations defined on scalars of certain types are elevated to arrays

of the same base types, so that A ` B, for example, produces an array C where each

cell’s value is the sum of the corresponding cells’ values in A and B. We call these unary,

binary and n-ary induced operations, and they can all be reduced to a general array

constructor expression.

Any operand could generally be a scalar; in case of mixed scalar/array operands, the

scalar operands are considered to be same as a constant array, aligned to one of the

array operands. If two or more operands are arrays, then they are required to be aligned.

When the array operands do not satisfy these preconditions, they have to be explicitly

realigned as necessary by adjusting the domains (e.g. by shifting or scaling as shown

later) or by renaming the axis names.

Let f be an operation defined on n ą 0 scalar operands with signature f : V1ˆ . . .ˆVn Ñ

R, Vi, R P T . If A1, . . . , An are arrays (potentially scalars) such that basepAiq “ Vi, then

f is induced on them as follows:

fpA1, . . . , Anq :“ ARRAYEp fpSALIGNEpA1qpnq, . . . ,SALIGNEpAnqpnqq q

16

Chapter 2. Algebraic Treatment of Arrays and Relations

where E is the extent of some array operand, or otherwise an empty extent if all operands

are scalars:

E :“

#

extentpAiq D 1 ď i ď n : dimpAiq ą 0

r s otherwise

The result is an array with spatial extent E and base type R.

Properties of the underlying operation, such as commutativity and associativity, are

preserved to the induced array operation as well. Given that all cells of an array are of

the same type, the base type of the resulting array is the result type of the operation

defined on the base types of the input arrays.

Example 2.1 (Induced square root) The square root of all elements in an array A is a

unary induced operation that can be written as:

?
A :“ ARRAYextentpAq

´

a

Apnq
¯

Example 2.2 (Induced sum) Example. The sum of two aligned arrays A and B is

expressed as the sum of their corresponding cell values:

A`B :“ ARRAYextentpAq pApnq `Bpnqq

The sum of a scalar 5 and an array B is equivalent to:

5`B :“ ARRAYextentpBq

`

SALIGNextentpBqp5qpnq `Bpnq
˘

Definition 2.16 (Common induced operations) Some commonly used, fundamental

operations which are typically induced on arrays are listed on Table 2.2.

Table 2.2: Common induced operations.

Category Operations

Arithmetic `3 ´ 4 { ¨ modulo exponentiation logarithm

Trigonometric sin cos tan arcsin arccos arctan

Comparison ă ď “ ‰ ě ą

Logical not and or xor is [not] ω

Definition 2.17 (Domain shifting) A simple operation acting on the domain set while

leaving the values unchanged is shifting the spatial domain of an array A by a translation

3unary and binary
4unary and binary

17

Chapter 2. Algebraic Treatment of Arrays and Relations

coordinate t (|t| “ dimpAq):

SHIFTtpAq :“ ARRAYextentpAq`tpApn´ tqq

Remark. Arithmetic operations between two coordinates, or between a spatial extent and

a coordinate are performed element-wise (similar to induced operations if we imagine

coordinates and extents as arrays); e.g. E ` t is defined as:

E ` t :“ rn1plo1pEq ` t1 : hi1pEq ` t1q, . . . ,

ndplodpEq ` td : hidpEq ` tdqs,n “ namespEq, d “ |E|

Definition 2.18 (Array extending) Extending is an operation that returns an array

with the same elements as the input array, plus additional cells with null values ω at

coordinates filling up the rest of the extended extent E (sdompAq Ď E):

EXTENDEpAq :“ ARRAYE

˜#

Apnq n P sdompAq

ω otherwise

¸

Oftentimes, we want to enlarge or shrink an array while retrofitting its values to the new

domain, rather than filling up the empty space with null values. The array contents is

scaled via interpolating (resampling) the elements in some way. A common example is

image resizing (up or down).

Definition 2.19 (Array scaling) Given an array A and a target domain E, we can

define scaling with nearest-neighbor interpolation as follows:

SCALEEpAq :“ ARRAYEpAptn1 ˚R1u, . . . , tnd ˚Rduqq,

Ri “
hiipAq ´ loipAq ` 1

hiipEq ´ loipEq ` 1

Example 2.3 (Image upsizing) Suppose we have an array A representing a satellite

image with extent rxp0 : 999q, yp0 : 999qs. We can enlarge the image 2x in each axis

with the following query (operation visualized on Figure 2.1):

SCALErxp0:1999 q, yp0:1999 q spAq

Definition 2.20 (Array concatenation) Array concatenation CONCATapA1,A2q is

an operation that joins two arrays A1 and A2 along an axis named a with ordinal index

i. Let y be a tuple of d zeros, except at the i-th value yi “ hiipA1q ´ loipA2q ` 1; y

shifts A2 along the axis i, so that it is positioned to the right of the i-th axis of A1. If

18

Chapter 2. Algebraic Treatment of Arrays and Relations

Figure 2.1: Up-scaling a satellite image by a factor of 2.

B “ SHIFTypA2q, concatentation is defined as:

CONCATapA1,A2q :“ ARRAYextentpA1qYextentpBq

˜#

A1pnq n P sdompA1q

Bpnq n P sdompBq

¸

It is required that A1 and A2 are aligned arrays, except along the i-th axis which can

be of different extents in the two arrays.

Example 2.4 (Time-series concatenation) Suppose we have a 4D array A1 with axis

names phour, x, y, hq which is a time-series of hourly temperature predictions for the

next week, and another such time-series A2 for the three following weeks. We would

like to concatenate these arrays so that we get a single time-series for further combined

processing on a monthly level:

CONCAThourpA1,A2q

Definition 2.21 (Choice function) Given a Boolean condition array C with spatial

extent E, and two operands T and F of base type V P T that can be either scalar values,

or arrays aligned with C, the CHOICE function returns an array of extent E and base

type V :

CHOICEpC,T,Fq :“ ARRAYE

˜#

SALIGNEpTqpnq Cpnq “ J

SALIGNEpFqpnq otherwise

¸

Remark. The design has been inspired by the choice function in RAM (cf. Section 6.2.5)

and the CASE expression in SQL. In contrast to RAM, our choice supports both scalar

and array values as alternatives, which is a very useful feature in practice.

19

Chapter 2. Algebraic Treatment of Arrays and Relations

Example 2.5 (Division by zero) Divide the elements of two arrays A and B if the

divisor B is not zero, otherwise return the null value:

CHOICEpB ‰ 0,A{B, ωq

2.1.2.2 Aggregation

Definition 2.22 (Array condenser) Given

— a spatial extent E P E ,

— and a commutative and associative binary operation with signature
Ä

: T ˆT Ñ T ,

T P T and an identity element 1,

the array condenser aggregates into a scalar result the values produced by an expression

en of result type T evaluated for every coordinate x P δpEq:

CONDE,
Äpenq :“

ä

xPδpEq

ρn,xpenq

en is evaluated in the same way as done in the array constructor.

Example 2.6 (Array sum) Compute a sum of the cell values of an array A:

CONDextentpAq,`pCHOICEpApnq ‰ ω,Apnq, 0qq

Definition 2.23 (Reduce functions) We define REDUCE as a shorthand function for

the general array condenser that aggregates all values of a given array:

REDUCEÄpAq :“ CONDextentpAq,
ÄpApnqq

A useful variant that ignores any null values can be defined as:

NREDUCEÄpAq :“ CONDextentpAq,
ÄpCHOICEpApnq ‰ ω,Apnq,1qq

Table 2.3 defines several shorthand reduce functions. We use the MD prefix to distinguish

from the aggregation operators defined in relational algebra.

Remark. We assume that ` is defined on boolean values such that J ” 1 and K ” 0.

Table 2.3: Reduce functions.

Function Definition Description

MDSUMpAq NREDUCE`pAq Sum of the elements of A.

20

Chapter 2. Algebraic Treatment of Arrays and Relations

MDCOUNTpAq NREDUCE`pA ‰ ωq The number of non-null elements.

MDCOUNTωpAq NREDUCE`pA “ ωq The number of null elements.

MDCOUNTJpAq NREDUCE`pA “ Jq The number of true elements.

MDCOUNTKpAq NREDUCE`pA “ Kq The number of false elements.

MDAVGpAq MDSUMpAq
MDCOUNTpAq Average of the elements in A.

MDMINpAq NREDUCEminpAq The minimum element in A.

MDMAXpAq NREDUCEmaxpAq The maximum element in A.

MDANYpAq NREDUCE_pAq Is any element in A true?

MDALLpAq NREDUCE^pAq Are all element in A true?

Both constructors and condensers resemble loops over arrays. Loops are at the heart

of array processing, but they are undesirable in database languages as such explicit

constructs are unsafe. Therefore, they are implicit in ASQL and other dedicated array

languages. Besides the aspect of safe evaluation, implicit loop constructs give room for

optimizations in face of partitioned storage as arrays can be traversed in the optimal

order [11].

Theorem 2.24 (Condenser/constructor relationship) An array condenser over an extent

E is equivalent to aggregating the array with extent E produced by an array constructor

from the same cell expression:

CONDE,
Äpenq ” REDUCEÄpARRAYEpen qq (2.1)

Proof.

CONDE,
Äpen q

”
ä

xPδpEq

ρn,xpenq pDefinition 2.22q

”
ä

xPδpEq

pn, tpx, apxqq : x P δpEq, apxq “ ρn,xpenquqpxq pDefinition 2.7q

”
ä

xPδpEq

ARRAYEpenqpxq pDefinition 2.10q

”
ä

xPδpEq

ρn,xpARRAYEpenqpnq ” CONDE,
ÄpARRAYEpenqpnqq pDefinition 2.22q

” REDUCEÄpARRAYEpen qq pDefinition 2.23q

21

Chapter 2. Algebraic Treatment of Arrays and Relations

Very often we need to aggregate several arrays in cell-wise fashion, similar to how induced

operations work. We define a shorthand array condenser operation for this purpose that

is not limited to scalar cell expressions.

Definition 2.25 (Generalized array condenser) The generalized condenser operation

combines the array constructor and standard condenser into a single operation more

amenable to optimization. CONDG
E,

Äpanq applies standard COND on each cell of the

array-producing expression an, which may contain references to the axis names defined

by E. For F “ extentpanq and m “ namespF q, the induced condenser is defined as:

CONDG
E,

Äpanq :“ ARRAYF pCONDE,
Äpanpmqqq

Remark. This is a generalized version of the standard condenser, given that scalar values

are 0-dimensional arrays. Indeed, if an is a scalar expression, then F is an empty extent

and hence m is an empty list of axis names, i.e:

CONDG
E,

Äpanq ” ARRAYF pCONDE,
Äpanpmqqq ” CONDE,

Äpanq

2.1.2.3 Subsetting

Restricting the spatial domain rn1p lo1 : hi1 q, . . . , ndp lod : hid qs of a d-dimensional array

A in order to select a sub-array is an essential operation in array processing tasks known

as array subsetting. This can be done either by specifying a pair of lower and upper trim

limits pli, hiq, or a single slice point pi for the axis identified by name i (ordinal index j).

Definition 2.26 (Trimming) A trim reduces the extent of an axis to the lower and

upper limits l and h:

TRIMi,l,hpAq :“ pn, tpx, apxqq : x P sdompAq, xj P rr l : h ssuq

Alternatively it could be expressed via an array constructor expression as well. Let

S be the resulting subsetted extent r . . . , nj´1p loj´1 : hij´1 q, njp l : hq, nj`1p loj`1 :

hij`1 q, . . .s:

TRIMi,l,hpAq :“ ARRAYS pApnqq

Definition 2.27 (Slicing) A slice operation reduces A to a pd´ 1q-dimensional hyper-

plane by selecting only coordinates at the slice point p (i.e. TRIMi,p,p), and subsequently

removing the sliced axis from the domain:

SLICEi,ppAq :“ pnzi, tpy, apxqq : x P sdompAq, xi “ p,

y “ p. . . ,xj´1,xj`1, . . .quq

22

Chapter 2. Algebraic Treatment of Arrays and Relations

Another way to define it is via the array constructor. Let S be the resulting subsetted

extent r . . . , nj´1p loj´1 : hij´1 q, nj`1p loj`1 : hij`1 q, . . .s:

SLICEi,ppAq :“ ARRAYSpAp. . . ,nj´1, p,nj`1, . . .qq

Remark. Slicing all axes results in a 0-D array, i.e. a scalar (cf. Definition 2.6).

Example 2.7 (Trimming and slicing) The Visible Human Project created MRI, CT and

anatomical image datasets of a male and female. Suppose A is a 3D array corresponding

to a particular MRI dataset, and its extent is extentpAq “ rxp0 : 1023q, yp0 : 607q, zp0 :

1882qs. A common operation is trimming down the array so that further operations are

localized to a focused area of interest; say we want to trim down to the top half:

TRIMz,900,1882pAq

Often it is helpful to extract a horizontal or vertical slice, e.g slicing vertically at z “ 1000:

SLICEz,1000pAq

Theorem 2.28 (Commutativity and associativity of trims and slices) Trims and slices

are commutative and associative as long as they apply to unique axes.

Proof. Commutativity of trims:

TRIMi,a,bpTRIMj,c,dpAqq

“ TRIMi,a,bppn, tpx, apxqq : x P sdompAq,xg P rr c : d ss, g “ indexjpAquqq

“ pn, tpx, apxqq : x P sdompAq,xg P rr c : d ss, g “ indexjpAq,

xh P rr a : b ss, h “ indexipAquq

“ TRIMj,c,dppn, tpx, apxqq : x P sdompAq,xh P rr a : b ss, h “ indexipAquqq

“ TRIMj,c,dpTRIMi,a,bpAqq

Commutativity of slices:

SLICEi,ppSLICEj,qpAqq

“ SLICEi,pppnz j, tpy, apxqq : x P sdompAq,xg “ q,y “ p. . . ,xg´1,xg`1, . . .q,

g “ indexjpAquqq

“ pnz jz i, tpy, apxqq : x P sdompAq,xg “ q,xh “ p,

y “ p. . . ,xg´1,xg`1, . . . ,xh´1,xh`1, . . .q,

g “ indexjpAq, h “ indexipAquq

23

Chapter 2. Algebraic Treatment of Arrays and Relations

“ SLICEj,qppnz i, tpy, apxqq : x P sdompAq,xh “ p,y “ p. . . ,xh´1,xh`1, . . .q,

g “ indexipAquqq

“ SLICEj,qpSLICEi,ppAqq

Commutativity of trims and slices:

TRIMi,a,bpSLICEj,qpAqq

“ TRIMi,a,bppnz j, tpy, apxqq : x P sdompAq,xg “ q,

y “ p. . . ,xg´1,xg`1, . . .q,

g “ indexjpAquqq

“ pnz j, tpy, apxqq : x P sdompAq,xg “ q,xh P rr a : b ss,

y “ p. . . ,xg´1,xg`1, . . .q,

g “ indexjpAq, h “ indexipAquq

“ SLICEj,qppn, tpx, apxqq : x P sdompAq,xh P rr a : b ss, h “ indexipAquqq

“ SLICEj,qpTRIMi,a,bpAqq

Associativity can be shown in similar fashion.

This is convenient, as it is usually preferred to specify them congregated in a subset

operation as a list of trims and/or slices that address unique axes. Suppose A is a d-

dimensional array with axis names n. Let ti be either a trim denoted by loi : hii or a

slice specified by a single value pi, 1 ď i ď d; correspondingly, let f i be trim if ti is a

trim, otherwise let f i be slice, and similarly let ui be loi, hii or pi.

Definition 2.29 (Positionally-independent subsetting) A positionally-independent

subset on A can be specified as a set of k trims and/or slices, 1 ă k ď d:

Arm1pt1q, . . . ,mkptkqs :“ f1m1, u1p. . . pf
k
mk, uk

pAqq . . .q,

mi P n,mi ‰ mj , for 1 ď i, j ď k, i ‰ j

Definition 2.30 (Positionally-dependent subsetting) A positionally-dependent sub-

set, alternatively, assigns the trims or slices to the correct axis based on the axis order,

rather than the axis name, and therefore it is necessary to specify a trim or a slice for

each of the array’s axes in this case:

Art1, . . . , td s :“ f1n1, u1p. . . pf
d
nd, ud

pAqq . . .q

24

Chapter 2. Algebraic Treatment of Arrays and Relations

Lemma 2.31 (Full trim idempotency) A trim that spans the full extent of an axis is an

idempotent operation:

TRIMi,l,hpAq “ A iff l “ loipAq, h “ hiipAq

Proof.

TRIMi,l,hpAq “ pn, tpx, apxqq : x P sdompAq, xj P rr l : h ssuq

“ pn, tpx, apxqq : x P sdompAq, xj P rr loipAq : hiipAq ssuq

“ pn, tpx, apxqq : x P sdompAquq

“ A

Corollary 2.32 A trim that spans the full extent of an axis can always be added with

no effect on the input array.

Theorem 2.33 (Subset equivalence) Both subset alternatives are equivalent and it is

always possible to translate one to the other.

Proof. The equivalence from positionally-dependent to independent subsetting is trivial

to demonstrate by simply adding the axis names to the corresponding trims and slices:

Ar t1, . . . , td s “ f1n1, u1p. . . pf
d
nd, ud

pAqq . . .q

“ Arn1pt1q, . . . ,ndptdq s

Showing that the other direction holds is somewhat trickier and involves adding trims

that span the full axis extent for each unreferenced axis (2.2), ordering the trims and slices

by axis index (2.3 and 2.4), and finally removing the axis names to get the equivalent

positionally-dependent subset (2.5):

Arm1pt1q, . . . ,mkptkq s

“ Arm1pt1q, . . . ,mkptkq,mk`1ptk`1q, . . . ,mdptdq s, Corollary 2.32

mi ‰ mj ,mi,mj P n for 1 ď i ď k, k ` 1 ď j ď d (2.2)

“ Ar o1pq1q, . . . , odpqdq s, Theorem 2.28

oh “ nh, oh “ mg, qh “ tg, 1 ď h, g ď d (2.3)

“ Arn1pq1q, . . . ,ndpqdq s (2.4)

“ Ar q1, . . . , qd s (2.5)

25

Chapter 2. Algebraic Treatment of Arrays and Relations

Example 2.8 (Subsetting) Extract a vertical slice at z “ 1000 from the Visible Human

dataset, and further restrict the data horizontally on the x axis:

Ar zp1000q, xp300 : 768q s

2.2 Relational Embedding

2.2.1 Relation Definition

The relational model was first defined by Codd [37], with further refinements and ex-

tensions explored for example by Codd [38], Klug [78], Özsoyoğlu et al. [111], Grefen

and de By [61], Gray et al. [60], Cao and Badia [30], and so on. This section presents

a brief definition of the relational model as background for the array model integration

discussed in the following Section.

Definition 2.34 (Relation schema) Let U “ tA1, . . . , An u be a finite set of attributes.

R “ pA1, . . . , Anq is a relation schema overU , with attrpRq “ U denoting the attributes

of R.

We refer to an attribute (for example in functions that expect an attribute to be specified),

either by its identifier (e.g Ai), or its ordinal position (e.g. i).

Definition 2.35 (Relation domain) The domain of a relation schema R “ pA1, . . . , Anq

is defined as the cartesian product of the domains of its attributes:

dompRq :“
n
ą

i“1

dompAiq

The domain of an attribute dompAiq denotes the set of atomic (or scalar) values that

Ai can take. An alternative notation allows to explicitly specify the domain Di of each

attribute Ai: R “ pA1 : D1, . . . , An : Dnq.

Definition 2.36 (Relation) Any finite subset r of the domain of a relation schema

R “ pA1, . . . , Anq represents a relation instance (or simply relation) of R:

r Ď dompRq

n is known as the degree of r, and its elements are called tuples. The tuple notation defined

earlier in Section 2.1 is applicable to relational tuples as well; in addition, we define trAis to

denote the i-th component of a tuple t P r, and trBs, where B “ tB1, . . . , Bk u Ď attrpRq

26

Chapter 2. Algebraic Treatment of Arrays and Relations

to denote the components corresponding to the attributes in B (in the order as specified

by R).

So far we have defined the concept of relation as a fundamental data structure in the

relational model. Since relations are sets, the usual set operations such as union, intersec-

tion, difference, and cross product are generally applicable; with the addition of a small

set of operations specialized to manipulating relations we get relational algebra.

Definition 2.37 (Set operations) Two relations r1 and r2 are compatible if their at-

tributes are in a one-to-one correspondence such that corresponding attributes are de-

fined on the same domain. Union, intersection, and difference on compatible relations

are defined as would be expected:

r1 Y r2 :“ tt : t P r1 _ t P r2 u

r1 X r2 :“ tt : t P r1, t P r2 u

r1zr2 :“ tt : t P r1, t R r2 u

Definition 2.38 (Product) The cartesian product of any two relations r1 and r2 is

defined as:

r1 ˆ r2 :“ tt1 :: t2 : t1 P r1, t2 P r2 u

Definition 2.39 (Projection) The projection πA1,...,Ak
prq of a relation r Ď dompRq

preserves only the specified attributes A1, . . . , Ak Ď attrpRq in the resulting relation,

removing any duplicate rows:

πA1,...,Ak
prq :“ tptrA1s, . . . , trAksq : t P ru

Definition 2.40 (Selection) The selection σθprq of a relation r Ď dompRq retains only

the tuples in r matching the selection condition θ in the resulting relation:

σθprq :“ tt : t P r, θprq “ Ju

The selection condition can be seen as a function θ : dompRq Ñ tJ,K, ω u.

Definition 2.41 (Joins) Most commonly, combining information from two or more

relations is done with some variation of the join operation.

— Selection join, also known as condition or θ-join, is the most general type of join:

r ’θ s :“ θpr ˆ sq

27

Chapter 2. Algebraic Treatment of Arrays and Relations

— Equi-join is a selection join in which θ contains only equality comparisons; redun-

dant attributes are removed from the joined result.

— Natural join is an equi-join in which an equality comparison is specified for all

fields with equal names.

Definition 2.42 (Renaming) It is often needed to rename the attributes of a rela-

tion schema attrpRq. Given r Ď dompRq, the operation ρO1{N1,...,Ok{Nk
prq renames the

attribute with name or ordinal position (1-based) Oi to a new name Ni, for 1 ď i ď k.

Aggregate functions compute an aggregate value on a specified attribute in a relation

value. Extended relational algebra defines five aggregate functions over an attribute a in

relation R: COUNTapRq, SUMapRq, AVGapRq, MINapRq and MAXapRq; additionally,

standard SQL specifies EVERY, ANY, STDDEV POP, STDDEV SAMP, etc.

Definition 2.43 (Aggregate functions) Let r be a relation instance of schema R, and let

A be an attribute of R; Table 2.4 defines the standard relational aggregation functions.

Table 2.4: Relational aggregation functions.

Function Definition Description

SUMAprq
ř

tPR

#

0 if trAs “ ω

trAs otherwise
Sum of the non-null values.

COUNTAprq
ř

tPR

#

0 if trAs “ ω

1 otherwise
The number of non-null values.

AVGAprq
SUMAprq

COUNTAprq
Average of the non-null values.

MINAprq minpttrAs : t P r, t ‰ ω uq The minimum value.

MAXAprq maxpttrAs : t P r, t ‰ ω uq The maximum value.

Remark. Aggregate functions are not part of the original relational algebra as they result

in scalars and hence do not preserve closure over relations, i.e. sets. They are immensely

useful, however, and therefore supported in extended relational algebra and SQL.

Definition 2.44 (Group aggregation) The groupby expression γf,B,A1,...,Ak
prq, such

that k ě 0, r Ď dompRq, and B,A1, . . . , Ak P attrpRq, calculates an aggregation function

f : dompBq Ñ F on attribute B for each group of tuples based on the equality of the

unique attributes A1, . . . , Ak:

γf,B,A1,...,Ak
prq :“ tptrA1s, . . . , trAks, vq : Dt P r, s P D, v “ fBpσA1“srA1s,...,Ak“srAks

prqqu

28

Chapter 2. Algebraic Treatment of Arrays and Relations

where D is defined as

D :“
k

ą

i“1

dompAiq ˆ F

Definition 2.45 (Relation equality) Two relations r1, r2 P dompRq are equivalent if

they are instances of the same relation schema R, and they contain the same tuples:

r1 “ r2 ô @ t P r1 : t P r2 ^ @ t P r2 : t P r1

r1 P dompR1q and r2 P dompR2q are quasi-equivalent if the attributes of R2 are a

permutation of the attributes of R1, and r1 and r2 contain the same tuples considering

the attribute permutation:

r1
.
“ r2 ô r1 “ πattrpR1qpr2q

2.2.2 Arrays as Attributes

In integrating the multidimensional array model into the relational paradigm, a funda-

mental decision has to be made on the placement of arrays in the overall model. Most

models, including ISO SQL [69], Array Algebra [12], PostGIS Raster [106], SciSPARQL [6],

introduce arrays as an attribute type. This allows us to see arrays as a plug-in to the

relational model, leaving the overall set model remaining unaltered. We call this the

array-as-attribute approach.

SciQL and SciDB, on the other hand, follow an array-as-table approach where arrays are

on the same level as relations. Some of the significant drawbacks of array-as-table are:

1) Ordinary users must have schema modification rights in order to insert new arrays,

which is a security issue;

2) The millions of images in a satellite data center will easily result in millions of

“tables”, something which relational systems are not really designed for;

3) Relating arrays with metadata information stored in regular tables, e.g. with foreign

keys, is not possible;

4) Finally, searching and filtering arrays in the database is generally not possible,

considering that SQL does not foresee iteration over tables. Tables have to be referenced

individually via a unique identifier. It is hence not possible to, for example, find all the

arrays with an average value greater than five.

29

Chapter 2. Algebraic Treatment of Arrays and Relations

Therefore, we follow the array-as-attribute approach, i.e. an array type 〈E, V 〉 P A
(Definition 2.5) is a valid domain for a relational attribute in ASQL. The array expres-

sions defined in the previous Sections can then be used in the projection and selection

operations, aggregation functions, and groupby expressions.

Definition 2.46 (Extended projection) The extended projection πα1,...,αk
prq of a

relation r Ď dompRq is similar to the projection operation (Definition 2.39), except that

α1, . . . , αk is a list of expressions producing scalar or array values, instead of attributes

of R only:

πα1,...,αk
prq :“ tpα1ptq, . . . , αkptqq : t P ru

Remark. We use the same symbol π for reasons of readability; in the following Sections,

π denotes the extended projection. An expression αi can be simply a reference to an

attribute in r, in which case π corresponds to standard projection.

Definition 2.47 (Extended selection and joins) The extended selection is same as

the previously specified selection operation (Definition 2.40). It is only necessary to

explicitly indicate that the θ condition can contain array expressions as well, as long as

the final result is a boolean value. The same holds for the selection join (Definition 2.41).

Extending the groupby expression (Definition 2.44) into γf,B,α1,...,αk
prq in similar fashion

to the extended projection is unnecessary, as it can be easily emulated with a combination

of regular groupby and extended projection:

γf,B,α1,...,αk
prq “ γf,B,A1,...,Ak

pρ1{A1,...,k{Ak
pπα1,...,αk

prqqq

Definition 2.48 (Ordering and equality) Ordering on multidimensional arrays is not

supported. Equality of arrays A1 and A2 is defined as:

A1 ” A2 iff namespA1q “ namespA2q,

@px, vq P A1 : px, vq P A2,

@px, vq P A2 : px, vq P A1

With this, operations like grouping or equijoins are supported on array attributes, however,

we do not expect such operations to be very useful. Typically, array data is Big Data in

terms of volume, and duplication is expensive.

2.2.3 Array / Relation Conversion

The unnest and nest operators covered here allow converting an array to a relation, and

vice versa. SciQL has an array Ø table coercion that converts n-D arrays by associat-

ing columns with axes, or axes with columns [148]. ISO SQL has an UNNEST operator

30

Chapter 2. Algebraic Treatment of Arrays and Relations

that allows us to convert its 1D arrays to a relation, optionally with coordinates in an

additional column; the other way around is supported with an array constructor from a

query result.

Given that an array is a set of cell coordinate/value tuples (cf. Definition 2.4), previ-

ous work on relational algebra with support for set-valued attributes becomes relevant.

Jaeschke and Schek [74] have first defined the unnest and nest operators that allow

flattening of a set-valued attribute A, and conversely converting an attribute A to a

set-valued attribute based on a grouping of the remaining attributes. Özsoyoğlu et al.

[111] call these operators unpack and pack, with the main difference that if A is already

a set-valued attribute, pack will unionize all values in the same group, instead of nesting

them one level deeper. Cao and Badia [30] make a small syntactic change of nest so that

it allows explicitly specifying a set of nesting (grouping) attributes in addition to the set

of nested attributes; in contrast, the original definition takes the nesting attributes to

be attrprqztAu.

In ASQL we adapt these concepts so that at one or both ends of the conversion there can

be a set of arrays. The nest operator essentially combines multiple arrays into a single

array by adding new axes and removing the corresponding coordinate attributes, while

unnest splits an array into multiple smaller ones by converting the specified axes into

coordinate attributes.

Let r be a relation instance r Ď R of degree n, A an array attribute of R with ordinal

position j, A any particular value of πAprq, A
b “ tR1, . . . Rj´1 u the attributes in R

before A, and Aa “ tRj`1, . . . Rn u the attributes in R after A.

Definition 2.49 (Unnesting arrays) Unnesting the arrays in A is equivalent to slicing

each array at every coordinate combination along the axes specified by n and adding all

array subsets to the result relation. The corresponding slice coordinates are preserved

as separate integer attributes in the tuples of the result relation, followed by the subset

values; more precisely A is replaced by |n| ` 1 attributes.

υA,nprq :“ ttrAbs :: υnptrAsq :: trAas : t P ru

Unnesting of a single array value is defined as:

υnpAq :“ tpp1, . . . , pk,Sq : k “ |n|, lonipAq ď pi ď hinipAq, 1 ď i ď k,

S “ Arn1pp1q, . . . ,nkppkqsu

The coordinate attributes are named as the corresponding axis names, and the value

attribute preserves the name of A. If n is empty, then by default, n “ namespAq, i.e. all

axes are unnested.

31

Chapter 2. Algebraic Treatment of Arrays and Relations

Remark. The :: operator denotes tuple concatenation. Appending a tuple y to a tuple x

is defined as:

x :: y :“ px1, . . . ,x|x|,y1, . . . ,y|y| q

Example 2.9 (Unnest 1-D arrays) Let r be a relation of schema R “ pid : N, a :

pN, rtp0 : 99qsqq with two tuples (Table 2.5). Unnesting the arrays with υa,r t sprq results

Table 2.5: Relation r contains an array at id “ 1 with values 5 and 3 at coordinates
0 and 1, respectively, and a similar array with values 8 and 4 at coordinates 2 and 3.

id a

1 prts, tpr0s, 5q, pr1s, 3quq

2 prts, tpr2s, 8q, pr3s, 4quq

in the relation p “ tp1, 0, 5q, p1, 1, 3q, p2, 2, 8q, p2, 3, 4qu (depicted on Table 2.8).

Table 2.6: Relation resulting from unnesting the array attribute a in r.

id t a

1 0 5

1 1 3

2 2 8

2 3 4

Two simple properties of unnest follow from Definition 2.49.

Theorem 2.50 If r1 and r2 are compatible relations and A is an array attribute in r1
and r2, then:

υA,npr1 Y r2q “ υA,npr1q Y υA,npr2q

Theorem 2.51 If A and B are array attributes of a relation r, then:

υA,npυB,mprqq “ υB,mpυA,nprqq

Unnest and standard projection are not commutative because unnest creates new at-

tributes for the value coordinates. An equivalence useful in performance optimization

can nevertheless be derived.

Theorem 2.52 If A P tA1, . . . , Ak u Ď attrpRq is an array attribute and r P dompRq is

a relation of schema R, then:

πA1,...,Ak
pυA,nprqq “ πA1,...,Ak

pυA,npπA1,...,Ak
prqqq

32

Chapter 2. Algebraic Treatment of Arrays and Relations

Proof.

πA1,...,Ak
pυA,nprqq “ πA1,...,Ak

pttrAbs :: v :: trAas : t P r,v “ υnptrAsquq

“ tpxrA1s, . . . ,xrAs, . . . ,xrAksq :

x P ttrAbs :: v :: trAas : t P r,v “ υnptrAsquu

“ tpxrA1s, . . . ,xrAs, . . . ,xrAksq :

x P tptrA1s, . . . ,vrAs, . . . , trAksq : t P r,v “ υnptrAsquu

“ tpxrA1s, . . . ,xrAs, . . . ,xrAksq :

x P tptrA1s, . . . ,vrAs, . . . , trAksq : t P πA1,...,Ak
prq,v “ υnptrAsquu

“ πA1,...,Ak
pttrAbs :: v :: trAas : t P πA1,...,Ak

prq,v “ υnptrAsquq

“ πA1,...,Ak
pυA,npπA1,...,Ak

prqqq

Definition 2.53 (Nesting arrays) Converting an attribute A into an array is the inverse

operation of unnest. We call this operation nest, as it is essentially embedding a set of

array values into a single array along one or more new axes. The attributes of the relation

r passed to nest can be divided into the following groups:

— The array attribute A is the nested attribute;

— A set of (integer) coordinate attributes C provide the coordinates for the new axes

along which the arrays in A are placed; if C “ t u, then it is assumed that C and r

contain an integer attribute with values ranging from 1 to N in each nesting group, where

N is the number of tuples in the group.

— The set of remaining attributes G are grouping or nesting attributes which define the

groups of tuples that will be merged; if G “ t u, the result will be a single array-valued

tuple.

The placement of the new axes c denoted by C with respect to the existing axes m of

the input arrays in A is specified by an axis names list n consisting of m and c merged

in no particular order.

Let Abc :“ AbzC be the non-coordinate attributes before A, and Aac :“ AazC the non-

coordinate attributes after A. If all arrays in A are aligned and the coordinate tuples

within each nesting group are unique, ηA,nprq is defined as follows:

ηA,nprq :“ tgrAbcs :: pηA,n,gprqq :: grAac s : g P πGprqu

33

Chapter 2. Algebraic Treatment of Arrays and Relations

ηA,n,gprq nests a single group of arrays determined by a grouping tuple g:

ηA,n,gprq :“ pn, tpy, v q : y “ py1, . . . , y|n| q, t P r,g “ trGs,x P sdompAq,A “ trAs,

yi “

#

xj D 1 ď j ď |m| : mj “ ni

zh D 1 ď h ď |c| : ch “ ni
, 1 ď i ď |n|,

v “

#

Apxq @ 1 ď h ď |c| : zh P Sh

ω otherwise
, 1 ď k ď |c|,

minpSkq ď zk ď maxpSkq, Sk “ tsrcks : s P r, srGs “ guuq

As can be noticed in the definition, the indices defined by a coordinate attribute are

not required to be consecutive (i.e. properly fill a spatial domain); if they are not, there

are holes which are automatically filled with null values. Nest goes through all integers

between the minimum and maximum values defined by each coordinate attribute (zk):

— If the coordinate combination y is defined by the coordinate attributes then the

corresponding value in A is placed at this coordinate;

— Otherwise, the value at coordinate y is the null value (ω).

Remark. Note that nest supports nesting of scalar attributes into an array as well (recall

that by Definition 2.6, scalars are equivalent to 0-dimensional arrays).

Remark. In some sense nest is a grouping aggregation function that aggregates tuple

groups into single arrays. The CONCAT operation (cf. Definition 2.20), on the other

hand, can not be applied to scalars as it expects an axis along which to concatenate the

operand arrays, i.e. they must be more than 0-dimensional; for this reason we have not

considered it suitable for overloading to tuple aggregation.

Example 2.10 (Nest scalars into 1-D arrays) Suppose we have the result relation p

from the previous Example 2.9 (cf. Table 2.8). Calling η with attribute t as a coordinate

attribute and a as the nested attribute (leaving us with id as the grouping attribute)

ηa,r t sprq

results in the original relation r (Table 2.5).

Similar to Theorem 2.50, the following property with regards to union holds for nest.

Theorem 2.54 Let r1 and r2 are compatible relations, A a nesting attribute, and

G a set of grouping attributes. If r1 and r2 are disjoint under the G attributes, i.e.

πGpr1q X πGpr2q “ t u, then:

ηA,npr1 Y r2q “ ηA,npr1q Y ηA,npr2q

34

Chapter 2. Algebraic Treatment of Arrays and Relations

Unnest is always an inverse of nest, given that it unnests the same axes that were nested.

Note that the order of the coordinate attributes in the original relation is not necessarily

preserved, i.e. the result is quasi-equivalent to the original relation (cf. Definition 2.45).

Theorem 2.55 If A is an attribute in r, m Ď n, and nzm “ namespAq, then:

υA,mpηA,nprqq
.
“ r

Proof. The truth of this claim is obvious and the formal proof is left out.

The reverse equivalence does not hold always, however. Unnest could produce a relation

with duplicate coordinates within a single group, on which nest is not applicable. The

slightly modified Example 2.9 below illustrates this case.

Example 2.11 (Unnest duplicate coordinates) Let r be a relation of schema R “ pid :

N, a : pN, rtp0 : 99qsqq with two tuples (Table 2.7). Unnesting the arrays with υa,r t sprq

Table 2.7: Relation r contains two arrays both with id “ 1.

id a

1 prts, tpr0s, 5q, pr1s, 3quq

1 prts, tpr1s, 8q, pr2s, 4quq

results in the relation p “ tp1, 0, 5q, p1, 1, 3q, p1, 1, 8q, p1, 2, 4qu (depicted on Table 2.8).

Nesting this relation with ηA,r t sppq is not possible. id is the grouping attribute, so all

Table 2.8: Relation p resulting from unnesting the array attribute a in r.

id t a

1 0 5

1 1 3

1 1 8

1 2 4

tuples form one group, in which there are two coordinate tuples (at attribute t) with the

same value 1.

2.2.4 Cross-tuple Array Aggregation

The relational aggregation functions (cf. Definition 2.43) are not generally applicable

to array attributes (with the exception of COUNT). In this case it would make sense

to induce the aggregation over the arrays’ elements, so that a single aggregated value

35

Chapter 2. Algebraic Treatment of Arrays and Relations

is computed over the cell values of all array tuples collectively. The array condenser (cf.

Section 3.3.5), in contrast, aggregates each array individually.

Definition 2.56 (Cross-tuple array aggregation) Table 2.9 overloads the relational ag-

gregation functions on arrays, by using η or alternatively through the standard relational

aggregation functions.

Table 2.9: Induced relational aggregation functions: Definition 1 uses a regular
aggregation function to aggregate the results of reducing each array, while Definition 2
nests the array tuples into one big array and applies the corresponding reduce function

(assuming Dw : w R namespAq).

Induced function Definition 1 Definition 2

SUM1
Aprq SUM1pπMDSUMpAqprqq πMDSUMpAqpηA,pwqpπAprqqq

COUNT1Aprq SUM1pπMDCOUNTpAqprqq πMDCOUNTpAqpηA,pwqpπAprqqq

AVG1Aprq
SUM1

Aprq

COUNT1
Aprq

SUM1
Aprq

COUNT1
Aprq

MINAprq MIN1pπMDMINpAqprqq πMDMINpAqpηA,pwqpπAprqqq

MAXAprq MAX1pπMDMAXpAqprqq πMDMAXpAqpηA,pwqpπAprqqq

36

Chapter 3

Multidimensional Arrays in SQL

with SQL/MDA

3.1 Introduction

3.1.1 Why consider support for multidimensional arrays in SQL?

SQL has been lingua franca for any-size data services in business, and has been tremen-

dously successful in delivering flexible, scalable data access technology. Not so, however,

in scientific and engineering environments due to the poor integration of multidimen-

sional arrays (MDA). SQL already has limited basic support for arrays since SQL:1999

[68]. Arrays are confined to 1-D, without any implicit nor explicit loops for inspecting

and manipulating the array elements. It is fair to say that there is no practically useful

operational support, so that this array model is not suitable for use in the typical scientific

workflows.

This is where SQL/MDA comes in, extending ISO SQL with a multidimensional array

data type. It provides a fully-fledged set of structural and operational array constructs

completely integrated and compatible with SQL and orthogonal to its set semantics,

based on the formal theory discussed in the previous Chapter.

3.1.2 Array representations

In the realm of arrays, a plethora of encodings is in active use. Converging on a single

format has been attempted repeatedly, and has failed invariably. For example, JPEG

37

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

and PNG are widely used for browser-based imagery display, but they are confined to

2-D (among other shortcomings) and, hence, unsuitable for 4-D weather forecast data.

HDF5 and netCDF, on the other hand, can handle multidimensional arrays, but are used

only in highly specialized domains such as in NASA satellite image archives; no browser

supports HDF or netCDF. In other domains, XML, CSV, and JSON are the format of

choice for 1-D arrays like timeseries and other diagram data; however, such text formats

are unacceptably inefficient when it comes to high-volume multidimensional data. Figure

3.1, for example, shows the general organization of the TIFF format.

Figure 3.1: The logical structure of an array encoded in the TIFF format [104].

Due to the wide variety and complexity of formats and lack of published standards, it

is inappropriate and practically infeasible to standardize support for all or even some of

them (which ones?) in SQL/MDA. The approach that SQL/MDA takes in this case is

to standardize handling of JSON-encoded arrays only, given its existing treatment and

availability in SQL, while allowing implementations to support an open-ended number

of further data formats as implementation extensions to the standard.

38

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.1.3 MDA terminology

Table 3.1 lists the specific terminology used in the SQL standard to reference various

parts of the MDA data model.

Table 3.1: Terms and definitions

Terms Definitions

coordinate A non-empty ordered list of integers.

cardinality The number of elements in an MD-array.

MD-array An ordered collection of elements of the same type associated
with an MD-extent where each element is 1:1 associated with
some coordinate within its MD-extent. A coordinate is within
an MD-extent if every coordinate value from the integer list is
greater than or equal to the lower limit, and less than or equal
to the upper limit of the MD-interval of the MD-axis at the
position in the MD-extent as the coordinate value has within
the coordinate.

MD-axis A named MD-interval.

MD-dimension The number of MD-axes in the MD-extent of an MD-array; also
known as rank outside of SQL/MDA.

MD-extent A non-empty ordered collection of MD-axes with no duplicate
names.

MD-interval An integer interval given by a pair of lower and upper integer
limits such that the lower limit is less than or equal to the upper
limit; the interval is closed, i.e., both limits are contained in it.

(Multidimensional)
array, raster data

Used to refer to arrays generally, in contrast to the MD-array
term confined to the realm of SQL/MDA. Not to be confused
with the array term in [ISO9075-2], we refer to it with ARRAY.

scalar SQL values of non-collection-containing type (cf. Section 3.2.2.1).

3.1.4 Use cases for MDA support in SQL

Following are the primary use cases that support for multidimensional arrays in the SQL

environment must satisfy.

— Array data ingestion and storage;

— Updating stored array data;

— Exporting arrays;

— Integrated querying of array and relational data.

39

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

The following sections discuss these use cases in greater detail, and how SQL/MDA

addresses them.

3.1.4.1 Array data import, storage and export

The question posed by this use case is “How can we acquire array data using SQL?”

As discussed earlier in Section 3.1.2, arrays exist in a wide variety of formats. In order

to work with them in a generic way in SQL, it is necessary to build an abstract, all-

encompassing data model that fits with the SQL philosophy. The MD-array as proposed

in SQL/MDA provides exactly such a data model, implemented as a new attribute type

MDARRAY. Ingestion of some array data encoded in format X into SQL then requires

to transform it or decode it into an instance of the internal MD-array data model, which

is then inserted into an MDARRAY column of an appropriate type.

What “decode” means in practice depends on many factors, including the data format,

the details of physical storage of MD-arrays in a specific DBMS, system architecture, etc.

The standard does not dive into these technical details of array data ingestion beyond

providing a default specification for JSON encoded arrays and a suitable interface for

implementations to attach their ingestion extensions.

It is worth discussing the storage data model here. The several possibilities to consider

are:

1) MD-array as a first-class object in the same way that SQL tables are.

2) Direct mapping of SQL tables into MD-arrays.

3) Store within an opaque data type (SQL string or Large Object for example).

4) A dedicated column data type with well-defined semantics.

The first option can be immediately ruled out as very undesirable, as it would require

fundamental modifications to the entire SQL language.

The second case has been tried in practice by systems such as MonetDB/SciQL [148], and

several problems are apparent. First, efficiency is inevitably subpar due to the inadequate

storage representation and coordinate materialization. It might be possible to mitigate

this with some optimizations that recognize when a table is actually an array but this

has not been accomplished in practice thus far; SciQL has troubles on arrays larger than

hundreds of Megabytes [97]. Besides this, it is unclear how this approach would scale

to millions of arrays, such as with large satellite image archives, given that SQL does

not foresee iteration over table sets; finding and filtering the data of interest therefore

40

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

in a standard way is not possible. At the same time, operations like inserting new array

data would require schema modification rights as well, in order to create tables. Finally,

as discussed in Section 3.1.1, a large reason for supporting arrays in SQL is integrated

querying in relation to array metadata; this is not possible when representing arrays as

tables – there is no easy way to link them to metadata information.

The third possibility is the storage model of choice in SQL/JSON [95] for example, where

JSON data is stored as is in a string column. It probably makes sense in this case, as

specifying a dedicated data type for JSON data would not be a trivial task. In this case,

data transformation (in theory) happens at query time.

MD-array on the other hand is a simple data structure defined by a list of MD-axes,

each specifying a name, lower and upper limits, paired with an element type. This led to

adopting the last option, following the example of ARRAY and MULTISET collection

data types. Data transformation is handled during ingestion with special functions,

allowing to work with values with clearly defined semantics within the SQL environment.

It is minimally intrusive to the SQL standard, while it nevertheless supports all of the

previously identified requirements.

3.1.4.2 Integrated querying of array and relational data

With this use case, we explore how we can query arrays that are stored directly in

SQL tables as MD-arrays. As was introduced in the previous section, MD-arrays are

stored within a new collection data type MDARRAY that can be manipulated through

a functional and operational interface. This is fairly similar to the existing ARRAY

and MULTISET collection data types, except that the operation set is much richer.

Integration with other data types is seamless (e.g. multiplying the values of all elements

of an MD-array column with numeric element type A with the single value of a numeric

column C is simply A * C), and the general SQL query mechanics is unchanged. In

addition it is possible as well to generate an SQL table from an MD-array and vice-versa,

an MD-array from any SQL table with the appropriate structure.

3.1.4.3 Updating stored array data

This use case asks “How can we update or extend array data stored in SQL?” The support

for this use case can be considered essential. Array data is very often continuously and

regularly produced, e.g. a temperature sensor makes a reading every hour, or a satellite

taking earth-observation images while orbiting around the Earth. In addition, a single

array can exceed Petabytes in size, and for practical reasons it would be split into multiple

41

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

smaller arrays; ingesting them all into a single MD-array column requires to piece-wise

extend and update the column.

In order to support this we propose to allow specifying exactly the region that should

be updated in a target MD-array. This is specified in detail later on in Section 3.2.4.

3.1.4.4 Exporting arrays

The question posed by this use case is “How can we export, or encode, MD-arrays

into a desired format usable outside of the SQL environment?” Frequently the result of

operations on MD-arrays will be an MD-array, which we need to be able to send back

to the client in some representation. This is the counterpart of array data ingestion

discussed previously in Section 3.1.4.1, and the proposed treatment is analogous to it.

3.2 SQL/MDA Data Model

The SQL/MDA model is essentially represented by the concept of MD-array. It is neces-

sary to clearly distinguish between array values “outside” the DBMS, and their analogs

“inside” the DBMS. We adopt the following convention:

— The modifiers “array”, “multidimensional array”, and “MDA”, refer to array values

external to the SQL engine, encoded in a particular format like TIFF, netCDF, HDF5,

JSON, etc.

— The modifiers “MD-array” and “SQL/MDA” refer to constructs within the SQL

engine.

The relationship between “MDA” and “SQL/MDA” is illustrated on Figure 3.2.

MDA
SQL/
MDA

decode

encode

Figure 3.2: Relationships between “MDA” and “SQL/MDA”

3.2.1 MD-array

MD-array values are inputs of all SQL/MDA operations, and most often the outputs.

Figure 3.3 shows the structure of a sample MD-array value.

42

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

-1

-1

-1 -1 -1

-1

-1-1

8

-1 0 1

-1

0

1

MD-axis
i(-1:1)

MD-axis
 j(-1:1)

j

i

axis
name

lower
limit

upper
limit

element at
coordinate [1,0]

MD-extent
[i(-1:1), j(-1:1)]

Figure 3.3: The structure of an MD-array value illustrated on a sample 3x3 array.

3.2.2 MD-array type definition

The definition of an MD-array (cf. Section 3.1.3) is a good starting point in order to

understand what components are needed for the type of an MD-array:

— “An MD-array is an ordered collection of elements of the same type ...” So one

thing we need to specify the type of an MD-array is the type of its elements, more

specifically known as the element type. This is no different from the existing ARRAY

and MULTISET.

— “... where each element is 1:1 associated with some coordinate within its MD-extent.”

Hence the other part we need is an MD-extent that delimits the coordinates of the

elements in an MD-array.

3.2.2.1 Element type

MD-arrays stand out from the spectrum of collection types in that the storage location of

an element can be derived directly from its coordinates, which makes storage and access

particularly efficient. This requires that all elements are of the same length. Therefore,

variable-size collection elements like sets and multisets do not qualify as element types.

MD-arrays as element type is disallowed as well for the following reasons:

43

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

1) Nesting an MD-array of MD-dimension d1 into an MD-array of MD-dimension d2
can equivalently be modeled as a single MD-array of MD-dimension d1 ` d2.

2) It keeps the data model simpler and more consistent in that all collection types are

disallowed, and no handling specifically of MD-arrays is needed.

All in all, any SQL data type is allowed to be an element type of an MD-array, except

for collection-containing types. A data type TY is collection-containing if exactly one of

the following conditions is true:

— TY is a collection type.

— TY is a row type, and the declared type of some field of TY is a collection-containing

type.

— TY is a structured type, and the declared type of some attribute of TY is a collection-

containing type.

— TY is distinct type, and the source type of TY is a collection-containing type.

We call SQL values of type which is not a collection-containing type scalars.

3.2.2.2 MD-dimension

The MD-dimension is an essential property of an MD-array that indicates how many

MD-axes it has. Two MD-arrays of different MD-dimensions are fundamentally different,

therefore an MD-array type that specifies a certain MD-dimension admits only MD-array

values of that MD-dimension. An MD-array has an MD-extent that is a list of MD- axes.

Each MD-axis has a name, a lower limit, and an upper limit.

3.2.2.3 MD-axis names

The name of an MD-axis uniquely identifies that MD-axis, which becomes relevant in

operations that refer to the MD-axes of an MD-array. In operations on two or more

MD-arrays, the names of corresponding MD-axes are required to be the same; a regular

2D x/y image is completely different from a transposed y/x image after all. Rarely, it

might happen that the MD-array legitimately fits semantically, while the corresponding

MD-axis names are different (most likely synonyms like x and longitude, or t and time);

SQL/MDA provides a CAST variant for such cases that allows to explicitly rename the

MD-axis names.

44

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.2.2.4 MD-axis lower and upper limits

The lower and upper limits of the MD-axes are not defining of the nature of an MD-array.

MD-arrays with different lower and upper limits can still be related to each other, as the

following example illustrates.

Suppose we have grayscale satellite images of each country in the world in the same

resolution1. In SQL/MDA they would be 2-dimensional MD-arrays of different sizes (the

“width” of the first MD-axis and “height” of the second MD-axis), as there are smaller and

larger countries. If we imagine a “map” of the whole world in the same resolution, then

the MD-array for each country would be placed at a different position on the overall map

(Figure 3.4), i.e. the lower and upper limits of its MD-axes would be different from those

of other MD-arrays. Nevertheless, they are related to each other, and it would beneficial

to be possible to put them in a single MDARRAY column, connecting them to further

columns holding metadata like the country name, geographic boundaries, population,

etc.

Figure 3.4: Placement of satellite images of each country on a world map [44]

1resolution refers to the real size of a single pixel, e.g. 30 meters.

45

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

It can be concluded that varying lower and upper limits should be allowed. Allowing to

(optionally) set some maximum limits that MD-arrays should not exceed would certainly

be valuable in this case, however. Possibility to set minimum limits that any MD-array

must exceed on the other hand isn’t a practically useful case. Finally, enforcing exact,

non-variable limits might make sense in rare situations, but it would entail cluttering

the whole MD-array model which is not really worth it. Therefore it is only allowed to

set maximum limits if desired.

3.2.2.5 Putting it all together

The discussion so far leads to the following type definition for MD-arrays:

<md-array type> ::= <data type> MDARRAY <maximum md-extent>

Specifying a column of MD-array type requires specifying first the element type, followed

by the keyword MDARRAY, and a maximum MD-extent at the end. A maximum MD-

extent is either a list of “regular” maximum MD-axes with user-specified names, or a list

of “anonymous” maximum MD-axes with default system-generated names – when the

names are irrelevant – in the form of “D1” for the first MD-axis, “D2” for the second,

and so on. The other difference is that the regular maximum MD-extent can be specified

with just the MD-axis name, while leaving out the lower and upper limits. Leaving out

the maximum limits means that no maximum lower nor upper limits are enforced on a

particular MD-axis. The same can be achieved selectively for each limit with a ‘*’ instead

of a specific maximum limit.

Table 3.2 illustrates these concepts with a couple of examples.

3.2.3 MD-array creation

There are several ways to introduce MD-array values into the SQL environment from

“scratch”, i.e. the opposite of deriving from existing MD-array values:

1) In direct enumeration, all the MD-array’s elements can be listed in row-major order

(unrelated to any internal array representation).

2) A tabular query result can be converted to an MD-array if it is in the appropriate

structure.

3) MD-array constructor by iteration allows to generate all elements of an MD-array

by evaluating a coordinate-bound value expression for each element.

46

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.2: Examples of MD-array type definitions.

Example SQL type definition

1-D MD-arrays of floating-point elements, with
possible coordinates from [0] to [99]. The single
MD-axis is called temp, short for temperature.

FLOAT MDARRAY [temp(0:99)]

Same as the previous example, except that the
allowed coordinates are now from r´8s (theoret-
ically) to r99s.

FLOAT MDARRAY [temp(*:99)]

Allow any coordinates. FLOAT MDARRAY [temp(*:*)]

Equivalent to the previous case. FLOAT MDARRAY [temp]

2-D MD-arrays of integer elements, with no up-
per/lower limits on the coordinates. The MD-
axis names are not specified (anonymous).

INT MDARRAY [*:*, *:*]

2-D MD-arrays of integer elements and maxi-
mum size 3x3 elements. The MD-axis names are
i and j.

SMALLINT MDARRAY [i(-1:1),

j(-1:1)]

3-D MD-arrays corresponding to time-series
cubes of satellite images over a certain area. The
time MD-axis t has no upper limit as we expect
new images to be appended to each cube every
24 hours for example.

SMALLINT MDARRAY [t(0:*),

x(0:7999), y(0:7999)]

2-D MD-arrays of maximum size 1024x1024, cor-
responding to RGB images (having red, blue and
green channels as 8-bit unsigned integer compo-
nents).

CREATE TYPE RGBPixel AS (red

SMALLINT, green SMALLINT,

blue SMALLINT)

RGBPixel MDARRAY [x(0:1023),

y(0:1023)]

4) By decoding an array encoded in a particular format, e.g. TIFF, netCDF, PNG, etc.

In most cases it is commonly required to explicitly specify the MD-extent of the created

MD-array, as it cannot be generally inferred. The MD-extent must specify all MD-axis

names and exact upper and lower limits, in contrast to the more relaxed rules for maximum

MD-extent which allow to omit the MD-axis limits from the type definition. This ensures

that any MD-array value in the SQL environment has a precisely defined MD-extent.

The following Sections present each case in detail.

3.2.3.1 Explicit element enumeration

In direct enumeration, all the MD-array’s elements can be listed in row-major order

(unrelated to any internal implementation representation).

47

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Row-major refers to matrices with rows and columns, indicating that first all elements

of the first row are listed in order, then all elements of the second row, etc. For multidi-

mensional arrays this notion needs to be generalized: the inner-most (last) MD-axis is

contiguous, and varies fastest, followed by the second last MD-axis, and so on. Mathe-

matically, the multidimensional coordinate to linear index translation can be specified

as follows. Suppose we have an MD-array of MD-dimension d, with an MD-extent D de-

noted as rN1pLO1 : HI1q, . . . , NdpLOd : HIdqs. Let Ei be HIi´LOi` 1. The row-major

linear index (starting from 1) of a coordinate rP1, . . . , Pds within D is given by:

1` LPd ` Ed ¨ pLPd´1 ` Ed´1 ¨ p. . .` E2 ¨ LP1q . . .q “ 1`
d
ÿ

i“1

LPi ¨

˜

d
ź

j“i`1

Ej

¸

where LPi “ Pi ´ LOi
2.

The elements are listed as comma-separated values between ‘[’ and ‘]’. Table 3.3 shows

several examples.

Table 3.3: Examples of MD-arrays constructed by element enumeration.

Example SQL fragment

1-D MD-array of 10 floating-point elements at
coordinates ranging from r10s to r19s. The ele-
ment at coordinate r10s is ´0.5, at r11s is ´1.5,
and so on.

MDARRAY [temp(10:19)] [-0.5,

-1.5, -0.34, 0.1, 1.12, 0.34,

1.5, 0.2, 1.15, 0.033]

2-D 3x3 convolution kernel, as shown on Figure
3.3. The element at coordinate r0, 0s is 8, which
is the 5th element in the <md-array element

list>, while the elements at all other coordinates
are ´1.

MDARRAY [i(-1:1), j(-1:1)]

[-1, -1, -1, -1, 8, -1, -1,

-1, -1]

3-D 2x2x2 MD-array of 8 SMALLINT elements,
such that the element with value 1 is at coor-
dinate r0, 1, 2s, 2 is at coordinate r0, 1, 3s, 3 at
r0, 2, 2s, 4 at r0, 2, 3s, 5 at r1, 1, 2s, and so on.

MDARRAY [x(0:1), y(1:2),

z(2:3)] [1, 2, 3, 4, 5, 6, 7,

8]

2this is necessary in order to normalize the coordinate to an origin coordinate of r0, . . . , 0s, rather
than rLO1, . . . , LOds

48

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.2.3.2 From SQL table query result

Given an MD-extentD with d MD-axes, denoted as rN1pLO1 : HI1q, . . . , NdpLOd : HIdqs.

Based on it, an SQL table T that satisfies the criteria below can be converted to an

MD-array of MD-extent D:

— T has to be of degree N “ d` 1.

— The names of d columns in T must correspond to the MD-axis names in D; we call

these columns coordinate columns. The remaining column is the element column.

— UNIQUE constraint is assumed on the coordinate columns pN1, . . . , Ndq.

— The rows at coordinate column with name Ni, for 1poneq ď i ď d, must contain

non-null, integer values ranging from LOi to HIi.

The coordinate columns specify the coordinates, and the element column the elements

of the MD-array. The elements at any coordinates within the specified MD-extent that

have not been defined by the coordinate columns will be set to the null value. Figure 3.5

is an example of an SQL table that satisfies these constraints. The following SQL query

fragment constructs the MD-array out of this table T :

MDARRAY [i(-1:1), j(-1:1)] (SELECT T.* FROM T)

Figure 3.5: Example of an SQL table that corresponds to a 3x3 MD-array (Figure
3.3).

i j element

-1 -1 -1

-1 0 -1

-1 1 -1

0 -1 -1

0 0 8

0 1 -1

1 -1 -1

1 0 -1

1 1 -1

ÝÑ

-1

-1

-1 -1 -1

-1

-1-1

8

-1 0 1

-1

0

1

j

i

Figure 3.6 shows the MD-array that results when some of the coordinates in the specified

MD-extent are missing from the input table.

49

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.6: Example of an SQL table converted to a 3x3 MD-array with MD-extent
[i(-1:1), j(-1:1)]. The missing elements are set to SQL null values (denoted as ω on the

figure).

i j element

-1 1 -1

0 -1 -1

0 0 8

1 0 -1

1 1 -1

ÝÑ

-1

ω

ω -1

-1

-1

8

-1 0 1

-1

0

1

j

i

ω

ω

3.2.3.3 Construction by implicit iteration

An MD-array constructor by iteration introduces a general, powerful and flexible mecha-

nism for constructing new arrays. Given an MD-extent, an element expression specifies

how each element in that MD-extent is to be derived. In the simplest case, the expression

could be a literal, or perhaps a column reference resulting in a “constant” MD-array such

that all its elements are the same. This is of limited use in a few places like initializing an

MD-array with zeros or the null value for example. To make it more generally useful it is

allowed to reference MD-axis names in the element expression, which for each coordinate

in the MD-extent are implicitly converted to the corresponding coordinate element. In

this way the element expression is dynamic depending on the coordinate of the current

MD-array element.

Table 3.4 shows examples of using this constructor, starting from creating simple constant

MD-array, to more complex MD-array derivation cases.

3.2.3.4 Decoding a format-encoded array

Finally, an MD-array can be established by decoding an array stored in some particular

format with the MDDECODE function, parameterized as follows:

1) First is the format-encoded array given as a byte or character string.

2) Following a comma is a format identifier that indicates the format of the encoded

array. For this purpose we adopt media types, an IETF standard for naming data encod-

ings [56]. It standardizes a list of identifiers which refer to particular well-known format

encodings. For example, ‘image/png’ indicates a PNG image, and ‘application/json’ refers

to JSON data [67].

50

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.4: Examples of MD-arrays created with the constructor by iteration.

Example SQL fragment

2-D constant MD-array such that the value of
each element is 0 (zero).

MDARRAY [x(0:9), y(0:9)]

ELEMENTS 0

1-D “gradient” MD-array of 10 elements, in
which the value of each element is equal to its
coordinate.

MDARRAY [x(0:9)]

ELEMENTS x

2-D “gradient” MD-array of 100 elements, in
which the value of each element is equal to the
sum of its x and y coordinates.

MDARRAY [x(0:9), y(0:9)]

ELEMENTS x + y

2-D MD-array, which is derived from an existing
MD-array A with MD-extent [x(0:9),y(0:9)], so
that the value of each element in the newly cre-
ated MD-array is the square of the corresponding
element in A.

MDARRAY MDEXTENT(A)

ELEMENTS POWER(A[x, y], 2)

3) Finally, the MD-array type that would result from decoding the array is specified.

The MD-array structure cannot be inferred without decoding the string, so to allow

proper type-checking it is necessary to explicitly specify the result type.

This mechanism provides a hook for implementations to define array ÝÑ MD-array

decoders as desired. One can use the GDAL library for example [142], which provides

abstraction API for a wide variety of raster data formats [143].

SQL/MDA itself standardizes the decoding process of JSON-encoded arrays given a

format identifier ‘application/json’. It is expected that the JSON array is embedded as

a member with key ’data’ within a JSON object. The JSON object could potentially

contain more members acting as metadata which are ultimately ignored by MDDECODE.

Table 3.5 lists some examples of decoding JSON arrays to MD-arrays.

3.2.4 MD-array updating

The standard UPDATE mechanism of SQL where an existing value is completely replaced

with a new value is generally not suitable for MD-arrays. In practice, usually a set of

small source MD-arrays need to be combined into a large target MD-array. The position

of update in the target MD-array is random, determined by each individual source MD-

array. The set may be open-ended, i.e. more pieces of the target MD-array may become

available at any time in the future.

Three general patterns can be observed when updating a target MD-array T with a

source value S:

51

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.5: Examples of MD-arrays created from JSON-encoded arrays.

Example SQL fragment

1-D “gradient” JSON array of 6 el-
ements, in which the value of each
element is equal to its coordinate.

MDDECODE(’{"data": [1, 2, 3, 4, 5,

6]}’, ’application/json’ RETURNING INT

MDARRAY [x(1:6)])

2-D MD-array from a 3x3 convolu-
tion kernel array encoded as JSON
(cf. Figure 3.3).

MDDECODE(’{"data": [[-1, -1, -1],

[-1, 8, -1], [-1, -1, -1]]}’,
’application/json’ RETURNING INT

MDARRAY [i(-1:1), j(-1:1)])

3-D MD-array from a 1x3x2 array
encoded as JSON.

MDDECODE(’{"data": [[[1, 2], [3, 4], [5,

6]]]}’, ’application/json’ RETURNING

INT MDARRAY [t(0:0), x(0:2), y(0:1)])

— S and T are MD-arrays of the same MD-dimension;

— S is an MD-array of MD-dimension that is less than the MD-dimension of T ;

— S is of a compatible type to the element type of T , rather than an MD-array.

When S is an MD-array, its element type has to be compatible to the element type of T .

The next sections present these alternatives in more detail; multiple examples are used

to illustrate the concepts based on a table defined as follows:

TABLE Temp(T REAL MDARRAY[t(1:12), x(1:1000), y(1:1000)])

Temp contains a single row with value MDARRAY[t(1:1), x(1:1), y(1:4)] [0.0, 0.0,

0.0, 0.0].

3.2.4.1 Updating MD-arrays of equal MD-dimension

Two cases are supported when the source and target MD-arrays, S and T , are of equal

MD-dimensions:

1) The default UPDATE syntax, as would be expected, implies that T is completely

replaced. The MD-extent of the S has to be strictly within the maximum MD-extent of

T . For example, this query replaces the value of T with the specified MD-array value:

UPDATE Temp SET T = MDARRAY[t(1:1), x(1:1), y(1:3)] [0.0, 1.0, 2.0]

52

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

The value of T in the single row of Temp is now MDARRAY[t(1:1), x(1:1), y(1:3)]

[0.0, 1.0, 2.0].

2) When T is restricted to a certain MD-extent D (with an explicit <md-axis subset

list>), only the part of T corresponding to the MD-extent of S is updated. The MD-

extent of S has to be strictly within D, and D has to be strictly within the maximum

MD-extent of T . The following query replaces only the elements in T at coordinates

within the MD-extent [t(1:1), x(1:1), y(1:3)]

UPDATE Temp SET T[t(1:1), x(1:1), y(1:3)] =

MDARRAY[t(1:1), x(1:1), y(1:3)] [0.0, 1.0, 2.0]

The value of T in the single row of Temp is now MDARRAY[t(1:1), x(1:1), y(1:4)]

[0.0, 1.0, 2.0, 0.0].

Notably, the MD-extent of S does not need to be strictly within the MD-extent of T ,

and can overlap or be completely disjoint as well, in which case the final MD-extent will

be the union of the two MD-extents, and all elements at coordinates within the union

but not within the MD-extents of S or T will be null values; Figure 3.7 illustrates this

visually.

Figure 3.7: The red rectangle is the MD-extent of T , while the white rectangle with
black border is its maximum MD-extent. The green rectangle is the MD-extent of S.
The result MD-array of the update is the rectangle formed of the red, yellow and green

parts; the elements in the yellow subset are set to null.

A typical situation that entails using the second alternative is combining a set of satellite

images as acquired by a satellite into a global world map. All satellite images, as well as

the final map are 2-dimensional. The map would be updated in turn with each satellite

image (which may need to be ”shifted” with MDSHIFT (cf. Section 3.3.3.3) to the correct

position in the map.

53

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.2.4.2 Updating MD-arrays of greater MD-dimension

Often the S could be an MD-array value of smaller dimension than T . In the following

example, a 2-D MD-array is assigned to a 3-D MD-array, and the t slice coordinate

where the source 2-D array will be placed cannot be inferred, so it is necessary to specify

it explicitly:

UPDATE Temp SET T[t(2), x(1:1), y(1:4)] =

MDARRAY[x(1:1), y(1:4)] [5.0, 1.0, 2.0, 3.0]

As a result, the value of T in the single row of Temp would be changed to MDARRAY[t(1:2),

x(1:1), y(1:4)] [0.0, 0.0, 0.0, 0.0, 5.0, 1.0, 2.0, 3.0]. This is fairly simi-

lar to the previous case, except that now in the subsetting MD-extent it is allowed to

specify slicing coordinates.

In another example, we might decode a 2-D array encoded as a TIFF image into a 3-D

time-series MD-array (e.g. green rectangle as S from MDDECODE on Figure 3.8):

UPDATE Temp SET T[t(10)] = MDDECODE(LOB, "image/tiff"

RETURNING INT MDARRAY [x(0:4999), y(0:4999)])

Figure 3.8: Updating a 3-D MD-array with a 2-D source MD-array.

3.2.4.3 Updating a single element of an MD-array

To update a single element in T , the subsetting MD-extent has to provide slice coordinates

for each MD-axis of T . For example this query will update the element at coordinate [1,

1, 1] to 5.2 so that the value of T in the single row of Temp will be MDARRAY[t(1:1),

x(1:1), y(1:4)] [5.2, 1.0, 2.0, 0.0]:

54

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

UPDATE Temp SET T[1, 1, 1] = 5.2

3.2.5 Exporting MD-arrays

3.2.5.1 Encoding to a data format

Ingesting some arrays into SQL/MDA and then locking them into the DBMS internal

representation is not an inviting prospect. No matter how powerful the processing capa-

bilities of SQL/MDA are, it is of no real use without a mechanism to encode MD-array

results into suitable formats for distribution and visualization. This is supported by the

MDENCODE function, parameterized as follows:

1) First is the MD-array value to be encoded.

2) Following a comma is a format identifier that indicates the format to which the

MD-array value should be encoded. As in the case of MDDECODE, we adopt media

types for this purpose [56, 67].

3) Finally, the data type that would result from encoding the MD-array can be specified;

when omitted the result type is assumed to be either a character string type, if the format

identifier is ‘application/json’, or binary string type otherwise, given that arrays are most

commonly encoded in binary.

As with MDDECODE, encoding to JSON arrays is standardized in SQL/MDA. MD-

arrays are linearized to JSON in row-major order, with each MD-axis (row) “change”

marked with opening and closing brackets. Table 3.6 below lists the inverse cases of the

examples provided previously on Table 3.5.

3.2.5.2 Converting to an SQL table

Converting an MD-array to an SQL table is useful whenever the perspective of using

general SQL would be more adequate. There are situations which cannot be addressed

strictly within SQL/MDA but that general SQL would have no problems with. For

example, the ability to order the elements of an MD-array by some criteria is not foreseen

in SQL/MDA itself, as it is not a commonly used array operation; converting to an SQL

table and using ORDER BY would be an acceptable alternative in this case.

55

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.6: Examples of MD-arrays encoded to JSON arrays.

Example SQL fragment JSON result

1-D “gradient” MD-
array of 6 elements.

MDENCODE(MDARRAY

[x(1:6)] [1, 2, 3, 4, 5,

6], ’application/json’)

’{"data": [1, 2, 3, 4, 5,

6]}’

A 3x3 convolution
kernel MD-array.

MDENCODE(MDARRAY

[i(-1:1), j(-1:1)]

[-1, -1, -1, -1,

8, -1, -1, -1, -1],

’application/json’)

’{"data": [[-1, -1, -1],

[-1, 8, -1], [-1, -1,

-1]]}’

A 1x3x2 MD-array
of 6 elements.

MDENCODE(MDARRAY

[t(0:0), x(0:2), y(0:1)]

[1, 2, 3, 4, 5, 6],

’application/json’)

’{"data": [[[1, 2], [3,

4], [5, 6]]]}’

An SQL ARRAY can be converted to an SQL table with the UNNEST operator.

SQL/MDA similarly uses the UNNEST operator for this purpose, tailoring it to MD-

arrays. UNNEST has two modes of operation, based on the presence of a WITH ORDI-

NALITY option:

1) By default, when WITH ORDINALITY is not specified, UNNEST of an MD-array is

approximately the dual operation of the MD-array value constructor by query previously

introduced in Section 3.2.3.2. In this case UNNEST results in a table with columns for

each MD-axis with the same name as the MD-axis name (unless explicitly renamed),

followed by a column holding the MD-array elements at the corresponding rows.

2) If WITH ORDINALITY is specified, then before the coordinate columns there is in

addition a single ordinality column holding the values from 1 (one) to the cardinality of

the MD-array, in row-major order corresponding to the MD-array elements.

Consider the following example query.

SELECT T.* FROM UNNEST(MDARRAY[x(1:2), y(1:2)] [1, 2, 5, 6])

AS T(x, y, value)

It converts a single MD-array defined inline by directly enumerating all its elements to

an SQL table, shown on Table 3.7.

The same query with WITH ORDINALITY added results in the SQL table 3.8.

SELECT T.* FROM UNNEST(MDARRAY[x(1:2), y(1:2)] [1, 2, 5, 6])

WITH ORDINALITY AS T(ord, x, y, value)

56

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.7: Result of example UNNEST query.

x y value

1 1 1

1 2 2

2 1 5

2 2 6

Table 3.8: Result of example UNNEST query specifying WITH ORDINALITY.

ord x y value

1 1 1 1

2 1 1 2

3 2 1 5

4 2 2 6

Finally, let us look at a somewhat more complex example. Earlier we mentioned the case

of converting to a table in order to sort the MD-array elements. Suppose we want to

find the ten most frequent elements in an MD-array. This can be done by computing a

histogram on the array by counting how many elements are there of each value in the

element type range, which is then converted into to a table in order to get the most

frequent values after it has been sorted. In the query below, let T be a table, with an

MD-array column A of type NUMERIC(2, 0) and a primary key column named id.

SELECT H.value

FROM T, UNNEST(SELECT MDARRAY[value(-99:99)]

ELEMENTS MDCOUNT_TRUE(A = value)

FROM T)

AS H(value, total)

GROUP BY H.value

ORDER BY SUM(H.total) DESC

FETCH FIRST 10 ROWS

3.3 SQL/MDA Operations

The following sections cover the operations in SQL/MDA defined on MD-arrays, that

result either in MD-array values again, or in some other SQL data values. Each operation

is illustrated with various examples based on the following SQL tables and sample data of

57

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

small 2-dimensional MD-arrays. It holds a single row with the 3x3 edge detection kernel

shown on Figure 3.3, plus a 5x5 filter kernel in another column. For conciseness, the

examples often consist of only the relevant SQL query fragment referencing the kernel

or filter MD-array attributes, instead of showing a full SQL query.

CREATE TABLE kernels (

id INT PRIMARY KEY,

name CHARACTER VARYING(50),

kernel SMALLINT MDARRAY [i(-100:100), j(-100:100)],

filter SMALLINT MDARRAY [i(-100:100), j(-100:100)])

INSERT INTO kernels VALUES

(1, ’Edge detection’,

MDARRAY [i(-1:1), j(-1:1)] [-1, -1, -1,

-1, 8, -1,

-1, -1, -1],

MDARRAY [i(-2:2), j(-2:2)] [2, 4, 5, 4, 2,

4, 9, 12, 9, 4,

5, 12, 15, 12, 5,

4, 9, 12, 9, 4,

2, 4, 5, 4, 2])

3.3.1 MD-extent probing operators

The functions listed below allow getting information about the MD-extent of an MD-array

AVE. Table 3.9 shows examples for each function.

— MDDIMENSION(AVE)

Returns the MD-dimension of the MD-array value AVE.

— MDAXIS INDEX(AVE, <md-axis name>)

Given an MD-axis name, returns the ordinal index (1-based) of the MD-axis with that

name in the given MD-array value. A non-existing MD-axis name is an error condition.

— MDAXIS NAME(AVE, <numeric value expression>)

Given an ordinal index i (1-based), returns the name of the i-th MD-axis in the given

MD-array value. An index not in the [1, DIMENSION(AVE)] range is an error condition.

— MDAXIS LO(AVE, <md-array md-axis>)

58

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Given an ordinal index (1-based) or an MD-axis name, returns the lower limit of the

respective MD-axis in the given MD-array value. A reference to a non-existing MD-axis

is an error condition.

— MDAXIS HI(AVE, <md-array md-axis>)

Similarly, returns the upper limit of the respective MD-axis in the given MD-array

value. A reference to a non-existing MD-axis is an error condition.

— MDEXTENT(AVE)

Returns the MD-extent of an MD-array value, as a table with NAME, LO, HI and

INDEX columns holding the respective information for each MD-axis of the MD-array’s

MD-extent.

— MAX MDEXTENT(AVE)

Analogous to the previous example, except that the returned table contains infor-

mation for the MD-axes of the MD-array’s maximum MD-extent.

Table 3.9: Examples with MD-extent probing functions.

Example Result

MDDIMENSION(kernel) 2

MDAXIS INDEX(kernel, j) 2

MDAXIS NAME(kernel, 1) i

MDAXIS LO(kernel, 1) ” MDAXIS LO(kernel, i) -1

MDAXIS HI(kernel, 2) ” MDAXIS HI(kernel, j) 1

MDEXTENT(kernel) See Table 3.10

MAX MDEXTENT(kernel) See Table 3.11

Table 3.10: Result of MDEXTENT(kernel).

NAME LO HI INDEX

i -1 1 1

j -1 1 2

Table 3.11: Result of MAX MDEXTENT(kernel).

NAME LO HI INDEX

i -100 100 1

j -100 100 2

59

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.3.2 MD-array element reference

In order to reference a single element it is just necessary to specify its coordinate. Most

commonly in programming languages and tools the coordinate is specified as a list of

comma-separated values, each indicating the index on the respective MD-axis. SQL/MDA

adopts this notation as well, so an element reference for a d-dimensional MD-array AVE

generally looks like this:

AVE[pos1, pos2, . . ., posd]

One way to interpret pos1, . . ., posd, is as a list of integer values related to the particular

MD-axes based on their order of appearance. So pos1 specifies a position on the first

MD-axis in AVE, pos2 on the second, and so on. This is positionally dependent referencing.

MD-axes have names, which can be used to establish a more flexible, positionally in-

dependent alternative. Instead of by order, we refer to an MD-axis by its name which

means that each posi must specify an MD-axis name in this case. The syntax is similar

to the one used by the Web Coverage Processing Service standard [13], SciDB [43] and

others. Note that posi does not necessarily refer to a position on the i-th MD-axis, but

on the MD-axis named namei.

AVE[name1(pos1), . . ., named(posd)]

There is no value in mixing these two styles, so either one or the other must be used in

an MD-array element reference. In either case, specifying a coordinate which is within

the maximum MD-extent but not within the MD-extent of the MD-array will result in

a null value. Specifying a coordinate which is not within the maximum MD-extent is an

error. Table 3.12 below shows a few examples.

Table 3.12: Examples of referencing a single element in an MD-array.

Example Result

kernel[0, 0]

kernel[i(0), j(0)]

kernel[j(0), i(0)]

8

kernel[50, 0] null value

kernel[-1, 1000]

kernel[x(0), y(0)]

kernel[i(0), 0]

error

60

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.3.3 MD-extent modifying operators

This Section covers the operations that take an MD-array input and result in an MD-array

value with a modified MD-extent. The elements in the result MD-array at corresponding

coordinates with the input MD-array, however, remain unchanged. These operations

include selecting a subset of the MD-array elements, reshaping the MD-extent, shifting

the MD-extent by a given offset coordinate, and renaming the MD-axes of an MD-array.

3.3.3.1 Subsetting

We now extend the concept of MD-array element reference discussed previously to an

operation that allows selecting a subset of the MD-array’s elements, rather than a single

element. As such, the result of such a subsetting operation is an MD-array itself, with

an MD-extent likely “trimmed” to be smaller than that of the input MD-array, and/or

some of the MD-axes potentially removed (“sliced”). Figure 3.9 illustrates this visually.

Figure 3.9: MD-array subsetting examples; blue denotes the original array, while
red shows the subset array. The a) and c) examples preserve the MD-dimension, i.e. the
subset contains only “trims”, while b) removes, or “slices” one MD-axis and d) slices

two MD-axes, resulting in MD-arrays of smaller MD-dimension.

The MD-array element reference construct already supports specifying MD-axis slices3.

In order to support subsetting, we extend it to allow specifying trims for any particular

MD-axis as colon-separated lower and upper limit, and actually require that at least

one trim (whether implicit or explicit) is present, otherwise we end up with an element

reference.

3In fact it can be seen as a special case of MD-array subsetting, where all MD-axes are sliced, leaving
us with a 0-dimensional MD-extent (i.e. it completely removes the MD-extent).

61

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Explicit trims are the ones specified in the subset itself. In addition we introduce the

concept of implicit trims in positionally independent subsets: if a particular MD-axis is

not present in the subset neither as a trim, nor as a slice, it is assumed to be an implicit

trim with lower and upper limits equal to the lower and upper limits of the MD-axis.

Note that in positionally dependent subsets this is not possible; not specifying a trim for

some MD-axis in the subset would disturb the order and make it impossible to relate

the remaining trims and slices to the MD-axes.

Another convenience shortcut is MD-axis limit globbing in trim specifications. A wildcard

asterisk character (‘*’) can be specified instead of a specific lower or upper limit, in which

case that limit implicitly expands to the value of the lower or upper limit of the referenced

MD-axis.

Similarly it is often useful to match the MD-extent of MD-array A, to the MD-extent of

another MD-array B (of equal MD-dimension). MD-extent globbing allows doing exactly

this through using the MDEXTENT function in the subset, instead of specifying explicit

trims.

Table 3.13 shows examples that illustrate the concepts of MD-array subsetting.

3.3.3.2 Reshaping

The MDRESHAPE function is somewhat similar to the subsetting operation, with the

following differences:

— Only trims are allowed, i.e. the result is always an MD-array of the same MD-

dimension as that of the input MD-array.

— The MD-extent can also be “enlarged” (up to the maximum MD-extent of the

MD-array), while subsetting only supports MD-extent “restriction”. On enlarging, all

elements at coordinates within the result MD-extent but not within the MD-extent of

the input MD-array are set to the null value.

— It is a function, with the input MD-array value as first parameter, and the MD-extent

reshaping specification as the second parameter.

Reshape is a common name for this operation, as the MD-extent is sometimes also called

shape (or bounding box, spatial domain, etc). Visually it is illustrated on Figure 3.10.

The alternatives for positionally dependent and independent MD-axis reference, and

MD-axis limit and MD-extent globbing are same as in the subsetting case, so we refer

the reader to Section 3.3.3.1 for the details. Table 3.14 shows examples that illustrate

the concepts of MD-extent reshaping.

62

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.13: Examples of MD-array subsetting.

Example Result

kernel[0:1, 0:1]

kernel[i(0:1), j(0:1)]

kernel[j(0:1), i(0:1)]

MDARRAY [i(0:1), j(0:1)] [8, -1,

-1, -1]

kernel[0, 0:1]

kernel[0, 0:*]

kernel[i(0), j(0:1)]

kernel[i(0), j(0:*)]

kernel[j(0:1), i(0)]

MDARRAY [j(0:1)] [8, -1]

kernel[0:0, 0:1]

kernel[0:0, 0:*]

kernel[i(0:0), j(0:1)]

kernel[i(0:0), j(0:*)]

kernel[j(0:1), i(0:0)]

MDARRAY [i(0:0), j(0:1)] [8, -1]

kernel[0, -1:1]

kernel[0, *:*]

kernel[i(0)]

kernel[i(0), j(*:*)]

MDARRAY [j(-1:1)] [-1, 8, -1]

filter[MDEXTENT(kernel)]

filter[i(-1:1), j(-1:1)]

MDARRAY [i(-1:1), j(-1:1)] [

9, 12, 9,

12, 15, 12,

9, 12, 9]

kernel[50, 0:1]

kernel[0:50, *:*]

kernel[-1000:-500, 300]

kernel[i(0), x(*:*)]

kernel[0:1]

error

Figure 3.10: MD-array reshaping example; the original MD-extent is marked as a
gray rectangle, while the new MD-extent after applying MDRESHAPE is the yellow

(including the gray) rectangle.

3.3.3.3 Shifting

The MDSHIFT function allows shifting the whole MD-extent of an MD-array value AV E

to a new origin coordinate O. The origin of an MD-extent is the coordinate formed of

63

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.14: Examples of MD-extent reshaping.

Example Result

MDRESHAPE(kernel, [0:1, 0:1])

MDRESHAPE(kernel, [i(0:1), j(0:1)])

MDRESHAPE(kernel, [j(0:1), i(0:1)])

MDARRAY [i(0:1), j(0:1)] [8,

-1, -1, -1]

MDRESHAPE(kernel, [i(0:2), j(0:*)]) MDARRAY [i(0:2), j(0:1)] [8,

-1, -1, -1, NULL, NULL]

MDRESHAPE(filter, [MDEXTENT(kernel)])

filter[MDEXTENT(kernel)]

filter[i(-1:1), j(-1:1)]

MDARRAY [i(-1:1), j(-1:1)] [

9, 12, 9, 12, 15, 12, 9, 12, 9]

MDRESHAPE(kernel, [MDEXTENT(filter)])

MDARRAY [i(-2:2), j(-2:2)] [

NULL, NULL, NULL, NULL, NULL,

NULL, -1, -1, -1, NULL,

NULL, -1, 8, -1, NULL,

NULL, -1, -1, -1, NULL,

NULL, NULL, NULL, NULL, NULL]

the lower limits of each MD-axis in the MD-extent. O is specified in the same way as for

MD-array element reference, so we refer the reader to Section 3.3.2 for the details.

In more detail, shifting the MD-extent works as follows. First a shift coordinate S is

computed as the difference between the origin of AV E and O. The difference of a d-

dimensional coordinate rP1, . . . , Pds and a coordinate rQ1, . . . , Qds is equivalent to the

difference of their corresponding values, i.e. rP1 ´Q1, . . . , Pd ´Qds; the sum is defined

analogously. Then the coordinate R of each element of the MD-array is replaced with

R` S; the value of the element remains unchanged.

Figure 3.11: MD-array shifting example; the original MD-extent is marked as a gray
rectangle, while the new MD-extent after applying MDSHIFT is the yellow rectangle.

Table 3.15 shows examples that illustrate the concepts of MD-extent shifting; Figure

3.11 shows visually the effect of MDSHIFT.

64

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.15: Examples of MD-extent shifting.

Example Result

MDSHIFT(kernel, [0, 0])

MDSHIFT(kernel, [i(0), j(0)])

MDSHIFT(kernel, [j(0), i(0)])

MDARRAY [i(0:2), j(0:2)] [-1,

-1, -1, -1, 8, -1, -1, -1, -1]

MDSHIFT(kernel, [i(0)])

MDSHIFT(kernel, [i(0:0), j(0)])

MDSHIFT(kernel, [1000, 1000])

error

3.3.3.4 MD-axis renaming

SQL/MDA extends the SQL CAST operator to allow changing the MD-axis names of

an MD-array value. Syntactically this is of the form CAST(AVE AS NC). There are two

alternatives to NC:

— Explicitly enumerate all MD-axis names in the form of rname1, . . . , nameds.

— Use the MDAXIS NAMES function (Section 3.3.1) to rename to the MD-axis names

of an existing MD-array of the same MD-dimension as the input MD-array.

Table 3.16 below lists a few examples.

Table 3.16: Examples of MD-axis renaming.

Example Result

CAST(kernel AS MDARRAY [x, y]) MDARRAY [x(-1:1), y(-1:1)] [-1,

-1, -1, -1, 8, -1, -1, -1, -1]

CAST(kernel AS MDARRAY

MDAXIS NAMES(filter))

MDARRAY [i(-1:1), j(-1:1)] [-1,

-1, -1, -1, 8, -1, -1, -1, -1]

3.3.4 MD-array deriving operators

This Section covers all operations that take MD-array input(s) and result in an MD-array

value with elements derived from the elements of the inputs in some way.

3.3.4.1 Scaling

Oftentimes we want to reshape the MD-array as with MDRESHAPE (cf. Section 3.3.3.2),

while retrofitting its contents into the new MD-extent. The contents is adjusted to the

65

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.12: MD-array scaling example; the MD-array on the left is enlarged with
MDSCALE to the MD-array on the right.

new MD-extent by interpolating (resampling) the elements in some way. A familiar use

case is resizing (up or down) of an image, illustrated on Figure 3.12.

The target MD-extent is specified in the same manner as in the case of MDRESHAPE.

It is worth going in more depth now into the algorithm by which the new element

values are established in the result MD-array with MDSCALE. Deriving a particular

new element value in general relies on a combination of several input elements, typically

stemming from a local neighborhood of a reference element. Many different interpolation

algorithms are known from literature and in active use. For instance, Table 3.17 lists

the interpolation methods defined in ISO 19123 [71], which also acknowledges that more

exist:

Table 3.17: Interpolation methods defined in ISO 19123 [71].

Method Coverage Type Dimension

Nearest Neighbor Any Any

Linear Segmented Curve 1

Quadratic Segmented Curve 1

Cubic Segmented Curve 1

Bilinear Quadrilateral Grid 2

Biquadratic Quadrilateral Grid 2

Bicubic Quadrilateral Grid 2

Lost Area Thiessen Polygon, Hexagonal Grid 2

Barycentric TIN 2

Which interpolation method is chosen depends on the particular use case, for example:

— Bilinear or bicubic interpolation are often considered appropriate for remote-sensing

image rescaling.

— Nearest neighbor yields “crisper” images with better contrast, therefore it is some-

times preferred for scaling Web maps. Non-numerical categorical values cannot be mean-

ingfully combined in interpolation algorithms, so nearest neighbor is often the only

66

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

applicable interpolation in such cases, as it works by cloning existing elements into the

output.

MDSCALE has to make a decision on which interpolation methods it would support.

Nearest neighbor is simple, and easily scales to any dimension and element data type.

All other methods specifically support arrays of a certain dimension only. Combined

with the lack of standardization in this area, SQL/MDA adopts and standardizes nearest

neighbor as the interpolation method that is applied during MDSCALE.

3.3.4.2 Concatenation

Concatenation is an operation that “glues” two MD-arrays along a specified MD-axis.

The MD-axis can be referenced by name or index position, in the same way as with the

MDAXIS LO and MDAXIS HI functions for example (Section 3.3.1). The MD-arrays

must have matching MD-extents on all MD-axes except the “gluing” MD-axis; this also

means that they must be of same MD-dimension. The mechanism of concatenating two

MD-arrays is shown on Figure 3.13.

Figure 3.13: The left example shows concatenation along the first MD-axis, and
the example on the right shows concatenation along the second MD-axis.

Table 3.18 below lists a couple of examples.

Table 3.18: Examples of MD-array concatenation.

Example Result

(A := MDARRAY [i(0:0), j(-1:1)]

[1, 2, 3])

MDCONCAT(kernel, A, 1)

MDCONCAT(kernel, A, i)

MDARRAY [i(-1:2), j(-1:1)] [

-1, -1, -1,

-1, 8, -1,

-1, -1, -1,

1, 2, 3]

(A := MDARRAY [i(-1:1), j(0:0)]

[1, 2, 3])

MDCONCAT(kernel, A, 2)

MDCONCAT(kernel, A, j)

MDARRAY [i(-1:1), j(-1:2)] [

-1, -1, -1, 1,

-1, 8, -1, 2,

-1, -1, -1, 3]

67

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.3.4.3 Join MD-arrays on their coordinates

MD-arrays where each element is a composite value consisting of two or more fields

are very common in practice. For example, standard color images typically have red,

green, and blue channels, wind data would have U and V components, hyperspectral

satellite imagery has many bands covering different wavelengths (e.g. Landsat 8 has 11

bands, Mars data from CRISM has 544 bands, etc). It would be very useful to be able to

create and export such MD-arrays, in order to visualize the result as an RGB image for

example, akin to performing a JOIN on the MD-array’s coordinates. This is supported

by an MD-array constructor defined as follows:

MDJOIN(AVE1 [AS <field name>], AVE2 [AS <field name>], \ldots)

MDJOIN performs a join on two or more MD-arrays of equal MD-extents based on their

coordinates. An element in the resulting MD-array is a row value constructed from the

corresponding elements of each input MD-array, in the order in which they have been

specified. The field names of each element in the result can be

— Explicitly specified with AS <field name>.

— Implicitly generated as FIELD1, . . . , FIELDN, where N is the number of MD-array

operands.

Table 3.19 shows some examples; A is the MD-array value MDARRAY [x(0:2)] [1, 2, 3]

with data type SMALLINT MDARRAY [x(0:2)], and B is the MD-array value MDARRAY

[x(0:2)] [4.1, 6.12, -0.2] with data type FLOAT MDARRAY [x(0:2)].

Table 3.19: Examples of MDJOIN.

Example Result type Result value

MDJOIN(A, B, A) ROW(FIELD1 SMALLINT,

FIELD2 FLOAT, FIELD3

SMALLINT) MDARRAY [x(0:2)]

MDARRAY [x(0:2)] [ROW(1,

4.1, 1), ROW(2, 6.12,

2), ROW(3, -0.2, 3)]

MDJOIN(A AS red,

B AS green,

A AS blue)

ROW(red SMALLINT, green

FLOAT, blue SMALLINT)

MDARRAY [x(0:2)]

MDARRAY [x(0:2)] [ROW(1,

4.1, 1), ROW(2, 6.12,

2), ROW(3, -0.2, 3)]

3.3.4.4 Induced operations

Elevating (inducing) scalar operations to the level of arrays is standard practice in array-

oriented programming languages such as Fortran 90 or APL, libraries (e.g. numpy),

software tools (Matlab / Octave) or array DBMS like rasdaman. SQL/MDA adopts

68

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

and supports this concept on MD-arrays as well. Induced operations return an MD-

array with same MD-extent as its input MD-array(s), where each result element value is

derived by applying the indicated operation to the input element(s) at the corresponding

coordinate(s) (Figure 3.14). In general, any valid operation applicable to the individual

elements, qualifies to be an operation induced on MD-arrays of such elements.

-1

-1

-1 -1 -1

-1

-1-1

8

-1 0 1

-1

0

1

j

i

-5

2

0 0 14

-2

-1-2

5

-1 0 1

-1

0

1

j

i

+
-6

1

-1 -1 13

-3

-2-3

13

-1 0 1

-1

0

1

j

i

=

-1 + -5 -1 + -2 ...

A B C
Figure 3.14: Example of summing two MD-arrays; the elements of the result MD-
array C are obtained by summing the corresponding elements of the input MD-arrays

A and B.

Binary and n-ary operations allow some of the operands to be scalar values, so that

e.g. A` 5 (add 5 to each element of the MD-array A) would be possible. All MD-array

operands in an induced operation must have equal MD-extents. The induced operations

in SQL/MDA can be functions or expressions.

The induced functions are POWER, MOD, ABS, LN, LOG10, EXP, FLOOR, CEIL /

CEILING, and the trigonometric functions SIN, COS, TAN, SINH, COSH, TANH, ASIN,

ACOS, and ATAN. POWER and MOD are binary functions expecting an MD-array

value as the first argument and an MD-array or scalar value as the second argument; all

other functions are unary functions defined on a single MD-array argument. Table 3.20

shows examples for the ABS and POWER functions.

Table 3.20: Examples of induced function application to MD-arrays.

Example Result

ABS(kernel) MDARRAY [i(-1:1), j(-1:1)] [1, 1,

1, 1, 8, 1, 1, 1, 1]

POWER(kernel, 2) MDARRAY [i(-1:1), j(-1:1)] [1, 1,

1, 1, 64, 1, 1, 1, 1]

69

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Induced MD-array expressions are slightly more complex. Based on the operand types,

a binary expression op can take one of the following forms (A and B are MD-arrays, c is

a scalar value):

1) A op B

2) A op c

3) c op A

Table 3.21 lists the induced operations supported in SQL/MDA and Table 3.22 shows a

few examples of induced MD-array expressions.

Table 3.21: Induced operators in SQL/MDA.

Category Operators

Logical AND, OR, NOT, IS [NOT]

Comparison =, <>, <, >, >=, <=

Arithmetic +, unary/binary -, *, /

Other field/attribute selection, CASE, CAST

Table 3.22: Examples of induced MD-array expressions.

Example SQL fragment Result

Check which elements
of the MD-array are
greater than 5 (compute
a threshold).

kernel > 5 ”

5 < kernel ”

NOT (kernel <= 5)

MDARRAY [i(-1:1),

j(-1:1)] [False, False,
False, False, True, False,
False, False, False]

Replace negative ele-
ments with a 0 (zero).

kernel * CAST(kernel

< 0 AS INT) ” CASE

WHEN kernel < 0 THEN

0 ELSE kernel END

MDARRAY [i(-1:1),

j(-1:1)] [0, 0, 0, 0,

8, 0, 0, 0, 0]

Negate all elements. -kernel

MDARRAY [i(-1:1),

j(-1:1)] [1, 1, 1, 1,

-8, 1, 1, 1, 1]

Calculate the sum of two
MD-arrays.

kernel +

filter[MDEXTENT(

kernel)]

MDARRAY [i(-1:1),

j(-1:1)] [8, 11, 8, 11,

23, 11, 8, 11, 8]

CAST allows to convert an SQL value of a certain data type to another data type.

SQL/MDA overloads this operation on MD-arrays, to allow induced cast to a new element

type, and optionally new, explicitly specified MD-axis names (cf. Section 3.3.3.4). Table

3.23 shows examples of induced MD-array casting.

70

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.23: Examples of induced MD-array casting.

Example Result

CAST(kernel AS FLOAT MDARRAY) MDARRAY [i(-1:1), j(-1:1)]

[-1.0, -1.0, -1.0, -1.0, 8.0,

-1.0, -1.0, -1.0, -1.0]

CAST(kernel AS FLOAT MDARRAY [x, y]) MDARRAY [x(-1:1), y(-1:1)]

[-1.0, -1.0, -1.0, -1.0, 8.0,

-1.0, -1.0, -1.0, -1.0]

Finally, CASE is overloaded to allow boolean MD-arrays (of equal MD-extents D) in the

WHEN clauses; the corresponding values in the THEN clauses can be either MD-arrays

or scalars. As with other induced operations, the result is an MD-array of MD-extent D,

while its elements are computed as follows. For each coordinate P in D:

— If an MD-array boolean expression exists in the WHEN clause, such that the value

of its element at coordinate P is True, let R be the value of the <result> of the first

such WHEN clause.

— Otherwise, let R be the value of the <result> specified in the ELSE clause. If the

ELSE clause is omitted, then R is the null value.

The element at coordinate P in the result MD-array is set to R if R is not an MD-array

value, otherwise to the element in R at coordinate P .

Table 3.26 shows some examples illustrating the use of this induced operation.

Table 3.24: Examples of induced CASE expression.

Example SQL fragment Result
Replace negative ele-
ments with a 0 (zero),
and positive with 1
(one).

CASE

WHEN kernel <= 0

THEN 0 ELSE 1

END

MDARRAY [i(-1:1),

j(-1:1)] [0, 0, 0, 0,

1, 0, 0, 0, 0]

Colorize an MD-array
with “traffic-light” RGB
color scheme (elements
smaller than 10 “colored”
as red, between 10 and
13 as yellow, and greater
than 12 as red).

CASE

WHEN filter < 10

THEN (255,0,0)

WHEN filter < 13

THEN (255,255,0)

ELSE (0,255,0)

END

9

12

9 12 9

12

912

15

4 5 4

4

5

4

2

4

5

4

2

4 452 2

71

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.3.5 MD-array aggregation

3.3.5.1 General aggregation expression

An MDAGGREGATE expression allows aggregating MD-arrays into a single scalar value.

Let us start with the grammar definition:

MDAGGREGATE <md-array aggregation operator>

OVER <md-extent alternative>

USING <value expression primary>

[WHERE <search condition>]

<md-array aggregation operator> ::= <plus sign> | AND | OR | MAX | MIN

Generally, the structure looks somewhat similar to the MD-array constructor by itera-

tion (Section 3.2.3.3). An <md-extent alternative> similarly defines an implicit loop

over all the coordinates within the specified MD-extent, and for each coordinate P a

value expression V EP is evaluated. The MD-axis names defined by the <md-extent

alternative> can be referenced as MD-axis variables in the same way. We can notice

two new constructs however.

An <md-array aggregation operator> allows to specify the operation that is used to

aggregate the values of all V EP . This operation must be a binary function defined on the

type of V EP for which an identity element exists; furthermore it should be commutative

and associative, properties that aid in query optimization. Essentially we are looking for

algebraic structures known as commutative monoids. Based on these criteria, SQL/MDA

defines support for addition, logical conjunction and disjunction, maximum and minimum.

Table 3.25 lists the identity elements for each operator.

Table 3.25: Identity elements for the <md-array aggregation operator>s.

Operation Identity element

<plus sign> 0

AND True

OR False

MAX ´8

MIN `8

Optionally a filter condition SCP can be specified with a WHERE clause, allowing to

filter the coordinates for which V EP will be evaluated: if SCP evaluates to True for a

coordinate P then V EP is evaluated, otherwise it is skipped and does not contribute to

the aggregation result. Most commonly this is used to filter out the null value elements.

72

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Table 3.26: Examples of general MD-array aggregation.

Example SQL fragment Result

Calculate the sum of all
elements.

AGGREGATE +

OVER MDEXTENT(kernel)

USING kernel[i, j]

0

Calculate the sum of all
elements smaller than
5.

AGGREGATE +

OVER MDEXTENT(kernel)

USING kernel[i, j]

WHERE kernel[i, j] < 5

-8

3.3.5.2 Shorthand aggregation functions

Based on the general MD-array aggregation expression introduced in the previous section,

SQL/MDA specifies several commonly useful aggregation functions. The table below lists

all aggregation functions, along with their MDAGGREGATE definition.

Table 3.27: Predefined aggregation operators. A is a numeric MD-array, B is a boolean
MD-array, and C is an MD-array of any element type. All are of the same MD-dimension

d and the same MD-extent D denoted as rN1pLO1 : HI1q, . . . NdpLOd : HIdqs.

Function Description Definition

MDSUM(A)
Sum of all elements of

A.

AGGREGATE + OVER D

USING ArN1, . . . , Nds

WHERE ArN1, . . . , Nds IS NOT NULL

MDAVG(A)
Average of all ele-

ments of A.

CASE

WHEN MDCOUNT(A) = 0 THEN NULL

ELSE MDADD(A) / MDCOUNT(A) END

MDMIN(A)
Minimum of all ele-

ments of A.

AGGREGATE MIN OVER D

USING ArN1, . . . , Nds

WHERE ArN1, . . . , Nds IS NOT NULL

MDMAX(A)
Maximum of all ele-

ments of A.

AGGREGATE MAX OVER D

USING ArN1, . . . , Nds

WHERE ArN1, . . . , Nds IS NOT NULL

MDCOUNT(C)
Number of non-NULL

elements in C.

AGGREGATE + OVER D

USING 1

WHERE CrN1, . . . , Nds IS NOT NULL

MDCOUNT TRUE(B)
Number of True non-

NULL elements in B.

AGGREGATE + OVER D

USING CASE WHEN BrN1, . . . , Nds

THEN 1 ELSE 0 END

WHERE BrN1, . . . , Nds IS NOT NULL

73

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

MDCOUNT FALSE(B)
Number of False non-

NULL elements in B.
MDCOUNT TRUE(B IS FALSE)

MDCOUNT UNKNOWN(B)
Number of Unknown

elements in B.
MDCOUNT TRUE(B IS UNKNOWN)

MDANY(B)
Is there any element

in B with value True?

AGGREGATE OR OVER D

USING BrN1, . . . , Nds

WHERE BrN1, . . . , Nds IS NOT NULL

MDALL(B)
Are all elements in B

with value True?

AGGREGATE AND OVER D

USING BrN1, . . . , Nds

WHERE BrN1, . . . , Nds IS NOT NULL

3.4 Remote Sensing Use Case

Remote sensing is a very dynamic field, with ever-evolving data analysis techniques

guided by modern, more advanced satellites and increasingly powerful computing hard-

ware. Flexible and scalable software tools in this context are essential for enabling and

supporting the agile pace at which remote sensing is advancing. We show how several

standard remote sensing operations can be performed with SQL/MDA, like band math,

computing histograms, band swapping, detecting changes in time or extracting specific

feature from raster images in order to construct vector representations, which provide a

solid basis for implementing any further, potentially more advanced techniques.

3.4.1 Data setup

The examples in the following sections will use Landsat 5 TM data. The Landsat The-

matic Mapper (TM) sensor was carried onboard Landsat’s 4 and 5 from July 1982 to May

2012 with a 16-day repeat cycle. The produced multispectral data has six non-thermal

bands plus one thermal band (Table 3.28), all with spatial resolution of 30 meters; the

approximate scene size is 170 km north-south by 183 km east-west

Table 3.28: Landsat TM bands.

Band Wavelength

b1 - blue 0.45-0.52

b2 - green 0.52-0.60

b3 - red 0.63-0.69

b4 - near IR (infrared) 0.77-0.90

b5 - short wave IR 1.55-1.75

74

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

b6 - thermal 10.40-12.50

b7 - mid wave IR 2.09-2.35

Suppose we want to maintain a database of Landsat TM scenes. The first step is to create

the table schema, which contains metadata about every scene, including acquisition date

and quality estimate, and WRS path/row/type, etc, as well as the 7-band satellite image

itself:

CREATE TABLE LandsatTM (id INTEGER PRIMARY KEY, acquisition DATE,

wrs_path INTEGER, wrs_row INTEGER, wrs_type SMALLINT,

acquisition_quality SMALLINT, scn LSPixel MDARRAY [x, y])

The column holding the 7-band satellite image is of type MDARRAY with two axes x

and y, and a user-defined element type LSPixel, created as follows:

CREATE TYPE LSPixel (b1 SMALLINT, b2 SMALLINT, b3 SMALLINT,

b4 SMALLINT, b5 SMALLINT, b6 SMALLINT, b7 SMALLINT)

Let us insert a scene capturing the shore of Mississippi/Alabama along the Gulf of Mexico

from 2011-oct-03 (Figure 3.15):

INSERT INTO LandsatTM

VALUES (15, 2011-10-03, 21, 39, 2, 9, MDDECODE(?, ’image/tiff’))

The ‘?’ in the insert query is substituted by the SQL client with the contents of the

corresponding TIFF file. We assume that the implementation supports decoding from

TIFF as indicated with the media type ’image/tiff’; MDDECODE then converts the

format-encoded TIFF data to the internal MD-array representation.

3.4.2 Band math

Mathematical operations are often performed on the bands of multi-spectral data like

Landsat TM, in order to enhance correlated information across bands (via multiplication

and addition), or uncorrelated information (via division and subtraction). Band division

(also called band ratio) is one of the most commonly applied operations to multi-spectral

images, as it allows emphasizing subtle variations of various surface covers.

Landsat’s seven spectral bands, commonly numbered as b1, ..., b7, can be used in several

simple ratios with different effects: b3{b1 and b3{b2 ratios are helpful for distinguishing

75

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.15: Visible color (RGB) bands of a Landsat TM scene capturing the shore
of Mississippi/Alabama on October 3, 2011.

ferric iron-rich and ferric iron-poor rocks; b2/b5 for differentiating water bodies and

wetlands; b4{b3 and b5{b2 uniquely define the different types of vegetation; b3{b7 can

be useful for identifying roads and buildings, as well as observing differences in water

turbidity.

3.4.2.1 NDVI

Various forms of ratio combinations of the red and near infrared Landsat bands are being

used for vegetation monitoring, e.g., calculating biomass or leaf area index and discrimi-

nating between stressed and non-stressed vegetation. Commonly, in remote sensing the

Normalized Difference Vegetation Index (NDVI) is used:

NDV I “
nearIR´ red

nearIR` red

76

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

NDVI has a value range of r´1,`1s; values in the high positive indicated dense, healthy

vegetation. Clouds, water, snow and ice tend to result in negative values; rock and bare

soil yield values close to zero.

The NDVI formula is straightforward to translate into an SQL/MDA query, plus we add

one to the denominator in order to avoid division by zero error:

SELECT (scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1)

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

Alternatively, instead of adding one to the denominator, the CASE statement can be used

with a condition catching the division by zero:

SELECT CASE WHEN scn.b4 + scn.b3 = 0 THEN 0

ELSE (scn.b4 - scn.b3) / (scn.b4 + scn.b3)

END

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

Both queries produce raw binary arrays that are hard to inspect. More often it would

be desirable to encode the result to, e.g., PNG, for display in a browser:

SELECT MDENCODE((scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1),

’image/png’)

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

The values resulting from this query are in the range p´1, 1q, however the PNG format

expects values in the range r0, 255s. So to visualize the result as PNG, we can multiply all

values by 200 and shift to the right by 55 in order to stretch them in the range p0, 255q

(Figure 3.16). This gives an image where dark pixels denoting water and snow, shift

to lighter grey denoting soil and rocks, and various degrees of even lighter tones where

vegetation is present:

SELECT MDENCODE((((scn.b4 - scn.b3) /

(scn.b4 + scn.b3 + 1)) * 200) + 55, ’image/png’)

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

77

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.16: NDVI result stretched to the range p0, 255q.

More often we are interested in thresholding the NDVI result values, in order to isolate

certain land cover types. For example, it is known that values between 0.2 and 0.4

generally represent shrub and grassland. The following query sets the pixels between 0.2

and 0.4 to true, and all others to false, thus producing a binary image (Figure 3.17):

SELECT MDENCODE(ndvi > 0.2 AND ndvi < 0.4, ’image/png’)

FROM (

SELECT (scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1) AS ndvi

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’) AS R

It is actually fairly simple to create a more advanced, RGB color-mapped output than

the binary image on Fig. 3.18. The following query colors the NDVI values from dark

blue on the high negative, dark green on the high positive, and grey in the mid-range

r´0.1, 0.1q:

78

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.17: NDVI values between 0.2 and 0.4 shown in white, while everything
else is black.

SELECT MDENCODE(

CASE WHEN ndvi < -0.4 THEN (0,0,51)

WHEN ndvi < -0.3 THEN (0,0,153)

WHEN ndvi < -0.2 THEN (0,0,255)

WHEN ndvi < -0.1 THEN (0,128,255)

WHEN ndvi < 0.1 THEN (96,96,96)

WHEN ndvi < 0.2 THEN (153,255,153)

WHEN ndvi < 0.3 THEN (51,255,51)

WHEN ndvi < 0.4 THEN (0,255,0)

WHEN ndvi < 0.5 THEN (0,153,0)

ELSE (0,75,0) END, ’image/png’)

FROM (

SELECT (scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1) AS ndvi

FROM LandsatTM

79

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

WHERE acquisition = DATE ’2011-10-03’) AS R

Figure 3.18: Color-mapped NDVI result, from dark blue, through grey, to dark
green.

3.4.2.2 Band Swapping

In order to visualize data outside the visible spectrum, a commonly used technique is

to move bands at various positions of the RGB channels to create ”false color” images.

The standard ”false color” composite for Landsat TM data is created by assigning b4

(near IR) to the red channel, b3 (red) to the green channel, and b2 (green) to the blue

channel, which is useful for vegetation and soil monitoring. Vegetation appears in shades

of red, urban areas are cyan to dark blue, and soils vary from dark to light browns.

Such a composite image (Figure 3.19) is straightforward to construct with the MDJOIN op-

eration. In addition, the query zooms in to a particular area (around the city Pascagoula,

MS) by subsetting the result, so that more detail becomes visible:

80

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

SELECT MDENCODE(MDJOIN(scn.b4, scn.b3, scn.b2)

[x(2500:3300),y(1800:2600)], ’image/png’)

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

Figure 3.19: False color image constructed from the near IR, red and green bands.

3.4.3 Histograms

A histogram shows the distribution of numerical data. In remote sensing, usually the

data is an image and its distribution is the frequency of pixel values in the range r0, 255s.

In this case the histogram could be shown as a graph with the range of 256 pixel values

on the x axis, and their frequency on the y axis. Our histogram query will create a 1D

array of size 256 with the array constructor, which for each value from 0 to 255 counts

how many cells with that value exist in the first band of the Landsat TM scene. The 1D

array is exported in JSON format, which can be plotted as a graph.

SELECT MDENCODE(MDARRAY[v(0:255)]

MDCOUNT_TRUE(scn.b1 = v), ’application/json’)

81

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

How about creating a histogram of the NDVI result? In this case it would be better

to multiply the NDVI result by 100 for example, in order to stretch the values to the

r´100, 100s range. Figure 3.20 shows the histogram plot: on the right side we have the

vegetation distribution, and on the left, negative side the water and soil.

SELECT MDENCODE(MDARRAY[v(-100:100)]

MDCOUNT_TRUE(CAST(ndvi AS SMALLINT MDARRAY) = v),

’application/json’)

FROM (

SELECT ((scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1)) * 100 AS ndvi

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’) AS R

Figure 3.20: Histogram of the NDVI index of a Landsat TM scene.

It is easy to get some quantitative aggregated measurements as well, e.g. “the percentage

of vegetation in a scene (NDVI value greater than 0.2)”:

SELECT MDCOUNT_TRUE(((scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1)) > 0.2) /

MDCOUNT(scn.b4) * 100

82

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

The result from the above query is 49.183121 (%).

3.4.4 Change Detection

Change detection is a specific type of image classification, where we automatically identify

some differences between two remote sensing images of the same area acquired on different

dates. A fairly commonly used technique is to put NDVI indices from different years

in different RGB channels of a single image, which allows to easily interpret biomass

changes over time.

In the query below we select scenes acquired on days in October in different years, and

subset them over the same urban area. The oldest scene from 1995-10-07 is assigned to

the blue channel, the scene from 2004-10-15 to the green channel and finally the one

from 2011-10-03 to the red channel. The NDVI index values are shifted to the r0, 255s

range with NDV I ˚ 200` 55, so that they can be displayed properly in the RGB result.

SELECT MDENCODE(MDJOIN(red, green, blue),

’image/png’)

FROM

(SELECT (((scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1)) * 200 + 55) AS red

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’) AS d1,

(SELECT (((scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1)) * 200 + 55) AS

green

FROM LandsatTM

WHERE acquisition = DATE ’2004-10-15’) AS d2,

(SELECT (((scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1)) * 200 + 55) AS blue

FROM LandsatTM

WHERE acquisition = DATE ’1995-10-07’) AS d3

Figure 3.21 shows the result from the query: blue areas denote vegetation lost from 1995,

cyan and green mark vegetation lost since 2004, and yellow-red areas mark vegetation

gained in 2011.

83

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.21: A composite image with an NDVI index from different years in each
channel.

3.4.5 Extracting Features

Vector data, such as shapefiles of various geographic features are typically extracted from

remote sensing imagery in manual fashion. This can be automated in certain cases, with

high resolution data and adequate pre-processing.

For this example we will produce a binary image extracting faintly noticeable barrier

islands. The query below selects the area of interest from the Landsat TM scene in

natural RGB representation (Figure 3.22):

SELECT MDENCODE(MDJOIN(scn.b3, scn.b2, scn.b1)[x(1500:2300),y(3463:4263)

],

’image/png’)

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

84

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.22: Natural RGB color of barrier islands area.

To isolate the islands, we can use the mid infrared band b5, which gives high contrast

between the islands and the water and threshold out the lower intensity values to 0 in

order to isolate the islands with value 1 (Figure 3.23):

SELECT MDENCODE(scn.b5[x(1500:2300),y(3463:4263)] > 70,

’image/png’)

FROM LandsatTM

WHERE acquisition = DATE ’2011-10-03’

Figure 3.23: Binary image showing isolated islands.

85

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

3.4.6 Data Search and Filtering

Often we are interested in when, or in what area for example, a certain event has occurred

or a certain feature is present. E.g., suppose we want to find out the date on which the

average NDVI value in a certain scene is the highest:

SELECT id, acquisition, MDAVG((scn.b4 - scn.b3) / (scn.b4 + scn.b3 + 1))

AS av

FROM LandsatTM

ORDER BY av DESC

FETCH FIRST 1 ROWS

This demonstrates very well the benefit of integrating MDA processing within SQL:

queries “massage” large amounts of data on server side, returning small metadata results

like dates or coordinates. In contrast, the classical approach requires users to download

the data from a datacenter (usually from an FTP server) and do further processing on

their own computer with limited hardware resources.

3.5 Weather Forecasting Use Case

3.5.1 Rainfall Scenario

Let us consider the handling of 3-D rainfall data gathered in the Tropical Rainfall

Measuring Mission (TRMM), a joint space project between NASA and Japan which is

designed to measure tropical precipitation and its variation from space combining a suite

of sensors. The TRMM rainfall data is particularly important for studies of the global

hydrological cycle and for testing the realism of climate models, and their ability to

accurately simulate and predict climate. The dataset contains rainfall distribution over

both land and ocean covering 50˝S to 50˝N latitude and 180˝W to 180˝E longitude, with

spatial resolution of 0.25x0.25 degrees and temporal resolution of one month. The data

can be stored in a table along with the associated metadata, like the axis bounds and

resolution, the month during which the data was measured, title/abstract, any additional

information about the sensors that gathered the data.

CREATE TABLE TRMM (

id INTEGER PRIMARY KEY,

name VARCHAR(100),

month DATE,

res FLOAT,

86

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

minLat FLOAT,

maxLat FLOAT,

...

rainfall FLOAT MDARRAY[x(0:1439), y(0:399)]

)

Suppose we have inserted data covering a couple of months, it is now easy to pre-process

and retrieve it along with any additional information we need.

SELECT t.name,

COALESCE(map * (rainfall > 0), rainfall * ROW(1,0,0))

FROM TRMM as t,

(SELECT scale(m.data, domain(rainfall))

FROM WorldMaps AS m) AS map

WHERE month = 2010-07

This query for example selects the data for July 2010 as an image where higher precip-

itation areas are denoted by stronger red color, overlayed over a corresponding world

map, effectively producing a visual overview of precipitation distribution in the world

for that date (Figure 3.24).

The rainfall > 0 expression results in a boolean array with value TRUE where some

precipitation was recorded. Multiplying this boolean array with the world map produces

a map with its original values where precipitation was recorded, and zeros elsewhere, as

TRUE and FALSE were automatically coerced to 1 and 0 for the multiplication with the

RGB world map. On top of this, where the cells are zeros, rainfall * ROW(1,0,0) is

overlayed. This expression produces an array with composite cells of three fields, where

the first (or ’red’) field contains the rainfall values, and the other two fields are zeros.

The world map is with same coverage of -50˝to 50˝latitude and -180˝to 180˝longitude,

but has a smaller resolution so we scale it to match the size of the TRMM data. The

WHERE clause filters only the date of interest.

The following query lists the months with particularly high precipitation in Germany,

assuming that 5.89, 15.03, ... is approximately the latitude/longitude bounding box of

Germany’s border:

SELECT *

FROM (SELECT

month,

rainfall[(5.89 - minLong) * res :

(15.03 - minLong) * res,

87

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.24: Precipitation distribution in the world on July 2010.

Figure 3.25: Cloud-free mosaic from Landsat imagery.

(47.27 - minLat) * res :

(54.79 - minLat) * res]

FROM TRMM) AS t

WHERE sum_cells(t.rainfall) > 100000

Further, we show an example based on the LandsatTM table with an added column for

cloud mask arrays:

...

scene ...

mask BOOLEAN ARRAY [x(1:5000), y(1:5000)]

...

From the set of Landsat scenes in this table which vary in their quality and cloud/shadow

coverage, the goal is to produce a cloud-free mosaic:

88

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

SELECT

COALESCE(s1 * m1, s2 * m2)

FROM

(SELECT scene AS s1, mask AS m1

FROM LandsatScenes

WHERE acquired = 2000-02-24),

(SELECT scene AS s2, mask AS m2

FROM LandsatScenes

WHERE acquired = 2000-08-16)

This is done by removing the clouded/shadow/snowy areas in each time slice, and

overlaying with other time slices which have been processed in the same way. Figure 3.25

demonstrates this query visually.

3.5.2 Discrete Fourier Transform

DFT is a function that maps a vector x of N complex numbers to another vector X of

N complex numbers:

Xrks “
N´1
ÿ

n“0

xrns ¨ e´i2πkn{N

It is the most important discrete transform, finding use in many practical applications,

like signal and image processing, solving partial differential equations and performing

convolutions.

The following SQL/MDA query computes DFT on all vectors v in table Vector:

SELECT

MDARRAY[k(domain(v))]

ROW(

AGGREGATE +

OVER [t(domain(v))]

USING v[t].re * cos(2 * pi * t * k / hi(v, x))

+ v[t].im * sin(2 * pi * t * k / hi(v, x)),

AGGREGATE +

OVER [t(domain(v))]

USING v[t].im * cos(2 * pi * t * k / hi(v, x))

- v[t].re * sin(2 * pi * t * k / hi(v, x))

)

89

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

FROM Vector

In this case, the Vector table has a 1D MDARRAY column of type Complex:

CREATE TYPE Complex AS (

re REAL,

im REAL

);

CREATE TABLE Vector (

id INTEGER PRIMARY KEY,

v Complex MDARRAY[x]

);

3.6 Life Sciences Use Case

3.6.1 Gene expression data management

The management, retrieval and analysis of multidimensional gene expression data [112]

lands itself nicely to the integration of relational and array data. Data ranges from

two-dimensional images of gene expression patterns to complex arrays describing spatio-

temporal dynamics of gene expression within regulatory network. Embryo, gene, simula-

tion and further metadata is stored as relational data.

Figure 3.26: Threshold filtering of Drosophila gene expression activity (left: original
slice, right: filtered slice) [112].

Example 1. Extract regions where the level of gene expression is below, equal or ex-

ceeding a predefined $threshold (Figure 3.26). The embryo is selected by $name.

SELECT e.image[z($ch)] * (e.image(z($ch)] > $threshold)

FROM EmbryoImages AS e, embryo AS m

WHERE e.id = m.id AND e.name = ’$name’

90

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Example 2. Combine slices at different channels of the confocal microscope into an

RGB image. Data from the first channel is mapped to the red color, second component

to green and third to blue (Figure 3.27).

SELECT ENCODE(ROW(e.image[z(0)], e.image[z(1)],

e.image[z(2)]), "image/png")

FROM EmbryoImages AS e, embryo AS m

WHERE e.id = m.id AND e.name = ’$name’

Example 3. The cost function is a measure of how close simulated data are to the

experimental data, computed as the sum of squared deviations of computed gene expres-

sion level from the experimentally observed level. Parameter values used in simulation

data generation are sequentially varied in order to reach a global minimum of the cost

function. The query below computes the cost function for data at a specific $time point

after egg deposition in seconds.

SELECT ABS(POWER(STDDEV_POP(z.image), 2) -

POWER(STDDEV_SAMP(d.image), 2))[t($time)]

) as costFunction

FROM Dynamics AS d, Zygotic AS z,

embryo_blastoderm AS eb

WHERE eb.zygotic_name = ’$zygoticName’ AND

eb.id = z.id AND d.id = eb.id

Figure 3.27: Combination of different channels into an RGB image [112].

91

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Example 4. Gene expression pattern images can be superimposed with a binary nuclei

mask to isolate nuclei. Quantitative data like nuclei location within the embryo and their

average intensity can then be determined.

SELECT ENCODE(e.image[z(0)] * (mi.image > 254),

"image/png")

FROM EmbryoImages AS e, MaskImages AS mi,

embryo AS m, maskmeth AS me

WHERE e.id = m.id AND e.name = ’$name’

AND mi.id = me.id AND me.name = ’$methodName’

3.6.2 Human brain imaging

A major goal of neuroscience nowadays is to understand how functional activations in the

brain relate to its microstructure, and to what extent can consistency in the description of

function contributions of cortical activated fields be achieved. A task like this can only be

tackled on a global level, as has been attempted already with the European Computerized

Human Brain Database (ECHBD) [55] and subsequently in the NeuroGenerator project

[121].

Example. Retrieve a parasagittal view (slice position $pos provided as input by the

user) of all images, in which critical activations appear in the Hippocampus, encoded in

TIFF format. The percentage of the masked hippocampus area that should be critically

activated for an image to be considered is given by the user as $threshold P p0, 1s.

Figure 3.28 shows examples of the the image data.

SELECT ENCODE(f.image[z($pos)], "image/tiff")

FROM FMRIImage AS f, PETImage as p, Mask AS m,

SubjectImages AS si, ImageMasks AS im

WHERE

m.id = im.maskId AND m.region = ’hippocampus’

AND im.subjectId = si.subjectId AND

si.imageId = f.id AND si.imageId = p.id AND

count_cells(p.image > 227 AND m.binaryMask)

/ count_cells(m.binaryMask) > $threshold

92

Chapter 3. Multidimensional Arrays in SQL with SQL/MDA

Figure 3.28: Brain data processing in the NeuroGenerator project [121].

93

Chapter 4

A Modern Array Database

Processing Engine

At the time of writing this thesis, modern hardware is characterized as follows:

— CPUs have multiple cores (2+) and scale with number of CPU cores, rather than

single-core speed; Xeon Phi CPUs have up to 72 cores for example.

— Single cores improve processing with increased support for specialized instructions,

smarter branch prediction, longer pipelines, larger caches, etc; particularly relevant for

array processing are SIMD vector processing instructions which support up to 512 bytes

vectors on AVX-512 implementing processors.

— Further processing scaling is achieved by adding specialized co-processor units, e.g.

multiple graphics processing units (GPUs), (field programmable gate arrays) FPGAs,

many integrated core architectures (MICs), etc.

In short, Moore’s law is gradually coming to an end, hence hardware development is

shifting focus to heterogeneous architectures with an ever-increasing number of specialized

devices [133]. The major array databases have been somewhat slow in adapting to these

trends and still have room for improving into better utilizing the dynamic capabilities

of modern systems. Rasdaman for example has been designed and developed in the 90’s;

many of the original design decisions, such as pixel-interleaved processing of multi-band

data, parallel evaluation limited to inter-query load balancing, costly virtual function

calls in hot loops, etc. generate a sizable amount of inefficiencies. SciDB appeared more

recently in 2009 [43], but overall its performance on a single machine is actually worse

(cf. Section 4.3.2).

94

Chapter 4. A Modern Array Database Processing Engine

This Chapter describes the design, implementation and evaluation of a modern array

query processing engine, which is ultimately integrated into the rasdaman Array DBMS.

The overall architecture of the array query processing engine shown on Figure 4.1 is no

different from the typical DBMS architecture. A query is parsed into an Abstract Syntax

Tree (AST) data structure which is then converted into a Logical Plan in which every

node has the right data type. The Logical Plan further goes through an optimization

process which applies algebraic optimization rules, evaluates nested queries, and prepares

the plan for tile processing. A Physical Plan is generated from the optimized Logical

Plan, which is then finally executed to produce the query result.

Abstract Syntax
Tree (AST)

Query
String

Logical
Plan

Logical
Plan

Physical
Plan

Query
Result

Parser Logical Plan
Generator

Optimizer

Physical Plan
GeneratorExecutor

Figure 4.1: Array query processing engine workflow.

We first look at the evaluation model in the physical tree, as this guides the logical

tree manipulations, and then closer at the logical tree itself. The rgb array is used as

an example in the following sections: it has three unsigned 8-bit integer bands (red,

green, and blue), and a spatial domain of [0:399, 0:343]. Internally it is stored as four

tiles of spatial domains [0:199, 0:199], [0:199, 200:343], [200:399, 0:199], and

[200:399, 200:343]. The sample query Q1 used later on adds 42 to all elements in all

bands of rgb:

SELECT c + 42 FROM rgb AS c

4.1 Evaluation Model

The physical tree consists of nodes that perform operations on a set of tiles and produce

a set of tiles as a result. Its shape (types of nodes) corresponds roughly to the shape of

the final optimized logical tree. To evaluate a node, its child nodes have to be evaluated

first. Nodes are executed in any order and in parallel as long as this condition is satisfied.

95

Chapter 4. A Modern Array Database Processing Engine

Figure 4.2 shows a possible evaluation order of the physical tree corresponding to Q1

on a quad-core CPU. First the four tile loading nodes marked in red are evaluated in

parallel, then the nodes marked in blue, and so on. Note that from the example it may

seem as if nodes are intentionally separated in fixed evaluation groups, so that one group

is evaluated first, then the next group, etc. This is not the case, however: as soon as a

node finishes evaluation the executor picks another one to start evaluation, so in some

sense there is one dynamic group of nodes being evaluated in parallel.

UnionBands UnionBands

Binary<Add> Binary<Add> Binary<Add> Binary<Add> Binary<Add> Binary<Add>

LoadTile 42 LoadTile 42 LoadTile 42LoadTile 42 LoadTile 42 LoadTile 42

Union

1.

2.

2.

3.

4.

5.

Figure 4.2: Parallelized physical node evaluation example for Q1. The tree has
been ”reduced” for clearer presentation, in reality it has two more identical UnionBands

nodes (as the rgb array has four tiles).

4.1.1 Tile-based Processing

It is well accepted that the best approach to large array storage and access is to partition

arrays into smaller tiles1 [8, 33, 57, 97, 110, 125, 129, 144]. There is lack of research on

how to best partition arrays for processing with optimal computing resource utilization,

however. Successful array databases do tile streaming [20, 119, 120], but there is no

consideration as to how it should be organized for best evaluation on modern hardware:

tiles are processed in the same shape as they are read from disk.

Figure 4.3 and 4.4 show the effects of tile size on query evaluation performance, broken

down into the logical optimization and actual physical execution components. On a 1

GB 2-D floating-point array A partitioned in tiles of fixed size (varying from 0.1 MB to

409.6 MB) we execute the following two benchmark queries:

— Q1: MDSUM(A)

1also known as chunks or blocks

96

Chapter 4. A Modern Array Database Processing Engine

— Q2: ((A - 12.5) / (A + 3.14)) * 350.0

The result execution time for each tile size is the median of nine runs. Table 4.1 summa-

rizes the benchmark machine specs.

Table 4.1: Benchmark machine specs.

OS Ubuntu 16.04 (64-bit)

CPU i7-6700HQ @ 2.60GHz; 4-core / 8-threads,
6MB L3 shared cache, 256kB L2, 32kB L1

RAM 16GB DDR4 2133MHz

Disk SSD, read speed 1.4 GB/sec

Figure 4.3: Benchmark results of evaluating Q1 on a 1 GB 2-D floating-point array.

These measurements indicate that logical optimization can be quite a major bottleneck

when there are a lot of tiles, especially as queries become more complex. This is particu-

larly obvious when the array is partitioned in 10,000 tiles of size 0.1 MB: the overhead of

instantiating and manipulating such a large logical tree far exceeds the time needed to

execute the corresponding physical tree in Benchmark 4.4. Most of the overhead comes

from performing tile joins (covered in more detail in Section 4.2.5) in binary operations

such as dividing the elements of two arrays; hence it is not so pronounced in Q1. Cur-

rently the tile join is a naive OpMNq algorithm where M and N are the number of

97

Chapter 4. A Modern Array Database Processing Engine

Figure 4.4: Benchmark results of evaluating Q2 on a 1 GB 2-D floating-point array.

tiles in each array. Optimizing this with a more sophisticated implementation utilizing a

suitable spatial tile index is left as future work.

Interestingly, the smaller the tiles the faster physical evaluation seems to be in this case.

One reason could be more optimal CPU cache utilization. So it would be beneficial to

reduce the size of the logical tree by grouping multiple tile nodes into tile groups, such that

tile groups are still executed in parallel, but tiles within a tile group are executed serially.

This is being investigated in detail in the forthcoming PhD thesis of Vlad Merticariu

[98]. Meanwhile, tiles of size between approximately 1 and 10 MB is the “sweet spot” for

execution speed.

Figure 4.5 shows total CPU utilization while evaluating each case. Physical tree execution

is fully parallelized, so cases where logical tree optimization dominates query evaluation

(e.g. tile size of 0.1 MB) we see a drop in CPU utilization as logical tree optimization is

not parallelized. It is left as future work to improve CPU utilization in such cases by e.g.

parallelizing critical sections of the logical tree optimization, such as array joins.

Besides CPU utilization, another important metric to consider is memory usage during

query evaluation. Clearly the goal is to minimize memory usage, as this leaves more room

for executing further queries at the same time in inter-query fashion and delays the need

for resorting to disk usage for management of intermediate results. Figure 4.6 shows an

98

Chapter 4. A Modern Array Database Processing Engine

Figure 4.5: Total CPU utilization of 8 CPU cores (800%) during the evaluation of
Q1 and Q2.

obvious relationship between tile size and memory usage. It depends on the operations

involved but the overall trend is that larger tile size entails increased memory usage for

evaluating the same query. The (approximately) optimal tile size for minimizing memory

usage coincides relatively well with the size of 1 MB - 10 MB identified earlier in the

execution speed discussion.

It may seem surprising that Q2 uses far more peak memory in comparison to Q1, even

though both execute on the same 1 GB array. Q1 typically needs at most as much

memory as needed to evaluate approximately N tiles in parallel (where N is the number

of CPU cores available on the system). In contrast, Q2 needs at least as much memory

as the size of the result, which is actually a 2 GB array as the 4-byte single-precision

floating point array elements are transformed to 8-byte double-precision values while

going through the operations of division and multiplication. Before the query evaluation

reaches the final step of assembling the tiles for returning to the client, the peak memory

usage looks more or less same as the one of Q1. This is demonstrated by Q3 which sums

the result of Q2: in this case the memory follows a similar trend to the memory usage of

Q1.

4.1.2 Single-band Tiles

Operations in the physical tree are executed on single-band (SB) rather than multi-band

(MB) tiles; MB tiles are therefore (de-) interleaved as necessary before or after processing.

99

Chapter 4. A Modern Array Database Processing Engine

Figure 4.6: Peak memory use during the evaluation of Q1 and Q2; Q3 is equivalent
to MDSUM(Q2).

Essentially, this boils down to the distinction between column- and row-store relational

engines, so the same arguments in favor of column-stores apply to single-band processing

as well. Furthermore, the benchmark below confirms this by comparing the performance

of unary and binary induced operations on pixel-interleaved MB tiles and multiple SB

tiles:

— Figure 4.7 shows the performance of negating the 8-bit integer elements of 3-band

SB and MB arrays ranging in size from 300 kB to 30 MB;

— Figure 4.8 shows the performance of adding the 8-bit integer elements of two 3-band

SB and MB arrays; the results do not differ much from the previous case;

— Figure 4.9 shows the performance of summing the 8-bit integer elements of 3-band

SB and MB arrays.

As can be observed, single-band processing tends to be about an order of magnitude

more efficient, both when operations are executed serially and in parallel. The specs of

the benchmark machine are covered on Table 4.2.

100

Chapter 4. A Modern Array Database Processing Engine

Figure 4.7: Applying a unary negation to all elements of a 3-band tile in pixel-
interleaved and band-separated fashion.

Table 4.2: Benchmark machine specs.

OS Ubuntu 16.04 (64-bit)

CPU i7-3770K @ 3.5GHz; 4-core / 8-threads,
8MB L3 shared cache, 256kB L2, 32kB L1

RAM 32GB DDR3 1333MHz

Disk standard 7200 RPM hard disk

4.2 Logical Query Tree

The Logical Query Tree is generated from the query AST. In general, each operation in

the query is represented as a node. Each node has a type descriptor of the data that

it ultimately results in when evaluated; furthermore it contains references to children

nodes (inputs/parameters), and to a single parent node2.

2except for the root node

101

Chapter 4. A Modern Array Database Processing Engine

Figure 4.8: Applying a binary plus operation to all elements of two 3-band tiles in
pixel-interleaved and band-separated fashion.

4.2.1 Type Deduction and Verification

Initially the Logical Tree has type information only at the leaf nodes: constants or

collection references; the type of a plus node for example is unknown. One of the first

steps is to deduce the types of all nodes and verify that the types of children nodes

are valid. Figure 4.10 visualizes the logical tree for query Q1 before and after the type

deduction process.

As can be noticed nodes have various properties assigned to them, e.g. the BinaryIn-

duced::Plus node is an associative and commutative operation. These properties are

utilized in further algebraic optimizations on the logical tree.

4.2.2 Array Constructor Optimization

Following the type validation, various tree rewriting rules are applied on the logical

tree that bring it into a more optimal shape for execution. A multitude of rewriting

optimization possibilities have already been explored on Array Algebra; optimizations

on the array constructor and condenser in particular have not been considered thus far,

102

Chapter 4. A Modern Array Database Processing Engine

Figure 4.9: Calculating the sum of all elements of a 3-band tile in pixel-interleaved
and band-separated fashion.

however. In this Section we look at various ways to speeding up the execution or array

constructor expressions via algebraic transformations, parallelization, and loop unrolling.

4.2.2.1 Algebraic Transformations

Recall the definition of array constructor (2.10): given a spatial extent E, a cell expression

en is evaluated for each coordinate in E; en has potential references to the axis names n,

which are substituted with the corresponding integer values for each particular coordinate

before it is evaluated. The array condenser (2.22) is somewhat similar: for each coordinate

in E the cell expression en is evaluated to a scalar value, except that now this is aggregated

with a given binary operation into the final scalar result, instead of being used to build

an array.

The cell expression is in both cases required to evaluate to scalar values; all types of

expressions qualified for this role are grouped in the Definition below.

Definition 4.1 (Scalar-producing expression) An array expression is scalar-producing

if it evaluates to a scalar value:

103

Chapter 4. A Modern Array Database Processing Engine

LogicalExecute
(type not set)

BinaryInduced
Plus

(type not set)
@Associative

@Commutative
@BinaryInduced

CollectionVariable
c

(Array: {uint8, uint8, uint8},
[0:399,0:343])

ScalarConstant<int>
42

(Scalar: int32)

LogicalExecute
(Array: {int32, int32, int32},

[0:399,0:343])

BinaryInduced
Plus

(Array: {int32, int32, int32},
[0:399,0:343])
@Associative

@Commutative
@BinaryInduced

CollectionVariable
c

(Array: {uint8, uint8, uint8},
[0:399,0:343])

ScalarConstant<int>
42

(Scalar: int32)

Type
deduction

Figure 4.10: Logical tree corresponding to query Q1 before the type deduction
process (left) and after (right).

— Scalar values are scalar-producing expressions;

— An array element reference, i.e. a subset that slices all axes of an array, is a scalar-

producing expression;

— An array condense operation is a scalar-producing expression;

— Common standard operations applied to scalar-producing operands (e.g. arithmetic,

trigonometric, comparison, and logical operations) are scalar-producing expressions.

Definition 4.2 (Coordinate-bound expression) A scalar-producing expression en is

coordinate-bound if it contains any references to n, i.e. its result depends on the

current coordinate. More formally:

— ni, 1 ď i ď |n|, is a coordinate-bound expression;

— An expression that contains coordinate-bound expressions is a coordinate-bound

expression.

An expression that is not coordinate-bound is a constant expression.

Example 4.1 (Constant and coordinate-bound expressions) Some examples of expres-

sions with respect to coordinate boundness are listed below (we just specify the cell

expression and assume n is supplied by the extent of the array constructor/condenser):

104

Chapter 4. A Modern Array Database Processing Engine

— 5, Ar100, 150s, MDAVGpAq, 3` 1, and 2 ¨Ar10, 50s are all constant expressions;

— n3, Arn1,n2 s, MDAVGpAr0 : 100,n1 sq, NREDUCE`pArn1, 0 : 100`n2 s{2q, 2 ¨n2,

and Arn1, 50s´13 are coordinate-bound expressions; it can be noticed that many contain

constant sub-expressions.

Definition 4.3 (Coordinate-bound expression types) Coordinate-bound expressions can

be categorized into two groups based on their ‘predictability’. A linear expression can be

reduced to the form of a linear function with one variable ax`b, where x is the referenced

coordinate ni. Linear expressions where a “ 1 form a special subclass of consecutive

expressions.

A coordinate-bound expression that is not linear is a non-linear expression.

Example 4.2 (Coordinate-bound expressions types) Some examples of the different

coordinate-bound expressions:

— 3 ¨n1, n1{MDAVGpAq, and n1 ¨Ar100, 150s are linear expressions, while n3, 3´n2,

n1`100, n1`Ar100, 150s, and n1´p3 ¨MDAVGpAqq are examples of consecutive linear

expressions;

—
?

n1, n1 ` n2, n1 ¨ n1, n2
1, Arn1, 100s, and MDAVGpArn1, 0 : 100sq are non-linear

coordinate-bound expressions.

Definition 4.4 (Cell expression classes) A cell expression en can be classified into

several types of growing complexity, based on the type of sub-expressions it contains

(Table 4.3).

Table 4.3: Cell expression classes.

No Expression Description

C1 c Evaluates to a constant array, doesn’t contain any

coordinate-bound expressions.

C2 ani ` b A linear coordinate-bound expression, where a and b

are constant expressions (class C1).

C3 SLICEn, pp. . . pAq . . .q Array element reference in which at least one slice on

axis n P n is indicated as a C2 expression p.

C4 fp. . . , ei, . . .q f is any induced function (e.g. 2.16) where the ei
operand is a scalar expression of any class.

C5 CONDF,
Äpeoq With o “ nY namespF q, eo is an expression of class

C2-C4 with respect to references to n.

C6 en Any expression that does not fit in class C5 or lower.

105

Chapter 4. A Modern Array Database Processing Engine

Based on the cell expression classification we can derive several important operation

equivalences. C1 and C2 expressions are not interesting on their own, but they become

relevant as parts of other expressions. Therefore, they would likely have dedicated im-

plementations in practice. C6 collects general expressions that are hard or impossible to

optimize, and on which no general equivalences can be derived. Equivalences for array

constructor cell expressions of class C3-C5 are defined below.

Theorem 4.5 (Array constructor transformations) Class C3 cell expressions can be

translated to a scale operation with nearest-neighbor interpolation (see Definition 2.19)

that selects every a-th coordinate on the corresponding axis (for factor a) from a cor-

respondingly shifted subset of the array. For li “ a ¨ lonipEq ` b, hi “ a ¨ hinipEq ` b,

si
3 “ phi ´ li ` 1q{a, h1i

4 “ li ` si, and E1 “ r . . . ,nip li : h1i q, . . .s:

(C3) ARRAYEpSLICEn, ani`bp. . . pAq . . .qq

” ARRAYG
EpSCALEE1pTRIMn, li, hip. . . pAq . . .qqq (4.1)

The scaling can be completely eliminated in the common case when a “ 1, i.e:

(C3) ARRAYEpSLICEn, ni`bp. . . pAq . . .qq

” ARRAYG
EpTRIMn, li, hip. . . pAq . . .qq (4.2)

From the definition of induced operations, array constructors with class C4 cell expressions

can be pushed down to each operand while preserving the function application.

(C4) ARRAYEpfp. . . , ei, . . .qq ” fp. . . ,ARRAYEpeiq, . . .q (4.3)

This allows applying further optimization rules on each operand individually. Whether

the left (evaluating the operation on each cell) or the right side (executing dedicated

induced implementations on array operands) is faster in practice, however, is something

that requires benchmarking to determine, and will consequently guide the direction in

which this equivalence is applied.

Finally, we consider class C5 cell expressions. From the definition of induced condenser

(2.25) it follows:

(C5) ARRAYEpCONDF,
Äpeoqq ” CONDG

F,
ÄpARRAYEpeoqq (4.4)

The usefulness of this equivalence is two-fold:

1) It allows applying further transformations on ARRAYEpeoq (e.g. 4.1 and 4.3).

3Number of ‘steps’ between the lower and upper limits.
4Scaled upper limit.

106

Chapter 4. A Modern Array Database Processing Engine

2) It presents an opportunity for an evaluation pattern that might be better tuned to

the underlying physical structure (tiling) of the array values in eo.

Example 4.3 (Cell expression equivalences) Below we list examples of the equivalences

in the previous Theorem:

— ARRAYEpAr2n1 sq ” SCALErn1p l1: ph1´l1`1q{2 q spArn1p l1 : h1 qsq,

l1 “ 2 ¨ lon1pEq, h1 “ 2 ¨ hin1pEq (4.1)

— ARRAYEpAr5,n2 ` 3sq ” Ar5, lon2pEq ` 3 : hin2pEq ` 3sq (4.2)

— ARRAYEpArn1,n2 ` 3sq

” Ar lon1pEq : hin1pEq, lon2pEq ` 3 : hin2pEq ` 3sq (4.2)

— ARRAYEp2{Arn1 sq ” CONSTEp2q{ARRAYEpArn1 sq (4.3)

” CONSTEp2q{Ar lon1pEq : hin1pEqsq (4.2)

— ARRAYEpCONDF,
ÄpArn1,m1 sqq

” CONDG
F,

ÄpAr lon1pEq : hin1pEq,m1 sqq (4.4, 4.2)

” ARRAYEpREDUCEÄpArn1, lom1pF q : him1pF qsqq

The last example demonstrates the different access pattern possible when considering

the induced condenser as a potential transformation.

Corollary 4.6 (Array condenser transformations) By Theorem 2.24, the rules from The-

orem 4.5 become applicable on an array condenser as well simply by adding a REDUCE

on top of the right-hand side. A dedicated REDUCE implementation will likely be faster

in practice than a general COND operator, hence the right-hand side of these equivalences

will probably be preferred.

4.2.2.2 Parallelization

The value produced by evaluating a cell expression on coordinate x1 P E is independent

from the value of a cell expression evaluated over any other coordinate x2 P E, x1 ‰ x2.

This means that an array constructor can be represented as the union of several array

constructors over disjoint partitions of the original extent; each array constructor can be

evaluated independently of the others, potentially in parallel on a separate CPU core.

Theorem 4.7 (Operation partitioning) Let E be an extent and F1, . . . , Fk be disjoint

partitions of F such that E “
Ťk
i“1 F1. From the definition of array it follows:

ARRAYEpenq ”
k
ď

i“1

ARRAYFipenq

107

Chapter 4. A Modern Array Database Processing Engine

Similarly for the condense operation, we have:

CONDE,
Äpenq ”

k
ä

i“1

CONDFi,
Äpenq

The number of partitions would depend on the available resources (especially number of

CPU cores and less importantly CPU cache size) and the current workload.

In general it is not possible to predict the data access pattern by an array constructor

or condenser operation (cell expressions of class C6). Therefore, it is hard to devise an

optimal extent partitioning that is tuned to the underlying physical structure of the

array.

4.2.2.3 Loop Unrolling

Interpreted evaluation of array constructor/condense operations is expensive as the

iteration through the coordinates of the domain space has to be done dynamically at

runtime. Loop unrolling is a common loop optimization technique that removes the

overhead of iteration by replicating the loop body substituting the indices accordingly

at compilation time.

In interpreted evaluation loop unrolling is arguably useful only on inner loops, given that

the unrolling is done at runtime, which would be equivalent to simply evaluating the

loop. Therefore, only unrolling nested condense cell expressions is beneficial in this case.

Example 4.4 (Nested condense unrolling) The equivalence below is not a real transfor-

mation: it substitutes the condenser operation with its definition (2.22) with the purpose

to make the loop unrolling possibility clearer:

ARRAYEpCONDF,
Äpeoqq ” ARRAYE

˜

ä

x PδpF q

ρm,xpeoq

¸

4.2.3 Pushing Reducing Operations Down

Working with array subsets is a very common operation: it is rarely necessary to perform

an operation on all of the data. In particular we have spatial subsets and band (or

channel) subsets. In the optimization process they are pushed down to the tile level when

possible (so that only the relevant tiles or bands are loaded into memory), or to the first

blocking operation. Figure 4.11 shows the logical tree before and after pushing down the

subset operations in query Q2:

108

Chapter 4. A Modern Array Database Processing Engine

SELECT (c + 42).red[0:10,10:20] FROM rgb AS c

LogicalExecute
(Array: int32,
[0:10,10:20])

Subset
(Array: int32,
[0:10,10:20])

SubsetBand
(Array: int32,
[0:399,0:343])

DomainConstant
[0:10,10:20]

(Extent: [0:10,10:20])

BinaryInduced
Plus

(Array: {int32, int32, int32},
[0:399,0:343])
@Associative

@Commutative
@BinaryInduced

StringConstant
red

(String)

CollectionVariable
c

(Array: {uint8, uint8, uint8},
[0:399,0:343])

ScalarConstant<unsigned char>
42

(Scalar: uint8)

Push down
subsets

LogicalExecute
(Array: int32,
[0:10,10:20])

BinaryInduced
Plus

(Array: int32,
[0:10,10:20])
@Associative

@Commutative
@BinaryInduced

Subset
(Array: int32,
[0:10,10:20])

ScalarConstant<unsigned char>
42

(Scalar: uint8)

SubsetBand
(Array: int32,
[0:10,10:20])

DomainConstant
[0:10,10:20]

(Extent: [0:10,10:20])

CollectionVariable
c

(Array: {uint8, uint8, uint8},
[0:399,0:343])

StringConstant
red

(String)

Figure 4.11: Logical tree corresponding to query Q2 before the subset operations
are pushed down (left) and after (right).

4.2.4 Band Splitting and Merging

We argued in Section 4.1.2 that processing single-band tiles is superior to pixel-interleaved

tiles. In order to do this tiles need to be de-interleaved before any other operations

are performed as currently in rasdaman bands are stored in pixel-interleaved tiles. De-

interleaving tiles adds an overhead, but this is more than compensated for by subsequently

processing single-band tiles. In any case such an overhead is best avoided, so as future

work rasdaman will be adapted to support storing tiles in band-separated fashion as

well. Besides splitting the multi-band tiles before operations, they need to be merged

as well at the end before returning to the user. The logical tree for query Q1 after the

application of this transformation is shown on Figure 4.12.

109

Chapter 4. A Modern Array Database Processing Engine

LogicalExecute
(Array: {int32, int32, int32},

[0:399,0:343])

UnionBands
(Array: {int32, int32, int32},

[0:399,0:343])

BinaryInduced
Plus

(Array: int32,
[0:399,0:343])
@Associative

@Commutative
@BinaryInduced

BinaryInduced
Plus

(Array: int32,
[0:399,0:343])
@Associative

@Commutative
@BinaryInduced

BinaryInduced
Plus

(Array: int32,
[0:399,0:343])
@Associative

@Commutative
@BinaryInduced

ExtractBand
red, 0

(Array: uint8,
[0:399,0:343])

ScalarConstant<int>
42

(Scalar: int32)

ExtractBand
green, 1

(Array: uint8,
[0:399,0:343])

ScalarConstant<int>
42

(Scalar: int32)

ExtractBand
blue, 2

(Array: uint8,
[0:399,0:343])

ScalarConstant<int>
42

(Scalar: int32)

CollectionVariable
c

(Array: {uint8, uint8, uint8},
[0:399,0:343])

CollectionVariable
c

(Array: {uint8, uint8, uint8},
[0:399,0:343])

CollectionVariable
c

(Array: {uint8, uint8, uint8},
[0:399,0:343])

Figure 4.12: Logical tree corresponding to query Q1 after the multi-band arrays
are split into separate bands with ExtractBand operations, and merged at the end with

the UnionBands operation.

4.2.5 Tile Splitting and Merging

Operations in the physical tree are executed on tiles. Therefore, multi-tile array nodes

are replaced with references to the relevant persistent tiles. This process takes into

account the parent subset nodes, so that only tiles intersecting with the subset extent

are considered.

Array joins in binary/n-ary operations with array operands are necessary in the tile

evaluation model. Such a binary operation needs to be distributed to all matching pairs

of tiles from each operand. In mismatching tiles (in spatial domain or origin) this is

achieved by adding appropriate subset or shift operations.

Figure 4.13 shows the logical tree after applying this transformation on query Q3:

select (c.red + c.green)[190:210,0:20] from rgb as c

110

Chapter 4. A Modern Array Database Processing Engine

LogicalExecute
(Array: int32,

[190:210,0:20])

Union
(Array: int32,

[190:210,0:20])

BinaryInduced
Plus

(Array: {:int32, :int32, :int32},
[200:210,0:20])
@Associative

@Commutative
@BinaryInduced

BinaryInduced
Plus

(Array: {:int32, :int32, :int32},
[190:199,0:20])
@Associative

@Commutative
@BinaryInduced

Subset
(Array: {:uint8, :uint8, :uint8},

[200:210,0:20])

Subset
(Array: {:uint8, :uint8, :uint8},

[200:210,0:20])

Subset
(Array: {:uint8, :uint8, :uint8},

[190:199,0:20])

Subset
(Array: {:uint8, :uint8, :uint8},

[190:199,0:20])

ExtractBand
red, 0

(Array: uint8,
[0:199,0:199])

DomainConstant
[190:199,0:20]

(Extent: [190:199,0:20])

ExtractBand
green, 1

(Array: uint8,
[0:199,0:199])

DomainConstant
[190:199,0:20]

(Extent: [190:199,0:20])

TileVariable
LogicalTile:1

(Array: {:uint8, :uint8, :uint8},
[0:199,0:199])

TileVariable
LogicalTile:1

(Array: {:uint8, :uint8, :uint8},
[0:199,0:199])

ExtractBand
red, 0

(Array: uint8,
[200:399,0:199])

DomainConstant
[200:210,0:20]

(Extent: [200:210,0:20])

ExtractBand
green, 1

(Array: uint8,
[200:399,0:199])

DomainConstant
[200:210,0:20]

(Extent: [200:210,0:20])

TileVariable
LogicalTile:3

(Array: {:uint8, :uint8, :uint8},
[200:399,0:199])

TileVariable
LogicalTile:3

(Array: {:uint8, :uint8, :uint8},
[200:399,0:199])

Figure 4.13: Logical tree corresponding to query Q3 after array nodes are replaced
with tile nodes and a corresponding Union operation which merges tiles back into a

single array; note that only two tiles (IDs 1 and 3) are selected by the subset.

4.3 Evaluation

This Section presents system benchmark results comparing the performance of the mod-

ern array processing engine (rasengine) to rasdaman and SciDB. Table 4.4 lists the

benchmark machine specs.

4.3.1 Array Constructor

To measure the impact of the array constructor optimizations discussed in Section 4.2.2

we have devised a suitable benchmark. The benchmark includes typical queries for

several domains, as well as “synthetic” isolated queries targeting specific features like

111

Chapter 4. A Modern Array Database Processing Engine

Table 4.4: Benchmark machine specs.

OS Ubuntu 14.04 (64-bit)

CPU Intel Xeon E5-2609 v3 @ 1.90GHz; 2 x 6-
core CPUs, 16MB L3 shared cache, 256kB
L2, 32kB L1

RAM 64GB DDR4 2133MHz

Disk SSD, read speed 520 MB/sec

the performance of iterator variables and handling of arrays with multiple tiles. The

benchmark queries are grouped in several categories (Table 4.5).

Table 4.5: Array constructor benchmark categories.

Cat. Description

C1 Measure performance of extracting elements from an array, consid-

ering dimensionality and number of tiles.

C2 Covers several standard image processing algorithms like edge de-

tection, image rotation, reflection, skew, histogram.

C3 The queries in this category aim to isolate particular feature for

benchmarking, e.g. handling of constant expressions and iterator

variables in the cell expression, how the dimension of the result

array affects performance, etc.

C4 Standard linear algebra operations like matrix multiplications and

transposition.

C5 Statistical calculations, includes sample covariance query as a rep-

resentative case for benchmarking.

C6 Standard time-series analysis queries e.g. calculating sum of all

slices across time or doing a weekly roll-up aggregation in a daily

timeseries.

Each category includes several different types of queries, listed in detail in Table 4.6. Each

query in turn has several variations (typically 5-7) differing in the size of the involved

arrays (40 kB - 400 MB), or number of tiles per array (1 - 10000 tiles), or the size of the

constructed array (the $M / $N indicate that this is a variable parameter in the query),

etc.

112

Chapter 4. A Modern Array Database Processing Engine

Table 4.6: Array constructor benchmark queries for each category.

Cat. ID Description Query

C1

B1
“Copy” the 2-D array

c.
MDARRAY MDEXTENT(c) ELEMENTS c[x,y]

B2
“Copy” the multi-tile

2-D array c.
MDARRAY MDEXTENT(c) ELEMENTS c[x,y]

B3
“Copy” the 3-D array

c.
MDARRAY MDEXTENT(c) ELEMENTS c[x,y,z]

C2

B4

Edge detection with

a convolution kernel

specified in-place.

MDARRAY MDEXTENT(c) ELEMENTS

MDAGGREGATE + OVER [i(-1:1),j(-1:1)]

USING ((MDARRAY [i(-1:1),j(-1:1)]

ELEMENTS [-1,-1,-1,-1,9,-1,-1,-1,-1]

)[i,j] / 16.0 * c[x+i,y+j])

B5

Discrete Fourier

transform on a 2-D

array c.

MDARRAY [x(0:$M),y(0:$N)] ELEMENTS

MDAGGREGATE + OVER [i(0:$M),j(0:$N)]

USING c[x,y] * cos((2*3.14 * (j+i*$M)

* (y+x*$N)) / ($M*$N)) + c[x,y] *

sin((2*3.14 * (j+i*$M) * (y+x*$N)) /

($M*$N))

B6

Histogram calcula-

tion on an array

with unsigned 8-bit

elements.

MDARRAY [i(0:255)]

ELEMENTS MDCOUNT TRUE(c = i)

B7
Horizontal image re-

flection.

MDARRAY MDEXTENT(c)

ELEMENTS c[MDAXIS HI(c,x) - x, y]

B8
Rotate an image by

45˝(0.785 radians).

MDARRAY [x(-$M:$M),y(0:2$M)]

ELEMENTS c[x*cos(0.785) + y*sin(0.785),

y*cos(0.785) - x*sin(0.785)]

B9

Skew an image hori-

zontally by its height

(length of y axis).

MDARRAY [i(-MDAXIS HI(c,y) :

MDAXIS HI(c,x)), j(MDAXIS LO(c,y) :

MDAXIS HI(c,y))] ELEMENTS c[i+j,j]

C3

B10

Construct a 1-D ar-

ray such that its el-

ements are equal to

their coordinates.

MDARRAY [i(0:$M)] ELEMENTS i

B11

Construct a 2-D ar-

ray such that its el-

ements are equal to

the sum of their coor-

dinates.

MDARRAY [i(0:$M),j(0:$M)]

ELEMENTS i+j

113

Chapter 4. A Modern Array Database Processing Engine

B12

Construct a 3-D ar-

ray such that its el-

ements are equal to

the sum of their coor-

dinates.

MDARRAY [i(0:$M),j(0:$N),k(0:$K)]

ELEMENTS i+j+k

B13

A 1-D array with

a constant elements

calculated as a sum

of a varying number

of aggregations.

MDARRAY [i(0:999999)] ELEMENTS

MDSUM(MDARRAY[0:0][1]) +

MDSUM(MDARRAY[0:0][1]) + ...

B14

A 1-D array with con-

stant elements calcu-

lated as a sum of sev-

eral numbers.

MDARRAY [i(0:999999)]

ELEMENTS 1 + 2 + ...

B15

A cell expression that

has repeated applica-

tion of the sin func-

tion on the iterator

variable i.

MDARRAY [i(0:999999)]

ELEMENTS sin(sin(...(i)...))

B16
A cell expression that

has several references

of the iterator i.

MDARRAY [i(0:999999)]

ELEMENTS i + i + ...

C4
B17

Standard matrix mul-

tiplication of two ar-

rays c and d; the y

axis of c has equiv-

alent limits to the x

axis of d.

MDARRAY [i(0:MDAXIS HI(c,x)),

j(0:MDAXIS HI(c,y))] ELEMENTS

MDAGGREGATE + OVER

[k(0:MDAXIS HI(d,y))]

USING (c[i,k] * d[k,j])

B18 Matrix transpose.

MDARRAY [i(0:MDAXIS HI(c,y)),

j(0:MDAXIS HI(c,x))]

ELEMENTS a[j,i]

C5 B19

Sample covariance

for a given 2-D array

of samples.

MDARRAY [j(0:MDAXIS HI(c,x)),

k(0:MDAXIS HI(c,x))] ELEMENTS ((

MDAGGREGATE +

OVER [i(0:MDAXIS HI(c,y))]

USING ((c[j,i]-MDAVG(c[j,*:*])) *

(c[k,i]-MDAVG(c[k,*:*]))))/9.0)

C6 B20
Calculate the sum of

each data slice in a 3-

D timeseries.

MDARRAY [i(0:MDAXIS HI(c,x))

ELEMENTS MDSUM(c[i,*:*,*:*])

114

Chapter 4. A Modern Array Database Processing Engine

During the benchmark each query variation is repeated multiple times and the median

execution time is recorded. The median execution times of all variations are summed to

derive the total median execution time of the benchmark query (e.g. B1). The results of

running the whole benchmark suite on rasdaman and the optimized array constructor

in the new query processing engine (rasengine) demonstrate orders of magnitude better

performance (Figure 4.14).

Figure 4.14: Array constructor performance before and after optimizations.

4.3.2 Derived and Special Operations

In addition to the array constructor benchmark discussed in the previous Section we

devised a benchmark covering more specialized and derived shorthand operations. This

benchmark aims to cover the operations available in SQL/MDA in a domain-neutral

fashion; in particular the goal is to isolate operation evaluation so that the benchmark

results can be used as a basis for estimating the cost of complex, potentially domain-

specific queries, considering parameters such as array tiling, dimensions, and size. The

benchmark queries are grouped in several categories (Table 4.7).

Table 4.7: Operations benchmark categories.

Cat. Description

115

Chapter 4. A Modern Array Database Processing Engine

C1 Binary operations of the form array op array. The binary opera-

tor itself is not particularly relevant – we randomly chose addition.

The queries cover different array dimension and array operands

with matching and mismatching tiles.

C2 Binary operations of the form array op scalar; similarly we

chose addition for testing in this case as well.

C3 Domain-modifying operations which do not change the array values,

such as shift, extend, range constructor. Subset is also a domain

modifying operation but we put it in its own category due to its

importance and versatility.

C4 Subsetting operations involving slicing, trimming, and mixed on

2-D and 3-D arrays.

C5 Unary operations like sine calculation, type casting, and array ag-

gregation.

C6 “Blocking” operations which require materializing the whole array

before they can be evaluated.

C7 The CASE statement and range constructor are more special op-

erations that do not fit well in the other categories.

Each category includes several different types of queries, listed in detail in Table 4.8. Each

query in turn has several variations (typically 5-7) differing in the size of the involved

arrays or the number of tiles per array (1 - 10000 tiles).

Table 4.8: Operations benchmark queries for each category; if it is not explicitly
specified in the description we assume that the arrays are 2-D.

Cat. ID Description Query

C1

B7
Add two 1-D arrays with

mismatching tiles.
c + d

B8
Add two 2-D arrays with

matching tiles.
c + c

B9
Add two 2-D arrays with

mismatching tiles.
c + d

B12
Add two 3-D arrays with

mismatching tiles.
c + d

C2
B10

Add the average value of an

array to all of its elements.
c + MDAVG(c)

B11
Add a constant scalar value

to all elements of an array.
c + 4

116

Chapter 4. A Modern Array Database Processing Engine

C3

B4
Concatenate two arrays

along the first axis.
MDCONCAT(c, c, 1)

B6

Extend the spatial domain

of an array to twice its

width and height.

MDRESHAPE(c, [0:MDAXIS HI(c,x) * 2,

0:MDAXIS HI(c,y) * 2])

B16
Shift the spatial domain by

a given shift coordinate.
MDSHIFT(c, [500, -1000])

C4

B18
Subset the whole spatial do-

main.
c[*:*,*:*]

B19
Select a single element at a

particular coordinate.
c[5, MDAXIS HI(c,y) - 5]

B20
Slice the first axis at a par-

ticular point.

c[5, MDAXIS LO(c,y) + 3 :

MDAXIS HI(c,y) - 3]

B21 Trim down both axes.

c[MDAXIS LO(c,x) + 3 :

MDAXIS HI(c,x) - 3, MDAXIS LO(c,y)

+ 3 : MDAXIS HI(c,y) - 3]

B22
Slice the first axis of a 3-D

array at a particular point.

c[MDAXIS HI(c,z), MDAXIS LO(c,x)

+ 3 : MDAXIS HI(c,x) - 3,

MDAXIS LO(c,y) + 3 : MDAXIS HI(c,y)

- 3]

C5

B1
Sum of the array’s ele-

ments.
MDSUM(c)

B3
Cast all elements to un-

signed 8-bit values.
MDCAST(c AS char)

B17
Calculate the sine of every

element in an array.
SIN(c)

C6

B5 Encode an array to TIFF. MDENCODE(c, "image/tiff")

B13 Calculate all percentiles. MDQUANTILE(c, 100)

B15 Scale-up (2x) an array.

MDSCALE(c, [MDAXIS LO(c,x) :

MDAXIS HI(c,x)*2, MDAXIS LO(c,y)

: MDAXIS HI(c,y)*2])

C7
B2

For each element in an ar-

ray the result element is 1 if

its value is 0, otherwise the

result is the common loga-

rithm of its value.

CASE WHEN c = 0 THEN 1 ELSE

LOG10(c) END

B14
Join several arrays into a

single multi-band array.

MDJOIN(c, MDARRAY MDEXTENT(c)

ELEMENTS 3, c)

117

Chapter 4. A Modern Array Database Processing Engine

We ran the benchmark on the new rasengine, SciDB 16.9, OpenDataCube 1.5.4, and

PostGIS Raster 2.3. The results are shown on Figure 4.15. Overall the new rasengine is

outperforming the benchmarked systems. Note that some queries could not be meaning-

fully translated for evaluation on the target system, e.g. B5 could not be evaluated in

SciDB as data encoding is not supported.

Figure 4.15: General operations benchmark comparing rasdaman, SciDB, and the
new array processing engine.

118

Chapter 5

SQL/MDA Query Mediator

In the literature, the process of taking several existing databases or other information

sources and presenting the data in them as if they were a single database, is known as in-

formation integration. There are several possible ways to achieve information integration

according to Garcia-Molina et al. [59]:

• Federation. Federated databases are a collection of independent information sources,

where any information source has to be able to call any other source, in order to

compute the query result.

• Warehousing. Data from different sources is extracted, potentially pre-processed,

and stored in a single database called a data warehouse.

• Mediation. A separate software component, called mediator, presents the different

information sources as one virtual database, which can be transparently queried as

if it were actually materialized like a data warehouse. The mediator breaks down

a query into sub-queries which are then distributed to the appropriate sources for

evaluation. It then integrates the results in order to construct the final query result.

Taking on the federation approach would require modifying and extending the original

data sources. This would significantly increase the implementation effort as the same

functionality has to be implemented over and over again for every new data source.

Warehousing would require intensive data duplication and pre-computation, which makes

it too inflexible and costly.

The mediator approach best satisfies our use case. It supports mixed queries as it breaks

queries down into sub-queries which are transparently forwarded to the underlying het-

erogeneous data sources. To the user it appears as a single virtual database, that works

119

Chapter 5. SQL/MDA Query Mediator

on top of existing systems (plug and play). This allows to use API like ODBC (Open

Database Connectivity) or JDBC (Java Database Connectivity) [4] which provide an

open, vendor-neutral interface for accessing data in most relational database management

systems via the Call Level Interface [70] (independence). Data duplication is avoided as

the data is still managed by the underlying DBMS, however, there are still challenges in

minimizing temporary data duplication during mixed query evaluation, which requires

clever optimizations in order to achieve satisfying performance.

Mediator

Rasdaman PostgreSQL, MySQL, ...

Applications

... ...

Figure 5.1: Mediator server integrating diverse databases

Therefore, in this thesis I have proceeded towards implementing SQL/MDA as a mediator

system ASQLDB which extends the HSQLDB relational DBMS 1. The implementation

is open-source and available on Github 2. ASQLDB allows transparent access to multi-

dimensional raster and relational database management systems, via SQL/MDA (Figure

5.1).

5.1 Evaluation Model

The mediator is a unifying interface of underlying array and relational DBMS instances.

In order to transparently present the distributed information in such unified manner to

clients we establish a unified mediator model (UMM) based on an array database model

(ADM) and a relational database model (RDM). DBMS “drivers” then plug into these

interfaces and provide a translation to a particular underlying DBMS instance.

1http://hsqldb.org/
2https://github.com/misev/asqldb

120

Chapter 5. SQL/MDA Query Mediator

Array DBMS DriverRelational DBMS Driver

...rasdaman...HSQLDB

... A : MDARRAY ...
MD-array value
MD-array value

...

UMM

... A : OID ...
oid1
oid2
...

RDM
A : MDARRAY
MD-array value
MD-array value

...

ADM

Figure 5.2: Unified mediator model.

The ADM is a set of special relation schemas restricted to a single MD-array column,

while the RDM is a set of standard relation schemas in which the original array attributes

contain the unique object identifiers to the corresponding arrays in the ADM relations.

Finally, the UMM is a set of relations which merge RDM and ADM relations, thereby

enabling the illusion of a native SQL/MDA system. Figure 5.2 visualizes the relationships;

more formally this is captured by Definition 5.1.

Definition 5.1 (Unified mediator model) Let U “ pA1 : D1, . . . , Am : Dmq be a relation

schema with attributes Ai of domain Di such that U P UMM. We define S to be the set

of array attributes in U , defined as S :“ tx : x P attrpUq, dompxq Ă Au.

For each attribute in S there is a relation schema with the same name in ADM, i.e.

@B P S : B “ pBq P ADM.

U 1 “ pA1 : D11, . . . , An : D1mq P RDM is a relation schema in which the array attributes

are substituted with attributes holding a unique object identifier for the arrays in the

corresponding relation in ADM; D1i is derived as follows:

D1i :“

#

N if Ai P S

Di otherwise

121

Chapter 5. SQL/MDA Query Mediator

In either case we assume to have exactly one relational and one array data source. The

alternative would unnecessarily complicate our discussion as it will inevitably evolve into

distributed query processing, a topic already being investigated in the PhD thesis of

Vlad Merticariu [98] for example. Therefore, it is not necessary to track the source of

relations.

The workflow of evaluating an SQL/MDA query can be summarized as follows:

1) Parse the query string into a query tree;

2) Classify the nodes based on the system that is able to evaluate them;

3) Determine on which system will ambiguous nodes be evaluated;

4) Identify maximal sub-queries that can be evaluated independently;

5) Establish evaluation dependencies between sub-queries;

6) Send sub-queries and facilitate data flow between the underlying DBMS;

7) Aggregate results and send back to client.

To illustrate how this works it is best to go in detail through the evaluation of an example

query, e.g. ”list months with particularly high precipitation in Germany”. The query

would need to calculate the grid bounding box coordinates given the geo-coordinates in

order to be able to subset the world data to the area of Germany, then compute the

average rainfall on this subset and compare it to the specified threshold. If the threshold

is exceeded then the month is returned.

SELECT t.month

FROM TRMM AS t, CountryBounds AS c

WHERE

$threshold < MDAVG(

t.rainfall[

x((c.minx - -180.0) / t.res : (c.maxx - -180.0) / t.res),

y((c.miny - -90.0) / t.res : (c.maxy - -90.0) / t.res)

]

) AND c.country = ’Germany’

The geographic coordinates of the bounding box for each country in the world are stored

in the CountryBounds table (see Figure 3.4 for an example visualization of the bounding

boxes). The TRMM table contains monthly timeseries of world rainfall data. Since the

data has world coverage the bounding box geographic coordinates are ´90˝ to 90˝ for

122

Chapter 5. SQL/MDA Query Mediator

latitude and ´180˝ to 180˝ for longitude. The resolution of the map (the ratio between

geographic degrees and grid pixels) is stored as well in the res attribute.

CREATE TABLE CountryBounds (

country VARCHAR(100),

minx DOUBLE,

maxx DOUBLE,

miny DOUBLE,

maxy DOUBLE

)

CREATE TABLE TRMM (

rainfall DOUBLE MDARRAY [x, y],

month DATE,

res DOUBLE

)

Parsing the example query produces a typical query tree as shown on Figure 5.3. In the

next step the nodes are classified in three classes based on whether it is absolutely clear

on what system they should be executed or not. The yellow nodes (Y) can be evaluated

only by the relational system, red nodes (R) by the array database, and “ambiguous”

nodes (A) colored with a red/yellow gradient on either system.

Let N be an A node in the query tree; if among its children at least one node is of color

C and the other are either nodes of color C or leaf A nodes, then N is assigned color

C. This process is repeated until no more A nodes can be reassigned to Y or R nodes.

Any remaining A nodes are finally assigned the color of the first non-A ancestor node.

For the example query the new query tree version is shown on Figure 5.4.

The tree is analyzed then to determine the query subtrees that need to be individually

evaluated. The analysis starts from the root of the query tree T , the projection π node in

the running example. The first subtree T1 is with root at the red less than node; within T1
four further subtrees T2 to T5 are identified with roots at the yellow division nodes. In the

end the following dependency hierarchy is constructed: T ÝÑ T1 ÝÑ pT2, T3, T4, T5q.

Before any sub-tree can be evaluated its dependencies need to be resolved first.

The process starts by resolving T2 ´ T5. This is done by adapting the original query

tree T into a sub-query Q1. The projected attributes list is substituted with T2 ´ T5.

As these sub-trees are dependencies of a red sub-tree the results need to be associated

with the corresponding OIDs of all array references in T1, so t.rainfall is added to

the attributes list3. We want to preserve the WHERE clause as much as possible in order

3recall that in the RDM this attribute holds array OIDs

123

Chapter 5. SQL/MDA Query Mediator

π

σ

t.month

And

× < =

TRMM
t

CountryBounds
c $thr. Avg c.country 'Germany'

Subset

t.rainfall Extent

Interval Interval

/ / / /

- t.res - t.res

c.maxy -90c.miny -90

- t.res - t.res

c.maxx -180c.minx -180

Figure 5.3: Query tree for the example after parsing and initial node classification.

to reduce evaluation only to the selected arrays in subsequent steps; in this case T1 can

be substituted with a True node so that it is effectively ignored, while still taking into

account the restriction of c.country to ’Germany’. The same would apply if the parent

node was Or instead of And. The Q1 tree is shown on Figure 5.5.

As a result of Q1 we get a set of array OIDs t oid1, oid2, . . . u with values for each of the

124

Chapter 5. SQL/MDA Query Mediator

π

T

σ

t.month

And

× <

T1

=

TRMM
t

CountryBounds
c $thr. Avg c.country 'Germany'

Subset

t.rainfall Extent

Interval Interval

/

T2

/

T3

/

T4

/

T5

- t.res - t.res

c.maxy -90c.miny -90

- t.res - t.res

c.maxx -180c.minx -180

Figure 5.4: Query tree after reclassifying the ambiguous nodes and determining the
query sub-trees T1´ T5.

dependency sub-trees T2´ T5. For each row i of the result a single array sub-query Q2i
corresponding to T1 is then instantiated where the parameters $minx, $maxx, $miny,

$maxy, and $oid, are substituted with the values of the corresponding attributes:

125

Chapter 5. SQL/MDA Query Mediator

π

σ

t.rainfall, T2, T3, T4, T5

And

× True =

TRMM
t

CountryBounds
c c.country 'Germany'

Figure 5.5: Query tree corresponding to Q1.

SELECT $threshold < MDAVG(r[x($minx : $maxx), y($miny : $maxy)])

FROM rainfall as r

WHERE oid(r) == $oid

T1 is in the WHERE clause so the results of each Q2i that evaluated to True (let us assume

arrays with OIDs $oid1, $oid2, . . .) are concatenated in a disjunction replacing T1 to

form the final subquery Q3:

SELECT t.month

FROM TRMM AS t, CountryBounds AS c

WHERE

(t.rainfall == $oid1 OR t.rainfall == $oid2 OR ...) AND

c.country = ’Germany’

If T1 would have been in the projected attributes list of the SELECT clause then the

results of each sub-query would have been returned as is.

5.2 Performance Evaluation

To demonstrate practical feasibility of the implementation we have performed a perfor-

mance investigation on three representative queries. The benchmark compares perfor-

mance to SciQL, as this system comes closest to SQL/MDA and ASQLDB in terms of

SQL integration. EXTASCID has been presented as a system that supports both array

and relational data natively [34]; the implementation does not seem to be available, how-

ever, so it could not be included in the benchmark. Purely array systems, such as SciDB

126

Chapter 5. SQL/MDA Query Mediator

for example, have not been considered as they do not provide basis for the relational

integration aspect we aim to evaluate.

Tests have been run on a standard desktop machine running Debian 7, with an Intel

Core i7-3770K CPU, standard 1.8TB 7200 RPM SATA hard disk, and 32GB 1333 MHz

RAM. Disk read/write speed was at 134.5 MB/s and 137 MB/s, respectively, measured

with the following commands:

hdparm -t device

dd bs=1M count=1024 if=/dev/zero of=o conv=fdatasync

Both systems were installed and configured with their default options. The benchmark

has been implemented on top of a general array DBMS benchmark [19, 97], publicly

available on GitHub 4. Each query was repeated 5 times; all results outside a 2σ standard

deviation interval of the mean value were discarded and the remaining values averaged.

For each query, the DBMS under test got restarted to achieve a cold database. Data size

varies over 1KB, 100KB, 1MB, 100MB, 1GB size per object. The following test queries

have been run:

• Query 1. The first query corresponds to Example 3 in Section 3.6.1, and computes

how close simulated data are to the experimental data (a cost function). The filter-

ing in the WHERE clause has been left out, as this cannot be modeled meaningfully

with SciQL.

• Query 2. The Normalized Difference Vegetation Index (NDVI) is a commonly

used indicator to assess vegetation cover in remote sensing data. It is computed

from the near-infrared and visible red channels, such that in the resulting array

vegetation is marked by positive pixels. The test query computes the change of

NDVI in successive years.

• Query 3. “Find the ten most represented values, through the histogram of an

array”. This is done by converting the array to a table, grouping the cell values and

sorting by the size of each group. The queries for ASQL and SciQL are essentially

the same, except that in ASQL we explicitly perform the conversion with UNNEST

in this case.

Table 5.1 shows the corresponding ASQL and SciQL test queries. Figure 5.6 shows the

benchmark results for both queries. SciQL is notably fast on small data sizes, but hits

scalability issues as size increases beyond 10-100MB. It took 2680 seconds for SciQL to

4https://github.com/adbms-benchmark/storage

127

Chapter 5. SQL/MDA Query Mediator

evaluate the 1GB size test Query 1, and it failed with an error while evaluating Query

2. ASQLDB is an order of magnitude slower on the other hand on Query 3, which we

attribute to a less efficient relational implementation of HSQLDB in Java, compared

to the C based implementation of MonetDB; additionally, time is lost on converting

the array from rasdaman into a table in HSQLDB, whereas arrays in SciQL/MonetDB

are in fact already stored as native tables internally. In any case, this has revealed a

performance problem in ASQLDB that we aim to address in future work.

Q ASQL SciQL

1 SELECT ABS(SUM(POWER(z.v -

AVG(z.v), 2)) / CARD(z.v) -

SUM(POWER(d.v - AVG(d.v), 2))

/ (CARD(d.v) - 1)

FROM Dynamic AS d,Zygotic AS z

SELECT ABS(POWER(

STDDEV POP(z.v), 2) - POWER(

STDDEV SAMP(d.v), 2) FROM

Dynamic AS d JOIN Zygotic AS

z ON z.x = d.x AND z.y = d.y

2 SELECT AVG((a.nir - a.red) /

(a.nir + a.red)) - AVG((b.nir -

b.red) / (b.nir + b.red))

FROM Landsat09, Landsat10

SELECT AVG((a.nir - a.red) /

(a.nir + a.red)) - AVG((b.nir -

b.red) / (b.nir + b.red))

FROM Landsat09 AS a JOIN

Landsat10 AS b ON a.lat = b.lat

AND a.lon = b.lon

3 SELECT value

FROM Images, UNNEST(image) AS

T(value)

GROUP BY value ORDER BY COUNT(*)

DESC LIMIT 10

SELECT value

FROM Images

GROUP BY value ORDER BY COUNT(*)

DESC LIMIT 10

Table 5.1: Benchmark queries evaluated in ASQLDB and SciQL.

128

Chapter 5. SQL/MDA Query Mediator

Figure 5.6: Benchmark results on arrays of different size.
129

Chapter 6

Related Work

6.1 The Relational Model

The relational model introduced by E. F. Codd [37] is built around the concept of relation.

A relation consists of a header as a vector of attributes (name/type pairs) that define

its schema, and a set of tuples conforming to the header that represents the relation

value. Relational algebra is a procedural language in which operators take relations

as inputs and produce relations as result. The standard relational algebra proposed

by Codd defines only five primitive operators: projection, selection, cartesian product,

union and difference; several more operators, like natural join, are derived from these for

convenience.

Extended relational algebra [61] adds support for multi-set semantics to relational alge-

bra; in addition it defines extended projection that allows arithmetic expressions over

attributes, aggregates over multi-sets, unique expression to remove duplicates from a

multi-set, and the groupby expression to group tuples over a common attribute value. In

this thesis we base discussion on the extended relational algebra as it is closer to modern

SQL.

Structured Query Language (SQL) [69], originally developed by IBM in the seventies,

is the most widely used relational database language [113]. SQL is mainly a declarative

language1, based on relational algebra and tuple relational calculus. It follows the CRUD

principles for managing persistent data, allowing to insert, retrieve, update and delete

1but includes some procedural elements as well

130

Chapter 6. Related Work

data2, and additionally supports schema creation and modification, and data access

control3.

The most important language element of SQL are queries performed with the SELECT

statement, which allow to declaratively retrieve data from tables or expressions. A selec-

tion query can include several clauses and keywords, like FROM, which specifies the tables

from which to retrieve data, WHERE restricts the selected rows according to a predicate,

GROUP BY and HAVING group rows into smaller sets so they can be further aggregated for

example, and ORDER BY sorts the selected rows according to the specified attributes and

direction.

SQL was first standardized by ANSI in 1986 (SQL-86), with a major revision in 1992

(SQL-92) which is the most widely used and supported by database vendors thus far.

The SQL:2003 revision adds XML handling, window functions, and columns with auto-

generated values to the language, and SQL:2016 introduces support for notably JSON,

polymorphic table functions, and row pattern recognition. It is an actively developed

standard with an ever-growing support for new data types.

Looking at SQL versions since SQL:1999, we find that intrinsically only 1-dimensional

arrays with fixed indexing of lower bound 1 exist; since SQL:2003, higher dimensional

arrays can be emulated by nesting arrays. Nesting, however, establishes preference dimen-

sions resulting in inefficiencies. For example, a simple x/y subsetting will be efficient in

the preferred dimension (say, x in row-major modelling) and inefficient in any subordinate

direction (say, y). Listing 6.1 demonstrates creation of a table with a column holding

1-D arrays of strings.

CREATE TABLE Information (

...

info VARCHAR ARRAY

)

Listing 6.1: Create a table containing 1-D string arrays

The only array operations defined in SQL are:

• single element access, e.g. A[2] returns the second element of the array A, and

• array concatenation, e.g. A || B appends B at the end of A.

2Data Manipulation Language (DML)
3Data Definition Language (DDL)

131

Chapter 6. Related Work

This is insufficient for the manifold array processing tasks encountered in the real world.

Not even the very basic d-dimensional subsetting operation (“an image cutout between

px0, y0q and px1, y1q”) is possible.

6.1.1 Arrays in Relational Databases

SQL implementations often extend the SQL standard or even make incompatible changes,

so it is worthwhile considering what the most popular ones do with arrays.

PostgreSQL 9.6 supports the SQL ARRAY type, but also has its own extension that

allows to declare d-dimensional arrays by following any data type with d pairs of []. Both

single element access (one-based indexing as in SQL) as well as rectangular subsetting

with the common lower-bound : upper-bound syntax are possible; slicing, or reducing

an array’s dimension is not possible, however. Updating arrays can be done by full

replacement or partial update of a particular subset. Several simple mechanisms for

searching, manipulating and inspecting arrays are possible. So this is a fair amount more

convenient compared to vanilla SQL, but it is still guided by the same principles and

hence not suitable in scientific computing contexts.

Variable arrays (varrays) in Oracle 12g R2 are more or less equivalent to ARRAY

in SQL:1999 [109]. IBM DB2 11.1 appears to fully support SQL’s ARRAY [42], and

HSQLDB 2.4.0 is compliant to SQL:2008 [63]. Teradata 16.00 has 1-D arrays in partial

compliance to SQL:2011 [132]; the keyword VARRAY can also be used for compatibility

with Oracle. Furthermore, it provides support for multidimensional array of up to 5-D; in

this case the model is different, and each dimension has a lower and upper integer bounds

that can be specified in the lower-bound : upper-bound notation. Arrays are limited to a

maximum size of 64kB, as internally they are stored within a row.

MySQL 5.7 [108], SQLite 3 [40], and Microsoft SQL Server 2016 [99] do not appear to

provide any array data type or functionality.

6.2 Array Models

Several array data models specifically tailored to database management – and hence

particularly important for the research in this thesis – have been published since the

early 90’s.

132

Chapter 6. Related Work

6.2.1 A Call to Order

In 1993, Meier and Vance [89] made ”a call to order”, recognizing that DBMSs at the

time lacked good support for ordered data structures, such as multidimensional arrays.

For this reason DBMS technology was not really usable in scientific applications, as

the majority of scientific data types – e.g. biochemical sequences, time series, signals,

matrices, images – are optimally represented as ordered data. They observe that it is

most optimal to support multidimensional arrays in a DBMS as a native data type;

mapping them to existing types, e.g. relations or nested lists or vectors cannot be done

adequately without incurring space/time inefficiencies.

An array constructor inspired by the ”filing function” constructor in the parallel program-

ming language Id is proposed, where array values are populated by applying a function

on all indexes within a list of bounds. Some common candidate operators on ordered

structures have been identified, namely:

• Applying a stencil or template across an array;

• Subsetting;

• Aggregation across array axes;

• Interpolation arrays across grid structures;

• Combining arrays into an array of larger dimension;

• Reshaping array bounds/dimension;

• Element-wise matched operations on two arrays.

The paper is mostly in observational, “visionary” style, and lacks a deeper exploration

of the topic.

6.2.2 Array Algebra

Even earlier, Baumann [10] already made a similar observation that DBMSs have largely

ignored multidimensional discrete data (MDD), regarding it at most as pure byte se-

quences, a.k.a. BLOBs. Baumann actually proposed a full solution outlining comprehen-

sive support for MDD in databases based on a formal Array Algebra, a corresponding

query language and a novel DBMS architecture for efficient MDD query evaluation. Array

133

Chapter 6. Related Work

Algebra is a partial model dedicated to multidimensional arrays, intended to be further

embeddable in a parent model, e.g. relational, object-oriented, semantic.

Array Algebra was inspired mainly by the AFATL Image Algebra [145], accordingly

restricted to flexibly support MDD querying and manipulation in DBMS contexts. Orig-

inally it allowed array subsetting and extension, as well as unary and binary induced

operations. In [12] it has been further refined into a powerful domain-neutral algebra for

arbitrary multidimensional arrays based on three core operations:

• Array constructor allows instantiating new arrays in a similar fashion to the ”filing

function” mentioned in [89], by applying a function parameterized on all coordinates

in the given extent.

• Generalized aggregation operator condenses the results of applying a function –

similarly parameterized on all coordinates over a given extent – into a single value,

through a given aggregation operation which is defined on the aggregation function

result type, has a neutral value and is commutative and associative.

• Multidimensional sorter allows to reorder hyper-slices of an array along a specified

axis, according to a given ranking function parameterized over the hyper-slice

coordinates.

All further operations – including the ones that were originally specified – are expressed

through the application of these core operations. The contributions in this thesis are

heavily inspired by Array Algebra and all the follow-up research it has stimulated.

6.2.3 AQL

Libkin et al. [84] introduce a calculus for arrays NRCA based on a nested relational

calculus for complex objects, NRC. Arrays are not collection types, but partial functions

mapping indices from a finite, ”rectangular” domain with no holes to values. NRCA
adds to NRC natural number constructs – constants, arithmetic operators, sequence

generator and aggregator – and four multidimensional array constructs for:

• Defining, or tabulating an array, which is essentially equivalent to the array con-

structor in Array Algebra;

• Referencing a single element of an array;

• Extracting the upper limits of the array’s dimensions;

134

Chapter 6. Related Work

• Converting an indexed set of coordinate/value tuples to an array.

An interesting observation that the authors make is that the expressive power of NRCA
is actually characterized as adding ranking in an explicit manner to NRC, achieved by

just adding arithmetic operations and a general aggregation operator.

From the low-level NRCA then a higher-level query language AQL is derived, with

syntactically convenient and concise literals, comprehensions, pattern matching and code

blocks allowing to define local variables. Furthermore, several primitive macros are made

available, such as min, max, and, or, not, forall in, exists in, zip, etc.

AQL has been implemented in a prototype system based on an earlier open query system

implementing NRC with a driver for the NetCDF data format allowing it to manipulate

”legacy” scientific data. Being an open system means that it can be dynamically extended

with further external functions, data format readers / writers and optimization rules.

The authors give three straightforward optimization rules specific to array tabulation

that have been implemented in AQL’s optimizer:

• Eliminate array tabulation when a subscription operation is immediately applied

to the result, in which case the tabulator needs to only compute the value at the

subsequent subscript index.

• Eliminate array retabulation, i.e. when a tabulator simply takes the values of

another array then the result is simply that array.

• Eliminate array tabulation when it is nested in an array length operation.

On the other hand, we took a far more rigorous and comprehensive approach in addressing

array constructor optimization in Section 4.2.2 and actually demonstrated with use-cases

from multiple domains that it is a significant improvement in practice.

6.2.4 AML

The Array Manipulation Language (AML) is a general-purpose algebra for multidimen-

sional array data [93]. An array in this model is described by a shape, a non-empty set

of values, and a mapping that maps coordinates from the shape to elements of the value

set. For convenience, coordinates outside of the array’s shape are mapped to a special

value that is not an element of any value set. An array with one or more dimensions of

length zero is a null array with zero size and undefined dimension.

135

Chapter 6. Related Work

The central operator in AML is APPLY, which allows applying a user-defined function

to an array in a specific way. In this way AML aims to be generic and easy to customize

to domain-specific array operations. Further operators are SUBSAMPLE, which allows

to select a subarray, and MERGE, allowing to combine two arrays defined over the same

domain.

A distinguishing feature of AML is the concept of bit patterns used as parameters of

these three operators. A bit pattern is a finite binary vector repeating infinitely; with

run-length encoding it is possible to compress the specification of such binary vectors.

The index function allows retrieving the nth ’1’ in a pattern, and count returns the

number of ’1’s in the first n` 1 elements.

Within operations, the ’1’s and ’0’s allow to precisely select particular indexes along

a dimension. As such they are an extremely flexible mechanism allowing to address

any arrangement of coordinates, in contrast to more traditional ways of specifying a

lower and upper bounds with an optional step. In practice, this scheme would likely

be considered nonintuitive and complex (probably less so in comparison to other array

models nevertheless), but AML can easily rectify this with defining straightforward

shorthands for the most common use-cases of specifying lower and upper bounds, or

single indexes for slabs.

Bit patterns are not allowed to refer to array values, in contrast to other array models

like Array Algebra. Generally this would not allow for improved optimization capabilities,

as less restrictive models could still easily identify and handle these special cases in the

exact same way. The main benefit is simplified optimizations, which comes at the expense

of fairly decreased expressiveness.

AML has been implemented in ArrayDB, which goes through several steps during the

query evaluation: preprocessing, logical rewriting, plan generation, and plan refinement. A

benchmark against custom hand-crafted C++ solutions for several queries, ArrayDB was

often within a reasonable order of magnitude slower, as would have been expected. In some

instances, however, it was significantly slower by more than two orders of magnitude, likely

caused by extraneous copying and data reorganization, as well as missing optimizations

for handling common subexpressions. During the design and implementation of the array

processing engine (Chapter 4) we carefully considered exactly such pitfalls. We evaluated

several typical queries (such as calculating a Normalized Difference Vegetation Index)

against individually hand-optimized C++ code and it was fairly impossible to exceed a 1.5

- 2x performance improvement. An exception, however, are array constructor expressions.

Despite the massive improvements we managed to achieve (Section 4.2.2), in general it

is hard to come similarly close to an individualized implementation due to the generally

136

Chapter 6. Related Work

unpredictable data access pattern. Hence even hand-written solutions will require tuning

with actual code adaptations for the particular data layout at hand.

6.2.5 RAM

As its name suggests, the Relational Array Mapping language (RAM) focuses on embed-

ding array processing into a relational engine [137]. Its motivating example and main

application area is efficient multimedia analysis in traditional DBMS, which are otherwise

not very suitable at all for it. A prototype implementation of RAM was done in MonetDB

[92] as a separate front-end on top of its generic relational engine.

Arrays are defined similarly as in other models: functions that map array coordinates

from a certain domain (shape) to values of any atomic type supported by the database

layer. Array indexes are restricted to the natural numbers, starting from 0 on each axis.

RAM defines a comprehension based query language [28] for arrays, similar to AQL (cf.

Section 6.2.3). At its core the RAM language consists of an array constructor similar to

Array Algebra’s marray and AQL’s tabulating constructor, and a concatenation operator

for merging two existing arrays along the last dimension. Value based operations, such

as grouping by value or counting all black pixels, are not supported directly on arrays;

instead they are implemented in the set domain and carried on by converting an array

to set.

On a lower level, RAM queries are transformed into an intermediate relational algebra

consisting of the following operators:

• const : generate an array of a given shape filled with a constant value;

• grid : generate an array of a given shape with values given by the index generator;

• map: apply a function to the corresponding elements from multiple input arrays

to produce a single array;

• apply : given an array A of dimension d, and d so-called index-arrays, create a new

array where each element is the element from A at the coordinate specified by the

index-arrays;

• choice: generate an array where each element is taken from one of two alternative

arrays, based on whether the corresponding element from a ”condition” array is

true or false;

• aggregate: apply an aggregate function over the first j axes, grouping the aggrega-

tions over the remaining axes

137

Chapter 6. Related Work

A more specialized variant of RAM is Sparse Relational Array Mapping (SRAM) [41]

which focuses on efficient storage in compressed column-store tables and processing of

sparse arrays in a relational engine (MonetDB/X100 [26]). The main goal is to efficiently

support the Matrix Framework for modeling Information Retrieval [122], in which matri-

ces with density lower than 0.000005% are not uncommon. The intermediate relational

algebra is very similar, with the addition of a few more operators (dimension permutation,

sub-array selection, adding dimensions and top-N querying).

Recently, RAM/SRAM has been superseded by SciQL in MonetDB. The shortcomings

in SciQL that we identify in Section 6.3.3 are valid here as well.

6.3 Array Databases

Several approaches for array handling in a database context have been proposed; the

most advanced projects (in order of historical appearance) have been rasdaman [12],

PostGIS Raster [106], SciQL [148], and SciDB [131].

6.3.1 rasdaman

As its name “raster data manager” suggests, rasdaman is a database system that

assists in the management of raster data4. Implementing Array Algebra, its data model

allows data of arbitrary dimensionality, type, and size to be stored, manipulated, and

queried via rasql, a query language with syntax similar to SQL [115]. Rather than

tables of rows of data, rasql has collections (following the ODMG standard [32]) of

multidimensional discrete data (MDD) objects. Each object is globally identified by a

unique object identifier. The rasql query language as specified in [12] implements the

array constructor and condenser but not the sort operation.

We used rasdaman as a basis for developing the new array processing engine, which is

planned to be phased into the next major version, rasdaman v10. As this investigation has

demonstrated, rasdaman made somewhat less than optimal use of the available hardware

on average, even though its performance is still by far ahead of the array DBMS in

existence today.

4another name for arrays

138

Chapter 6. Related Work

6.3.2 PostGIS Raster

PostgreSQL with its PostGIS geographic extension [79, 106] is regarded as the leading geo-

spatial database combination implementing the OGC standards for Simple Feature Access

(SFA) [65, 66], which is aligned with the corresponding ISO 19125 [72, 73] standards. SFA

specifies a common storage model for geographical data (point, line, polygon, multi-point,

multi-line, etc); Figure 6.1 shows the geometry class hierarchy.

Figure 6.1: Geometry class hierarchy in Simple Features Access [66]

PostGIS Raster is an extension of PostGIS aiming to provide support for raster data.

Its main goal is to mirror the functionality for the GEOMETRY type in PostGIS to an

equivalent RASTER type in PostGIS Raster, and offer a single set of SQL functions that

apply seamlessly to both vector and raster data. Data can be stored inside the database

in Well-Known Binary (WKB) format5, or it can be stored offline, as TIFF/JPEG files

on the filesystem.

Each raster coverage corresponds to one table with a column of type RASTER, and each

row in such a raster table corresponds to one tile of the whole coverage. Each tile has a

pixel size, width and height, georeference, variable number of bands with pixel types and

5binary equivalent to Well-Known Text (WKT)

139

Chapter 6. Related Work

nodata value for every band. As such, PostGIS Raster is dedicated to the GIS domain

and supports only 2D data.

6.3.3 SciQL

A relatively recent development in the field of array databases is SciQL [148], a query

language that extends and enriches SQL with arrays as first class citizens. It strives

to achieve real symbiosis of arrays and tables by seamlessly integrating array and set

semantics, allowing indexed access of array cells via named dimensions with constraints,

and making use of the windowing scheme introduced in SQL:2003 to group cells into so

called tiles, which can be further used to perform operations like statistical aggregation.

Arrays in SciQL do not differ much from regular tables. Marking at least one attribute

as a dimension by appending DIMENSION is sufficient to create an array. Dimension

attributes describe the value range of the array, which can be arbitrarily constrained,

and the values can be of any of the primitive datatypes in SQL, e.g., INTEGER, TIMESTAMP,

FLOAT, etc. Non-dimensional attributes hold the payload, i.e. the actual values of the

array, which for every index combination are either stored or derived on-the-fly from the

default value. Switching between array and table context is straightforward: an array

is treated as table by simply selecting its attributes, while a table can be used as an

array when the selected attributes in the column list contain dimension qualifiers. The

example below creates a 2-D 10x10 integer array, with 5 as the default value:

CREATE ARRAY matrix (

x INT DIMENSION[10],

y INT DIMENSION[10],

v INT DEFAULT 5

);

Slicing and subsetting an array is done similarly as in most programming languages, by

specifying the slice position or subset range in square brackets for each dimension of the

array. The same can be achieved by limiting the dimension ranges in the WHERE clause

of a query. For example, the two queries below slice a 2-D array at x “ 5:

SELECT [x], [y], data FROM matrix WHERE x = 5

SELECT matrix[5][*].data

A key feature of SciQL is the concept of aggregate tiling, implemented with a slight

variation of the GROUP BY clause. Tiles are constructed by iterating over the domain,

starting from an anchor point identified by the dimension attributes, including in each

140

Chapter 6. Related Work

iteration all values relative to it, as specified in the GROUP BY list. Specifying a DISTINCT

grouping allows to construct disjoint tiles, where each cell belongs to only one tile.

Theoretically, SciQL outlines a promising way of integrating array and table worlds,

although a formal algebra model has not yet been published. It remains to see how it

will actually perform in practice, and how will it be accepted by the community. The

language is being implemented on top of the MonetDB column-store database engine [92],

which has thus far been demonstrated only on a conceptual level. An efficient storage

architecture is yet to be published; storing n-dimensional arrays in a 1-dimensional

column-store organization is largely suboptimal as it breaks spatial clustering of n-D

array cells.

The biggest drawback of SciQL is that it puts arrays on the same level with tables, when

there is no strong reason for such a modelling in SQL. It requires a database schema

modification for every single array that has been created, and as the number of array

objects in the database grows6, managing, searching and querying them will be nearly

impossible. On the other hand, one could argue that modelling arrays as table attributes,

which is actually the case in standard SQL, deprives arrays from a host of functionality

that is available on tables, like sorting for example. It is, however, easily possible to go

around this constraint by using the existing UNNEST SQL operator that transforms an

array object into a table, and vice versa the “array by query” constructor to transform

tables into arrays.

Furthermore, SciQL has allowed dimensions of any primitive type with arbitrary reso-

lution. This presents an unnecessary burden to the model, without gaining expressive

power: on conceptual level, a mapping of arbitrary regular or even irregular coordinates

to contiguous integer coordinates is always possible. Our goal is to specify a simple and

robust, yet comprehensive core model, and dimension of other than integer type lead to

associative arrays, away from the classical array concept.

As of the writing of this thesis, SciQL appears to be an inactive project that temporarily

served as a research prototype.

6.3.4 SciDB

One of the major array DBMS today is SciDB [130, 131]. Like rasdaman, it is dedicated

to array support only and has a declarative, array-oriented, SQL-inspired query language

(AQL), which internally compiles into a functional equivalent called Array Functional

Language (AFL). The language is based on a set of algebraic operators which manipulate

6millions of objects would not be uncommon in large data centers like ones run by the European
Space Agency for example

141

Chapter 6. Related Work

the array’s structure (rank and dimensions), its content, or both. For example, slicing

an array A at position 5 on the x axis, and trimming it to the interval 10:15 on the y

axis can be done with this query:

SUBSAMPLE(

SLICE(A, x = 5),

y BETWEEN 10 AND 15

)

Filtering the values of attribute v (marking them as empty) that are greater than 10,

and then multiplying the result array by 20 can be done with:

APPLY(

FILTER(A, v > 10),

v * 20

)

Besides predefined operators for the typical array operations like slicing, subsetting, filter-

ing and induced operations on arrays, the system can be extended with new functionality

via user-defined types and functions, as well as user-defined array operators that have

to be implemented in C/C++.

AQL suffers from the same issue as discussed in the previous section on SciQL– arrays are

elevated to the level of tables in the relational model. Furthermore, the APPLY operation

in SciDB– corresponding to the induced operations in AQL [84] – maps to specific

individual operations. This leaves APPLY as a black box outside of the semantic definition;

our approach, on the other hand, establishes a clear semantics by using the second-order

approach of Array Algebra, and is straightforward to embed into ISO SQL. Finally, no

formalization of the array model and AQL/AFL languages has been published – most

of the research and development to date has focused on the implementation aspects of

SciDB.

6.3.5 Grid DataBlade

Grid DataBlade [1, 87, 88] is a commercial database plug-in for multidimensional, poten-

tially irregularly-spaced grids, that speeds up handling of very large amounts of such data.

It supports typical operations on grids, like projection, interpolation and affine transfor-

mation. Similarly to rasdaman, grids are stored in BLOBs7, and the tiling scheme can be

7Binary Large Objects

142

Chapter 6. Related Work

controlled by the user. The grid manipulation logic is implemented as user-defined rou-

tines (UDRs) in the server, which can be used in standard SQL queries. Main difference

to other dedicated array databases is that it is limited to handling only multidimensional

data of up to four dimensions.

6.3.6 IQL

Integrated Query Language (IQL) [2, 100] is the initial research that eventually lead to the

work presented in this thesis. It was more of a proof-of-concept work, and suffered from

several limitations. The array-SQL integration on conceptual level is rather informal

and incomplete, there is no algebra formalization, no array Ø table conversion, etc.

The implementation supported PostgreSQL and rasdaman, and optimizations were not

investigated making it impractical for real-world use due to repeated intermediate query

result computation. The work presented in this thesis addresses all of these issues.

6.3.7 SciSPARQL

Scientific SPARQL (SciSPARQL) [6] extends the Semantic Web query language SPARQL

with dedicated support for multidimensional arrays. In particular, this includes numeric

expressions and aggregate, user-defined, and foreign functions on numeric arrays. As such,

SciSPARQL is very similar in motivation and goal as the work in this thesis, differing

mainly in the execution: taking RDF instead of the relational model for the management

of non-array metadata.

Arrays are embedded in RDF as an abstract data type, rather than schema-level objects

like in SciDB and SciQL. As is common, an array is a mapping function from a domain

to a value set. Axes are indexed starting from 1 and the vector of axis lengths makes

the shape of the array. The syntax of [lo:hi:stride, ...] for axis subscripting in

subsetting operations is inspired from NumPy [140]. Standard numeric operations and

functions are elevated (induced) to array level, automatically translating to element-wise

application. SciSPARQL borrows the general array constructor and condenser from Array

Algebra in order to support more complex queries [7].

The SciSPARQL Database Manager (SSDM) is a prototype system based on AMOS II

(cf. Section 6.4) implementing SciSPARQL. Internally, numeric arrays are automatically

recognized in SPARQL queries and stored as BLOBs in an RDBMS back-end. Foreign

functions operating on arrays can be implemented in Python, Java or C, and complex

queries can be broken down into user-defined function views.

143

Chapter 6. Related Work

6.3.8 EXTASCID

The Extensible system for Analyzing Scientific Data (EXTASCID) presents itself as

a complete and extensible solution for scientific data management. It aims to address

the gap between array data and metadata management in existing solutions with a

unified solution for scientific workflows. Native support for both array and relational

data implies the completeness, while extensibility is supported with the mechanism for

executing arbitrary user code through User-Defined Aggregates (UDA).

GLADE [36] is a massively parallel system for data aggregation based on the relational

model. Its architecture of intra-node thread-level parallelism and inter-node process-

level parallelism allows it to run optimally in any distributed environment. EXTASCID

extends GLADE with support for array storage, UDAs enhanced for scientific processing,

and optimized array query processing.

EXTASCID does not appear to be a complete declarative system and is more of a

Hadoop-like solution than a DBMS. Published work focuses on the physical execution

engine, and leaves out details about relational-array query integration [35]. Integration

starting from ArrayQL [85, 90] or SciQL [148] is left as a potential future work.

6.3.9 Ophidia

Ophidia started as a Big Data solution for scientific data cubes, organized as a distributed

server managing a pool of MySQL servers for data storage [53, 54]; Ophidia 2.0 evolved

into a main-memory framework with a more decoupled, NoSQL approach to supporting

heterogeneous storage backends [49]. Array analytics is implemented through various

mathematical and statistical user-defined functions, orchestrated by a parallel main-

memory-based engine to evaluate user queries. The query language is inspired by SQL,

although it is in a rather unconventional key-value form. An example presented in [49]

in order to benchmark computation of a maximum value over 128 cores is as follows:

oph_reduce operation=max;group_size=all;cube=<input_cube>;ncores=128;

Relational or any other means of metadata integration does not seem to be supported,

i.e. Ophidia is a pure array DBMS. At the moment it is still somewhat incomplete

with respect to the array operations supported, and of limited scalability due to being

main-memory restricted.

144

Chapter 6. Related Work

6.4 Heterogeneous Database Integration

The history of heterogeneous database integration research starts with the work by

Smith et al. on Multibase [80, 128], a software system that aims to integrate access to

heterogeneous, distributed databases, by hiding any differences between them with a

unified global schema based on the Functional Data Model, and a single high-level query

language DAPLEX [127]. The Multibase system essentially consists of two parts: tools

to help design the global schema and define a mapping from the local databases to the

global schema, and a run-time query processing subsystem that translates global queries

into queries which can be efficiently and correctly executed by the local databases.

The Multibase architecture has three levels of schemas. At the bottom level are the

original schemas of the local databases, which can be specified in relational, CODASYL,

or file model. In the middle level they are translated to schemas defined in the Functional

Data Model, and an additional integration schema which contains information needed

for integrating the databases is defined. The schemas from the middle level are then

integrated into the global schema, which is what the user sees. Incoming global queries

reference data conforming to this global schema, and the query processing subsystem

decomposes them into individual sub-queries conforming to the schemas at the middle

level, which are then translated into queries for the concrete local databases.

IBM’s DB2 DataJoiner [64] is a multidatabase middleware server that provides het-

erogeneous database access to multiple relational data sources. DataJoiner focuses on

transparent and responsive support for requests that require join processing of data at

different remote data sources. In [138] the query optimization in DataJoiner is presented

as a multi-stage process that takes into account the optimization and query processing

capabilities of the remote data sources. (1) First the query is parsed into an internal data

structure, (2) then pushdown analysis is performed to determine and maximize the query

portions that can be evaluated by the data sources, (3) various heuristic rewrite rules

are applied in order to allow the optimizer to generate better plans, (4) the optimizer

generates evaluation plans, filtered according to the PDA markings made in step (1), (5)

the best plan is selected and SQL statements are generated, which is finally in step (6)

converted into executable code.

Garlic is a follow up on DataJoiner, complementing and extending DB2 with ability to

federate non-relational data sources [75]. Garlic is heavily integrated into DB2, which has

lead to a serious limitation in its capabilities to only selecting data from non-relational

data sources, permitting expressions (processing) only for the purpose of selection filtering

(within the WHERE clause).

145

Chapter 6. Related Work

DISCO (Distributed Information Search COmponent) is a high-level distributed mediator

working on top of data sources and other mediators, that aims to solve several challenges

in heterogeneous data access. The authors in [134] recognize some common problems

that appear with large-scale mediation, such as fragile mediators (having to change the

schema and views to accommodate novel data sources), data sources with incomplete

support wrt. required functionality by the mediator, and graceless failures for unavailable

data sources. While DISCO provides solution to the above mentioned issues, its query

language is limited to only a subset of the ODMG standard the corresponds to relational

algebra.

Donaj́ı is a heterogeneous database environment [81] based on the AQUA object-oriented

query algebra [83], and the ODMG standard [31] for its global schema. As such it provides

more expressive and natural query capabilities for data sources like object-oriented

database systems and other data sources with object-oriented interfaces. Mixed query

performance is not clear, as only a prototype for one part of Donaj́ı has been implemented.

The Siebel Analytics Server is a relational DBMS, which was extended with ability to

evaluate mixed queries on relational and multidimensional data in [146]. Siebel focuses on

business analytics/intelligence, and handling multidimensional data in it means Online

Analytical Processing (OLAP). Integrating OLAP has been achieved by modelling mul-

tidimensional metadata relationally within Siebel Analytics, translating SQL to MDX

queries [105], and converting multidimensional results into relational rowsets.

AMOS II [118] is a distributed, peer-to-peer DBMS, based on a mediator/wrapper ar-

chitecture. Wrappers are components that provide access to data sources via a common

data model (CDM) used by the mediator. The common data model of AMOS II is

an object-oriented extension of the functional data model DAPLEX, and is based on

three main concepts: types, functions and objects. In the object-oriented paradigm these

concepts roughly translate to classes, methods and fields, and instances. Every object is

an instance of a type which may be part of an inheritance hierarchy. As in the ODMG

standard [32], objects can be primitive literals (numbers, strings, etc.), and complex,

surrogate objects identified by an object identifier (OID). Surrogate objects are divided

into stored, which are the user-defined, locally stored objects, and three further types used

for information integration – proxy, derived, and integration union. The properties of an

object as well as relationships between objects are represented by functions. There are

several different types of function in AMOS II. Stored functions are stored in the database,

and correspond to relations in the relational model. Derived functions are AMOSQL8

queries on other functions, more commonly known as views in other databases. Proxy

functions are functions from another database that can be used for mediation. Foreign

functions are external C/Java/Lisp functions that extend the database functionality;

8the query language in AMOS II

146

Chapter 6. Related Work

typically they are used when implementing wrappers. Database procedures are functions

implemented in a procedural extension of AMOSQL.

SQL is already supported to some extent in AMOS II [52], and wrappers for several

other data sources have been implemented as well [86, 117]. One approach to solving

our problem therefore would be to implement a rasdaman wrapper for AMOS II. The

query language and model in AMOS II is quite different from SQL, and and the support

for SQL is very limited to only simple SELECT statements. A more important issue

however is that translating from the multidimensional array model in rasdaman to the

functional model in AMOS II would be quite complicated, as previous experience in the

NEUROGENERATOR project [50, 121] has shown, and hence potentially impossible

during the course of a PhD project.

Recently polystores have been proposed as the next generation solution for data fed-

eration, with most research to date focusing on the BigDAWG system [46, 58]. The

motivation comes from the need to simultaneously work with many different types of

data in the typical Big Data applications, while no single system and query language

is really suitable in all cases (i.e. ”one size does not fit all”). Therefore, it would be

optimal to keep each type of data in a DBMS optimized for handling such data, e.g.

structured relational data in a relational DBMS, multidimensional array data in an array

DBMS, stream data in a stream processing engine, etc. The polystore treats the federated

systems as ”black boxes”, hence the integration is fairly loose with manual copying of

intermediate results from one system to another for integrated processing. Our approach

focuses on strong coupling between relational and array DBMS in particular, based on

a standard unified query language (SQL/MDA); should integration with further non-

relational non-array data be need, an SQL/MDA implementation can still participate in

a polystore federation as a fallback.

147

Chapter 7

Conclusion

Multidimensional array data is at the heart of manifold science, engineering, and business

domains. It is generally accepted today, therefore, that arrays should be an integral part

of the overall data type orchestration in information systems. Looking at the state of

the art revealed that this was generally not yet the case, however. Especially not so

with the relational data model and standard SQL, arguably the most widespread and

successful paradigm and technology in modern data management. This thesis addresses

this problem with a solution that is theoretically sound and practically applicable. The

contributions summarized below fit tightly together to fully address the research question

posed in Chapter 1: How to combine access to and processing of heterogeneous data, in

particular relational and multidimensional array data, within a single query language,

with evaluation performance comparable to custom-based, hand-crafted solutions?

The ASQL model achieves a tight, seamless, and orthogonal integration of arrays and

relations. Its formal algebraic framework provides a solid underlying semantics definition

based on a minimal operation set. The data model and operations are based on the

collective experience of the array database research community and integrates work done

in rasdaman, SciQL, SciDB, and, implicitly, further related models like AQL and AML.

ASQL builds a robust foundation for SQL/MDA, an official extension of ISO SQL that

brings support for multidimensional arrays. SQL/MDA opens the door to a broad class

of “Big Data” use-cases to standard SQL users, and the primarily array database users

benefit from a standardized query language for integrated management of data cubes and

related SQL data. SQL/MDA has just passed the Draft International Standard (DIS)

review stage in ISO and will soon be released as an official International Standard.

The major array databases demonstrably have inefficiencies in query evaluation, especially

on modern multi-core multi-device hardware, as well as generalized array construction

148

Chapter 7. Conclusion

and aggregation. Systematically identifying and addressing the problems lead to a set of

general guidelines for efficient and scalable query processing emerge. The implementation

of a new array query processing engine following these guidelines confirmed the hypotheses

in practice. This implementation is being integrated in rasdaman v10.0, hence it will

soon be used on real production databases.

To validate the unifying array / relation model we developed ASQLDB, a mediator system

based on HSQLDB and rasdaman which fully implements SQL/MDA. It splits queries

into maximal sub-queries while minimizing cross-system transfers of intermediate results.

MDA sub-queries are efficiently evaluated with the newly developed array processing

engine, and SQL sub-queries are evaluated in the embedded HSQLDB engine. Compar-

isons to SciQL – a non-mediator system fully integrated in MonetDB – showed that

ASQLDB generally performs better. Comparisons to optimal, manually implemented

query integration, demonstrated that ASQLDB has an insignificant overhead from the

extra query parsing step it adds.

7.1 Outlook

Linear algebra and machine learning are very active areas of research and development

today. At the core of these fields are operations on matrices – multidimensional arrays.

It would certainly be valuable to investigate how to add first-class support for such

operations in ASQL and SQL/MDA. GPUs have proven to be far more appropriate

for machine learning applications than CPUs, and recently Google started developing

TPU devices custom tailored for machine learning algorithms. The new array processing

engine has already been built to support multiple devices, so it is well prepared for

evaluating such operations; following ML integration in SQL/MDA, it will be interesting

to benchmark it against dedicated frameworks like Tensorflow.

Array joins present a potential scalability issue on really large data cubes when the arrays

have too many tiles. One way of solving this problem is to reduce the number of tiles

participating in an array join by clustering them in groups of tiles. Vlad Merticariu is

currently looking at how to optimally do this as part of his PhD thesis.

Inspired by the observation that no single data model is the right for every data type,

polystores have recently come to attention. Polystores loosely integrate multiple systems

specializing in the management of different data types. Most of the research has been done

on the BigDAWG system, which supports SciDB for multidimensional arrays, PostgreSQL

for relational data, and a key/value store Accumulo. BigDAWG has recently been released,

so it would definitely be interesting to benchmark its performance against ASQLDB.

149

Bibliography

[1] Grid DataBlade: database plug-in for multidimensional gridded data.

http://barrodale.com/bcs-grid-datablade. Accessed: 2014-dec-02.

[2] Andrei Aiordachioaie. Integration of Heterogeneous Query Languages for

Databases. Master’s thesis, Jacobs University Bremen, 2010.

[3] Andrei Aiordăchioaie and Peter Baumann. PetaScope: An Open-source Implemen-

tation of the OGC WCS Geo Service Standards Suite. In Proc. 22nd International

Conference on Scientific and Statistical Database Management, SSDBM’10, pages

160–168, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-13817-9, 978-3-642-

13817-1. URL http://dl.acm.org/citation.cfm?id=1876037.1876053.

[4] Lance Andersen. JSR-221 – JDBC 4.1 Specification, July 2011.

[5] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra,

J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen.

LAPACK Users’ Guide (Third Ed.). Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, USA, 1999. ISBN 0-89871-447-8.

[6] Andrej Andrejev and Tore Risch. Scientific SPARQL: Semantic Web Queries

over Scientific Data. In Proc. IEEE 28th Intl. Conference on Data Engineering

Workshops, ICDEW ’12, pages 5–10. IEEE Computer Society, 2012. ISBN 978-0-

7695-4748-0. doi: 10.1109/ICDEW.2012.67. URL http://dx.doi.org/10.1109/

ICDEW.2012.67.

[7] Andrej Andrejev, Dimitar Misev, Peter Baumann, and Tore Risch. Spatio-Temporal

Gridded Data Processing on the Semantic Web. In Proceedings of the 2015 IEEE

International Conference on Data Science and Data Intensive Systems, DSDIS ’15,

pages 38–45, Washington, DC, USA, 2015. IEEE Computer Society. ISBN 978-1-

5090-0214-6. doi: 10.1109/DSDIS.2015.109. URL http://dx.doi.org/10.1109/

DSDIS.2015.109.

150

http://dl.acm.org/citation.cfm?id=1876037.1876053
http://dx.doi.org/10.1109/ICDEW.2012.67
http://dx.doi.org/10.1109/ICDEW.2012.67
http://dx.doi.org/10.1109/DSDIS.2015.109
http://dx.doi.org/10.1109/DSDIS.2015.109

Bibliography BIBLIOGRAPHY

[8] P. Baumann, S. Feyzabadi, and C. Jucovschi. Putting Pixels in Place: A Stor-

age Layout Language for Scientific Data. In Data Mining Workshops (ICDMW),

2010 IEEE International Conference on, pages 194 –201, dec. 2010. doi: 10.1109/

ICDMW.2010.70.

[9] P Baumann, P Mazzetti, J. Ungar, R. Barbera, D. Barboni, A. Beccati, L. Bigagli,

E. Boldrini, R. Bruno, A Calanducci, P Campalani, O. Clement, A. Dumitru,

M. Grant, P. Herzig, K. Kakaletris, L. Laxton, P. Koltsida, K. Lipskoch, A.M.

Mahdiraji, S. Mantovani, V. Merticariu, A. Messina, D. Misev, S. Natali, S. Nativi,

J. Oosthoek, J. Passmore, M. Pappalardo, A.P. Rossi, F. Rundo, M. Sen, V. Sorbera,

D. Sullivan, M. Torrisi, L. Trovato, M.G. Veratelli, and S. Wagner. Big data

analytics for earth sciences: the earthserver approach. International Journal of

Digital Earth, 2015. doi: 10.1080/17538947.2014.1003106.

[10] Peter Baumann. Language Support for Raster Image Manipulation in Databases. In

Proc. Int. Workshop on Graphics Modeling, Visualization in Science & Technology,

Darmstadt, Germany, 1992.

[11] Peter Baumann. Management of Multidimensional Discrete Data. VLDB Journal,

3(4):401–444, 1994. ISSN 1066-8888. URL http://dl.acm.org/citation.cfm?

id=615204.615207.

[12] Peter Baumann. A Database Array Algebra for Spatio-Temporal Data and Beyond.

In Proc. 4th Intl. Workshop on Next Generation Information Technologies and

Systems, NGITS ’99, pages 76–93, London, UK, 1999. Springer-Verlag. ISBN

3-540-66225-1. URL http://dl.acm.org/citation.cfm?id=646411.692530.

[13] Peter Baumann. OGC Web Coverage Processing Service (WCPS) Language Inter-

face Standard. OGC 08–068r2, 2009.

[14] Peter Baumann. The OGC Web Coverage Processing Service (WCPS) standard.

Geoinformatica, 14(4):447–479, October 2010. ISSN 1384-6175. doi: 10.1007/

s10707-009-0087-2. URL http://dx.doi.org/10.1007/s10707-009-0087-2.

[15] Peter Baumann. OGC Web Coverage Service (WCS) – Core. 09–110r3, 2010.

[16] Peter Baumann. Boosting Scalability of OGC Standards on Massive Data Sets

Through Database Technology. EGU, Vienna, Austria, April 2011.

[17] Peter Baumann. Towards Ad-Hoc Analytics on Big Earth Data: the EarthServer

Initiative. European Data Forum, Dublin, Eire, April 2013.

[18] Peter Baumann and Sönke Holsten. A Comparative Analysis of Array Models for

Databases. In Database Theory and Application, Bio-Science and Bio-Technology,

151

http://dl.acm.org/citation.cfm?id=615204.615207
http://dl.acm.org/citation.cfm?id=615204.615207
http://dl.acm.org/citation.cfm?id=646411.692530
http://dx.doi.org/10.1007/s10707-009-0087-2

Bibliography

volume 258 of Communications in Computer and Information Science, pages 80–89.

Springer Berlin Heidelberg, 2011. ISBN 978-3-642-27156-4. URL http://dx.doi.

org/10.1007/978-3-642-27157-1_9.

[19] Peter Baumann and Heinrich Stamerjohanns. Benchmarking Large Arrays in

Databases. In Proc. Workshop on Big Data Benchmarking, pages 94–102, Decem-

ber 2012.

[20] Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert

Widmann. In ACM SIGMOD Record, volume 27, pages 575–577. ACM, 1998.

[21] Peter Baumann, Maximilian Höfner, and Walter Schatz. Querying Large Geo

Image Databases: A Case Study. In IV Brazilian Symposium on GeoInformatics –

GeoInfo 2002, 2002.

[22] Peter Baumann, Jinsongdi Yu, Dimitar Misev, Kinga Lipskoch, Alan Beccati, and

Piero Campalani. Geographical Information Systems: Trends and Technologies,

chapter Preparing Array Analytics for the Data Tsunami. CRC Press, 2014.

[23] Peter Baumann, Eric Hirschorn, Joan Maso, Alex Dumitru, and Vlad Merticariu.

Taming twisted cubes. In Proc. ACM SIGMOD Workshop on Managing and

Mining Enriched Geo-Spatial Data (GeoRich). ACM, 2016.

[24] Peter Baumann, Stephan Meissl, and Jinsongdi Yu. OGC Web Coverage Service

2.0 Interface Standard - Earth Observation Application Profile, 2011. 10–140.

[25] J.D. Blower, A.L. Gemmell, G.H. Griffiths, K. Haines, A. Santokhee, and X. Yang.

A Web Map Service implementation for the visualization of multi-dimensional

gridded environmental data. Environmental Modelling & Software, 47(0):218 –

224, 2013. ISSN 1364-8152. doi: http://dx.doi.org/10.1016/j.envsoft.2013.04.002.

[26] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-

Pipelining Query Execution. In CIDR 2005, Second Biennial Conference on

Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2005, Online

Proceedings, pages 225–237. www.cidrdb.org, 2005. URL http://www.cidrdb.

org/cidr2005/papers/P19.pdf.

[27] David C. Brock and Gordon E. Moore. Understanding Moore’s Law: Four Decades

of Innovation. Chemical Heritage Foundation, 2006. ISBN 0941901416.

[28] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong. Com-

prehension Syntax. SIGMOD Rec., 23(1):87–96, March 1994. ISSN 0163-5808. doi:

10.1145/181550.181564. URL http://doi.acm.org/10.1145/181550.181564.

152

http://dx.doi.org/10.1007/978-3-642-27157-1_9
http://dx.doi.org/10.1007/978-3-642-27157-1_9
http://www.cidrdb.org/cidr2005/papers/P19.pdf
http://www.cidrdb.org/cidr2005/papers/P19.pdf
http://doi.acm.org/10.1145/181550.181564

Bibliography BIBLIOGRAPHY

[29] P. Campalani, A. Beccati, S. Mantovani, and P. Baumann. Temporal analysis of at-

mospheric data using open standards. In 4th Symposium on Geospatial Databases

And Location Based Services. ISPRS Technical Commission, May 2014.

[30] Bin Cao and Antonio Badia. Sql query optimization through nested relational

algebra. ACM Trans. Database Syst., 32(3), August 2007. ISSN 0362-5915. doi: 10.

1145/1272743.1272748. URL http://doi.acm.org/10.1145/1272743.1272748.

[31] R. G. G. Cattell and Douglas K. Barry. The Object Database Standard: ODMG 2.0.

Morgan Kaufmann, 1997.

[32] R. G. G. Cattell and Douglas K. Barry. The Object Data Standard: ODMG 3.0.

Morgan Kaufmann, 2000. ISBN 1-55860-647-5.

[33] L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani. Efficient Or-

ganization and Access of Multi-dimensional Datasets on Tertiary Storage Systems.

Inf. Syst., 20(2):155–183, April 1995. ISSN 0306-4379. doi: 10.1016/0306-4379(95)

98559-V. URL http://dx.doi.org/10.1016/0306-4379(95)98559-V.

[34] Yu Cheng and Florin Rusu. Astronomical Data Processing in EXTASCID. In Proc.

25th International Conference on Scientific and Statistical Database Management,

pages 47:1–47:4. ACM, 2013. ISBN 978-1-4503-1921-8. doi: 10.1145/2484838.

2484875. URL http://doi.acm.org/10.1145/2484838.2484875.

[35] Yu Cheng and Florin Rusu. Formal Representation of the SS-DB Benchmark

and Experimental Evaluation in EXTASCID. Distributed and Parallel Databases,

pages 1–41, 2013.

[36] Yu Cheng, Chengjie Qin, and Florin Rusu. GLADE: Big Data Analytics Made

Easy. In Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’12, pages 697–700, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1247-9. doi: 10.1145/2213836.2213936. URL http://doi.

acm.org/10.1145/2213836.2213936.

[37] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.

ACM, 13(6):377–387, June 1970. ISSN 0001-0782. doi: 10.1145/362384.362685.

URL http://doi.acm.org/10.1145/362384.362685.

[38] E. F. Codd. Extending the Database Relational Model to Capture More Meaning.

ACM Trans. Database Syst., 4(4):397–434, December 1979. ISSN 0362-5915. doi:

10.1145/320107.320109. URL http://doi.acm.org/10.1145/320107.320109.

[39] Open Geospatial Consortium. www.opengeospatial.org. Accessed online on 2013-

aug-22.

153

http://doi.acm.org/10.1145/1272743.1272748
http://dx.doi.org/10.1016/0306-4379(95)98559-V
http://doi.acm.org/10.1145/2484838.2484875
http://doi.acm.org/10.1145/2213836.2213936
http://doi.acm.org/10.1145/2213836.2213936
http://doi.acm.org/10.1145/362384.362685
http://doi.acm.org/10.1145/320107.320109

Bibliography

[40] SQLite Consortium. Datatypes In SQLite Version 3, 2017. https://sqlite.org/

datatype3.html, accessed online on 2017-jun-28.

[41] Roberto Cornacchia, Sándor Héman, Marcin Zukowski, Arjen P. Vries, and Peter

Boncz. Flexible and Efficient IR Using Array Databases. VLDB Journal, 17(1):

151–168, 2008. ISSN 1066-8888. doi: 10.1007/s00778-007-0071-0. URL http:

//dx.doi.org/10.1007/s00778-007-0071-0.

[42] IBM Corporation. DB2 11.1 for Linux, UNIX, and Windows, 2017. https://www.

ibm.com/support/knowledgecenter/SSEPGG_11.1.0/, accessed online on 2017-

jun-28.

[43] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush,

P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier,

S. Madden, J. Patel, M. Stonebraker, and S. Zdonik. A demonstration of scidb: a

science-oriented dbms. Proc. VLDB Endow., 2(2):1534–1537, August 2009. ISSN

2150-8097. URL http://dl.acm.org/citation.cfm?id=1687553.1687584.

[44] Jason Davies. Geographic Bounding Boxes. https://www.jasondavies.com/

maps/bounds/, 2015. Accessed online on May 2018.

[45] J. de la Beaujardière. Web map service. OpenGIS Implementation OGC, pages

04–024, 2004.

[46] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magda Balazinska, Bill

Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan Zdonik.

The BigDAWG Polystore System. SIGMOD Rec., 44(2):11–16, August 2015. ISSN

0163-5808. doi: 10.1145/2814710.2814713. URL http://doi.acm.org/10.1145/

2814710.2814713.

[47] Alex Dumitru, Vlad Merticariu, and Peter Baumann. Exploring cloud opportunities

from an array database perspective. In Proc ACM SIGMOD Workshop on Data

Analytics in the Cloud (DanaC’2014), pages 1 – 4, June 22 - 27, 2014.

[48] EarthServer, 2015. www.earthserver.eu, accessed online on 2015-feb-19.

[49] Donatello Elia, Sandro Fiore, Alessandro D’Anca, Cosimo Palazzo, Ian Foster, and

Dean N. Williams. An In-memory Based Framework for Scientific Data Analytics.

In Proceedings of the ACM International Conference on Computing Frontiers, CF

’16, pages 424–429, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4128-8.

[50] Christian Engström. Keep it Simple and You Will Finish What You Start – a case

study of the NeuroGenerator database project. Master’s thesis, Royal Institute of

Technology, Stockholm, Sweden, 2003.

154

https://sqlite.org/datatype3.html
https://sqlite.org/datatype3.html
http://dx.doi.org/10.1007/s00778-007-0071-0
http://dx.doi.org/10.1007/s00778-007-0071-0
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/
http://dl.acm.org/citation.cfm?id=1687553.1687584
https://www.jasondavies.com/maps/bounds/
https://www.jasondavies.com/maps/bounds/
http://doi.acm.org/10.1145/2814710.2814713
http://doi.acm.org/10.1145/2814710.2814713

Bibliography BIBLIOGRAPHY

[51] EOxServer, 2013. www.eoxserver.org, accessed on 2013-aug-22.

[52] Markus Ericsson. An ODBC-driver for the mediator database AMOS II. Master’s

thesis, Linköping University, 1999.

[53] S. Fiore, A. D’Anca, C. Palazzo, I. Foster, D.N. Williams, and G. Aloisio. Ophidia:

Toward big data analytics for escience. Procedia Computer Science, 18:2376 – 2385,

2013.

[54] S. Fiore, A. D’Anca, D. Elia, C. Palazzo, D. Williams, I. Foster, and G. Aloisio.

Ophidia: A full software stack for scientific data analytics. In 2014 International

Conference on High Performance Computing Simulation (HPCS), pages 343–350,

July 2014.

[55] J. Fredriksson, P. Roland, and P. Svensson. Rationale and design of the Euro-

pean Computerized Human Brain Database System. In Eleventh International

Conference on Scientific and Statistical Database Management, pages 148–157,

Aug 1999. doi: 10.1109/SSDM.1999.787630.

[56] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies. RFC 2045 (Draft Standard), November

1996. URL http://www.ietf.org/rfc/rfc2045.txt.

[57] Paula Furtado and Peter Baumann. Storage of Multidimensional Arrays Based

on Arbitrary Tiling. In Proc. 15th Int. Conf. on Data Engineering, pages 480–489.

IEEE, 1999.

[58] Vijay Gadepally, Peinan Chen, Jennie Duggan, Aaron Elmore, Brandon Haynes,

Jeremy Kepner, Samuel Madden, Tim Mattson, and Michael Stonebraker. The

BigDAWG Polystore System and Architecture. In High Performance Extreme

Computing Conference (HPEC), 2016 IEEE, pages 1–6. IEEE, 2016.

[59] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems

- the complete book (2. ed.). Pearson Education, 2009. ISBN 978-0-13-187325-4.

[60] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,

Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational

aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining

and Knowledge Discovery, 1(1):29–53, January 1997. ISSN 1384-5810. doi: 10.

1023/A:1009726021843. URL http://dx.doi.org/10.1023/A:1009726021843.

[61] Paul W. P. J. Grefen and Rolf A. de By. A multi-set extended relational algebra: A

formal approach to a practical issue. In Data Engineering, 1994. Proceedings.10th

International Conference, pages 80–88, Feb 1994. doi: 10.1109/ICDE.1994.283002.

155

www.eoxserver.org
http://www.ietf.org/rfc/rfc2045.txt
http://dx.doi.org/10.1023/A:1009726021843

Bibliography

[62] The HSQL Development Group. HSQLDB – 100% Java Database.

http://hsqldb.org/. Accessed: May 2018.

[63] The HSQL Development Group. HyperSQL User Guide – HyperSQL Database

Engine 2.4.0, 2017. hsqldb.org/doc/2.0/guide/index.html, accessed online on

2017-jun-28.

[64] P. Gupta and E. Lin. DataJoiner: a practical approach to multi-database access.

In Proc. Third International Conference on Parallel and Distributed Information

Systems, pages 264–, 1994. doi: 10.1109/PDIS.1994.331706.

[65] John R. Herring. OpenGIS Implementation Standard for Geographic information

- Simple feature access - Part 2: SQL option. OpenGIS Implementation Standard

06–104r4, Open Geospatial Consortium Inc, 2010.

[66] John R. Herring. OpenGIS Implementation Standard for Geographic information

- Simple feature access - Part 1: Common architecture. OpenGIS Implementation

Standard 06–103r4, Open Geospatial Consortium Inc, 2011.

[67] IANA. Media Types, 2017. URL http://www.iana.org/assignments/

media-types/media-types.xhtml.

[68] ISO. Information Technology – Database Language SQL. Standard No. ISO/IEC

9075:1999, International Organization for Standardization (ISO), 1999.

[69] ISO. ISO/IEC 9075-1:2003: Information technology — Database languages – SQL

— Part 1: Framework (SQL/Framework). ISO, Geneva, Switzerland, 2003.

[70] ISO. ISO/IEC 9075-3:2003: Information technology — Database languages – SQL

— Part 3: Call-Level Interface (SQL/CLI). ISO, Geneva, Switzerland, 2003.

[71] ISO 19123. ISO 19123:2005: Geographic information – Schema for coverage geom-

etry and functions, 2005.

[72] ISO 19125-1. ISO 19125-1:2004 Geographic information – Simple feature access –

Part 1: Common architecture, 2004.

[73] ISO 19125-2. ISO 19125-2:2004 Geographic information – Simple feature access –

Part 2: SQL option, 2004.

[74] G. Jaeschke and H. J. Schek. Remarks on the algebra of non first normal

form relations. In Proceedings of the 1st ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, PODS ’82, pages 124–138, New York, NY,

USA, 1982. ACM. ISBN 0-89791-070-2. doi: 10.1145/588111.588133. URL

http://doi.acm.org/10.1145/588111.588133.

156

hsqldb.org/doc/2.0/guide/index.html
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml
http://doi.acm.org/10.1145/588111.588133

Bibliography BIBLIOGRAPHY

[75] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. Garlic: A New

Flavor of Federated Query Processing for DB2. In Proc. 2002 ACM SIGMOD

international conference on Management of data, SIGMOD ’02, pages 524–532,

New York, NY, USA, 2002. ACM. ISBN 1-58113-497-5. doi: 10.1145/564691.564751.

URL http://doi.acm.org/10.1145/564691.564751.

[76] Constantin Jucovschi, Peter Baumann, and Sorin Stancu-Mara. Speeding up Array

Query Processing by Just-In-Time Compilation. In Proc. 2008 IEEE International

Conference on Data Mining Workshops, ICDMW ’08, pages 408–413, Washington,

DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3503-6. doi: 10.1109/

ICDMW.2008.73. URL http://dx.doi.org/10.1109/ICDMW.2008.73.

[77] K. Kleese and P. Baumann. Intelligent Support for High I/O Requirements of

Leading Edge Scientific Codes on High-End Computing Systems - The ESTEDI

Project. In Proc. Sixth European SGI/Cray MPP Workshop, 7-8 September 2000.

[78] Anthony Klug. Equivalence of relational algebra and relational calculus query

languages having aggregate functions. J. ACM, 29(3):699–717, July 1982. ISSN

0004-5411. doi: 10.1145/322326.322332. URL http://doi.acm.org/10.1145/

322326.322332.

[79] Wolfgang Kresse and David M. Danko. Springer Handbook of Geographic

Information. Springer Publishing Company, Incorporated, 2012. ISBN 3540726780,

9783540726784.

[80] Terry A. Landers and Ronni Rosenberg. An Overview of MULTIBASE. In

Distributed Databases, pages 153–184, 1982.

[81] Juan C. Lavariega and Susan D. Urban. An Object Algebra Approach to

Multidatabase Query Decomposition in Donaj́ı. Distrib. Parallel Databases, 12

(1):27–71, July 2002. ISSN 0926-8782. doi: 10.1023/A:1015630231324. URL

http://dx.doi.org/10.1023/A:1015630231324.

[82] Alberto Lerner and Dennis Shasha. AQuery: query language for ordered data,

optimization techniques, and experiments. In Proc. 29th Intl. Conf. on Very Large

Data Bases, VLDB ’03, pages 345–356, 2003. ISBN 0-12-722442-4.

[83] Theodore W. Leung, Gail Mitchel, Bharathi Subramanian, Bennet Vance, Scott L.

Vandenberg, and Stanley B. Zdonik. The AQUA Data Model and Algebra. In Proc.

4th International Workshop on Database Programming Languages, pages 157–175.

Springer-Verlag, August 1993.

[84] Leonid Libkin, Rona Machlin, and Limsoon Wong. A Query Language for Multidi-

mensional Arrays: Design, Implementation, and Optimization Techniques. In Proc.

157

http://doi.acm.org/10.1145/564691.564751
http://dx.doi.org/10.1109/ICDMW.2008.73
http://doi.acm.org/10.1145/322326.322332
http://doi.acm.org/10.1145/322326.322332
http://dx.doi.org/10.1023/A:1015630231324

Bibliography

ACM SIGMOD International Conference on Management of Data, SIGMOD ’96,

pages 228–239, New York, NY, USA, 1996. ACM. ISBN 0-89791-794-4.

[85] K.-T. Lim, D. Maier, J. Becla, M. Kersten, Y. Zhang, and M. Stone-

braker. Array QL Syntax. Seen: 2017-may-11, http://www.xldb.org/wp-

content/uploads/2012/09/ArrayQL-Draft-4.pdf, 2012.

[86] Hui Lin, Tore Risch, and Timour Katchaounov. Adaptive Data Mediation over

XML Data. In “Web Information Systems Applications” in the Journal of Applied

System Studies, Cambridge International Science Publishing, 2002.

[87] Barrodale Computing Services Ltd. Storing and Manipulating Gridded Data in

Databases. http://barrodale.com, . Accessed: 2014-dec-02.

[88] Barrodale Computing Services Ltd. BCS Grid Extension for PostgreSQL (Linux

Version) Programmer’s Guide. http://barrodale.com, . Accessed: 2014-dec-02.

[89] David Maier and Bennet Vance. A Call to Order. In Proceedings of the Twelfth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

PODS ’93, pages 1–16, New York, NY, USA, 1993. ACM. ISBN 0-89791-593-3. doi:

10.1145/153850.153851. URL http://doi.acm.org/10.1145/153850.153851.

[90] David Maier, Peter Baumann, Martin Kersten, Kian-Tat Lim, and Mike Stonebraker.

ArrayQL Algebra: version 3. Seen: 2015-feb-22, http://www.xldb.org/wp-content

/uploads/2012/09/ArrayQL Algebra v3+.pdf, 2012.

[91] Pauline P Mak, Jon Blower, John Caron, Ethan Davis, Adit Santokhee, and

Nathaniel Bindoff. Integrating ncWMS into the THREDDS Data Server. 2009.

[92] S. Manegold, M. L. Kersten, and P. A. Boncz. Database Architecture Evolu-

tion: Mammals Flourished Long Before Dinosaurs Became Extinct. In Proc.

International Conference on Very Large Data Bases (VLDB, 2009). VLDB, Au-

gust 2009. URL http://oai.cwi.nl/oai/asset/14299/14299B.pdf.

[93] Arunprasad P. Marathe and Kenneth Salem. Query Processing Techniques for

Arrays. VLDB Journal, 11(1):68–91, August 2002. ISSN 1066-8888.

[94] Marissa Mayer. Innovation at Google: the physics of data. PARC Forum, 2009.

URL http://www.parc.com/event/936/innovation-at-google.html.

[95] Jim Melton, editor. ISO Draft International Standard (DIS) 9075-15:2018,

Database Languages — SQL — Part 2: Foundation (SQL/Foundation). ISO, 2018.

[96] Jim Melton, Peter Baumann, and Dimitar Mǐsev, editors. ISO Draft

International Standard (DIS) 9075-15:2018, Database Languages — SQL —

Part 15: Multidimensional Arrays. ISO, 2018.

158

http://doi.acm.org/10.1145/153850.153851
http://oai.cwi.nl/oai/asset/14299/14299B.pdf
http://www.parc.com/event/936/innovation-at-google.html

Bibliography BIBLIOGRAPHY

[97] George Merticariu, Dimitar Misev, and Peter Baumann. Towards a general array

database benchmark: Measuring storage access. In Tilmann Rabl, Raghunath Nam-

biar, Chaitanya Baru, Milind Bhandarkar, Meikel Poess, and Saumyadipta Pyne,

editors, Big Data Benchmarking, pages 40–67. Springer International Publishing,

2016. ISBN 978-3-319-49748-8.

[98] Vlad Merticariu. Partitioning and Replication in Distributed Array Databases.

PhD thesis, Jacobs University Bremen, 2018(E). Unpublished thesis.

[99] Microsoft. Database Features, 2017. https://docs.microsoft.com/en-us/sql/

relational-databases/, accessed online on 2017-jun-28.

[100] Dimitar Misev. Integrated Query Language. Web Information Systems Project

Report, Jacobs University Bremen, 2011.

[101] Dimitar Misev and Peter Baumann. ASQLDB public repository.

https://github.com/misev/asqldb. Accessed: 2018-mar-07.

[102] Dimitar Misev and Peter Baumann. Extending the SQL Array Concept to Sup-

port Scientific Analytics. In Conference on Scientific and Statistical Database

Management, SSDBM ’14, Aalborg, Denmark, June, 2014, page 10, 2014. doi: 10.

1145/2618243.2618255. URL http://doi.acm.org/10.1145/2618243.2618255.

[103] Dimitar Misev and Peter Baumann. Homogenizing Data and Metadata Retrieval

in Scientific Applications. In Proceedings of the ACM Eighteenth International

Workshop on Data Warehousing and OLAP, DOLAP ’15, pages 25–34, New York,

NY, USA, 2015. ACM. ISBN 978-1-4503-3785-4. doi: 10.1145/2811222.2811223.

URL http://doi.acm.org/10.1145/2811222.2811223.

[104] James D. Murray and William vanRyper. Encyclopedia of Graphics File Formats

(2nd Ed.). O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996. ISBN 1-56592-

161-5.

[105] Carl Nolan. Manipulate and Query OLAP Data Using ADOMD and Multidimen-

sional Expressions. August 1999.

[106] R. Obe and L. Hsu. PostGIS in Action. Manning Pubs., 2011. ISBN 9781935182269.

URL http://books.google.de/books?id=4kEBRQAACAAJ.

[107] J.H.P. Oosthoek, J. Flahaut, A.P. Rossi, P. Baumann, D. Misev, P. Campalani,

and V. Unnithan. PlanetServer: Innovative approaches for the online analysis of

hyperspectral satellite data from Mars. Advances in Space Research, 53(12):1858–

1871, 2014. ISSN 0273-1177. doi: http://dx.doi.org/10.1016/j.asr.2013.07.002. URL

http://www.sciencedirect.com/science/article/pii/S0273117713004134.

159

https://docs.microsoft.com/en-us/sql/relational-databases/
https://docs.microsoft.com/en-us/sql/relational-databases/
http://doi.acm.org/10.1145/2618243.2618255
http://doi.acm.org/10.1145/2811222.2811223
http://books.google.de/books?id=4kEBRQAACAAJ
http://www.sciencedirect.com/science/article/pii/S0273117713004134

Bibliography

[108] Oracle. MySQL 5.7 Reference Manual – MySQL Standards Compliance, 2013.

http://dev.mysql.com/doc/refman/5.7/en/, accessed online on 2013-aug-23.

[109] Oracle Database 12c Release 2 – Database SQL Language Reference. Oracle,

2017. URL http://docs.oracle.com/database/122/SQLRF/.

[110] E. J. Otoo, Doron Rotem, and Sridhar Seshadri. Optimal Chunking of Large

Multidimensional Arrays for Data Warehousing. In Proc. ACM 10th International

Workshop on Data Warehousing and OLAP, DOLAP ’07, pages 25–32, New York,

NY, USA, 2007. ACM. ISBN 978-1-59593-827-5. doi: 10.1145/1317331.1317337.

URL http://doi.acm.org/10.1145/1317331.1317337.

[111] G. Özsoyoğlu, Z. M. Özsoyoğlu, and V. Matos. Extending relational algebra and

relational calculus with set-valued attributes and aggregate functions. ACM Trans.

Database Syst., 12(4):566–592, November 1987. ISSN 0362-5915. doi: 10.1145/

32204.32219. URL http://doi.acm.org/10.1145/32204.32219.

[112] Andrei Pisarev, Ekaterina Poustelnikova, Maria Samsonova, and Peter Baumann.

Mooshka: a system for the management of multidimensional gene expression

data in situ. Information Systems, 28(4):269–285, June 2003. ISSN 0306-

4379. doi: 10.1016/S0306-4379(02)00074-1. URL http://dx.doi.org/10.1016/

S0306-4379(02)00074-1.

[113] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill, Inc., New York, NY, USA, 2nd edition, 1999. ISBN 0072322063.

[114] Rasdaman. The rasdaman Raster Array Database. http://rasdaman.org. Accessed:

2018-feb-28.

[115] rasdaman Query Language Guide. rasdaman GmbH, 9.5 edition, 2017.

[116] Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartnett, and Dennis

Heimbigner. The NetCDF Users Guide – Data Model, Programming Interfaces,

and Format for Self-Describing, Portable Data - NetCDF Version 4.1, March 2010.

[117] Tore Risch. Functional Queries to Wrapped Educational Semantic Web

Meta-data. In in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.):

Functional Approach to Data Management - Modeling, Analyzing and Integrating

Heterogeneous Data, Springer, 2003.

[118] Tore Risch, Vanja Josifovski, and Timour Katchaounov. Functional data inte-

gration in a distributed mediator system. In The Functional Approach to Data

Management: Modeling, Analyzing and Integrating Heterogeneous Data, pages 483–

. Springer, 2004.

160

http://dev.mysql.com/doc/refman/5.7/en/
http://docs.oracle.com/database/122/SQLRF/
http://doi.acm.org/10.1145/1317331.1317337
http://doi.acm.org/10.1145/32204.32219
http://dx.doi.org/10.1016/S0306-4379(02)00074-1
http://dx.doi.org/10.1016/S0306-4379(02)00074-1

Bibliography BIBLIOGRAPHY

[119] Roland Ritsch. Optimization and Evaluation of Array Queries in Database

Management Systems. PhD thesis, TUM, 1999.

[120] J. Rogers, R. Simakov, E. Soroush, P. Velikhov, M. Balazinska, D. DeWitt, B. Heath,

D. Maier, S. Madden, J. Patel, M. Stonebraker, S. Zdonik, A. Smirnov, K. Knizhnik,

and Paul G. Brown. Overview of SciDB: Large Scale Array Storage, Processing

and Analysis. In Proceedings of the 2010 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’10, pages 963–968, New York, NY, USA, 2010.

ACM. ISBN 978-1-4503-0032-2. doi: 10.1145/1807167.1807271. URL http://doi.

acm.org/10.1145/1807167.1807271.

[121] Per Roland, Gert Svensson, Tony Lindeberg, Tore Risch, Peter Baumann, An-

dreas Dehmel, Jesper Frederiksson, Hjörleifer Halldorson, Lars Forsberg, Jeremy

Young, and Karl Zilles. A database generator for human brain imaging. Trends in

Neurosciences, 24(10):562–564, October 2001.

[122] Thomas Rölleke, Theodora Tsikrika, and Gabriella Kazai. A General Matrix

Framework for Modelling Information Retrieval. Inf. Process. Manage., 42(1):4–

30, January 2006. ISSN 0306-4573. doi: 10.1016/j.ipm.2004.11.006. URL http:

//dx.doi.org/10.1016/j.ipm.2004.11.006.

[123] Florin Rusu and Yu Cheng. A Survey on Array Storage, Query Languages, and

Systems. CoRR, abs/1302.0103, 2013.

[124] Y. Sagarminaga, I. Galparsoro, R. Reig, and J. A Sánchez. Development of

ITSASGIS-5D: seeking interoperability between Marine GIS layers and scientific

multidimensional data using open source tools and OGC services for multidisci-

plinary research. In A. Abbasi and N. Giesen, editors, EGU General Assembly

Conference Abstracts, volume 14, apr 2012.

[125] Sunita Sarawagi and Michael Stonebraker. Efficient Organization of Large Multi-

dimensional Arrays. In Proc. 10th International Conference on Data Engineering,

pages 328–336, Washington, DC, USA, 1994. IEEE Computer Society. ISBN 0-

8186-5400-7. URL http://dl.acm.org/citation.cfm?id=645479.655138.

[126] Dimitar Mǐsev and Peter Baumann. SQL Support for Multidimensional Arrays.

Technical Report 31, Jacobs University Bremen, July 2017.

[127] David W. Shipman. The functional data model and the data language daplex.

In Proc. 1979 ACM SIGMOD international conference on Management of data,

SIGMOD ’79, pages 59–59, New York, NY, USA, 1979. ACM. ISBN 0-89791-

001-X. doi: 10.1145/582095.582105. URL http://doi.acm.org/10.1145/582095.

582105.

161

http://doi.acm.org/10.1145/1807167.1807271
http://doi.acm.org/10.1145/1807167.1807271
http://dx.doi.org/10.1016/j.ipm.2004.11.006
http://dx.doi.org/10.1016/j.ipm.2004.11.006
http://dl.acm.org/citation.cfm?id=645479.655138
http://doi.acm.org/10.1145/582095.582105
http://doi.acm.org/10.1145/582095.582105

Bibliography

[128] John Miles Smith, Philip A. Bernstein, Umeshwar Dayal, Nathan Goodman,

Terry A. Landers, Ken W. T. Lin, and Eugene Wong. Multibase: integrating hetero-

geneous distributed database systems. In AFIPS National Computer Conference,

volume 50 of AFIPS Conference Proc., pages 487–499. AFIPS Press, 1981. URL

http://dblp.uni-trier.de/db/conf/afips/ncc81.html#SmithBDGLLW81.

[129] Emad Soroush, Magdalena Balazinska, and Daniel Wang. ArrayStore: A Stor-

age Manager for Complex Parallel Array Processing. In Proc. ACM SIGMOD

International Conference on Management of Data, SIGMOD ’11, pages 253–264,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0661-4. doi: 10.1145/1989323.

1989351. URL http://doi.acm.org/10.1145/1989323.1989351.

[130] M. Stonebraker, P. Brown, Donghui Zhang, and J. Becla. SciDB: A

Database Management System for Applications with Complex Analytics.

Computing in Science Engineering, 15(3):54–62, 2013.

[131] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. The Architec-

ture of SciDB. In Proc. 23rd International Conference on Scientific and Statistical

Database Management, SSDBM’11, pages 1–16, Berlin, Heidelberg, 2011. Springer-

Verlag. ISBN 978-3-642-22350-1. URL http://dl.acm.org/citation.cfm?id=

2032397.2032399.

[132] Teradata Database, SQL Data Types and Literals, Release 16.00. Teradata Cor-

poration, 12 2016.

[133] T. N. Theis and H. S. P. Wong. The End of Moore’s Law: A New Beginning

for Information Technology. Computing in Science Engineering, 19(2):41–50, Mar

2017. doi: 10.1109/MCSE.2017.29.

[134] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. Scaling Access to Het-

erogeneous Data Sources with DISCO. IEEE Trans. on Knowl. and Data Eng.,

10(5):808–823, September 1998. ISSN 1041-4347. doi: 10.1109/69.729736. URL

http://dx.doi.org/10.1109/69.729736.

[135] C.D. Tomlin. Geographic Information Systems and Cartographic Modeling. Pren-

tice Hall series in geographic information science. Prentice Hall PTR, 1990. ISBN

9780133509274.

[136] Unidata. Thredds data server (tds). www.unidata.ucar.edu/software/thredds/tds/.

Accessed online on 2015-feb-22.

[137] Alex R. van Ballegooij. RAM: a Multidimensional Array DBMS. In Proc. 2004

international conference on Current Trends in Database Technology, EDBT’04,

162

http://dblp.uni-trier.de/db/conf/afips/ncc81.html#SmithBDGLLW81
http://doi.acm.org/10.1145/1989323.1989351
http://dl.acm.org/citation.cfm?id=2032397.2032399
http://dl.acm.org/citation.cfm?id=2032397.2032399
http://dx.doi.org/10.1109/69.729736

Bibliography BIBLIOGRAPHY

pages 154–165. Springer-Verlag, 2004. ISBN 3-540-23305-9, 978-3-540-23305-3. doi:

10.1007/978-3-540-30192-9 15.

[138] Shivakumar Venkataraman and Tian Zhang. Heterogeneous Database Query Op-

timization in DB2 Universal DataJoiner. In Proc. 24rd International Conference

on Very Large Data Bases, VLDB ’98, pages 685–689, San Francisco, CA, USA,

1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-566-5. URL http:

//dl.acm.org/citation.cfm?id=645924.671028.

[139] Mitchell Waldrop and Philip Lippel. The Sensor Revolution. www.nsf.gov/news/

special_reports/sensor, accessed online on 2013-aug-22, 2008.

[140] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The NumPy Array: A

Structure for Efficient Numerical Computation. Computing in Science and Engg.,

13(2):22–30, March 2011. ISSN 1521-9615. doi: 10.1109/MCSE.2011.37. URL

http://dx.doi.org/10.1109/MCSE.2011.37.

[141] Nicholas A Walton, Eduardo Gonzalez-Solarez, Silvia Dalla, Anita Richards, and

Jonathon Tedds. AstroGrid: A place for your science. Astronomy & Geophysics,

47(3):3.22–3.24, 2006. doi: 10.1111/j.1468-4004.2006.47322.x.

[142] Frank Warmerdam. GDAL - Geospatial Data Abstraction Library. http://www.

gdal.org/, 2005. Accessed online on 2017-01-05.

[143] Frank Warmerdam. GDAL - Geospatial Data Abstraction Library. http://gdal.

org/formats_list.html, 2017. Accessed online on 2017-01-05.

[144] Norbert Widmann and Peter Baumann. Efficient Execution of Operations in a

DBMS for Multidimensional Arrays. In Proc. Tenth International Conference on

Scientific and Statistical Database Management, 1998., pages 155–165. IEEE, 1998.

[145] Joseph N. Wilson. Use of image algebra for portable image processing algorithm

specification. volume 1659, pages 180–191, 1992. doi: 10.1117/12.58406. URL

http://dx.doi.org/10.1117/12.58406.

[146] Kazi A. Zaman and Donovan A. Schneider. Modeling and Querying Multidimen-

sional Data Sources in Siebel Analytics: A Federated Relational System. In Proc.

ACM SIGMOD international conference on Management of data, SIGMOD ’05,

pages 822–827, New York, NY, USA, 2005. ACM. ISBN 1-59593-060-4. doi: 10.

1145/1066157.1066258. URL http://doi.acm.org/10.1145/1066157.1066258.

[147] Y. Zhang, L. H. A. Scheers, M. L. Kersten, M. Ivanova, and N. J. Nes. Astronomical

Data Processing Using SciQL, an SQL Based Query Language for Array Data. In

Astronomical Data Analysis Software and Systems, 2011. URL https://ivi.fnwi.

uva.nl/isis/publications/2011/ZhangADASS2011.

163

http://dl.acm.org/citation.cfm?id=645924.671028
http://dl.acm.org/citation.cfm?id=645924.671028
www.nsf.gov/news/special_reports/sensor
www.nsf.gov/news/special_reports/sensor
http://dx.doi.org/10.1109/MCSE.2011.37
http://www.gdal.org/
http://www.gdal.org/
http://gdal.org/formats_list.html
http://gdal.org/formats_list.html
http://dx.doi.org/10.1117/12.58406
http://doi.acm.org/10.1145/1066157.1066258
https://ivi.fnwi.uva.nl/isis/publications/2011/ZhangADASS2011
https://ivi.fnwi.uva.nl/isis/publications/2011/ZhangADASS2011

Bibliography

[148] Ying Zhang, Martin L. Kersten, Milena Ivanova, and Niels Nes. SciQL, Bridging

the Gap between Science and Relational DBMS. In IDEAS, pages 124–133. ACM,

2011. ISBN 978-1-4503-0627-0.

164

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Direction
	1.3 Research Results
	1.4 Thesis Outline

	2 Algebraic Treatment of Arrays and Relations
	2.1 Array Model
	2.1.1 Array Definition
	2.1.2 Array Operations
	2.1.2.1 Construction
	2.1.2.2 Aggregation
	2.1.2.3 Subsetting

	2.2 Relational Embedding
	2.2.1 Relation Definition
	2.2.2 Arrays as Attributes
	2.2.3 Array / Relation Conversion
	2.2.4 Cross-tuple Array Aggregation

	3 Multidimensional Arrays in SQL with SQL/MDA
	3.1 Introduction
	3.1.1 Why consider support for multidimensional arrays in SQL?
	3.1.2 Array representations
	3.1.3 MDA terminology
	3.1.4 Use cases for MDA support in SQL
	3.1.4.1 Array data import, storage and export
	3.1.4.2 Integrated querying of array and relational data
	3.1.4.3 Updating stored array data
	3.1.4.4 Exporting arrays

	3.2 SQL/MDA Data Model
	3.2.1 MD-array
	3.2.2 MD-array type definition
	3.2.2.1 Element type
	3.2.2.2 MD-dimension
	3.2.2.3 MD-axis names
	3.2.2.4 MD-axis lower and upper limits
	3.2.2.5 Putting it all together

	3.2.3 MD-array creation
	3.2.3.1 Explicit element enumeration
	3.2.3.2 From SQL table query result
	3.2.3.3 Construction by implicit iteration
	3.2.3.4 Decoding a format-encoded array

	3.2.4 MD-array updating
	3.2.4.1 Updating MD-arrays of equal MD-dimension
	3.2.4.2 Updating MD-arrays of greater MD-dimension
	3.2.4.3 Updating a single element of an MD-array

	3.2.5 Exporting MD-arrays
	3.2.5.1 Encoding to a data format
	3.2.5.2 Converting to an SQL table

	3.3 SQL/MDA Operations
	3.3.1 MD-extent probing operators
	3.3.2 MD-array element reference
	3.3.3 MD-extent modifying operators
	3.3.3.1 Subsetting
	3.3.3.2 Reshaping
	3.3.3.3 Shifting
	3.3.3.4 MD-axis renaming

	3.3.4 MD-array deriving operators
	3.3.4.1 Scaling
	3.3.4.2 Concatenation
	3.3.4.3 Join MD-arrays on their coordinates
	3.3.4.4 Induced operations

	3.3.5 MD-array aggregation
	3.3.5.1 General aggregation expression
	3.3.5.2 Shorthand aggregation functions

	3.4 Remote Sensing Use Case
	3.4.1 Data setup
	3.4.2 Band math
	3.4.2.1 NDVI
	3.4.2.2 Band Swapping

	3.4.3 Histograms
	3.4.4 Change Detection
	3.4.5 Extracting Features
	3.4.6 Data Search and Filtering

	3.5 Weather Forecasting Use Case
	3.5.1 Rainfall Scenario
	3.5.2 Discrete Fourier Transform

	3.6 Life Sciences Use Case
	3.6.1 Gene expression data management
	3.6.2 Human brain imaging

	4 A Modern Array Database Processing Engine
	4.1 Evaluation Model
	4.1.1 Tile-based Processing
	4.1.2 Single-band Tiles

	4.2 Logical Query Tree
	4.2.1 Type Deduction and Verification
	4.2.2 Array Constructor Optimization
	4.2.2.1 Algebraic Transformations
	4.2.2.2 Parallelization
	4.2.2.3 Loop Unrolling

	4.2.3 Pushing Reducing Operations Down
	4.2.4 Band Splitting and Merging
	4.2.5 Tile Splitting and Merging

	4.3 Evaluation
	4.3.1 Array Constructor
	4.3.2 Derived and Special Operations

	5 SQL/MDA Query Mediator
	5.1 Evaluation Model
	5.2 Performance Evaluation

	6 Related Work
	6.1 The Relational Model
	6.1.1 Arrays in Relational Databases

	6.2 Array Models
	6.2.1 A Call to Order
	6.2.2 Array Algebra
	6.2.3 AQL
	6.2.4 AML
	6.2.5 RAM

	6.3 Array Databases
	6.3.1 rasdaman
	6.3.2 PostGIS Raster
	6.3.3 SciQL
	6.3.4 SciDB
	6.3.5 Grid DataBlade
	6.3.6 IQL
	6.3.7 SciSPARQL
	6.3.8 EXTASCID
	6.3.9 Ophidia

	6.4 Heterogeneous Database Integration

	7 Conclusion
	7.1 Outlook

	Bibliography

