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Summary

Echo State Networks (ESNs) is an approach to the recurrent neural network (RNN)
training, based on generating a big random network (reservoir) of sparsely inter-
connected neurons and learning only a single layer of output weights from the
reservoir as the target function. Despite many advantages of ESNs over gradient
based RNN training techniques, they lack the power of learning some complex
functions. New findings in dynamical systems theory state, that fixed neural
circuits can obtain universal computational qualities if suitable feedbacks (or in-
termediate units) can be trained. Unfortunately the theory gives no hint on how
this can be done. In this report we explore possible directions in which the the-
oretical findings could be applied to increase the computational power of ESNs.
More specifically, we discuss possible options for defining training targets for the
feedbacks, present and discuss some empirical results (positive as well as nega-
tive) testing the ideas in practice and analyze some problems pointing out to some
intrinsic limitations of ESNs. Another contribution of this report is a discussion
of many practical issues of training ESNs in particular the ones having feedback
connections. We also propose a modification of ESNs called Layered ESNs. This
technical report is based on the author’s Master Thesis named “Improving Echo
State Networks by Training Intermediate Units”.
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1 Introduction

Artificial neural networks is perhaps the most prominent black-box modeling
technique in Machine Learning. Since feedforward neural networks (FFNNs)
[Bishop, 1995] have been shown to have the ability to approximate with desired
accuracy any given smooth function [Irie and Miyake, 1988], discrete-time recur-
rent neural networks (RNNs) can approximate with desired accuracy any given
dynamics with continuous transition function on compact sets and in a finite time
horizon [Hammer and Steil, 2002]. Since most of the real world systems are dy-
namical, RNNs have a large application potential. All biological neural networks
(i.e. brains) are also recurrent. Despite the large potential, RNNs penetrate real
world applications quite slowly. Because of their complexity, RNNs are difficult
to train and analyze, thus less popular or even accessible among many engineers
and developers. Training of the networks is also computationally expensive which
makes using only a small number of neurons practical. Echo State Networks
(ESNs) [Jaeger and Haas, 2004] is a new simple and powerful approach to RNN
training, which is currently becoming more and more popular. Even though ESNs
are shown to perform very well in many tasks, there are some complex problems
where they perform poorly.

A recent development in the theory of dynamic systems has showed, that
trained feedbacks can endow fixed neural circuits with universal computational
capabilities [Maass et al., 2006]. This theory has direct implications to ESNs since
they largely constitute of a fixed neural circuits (reservoirs). In this report we ex-
plore different ideas of how the power of ESNs could be improved along the lines
of this new theory, namely by teaching ESNs intermediate feedbacks and training
their other weights, while keeping the reservoir fixed. If we could devise a good
technique for doing this, we would be able to improve the power of ESNs without
sacrificing much of its simplicity and computational efficiency.

The purpose of this report is not to break any performance records in the
accuracy of learning some standard tasks, but rather explore different directions
of modifying conventional ESNs in the light of the new theory and testing in
practice which of them would lead to improving the power of ESNs and which
would not.

We will introduce the basic concepts of echo state networks in Section 2. In
Section 3.1 we will briefly present the new development in the theory of dynamical
systems and relate it to ESNs in Section 3.2. The theory presented in Section 3
is the main motivating conjecture for the directions of extending ESNs that are
explored in this report. Unfortunately the theory is not constructive: it tells that
fixed neural circuits can have universal computational capabilities if some external
fed-back functions are “right”, but it does not tell how to construct them. We
continue with a discussion of what could be the possible ways of defining the
training targets for these functions for some large classes of problems in Section
4. In Section 5 we will discuss some specifics of actually doing the training for
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the targets. In Section 6 we will introduce the datasets that we used in our
numerical simulations, ranging from such on which ESNs are famous for their good
performance (in Section 6.1), to such where ESNs perform very poorly (in Section
6.4). In Section 7 we present some empirical results testing the so far discussed
ideas on the datasets presented in Section 7, demonstrating the improvement which
can be achieved in some cases. We also make an analysis of (a bad) performance
of ESNs on a particular dataset in Section 7.3, pointing out some fundamental
incompatibilities of the problem with the ESN approach. Along the lines of this
analysis, we propose a possible modification of ESNs in Section 8, which though
not really helps to solve this particular problem, proves itself to be an improvement
in solving other problems. Finally in Section 9 we summarize our findings and the
directions still left unexplored.

2 Echo State Networks

2.1 Definition of ESNs

Echo state networks (ESNs) [Jaeger and Haas, 2004] is a recent approach to re-
current neural network supervised training, which overcomes some obstacles en-
countered in many other approaches to training RNNs, mentioned above. In the
ESN approach a large (order of several tens to several thousand neurons), ran-
domly connected RNN is used as a “reservoir” of dynamics which can be excited
by suitably presented input and/or fed-back output. The connection weights of
this reservoir network are not changed by training. In order to compute a desired
output dynamics, only the weights of connections from the reservoir to the output
units are calculated. In the conventional case of ESNs this is a simple linear com-
bination of the reservoir activations (i.e. a single layer of weights). Because there
are no cyclic dependencies between the trained readout connections, training an
ESN becomes a simple linear regression task, for which numerous batch or adap-
tive on-line algorithms are available [Jaeger and Haas, 2004]. In a more general
case the readout can be done via a multi-layered feedforward neural network, often
referred to by the name of Multi-Layer Perceptron (MLP) [Bishop, 1995]. This
case is explained in more detail in Section 2.2. The main idea of ESNs has been
independently investigated in a more biologically oriented setting under the name
of “liquid state networks” [Maass et al., 2002].

The difference between ESN and gradient based RNN training is illustrated in
Figure 1. The bold gray connections denote the weights that are being trained.
In gradient based training they are updated iteratively, whereas in ESN the exact
values of the output weights Wout are calculated in a single iteration.

The echo state networks are usually discrete-time networks of sigmoid units
with the following state update equation:

x(n) = f(Winu(n) +Wx(n− 1) +Wofby(n− 1)), n = 1, · · · , T, (1)
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Figure 1: The difference between gradient based and ESN training of RNN.

where x(n) ∈ RN is a vector of reservoir neuron activations at a time step n, f(·)
is the neuron activation function (usually the tanh(·) sigmoid) applied element-
wise, Win ∈ RN×Nu is the input weight matrix, u(n) ∈ RNu is the input vector,
W ∈ RN×N is a randomly generated sparse weight matrix of internal reservoir
connections, Wofb ∈ RN×Ny is an optional output feedback weight matrix and
y(n) ∈ RNy is the output of the network. Weight matrices Win and Wofb are
usually dense with each element randomly chosen from some interval (depending
on the scaling). The network is usually started with the initial state x(0) = 0 and
y(0) = 0. Each unit in the reservoir has also a bias value, which is omitted in the
equations for simplicity. The bias can be easily implemented, adding an additional
input, which has a constant value of 1 (and a corresponding randomly generated
column in Win).

In the traditional linear readout case, the output of the system y(n) is defined
by the equation

y(n) = fout(Wout[u(n)|x(n)]), n = 1, · · · , T, (2)

where Wout is the (learned) output weight matrix, and fout(·) is the output neuron
activation function (usually tanh(·) sigmoid or the identity) applied component-
wise, and ·|· stands for a vertical concatenation of vectors (or matrices). The
standard batch supervised training of ESN proceeds by driving them with the
training input sequence u(n) once, collecting the internal states over the whole
training period, and then computing the output weights Wout as the linear re-
gression weights of the teacher output ytarget(n) on the internal states. Different
standard methods can be applied here. They are further discussed in Section 5.2.

The echo state property is essential for making the ESN learning method work.
Let us define it following [Jaeger and Haas, 2004] closely. Intuitively, a RNN which
is driven by an external signal u(n) has the echo state property if the activations
x(n) of the RNN neurons are systematic variations of the driver signal u(n). More
formally, this means that for each internal unit xi there exists an “echo function”
ei, such that, if the network has been run for an indefinitely long time in the
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past, the current state can be written as xi(n) = ei(u(n), u(n− 1), u(n− 2), · · · ).
For discrete-time ESNs there are several nontrivial alternative definitions of this
condition and algebraic characterizations of which network weight matrices W
lead to networks having the echo state property [Jaeger, 2001]. For practical
purposes it suffices to fix the spectral radius ρ(W ) of W to a value less than
unity to ensure the echo state property. It is worth mentioning, that even though
ρ(W ) > 1 cause self-induced internal dynamics in the reservoir, such network can
still be trained for some tasks, as they become stable with the presence of input
[Ozturk and Principe, 2005].

It is also important that the dynamics of the reservoir neurons should be
richly varied. This is ensured by a sparse interconnectivity (of 1-20%) within
the reservoir. The condition lets the network decompose into many loosely cou-
pled subsystems, establishing a richly structured reservoir of excitable dynamics
[Jaeger and Haas, 2004]. There has been some research done to find alternative
models for generating the random reservoirs (e.g. [Liebald, 2004]), but so far there
has been no other topology discovered, which would perform significantly better
than the sparse randomly connected graph mentioned before.

2.2 ESNs with MLP Readouts

In the case of a multi-layer readout, y(n) is calculated as the output of a MLP
taking [x(n)|u(n)] as its input, thus generalizing (2) into

y(n) = fout(Woutmf(· · ·Wout2f(Wout1[u(n)|x(n)]) · · · )), (3)

where m is the number of layers in the readout MLP and Wout1,Wout2, · · · ,Woutm

are connection weight matrices for the inputs of the corresponding layers each
having respectively Nout1, Nout2, · · · , (Noutn = Ny) units. Each weight matrix
Wouti ∈ RNouti−1×Nouti , for i = 1, · · · ,m and Nout0 := Nu + N. Alternatively,
y(n + 1) can be calculated as a concatenation of outputs from several distinct
MLPs having the same input. The biases for the units in the MLP are also omitted
here as in (1). They can be similarly implemented by adding a pseudo-unit in each
layer with a constant activation of 1.

When training the MLP(s), the activation states of the reservoir are collected
once as in the case with a single readout layer, but then the MLP(s) need to be
trained iteratively, using e.g. error back-propagation and a stochastic gradient
descent, as discussed more throughout in Section 5.3. This is illustrated by Figure
2 as a comparison to a recurrent gradient-based training of RNNs and a classical
training of ESNs with linear readouts depicted in Figure 1.

All the same rules apply to the reservoir of the ESN in the MLP readout case,
as in the linear readout case. Note that in contrast to the reservoir, the information
propagates through all the m layers of the readout MLP in a single time step. If
disregarding the training method for finding Wout, the linear readout (2) can be
seen as a special case of (3) with m = 1. When talking about ESNs we will have
ESNs with linear readouts (2) in mind, if no MLPs are mentioned explicitly.
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Figure 2: Training of ESN with MLP readouts.

3 Trained Feedbacks for Fixed Neural Circuits

3.1 Recent Developments in the Theory of Dynamical Sys-
tems

There is a new theoretical result, showing that trained feedbacks can endow fixed
neural circuits and other dynamical systems with universal capabilities for analog
computing [Maass et al., 2006]. In particular, feedback supports computations
where on-line input streams are processed in diverse ways according to the internal
state of the dynamical system. The authors of [Maass et al., 2006] have stated and
proved that bounded noise (e.g. due to the fact that feedback functions are not
learned perfectly) stays bounded, i.e. does not get amplified through feedback.
Their theorem claims that even though such systems can not simulate a Turing
machine, they can still simulate any finite state machine, which is equivalent to
a Turing machine with a finite memory (the best we can realistically do in any
case).

More precisely, the authors of [Maass et al., 2006] state, that a given fixed
dynamical system 1 of the form

ẋ(t) = f(x(t)) + g(x(t)) · v(t), (4)

where f : RN → RN , f = (f1, · · · , fN) and g : RN → RN , g = (g1, · · · , gN) are
fixed component-wise functions, x = (x1, · · · , xN) is the vector of the system state
(e.g. activations of neurons) and v(t) is input, can approximate any N ’th order
differential equation of the form

p(N)(t) = G(p(t), ṗ(t), p̈(t), · · · , p(N−1)(t)) + u(t) (5)

(for arbitrary smooth functions G : RN → R), because there exists a (memory-
free) feedback function K : RN × R → R and a memory-free readout function

1Belonging to a certain class Sn, see [Maass et al., 2006] for details.
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h : RN → R (which can both be chosen to be smooth, in particular continuous)
such that, for every external input u(t), t ≥ 0, and each solution p(t) of the forced
system (5) there is an input u0(t) with u0(t) ≡ 0 for all t ≥ 1, so that the solution

ẋ(t) = f(x(t)) + g(x(t))K(x(t), u(t) + u0(t)), x(0) = 0 (6)

satisfies
h(x(t)) = p(t) for all t ≥ 1. (7)

3.2 Application of the Theory to Echo State Networks

If we assume, that the classical ESN state update equation (1) is equivalent to a
discrete time case of the dynamical system (4) (i.e. fixed weights W and activation
function f in (1) correspond to the fixed functions f and g in (4)), and further
assume that the equivalent of the feedback function K can be well approximated
by a linear or a MLP readout from the reservoir of the ESN, then the classical
ESNs can obtain the above mentioned universal computational capabilities, if we
properly train auxiliary outputs that are fed back into the reservoir. For such ESN
with auxiliary feedbacks we can modify equation (1) into

x(n) = f(Winu(n) +Wx(n− 1) +Wafbz(n− 1) +Wofby(n− 1)), (8)

where Wafb are auxiliary feedback weights produced similarly to Wofb and z(n) ∈
RNz is the vector of auxiliary outputs, defined similarly to (3) by

z(n) = faux(Wauxmf(· · ·Waux2f(Waux1[u(n)|x(n)]) · · · )), (9)

where Wauxi, i = 1, · · · ,m is the (learned) auxiliary output readout MLP and
faux(·) is the output neuron activation function (usually tanh(·) sigmoid or the
identity) applied component-wise. More precisely, we assume here that training
Waux and including z(n) in (8) can have the same effect as including the functionK
in (7). We can see that auxiliary outputs z(n) in (9) technically do not differ from
additional dimensions of the final output y(n) in (3) and for simplicity in some
equations will be included as part of y(n). The difference here is more semantical.
One point is that the feedback connections Wofb from the final output might be
not used, while the feedback connections Wafb from z(n) are essential. Another
difference is that from the formulation of the problem at hand we know what we
would like to have as the output y(n), but not z(n) (i.e. we have a target signal
ytarget(n)), but not ztarget(n)).

It is easy to show that if we use a simple linear readout for z(n) and the
dimension Nz of z(n) is equal to the number of units in the reservoir (Nz = N
– a rather extreme case), we can transform the fixed reservoir into any desirable
recurrent neural network without changing its connections W . More specifically,
by a simple linear readout we mean a special case of (9):

z(n) = Waux[u(n)|x(n)] = Wauxuu(n) +Wauxxx(n) = Wauxxx(n), (10)
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where the part Wauxu of the matrix Waux connecting the input u(n) directly to
z(n) is set to 0. Then substituting (10) into (8) we get

x(n+ 1) = f(Winu(n+ 1) +Wx(n) +WafbWauxxx(n) +Wofby(n))

= f(Winu(n+ 1) + (W +WafbWauxx)x(n) +Wofby(n)) (11)

= f(Winu(n+ 1) +W ∗x(n) +Wofby(n)),

where W ∗ := (W +WafbWauxx). We can obtain any W ∗ by setting

Wauxx = Wafb
+(W ∗ −W ). (12)

Note that (11) is equivalent to the update equation of the classical ESN (1),
but instead of the fixed W in (1), we can have any desirable W ∗ in (11), thus any
recurrent neural network as the reservoir. The Equation (12) is solvable, because
Wafb is a randomly generated square matrix, thus generally invertible. Having
Nz < N restricts achievable W ∗s, by restricting rank(WafbWauxx) = rank(z(n)) ≤
Nz, but the reservoir dynamics can still be influenced significantly.

The rest of the trained feedback weights Wauxu has a similar effect on Win

as Wauxx on W . It would have exactly the same effect if we would modify (8),
by replacing u(n) with u(n − 1), which could be argued to be just a matter of
convention.

4 Options for Feedback Targets

Unfortunately the theorem in [Maass et al., 2006] is not constructive, i.e. it does
not mention what the function K and consequently the auxiliary outputs z(n)
should be or how to obtain them. We need some trainer mechanism for the
ESN to produce the targets ztarget(n) which the ESN should learn as z(n) (Figure
3). Intuitively speaking, they should push the dynamics of the reservoir into the
“right direction” towards the activations x(n) which could be linearly combined
into the target signal ytarget(n). The auxiliary targets should be like hints or partial
solutions – something which the network must find out in order to solve the given
problem. For example, if the task of the network is to map a robot sensor input
into control signals for collision-free movement, a plausible intermediate problem
would be to identify the obstacles using the sensor data before moving to avoid
them. Thus we could use obstacle recognition as a subproblem on which we could
train the auxiliary outputs and feed them back to the reservoir. The metaphor of
the trainer is quite deep here: like in sports, the trainer should make one work on
the necessary elements of the final task to improve the results.

Since learning of the final output ytarget(n) depends on the fed-back results
z(n) of learning ztarget(n), common sense suggests that the auxiliary feedbacks
z(n) should be trained before training the final output y(n). This means that
ESN should be trained in several epochs. Separate dimensions of z(n) can also
be trained in separate epochs if they have similar one-directional dependences as
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Figure 3: ESN with auxiliary feedbacks z(n) and its trainer.

between z(n) and y(n). Note, that the trainer in Figure 3 does not necessarily
need to produce ztarget(n) from the u(n), ytarget(n), z(n) and/or y(n) but can use
the signals from different than n or even several time steps, including steps ahead
in time (at least in off-line mode of training).

Defining ytarget(n) is in essence biasing the ESN as a modeling system into
particular kind of models. There exists a quite general “no free lunch” principle
in supervised machine learning [Wolpert, 2001] (as well as in optimization), which
in essence claims that there can be no bias of this kind which would universally
improve the accuracy of the model for all possible problems it is solving. In other
words we can not define universally good ztarget(n). We need to have some kind
of insight into the problem at hand to do this successfully. In this section we
will discuss some potential options for defining ztarget(n) for some large classes of
problems.

4.1 Context Identifying Feedbacks

In many real world applications parameters of the function that we are trying
to learn change in time in a random (out of scope, not realistically predictable)
way. Such changes are often referred to as changes of the context or changes
of the generator mode (in the case of time series). They could alternatively be
considered as changes of some hidden, not directly observable input parameters
of the system we are trying to model. A classical example of such a situation
is changes of the physical environment (source of echoes and noises) in which
wireless communication is performed. The standard technique to deal with this is
an adaptive online training of the (usually feedforward) neural network. For this
training we need to somehow know the correct output signal (the online teacher),
which e.g. is available with some delay (in time series prediction) or at certain
points in time (in mobile communications).
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In many real world tasks we do not know or are not able to encode the context
even for the training data, let alone for the working environment of the model.
However, one credible assumption which we can in many cases make is that context
changes on a slower time scale than the signal itself (otherwise the system would
not be predictable at all). Thus one possible way to generate auxiliary targets
could be using slow feature analysis (SFA) [Wiskott and Sejnowski, 2002] in the
trainer (Figure 3). SFA is a way of extracting the most slowly varying statistically
uncorrelated features from the input signal. The speed of varying of a feature ai

is defined in terms of its average squared derivative
〈
ȧi

2
〉
. The extracted features

are normalized so that 〈ai〉 = 0 and
〈
(ai − 〈ai〉)2〉 = 〈a2

i 〉 = 1, thus avoiding
trivial solutions where a = const. By statistical uncorrelatedness we mean ∀j <
i : 〈ajai〉 = 0.

In SFA the features ai are constrained to be linear combinations of a finite
set of non-linear functions of the input signal. For this purpose the normalized
input signal is expanded using the non-linear functions and then after one more
normalization the features are extracted using principal component analysis. It is
thus quite possible, that the idea of SFA can be exploited in an ESN directly, using
the reservoir as the nonlinear expansion x(n) of the input u(n) and calculating
Waux to directly obtain z(n) as the slow features, instead of calculating them
externally in the trainer and using as ztarget(n) to find Waux minimizing mean
square error. One apparent difference is that in SFA the non-linear expansion is
memoryless. We have not explored the direction of combining ESNs with SFA, but
this could be an attractive direction for future research especially when working
with datasets where slow features are intrinsically relevant.

4.2 Predictive Feedbacks

If we are not able to teach an ESN the final target ytarget(n) (i.e. with sufficient ac-
curacy) directly, an intuitive approach would be to choose the intermediate targets
ztarget(n) such, that they can be directly learned by ESN with higher accuracy and
then in their turn make learning of the final target ytarget(n) easier (i.e. improve
accuracy). Following this approach intermediate targets are defined in such a way,
that each of them is a necessary (or helpful) but not sufficient “component” of the
final output. However, having intermediate targets less “ambitious”, i.e. easier
to learn but only contributing partially to the final target ytarget, could be not
the only possible option. Alternatively, we might also try having them equally or
even more difficult to learn than the final target. Even though they would not
be learned properly (otherwise the final target as easily could be learned directly
too), they could still move the internal dynamics of the reservoir states so that
learning of the final target becomes easier. In this context perhaps calling the tar-
gets ztarget(n) auxiliary would be more intuitive then calling them intermediate,
since they are not reached before the final target is reached, but on the other hand
they are still intermediate in the sequence of trainings.
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A concrete example of the latter approach in a time series prediction task
could be trying to predict the time series two time steps ahead in the auxiliary
target, i.e. ztarget(n) = ytarget(n+1). While it is generally not easier than learning
to predict one time step ahead (the final target), the auxiliary target provides
maximal information needed for the final output: the output y(n) at time step n
makes use of the auxiliary feedback z(n − 1) generated at time step n − 1. The
same way we can define k auxiliary feedbacks as parts of ztarget(n), where the k’th
feedback at time step n is trained on ytarget(n+k). This way the i’th feedback helps
to learn (i− 1)’th feedback. Instead of predicting the output itself we can predict
some of its features. Since prediction of the next time step usually depends on
the several previous time steps, it could also make sense to train auxiliary outputs
z(n) to “post-predict” the values, i.e. refine the previous prediction result y(n−k)
if the correct value y(n−k) is not (yet) available to the network. This should help
to improve the prediction accuracy.

Even if the task is not time series prediction, in some quite general cases it
could be beneficial (and possible) to predict the input u(n + k) in the auxiliary
outputs z(n), and in some tasks it could be beneficial to preserve the old input
u(n − k) in z(n) (note, that learning u(n − 1) precisely is trivially done, by set-
ting Wauxu to identity matrix and Wauxx to zero). In general, predicting and/or
improving previous input and/or output as auxiliary feedbacks could teach the
ESN to represent the hidden process better for quite large classes of problems. In
other words, modeling the temporal context of the problem at hand might provide
some additional valuable information (dynamics) for the ESN on how to solve the
problem.

4.3 Error Predicting Feedbacks

Another information-centric option could be auxiliary targets trying to predict the
error of the subsequent final output:

ztarget(n) = ytarget(n+ 1)− y(n+ 1). (13)

Such auxiliary feedbacks would aim at creating exactly those dynamics in the
reservoir, that can not be learned using the final readout alone. This approach
could be implemented by the following algorithm:

1. Train y(n), having no feedback z(n) to the reservoir;

2. Define ztarget(n) as in (13);

3. Train z(n) on ztarget(n);

4. Retrain y(n), having a trained feedback z(n) to the reservoir.

The algorithm can be recursively extended to several stages of error prediction,
by embedding it again inside the Step 3, i.e. by recursively predicting the error of
zi(n), i = 1, · · · , Ny in other dimensions of the auxiliary feedback zj(n), j > Ny.
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Learning to predict the error (13) might be very difficult. For example, learning
ztarget(n) = ytarget(n)−y(n) is not possible by definition, if y(n) is optimally trained
and we use the same linear readout mechanism for z(n) as for y(n) (and not putting
much hope into the effect of the teacher-forced feedback ztarget(n) when learning
z(n), because of the reasons discussed in Section 5.4). Trying to predict this
difference one time step ahead most probably would not make things easier either.

Instead of learning to approximate the difference by minimizing the mean
squared error we could maximize the correlation of z(n) with ztarget(n) from (13) in
a way similar to the Cascade Correlation Learning [Fahlman and Lebiere, 1990],
[Campbell, 1997]. Such a performance measure is not well suited for finding a
single vector of linear readouts by regression, but works well with feed-forward
neural network readouts. So instead of minimizing the sum-of-square error

Ez =
T∑

n=1

(z(n)− ztarget(n))2, (14)

we could maximize the correlation

Cz =
T∑

n=1

(z(n)− 〈z(n)〉)(ztarget(n)− 〈ztarget(n)〉), (15)

where ztarget(n) in both (14) and (15) is from (13).

4.4 On Rational Separation Between ESN and its Trainer

Another thing worth mentioning is that from an applications point of view it makes
little sense to produce auxiliary targets using only inputs ztarget(n) = φ(u(n)),
because if this could be done, we might use the target producing mechanism φ as
a preprocessor u′(n) = (u(n)|φ[u(n)]) of the original inputs and include the targets
as additional inputs for ESN, instead of teaching ESN to mimic the auxiliary target
producer. Note that this would be equivalent to teacher forcing the auxiliary
feedbacks all the time, which would improve precision (this, however, does not
apply to the input prediction, which is discussed in more detail in a moment).
Using auxiliary targets produced solely from the inputs would only make sense
if we could benefit in terms of computational cost, better generalization (trading
off some precision), or from some other side-products of this approximation inside
the reservoir.

Similarly, using a bijective function ψ of the output (also holds if including
input) as auxiliary teachers ztarget(n) = ψ(ytarget(n + k)) means that the function
ψ is reversible into function ψ−1 which can be used as a postprocessor. In such
case if the auxiliary outputs ztarget(n) are well learned, they could become the final
outputs of ESN and the postprocessor y(n+ k) := ψ−1(z(n)) would do the rest of
the job. Thus, if we know ψ−1 precisely we would save the ESN from learning it
(and again gain in terms of precision). On the other hand, if the auxiliary outputs
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ztarget(n) are not learned well, then the ESN might in fact produce a better final
output by making additional use of the components x(n) from which the z(n) was
constructed, than applying the exact ψ−1.

As mentioned above, these considerations come more from the applications
point of view, where achieving best performance is the main concern. In such a
setup the question of which tasks should be dedicated to ESN and which could
be done better by the trainer or mechanisms derived from it should be answered.
However, if investigating the potential of ESNs and/or being inclined to biologi-
cally plausible systems, leaving as much of the job to the ESN as possible could
also be a valuable approach.

5 Specifics of Training ESN Readouts

5.1 A Typical Setup for Training ESN Readouts

As mentioned in Section 2.1, ESNs are trained by collecting input u(n) and ac-
tivation states x(n), then calculating Wout using a linear regression for the linear
readouts, or an iterative training technique, described in Sections 5.2, respectively
5.3. First the ESN is run for the initial period (typically a 1000 time steps in our
simulations), by providing the input and teacher-forcing signals (if applicable) to
“wash out” the transiences that occur because of the initialization of the activa-
tions to x(0) = 0. Then, continuing running the ESN in the same manner for the
training period, inputs u(n) and activation states x(n) over the whole period are
collected into one single big matrix. Then the output weights Wout are computed
using this matrix and the target ytarget(n), n = 1, · · · , T , in a way described in
more details bellow, which concludes the training. For simplicity of the notation,
we will denote the training period as n = 1, · · · , T , i.e. start counting time steps
n from 1, ignoring the initial period.

The trained ESN is then usually rerun with no teacher-forcing for the initial
period, training period and a succeeding testing (or validation) period. Outputs
y(n) collected over the training and testing periods are used to estimate training,
respectively testing performance of the ESN. For this in our experiments we use
the normalized root-mean-square (NRMS) error 2 of the form

E =

√ 〈
‖y(n)− ytarget(n)‖2〉〈

‖ytarget(n)− 〈ytarget(n)〉‖2〉 , (16)

where ‖·‖ stands for the Euclidean distance (or norm), to evaluate the perfor-
mance. The error has two obvious properties, namely E = 0 if, and only if y(n) =
ytarget(n), and E = 1 for an optimal constant solution y(n) = const = 〈ytarget(n)〉.
These two properties also hold for the error measure E2, which many authors tend

2Similar to RMS error defined in [Bishop, 1995] p.197, where it is, contrary to what the name
suggests, not square-rooted for some reason.

15



to use. In the interval (0, 1), where these errors typically reside, measure E2 gives
a smaller number (twice the negative order for the small errors near the value 0).

5.2 Training the Linear Readouts

The standard way of training ESNs is to find the linear output weights Wout by
solving a linear regression, or a linear least squares problem, which in essence is
a mathematical optimization technique for finding an approximate solution for a
system of linear equations that has no exact solution.

More specifically, let U ∈ RNu×T denote a matrix collecting all the inputs
u(n) ∈ RNu over the training period, X ∈ RN×T – the matrix of states x(n) ∈ RN ,
and Y ∈ RNy×T – the matrix of outputs y(n) ∈ RNy . Let us assume here for
simplicity, that z(n) is part of y(n). Using this notation we can rewrite the ESN
readout equation (2) for the entire training period n = 1, · · · , T in a single equation
as

Y = fout(Wout[U |X]). (17)

When training ESN, the output weights Wout ∈ Ruy×(Nu+N) are computed directly
from (17) as

Wout = fout
−1(Ytarget)(U |X)+, (18)

where fout
−1(·) is the inverse function of output activation and (U |X)+ stands for

a pseudoinverse of the matrix (U |X) ∈ R(Nu+N)×T (or an alternative method of
solving the matrix equation as discussed below).

Computationally refined pseudoinverse-based linear regression. As a
standard method for solving a matrix equation A = BC, where B is unknown, we
use the matrix pseudoinverse B = AC+. Strangely enough, the precision of this
method in Matlab can be in many cases improved, by adjusting the calculated B
into B′ = B + (A − BC)C+. While in theory B = B′ should hold, in practice,
for high-precision tasks like predicting chaotic time series where the NRMS error
is in the order of 10−8, this trick can decrease the training error more than twice.
This fix virtually does not increase the computational cost of the operation, since
it works well with reusing the same (i.e. only once calculated) pseudoinverse
C+. I came up with this fix, when found out by accident that the remainder
(or error of learning B) A − BC can still be partially learned using the same
regression, i.e. (A−BC)C+ 6= 0. My guess for explanation of this would be some
optimizations inside the Matlab’s operations on (big) matrices, that are not quite
lossless. Further iterative applications of this fix to B did not yield any further
tangible improvement.

The matrix pseudoinverse is a very computationally stable, but a bit expensive
method for the ESN training, since we need to calculate a pseudoinverse of a large
matrix (U |X) (which corresponds to C). As another alternative, in our simulations
we also use the standard Matlab matrix division operator B = A/C, which in effect
uses a QR (orthogonal-triangular) factorization via Householder reflections. This
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method is usually much faster, and in some cases gives a smaller error, but is also
computationally less stable.

As an even faster (and even less computationally stable) alternative we also
make use of Wiener-Hopf equations and calculate B = (ACT)(CCT)−1. Since the
(U |X) matrix has typically much more columns than rows Nu + N � T , we get
a much smaller autocovariance matrix

(
[U |X][U |X]T

)
∈ R(Nu+N)×(Nu+N) whose

inverse we need to calculate. In most cases (namely, when the condition number
of CCT has a reasonably small size) this method gives similar results to the ones
calculated by the QR factorization.

When training only a subset S ⊂ {1, · · · , Ny} of the output (dimensions)
yS(n) at a time, only the corresponding rows of Ytarget are used and thus only
the corresponding rows WoutS = fout

−1(YtargetS)[U |X]+ of the output weights are
calculated.

5.3 Training of the MLP Readouts

As discussed in Section 2.2, ESNs can have multi-layered readouts in the form
of MLPs. Learning of the MLP weights typically can not be done in a single
iteration, thus after running the ESN once and collecting (U |X) we use it as an
input to train the readout MLP iteratively. This scheme is depicted in Figure 2.

While MLPs have a much bigger potential of expressiveness than a simple
linear combination, they are much harder and computationally expensive to train.
It has been shown, that for tasks where classical ESNs with linear outputs perform
well, achieving a similar level of performance using MLPs is very hard (if realistic
at all) [Jain, 2004]. Thus MLPs are practical to use only where linear readouts
fail.

We use MLPs with two or three layers of units m (3) and train it using error
back propagation with a stochastic gradient descent [Bishop, 1995]. The MLPs
are trained with slowly decreasing learning rate and having a constant momentum
value. The training data is randomly shuffled once before training and presented
to the training algorithm in cycles as a long (order of 50000) sequence of data
points.

Stochastic gradient descent proved itself to be a much faster method than the
batch version (which is also claimed in the literature, e.g. [Bishop, 1995]). Since
the number T of training data points is typically large and the data is typically
redundant, using the batch version of gradient descent for ESN readout training
is not practical. A compromise method with data grouped into smaller batches
was also tried. Doing a rough manual optimization of all the other parameters
for several batch sizes, the compromise method showed that the smaller is the
batch size, the faster the learning rate decreases, which in effect led back to the
stochastic version of the algorithm (batch size equal to one).

We have also done experiments with an online adaptation of the learning rate
for the batch training, following the the “bold driver” approach [Vogl et al., 1988]
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together with a momentum term. In this approach during the training one in-
creases the learning rate slightly each time a weight update results in decrease
of error, and undoes the update and decreases the learning rate sharply in the
opposite case. The method guarantees non-increase of the error and finds its way
through difficult areas of the error surface, but is very slow if comparing to sto-
chastic gradient descent, as mentioned above. The “bold driver” approach only
works well in a pure batch mode of gradient descent, as having smaller batches it
gets completely confused by the stochastic nature of the learning and the learning
rate keeps rapidly shrinking (or bloating, depending on the parameters).

For two-layered MLPs we used a weight initialization proposed in [Nguyen and Widrow, 1990].
The weights were initialized with random values uniformly distributed over [−0.5, 0.5]
and the ones of the first layer Wout1 scaled so that∥∥Wout1j

∥∥ = 0.7 ·Nout

1
Nu+N

1 , j = 1, · · · , Nout1, (19)

where Wout1j is the jth row of the input weight matrix Wout1 ∈ RNout1×(Nu+N) of
the first (hidden) layer of the readout MLP (3). Typically Nout1 � Nu + N and
thus

∥∥Wout1j

∥∥ ≈ 0.7. Here the notion of Wout1j excludes the bias value of the
unit which we will denote as Wout1j,0 and set separately to a uniformly distributed

random value from the interval
[
−

∥∥Wout1j

∥∥ ,∥∥Wout1j

∥∥]
(19).

For a three-layered MLP, only the input layer is initialized by (19).
We have also experimented with combining gradient based training of MLPs

with a linear regression on their output weights Woutm in the spirit of ESNs.
Indeed, we can consider the rest of the MLP Wouti, i = 1, · · · ,m − 1 as part of
the reservoir (see Figure 2) and find Woutm by solving the linear the regression
as in the classical training of ESNs. This trick when applied increases accuracy
significantly (for some problems in the order of 5 times), but can not be easily
mixed with gradient descent methods. After regressing Woutm, further gradient
based training becomes difficult. Unless the learning rate is set to an extremely
small value, the learning error quickly gets even much bigger than before the
regression. This holds even if the gradient based training is not allowed to change
the output weights Woutm. In practice we have only succeeded to apply the batch
“bold driver” to further decrease the error after the regression, which creeps then
with extreme slowness.

As a practical solution, we settled on using the stochastic gradient descent
with a regression on Woutm after the training, but this issue deserves a separate
investigation, which is out of the scope of this work.

5.4 Teacher Forcing of Feedbacks

So far we have only discussed the options for intermediate targets. In this section
we will discuss how the training using them could be implemented. A difficulty
of training ESNs with feedback connections (common to all RNNs) is, that once
the trained outputs are fed back into the reservoir, they change the dynamics of
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all the internal units x(n) and thus the outputs too. In conventional training
of ESN with feedback connections from the output, we use a so called teacher
forcing technique for breaking this recurrence. Teacher forcing means that target
values are fed back to the reservoir, as if they were already successfully learned.
This enables us to learn outputs in one iteration and is a valid assumption, if
in the end the outputs are learned well (i.e. the feedbacks are similar to the
one which we assumed while training). The results can also be improved by
producing feedbacks that are somewhat in between the exact teacher signal and
the signal which would be produced by the ESN, as explained in the supporting
online material of [Jaeger and Haas, 2004].

If the feedbacks are not learned well, this assumption is not valid and the
distorted feedbacks may further distort the outputs. This is not a big concern
for classical ESNs, since if we are not able to learn the output then we have
already failed. For auxiliary outputs of ESNs (8)(9) this is not necessarily the
case. Especially if the targets are constructed in the ways described in Sections
4.2 and 4.3, while learning the final output y(n + 1) we can not assume that
z(n) was learned with enough precision. Thus it would make more sense first
to train z(n) for the auxiliary target ztarget(n) and for training y(n + 1) feed the
actual value of z(n) back to the reservoir instead of unrealistic ztarget(n). This,
as already discussed, training of ESNs with auxiliary outputs should be done in
stages, where a subset of auxiliary or final outputs is trained at a time. There is
still an open question, however, what signals should be fed back from the outputs
that have not been trained. Possible answers to this question could be:

• Optimistically use the teacher signal;

• Use pure noise, making the learning process avoid influence of the feedback;

• Use a mixture of teacher and noise, which could imitate an imperfectly
learned target (the optimal proportion of the two would also be an open
question);

• Zero feedback signals.

Which option is best to use, depends on each concrete case.

6 Datasets Used for Numerical Simulations

Let us at this point briefly introduce the time series which we used to run sim-
ulations and empirically test the ideas discussed in this report. The four time
series described here are roughly in the order of increasing difficulty to learn for
the classical ESNs.
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6.1 Lorenz Attractor

We used a Lorenz chaotic attractor [Lorenz, 1963] as a representative of a chaotic
time series prediction task in our simulations. ESNs are famous for their record-
breaking performance on this type of tasks [Jaeger and Haas, 2004].

The series is governed by a three-dimensional differential equation

ẋ = σ(y − x),

ẏ = x(ρ− z)− y, (20)

ż = xy − βz,

with the original Lorenz’ parameters σ = 10, β = 8/3, and ρ = 28. In our
experiments we only use the x coordinate as a one-dimensional (Nu = 1) time
series. We generated the time series x(n), by solving the differential equation (20)
discretized with a time step size 0.01, and discarding every second time step, which
in effect gave an approximate solution with a discretization rate 0.02.
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Figure 4: A fragment of the Lorenz data series.

Using this dataset ESNs where trained to predict it one time step ahead, i.e.
u(n) = x(n) and ytarget(n) = x(n + 1), where x is from (20). The length of the
generated time series was 5000, with 1000 time steps dedicated to the initial run,
2800 for training, and 1200 for testing. The data set was normalized to have zero
mean and standard deviation equal to one before using it.

A fragment of the Lorenz dataset is presented in Figure 4.

6.2 Laser Dataset

As a representative of a real world chaotic time series we used a continuation of the
Laser data series, which was originally presented in the 1994 Santa Fe time series
prediction competition [Weigend and Gershenfeld, 1994]. The data was recorded
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Figure 5: A fragment of the Laser data series.

in a physics laboratory experiment, using an oscilloscope to measure a chaotically
pulsating intensity of a laser.

Predicting this time series is a difficult task for several reasons [Jaeger and Haas, 2004].
The most important one is that the time series has to bee predicted on two different
time scales. One is the local oscillation prediction, and the other is predicting the
breakdown events of this oscillation. The hardest part of this prediction is catch-
ing the correct phase of the oscillations after a breakdown [Jaeger and Haas, 2004],
which is hard even using the continuation of the original task (i.e. having a longer
training series with several breakdown events).

Conventional ESNs can perform well on this task [Jaeger and Haas, 2004], but
finding suiting parameters for the training is highly involving [Jaeger, 2007].

As with the Lorenz data set, we used it for training on one time step prediction
task, and again used the first 5000 time steps of the continuation of the series with
1000 time steps dedicated to the initial run, 2800 for training, and 1200 for testing.
The data set was normalized to have zero mean and standard deviation equal to
one before using it.

A fragment of the Laser dataset is presented in Figure 5.

6.3 Synthetic Temporal Pattern Recognition Dataset

As a representative of a temporal pattern recognition task we used a synthetically
generated dataset as the one described in [Lukoševičius et al., 2006], but having
no time warping. We started out from data that combined a red noise (a [−0.5, 0.5]
uniformly distributed white noise with filtered-out 60% of its higher frequencies)
background signal g(t) with smoothly embedded random short target sequences
p(t) with a similar frequency makeup. Smooth continuous-time signals of this kind
were produced, and then discrete-time samples were drawn (the above mentioned
frequency makeup corresponds to the discrete-time signals). We did a recognition
of only one pattern (i.e. Ny = 1), as recognition of multiple patterns would in
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essence be done independently.
More specifically, first a short (length Tp) target sequence p(t), p : [0, Tp] → RNu

was generated in the same (above described) way as g(t), g : R+ → RNu (all Nu

dimensions were generated independently). Then, in order to smoothly embed p(t)
into g(t), a windowing signal w(t) was created, where t ∈ [0, Tp], w(0) = w(Tp) = 0,
and w(t) gently rises to 1 after t = 0 and smoothly falls again to zero level at t = Tp.
w(t) was made by filtering a trapezoidal window signal with the same low-pass
filter which was used to produce g(t) and p(t), so that w(t) would not introduce
any new (high) frequencies. Then the input signal u(t) was produced by smoothly
embedding p(t) into g(t) at random positions ti, where i ∈ N, and (ti+1 − ti) ∈
(Tp, 3Tp) is a uniformly distributed random variable with a mean value 2Tp. At
each ti the embedding of p(t) was u(ti + t) = (1−w(t))g(ti + t) +w(t)p(t), where
t ∈ [0, Tp]. The (1-dimensional) desired output signal ytarget(t) was constructed
by placing Gaussian bumps centered at the time points ti + Tb on a background
zero signal. The height of the bumps is 1 and the width roughly corresponds to
the average width of the main lobe of the autocorrelation of p(t). The reason for
choosing the form of the bumps in this way is that both pattern and background
signals are smooth and smoothly embedded into each other, moreover they are
decimated later on, which makes identifying a sharp position with a sharp 0-1
identification signal hard and not practical. The position of appearance of the
bump Tb was chosen after some experimentation, to make it as easy to learn for
ESNs as possible. This is important since we are going to use this series for training
predicting feedbacks (discussed in Section 4.2) and bumps being easier to learn in
other than their original locations could distort the evaluation of usefulness of the
method in general.

4050 4100 4150 4200 4250 4300 4350 4400
−0.2

−0.1

0

0.1

0.2
Pattern Dataset

time n

Input u1(n)
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Figure 6: A fragment of the Pattern data series.

The above described continuous time signals were modeled in Matlab by a
cubic interpolation of the signals having a six times higher discretization rate, and
in some sense stood for the underlying generating process u(t), where t ∈ R+.
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Discrete time observations u(n) of the process u(t) were drawn as u(n) = u(τ(n)),
where τ : N → R+ is a discretization function. In the obtained signals u(n) a
time interval Tp corresponds to 20 time steps, placement of the teacher bumps Tb

corresponds to 17 time steps, and u(n) has (as mentioned before) on average 40%
of its lower frequencies present. Smooth embedding, and discretization mean that
different instances of p(t) may differ considerably in u(n). This, together with p(t)
being short and having similar statistics and spectrum as u(t), make this a hard
recognition task.

A fragment of the Pattern dataset with only one dimension of the input and
ztarget(n) scaled down by 0.2 is presented in Figure 6.

Since the shape of the pattern p(t) has good chances to be almost exactly
repeated in the background signal g(t), the level of difficulty of the task depends
on the number of inputs Nu. The more inputs we have the less the chances are,
that the background g(t) will resemble the pattern p(t) in all the Nu dimensions
at the same time. We chose Nu = 4 for most our experiments as an intermediate
level of difficulty.

We used the same length of the signal as for the other two datasets already
discussed: 1000 time steps for initialization, 2800 for training and 1200 for testing.

6.4 An Example of a Particularly Hard Task for ESNs

Despite the above mentioned advantages of the ESN training scheme, for some
hard problems learning weights of only one output layer is simply not enough.
Even though it is possible to use reservoirs of a very big size, they are still finite,
and randomly wired pools of neurons might not provide rich enough dynamics of
the input echoes so that they could be linearly combined into good approximation
of the target signal.

Recently some attention has been payed to an alternative approach to online
training, called Fixed Weight Neural Networks (FWNNs) (e.g. [Prokhorov et al., 2002]
and [Santiago, 2004]). FWNNs are recurrent neural networks (RNNs) which, after
training, have the ability to adapt to the changes of the generating process with-
out further change of connection weights. The idea was first presented in 1990
by N. Cotter and R. Conwell [Cotter and Conwell, 1990]. The authors proposed
and proved the Fixed Weight Learning Theorem (FWLT) which describes how
a fixed-weight recurrent neural networks can approximate with arbitrary preci-
sion the dynamics of a feedforward neural network being trained with an adaptive
weight learning algorithm, taken both FFNN and the algorithm as one dynamical
system. The theorem applies to most networks and learning algorithms in use.
They concluded from the theorem that a system which exhibits learning behav-
ior may exhibit no synaptic weight modifications and demonstrated this idea by
transforming an online error backpropagating feedforward network into a fixed
weight RNN system. The idea of fixed weight learning is also sometimes referred
to in the literature by sounding names of “learning to learn” or “metalearning”.
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Figure 7: A fragment of the FWL data series.

One concrete formulation of a synthetic fixed weight learning problem which is
quite popular in the literature [Prokhorov et al., 2002] [Santiago, 2004] is learning
to approximate the parametrized quadratic equation

ytarget(n) = ax1(n)2 + bx2(n)2 + cx1(n)x2(n) + dx1(n) + ex2(n) + f, (21)

where a, b, c, d, e, f, x1(n), x2(n) ∈ [−1, 1]; the inputs x1(n) and x2(n) are ran-
domly chosen over a uniform distribution at each time step n, and the parameters
a, b, c, d, e, f are chosen from the same distribution but change only every Th time
steps. The task at each time step n is to predict the value of ytarget(n) from the
given input u(n) = {x1(n), x2(n), ytarget(n − 1)}. Classical ESNs perform poorly
in this task [Jaeger, 2007], thus it is interesting to have more details on why it is
so, and how the performance could be improved.

A fragment of the fixed weight learning dataset with only x1(n) and a(n)
representing the input is presented in Figure 6. The signals are spread apart here
for more visual clarity, in reality they all have zero mean.

As with other datasets we used 1000 time steps for initialization, 2800 for
training and 1200 for testing. The period of changing the hidden parameters Th

was set to 50. Each first 25 time steps after changing the hidden parameters were
discarded from training to improve the performance, since it is not possible to
find out the new parameters instantly (we need at least 7 time steps to deduce
a, b, c, d, e, f from x1(n), x2(n), and y(n− 1)).

This data set is the only one at hand, for which the ideas of context identifying
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feedbacks discussed in Section 4.1 are relevant. See Section 7.3 for the analysis of
ESN performance with this dataset.

7 Some Empirical Results

In this section we will present some empirical results testing out some of the
options for feedback targets discussed in Section 4 on the datasets presented in
Section 6, using the techniques for training discussed in Section 5.

7.1 Predictive Feedbacks

Figure 8 presents testing and training NRMS errors and their standard deviations
of learning Pattern recognition with ESNs having a different number Nz of pre-
dictive feedbacks z(n) ∈ RNz trained on ztargeti(n) = ytarget(n + i), i = 1, · · · , Nz.
The ESN had N = 200 units, spectral radius ρ(W ) = 0.8, reservoir connectiv-
ity 0.1, Win chosen randomly from [−2, 2], Wofb and Wafb chosen randomly from
[−0.25, 0.25]. Both y(n) and z(n) are linear outputs. The outputs were trained one
by one in Nz+1 iterations, in a sequence zNz(n), · · · , z1(n), y(n). As a feedback for
each already trained output the real signal was used, and for each not yet trained
output its teacher signal with added [−0.0025, 0.0025] noise was teacher-forced.
The figure presents NRMS errors for training and testing data with their mean
values and standard deviations computed over 20 different random initializations
of the ESNs. Each of the 20 randomly generated reservoirs was reused with all
the numbers Nz of auxiliary feedbacks ranging from 0 to 15.

The results show, that predictive feedbacks can improve the performance of
ESNs in this type of tasks considerably and consistently. Up to a certain point
(Nz = 8), the more predictive feedbacks we use, the better the result gets, both
in training and testing. Later the performance starts degrading, which could be
attributed to the imprecisions of the too-early predictions.

Figure 9 presents testing and training NRMS errors and their standard de-
viations of intermediate z(n) and final y(n) outputs of ESNs having Nz = 15
predictive feedbacks from the same simulations as in Figure 8. They are again
averaged over 20 different ESNs. This graph not surprisingly shows that the
more time steps ahead a feedback is predicting, the less precision it has. This
can be attributed to two factors. One is the fact that long-distance prediction is
more difficult due to the smaller amount of relevant information available, in fact
zNz(n) = z15(n) is trying to predict the appearance of the trainer bump 16 time
steps ahead in time, while the center of the bump is only Tb = 17 time steps after
the pattern is starting to smoothly appear in u(n). No wonder its NRMS error is
almost 1. The second factor is the sequence in which the outputs were trained.
Outputs trained more recently have less feedbacks teacher-forced and more real
feedback signals, thus a smaller uncertainty in the reservoir dynamics during the
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Figure 8: The effect of output predicting feedbacks on performance with Pattern
dataset.

process of training. Very low accuracy of the longest-distance predicting feedbacks
could explain the degrade of performance in Figure 8, when Nz is too big.

The parameters of the ESN are not optimized here using any automated tech-
nique. Due to the stochastic nature of ESNs, and the number of parameters that
could be adjusted, we would need to run massive numerical simulations to ensure
that they are optimal. Finding good parameters for such performance is not very
trivial and requires some manual exploration. A common problem is that the
dynamics of the reservoir become unstable, i.e. go to extremes if due to amplifica-
tion through the feedbacks. One needs to find a good combination of scaling the
feedback weights (Wofb and Wafb), and noise in the teacher and the units of the
reservoir (which has an effect of increasing the stability of the trained dynamical
system). On the other hand, applying such measures as noise usually hurts the
performance. A good balance here is not always easy to find and as a matter
of fact in quite some cases we fail to come up with a setup which is stable and
outperforms the conventional ESNs.

We have also tried predicting input as the auxiliary targets for the Pattern
dataset ztarget(n) = u(n+ 1), but this does not seem to be an easy task to learn.

Experiments with predicting the Laser dataset in the same pre-predicting setup
as with the Pattern data above led to a bit less impressive but still good perfor-
mance, which is presented in Figure 10. The results are averaged over 20 different
random reservoirs of ESN, reusing every reservoir for all the the different Nz.
The ESN had N = 500 units, spectral radius ρ(W ) = 0.8, each unit was on
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Figure 9: Accuracy of the learned predictive feedbacks with Pattern dataset.

average connected to 48 others, Win chosen randomly from [−0.8, 0.8], Wofb and
Wafb chosen randomly from [−0.003, 0.003]. Both y(n) and z(n) are linear out-
puts. The outputs were trained one by one in Nz + 1 iterations, in a sequence
zNz(n), · · · , z1(n), y(n). As a feedback for each already trained output the real
signal was used, and for each not yet trained output its teacher signal with added
[−0.225, 0.225] noise was teacher-forced.

As it can already be guessed, achieving a stable behavior with the Laser dataset
was significantly harder than with the Pattern dataset, so we had to scale down
Wofb and Wafb and to introduce quite heavy noise in the teacher forcing. This also
has its negative effect in the performance: we can observe bigger deviations and
also the gain in performance with increasing Nz is sooner surpassed by increasing
negative effects of the feedbacks. A bigger testing and training error spread here
is due to the nature and the length of the dataset. The model does not learn well
how to predict the breakdowns in the testing data, as discussed in Section 6.2.

Figure 11 presents testing and training NRMS errors and their standard de-
viations of intermediate z(n) and final y(n) outputs of ESNs having Nz = 15
predictive feedbacks from the same simulations as in Figure 10. They are again
averaged over 20 different ESNs. The error Ezi

is again increasing with i, as in the
Figure 9 for the similar reasons. The waviness of the graph can most probably be
attributed to the oscillations in the original signal, since they both have the same
period equal to approximately 7.5 time steps. It is apparently slightly easier to
predict the signal this number of time steps ahead.

Figure 12 presents testing and training NRMS errors and their standard devia-
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Figure 10: The effect of pre-predicting feedbacks on performance with Laser
dataset.

tions of learning the Lorenz attractor prediction task by ESNs having no predictive
feedbacks and having a single one trained in ztarget(n) = ytarget(n + 1). The ESN
had N = 500 units, spectral radius ρ(W ) = 0.7, each unit was on average con-
nected to 10 others, Win chosen randomly from [−1, 1], Wafb chosen randomly
from [−0.4, 0.4], Wofb = 0, biases of the reservoir units randomly chosen from
[−1.1, 1.1], a white noise from the interval [−5 · 10−9; 5 · 10−9] added to the reser-
voir activations x(n) during the training run, and white noise from the interval
[−1.25 · 10−7; 1.25 · 10−7] added to the teacher forcing signal ztarget(n). Both y(n)
and z(n) are linear outputs, that were trained using the refined version of the
matrix pseudoinverse based regression, presented in Page 16. As in previous cases
the results are averaged over 20 different ESNs.

As one can see from the parameters used, it took a very fine tuning of noise
levels to achieve the stability of the ESN with auxiliary feedbacks, not sacrificing
much of its fine accuracy on this task. This stability, however, was achieved for
only one auxiliary feedback. Extensive simulations were also run with several
predictive feedbacks trying to fine-tune noise levels in the teacher-force signals
individually for each feedback, but in all simulations the average performance
degrades drastically (NRMS error � 1) as some of the feedbacks start working in
the generative mode.

We did not apply the output or error predicting feedbacks to the fixed weight
learning task, because they are impossible to predict without knowing the next
input.
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Figure 11: Accuracy of the learned predictive feedbacks with Laser dataset.

7.2 Error Predicting Feedbacks

We have conducted numerous simulations with the Pattern, Laser and Lorenz data
sets using the error predicting feedbacks as discussed in Section 4.3. We have tried
out a wide range of parameter settings and used linear readouts z(n) predicting
error of linear y(n) readouts, MLP readouts z(n) (with different number of layersm
and different numbers of units per layers) predicting the error of a linear readouts
y(n), and also MLP readouts z(n) predicting error of linear readouts y(n). We
used both regular MLP training by stochastic gradient descent and the same one,
but doing a linear regression on MLP’s output weights, as discussed in Section 5.3.
We experimented with different scalings of the error signals (as ztarget(n) targets)
and feedback weights Wafb, tried recursive “error prediction of error prediction”
schemes. None of the combinations however exhibited consistently (i.e. averaged
over many runs) good results. The feedbacks did not produce a clearly observable
improvement and in addition caused frequent outlier divergent behavior.

We also implemented MLP training of z(n) on maximizing the correlation
between the error (of y(n)) ztarget(n) and z(n) as in (15), but this method is
hard to tame since it tends to produce outputs of hardly predictable amplitude.
Applying the original cascade correlation networks [Fahlman and Lebiere, 1990] as
the readout mechanism from the ESN reservoir would, however, be an interesting
approach which we have not tried (as it is a bit too far from the scope of the
thesis).

One of the reasons why this does not work is, as already pointed out in Section
4.3, that the errors are indeed hard to learn. Even if the task is not hard for
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Figure 12: The effect of pre-predicting feedbacks on performance with Lorenz
dataset.

regular ESNs, y(n) will model most of this task and the error ytarget(n)− y(n) will
still become very hard to model, even if z(n) is using a different kind of readout.
This way the ESN is “stepping on its own toes”, so to say.

Another major difficulty is teacher forcing. Not only it is problematic because
the targets ztarget(n) get badly learned, but also because of the negative cross-
dependencies of the signals: training one feedback immediately invalidates all the
assumptions (in the form of teacher-forcings) that other feedbacks had about it. If
we successfully model the error, it disappears, thus invalidating our assumptions
about its existence and consequently making our modeling unsuccessful again.
These negative cross-dependencies can not be eliminated by increasing the noise
in teacher forcing signals (as it is possible in some cases), because this noise will
propagate to the errors ztarget(n), resulting in feedbacks z(n) trained on it resulting
even more noise.

All in all the error predicting feedbacks turned out to be not a viable approach
in practice.

7.3 Analysis of ESNs Applied to the Fixed Weight Learn-
ing Task

In this chapter we will present an analysis of the reasons why ESNs perform badly
in the fixed weight learning (FWL) task as presented in Section 6.4. We will
provide some insight on why this problem is in particular hard for ESNs, and by
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that characterize a whole class of problems for which ESNs are not well suited.
The fixed weight learning task is a good example of a generating process with a

changing mode. As discussed in Section 4.1 and shown in [Santiago, 2004], learning
some kind of representation of the six hidden parameters a, b, c, d, e, f of (21)
is an essential sub-task of FWL. Thus a natural candidate for intermediate target
ztarget(n), when trying to solve this task using ESNs, would be finding out the
context of the system, i.e. some kind of a representation of the hidden variables.
The network can hopefully infer them from the given sample input and teacher
output values, the way that online learning does implicitly. It is interesting how
(and if) learning intermediate feedbacks could improve the performance. In this
case SFA discussed in Section 4.1 would not be a good choice for extracting the
context represented by the parameters a, b, c, d, e, f , since they don’t change slowly,
but rather infrequently and sharply. We don’t know a good method which could
do this without directly employing the exact knowledge of the process (21) (the
latter is done in [Santiago, 2004]), but we can try training auxiliary feedbacks with
ztarget(n) = (a, b, c, d, e, f)T directly. If going for a benchmark of the method, this
would amount to cheating, since the parameters should be unknown, but in our
case it is interesting to test the benefit of intermediate feedbacks for ESNs.
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Figure 13: Performance of learning hidden FWL parameters using classical ESN.

Our simulations show (Figures 13 and 14), however, that even learning {a, b, c, d, e, f}
as z(n) having input u(n) = {x1(n), x2(n), ytarget(n − 1)} from (21) is a difficult
task for ESNs. On the other hand, even having {a, b, c, d, e, f} as part of the input
u(n) = {x1(n), x2(n), a, b, c, d, e, f} (which is analogous to assuming that they are
perfectly learned as z(n− 1)), learning ytarget(n) proved to be a very hard task for
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Figure 14: Performance of learning hidden FWL parameters using ESN with MLP
readouts.

ESNs.
Let us take a closer look at the latter task. Here u(n) provides the complete

information needed to calculate ytarget(n) as in (21). Thus this is in essence no
longer a temporal problem and the learning model does not need to have any mem-
ory. Having memory in fact is harmful here, because the inputs x1(n), respectively
x2(n) are statistically completely independent from x1(n−k), respectively x2(n−k)
for any k, thus any form of memory of these inputs from any previous time step
(n − k) can only disturb the calculation of current y(n). A similar observation
is also true for the rest of the input {a, b, c, d, e, f}, because it changes randomly
as well on transition from one data interval to another (thus memory is again
harmful), and remembering any form of them within an interval does not provide
any additional useful information. In addition to having no memory, the learning
model should also be able to approximate a highly nonlinear function (21).

A good candidate for such a model would be a FFNN (or MLP as a special
case). ESN in this context possess just about the opposite properties. It in-
trinsically has memory (i) and can not learn to approximate a difficult nonlinear
function within a single time step (ii). The property (ii) comes from the fact, that
if we want the information from the input of ESN to propagate through a series
of k reservoir units (1) before reaching the output (which is needed for a difficult
nonlinear mapping and in some sense corresponds to a k-layered perceptron), we
need to wait for k time steps for this to happen. However, if we postpone the
expected output by k time steps (i.e. u(n) corresponds to ytarget(n + k)), we get
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an even worse result due to the increased interference between time steps (i.e.
memory, as discussed above). An optimal ESN for this task with respect to (i)
should have no connections within the reservoir at all, i.e. ρ(W ) = 0 – no mem-
ory. Thus we would in essence no longer have an ESN, but a FFNN with one
randomly generated hidden layer (“reservoir”) and one learned output layer. Our
empirical simulations (not reported here) confirmed that such a setup gives the
best performance.

One viable approach of adapting ESNs to this task might be to let it run for
several time steps with each input data point u(n). Another approach which we
have investigated is presented in Section 8.

8 Layered ESNs

In the context of adapting ESNs to FWL discussed in Section 7.3, we tried out a
modification of ESNs, which we call layered ESNs (LESNs). The idea of LESNs
is to let the information propagate through more than one “layer” of units in the
reservoir during one time step. For this we randomly divide the reservoir into k
roughly equal subsets, which we call layers, Li, i = 1, · · · , k (NLi

= |Li| ≈ N
k
)

and update one layer after another within a single time step. So in contrast to
updating the whole reservoir at once as in (1), we update it layer by layer:

xLi
(n+ 1) = f(WinLi

u(n+ 1) +WLi
x(n, i) +WofbLi

y(n)), i = 1, · · · , k, (22)

where WLi
∈ RNLi

×N are the weights of connections from all the reservoir to the
units of layer i, and x(n, i) is the activation state at the time step n and the
moment of updating layer i (i = 1, · · · , k can be seen as minor time steps within
a major time step n), defined by

x(n, i) = [xL1(n+ 1)| · · · |xLi−1
(n+ 1)|xLi

(n)| · · · |xLk
(n)], (23)

i.e. when layers L1, · · · , Li−1 have already been updated. In this way information
propagates through the reservoir connections going from Li to Lj, where i < j
within a single time step. This is illustrated in the Figure 15. The LESN on the
right hand side is produced by dividing the reservoir of the classical ESN on the left
into tree equal-sized layers. The thin dark arrows indicate connections through
which previous activations x(n − 1) are propagated at a time step n, and bold
arrows show connections, which use current (time step n) signals. The bold arrows
on the right appear as the result of the division of the reservoir into layers (23)
and graphically are the connections that cross any of the two boundaries between
layers going from left to right. In this section we will refer to the connections as
bold if they propagate information from activations x(n) to x(n) (in contrast to
other connections that propagate information from activations x(n− 1) to x(n)).

Because of the fact that the layers are equally-sized, the number of connections
between any two layers is on average the same. Thus it is not hard to show that
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Figure 15: The difference between updating a classical ESN and a Layered ESN
(LESN).

having k layers on average M
k k−1

2

k2 = M k−1
2k

connections out of M will become
bold. In the limiting case where the number of layers k approaches the size of the
reservoir N, on average nearly half of all the connections will become bold.

Classical ESNs can be seen as a special case of LESNs having only a single
layer k = 1. Readout (and feedback) mechanisms for LESNs can be chosen from
all the same options as for classical ESNs. It is obvious, that bold connections can
only form a graph without cycles.

The effect of increasing the number of layers k (and thus the number of bold
connections) is that at a time step n less information from the time step n − 1
is preserved (a smaller amount of memory) and we get a more nonlinear and rich
random representation (“echoes”) of the current input u(n) in x(n). Thus LESNs
could perform better than ESNs in the tasks where these properties are beneficial.

Testing this approach on the original FWL task (having “no knowledge” about
the hidden parameters), however did not exhibit an improvement. Figure 16
presents testing and training NRMS errors and their standard deviations when
applying ESNs with different number of layers k on the Lorenz dataset, averaged
over 20 randomly generated reservoirs. The LESN (no auxiliary feedbacks) had
N = 500 units, spectral radius ρ(W ) = 0.92, each unit was on average connected
to 10 others, Win chosen randomly from [−1, 1], Wofb set to 0 and y(n) being a
linear output. These parameters were manually tunned to give a best observed
performance on the data set with a classical ESN.

The reason why layers of the reservoir did not improve the performance is
most probably that not any nonlinear representations of the input are needed, but
but very specific ones. Thus a multilayer RNN with random weight connections
between the layers is not providing a good basis for solving this problem by a
linear combination.
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Figure 16: The effect of ESN layers on performance with the Fixed Weight Learn-
ing dataset.

LESNs, nevertheless, as a way of biasing the input representations in the reser-
voir to the properties mentioned above proved to be a viable method for some
problems. Figure 17 presents testing and training NRMS errors and their stan-
dard deviations when applying ESNs with different number of layers k on the
Laser dataset, averaged over 100 randomly generated reservoirs. The LESN (no
auxiliary feedbacks) had N = 500 units, spectral radius ρ(W ) = 0.7, each unit
was on average connected to 12 others, Win chosen randomly from [−0.02, 0.02],
units had a bias values randomly ranging in [−1.6, 1.6] (in contrast to normal, and
thus omitted, [−1, 1] in other cases), Wofb set to 0, having a single layer output
with fout = tanh and (thus) the training signals scaled and shifted to [−0.76, 0.76].
These parameters were manually tunned to give a best observed performance on
the data set with a classical ESN.

In this case having five layers in the reservoir proved to be a good bias leading
to a better generalization of the ESN, i.e. modeling the testing data better even
if the training error increases.

9 Final Thoughts and Future Work

We have explored a wide range of ideas along the lines of improving performance
of ESNs by training their feedbacks. Some of them were more successful than
others. We could improve the results for all relevant datasets using output pre-
predicting feedbacks, which seem to be an almost universally viable approach for
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Figure 17: The effect of ESN layers on performance with Laser dataset.

time series prediction tasks. On the other hand, feedbacks predicting errors did
not work stably for any of our data sets, neither using feedbacks trained as linear
combinations, nor MLPs. In any case, the potential of the trained feedbacks for
empowering ESNs is undisputable and, as shown, can in effect replace training of
the internal weights of the reservoir. However, which way it can be best exploited
and what are the ultimate trade-offs (e.g. in terms of training complexity) of
gaining this power are questions that are largely yet unanswered.

In addition we have shown that for some tasks a more expressive instantaneous
mapping is required than classical ESNs can provide. It can not be implemented
by just adding trained feedbacks, as they come into effect only in subsequent time
steps. The proposed Layered ESNs is an attempt toward this direction, however
the space of possible functions that the multilayer network can implement is too
vast to be sufficiently “covered” by the random weights. Thus some other methods
of reservoir pre-adaptation should be used here.
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