
A Framework for Defining
Declarative Languages

by

Feryal Fulya Horozal

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

in Computer Science

Approved, Thesis Committee

Prof. Dr. Michael Kohlhase, Jacobs University Bremen (Chair)

Prof. Dr. Dieter Hutter, Bremen University

Prof. Dr. Herbert Jäger, Jacobs University Bremen

Prof. Dr. Till Mossakowski, Otto-von-Guericke University of Magdeburg

Prof. Dr. Carsten Schürmann, IT University of Copenhagen

Date of Defense: November 14, 2014

Engineering and Science

Statutory Declaration

I, Feryal Fulya Horozal, hereby declare that I have written this PhD thesis indepen-
dently, unless where clearly stated otherwise. I have used only the sources, the data and
the support that I have clearly mentioned. This PhD thesis has not been submitted for
conferral of degree elsewhere.

The main research problems addressed by this work stem from close collaboration with
the members of the LATIN project [KMR09, CHK+11], in particular, with Florian Rabe,
Michael Kohlhase, Till Mossakowski and Mihai Codescu.

Parts of this thesis are based on or closely related to previously published mate-
rial or material that is prepared for publication at the time of this writing. These
are [HR11], [HR12], [HKR12] and [HRK14].

Bremen, 31.08.2014

Abstract

Declarative languages are an important family of formalisms used for formal knowledge
representation in computer science. Examples include logics, type theories, set theories,
specification languages and ontology languages. Despite the vast variety of declarative
languages, they share a common structure: A possibly infinite collection of theories, which
are sets of declarations, and a set of well-formed expressions over each theory. In fact, we
can use this common structure as the defining characteristics of declarative languages.

Logical frameworks are abstract formalisms that have been introduced for representing
declarative languages and for studying their properties. In particular, they can be used
to relate and combine different declarative languages. A key challenge in designing logical
frameworks is that they should be capable of generalizing concepts, algorithms and the-
orems about declarative languages while using as simple and yet expressive primitives as
possible.

Abstract logical frameworks, such as institutions, work with abstract categories. This
has the advantage that the framework is independent of the structure of the particular
declarative language; thus theory-related concepts such as model classes and satisfaction
can be formulated generically.

Declarative logical frameworks, such as LF, on the other hand, represent each individ-
ual theory of a declarative language as a theory of the framework. This makes it easy to
provide generic tool support for concrete theories. However, they do not have an abstract
concept to represent the infinite collection of theories, and therefore, they cannot reason
about or operate on arbitrary theories.

This PhD thesis contributes to the design of declarative logical frameworks that bal-
ances the trade-off between abstract and concrete representations. In particular, we iden-
tify a new feature that can be added to a declarative framework as a language primitive:
declaration patterns. The main idea behind this feature is to capture the common structure
of the theories of declarative languages.

More precisely, we exploit the observation that theories consist of a list of declarations
each of which must conform to one out of a few patterns fixed by the declarative language.
For instance, first-order logic has three such patterns: one each for the declaration of
(i) function symbols, (ii) predicate symbols and (iii) axioms. We reify declaration patterns
as a language primitive for declarative logical frameworks. While frameworks like LF focus
on defining the logical symbols and the expressions, declaration patterns characterize the
legal declarations of non-logical symbols by specifying their syntactic shape. Declaration
patterns also prove crucial for language translations. We introduce a notion of pattern-
based translation, which maps legal theories of one declarative language to legal theories
of the other language.

We introduce these novel notions in a calculus-based meta-framework for defining
declarative languages and translations between them. Our meta-framework is independent
of the underlying declarative logical framework and can be instantiated with specific logical
frameworks like LF. In particular we develop a new declarative logical framework LFS (LF
with sequences) that supports sequences and dependent function spaces that take sequence
arguments. LFS proves very useful for defining mathematical operators of flexible arity
and ellipses, which we need for writing down the declaration patterns of most declarative
languages. We apply and evaluate our pattern-based approach in an atlas of declarative
languages, which includes various logics ranging from traditional first-order logic to more
complex languages such as polymorphic higher order logic.

iii

Acknowledgements

Hereby I would like to thank my supervisor, Michael Kohlhase, for providing me with
a challenging and inspiring research topic and for making it possible for me to pursue it
in a very friendly atmosphere in his research group. I am most grateful to him for giving
me the freedom to explore different ideas and for his continued encouragement, advice,
patience and support in every stage of my thesis.

I am profoundly indebted to Florian Rabe, whose expert insights and guidance have
been crucial in shaping my path to achieve this work. I am very grateful to him for the
time he spent working with me and sharing with me his knowledge and ideas.

I am particularly thankful to Till Mossakowski and Carsten Schürmann for the very
productive discussions with them and for their valuable feedback, as well as to all my
colleagues and the students in the KWARC group at Jacobs University Bremen and the
LATIN project.

I would like to give my special heartfelt thanks to Andrea Kohlhase, not only for being
a very kind and supportive colleague, but also for her sincere friendship and for being
there for me at difficult times, supporting me very lovingly, and for motivating me.

v

vi

Contents

1 Introduction 1

1.1 Declarative Languages . 1

1.1.1 Logics . 2

1.1.2 Type Theories . 4

1.2 Language Translations . 5

1.3 Extension Principles . 7

2 State of the Art 11

2.1 Logical Frameworks . 11

2.1.1 Abstract Logical Frameworks . 11

2.1.2 Declarative Logical Frameworks . 13

2.1.3 Adequacy . 18

2.1.4 Design Principles . 19

2.2 Foundation-Independent Meta-Frameworks 21

2.3 Libraries of Language Representations . 23

3 Research Problems and Methodology 25

3.1 Representing Declarative Languages . 25

3.2 Representing Language Translations . 27

3.3 Representing Extension Principles . 28

3.4 Research Objectives . 29

3.5 Methodology . 29

3.5.1 Declaration Patterns . 30

3.5.2 Sequences . 30

3.5.3 Modular Foundations . 31

3.6 Thesis Outline . 31

4 Modular Foundations 33

4.1 Syntax . 33

4.2 Type System . 35

4.3 Examples . 37

4.4 Modularity . 41

4.5 Discussion . 42

5 Theory Families and Instantiations 45

5.1 Syntax . 45

5.1.1 Grammar . 45

5.1.2 Examples . 47

5.1.3 Meta-Level Definitions . 50

vii

5.2 Type System . 54
5.2.1 Judgments and Rules . 54
5.2.2 Preservation of Judgments . 58

5.3 Discussion . 75

6 A Logical Framework with Sequences 77
6.1 Sequences . 77

6.1.1 Syntax . 77
6.1.2 Type System . 80
6.1.3 Conversions . 84

6.2 LF with Sequences . 85
6.2.1 Syntax . 85
6.2.2 Type System . 87
6.2.3 Conversions . 87
6.2.4 Stand-Alone Version . 90

6.3 Discussion . 91

7 Declarative Languages and their Translations in TFI 95
7.1 Representing Declarative Languages . 95
7.2 Representing Language Translations . 100
7.3 Induced Languages and Translations . 104
7.4 Discussion . 105

8 Extension Principles in TFI 107
8.1 Representing Extension Principles . 107
8.2 Translating Extension Principles . 111
8.3 Discussion . 112

9 An Atlas of Declarative Languages 113
9.1 Declarative Languages . 114

9.1.1 Propositional Languages . 114
9.1.2 Single-Typed Languages . 115
9.1.3 Many-Typed Languages . 118
9.1.4 Polymorphic Languages . 120

9.2 Language Translations . 122
9.2.1 Embeddings of Weaker Languages 122
9.2.2 Semantics . 127

9.3 Extension Principles . 128
9.4 TPTP Languages . 130

9.4.1 Overview . 130
9.4.2 TPTP in a Logical Framework . 131

10 Conclusion 133
10.1 Summary . 133
10.2 Applications . 134
10.3 Future Work and Directions . 134

viii

Chapter 1

Introduction

Formal methods is the field of formal specification and verification of software and hard-
ware systems. Based on various mathematical and logic-based techniques, formal methods
have been successfully applied in several real-world verification tasks ranging from the
verification of processors and traffic systems to security protocols. Such verification tasks
are often highly complex and typically require more than one specific formal method to
capture the different aspects of the task. For that purpose, a wide rage of highly special-
ized computer systems have been developed including (semi-)automated theorem provers,
model-checkers, constraint-solvers, computer algebra systems and concept classifiers, each
of which is based on a specific underlying formalism for formal knowledge representation.

In this chapter, we give an introduction to declarative languages — a group of
formal knowledge representation languages, which are used pervasively in formal methods
and also increasingly in mathematics.

1.1 Declarative Languages

Typically, a declarative language is defined in two steps: i) The theories of the language
are defined, ii) the expressions of the language over a given theory are defined.

In the first step, we observe that theories almost always have a common structure:
They are a list of declarations that introduce new symbols. Moreover, each symbol dec-
laration in a theory conforms to a certain pattern that is determined by the declarative
language. Function symbols, predicate symbols, type operators, judgments, axioms, the-
orems, inference rules are some examples of such patterns. To capture this, we introduce
the concept of declaration patterns in this thesis. Then, theories arise by combining
different instances of declaration patterns. In fact, we can use this property as the defining
characteristics of declarative languages.

In the second step, the expressions are usually defined via a formal grammar. This
generates all possible expressions over a theory including some which might not make sense
semantically. An inference system is often used to sort the well-formed expressions out
from all expressions generated by the grammar.

It is the structure of declaration patterns and their instances that we are interested in
this thesis. To fortify our intuition, we will look at different types of declarative languages,
as illustrated in figure 1.1, and introduce their declaration patterns. In the following
sections, we will elaborate on two different kinds of declarative languages: logics and type
theories.

1

Theory Expressions Patterns

Logics Theory
Terms Functions
Sentences Predicates
Proofs Axioms

Type Theories Signature
Terms

Types
Types

Constants
Kinds

Figure 1.1: Declarative Languages, their Theories and Patterns

1.1.1 Logics

Logics are declarative languages that are used to model domains that involve truth and
consequence. The vocabulary of a logic consists of a fixed set of logical symbols, an infinite
set of variables, and an extensible set of non-logical symbols that are introduced in the
theories of the logic. Here, we regard the axioms in a logic as special symbols introduced
in the theories of that logic.

We now fortify our intuition by giving individual logics as examples.

First-Order Logic First-order logic (FOL) is a declarative language whose logical sym-
bols are >,⊥,¬,∧,∨,⇒,∀,∃, and non-logical symbols are function symbols f1, f2, . . . of
arity n and predicate symbols p1, p2, . . . of arity n for n = 0, 1,

Definition 1.1 (First-Order Theories). A first-order theory Σ is a set of declarations that
introduce

• n-ary function symbols f

• n-ary predicate symbols p

• axioms F .

Definition 1.1 defines the theories of FOL by precisely describing the form of the symbol
declarations allowed in them. The three bullets above are the declaration patterns of FOL.

Definition 1.2 (First-Order Expressions). The grammar of FOL over a FOL-theory Σ is
as follows:

Formulas F ::= > truth
⊥ falsity
¬F negation
F ∧ F conjunction
F ∨ F disjunction
F ⇒ F implication
∀x. F universal quantification
∃x. F existential quantification
p(t1, . . . , tn) atomic formulas p ∈ Σ
t1 = t2 equality

Terms t ::= x variables
f(t1, . . . , tn) function application f ∈ Σ

2

where the arity of f is n and the arity of p is n for any natural number n. Expressions
produced from the non-terminal F are called formulas and those produced from t are
called terms. Closed formulas are called sentences.

Note that the first-order theories are the extensible part of the vocabulary. They
extend the grammar by introducing new non-logical symbols.

An example of a FOL-theory is the theory of monoids:

Example 1.3 (FOL-Theory of Monoids). The theory of monoids in FOL declares the fol-
lowing symbols

• a binary function symbol ◦, usually written as f ◦ g instead of ◦(f, g),
• a nullary function symbol e,
• the axioms

∀x.∀y.∀z. (x ◦ y) ◦ z = x ◦ (y ◦ z)
∀x. e ◦ x = x
∀x. x ◦ e = x

for the associativity of ◦ and the neutrality of e.

Sorted First-Order Logic The vocabulary of sorted first-order logic (SFOL) has the
same logical connectives as in FOL, but the universal and the existential quantifiers take
sorted arguments.

Definition 1.4 (SFOL Theories). A SFOL-theory is a list of declarations that introduce

• sorts s,

• n-ary function symbols f over sorts s1, . . . , sn with return sort s,

• n-ary predicate symbols p over sorts s1, . . . , sn.

• axioms F .

Definition 1.5 (SFOL Expressions). The expressions of SFOL are generated by the fol-
lowing grammar:

Formulas F ::= > truth
⊥ falsity
¬F negation
F ∧ F conjunction
F ∨ F disjunction
F ⇒ F implication
∀x : s. F universal quantification
∃x : s. F existential quantification
p(t1, . . . , tn) atomic formulas p ∈ Σ
t1 = t2 equality

Terms t ::= x variables
f(t1, . . . , tn) function application f ∈ Σ

Example 1.6 (SFOL-Theory of Vector Spaces). Consider the theory of vector spaces as an
SFOL-theory with the following list of symbols is an SFOL-theory:

3

• a sort vec for the set of vector spaces,

• a sort sca for the field of scalars,

• a binary function symbol + over sorts vec, vec with return sort vec,

• a nullary function symbol 0 over sca,

and the remaining function symbols and the axioms that add i) a commutative group
of vectors, and ii) a field of scalar, which we omit here for the sake of simplicity as we
focus on the structure of the declared symbols.

1.1.2 Type Theories

Type theories typically employ a hierarchical classification of their expressions: In two-
leveled type theories, such as simple type theory, expressions are classified into terms and
types, where the relation between a term and its type is given by a typing judgment,
usually written as t : A for a term t of type A.

In three-leveled type theories, such as polymorphic type theory, expressions are classi-
fied into terms, types and kinds, where kinds are used for grouping families of types.

Simple Type Theory Simple type theory [Chu40] is a declarative language whose set
of primitive symbols consists of the symbols→, λ and @, where→ is a type constructor, λ
is a binder for function abstractions and @ is an operator for the application of functions
to their arguments.

Definition 1.7 (STT-Theories). A theory of STT is a list of declarations that introduce

• base types a,

• typed constants c of type A, where A is formed by the grammar in definition 1.8.

Definition 1.8 (STT Expressions). The expressions over a STT theory Σ are formed by
the following grammar:

Types A ::= a base types
A→ A function types

Terms t ::= x variables
c constants
λx : A. t function abstractions
t t function applications

where we simply write s t for the application @ s t.

The well-formed expressions over Σ are a subset of the expressions over Σ which is
defined by an inference system. Note that the type constructor→ is right-associative, i.e.,
A1 → A2 → A3 denotes A1 → (A2 → A3), and term application is left-associative, i.e.,
t1 t2 t3 denotes (t1 t2) t3.

4

Dependent Type Theory There are various versions of dependent type theory (Martin-
Löf type theory [ML74], LF [HHP93], calculus of constructions [CH88]). Here we use
LF [HHP93].

DTT extends STT with dependent types, allowing types and kinds to depend on terms.
The set of primitive symbols of DTT consists of, in addition to λ and @ for term abstraction
and term application, the symbol Π for dependent type construction and similarly one
symbol for type abstraction, type application and dependent kind construction. We will
use the same symbols for the type level as their analogs for the terms level.

The definition of DTT-theories and DTT-expressions have significant mutual recursion.

Definition 1.9 (DTT-Theories). A theory of DTT is a list of declarations that introduce

• type constants a of kind K, and

• term constants c of type A,

where K and A are formed by the grammar in definition 1.10.

Definition 1.10 (DTT Expressions). The expressions over a DTT theory Σ is formed by
the following grammar:

Kinds K,L ::= type kind of types
Πx : A.K kind of type families

Type Families A,B ::= a base types
Πx : A.B dependent function types
λx : A.B type abstractions
AM type applications

Terms M,N ::= x variables
c constants
λx : A.M term abstractions
M N term applications

We will visit the inference system for well-formed DTT expressions in section 4.2.

1.2 Language Translations

Analogous to the definition of declarative languages, a language translation is typically
specified in two steps: i) The translation of the theories of the language is defined, ii) the
translation of the expressions over a given theory is defined.

It is not surprising that both declarative languages and language translations have a
structural parallelism. We illustrate this in figure 1.2.

More specifically, in a translation T = (Θ, α) from language L1 to L2,

• a function Θ that translates each theory Σ of L1 to a theory Θ(Σ) of L2, and

• a family α of functions αΣ indexed by theories Σ, which translate each expression
E over a theory Σ of L1 to an expression αΣ(E) over the theory Θ(Σ) of L2.

In particular, each production in the grammar for the formation of expressions cor-
responds to one case in the expression translation function αΣ and to one case in the
inductive proof of judgment preservation.

Recall the definitions of FOL and SFOL from section 1.1.1. A translation from SFOL
to FOL is defined as follows:

5

Declarative Language Language Translation

Theories Theory translation function

Declaration patterns Declaration pattern translations

Expressions over each theory Expression translation function for each theory

Grammar Inductive functions over the grammar

Non-terminals One translation function for each non-terminal

Inference system Preservation of judgments

Figure 1.2: Definitional Structure of Declarative Languages and their Translations

Definition 1.11 (SFOL to FOL Theory Translation). Let Σ be an SFOL-theory as in
definition 1.4. We give a translation S2F = (Θ, α) from SFOL to FOL:

The translation of Σ into FOL is the FOL-theory Θ(Σ) that consists of

• a unary predicate symbol s for every sort symbol s in Σ,

• an n-ary first-order function symbol f and the axiom

∀x1, . . . xn. s1(x1) ∧ . . . ∧ sn(xn)⇒ s(f(x1, . . . , xn))

for every function symbol f in Σ with input arguments of sorts s1,. . . , sn and output
sort s,

• an n-ary predicate symbol p1 for every predicate symbol p in Σ with input arguments
of sorts s1,. . . , sn, and

The translation of sorted first-order expressions E is the first-order expression αΣ(E),
where αΣ is defined in definition 1.12.

Note that the theory translation Θ(Σ) is defined by induction of Σ with one case for
each declaration pattern.

Definition 1.12 (SFOL to FOL Expression Translations). Let Σ be an SFOL theory.
The translation αΣ(F) of Σ-expressions F is defined inductively as follows.

αΣ(>) = >
αΣ(⊥) = ⊥
αΣ(¬F) = ¬αΣ(F)
αΣ(F1 ∧ F2) = αΣ(F1) ∧ αΣ(F2)
αΣ(F1 ∨ F2) = αΣ(F1) ∨ αΣ(F2)
αΣ(F1 ⇒ F2) = αΣ(F1)⇒ αΣ(F2)
αΣ(∀x : s. F) = ∀x. s(x)⇒ αΣ(F)
αΣ(∃x : s. F) = ∃x. s(x) ∧ αΣ(F)
αΣ(p(t1, . . . , tn)) = p(αΣ(t1), . . . , αΣ(tn))
αΣ(t1 = t2) = αΣ(t1) = αΣ(t2)
αΣ(x) = x
αΣ(f(t1, . . . , tn)) = f(αΣ(t1), . . . , αΣ(tn))

Example 1.13 (Theory Translation). The translation of the SFOL-theory of vector spaces
from example 1.6 to FOL consists of

1A model-theory based translation of SFOL to FOL introduces the axiom ∀x1, . . . xn.¬s1(x1) ∨ . . . ∨
¬sn(xn)⇒ ¬p(x1, . . . , xn) for p, which we do not require here.

6

• a unary first-order predicate vec,

• a unary first-order predicate sca,

• a binary first-order function symbol + with the axiom

∀x.∀y. vec(x) ∧ vec(y)⇒ vec(+(x, y))

• a nullary first-order function symbol 0 with the axiom

sca(0)

1.3 Extension Principles

Declarative languages are usually coupled with a set of extension principles. Here,
the word extension refers to the act of forming a new theory by adding declarations to
an existing theory. For example, the theory of groups extends the theory of monoids by
adding a unary function symbol for the inverse operation and the usual axiom about it.

Thus, an extension principle is a theory forming operation that takes a theory Σ
(and possibly parameters that are typically expressions over Σ) and returns an extension of
Σ. For example, explicit definitions are the simplest and most common extension principle:
An explicit definition takes a theory Σ and an expression E over Σ, and returns the theory
Σ extended with the declaration c = E, where c is a fresh name chosen by the user of this
extension principle2.

Extension principles are very common in mathematical practice. We will briefly review
some important ones below.

Explicit Definitions Explicit definitions are a standard way of defining functions in
first-order logic. An n-ary first-order function symbol can be defined by f(x1, . . . , xn) = t,
by formulating the value of f applied to its arguments x1, . . . , xn.

Implicit Definitions An implicit definition defines a mathematical object by axioma-
tizing the properties the object has. This is in contrast to explicit definition, which states
the definiens directly. For instance, the neutral element e in monoid can be defined im-
plicitly as the unique object that satisfies the neutrality axioms. An implicit definition
requires a proof that there is exactly one object that fits this description.

More precisely, an implicit function definition takes

• a theory Σ,

• the name f of the function being defined,

• the inpurt sorts D1,. . . ,Dn of the function f ,

• the output sort C of the function f ,

• a predicate P over D1,. . . , Dn, C, and

• the proof of totality (existence) and functionality (uniqueness) of f as parameters,

2Alternatively, the name c can be given as a parameter to the extension principle.

7

and returns the theory obtained by extending Σ with the declaration

f : D1 → . . .→ Dn → C

and the axiom

∀x1 : D1. . . .∀xn : Dn. P (x1, . . . , xn, f(x1, . . . , xn)).

Example 1.14 (The Neutral Element). Let Σ be the theory of monoids in SFOL, and consist
of, in particular, the declarations M and ◦ : M → M → M for sort M . The neutral
element, which is well-known to exist uniquely, can be added by an implicit definition,
where M is the sort argument and P (x) is ∀y : M.x ◦ y = x ∧ y ◦ x = y.

Example 1.15 (Inverse). Consider the theory of groups obtained from the theory of monoids
in example 1.14 by adding the axiom ∀x : M.∃y : M.x◦y = e. The definition of the inverse
function inv over the sort M is given by proving the following arguments: The function
symbol inv , the input sort M , the output sort M , the predicate P (x) = ∃y : M.x ◦ y = e,
the two straightforward proofs for totality and functionality of inv , and introduces the
declarations inv : M →M and the axiom ∀x : M.x ◦ f(x) = e ∧ f(x) ◦ x = e.

Case-Based Function Definitions Another common extension principle used in math-
ematics is the case-based function definition. In fact, case-based function definitions are
a special case of FOL-style function definitions.

A case-based definition of a unary function f from A to B uses n different cases where
each case is guarded by the predicate ci together with the respective definiens di.

f(x) =

d1(x) if c1(x)
...

...
dn(x) if cn(x)

The extension principle for the case-based unary function definition takes

• a theory Σ,

• the name f of the function,

• the domain A and the codomain B of f ,

• n predicates ci over A as the cases,

• n unary functions di : A→ B as the respective definiens for each case ci and

• a proof that exactly one of the propositions ci(x) holds for any element x in the
domain A,

and returns the declaration f : A→ B and the axiom

∀x : A. (ci(x)⇒ f(x) = di(x)) ∧ . . . ∧ (cn(x)⇒ f(x) = dn(x)).

8

HOL-Style Type Definitions Higher-order logic (HOL) [Chu40] admits λ-abstraction
and a description operator, which permits deriving many common extension principles, in
particular, implicit definitions.

But there is one primitive extension principle that is commonly accepted in HOL-
based formalizations: Gordon/HOL type definition [Gor88] introduces a new type that is
axiomatized to be isomorphic to a subtype of an existing type.

This primitive extension principle is used to derive extension principles, e.g., for induc-
tive types, record types and quotient types. HOL-based proof assistants implement the
type definition principle as a built-in statement. They also often provide further built-in
statements for other definition principles that become derivable in the presence of type
definitions, e.g., a definition principle for record types.

For example, in Isabelle/HOL [NPW02], HOL is formalized in the Pure logic underlying
the logical framework Isabelle [Pau94]. But because the type definition principle is not
expressible in Pure, it is implemented as a primitive Isabelle feature that is only active in
Isabelle/HOL.

Uses of Extension Principles

We observe that extension principles are used, in particular, for the following purposes:

• Pragmatic features

• Conservativity

• Macro functionality

All of these three aspects pervade mathematical practice, and therefore should be
present and indeed well-supported in computer mathematics. We discuss these three
interrelated aspects in more detail below.

Pragmatic Features We introduce the phrase pragmatic feature for high-level lan-
guage features. Typically, a pragmatic feature in a language introduces new syntax that
captures the high level meaning of the concept it represents. This permits intuitive formal
representations that use a more verbose and a larger vocabulary.

More specifically, a pragmatic feature typically provides object-level syntax, which we
will refer to as pragmatic syntax, for a meta-level operation. For instance, the extension
principles we have reviewed in the previous sections are theory forming operations at the
meta-level and they can be added to the syntax of a declarative language as new features.

Pragmatic syntax is given meaning by elaborating it into default syntax of a declar-
ative language. This permits implementing semantic services like validation only for the
core language and extending them to the pragmatic features by elaboration. Ultimately,
a language might even have multiple pragmatic front-ends geared towards different audi-
ences.

In fact, in languages for formalized mathematics, it is standard practice to define a
minimal core language that is extended by macros, functions, or notations. For example,
Isabelle [Pau94] provides a rich language of notations, abbreviations, syntax and printing
translations, and a number of definitional forms.

This language design has the advantage that only a small, regular sublanguage has
to be given a mathematical meaning, but a larger vocabulary that is more intuitive to
practitioners of the field can be used for actual representations.

9

Conservativity Conservativity is the property of an extension that permits a larger
syntax while maintaining the same semantic properties.

More concretely, individual declarative languages typically admit a definition of con-
servative extension in the presence of a notion of theorem:

Definition 1.16 (Conservative Extensions). An extension Σ′ of Σ is conservative if for
every Σ-expression T if T is a theorem over Σ′ then it is a theorem over Σ as well.

The definition of the notion of theorem and therefore reasoning for theoremhood differ
from language to language. Note that a conservative extension may add theorems about
the new symbols it introduces, however the theoremhood over the symbols from Σ is
restricted to those theorems over Σ.

Conservative extensions assure that new theories can be built by safe increments:
Given a consistent theory Σ, any conservative extension Σ′ remains consistent. However,
reasoning about conservative extensions is in general undecidable. Therefore, it is common
to choose a few extension principles that are known to be conservative and use them to
build big theories safely.

The extension principles we have discussed in this section are known to be conservative.

Macro Functionality Extension principles can be used as macros: They introduce ab-
breviations for frequently occurring (groups of) declarations to increase the efficiency
of theory construction. For instance, in narrative formats for mathematics, e.g., the
TEX/LATEX format, the TEX layout primitives constitute the core syntax of TEX and
macro definitions allow the user to add his own extensions to the language. This extensi-
bility led to the profusion of user-defined LATEX document classes and packages that has
made TEX/LATEX so successful.

10

Chapter 2

State of the Art

In this chapter we give the state of the art of existing abstract formalisms that are devel-
oped and used for the purpose of representing declarative languages and studying their
properties. Furthermore, we mention notable libraries of language representations given
in such formalisms.

2.1 Logical Frameworks

Logical frameworks are abstract formalisms that provide a specific mathematical infras-
tructure to define declarative languages. In particular, they can be used to relate and
combine different declarative languages.

Based on their underlying mathematical infrastructure, logical frameworks can be split
into the following two main groups: Abstract logical frameworks, which are typically
built on category theory, and declarative logical frameworks, which are built on type
theory. We will briefly introduce these two groups below.

2.1.1 Abstract Logical Frameworks

Abstract logical frameworks typically work with abstract categories. Also called general
logics, these frameworks define what it means to be a logical system. The most important
frameworks in this group are the framework of institutions [GB92] and general logics by
Messeguer [Mes89].

In the following, we will explore abstract logical frameworks in terms of representing
i) declarative languages, ii) language translations, and iii) extension principles, the three
aspects highlighted in the previous chapter.

Representing Declarative Languages There is no standard definition of a declara-
tive language in abstract logical frameworks. Institutions define logical systems, which
are centered around the notion of truth and consequence, and are more specific than
declarative languages.

By weakening the definition of a logical system in institutions, a declarative language
can typically be defined using a class of theories and a function that assigns for every
theory in this class, the set of expressions over this theory. What makes this definition
abstract is that it does not assume any concrete structure of the individual theories or the
expressions over a theory.

More concretely, we define declarative languages as follows:

11

Definition 2.1 (Declarative Language). A declarative language L is a pair (ThL,ExpL),
where

• ThL is the class of theories of L and

• ExpL : ThL → SET is a function that assigns to each theory Σ in ThL the set
ExpL(Σ) of expressions over Σ.

Here SET denotes the class of all sets.

Example 2.2 (First-Order Logic). ThFOL is the class of first-order theories from defini-
tion 1.1. ExpFOL(Σ) consists of the expressions that have the form given by the grammar
in definition 1.2 for each theory Σ ∈ ThFOL.

Example 2.3 (Sorted First-Order Logic). ThSFOL is the class of first-order theories from
definition 1.4. ExpSFOL(Σ) consists of the expressions that have the form given by the
grammar in definition 1.5 for each theory Σ ∈ ThSFOL.

The above definition of declarative languages can be considered as a very basic form
of abstract frameworks. In fact, most abstract frameworks refine this definition by adding
more structure. For instance, entailment systems [FS87] add entailment relation, institu-
tions add model theory, institutions with contexts [Paw95] add contexts and substitution,
parchments [GB86] add expressions generated by a signature in a meta-language, which
is the closest to declarative frameworks (we will discuss this in section 2.1.2).

Abstract logical frameworks have the advantage that they are independent of the struc-
ture of the particular declarative language; thus theory-related concepts can be formulated
generically.

Representing Language Translations In the framework of institutions, institution
comorphisms [GR02] are the standard tool to give translations between two logical
systems. By weakening the definition of an institution comorphism, language translations
can be typically defined as follows:

Definition 2.4 (Language Translation). Let L1 and L2 be two declarative languages. A
translation T from L1 to L2 is a pair (thT , expT), where

• thT : ThL1 → ThL2 is a function that maps each theory Σ ∈ ThL1 to a theory of
thT (Σ) ∈ ThL2 ,

• expT is a family of mappings expTΣ : ExpL1(Σ)→ ExpL2(thT (Σ)) that assigns to
each expression F ∈ ExpL1(Σ) an expression expTΣ(F) ∈ ExpL2(thT (Σ)).

We will omit the superscript T whenever the translation is clear from the context.

Example 2.5 (Translation from SFOL to FOL). th(Σ) consists of the declarations given in
definition 1.11 for each Σ ∈ ThFOL. And expΣ(F) is defined inductively on the syntactic
form of F as in definition 1.12.

Representing Extension Principles In abstract logical frameworks, individual ex-
tension principles are not the main center of attention. But the property of being a
conservative extension is often studied. In particular, abstract frameworks use conserva-
tive extensions mainly as a tool for reasoning about theory extensions rather than as a
tool for theory construction.

12

Reasoning for conservativity is in general difficult. For that reason, systems like
Hets [MML07] that are based on insitutions often work with a set of selected sufficient cri-
teria for individual conservative extensions, and use conservativity reasoners to discharge
proof obligations [CMM13].

2.1.2 Declarative Logical Frameworks

Declarative logical frameworks are special declarative languages in which other languages
are represented. We often refer to such languages as meta-languages, and to the lan-
guages that are represented in them as object-languages.

Automath [dB70] was the first system that implemented the ideas of a declarative log-
ical framework. The most significant ones today include the Edinburgh logical framework
LF [HHP93], Isabelle [Pau94], Coq [Coq14], Maude [CELM96] and Agda1 [Nor05].

Formally, a declarative logical framework comprises theories and expressions over its
theories:

Example 2.6 (LF). The Edinburgh logical framework LF is based on dependent type
theory. LF-theories are captured by the definition of DTT-theories in definition 1.9.
Similarly, the expressions over an LF-theory, i.e., LF-expressions, are captured by defi-
nition 1.10 of DTT-expressions.

More specifically, LF-expressions are classified as LF-kinds K, kinded LF-type fam-
ilies A : K and typed LF-terms M : A. We refer to LF-type families of the form A : type
as LF-types. Then an LF-theory consists of symbol declarations for type families a : K
and terms c : A, where both a and c may have definiens, e.g., the declarations a : K = L
and c : A = M are allowed.

LF is implemented in the Twelf system [PS99]. In 2009, a module system for LF
was developed and implemented for Twelf: The LF module system [RS09] implements, in
particular, LF-theory morphisms that allow theory inclusion and theory interpre-
tation. The concept of theory morphisms for LF was first introduced in [HST94].

In the following we will elaborate on the state of the art of representing declarative
languages, their translations and extension principles with respect to LF and its module
system as a representative example.

Representing Declarative Languages In declarative frameworks, declarative lan-
guages are represented as theories of the framework. In particular, i) the theories of the
language, as well, are represented as theories of the framework, ii) the expressions of the
language are represented as expressions of the framework.

For instance, in LF, every declarative language is represented as an LF-theory. In
particular, LF-type declarations a : type are used for syntactic classes, e.g., sorts, terms,
formulas and judgments, and LF-term declarations c : A are used for individual connec-
tives, quantifiers, sorts, functions, predicates, axioms, etc.

Definition 2.7 (FOL Syntax in LF). The following LF-theory FOL is a representation
of the FOL syntax:

1Agda is an implementation of Martin-Löf dependent type theory that combines features of theorem
proving and programming. It was not designed as a logical framework, but can be used as one.

13

term : type

form : type

ded : form → type

true : form
false : form
¬ : form → form
∧ : form → form → form
∨ : form → form → form
⇒ : form → form → form
∀ : (term → form)→ form
∃ : (term → form)→ form
.
= : term → term → form

More specifically, we introduce two LF-types, term and form, for FOL terms and
formulas, respectively. Moreover, ded assigns to each LF-term F : form the LF-type
ded F of the proofs of F . We use the notation A→ B for Πx : A.B when x does not occur
in B.

For each logical primitive of FOL, there is an LF-term declared: true and false corre-
spond to the logical connectives > for truth and ⊥ for falsehood, respectively. The unary
LF-term ¬ : form → form corresponds to negation taking one argument, say F , of LF-
type form and returning ¬F . The other FOL connectives are represented similarly. The
representation of the FOL quantifiers uses higher-order abstract syntax, which we discuss
later in this chapter in section 2.1.4: ∀ : (term → form) → form takes as argument a
logical formula with a free variable, and returns a logical formula. ∃ is analogous.

.
=

corresponds to equality = for FOL-terms. A full representation of first-order logic in LF
including its proof theory and model theory is given in [HR11].

Definition 2.8 (SFOL Syntax in LF). The following LF-theory SFOL gives a represen-
tation of the SFOL syntax:

sort : type

tm : sort → type

form : type

ded : form → type

true : form
false : form
¬ : form → form
∧ : form → form → form
∨ : form → form → form
⇒ : form → form → form
∀ : ΠS : sort . (tm S → form)→ form
∃ : ΠS : sort . (tm S → form)→ form
.
= : ΠS : sort . tm S → tm S → form

sort is an LF-type representing the universe of all sorts. tm assigns to every LF-term
S : sort the LF-type tm S of the SFOL terms of sort S.

Notation 2.9. In addition to using the calligraphic font, e.g., L, for introducing meta-
variables for declarative languages, we will use L to denote the respective object-language
that represents L in LF. Moreover, we will denote the representation of an L-expression
E in LF as pEq.

14

Furthermore, each individual L-theory Σ is represented as an LF-theory that extends
the respective LF-theory L by adding an LF-declaration for each symbol in Σ.

Definition 2.10 (FOL-Theories in LF). Every FOL-theory Σ is represented as an LF-
theory that introduces the declarations

• f : term → . . .→ term︸ ︷︷ ︸
n

→ term for every n-ary function symbol f in Σ,

• p : term → . . .→ term︸ ︷︷ ︸
n

→ form for every n-ary predicate symbol p in Σ,

• a : ded pFq for axioms F and some fresh name a.

where pFq is defined in definition 2.11.

Any LF-theory given according to definition 2.10 conforms to the declaration patterns
of FOL.

Definition 2.11 (FOL-Expressions in LF). Let Σ be a FOL-theory. Then every FOL-term
t or formula F over Σ in context x1, . . . , xn is represented as an LF-expression ptq : term
or pFq : form, respectively, in context x1 : term, . . . , xn : term, where ptq and pFq are
defined by an straightforward induction:

p>q = true
p⊥q = false
p¬Fq = ¬ pFq
pF ∧Gq = ∧ pFq pGq
pF ∨Gq = ∨ pFq pGq
pF ⇒ Gq = ⇒ pFq pGq
p∀x. Fq = ∀λx : term. pFq
p∃x. Fq = ∃λx : term. pFq
pp(t1, . . . , tn)q = p pt1q . . . ptnq
pt1 = t2q =

.
= pt1q pt2q

pxq = x
pf(t1, . . . , tn)q = f pt1q . . . ptnq

We will use infix notation to write applications of binary LF-symbols to their argu-
ments, e.g., F ∧G instead of ∧F G.

Example 2.12 (Theory of Monoid in LF). The following LF-theory represents the first-
order theory of neutral element from example 1.3:

e : term
◦ : term → term → term
assoc : ∀λx : term.∀λy : term. ∀λz : term. x ◦ (y ◦ z) .

= (x ◦ y) ◦ z
neutr : ∀λx : term. x ◦ e .

= x
neutr : ∀λx : term. e ◦ x .

= x

Definition 2.13 (SFOL-Theories in LF). Every FOL-theory Σ is represented as an LF-
theory that introduces the declarations

• s : sort for every sort s in Σ,

15

• f : tm s1 → . . . → tm sn → tm t for every n-ary function symbol f in Σ with input
sorts s1, . . . , sn and output sort t,

• p : tm s1 → . . .→ tm sn → form for every n-ary predicate symbol p in Σ with input
sorts s1, . . . , sn,

• a : ded pFq for axioms F and some fresh name a.

where pFq is defined in definition 2.14.

Definition 2.14 (SFOL-Expressions in LF). Let Σ be an SFOL-theory. Then every
SFOL-term t of sort s or formula F over Σ in context x1, . . . , xn of sorts s1, . . . , sn, respec-
tively, is represented as an LF-expression ptq : tm s or pFq : form, respectively, in context
x1 : tm s1 . . . , xn : tm sn, where ptq and pFq are defined by a straightforward induction as
in definition 2.11 except for the quantifiers:

p∀x : s. Fq = ∀λx : tm s. pFq
p∃x : s. Fq = ∃λx : tm s. pFq

Example 2.15 (Theory of Vector Spaces in LF). The following LF-theory represents the
SFOL theory of vector spaces from example 1.6:

vec : sort
sca : sort
+ : tm vec → tm vec → tm vec
0 : tm sca
...

Here we omit the straightforward encodings of the remaining function symbols and the
axioms that introduce a commutative group.

The below table summarizes the representation of declarative languages in LF. Here
we refer to an LF-theory that extends an LF-theory L as L-extension and to an LF-
expression over an LF-theory Σ as Σ-expression:

Mathematical Concept Respective LF Representation

Declarative Language L LF-theory L
L-theory Σ L-extension Σ
Σ-expression E Σ-expression pEq

Declarative logical frameworks can provide generic tool support for concrete theories,
e.g., type-checking. However, they do not have an abstract concept to represent the infinite
collection of theories, and therefore, cannot reason easily about or operate on arbitrary
theories.

16

Representing Language Translations In a declarative framework, where declarative
languages are represented as theories of the framework, it is natural to represent language
translations as theory morphisms in the framework between the those theories. Moreover,
every theory morphism µ induces a function µ, called the homomorphic extension of
µ, for the translation of the theories and the expressions of each theory of the object-
language.

In LF, every language translation is given as an LF-theory morphism T . In particular,
every L-theory Σ and every Σ-expression E are translated by the homomorphic extension
T of T (see [Rab13a]).

Definition 2.16 (Translating SFOL to FOL in LF). The translation S2F from SFOL to
FOL from definition 1.11 can be represented as the LF-theory morphism S2F from the
LF-theory SFOL to FOL that maps the symbols in SFOL to the LF-expressions given in
the table below:

SFOL FOL

sort term → form
tm λs : term → form. term
form form
ded λF : form. ded F
true true
false false
∧ λF : form. λG : form. F ∧G
∨ λF : form. λG : form. F ∨G
⇒ λF : form. λG : form. F ⇒ G
∀ λs : term → form. λF : term → form.∀λx : term. s x⇒ F x
∃ λs : term → form. λF : term → form.∃λx : term. s x ∧ F x

In particular, the logical symbols in SFOL are mapped as in definition 1.11.

Then, the translation of an SFOL-theory Σ in LF is given as S2F (Σ), and of a Σ-
expression E as S2F (E).

Example 2.17 (Translation of the SFOL-Theory of Vector Spaces to FOL in LF). The
following LF-theory is the result of the translation of the SFOL-theory of vector spaces
(from example 2.15) into FOL along the LF-theory morphism S2F from example 2.16:

vec : term → form
sca : term → form
+ : term → term → term
0 : term
...

Representing Extension Principles Several implementations of individual logics use
a selected number of individual extension principles. Among logical frameworks,
Twelf/LF [PS99, HHP93] permits two statements: defined and undefined constants. Is-
abelle [Pau94] and Coq [Coq14] permit much larger, but still fixed sets that include, for
example, recursive case-based function definitions. In particular, in Isabelle [Pau94] the
type definition principle from section 1.3 and many others that are derived from it are ex-
tensively used. The Mizar system [TB85] uses function definitions and case-based function
definitions we discussed in section 1.3.

17

However, often such systems hard-code the individual extension principles they work
with, and do not permit other extension principles than those implemented. Existing
logical frameworks typically do not support a mechanism that allows adding new extension
principles.

2.1.3 Adequacy

One crucial requirement about logical frameworks is to determine the adequacy of the
representation of a language or a translation in that framework. Here adequacy addresses
whether the representation given in the logical framework and the actual language or the
translation are the same. We will formalize this intuition in the following:

Every representation of a declarative language in a logical framework induces a new
declarative language. In particular, we define declarative languages that are induced by
language representations in LF:

Definition 2.18 (LF-Induced Languages). Let L be an LF-theory that represents a declar-
ative language. L induces a declarative language DLF (L), where

• the class ThD
LF (L) of the theories of DLF (L) consists of the LF-theories Σ that

extend L,

• the set ExpD
LF (L)(Σ) of expressions over a theory Σ ∈ DLF (L) consists of the

LF-expressions over the LF-theory Σ.

Similarly, every representation of a language translation in a logical framework induces
a new language translation. In particular, we define language translations that are induced
by translation representations in LF using LF’s pushouts along inclusions [HST94]:

Definition 2.19 (LF-Induced Language Translations). Let T be an LF-theory morphism
from L1 to L2. T induces a language translation DLF (T) from DLF (L1) to DLF (L2),
where

• the function thD
LF (T) maps each theory Σ of DLF (L1) to the LF-theory T (Σ),

• for each theory Σ of DLF (L1), the function exp
DLF (T)
Σ is the homomorphic extension

TΣ of the LF-theory morphism TΣ, which completes the pushout diagram below:

L1 L2

Σ T (Σ)

T

TΣ

Let us define the bijection between two declarative languages:

Definition 2.20. Two declarative languages L1 and L2 are bijective if

• ThL1 is in bijection with ThL2 ,

• ExpL1(Σ) is in bijection with ExpL2(Σ2) for every pair (Σ1,Σ2) of bijective L1 and
L2 theories.

18

Now using our definitions of LF-induced languages and language translations, we can
give a more formal definition of adequacy:

Definition 2.21 (Adequacy for Languages). Let L be a declarative language and L be
an LF theory. We say that L is adequate for L if there is a bijection between DLF (L)
and L.

Definition 2.22 (Adequacy for Translations). Let T be a language translation from L1

to L2 and T be an LF-theory morphism from L1 to L2 such that each Li is adequate for
Li, respectively. We say that T is adequate for T if the diagram below commutes:

L1 L2

DLF (L1) DLF (L2)

T

DLF (T)

2.1.4 Design Principles

A key challenge in designing logical frameworks is that they should allow generalizing con-
cepts, algorithms and theorems about declarative languages while using as simple and yet
expressive primitives as possible. Here we briefly survey some successful design principles
in order to later add one of ours to the literature.

Judgments-as-Types and Proofs-as-Terms The design principle of judgments-
as-types, proofs-as-terms was developed over several decades starting with the Curry-
Howard [CF58, How80] isomorphism and later with Martin-Löf type theory.

The main idea is that judgments of a declarative language L are represented as types
of the declarative logical framework in which L is represented. Then the derivation of a
judgment is represented as a term of that logical framework. More specifically, if J denotes
a judgment, then the typing relation e : J introduces a derivation e for J .

This principle is used in frameworks with dependent types like LF [HHP93]. The
main advantage of this principle is that it uses a single primitive to unify expressions and
judgments.

A variation of the judgments-as-types principle is the propositions-as-types princi-
ple: Every proposition is represented as a type, and every proof is typed by the proposition
it proves. In a logical framework with propositions-as-types, the type system of the frame-
work determines the different syntactic forms propositions may have. For instance, if
the type system is equipped with function types, then propositions can be formed using
implication. Therefore, the type system of the framework needs to provide one type con-
structor for every propositional connective. The systems Agda [Nor05], Matita [ACTZ06]
and Coq [Coq14] allow this principle.

This is different from the judgments-as-types principle, where each proposition is repre-
sented as a term in the framework, and usually a type constructor is used to give one type
for every proposition, namely, the judgment for the provability of a given proposition. In
particular, for every propositional connective, it suffices to introduce the respective term
constructor: E.g., for implication, one declares a new binary symbol ⇒ over the type
of propositions. Then a type constructor ded assigns a type ded F for every provable
proposition F .

19

Higher-Order Abstract Syntax The main idea of higher-order abstract syntax is that
terms in contexts are in bijection with terms of function types. This permits representing
binders, i.e., operators that take a term with free variables as arguments, as higher-order
functions.

This design principle unifies operators and binders. For instance, the first-order uni-
versal quantifier is represented as a symbol ∀ : (term → form) → form. In particular,
the binders of the object-language are represented in terms of the binders of the logical
framework.

Theory Categories The theories of a declarative language often naturally form a cat-
egory. Abstract logical frameworks are typically designed to work with such categories.

In a declarative logical framework with theory categories, object-languages are repre-
sented as theories of the framework and translations between the object-languages are rep-
resented as theory morphisms of the framework. Moreover, for a specific object-language
L, the theories of L and the theory morphisms between L-theories are represented as
theories and theory morphisms of the logical framework, respectively. Consequently, both
object-languages and their theories are uniformly represented.

One immediate result of representing object-level theories as theories of the logical
framework is the following: We have discussed earlier in section 1.1 that every object-
language comes with its own repertoire of declaration patterns, e.g., types, functions,
predicates, axioms, etc. Depending on the type of declarations the logical framework sup-
ports, often different declaration patterns of the object-language are uniformly represented
as one specific type of declaration in the logical framework. For example, LF provides two
types of symbol declarations: Type family declarations and term declarations. If we take
first-order logic as an object-language represented in LF, we observe that all three dec-
laration patterns of FOL, i.e, functions, predicates and axioms, are represented as term
declarations in LF.

Module Systems Module systems for declarative languages build large theories out of
small reusable components called the modules. Typically, a module system is built on top
of a theory category, where the modules are the theories of the category and the modular
structure is captured by theory morphisms. The key idea of such module systems is that
relations between object-level theories like reuse and inheritance are uniformly represented
at the module-level as theory morphisms. This permits the module system to be generic
for any declarative language.

For abstract logical frameworks, the ASL module system [SW83] provides modularity
for an arbitrary institution. For declarative logical frameworks, the MMT system (Module
System for Mathematical Theories) [RK13] is a generic module system.

Models-as-Morphisms A model is a mathematical entity that gives a semantic in-
terpretation of a theory. The framework of institutions [GB92] works intensively with
models.

In declarative logical frameworks, models have been typically represented using record
types. An alternative representation of models in declarative frameworks is given in [Rab13a,
HR11] by using theory morphisms. The key idea is that if the semantic realm S in which
models exist is formalized in the framework as a theory, then every model of a theory Σ can
be represented as a theory morphism that assigns to each symbol in Σ its interpretation
in S. Thus a model of Σ becomes a theory morphism from Σ to S.

20

This representation has the advantage that semantic translations, i.e., models, are
unified with the syntactic translations, i.e., theory morphisms, in the logical framework.

2.2 Foundation-Independent Meta-Frameworks

In the previous sections, we have analyzed the hierarchy of mathematical knowledge rep-
resentation: mathematical theories (like the theory of monoids) are formalized in a declar-
ative language (like first-order logic), which itself is represented in a declarative logical
framework (like LF). A meta-framework adds one more level to this hierarchy: logical
frameworks themselves are represented in a meta-framework as a foundation. Within
that context, foundation-independent means that the meta-framework does not com-
mit to a particular formal system, type theory or logic; instead every formal system is
represented as a theory of the meta-framework. This notion was introduced by the MMT
system (Module System for Mathematical Theories) [RK13], and is a key feature of this
meta-framework.

A Module System for Mathematical Theories (MMT) MMT provides a minimal
number of primitives:

Firstly, MMT uses a single primitive to represent every formal system: Logical frame-
works (like LF), logics (like first-order logic) and mathematical theories (like the theory
of monoids) are represented uniformly as MMT theories, and are related by the meta-
theory relation. These form theory graphs such as the one in figure 2.1, where simple
arrows → denote theory translations and hooked arrows ↪→ denote the meta-theory rela-
tion between two MMT-theories. The theory FOL for first-order logic is the meta-theory
for Monoid and Ring . And the theory LF for the logical framework LF [HHP93] is the
meta-theory of FOL and HOL for higher-order logic.

MMT uses the meta-theory relation to obtain the semantics of a theory from the
semantics of its meta-theory. If we refer to the MMT theories with meta-theory M as M-
theories, then the semantics of M induces the syntax and semantics of all M -theories.
For example, if the syntax and semantics are fixed for LF , they determine those of FOL
and Monoid .

Then, an external semantics, e.g., a research article or an implementation, only has to
be supplied for the topmost meta-theories, e.g. logical frameworks. MMT refers to the
external semantics as foundation. For example, the foundation for LF can be given in
the form of a type theory. Foundations define in particular the typing relation between
expressions, in which MMT is parametric. For example, the foundation for LF induces
the type-checking relation for all theories with meta-theory LF .

MMT-theories contain typed symbol declarations, which MMT uses as a single
primitive to uniformly represent all statement declarations, e.g., constants, functions,
predicates, and via the Curry-Howard correspondence, judgments, inference rules, axioms
and theorems. These are differentiated by the type system of the respective meta-theory.
An MMT symbol declaration c[: E1][= E2] introduces a named atomic expression c with
optional type E1 or definition E2.

MMT-theories are related via MMT theory morphisms, which represent transla-
tions of mathematical theories, languages, functors and models uniformly. In figure 2.1,
the theory translations from Monoid to Ring and from FOL to HOL are MMT theory
morphisms. A special form of MMT theory morphisms are inclusion morphisms, which
permit a theory to inherit from another one.

21

LF Isabelle

FOL HOL

Monoid

Group

Ring

Figure 2.1: An MMT Theory Graph

MMT expressions are a fragment of OpenMath [BCC+04] objects and represent math-
ematical objects such as terms, types, formulas, and proofs uniformly. MMT expressions
are formed from variables x, constants c, applications E E1 . . . En of functions E to a se-
quence of arguments Ei, and bindings E1 Γ. E2 that use a binder E1, a context Γ of bound
variables, and a scope E2. Contexts Γ consist of variables x[: E] that can optionally
attribute a type E.

MMT itself is not aware of the typing relation between the expressions and delegates
the resolution of the typing judgments to the foundation under consideration. That way,
all MMT results are obtained for arbitrary foundations. For example, MMT guarantees
that theory morphisms translate objects in a typing- and truth-preserving way. This is
crucial for the reuse of results in large networks of theories.

Finally, MMT provides a module system for building large theories and theory mor-
phisms via reuse and inheritance. The module level of MMT introduces named theory
declarations %theory T = {Σ}, for theories Σ and named theory morphism decla-
rations %view µ = {σ} that are called views for theory morphisms σ.

Moreover, theories can include other theories T via %include T , and each theory may
declare its meta-theory T via %meta T . Similarly, MMT views can include other ones.

Example 2.23 (MMT-Theories). Below we give an MMT theory for the logical framework
LF. type, →, and lam are untyped constants representing the primitives of LF. Here the
symbol @ represents the binary application operator, i.e., @AB denotes the application
AB of A to B.

%theory LF = {
type

Π
→
λ
@
}

%theory Forms = {
meta LF
form : type

ded : form → type

}

22

Then the MMT-theory Forms introduces all symbols needed to declare logical con-
nectives and inference rules of a logic. form is the type of logical formulas and ded is a
constant that assigns to each logical formula F : form the type ded F of its proof. The
syntax and semantics of this theory are defined in terms of its meta-theory LF .

The LATIN Meta-Framework Along the lines of the ideas of MMT, the Logic Atlas
and Integrator (LATIN) project [KMR09] introduced the theoretical concept of logical
meta-framework [CHK+12] that combines the approaches of the abstract and the declar-
ative logical frameworks without being biased in any of the two directions. The LATIN
meta-framework (LMF) is foundation-independent and allows representing logical frame-
works as declarative languages given by categories of theories. In particular, it can be
instantiated with logical frameworks such as LF [HHP93], Isabelle [Pau94] and rewriting
logic [MOM94].

LMF specializes to logics using theory graphs. More precisely, the concrete logical
framework chosen in LMF provides a distinguished theory Base that declares the primitive
logical notions. Then a logic is represented as a span consisting of i) the syntax, ii) the
proof-theory, and iii) the model-theory of that logic.

In particular, LMF guarantees that each such representation of a logic defines an
institution for that logic, and more generally, each theory graph in a logical framework
leads to a graph of institutions and comorphisms.

LMF, along with instantiations for specific logical frameworks, has been integrated
within the Heterogeneous Tool Set (Hets, [MML07]), a set of tools for multi-logic spec-
ifications based on the framework of institutions that permits performing heterogeneous
proof about heterogeneous theories formulated in logics. This integration allows new logics
to be added in Hets (and in its logic graph) from their formalization in a logical framework
in a declarative fashion, allowing logic formalizations to be combined with the theorem
proving technology [CHJ+13].

Within the instantiation of LMF with LF, an atlas of logics and logic translations
has been created in a modular way, ranging from propositional logic, first-order, modal,
description and higher-order logics to foundational set and type theories, which we will
elaborate further on below.

2.3 Libraries of Language Representations

Libraries of language representations are given in several projects including Logosphere
[PSK+03], LATIN [KMR09] and Hets [MML07].

In the LATIN project [KMR09], an atlas of logics and their translations were repre-
sented within the LATIN meta-framework LFM instantiated with the logical framework
LF. The LATIN atlas contains highly modularized formalizations of various logics, type
theories, foundations of mathematics, algebra, and category theory. Among the logics
formalized in the LATIN atlas are propositional (PL), first (FOL) and higher-order logic
(HOL), sorted (SFOL) and dependent first-order logic (DFOL), description logics (DL),
modal (ML) and common logic (CL) as illustrated in figure 2.2. Single arrows (−→) in
this diagram denote translations between formalizations and hooked arrows (↪−→) denote
imports. Other formal systems formalized in the LATIN atlas are Zermelo-Fraenkel set
theory, Isabelle’s higher-order logic, and Mizar’s set theory (the formalizations are given
in [IR11]). Type theory formalization includes the λ-cube [Bar92]. The modular represen-
tation of λ-cube allows combining the different corners of the cube in any way. Notable
special cases were published as [HR11] and [IR11].

23

PL

ML SFOL DFOL
FOL

CL

DL
HOL

OWL

MizarZFCIsabelle/HOL

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

Figure 2.2: Logics and their Interrelations in the LATIN Logic Atlas

A high-level overview of a fragment of the logic atlas is given in the left part of fig-
ure 2.2. The whole graph is significantly more complex as we use the LF module system
to obtain a maximally modular design of logics. For example, propositional, higher-order,
modal, and description logics are formed from orthogonal modules for the individual con-
nectives, quantifiers, and axioms. For example, the ∧-connective is only declared once in
the whole logic atlas and imported into the various logics and foundations and related
to the type theoretic product via the Curry-Howard correspondence. Moreover, we use
individual modules for syntax, proof theory and model theory so that the same syntax can
be combined with different interpretations. For example, the formalization of ∧ consists
of the signatures ∧Syn for syntax containing the connective itself, ∧Pf for proof theory
containing natural deduction style inference rules for ∧, and ∧Mod for model theory con-
taining a meta-language (in this case ZFC) to axiomatize the properties of models of ∧, an
interpretation of ∧ in ZFC and axioms specifying its truth values. The whole modularized
logic atlas comprises over 1000 LF theories and morphisms. Despite the achievements of
the LATIN project, it revealed major insufficiencies in logic representations in existing
logical frameworks, which serve as essential motivation for the developments in this thesis.
We elaborate on these further in chapter 3.

24

Chapter 3

Research Problems and
Methodology

In this chapter we discuss the research problems that motivate the work in this thesis,
formulate our research objectives and give an overview of our methodologies towards
achieving those goals.

In the previous chapter we took a closer look at the state-of-art of representing declara-
tive languages, language translations and extension principles in declarative logical frame-
works as well as of foundation-independent meta-frameworks and libraries of language
representations. In the following we will elaborate on the major problems we have en-
countered in them, in particular within the framework of LF [HHP93] and the LATIN
logic atlas [KMR09].

3.1 Representing Declarative Languages

In current declarative logical frameworks, we see three main problems regarding the rep-
resentation of declarative languages. We will discuss each problem below:

Over-generation A major problem is the over-generation problem. Here we use
the term over-generation whenever a concept induced by the framework contains more
members than the actual concept that is represented in the framework.

In particular, in a representation L of a declarative language L in LF, we observe
that the class ThD(L) of theories of an LF-induced declarative language is over-generated
(recall definition 2.18): It consists of all LF-theories Σ that extend the LF-theory L —
including those LF-theories which do not conform to the respective definition of L-theories
in LF, i.e., to the declaration patterns of L. We will refer to such theories as ill-shaped
theories. Moreover, we will refer to an LF-theory Σ that extends L pattern-valid with
respect to L if it consists of only declarations that conform to the declaration patterns
of L.

For example, recall definition 2.10 of FOL-theories in LF. It precisely specifies the LF-
declarations that are allowed in the LF representation of a FOL-theory, and example 2.12
gives an example of an LF-theory that is pattern-valid with respect to FOL. However, it
is very easy to write an LF-theory that is a member of ThD(L), but does not conform to
definition 2.10:

Example 3.1 (Over-Generation of Theories). Consider the following LF-theory which ex-
tends the LF-theory for FOL from definition 2.7 with the following declarations:

25

f1 : form → term
f2 : term → form → form
f3 : form → form → form

Here, the LF-declarations do not conform to definition 2.10 and therefore do not in-
troduce first-order function or predicate symbols, even though they are well-formed dec-
larations in LF.

The underlying cause of the over-generation problem in the above example is that
definition 2.10 is not part of the formal representation of FOL in LF. In fact, the formal
syntax of LF does not provide a means to formally give such definitions as a part of an
LF representation of a declarative language.

There are two main consequences of the over-generation problem: Firstly, a framework
that over-generates the theories of an object-language L is not able to determine which
LF-theories are pattern-valid with respect to L. We argue that a logical framework should
be capable of validating the well-defined theories of its object-languages.

Secondly, the class of theories of the induced language is bigger than the class of
theories of the actual language L that is represented and consequently, adequacy fails for
the representation of L-theories.

In particular, the LATIN logic atlas [KMR09] suffers from the latter problem. In
figure 3.1, we give an overview of some of the logics in the LATIN logic atlas with respect
to their adequacy:

Languages Expression-Adequate Theory-Adequate

ML X ×
FOL X ×
SFOL X ×
HOL X ×

Figure 3.1: Overview of Language Representations

Here ML stands for modal logic and HOL for higher-order logic. Moreover, expression-
adequate means that the representation of the expressions of the language is adequate.
And similarly, theory-adequate means that the representation of the theories of the
language is adequate. The logics represented in the LATIN logic atlas are expression-
adequate, but not theory-adequate.

Lack of Support for Arbitrary Theories Definitions like definition 2.10 specify the
syntactic shape of an arbitrary theory of an object-language in LF. Lacking the ability to
express such definitions within a framework also means that the framework cannot talk
about arbitrary theories, and consequently, cannot express algorithms or meta-theorems
that take an arbitrary theory as input. One example of such an application is language
translations, which we will discuss in section 3.2.

Lack of Precision An even more striking problem arises when a logical framework
cannot define the theories of the object-languages in it: Consider the logics SFOL and de-
pendent first-order logic (DFOL) [Rab06]. Even though these are two different languages,
their representations in LF would look the same. In fact, these languages only differ with
respect to their theories — i.e., their declaration patterns: DFOL-theories are allowed to
declare dependent sorts, whereas SFOL-theories are not. Similarly, the representations of

26

SFOL and a polymorphic version of it, e.g., the one [BP12] of TPTP [SS98] look the same
in LF (we will come back to this example later in chapter 9). In fact, all three logics differ
only in what kind of operators are allowed to declare sorts in their theories. This is an
important part of the definition of these languages that we would like to capture when
representing them in a logical framework.

3.2 Representing Language Translations

In declarative logical frameworks, in particular in LF, we see three main problems regard-
ing the representation of language translations. We will elaborate on those problems using
the following terminology:

Let Li be LF-representations of the languages Li. Then we say that a LF-representation
T : L1 → L2 of a translation T from L1 to L2 is

• adequate for expressions if it induces the intended translation of expressions,

i.e., the induced expression translation function exp
DLF (T)
Σ from definition 2.19 is

adequate in the sense of definition 2.22,

• valid for theories if it induces a mapping that maps an L1-pattern-valid LF-theory
to an L2-pattern-valid LF-theory,

• adequate for theories if it induces the intended translation of theories, i.e., the
induced theory translation function thD

LF (T) from definition 2.19 is adequate in the
sense of definition 2.22.

Note that these three properties can be generalized and applied to an arbitrary declar-
ative logical framework. Here we will focus on LF.

For each of the above-mentioned properties, we give examples of language translations
from the LATIN logic atlas in figure 3.2. Here, FOL → HOL is the straightforward
embedding of FOL in HOL. SFOL → FOL is the translation from definition 1.11. And
ML→ FOL is the standard Kripke-model-based translation of modal logic to FOL, which
makes the worlds of a Kripke model explicit in FOL.

Translations Expression-Adequate Theory-Valid Theory-Adequate

FOL→ HOL X × ×
SFOL→ FOL X X ×
ML→ FOL X X X

Figure 3.2: Overview of Representing Language Translations

The translation µ1 : FOL → HOL is adequate for expressions, but neither valid nor
adequate for theories: It maps the symbol declarations f : term → . . .→ term in a FOL-
theory Σ to LF-declarations f : tm i→ . . .→ tm i, where i : tp is an LF-symbol denoting
the HOL-type of individuals. The resulting declaration f : tm i → . . . → tm i in µ1(Σ)
does not conform to a HOL-pattern. An adequate mapping would yield the declaration
f : tm (i =⇒ . . . =⇒ i) that represents HOL-functions in LF. Therefore, the translation
FOL→ HOL is not well-defined for theories and consequently not theory-adequate.

27

FOL HOL
µ1

Σ

Blue = Pattern-valid LF theories

Red = LF-theories

µ1(Σ)

The translation µ2 : SFOL → FOL in LF is valid for theories. For instance, the
declaration f : tm A1 → . . . → tm An → tm B in an SFOL-theory Σ for Ai : sort and
B : sort is mapped to the declaration

f : term → . . . term︸ ︷︷ ︸
n

→ term

in µ1(Σ), which conforms to a FOL-pattern.

SFOL FOL
µ2

Σ

Blue = Pattern-valid LF theories

Red = LF-theories

µ2(Σ)

However, the translation is not adequate for theories: The resulting LF-theory µ2(Σ)
does not contain the necessary axioms should be generated due to elimination of SFOL-
sorts.

The translation ML→ FOL in LF satisfies all three properties above. This is because
the translation from ML to FOL can be adequately represented by an LF theory morphism.

3.3 Representing Extension Principles

We discussed in section 2.1 that several implementations of logical systems use individual
extension principles and provide a hard-coded implementation for them. We also men-
tioned that existing logical frameworks do not provide a representation mechanism for
extension principles that would allow coupling the representation of declarative languages
with their respective extension principles. This has been generally overlooked by in the
existing logical frameworks.

28

For example, in axiomatic set theory with only a predicate symbol ∈ and the usual
axioms, the construction of first-order terms is only possible via the extension principle
of implicit function definitions. Without this, it would become practically infeasible to
develop any sophisticated mathematical content. If we use higher-order logic as a founda-
tion of mathematics, then similarly, without the type definition principle, it would become
practically impossible to develop large formalizations.

Languages for mathematics commonly permit a variety of extension principles. But
existing implementations of logical systems do not include a generic mechanism that per-
mits introducing new extension principles. The problem is that instead a fixed set is built
into the object-language in the framework, and thus any extension principle that is desired
needs to be hard-coded in the implementation.

Moreover, we know that reasoning about conservativity is undecidable. Current sys-
tems, such as Isabelle [Pau94] or Hets [MML07] can define conservativity theoretically, but
must employ a set of heuristic criteria to check for practical cases. At the very least, it is
desirable to allow representing the extension principles that are known to be conservative.
Ideally, the framework would help the user to prove conservativity for extension principles.

3.4 Research Objectives

O1: Pattern-Based Representations We want to design a foundation-independent
meta-framework that permits theory-adequate representations of declarative languages
and their translations. The framework must be capable of representing the definition of
the theories, in particular the declaration patterns, and use this representation to validate
theories that conform to that definition. In particular, the over-generation problem from
section 3.1 must be solved.

Furthermore, the framework must permit representing the definition of theory trans-
lations between declarative languages. In particular, the represented translations must
guarantee that pattern-valid theories in the framework are translated to pattern-valid
theories.

O2: Representing Extension Principles The designed meta-framework must pro-
vide a generic mechanism for representing arbitrary extension principles. In particular,
individual representations of extension principles must be available for the languages rep-
resented in the framework via language translation.

O3: An Atlas of Adequate Representations Based on our meta-framework, we
want to create an atlas of adequately-represented languages and language translations.
The atlas must include commonly-used extension principles and their translations between
various languages in the atlas.

3.5 Methodology

This thesis contributes to the design of declarative logical frameworks by identifying a
new design principle that balances the trade-off between representing individual theories
and representing arbitrary theories: Declaration patterns. The main idea behind decla-
ration pattens is to capture the common syntactic structure of the theories of declarative
languages.

29

In the following, we will outline the main ideas of our solution to the research problems
in the previous sections.

3.5.1 Declaration Patterns

We exploit the observation that theories typically consist of a list of declarations each
of which conforms to one out of a few patterns fixed by the declarative language. For
instance, definition 1.1 of FOL-theories suggests three declaration patterns: one each
for the declaration of (i) function symbols, (ii) predicate symbols and (iii) axioms. We
represent each of these three different types of declarations as one declaration pattern.

While declarative logical frameworks like LF focus on defining the logical symbols
and the expressions, declaration patterns characterize the legal declarations of non-logical
symbols by specifying their syntactic shape. Moreover, in a legal theory of a language L,
each declaration must match one of the declaration patterns of L. Then, theories of L
may only contain declarations that conform to a declaration pattern of L.

The syntactic elements we utilize for declaration patterns are intuitive concepts that are
already at our disposal: We take ordinary theories and parametrize them by expression
arguments. Our approach finds a good balance between language expressivity versus
complexity while we are able to express a wide range of concepts using only a simple
syntactic primitive. In particular, declaration patterns allow the uniform representation
of

• the shape of the legal declarations in theories,

• extension principles and

• repetitive groups of declarations / abbreviations (pragmatic statements).

The expressivity of our approach comes from one relaxation we allow in the translation
of declaration patterns: They are not required to completely preserve the structure in their
body. This gives us great flexibility in expressing how certain forms of declarations should
be translated.

Nevertheless, our approach has certain limitations: Not every language translation
is expressible as a theory morphism since we do not have induction on theories. Using
declaration patterns, we can express only those translations that map every instance of
one pattern to a certain set of declarations in the other language.

3.5.2 Sequences

Interestingly, we have to introduce one additional primitive concept that is technically
independent but practically necessary for declaration patterns: We usually need sequences
of expressions to define the declaration patterns of a declarative language L even if the
expressions of L do not use sequences. For example, in theories of first-order logic, the
declaration pattern for function symbols use a sequence of terms — the arguments of the
function symbol. Therefore, we introduce expression sequences and natural numbers to
our design.

At this point, there are two very crucial and orthogonal questions to answer: i) at which
language level should sequence expressions be introduced, ii) what primitives should be
used for sequence expressions.

The answer to the first question has three options: i) the level of the theories of a
declarative language, e.g., developing a theory of sequences in a specific logic, ii) the level

30

of declarative languages, e.g., adding sequences to a specific logic as a fixed interpreted
sort, iii) the level of foundations, e.g., introducing sequences in a specific foundation.

The level theories does not work for our purposes, because declaration patterns are
defined at the level of declarative languages for any theory of the language. Then the
second option of introducing sequences in specific logics where they are needed might
sound more plausible. This would suggest that sequences should be part of those languages
that need them, which would, in contrary, make the specific logics too complicated.

Therefore, our goal is to add sequences at the level of foundations. This corresponds
most closely to informal mathematics where sequences and ellipses are assumed to be given
at the informal meta-level and not explicitly defined at the logical or set theoretical level.

3.5.3 Modular Foundations

While sequences are needed in the logical framework to express the declaration patterns
of several languages in practice, they should be part of the logical foundations only when
they are actually needed. Therefore, it is desirable to support modularity for foundations,
i.e., logical frameworks, to combine different foundational features and to enhance their
re-usability for different applications.

Reusable foundational features are typically syntactic primitives like constructors for
expressions, notations, typing rules, algorithms and rule-based implementations like type-
checking, type reconstruction or parsing. A crucial requirement for reusing foundational
features is to represent them in (possibly finite) set-like structures so that standard math-
ematical operations like union can be applied to combine them.

Therefore, we represent the syntax of a foundation as a set of primitive symbols, which
permits combining different syntaxes by taking the union of those sets. Moreover, the reuse
of syntactic concepts and definitions require some form of syntax translation.

We take one step forward and look into the structure of the semantics of foundations
in addition to their syntax. In particular, we pursue a rule-based approach, where the
semantics of a foundation is given as a set of inference rules. Then, meta-properties and
algorithms that proceed by induction on the set of inference rules of the foundation can
be reused by combining respective rules.

The key novelty we use for modular foundations is an abstract representation of the
inference rules for the expressions in a foundation. In particular, we represent the inference
system of a foundation as a set of rules, so-called foundational-rules, that conform to a
rule scheme. This rule scheme covers a wide range of inference rules including, for example,
typing and equality rules for dependent function types.

3.6 Thesis Outline

This thesis is structured as follows:

In chapters 4 and 5 we introduce our calculus-based, foundation-independent meta-
framework TFI for representing declarative languages and their translations. TFI is de-
signed in two main parts: The first part is introduced in chapter 4, in which we develop
modular foundations, a novel feature that allows combining exisiting foundations to define
new ones within TFI. We give LF as an example of a foundation in TFI.

In chapter 5, we introduce the primitive concepts of TFI. The key novelty in this
chapter is the notion of theory families and their instantiations. Theory families will serve
as the syntactic means to write down the declaration patterns of a language in TFI/F .

31

In chapter 6, we introduce a new foundation within TFI for sequences, and combine
it with the foundation LF, resulting in a novel foundation LFS that supports ellipses,
dependent functions of flexible arity and sequence arguments.

Then, in chapter 7, we employ our developments from chapter 5, in particular theory
families and their instantiations, to define declarative languages and their theories in
TFI/F , and define language translations that respect declaration patterns.

In chapter 8, we show how to represent extension principles in TFI and employ our
definition of language translation from chapter 7 to translate extension principles between
declarative languages.

Chapter 9 presents a collection of case studies we carried out to evaluate our develop-
ments. In particular, we give an atlas of declarative languages and translations between
them represented in TFI with LFS being the underlying foundation of the representa-
tions. Then, we enrich the language atlas with specific extension principles we defined in
our framework and use the translations in our atlas to translate them.

Chapter 10 concludes this thesis with a summary and discusses future work.

32

Chapter 4

Modular Foundations

Foundations, in our sense, are formal meta-languages that are assumed to be a priori given
as opposed to object-languages that are defined within a meta-language. Typical examples
include declarative logical frameworks like LF [HHP93] or Isabelle [Pau94].

In this chapter we give an abstract definition of foundation and introduce mathematical
operations that permit combining existing foundations modularly. More specifically, we
define a foundation as a set of primitive symbols and a set of inference rules that define
the semantics of these primitives.

In section 4.1 and section 4.2 we describe the representation of the syntax and the
inference system of a foundation, respectively. In section 4.4, we define module operations
for inheritance, union, and translation of foundations to define new foundations from
existing ones.

We will use our definition of foundation in chapter 5 as a generic base layer on top of
which we define declarative languages and translations.

4.1 Syntax

When we talk about the syntax of a foundation, we consider i) the primitive symbols of a
foundation, ii) the theories of the foundations, iii) the expressions over a given theory of
the foundation, and iv) the notations used for those expressions.

We introduce the primitive symbols of a foundation in foundational theories:

Definition 4.1 (Foundational Theory). A foundational theory is a set. We call the
elements of this set foundational symbols.

Foundational symbols are typically identifiers like strings or URIs, e.g., MMT URIs [RK13].
The notion of foundational theory as a set of symbols is first introduced in the work
of [RK13]1. We use the same concept here because it is simple and general.

Next, we will define the theories of a foundation and the expressions over a given
theory by using a context-free grammar. We will use a Backus-Naur-Form style notation
to introduce our context-free grammars. Non-terminal symbols are introduced on the left
of ::=, and the vertical bar | is used to separate the expressions and denotes a choice. We
use [E] to denote optional components E. The sign +, as in E+, denotes the occurrence
of at least one meta-variable E.

Definition 4.2 (Theories of a Foundation). The theories of a foundation are formed by
the following grammar in figure 4.1:

1Foundational theories are meta-theories in MMT.

33

Theories Σ ::= · | Σ, x : E[= E]
Expressions E ::= s | x | β(E ; Σ ; E) | @(E;E+)

Figure 4.1: Grammar

More specifically, theories Σ are formed by declarations x : E[= E′] of non-primitive
symbols x of type E and optional definiens E′.

The expressions E are OpenMath [BCC+04] objects and are formed by
• foundational symbols s,
• symbols x that are declared in theories Σ,
• bindings β(E ; Σ ; E′), where E binds the symbols in Σ in the scope E′ and Σ consists

of symbol declarations of the form x : E only (no defieniens) and
• applications @(E;E1, . . . , En), where E is applied to E1, . . . , En.

Notation 4.3 (F-Theories). We will refer to i) the theories of a foundation F as F-
theories, and ii) the expressions over an F-theory Σ as Σ-expressions. Moreover, we
will denote i) the set of Σ-expressions as ExpF (Σ) and omit the superscript F whenever
the foundation is clear from the context, and ii) the set of expressions over the foundational
symbols of F only, i.e., ExpF (·), as ExpF .

Definition 4.4 (Domain of a Theory). We define the domain of a theory Σ inductively
on the declarations in Σ:

dom(·) = ∅
dom(Σ, x : E[= E′]) = dom(Σ) ∪ {x}

Definition 4.5 (Free Occurring Symbols). We define the set FV (E) of symbols that
occur free in an expression E inductively on the formation of E:

FV (x) = {x}
FV (s) = ∅
FV (β(E ; Σ ; E′)) = FV (E) ∪ FV (Σ) ∪ (FV (E′) \ dom(Σ))
FV (@(E;E1, . . . , En)) = FV (E) ∪ FV (E1) ∪ . . . ∪ FV (En)

Similarly, we define the free symbols of Σ:

FV (·) = ∅
FV (Σ, x : E[= E′]) = FV (Σ) ∪ (FV (E)[∪FV (E′)] \ dom(Σ))

Moreover, we say that the occurrences of the symbols x1, . . . , xn in Σ in bindings β(E ; Σ ; E′)
are bound.

Note that foundational symbol s do not occur free or bound in expressions as they are
primitive symbols.

At this point, we could already define the substitution of free occurring symbols, but
we find it more elegant to introduce that as a special case of morphism application in
section 5.1.3.

Typically, a foundational theory is presented with a set of notations for the expres-
sions. We will not formally restrict the notations a foundation may use, and will introduce
them in an ad hoc manner whenever they are intuitive and improve the readability of the
syntax of the foundation.

The following example introduces the syntax of LF using our definition of syntax.

34

Example 4.6 (LF Syntax). The foundational theory of LF is the set {type, kind, λ,Π, app}.
These symbols permit the formation of expressions of the form:

• β(λ ; Σ ; E) for λ-abstractions that bind the symbols in Σ over E,

• β(Π ; Σ ; E) for dependent function types and kinds that bind the symbols in Σ over
E,

• @(app;E,E1, . . . , En) for applications of expressions E to E1, . . . , En.

The type system for LF in example 4.10 will restrict the use of β(E ; Σ ; E′) to the
foundational symbols λ and Π only.

We introduce the following notations:

• λx1 : A1. . . . λxn : An. E for bindings β(λ ; Σ ; E) where Σ = x1 : An, . . . , xn : An,

• Πx1 :A1. . . .Πxn :An. E for bindings β(Π ; Σ ; E) where Σ = x1 : A1, . . . , xn : An,
and A1 → . . .→ An → E whenever no xi occurs in A1, . . . , An and E.

• EE1 . . . En for applications @(app;E,E1, . . . , En) (application is left-associative).

4.2 Type System

The type system of a foundation typically employs i) a typing judgment to specify the
well-formed expressions, ii) an equality judgment on the well-formed expressions, and
iii) inference rules for these judgments.

We will use the judgments in figure 4.2 to specify the type system of any given foun-
dation F : The judgments Σ ` E : E′ and Σ ` E

.
= E′ are standard typing and equality

judgments for well-formed F-expressions E and E′ over a well-formed theory Σ. In par-
ticular, the equality judgment states E and E′ are equal if they are well-formed.

Note that we do not distinguish between terms, types or kinds syntactically at this
level.

Additionally, we have two new judgments:
• The judgment Σ ` E Inhabitable states that E can be inhabited by the expressions

over a F-theories (e.g., as types or kind in LF).
• The judgment Σ ` EQuantifiable states that inhabitants of E can be bound by
F-binders (e.g., such as in λx : E.E′ in LF).

We will use these judgments as auxiliary judgments in the formation rules for binders.

Σ ` E : E′ E is a well-formed expression inhabiting (well-formed) E′ over Σ.

Σ ` E .
= E′ E is equal to E′ over Σ (if E and E′ are well-formed).

Σ ` E Inhabitable E is inhabitable over Σ.
Σ ` EQuantifiable E is quantifiable over Σ.

Figure 4.2: Foundational Judgments

Note that judgments and rules over them are foundation-independent, whereas the
derivability of a specific judgment is foundation dependent.

In the following we introduce a rule schema that we will use to constrain the inference
rules of a foundation:

35

Definition 4.7 (Foundational Rule). A foundational rule is an inference rule with a
set M of meta-variables and instantiates the following rule schema:

Σ,Ψ1 ` S1 . . . Σ,Ψm ` Sm
R

Σ ` S

where Σ is meta-variable we use for F-theories, Ψj consists of x1
j : Aj1, . . . , x

j
l : Ajl and

the succedents S, S1, . . . , Sm range over the forms of the succedents of the foundational
judgments in figure 4.2. The succedents and Ajk may contain symbols from Ψj , and may
refer to the foundational symbols of F and to the meta-variables in M. Moreover, the
succedents may contain substitution.

Note that our rule schema for foundational rules allow one meta-level operation in
the judgments used in them: substitution. This is a safe decision, because we show in
lemma 5.35 of chapter 5 that substitution is preserved under morphism application.

Now we can define a foundation as a pair of syntax and a type system for that syntax:

Definition 4.8 (Foundation). A foundation F is a pair (SymF ,RulesF) of a foundational
theory SymF and a set RulesF of inference rules that consists of

• a collection of foundational rules,
• the rules in figure 4.3 and figure 4.4, which we call structural rules, and
• the rules of the meta-framework2 in which F is used, which we call framework

rules.

Σ ` E .
= E′ Σ ` F1

.
= F ′1 . . . Σ ` Fn

.
= F ′n RAppCong

Σ ` @(E;F1, . . . , Fn)
.
= @(E′;F ′1, . . . , F

′
n)

Σ ` E .
= E′ Σ ` Ψ

.
= Ψ′ Σ,Ψ ` F .

= F ′
RBindCong

Σ ` β(E ; Ψ ; F)
.
= β(E′ ; Ψ′ ; F ′)

Σ ` E1 : E2 Σ ` E1
.
= E′1 Σ ` E2

.
= E′2 RTypeCong

Σ ` E′1 : E′2

Figure 4.3: Congruence Rules

The intuition behind our definition is that every foundation comes with a set of foun-
dational rules that instantiate the rule schema R. Note that according to our definition,
every foundation contains congruence and equivalence rules.

In the rule RBindCong of figure 4.3, Σ ` Ψ
.
= Ψ′ is an auxiliary judgment for the

equality of theories, which is defined as follows:

empty
Σ ` · .=·

2We introduce our meta-framework in chapter 5.

36

RRefl
Σ ` E .

= E

Σ ` E1
.
= E2 RSym

Σ ` E2
.
= E1

Σ ` E1
.
= E2 Σ ` E2

.
= E3

RTrans
Σ ` E1

.
= E3

Figure 4.4: Equivalence Rules

Σ ` Ψ
.
= Ψ′ Σ,Ψ ` T .

= T ′ [Σ,Ψ ` D .
=D′]

concat
Σ ` Ψ, x : T [= D]

.
= Ψ′, x : T ′[= D′]

As a very simple example we give a foundation for a type theory with only types and
kinds.

Example 4.9. Types = (SymTypes ,RulesTypes), where SymTypes = {type, kind} and RulesTypes

consists of the structural rules in figure 4.3 and figure 4.4, the foundational rules in fig-
ure 4.5 and the framework rules in figure 5.10.

type
Σ ` type : kind

Σ ` A : type
typeInh

Σ ` A Inhabitable

Σ ` B : kind
kindInh

Σ ` B Inhabitable

Figure 4.5: Typing Rules for Types

4.3 Examples

Now we can recover the syntax and the type system of LF as a foundation in the sense of
definition 4.8:

Example 4.10. We give the foundation LF = (SymLF ,RulesLF), where SymLF is the set
in example 4.6 and RulesLF instantiates the rule schema R in definition 4.7 by the typing
rules in figure 4.5 and figure 4.6, and the conversion rules in figure 4.7.

Note that figure 4.6 does not contain a rule for the case of well-formed non-logical
symbols declared in the LF-theories Σ. We introduce look-up rules for symbols declared
in F-theories in figure 5.10 as a part of our framework in chapter 5 and every foundation F
that we introduce in our framework will inherit these rules directly from the foundation.
Similarly, SymLF does not contain a symbol for the equality of LF expressions as our
definition of foundation encompasses equality rules.

37

Σ ` A : type
typeQuan

Σ ` AQuantifiable

Σ ` AQuantifiable Σ, x : A ` E1 Inhabitable Σ, x : A ` E1 : E2
depType

Σ ` Πx :A.E1 : E2

Σ ` AQuantifiable Σ, x : A ` E2 Inhabitable Σ, x : A ` E1 : E2
abstr

Σ ` λx : A. E1 : Πx :A.E2

Σ ` E1 : Πx :A.E2 Σ ` M :A
app

Σ ` E1M : [M/x]E2

Figure 4.6: Typing Rules of LF

Σ, x : A ` E : E′ Σ ` M :A
β-Conv

Σ ` (λx : A. E)M
.
= [M/x]E

Σ, x : A ` x :A Σ ` E : Πx :A.E′
η-Conv

Σ ` λx : A. (E x)
.
= E

Figure 4.7: β- and η-Conversions

Note that our formulation of the LF typing rules as foundational rules in figure 4.6
differs from the formulation in [HHP93]. In our formulation of LF rules, we first categorize
LF expressions into i) those which are allowed to introduce bound variables, and ii) those
which can be inhabited. In the former case, one can only quantify over LF types A : type
and thus only bind typed symbols x : A so that λ and Π-binders cannot bind type variables.
In the latter case, inhabitable LF expressions are LF types E : type or LF kinds E : kind.

In both the λ-formation and Π-formation rules, we make sure by adding the premise
Σ ` AQuantifiable that only term symbols x : A may be bound. The premise that E is
inhabitable over Σ, x : A permits us to unify the λ and Π-formation rules for type and
kind level abstraction.

Figure 4.7 gives the β- and η-equality rules.

Now let us consider the following foundation that introduces natural numbers:

Example 4.11 (Naturals). We define Nat = (SymNat ,RulesNat) as follows:

SymNat = SymTypes ∪ {nat, zero, one, add, sub, leq,

refl, trans, least, monotone1, monotone2}

The following expressions can be formed over SymNat :

• @(add;E1, E2) for the sum of two expressions E1 and E2.

38

• @(sub;E1, E2) for the subtraction of expression E2 from E1.

• @(leq;E1, E2) for the less-than or equal relation between two expressions E1 and
E2.

• @(trans;E1, E2), @(monotone1;E) and @(monotone2;E) for transitivity and mono-
tonicity axioms in figure 4.10.

Expression Notation

zero 0
one 1
@(add;E1, E2) E1 + E2

@(sub;E1, E2) E1 − E2

@(leq;E1, E2) E1 ≤ E2

Figure 4.8: Notations for Nat Expressions

RulesNat consists of the rules in RulesTypes , figure 4.9 and figure 4.10.

typeNat
Σ ` nat : type

Σ ` m : nat Σ ` n : nat
typeLeq

Σ ` m ≤ n : type

natZero
Σ ` 0 : nat

natOne
Σ ` 1 : nat

Σ ` m : nat Σ ` n : nat
natAdd

Σ ` m+ n : nat

Σ ` m : nat Σ ` n : nat Σ ` :m ≤ n
natSub

Σ ` n−m : nat

Figure 4.9: Typing Rules for Natural Numbers

The rules in figure 4.9 are straightforward. It is nevertheless worth mentioning the
rule typeLeq . We use the propositions-as-types [CF58, How80] paradigm to represent
propositions on natural numbers: ≤ is a type judgment on natural numbers, i.e., a type
constructor for nat, where m ≤ n is the type of the expressions that proves that m is
less-than or equal to n. Moreover, subtraction n−m is only allowed as long as the result
is a positive natural number (i.e., whenever the type m ≤ n is inhabited).

By choosing ≤ to be a primitive symbol, we are able to introduce axioms about natural
numbers as foundational rules in figure 4.10 that introduce + as a commutative monoid

39

assoc
Σ ` x+ (y + z)

.
= (x+ y) + z

comm
Σ ` x+ y

.
= y + x

neutr
Σ ` x+ 0

.
= x

Σ ` x .
= y + z

minus1
Σ ` x− y .

= z

Σ ` : y ≤ x Σ ` x− y .
= z

minus2
Σ ` x .

= y + z

Σ ` x : nat
refl

Σ ` refl : x ≤ x

Σ ` p : x ≤ y Σ ` q : y ≤ z
trans

Σ ` trans p q : x ≤ z

Σ ` : x ≤ y Σ ` : y ≤ x
antisym

Σ ` x .
= y

Σ ` x : nat
least

Σ ` least : 0 ≤ x

Σ ` p : x ≤ y
monotone1

Σ ` monotone1 p : x+ z ≤ y + z

Σ ` p : x+ z ≤ y + z
monotone2

Σ ` monotone2 p : x ≤ y

Figure 4.10: Rules for Natural Numbers

with the neutral element 0 and ≤ as an ordering with the least element 0. Additionally,
we introduce two rules for the axiom x = y + z if and only if x − y = z and two rules
for + being monotonous with respect to ≤. The set of axioms in figure 4.10 exclude
induction, but permit deriving the usual computations on the naturals using addition and
subtraction.

Notation 4.12. We will use any meta-level natural number 2, 3, . . . as an abbreviation of
the corresponding natural number expression in the obvious way starting with 2 denoting
1 + 1, and continue adding 1, e.g., 3 denoting (1 + 1) + 1, and so on.

Definition 4.13 (Normal Nat-Expressions). We say that a Nat-expression is normal if
it has the form 1 + . . .+ 1︸ ︷︷ ︸

n

for some meta-level natural number n.

Note that a Nat-expression without free occurring symbols is provably equal to a
normal one.

40

4.4 Modularity

Given a foundation like Types in example 4.9, we can easily add more symbols to its set
of primitives and couple those with appropriate inference rules in order to obtain more
interesting foundations. For that purpose, we define inclusion of foundations:

Definition 4.14 (Inclusion of Foundations). Let F = (SymF ,RulesF) and G = (SymG ,RulesG)
be two foundations. We say that G includes F , denoted as F ↪−→ G, if and only if we
have SymF ⊆ SymG and RulesF ⊆ RulesG .

Example 4.15. We have Types ↪−→ Nat and Types ↪−→ LF .

Next, we use the set-theoretic notion of union to introduce the union of foundations:

Definition 4.16 (Union of Foundations). Let F = (SymF ,RulesF) and G = (SymG ,RulesG)
be two foundations. The union F ∪ G is the pair (SymF ∪ SymG ,RulesF ∪ RulesG).

We now define what it means to apply a symbol mapping to expressions, theories,
foundational judgments, and foundational rules:

Definition 4.17 (Symbol Mappings). A symbol mapping f : SymF → ExpG maps the
foundational symbols in SymF to expressions over the foundational symbols of G.

Moreover, we define the extension f of f to i) the expressions in ExpF , ii) F-theories,
iii) the succedents of the foundational judgments in figure 4.2, and iv) the foundational
rules in RulesF as follows:

• Expressions E ∈ ExpF : f replaces all occurrences of s1, . . . , sn ∈ SymF in E with
f(s1), . . . , f(sn), respectively.

• F-theories Σ = x1 : E1, . . . , xn : En are mapped to f(Σ) = x1 : f(E1), . . . , xn :
f(En).

• The succedents of the foundational judgments in figure 4.2 are mapped as follows:

Σ ` f(E : E′) = Σ ` f(E) : f(E′)

Σ ` f(E
.
= E′) = Σ ` f(E)

.
= f(E′)

Σ ` f(E Inhabitable) = Σ ` f(E) Inhabitable

Σ ` f(EQuantifiable) = Σ ` f(E) Quantifiable

where Σ is a meta-variable for a theory.

• Every foundational rule of the form

Σ,Ψ1 ` S1 . . . Σ,Ψm ` Sm
Σ ` S

is mapped to the rule

Σ, f(Ψ1) ` f(S1) . . . Σ, f(Ψm) ` f(Sm)

Σ ` f(S)

Now we use definition 4.17 to define a more complex operation that permits manipu-
lating the foundational symbols included from a foundation into another one:

41

Definition 4.18 (Foundation Morphisms). Let F and G be two foundations. We say that
a (partial) symbol mapping f : SymF → ExpG is a (partial) foundation morphism
from F to G if f maps (some) all foundational rules in RulesF to a derivable rule over
RulesG .

Definition 4.19 (Generative Unions). Let f : SymF → ExpG be a partial foundation
morphism from F to G and D ⊆ RulesF be the set of rules R such that f(R) is derivable.
The generative union G ∪f F of G and F along f is the foundation defined by

SymG∪
fF = SymG ∪ (SymF \ dom(f))

RulesG∪
fF = RulesG ∪ {f ′(R) |R ∈ RulesF \ D}

and f∗ : SymF → ExpG∪
gF is the foundation morphism from F to G ∪f F defined as

follows:

f∗(s) =

{
f(s) if s ∈ dom(f)
s otherwise

Intuitively, generative unions allow including a foundation via an instantiation for
some of its foundational symbols. The generative union G ∪f F includes the foundation G
and includes the foundation F along the partial symbol mapping f as the diagram below
illustrates.

FG

G ∪f F

f

f∗

In SML [MTHM97], a similar construction can be achieved by

include G, include F with f.

In MMT [RK13], structure declarations in an MMT-theory allow such inclusions with an
assignment f . In development graphs [MAH06], these correspond to definitional links.

4.5 Discussion

The more a system knows about the semantics of a foundation, the more it can facilitate
reuse. For example, MMT [RK13] and Hets [MML07] regard the semantics of a foundation
abstractly as an oracle and therefore have very little structure to work with. In particular,
MMT does not look into the structure of the inference system of a foundation and only
axiomatizes certain semantic properties that must be satisfied by individual foundations.
In Hets, each foundation is implemented individually. In that case, foundations treated as
oracles have to come with their own definitions, their own proofs of meta-properties and
implementations of algorithms. Therefore, implementations and proofs have to be done
for every individual foundation.

Our rule-based definition of foundation allows us to exploit the structure of the foun-
dational rules, therefore, to prove certain meta-properties by induction on the derivation
of each kind of foundational rule once and for all foundations. For example, the preserva-
tion of typing along theory morphisms is one major meta-property that we prove for all
foundations that conform to our definition (see theorem 5.40).

42

Our rule schema for foundational rules is relatively simple and has broad coverage: It
covers most declarative languages, in particular, pure type systems [Ber90] and systems
based on Martin Löf type theory [ML74].

Modular foundations is a novel development that permits defining new foundations
reusing existing ones and interrelating different foundations. In chapter 6, we will exploit
foundation morphisms and generative unions to define two new foundations modularly.

43

44

Chapter 5

Theory Families and Instantiations

In this chapter we develop our foundation-independent meta-framework TFI for mathe-
matical theories and their translations. TFI is built around our generic foundation layer
from chapter 4 and refines it by adding theory morphisms. This development is very simi-
lar to that of MMT [RK13]. Then, TFI introduces the notion of theory families and their
instantiations. These are novel concepts that characterize TFI.

We introduce the syntax of TFI in section 5.1, and the type system in section 5.2. We
end the chapter with a discussion in section 5.3.

Grammar Inference System

Language section 5.1.1 section 5.2.1

Homomorphic Extensions section 5.1.3 section 5.2.2

Elaboration section 5.1.3 section 5.2.2

Figure 5.1: Chapter Overview

5.1 Syntax

We will assume an arbitrary fixed foundation F throughout this chapter and define our
concepts relative to that foundation.

5.1.1 Grammar

In TFI we do not distinguish between theories and contexts, and merge these two concepts
together. This has the consequence that constants and variables become one unified
notion.

Terminology 5.1. We call this unified notion of constants and variables symbols.

The syntax of TFI is given by the grammar in figure 5.1.1, which extends the grammar
in figure 4.1 from chapter 4. We explain the non-terminal symbols and their productions
below.

Theories are formed from the empty theory, denoted as ·, by adding symbol declara-
tions. More specifically, a theory Σ consists of a list of declarations of the form:

• declarations x : E[= E′] of expression symbols x of type E and with optional
definition E′,

45

Theories Σ ::= · | Σ, x : E[= E] | Σ, ϕ : τ = Φ | Σ, ι : Φ

Theory morphisms σ ::= · | σ, x := E | σ, ϕ := Φ | σ, ι := I

Kinds τ ::= theory | (x : E) τ

Theory Families Φ ::= ϕ | {Σ} | (x : E) Φ | Φ(E)

Instances I ::= ι | {σ}

Expressions E ::= s | x | I.x | β(E ; Σ ; E) | @(E;E)

Figure 5.2: TFI Grammar

• declarations ϕ : τ = Φ of theory family symbols ϕ of kind τ and with definition
Φ and

• declarations ι : Φ of instance symbols ι of type Φ.

Theory morphisms map symbols of one theory to objects in another theory. More
specifically, a theory morphism σ consists of a list of assignments of the form:

• x := E that map symbols x to expressions E,

• ϕ := Φ that map symbols ϕ to theory families Φ, and

• ι := I that map symbols ι to instances I.

Note that theory morphisms do not map foundational symbols s. Foundational symbols
are automatically mapped to themselves.

Terminology 5.2 (Fragments). Let Σ,Ψ be a theory. We say that Σ,Ψ includes Σ or
that Σ,Ψ extends Σ with Ψ. We call Ψ a theory fragment of Σ,Ψ.

Analogous to theory fragments, we can talk about fragments of theory morphisms: Let
σ, ψ be a theory morphism that maps symbols in Σ,Ψ to objects in Σ′. We say that ψ is
a morphism fragment of σ, ψ.

We reify theory fragments as objects that may occur in theories themselves. Then
theory families are a result of performing object-level operations on the reified theory
fragments.

More specifically, theory families Φ are theory fragments that are parameterized by
expression level declarations. Consequently, they are formed by four constructors:

• Reified theory fragments {Ψ},

• abstractions (x : E) Φ that parameterize a theory family Φ by a declaration x : E,

• applications Φ(E) that provide an argument E to a theory family Φ, and

• names ϕ to refer to previously declared theory families.

Definition 5.3. We say that the theory fragment Ψ in Σ,Ψ is simple if it does not
contain any theory family declarations ϕ : τ = Φ.

Moreover we say that Ψ is strict if it consists of only declarations of the form

x : E = E′ and i : Φ

such that whenever Φ contains {Ψ′} then Ψ′ is strict. In that case, we say that Φ is strict.

46

Note that our operations on theory fragments are first-order: Abstraction over theory
families is restricted to object level expressions x : E only.

One crucial decision in our language design is the use of kinds. We use kinds to classify
theory families and to distinguish them from typed expressions. In particular, kinds τ
classify theory families into i) atomic ones {Ψ}, which are kinded by the base kind theory,
and ii) those that are parameterized by an expression symbol x : E, which are kinded by
the kind (x : E) τ . We will elaborate on the kinds in our type system in section 5.2.

We call theory families that are kinded by theory object-level theories. Note that these
are different than the meta-level theories Σ.

Our approach of using kinds to classify theory families at the object level is in parallel to
the typing system object level expressions have and ensures that we do not use expression
bindings for theory families.

Analogous to theory fragments, we reify morphism fragments as objects that occur
in theories. We call these objects instances. The notion of instances goes together with
the notion of theory families. Intuitively, instances are objects that arise by instantiating
theory families.

More specifically, instances I are formed from reified morphism fragments {ψ} and
names ι. The type system of TFI has a hierarchy that is similar to those in well-known
type systems like LF [HHP93]. Instances I are typed by theory families Φ that are kinded
by theory.

In addition to the OpenMath expressions from grammar 4.1, TFI permits projections
I.x of instances to symbols x.

5.1.2 Examples

Now we will give some examples of the concepts we introduced in section 5.1.1. For our
examples, we will instantiate F with the foundation LF from example 4.10.

Theories and Theory Morphisms

Notation 5.4. We will use the following notations to write named theories and theory
morphisms:

• T = {Σ} for a theory named T with body Σ and

• µ = {σ} for a theory morphism named µ with body σ.

Furthermore, we will use the following features for convenience and readability:

• infix notation E1OE2 for the application OE1E2 of binary operators O to argu-
ments E1 and E2,

• implicit arguments in symbol declarations,

• omitted types of bound variables.

Such notations can be declared formally in frameworks like MMT [RK13], but we omit
the notation language for simplicity.

The following example introduces a well-known formalization of simple type theory in
LF:

47

Example 5.5 (Simple Type Theory). We introduce simple type theory as a TFI/LF -theory
named STT .

STT = {
tp : type

tm : tp → type

ι : tp
o : tp
=⇒ : tp → tp → tp
lam : tm A→ tm B → tm (A =⇒ B)
app : tm (A =⇒ B)→ tm A→ tm B
}

Here, we use implicit arguments A : tp and B : tp in the declaration of lam and app.

The following example is a small fragment of the formalization of axiomatic set theory
in LF given in [HR11].

Example 5.6 (Set Theory). We introduce axiomatic set theory as an TFI/LF -theory named
Sets:

Sets = {
set : type

form : type

ded : form → type

∈ : set → set → form
Fun : set → set → set
lam : set → (set → set)→ set
app : set → set → set
Bool : set
}

The following example introduces the interpretation of simple type theory in terms of
axiomatic set theory as a TFI/LF -theory morphism:

Example 5.7 (Theory Morphisms). The theory morphism STT2Sets maps the symbols in
STT from example 5.5 to objects over the theory Sets from example 5.6.

STT2Sets = {
tp := set
tm := λs : set . set
o := Bool
=⇒ := λs : set . λt : set . Fun s t
lam := λs : set . λt : set . lam s t
app := λf : set . λx : set . app f x
}

Notation 5.8. Given named theories S = {Σ} and T = {Σ,Ψ}, we will occasionally define
T as

T = {
include S
Ψ
}

48

and say that T extends S with Ψ.

Now, we introduce the theory of magma as a theory in TFI/LF :

Example 5.9 (Magma). Consider the TFI/LF -theory STT from example 5.5. We intro-
duce the theory of magma by extending STT with the following declarations and name
the resulting theory PointedMagma:

PointedMagma = {
include STT
M : tp
e : tm M
◦ : tm (M =⇒M =⇒M)
}

Theory Families and Instances

Notation 5.10. We will use the following notations for theory families throughout this
thesis: If Γ is a possibly empty list of declarations x1 : E1, . . . , xn : En, then we will write

• (Γ) theory for (x1 : E1) . . . (xn : En) theory,

• (Γ) {Ψ} for (x1 : E1) . . . (xn : En) {Ψ},

• Φ(x1, . . . , xn) or Φx1 . . . xn for Φ(x1) . . . (xn).

Example 5.11 (Theory Families). We extend STT from example 5.5 with the following
declarations of theory families and refer to this extension as STT +:

STT + = {
include STT
typeDecl : theory = {x : tp}
TypedSym : (T : tp) theory = (T : tp) {x : tm T}
}

typeDecl represents declarations of type constants a in simple type theory. Then,
TypedSym represents declarations of typed terms t : T in simple type theory for a simple
type T .

Now, we extend Sets from example 5.6 with the following declarations of theory families
and will refer to this extension as Sets+:

Sets+ = {
include Sets
setDecl : theory = {s : set}
ax : (F : form) theory = (F : form) {m : ded F}
}

setDecl represents the introduction of individual sets s in set theory. Then, ax rep-
resents the introduction of axioms F , using the judgments-as-types approach, as symbols
declarations m : ded F .

Now, we give assignments that map the theory family symbols in STT + to theory
families over Sets+.

typeDecl := setDecl
TypedSym := (T : set) {x : set ,m : ded x ∈ T}

49

The first assignment represents that for every type declaration a : tp in simple type
theory, a set declaration is introduced.The second assignment represents that for every
declaration of a typed constant t : T in simple type theory, a set x : set and an axiom for
x are introduced.

Notation 5.12. In the examples we give in the remainder of this document, we will omit
writing the kind τ in the declarations of theory family symbols ϕ : τ = Φ and will simply
write ϕ = Φ instead as τ can be easily inferred from Φ.

Recall that in example 5.9, we introduced the TFI/LF -theory PointedMagma as an
example of an STT -theory. PointedMagma extended STT + with declarations of expres-
sion symbols. Alternatively, we can give the theory of pointed magma as the following
TFI/LF -theory that extends STT with instance declarations:

Example 5.13 (Instances). The following declarations introduce instances of the theory
families in example 5.11.

PointedMagma ′ = {
include STT +

M ′ : typeDecl
e′ : TypedSym(M ′.x)
◦′ : TypedSym(M ′.x =⇒M ′.x =⇒M ′.x)
}

M ′.x is the projection of the declaration x : tp in typeDecl out of M ′.

Notation 5.14. In the remainder of this document, a theory family may not necessarily
give a concrete name to a declaration in the theory family, but rather use like in

ϕ : τ = { : A = B}

as the name. In that case, whenever there is an instance instantiating ϕ, e.g., ι : ϕ, then
we will write the projection ι. of ι simple as ι for the sake of readability.

5.1.3 Meta-Level Definitions

In this section, we develop three main definitions by induction on the grammar 5.1.1: i) ho-
momorphic extensions of theory morphisms, ii) transformation along theory morphisms,
and iii) elaboration of theories.

Notation 5.15. Let σ be a theory morphism. We denote the theory morphism σ, x1 :=
x1, . . . , xn := xn by σx1,...,xn .

Remark 5.16. The function definitions in this section do not check whether the input is
a well-formed object. We define well-formed TFI objects in section 5.2 and use these
definitions for only well-formed input arguments.

Homomorphic Extensions Our definition of homomorphic extensions maps every ob-
ject of the TFI grammar from one theory to another. Substitution is subsumed by this
definition.

Definition 5.17 (Homomorphic Extension of Theory Morphisms). Let σ be a theory
morphism. The homomorphic extension σ of σ is the following family of mappings
defined for each non-terminal in our grammar 5.1.1:

50

• σ(Φ) is defined by:

σ(ϕ) = Φ for ϕ := Φ in σ
σ((x : E) Φ) = (x : σ(E))σx(Φ)
σ(Φ(E)) = σ(Φ)(σ(E))
σ({Ψ}) = {σ(Ψ)}

• σ(τ) is defined by:

σ(theory) = theory

σ((x : E) τ) = (x : σ(E))σx(τ)

• σ(I) is defined by:

σ(ι) = I for ι := I in σ
σ({ψ}) = {σ(ψ)}

• σ(E) is defined by.

σ(s) = s
σ(x) = E for x := E in σ
σ(I.x) = σ(I).x
σ(@(E;E′)) = @(σ(E);σ(E′))

σ(β(E ; Ψ ; E′)) = β(σ(E) ; σ(Ψ) ; σΨ(E′))

where σΨ denotes the morphism σx1,...,xn for x1, . . . , xn ∈ dom(Ψ).

• σ(Ψ) is defined by:

σ(·) = ·
σ(Ψ, x : E[= E′]) = σ(Ψ), x : σ ∗Ψ(E)[= σ ∗Ψ(E′)]

σ(Ψ, ι : Φ) = σ(Ψ), ι : σ ∗Ψ(Φ)

σ(Ψ, ϕ : τ = Φ) = σ(Ψ), ϕ : σ ∗Ψ(τ) = σ ∗Ψ(Φ)

where σ ∗Ψ is defined in definition 5.18.

• σ(ψ) is defined by:

σ(·) = ·
σ(ψ, x := E) = σ(ψ), x := σ(E)
σ(ψ, ι := I) = σ(ψ), ι := σ(I)
σ(ψ,ϕ := Φ) = σ(ψ), ϕ := σ(Φ)

Intuitively, this definition captures the following diagram:

Σ Σ′

Σ,Ψ Σ′, σ(Ψ)

σ

51

Transformation along Morphisms Now, we define a theory morphism to complete
the diagram above:

Definition 5.18 (Transformation along Morphisms). Let Σ,Ψ and Σ′ be theories, and σ
be a theory morphism that maps symbols in Σ to objects over Σ′. The transformation
for Ψ along σ is the theory morphism, denoted as σ ∗Ψ, that maps symbols in Σ,Ψ to
objects in Σ′, σ(Ψ) and is defined recursively as follows:

σ ∗ · = σ
σ ∗ (Ψ, x : E[= E′]) = (σ ∗Ψ), x := x
σ ∗ (Ψ, i : Φ) = (σ ∗Ψ), i := i
σ ∗ (Ψ, ϕ : τ = Φ) = (σ ∗Ψ), ϕ := ϕ

definition 5.17 and definition 5.18 together capture the following commutative diagram:

Σ Σ′

Σ,Ψ Σ′, σ(Ψ)

σ

σ ∗Ψ

Example 5.19. (Continuing example 5.9). We apply the theory morphism STT2Sets from
example 5.7 to the theory PointedMagma in example 5.9 and get the following theory:

STT2Sets(PointedMagma) = {M : set , e : set , ◦ : set}

Furthermore, we have the following theory morphism as illustrated in the diagram
below:

STT Sets

STT ,PointedMagma Sets,STT2Sets(PointedMagma)

STT2Sets

STT2Sets ∗ PointedMagma

STT2Sets ∗ PointedMagma = {M := M, e := e, ◦ := ◦}

Elaboration Now we will talk about the elaboration of TFI/F theories. The idea is
that every instance declaration ι : Φ in a TFI/F-theory is elaborated to a list of expression
symbol declarations xi : Ei[Di] that Φ consists of in its body.

Definition 5.20 (Elaboration). We define the elaboration of a theory Σ recursively as
follows:

E(·) = ·
E(Σ, x : E = E′) = E(Σ), x : E = E′

E(Σ, ι : Φ) = E(Σ), ι.x1 : γ(E1)[= γ(D1)], . . . , ι.xn : γ(En)[= γ(Dn)]

for Φ↓δβ = {Ψ} and E(Ψ) = {x1 : E1[= D1], . . . , xn : En[= Dn]}
and γ = idΣ, x1 := i.x1 , . . . , xn := i.xn

E(Σ, ϕ : τ = Φ) = E(Σ), ϕ : τ = Φ

where Φ↓δβ is introduced in definition 5.27.

52

Note that the names xi that result from the elaboration of theories are qualified names
of the form ι1.ιm.yi for some number m for each i.

Example 5.21. The elaboration E(PointedMagma ′) of the TFI/LF -theory PointedMagma ′

in example 5.13 is the following theory:

M ′.x : tp
e′.x : tm M ′.x
◦′.x : tm (M ′.x =⇒M ′.x =⇒M ′.x)

Note that the resulting theory is isomorphic to PointedMagma in example 5.9 up to
renaming of symbols.

Now we define some auxiliary functions that we will use in the remainder of this
chapter:

Definition 5.22 (Identity Morphism). Let Σ be a theory. We define the identity theory
morphism idΣ on Σ by induction on the declarations in Σ as follows:

id · = ·
idΣ,x:E[=E′] = idΣ, x := x

idΣ,ι:Φ = idΣ, ι := ι
idΣ,ϕ:τ=Φ = idΣ, ϕ := ϕ

Definition 5.23 (Morphism Composition). Let σ1 be a theory morphism from Σ1 to Σ
and σ2 be a theory morphism from Σ to Σ2. The composition of σ1 and σ2, denoted as
σ1 ;σ2, is a theory morphism from Σ1 to Σ2 defined as

σ1 ;σ2 = σ2(σ1).

As we are allowed to designate expression symbols in theory families as parameters, it
is natural to substitute values for them. Substitution can be defined as a special theory
morphism that maps the designated symbols to the parameters we want to substitute
them with, and every other symbol to itself. Definition 5.24 introduces substitution in
expressions, theory families, instances and kinds.

Definition 5.24 (Substitution). Let Σ be a theory and M ::= E | I | Φ | τ be over Σ. We
define the substitution of x1, . . . , xn in M with the expressions E1, . . . , En, denoted
as [E1/x1, . . . , En/xn]M , as follows:

[E1/x1, . . . , En/xn]M = (idΣ, x1 := E1, . . . , xn := En)(M)

Definition 5.25 (β-Normal Form). Given a fixed theory Σ, we define the β-normal
form Φ↓β of a theory family Φ as follows:

{Ψ}↓β = {Ψ}

Φ(E)↓β =

{
([E/x] Φ′)↓β
Φ↓β (E)

if Φ↓β= (x : E′) Φ′

otherwise
((x : E) Φ)↓β = (x : E) Φ↓β
ϕ↓β = ϕ

53

Definition 5.26 (δ-Normal Form). Let theory Σ be a theory. We define the δ-normal
form Φ↓δ of a theory family Φ as follows:

{Ψ}↓δ = {Ψ}
Φ(E)↓δ = Φ↓δ (E)
((x : E) Φ)↓δ = (x : E) Φ↓δ
ϕ↓δ = Φ′↓δ for ϕ : τ = Φ′ in Σ

Definition 5.27 (δβ-Normal Form). Given a fixed theory Σ, we define the δβ-normal
form Φ↓δβ of a theory family Φ as

Φ↓δβ = (Φ↓δ)↓β

Both the β- and the δ-normalizations trivially terminate. Hence, the δβ-normalization
terminates. Moreover, the definitions of each three normal forms are deterministic. Hence,
they are confluent.

More specifically, the δβ-normal forms Φ↓δβ have following shape:

(x1 : E1) . . . (xn : En){Ψ} (5.1)

for some number n.

The β-normal forms Φ↓β have the following shape in addition to 5.1:

(x1 : E1) . . . (xn : En)ϕ (5.2)

for some number n.

Definition 5.28 (Domain of a Theory). We extend the definition of the domain of a
theory Σ from definition 4.4:

dom(·) = ∅
dom(Σ, x : E[= E′]) = dom(Σ) ∪ {x}
dom(Σ, ι : Φ) = dom(Σ) ∪ {ι}
dom(Σ, ϕ : τ = Φ) = dom(Σ) ∪ {ϕ}

5.2 Type System

In this section, we present the type system of TFI.

5.2.1 Judgments and Rules

In figure 5.3 we give the judgments TFI uses in addition to the judgments for foundations
in figure 4.2.

We use the judgment `Σ Theory to denote well-formed theories Σ and the judgment
` σ : Σ→ Σ′ to denote well-formed theory morphisms σ from Σ to Σ′.

We use the judgment Σ ` τ Kind to denote well-formed kinds τ . Well-formed theory
families are kinded, and we use the judgment Σ ` Φ : τ to denote well-formed theory
families Φ of kind τ . Both Φ and τ may contain symbols from Σ.

We use the judgment Σ ` I : Φ to denote well-formed instances I that are typed theory
families Φ. Both I and Φ may contain expressions that depend on symbols in Σ.

54

`Σ Theory Σ is a well-formed theory.

` σ : Σ→ Σ′ σ is a well-formed theory morphism from Σ to Σ′.

Σ ` τ Kind τ is a well-formed kind over Σ.

Σ ` Φ : τ Φ is a well-formed theory family of kind τ over Σ.

Σ ` I : Φ I is a well-formed instance of family Φ over Σ.
Σ ` Φ≤ τ Φ′ Φ′ refines Φ of kind τ over Σ.

Figure 5.3: Main Judgments

Thus, for every non-terminal in our grammar in figure 5.1.1, we have one judgment for
the well-formedness of the objects it produces. Similarly, for each judgment in figure 5.3,
we have one inference rule that for each of its production.

Finally, we use the judgment Σ ` Φ≤ τ Φ′ to denote a refinement relation between
two theory families, which intuitively capture the meta-level inclusion relation between
two theories at the object-level.

Now we will define each judgment in figure 5.3:

Well-Formed Theories figure 5.4 shows the formation rules that define the judgment
`Σ Theory for well-formed theories. Theories are formed recursively by adding symbol
declarations starting from the empty theory. All symbol declarations in a theory Σ must
use different names.

emptyTheory
` · Theory

`Σ Theory Σ ` E1 Inhabitable [Σ ` E2 : E1] x /∈ dom(Σ)
addConstant

` Σ, x : E1[= E2] Theory

`Σ Theory Σ ` Φ : theory ι /∈ dom(Σ)
addInstance

` Σ, ι : Φ Theory

`Σ Theory Σ ` Φ : τ ϕ /∈ dom(Σ)
addTheoryFamily

` Σ, ϕ : τ = Φ Theory

Figure 5.4: Theory Formation Rules

In figure 5.4 we have one rule for adding each kind of symbol declaration in a theory:
term symbols x are typed by well-formed term expressions E that are inhabitable, instance
symbols i are typed by well-formed theory families Φ, and theory family symbols ϕ are
kinded. If symbol declarations have a definiens, then the definiens must have the same
type as the symbol. Recall that theory family declarations have mandatory definiens.

55

Well-Formed Theory Morphisms figure 5.5 shows the formation rules that define
the judgment ` σ : Σ→ Σ′ for well-formed theory morphisms. Theory morphisms
σ : Σ → Σ′ into a fixed well-formed theory Σ′ are formed recursively by adding symbol
assignments starting from the empty theory morphism ·. In particular, the formation of
σ : Σ → Σ′ is structurally analogous to the formation of its domain Σ: Whenever a new
symbol declaration is added to Σ, a corresponding mapping of that symbol is added to σ.

`Σ Theory
emptyMorph

` · : · →Σ

` σ : Σ→ Σ′ Σ′ ` E : σ(E′) [Σ ` E .
= σ(E′)]

mapConstant
` σ, x := E : Σ, x : E′[= E′′]→ Σ′

` σ : Σ→ Σ′ Σ′ ` I : σ(Φ)
mapInstance

` σ, ι := I : Σ, ι : Φ→ Σ′

` σ : Σ→ Σ′ Σ′ ` Φ : σ(τ) Σ′ ` σ(Φ′↓δ)≤σ(τ) Φ
mapTheoryFamily

` σ, ϕ := Φ : Σ, ϕ : τ = Φ′→ Σ′

Figure 5.5: Theory Morphism Formation Rules

Moreover, every symbol in the domain of σ is mapped according to its type. For
instance, the symbol x : E′ is mapped to E such that its type E′ is preserved, i.e.,
E : σ(E′). This is analogous for the case of instance symbols and theory family symbols.
If a symbol declaration provides a definiens as well, then the symbol is mapped to the
translation of the definiens with the exception of theory family symbols. In the case of
definiens E′′, the assignment of x to E is predetermined by σ(E′′).

Symbols are mapped to type preserving expressions. Defined symbols are mapped to
expressions that are provably equal to the translation of the definiens.

In the case of the mapping of ϕ : τ = Φ′, the theory family Φ assigned to ϕ is allowed
to include the translation of the definiens Φ′. This unusual relaxation is very crucial to
achieve theory translations in section 7.2. This implies that the definitional equality of
theory families along theory morphisms is not necessarily preserved. This is also the reason
why the main theorem of this chapter (theorem 5.40) is nontrivial.

Well-Formed Kinds figure 5.6 shows the formation rules that define the judgment
Σ ` τ Kind for well-formed kinds. The base kind theory is a well-formed kind. The
formation of dependent kinds (x : E) τ is as usual.

Well-Formed Theory Families figure 5.7 shows the kinding rules that define the
judgment Σ ` Φ : τ for well-formed theory families. We use kinds, instead of types,
to establish the well-formed theory families so that we can distinguish theory families from
typed expressions. Atomic theory families {Ψ} are kinded by the base kind theory and

56

baseKind
Σ ` theoryKind

Σ, x : E ` τ Kind
depKind

Σ ` (x : E) τ Kind

Figure 5.6: Kind Formation Rules

formed from theory fragments Ψ that extend theories Σ. Therefore, {Ψ} is well-formed
if the extension Σ,Ψ is well-formed. Note that we have one restriction on the formation
of Ψ: Ψ must be simple and therefore does not contain theory family declarations. This
excludes the formation of nested theory families. The remaining rules are standard typing
rules for abstraction, application and look-up.

`Σ,Ψ Theory Ψ is simple
theoryFrag

Σ ` {Ψ} : theory

`Σ Theory ϕ : τ = Φ ∈ Σ
const

Σ ` ϕ : τ

Σ, x : E ` Φ : τ
bind

Σ ` (x : E) Φ : (x : E) τ

Σ ` Φ : (x : E2) τ Σ ` E1 : E2
appl

Σ ` Φ(E1) : [E1/x]τ

Figure 5.7: Kinding Rules for Theory Families

Well-Formed Instances Figure 5.8 show the typing rules that define the judgment
Σ ` I : Φ for well-formed instances.

Instances are typed by theories Φ : theory. The rule morphFrag is the introduction
rule for {Ψ}: {ψ} is typed by {Ψ} if the theory morphism idΣ, ψ is a well-formed theory
morphism from Σ,Ψ to Σ.

`Σ Theory ι : Φ ∈ Σ
instConst

Σ ` ι : Φ

` idΣ, ψ : Σ,Ψ → Σ Ψ is simple
morphFrag

Σ ` {ψ} : {Ψ}

Figure 5.8: Typing Rules for Instances

Refinement of Theory Families Just like theory families internalize meta-level the-
ories in the object-level, the judgment Σ ` Φ≤ τ Φ′ internalizes the meta-level theory
inclusion relation in the object-level. Intuitively, Σ ` Φ≤ τ Φ′ means that the declara-
tions in Φ are included in those of Φ′. We call this judgment the refinement judgment
and say that Φ′ refines Φ at kind τ .

Before we formally define the refinement judgment, we need to recall the well-established
notion of theory inclusion:

57

Definition 5.29 (Inclusion Morphism). Let `Σ Theory and `Σ′Theory . We say that Σ′

includes Σ, denoted as `Σ ↪−→ Σ′, if and only if ` idΣ : Σ→ Σ′. In this case, we call
idΣ : Σ→ Σ′ the inclusion morphism from Σ to Σ′.

We define the refinement judgment by the rules given in figure 5.9. In particular, we
have one rule for each kind of theory families. Note that in rule parTheoryInc, Φ′ is a
refinement of Φ if Φ′(x) refines Φ(x) for all values of x : E. This is similar to functional
extensionality.

`Σ,Ψ ↪−→ Σ,Ψ′ Φ↓δβ = {Ψ} Φ′↓δβ = {Ψ′}
theoryFragInc

Σ ` Φ≤ theory Φ′

Σ, x : E ` Φ(x)≤ τ Φ′(x)
parTheoryInc

Σ ` Φ≤ (x:E) τ Φ′

Figure 5.9: Theory Family Refinement

Well-Formed Expressions The type system of TFI is generic. Expressions come from
a specific foundation together with a type system that govern their well-formedness: The
judgment Σ ` E : E′ is with respect to a foundation F . TFI introduces typing rules only
for expression symbols x and I.x , and inherits from the foundation F the typing rules for
all other expressions.

Fig. 5.10 shows the typing rules TFI has for the judgment Σ ` E : E′ for any founda-
tion.

`Σ Theory x : E[= E′] ∈ Σ
constType

Σ ` x : E

Σ ` I : Φ Φ↓δβ = {Ψ} E(Ψ) = Ψ0, x : E[= E′],Ψ1 dom(Ψ0) = {y1, . . . , yn}
elabType

Σ ` I.x : [I.y1 /y1, . . . , I.yn /yn]E

Figure 5.10: Typing Rules for Expressions

Equality of Expressions In addition to the equality rules in chapter 4.2, we have two
more rules for the equality of expressions in figure 5.11.

5.2.2 Preservation of Judgments

In this section, we establish the main result of this chapter: We show that the homomorphic
extension of theory morphisms preserves all judgments. This is non-trivial due to the
rule mapTheoryFamily in figure 5.5. Moreover, we show that theory elaboration preserves
the well-formedness of theories.

58

`Σ Theory x : E = E′ ∈ Σ
constDef

Σ ` x .
= E′

Σ ` I : Φ Φ↓δβ = {Ψ} E(Ψ) = Ψ0, x : E = E′,Ψ1 dom(Ψ0) = {y1, . . . , yn}
elabDef

Σ ` I.x .
= [I.y1 /y1, . . . , I.yn /yn]E′

Figure 5.11: Equality Judgments for Expression Symbols

First we will introduce a couple of lemmas that will be used in our main theorem.

Normalization Lemmas We have two lemmas on the δ- and β-normal forms:
The following lemma introduces the subject reduction property for theory families.

Lemma 5.30 (Subject Reduction). If we have Σ ` Φ : τ , then we have Σ ` Φ↓δβ : τ .

Proof. By definition 5.27 of δβ-form, it suffices to show that

1. if we have Σ ` Φ : τ , then we have Σ ` Φ↓δ :τ , and

2. if we have Σ ` Φ : τ , then we have Σ ` Φ↓β :τ .

In both cases, the proof proceeds by a straightforward induction on the derivation of
Σ ` Φ : τ .

The following lemma guarantees that the δβ-form of any well-formed atomic theory
family has the form of {Ψ} for some Ψ.

Lemma 5.31 (Normal Forms). If we have Σ ` Φ : theory, then Φ↓δβ = {Ψ} for some
Ψ.

Proof. Assume that Σ ` Φ : theory. We know that by definition 5.26, the δ-normal form
Φ ↓δ replaces all occurrences of symbols ϕ in Φ with their respective definiens, and by
definition 5.25 Φ↓δβ has the form of (x1 : E1) . . . (xn : En){Ψ} for some Ψ. Since Φ has
kind theory, by lemma 5.30, (x1 : E1) . . . (xn : En){Ψ} has kind theory, which is only
possible if n = 0 by inspection of our inference rules.

Morphism Lemmas Now we show properties about theory morphisms from section 5.1.3.
The identity morphism on Σ from definition 5.22 is indeed a well-formed theory morphism
from Σ to itself:

Lemma 5.32 (Identity Morphism). Assume `Σ Theory. Then we have ` idΣ : Σ→ Σ.

Proof. The proof proceeds by a straightforward induction on the formation of Σ.

To prove that the composition of two well-formed morphisms is well-formed, we require
the preservation of the typing judgments along theory morphisms, which we show in
theorem 5.40.

The following lemma introduces the homomorphic extension of morphism composition
in terms of the individual morphisms that are composed.

59

Lemma 5.33 (Homomorphic Extension of Morphism Composition). Assume ` σ1 : Σ1→ Σ
and ` σ2 : Σ→ Σ2. Then we have

σ1 ;σ2(M) = σ2(σ1(M))

for M ::= E | I | τ | Φ | Ψ | ψ.

Proof. The proof proceeds by a straightforward definition expansion of definition 5.17 of
σ and definition 5.23 of morphism composition.

In particular, the morphisms introduced in notation 5.15 are indeed well-formed:

Lemma 5.34. If ` σ : Σ→ Σ′, then ` σx : Σ, x : E[= E′]→ Σ′, x : σ(E)[= σ(E′)].

Proof. The proof proceeds by the rule mapConstant .

We have the following lemma for applying the homomorphic extension σ of a theory
morphism σ : Σ → Σ′ to a substitution of an expression E, an instance I or a theory
family Φ.

Lemma 5.35 (Substitution Lemma). If we have `Σ,Ψ Theory and ` σ : Σ→ Σ′, then
we have:

σ([E1/x1, . . . , En/xn]M) = [σ(E1)/x1, . . . , σ(En)/xn]σx1,...,xn(M)

for Ei over Σ and M ::= E | Φ | I | τ over Σ,Ψ where dom(Ψ) = {x1, . . . , xn}.
Proof. Starting from the left-hand side of the equality, we have:

σ([E1/x1, . . . , En/xn]M) = idΣ, x1 := E1, . . . xn := En ;σ(M) (5.3)

Starting from the right-hand side of the equality, we have:

[σ(E1)/x1, . . . , σ(En)/xn]σx1,...,xn(M) =

σ, x1 := x1, . . . , xn := xn ; idΣ′ , xi := σ(Ei)(M) (5.4)

for 1 ≤ i ≤ n.
Then, it suffices to show that the morphisms in 5.3 and in 5.4 are equal for 1 ≤ i ≤ n,

which is straightforward to show by checking it for each declaration in Σ,Ψ.

Lemma 5.36 (Commutativity). Assume ` idΣ, ψ : Σ,Ψ→ Σ, where Ψ is simple and
` σ : Σ→ Σ′. Then the following diagram commutes:

Σ,Ψ Σ

Σ′, σ(Ψ) Σ′

idΣ, ψ

σ ∗Ψ

idΣ′ , σ(ψ)

σ

Consequently, we have

σ ∗Ψ(idΣ, ψ(M)) = idΣ′ , σ(ψ)(σ ∗Ψ(M))

for M ::= E | Φ | I | τ over Σ,Ψ.

Proof. We show that σ ∗Ψ ; (idΣ′ , σ(ψ)) = (idΣ, ψ) ;σ holds by a straightforward induction
on the list of declarations in Σ,Ψ and by the definition of σ ∗Ψ and σ.

60

Refinement Lemmas Now, we state some properties about our judgment Σ ` Φ≤Φ′

as a lemma and show that it is pre-order relation. This justifies our ≤ notation.

Lemma 5.37 (Pre-order). The following rules are admissible.

Σ ` Φ : τ
reflexive

Σ ` Φ≤Φ

Σ ` Φ1≤Φ2 Σ ` Φ2≤Φ3
transitive

Σ ` Φ1≤Φ3

Σ, x : A ` Φ1≤Φ2
substClosure

Σ ` [E/x]Φ1≤ [E/x]Φ2

Proof. The proofs proceed by a straightforward induction on the derivation of the premises
of each rule.

Lemma 5.38 (δβ-Form). We have Σ ` Φ≤Φ′ if and only if Σ ` Φ↓δβ ≤Φ′↓δβ.

Proof. The proof proceeds by lemma 5.37 and the definition of δβ-form.

Elaboration Lemmas

Lemma 5.39. If `Σ ↪−→ Σ′, then `E(Σ) ↪−→ E(Σ′).

Proof. The proof follows immediately from the definition of elaboration.

Preservation along Morphism Now we can present our main theorem of this chapter:

Theorem 5.40 (Preservation of Judgments). For an arbitrary foundation F , if dom(Σ)
and dom(Σ′) are disjoint, then the following rules are admissible:

` σ : Σ→ Σ′ Σ ` E : E′
(1a)

Σ′ ` σ(E) : σ(E′)

` σ : Σ→ Σ′ Σ ` E .
= E′

(1b)
Σ′ ` σ(E)

.
= σ(E′)

` σ : Σ→ Σ′ Σ ` E Inhabitable
(1c)

Σ′ ` σ(E) Inhabitable

` σ : Σ→ Σ′ Σ ` EQuantifiable
(1d)

Σ′ ` σ(E) Quantifiable

` σ : Σ→ Σ′ Σ ` I : Φ
(2)

Σ′ ` σ(I) : σ(Φ)

` σ : Σ→ Σ′ Σ ` τ Kind
(3)

Σ′ ` σ(τ) Kind

` σ : Σ→ Σ′ Σ ` Φ : τ
(4)

Σ′ ` σ(Φ) : σ(τ)

` σ : Σ→ Σ′ Σ ` Φ : τ
(5)

Σ′ ` σ(Φ↓δ)≤σ(Φ)

If dom(Ψ) and dom(Σ′) are disjoint, then the following rules are admissible:

` σ : Σ→ Σ′ `Σ,Ψ Theory
(6a)

`Σ′, σ(Ψ) Theory

` σ : Σ→ Σ′ `Σ,Ψ Theory
(6b)

` σ ∗Ψ : Σ,Ψ→ Σ′, σ(Ψ)

61

In addition to disjoint domains dom(Ψ) and dom(Σ′), if Ψ is simple, then the following
rules are admissible:

` σ : Σ→ Σ′ `Σ,Ψ Theory
(7)

` Σ′, σ(E(Ψ)) ↪−→ Σ′, E(σ(Ψ))

` σ : Σ→ Σ′ ` idΣ, ψ : Σ,Ψ→ Σ
(8)

` idΣ′ , σ(ψ) : Σ′, σ(Ψ)→ Σ′

Proof. The proof proceeds by mutual induction on the derivation of the second hypothesis
in each rule above:

1. The rules from which the premises i) Σ ` E : E′, ii) Σ ` E .
=E′, iii) Σ `E Inhabitable

and iv) Σ ` EQuantifiable can be derived are specific cases of the foundational rule
in definition 4.7, except for the rule constType and the rule elabType in figure 5.10.
Therefore, it suffices to proceed the proof for (1a), (1b), (1c), (1d) in three cases:

• Case Foundational Rule:

Σ,Ψ1 ` S1 . . . Σ,Ψm ` Sm
R

Σ ` S

We want to prove that Σ′ ` σ(S), where σ(S) denotes the application of σ to
the expressions that occur in the respective succedent S, more precisely σ(E :
E′) denotes σ(E) : σ(E′), σ(E

.
= E′) denotes σ(E)

.
= σ(E′), σ(E Inhabitable)

denotes σ(E) Inhabitable and σ(EQuantifiable) denotes σ(E) Quantifiable.

By induction hypothesis, we have

Σ′, σ(Ψ1) ` σ(S1) . . . Σ′, σ(Ψm) ` σ(Sm)

where σ(Ψi) denotes the application of σ to all expressions that occur in Ψ′. By
applying the foundational rule to these premises, we get Σ′ ` σ(S) as desired.

This shows that the judgments Σ ` E Inhabitable and Σ ` EQuantifiable are
preserved along morphism application σ.

To complete the proof for the remaining two judgments Σ ` E : E′ and Σ ` E .
=E′,

we consider the following cases:

• Case constType:

`Σ Theory x : E[= E′] ∈ Σ
constType

Σ ` x : E

We want to show that Σ′ ` σ(x) : σ(E).

Since we have ` σ : Σ→ Σ′ and x : E = E′ is declared in Σ, we know
from the rule mapConstant that σ maps x to a well-formed expression E′′

of type σ(E) over Σ′. By definition 5.17, we have σ(x) = E′′. Hence we have
Σ′ ` σ(x) : σ(E).

62

• Case elabType:

Σ ` I : Φ Φ↓δβ = {Ψ} E(Ψ) = Ψ0, x : E[= E′],Ψ1 dom(Ψ0) = {y1, . . . , yn}
elabType

Σ ` I.x : [I.y1 /y1, . . . , I.yn /yn]E

We want to show that

Σ′ ` σ(I.x) : σ([I.y1 /y1, . . . , I.yn /yn]E).

Firstly, by applying the induction hypothesis for (2) to Σ ` I : Φ, we get

Σ′ ` σ(I) : σ(Φ) (5.5)

Secondly, by applying σ to both sides in the premise Φ↓δβ = {Ψ} and by
definition of σ({Ψ}), we get

σ(Φ↓δβ) = {σ(Ψ)} (5.6)

Then by taking the δβ-form of both sides in 5.6, we get

σ(Φ↓δβ)↓δβ = {σ(Ψ)}↓δβ (5.7)

Then by applying the definition of δβ-form in the right hand-side of 5.7, we get

σ(Φ↓δβ)↓δβ = {σ(Ψ)} (5.8)

It is straightforward to show that

σ(Φ↓δ)↓δβ = σ(Φ↓δβ)↓δβ (5.9)

Then from 5.8 and 5.9, we get

σ(Φ↓δ)↓δβ = {σ(Ψ)} (5.10)

Thirdly, it follows straightforward from Σ ` I : Φ that

Σ ` Φ : theory (5.11)

Then, by applying the induction hypothesis for (5) to 5.11, we get

Σ′ ` σ(Φ↓δ)≤ theory σ(Φ) (5.12)

Since the rule theoryFragInc is the only primitive rule to derive 5.12 and we
have 5.10, we know that

` Σ′, σ(Ψ) ↪−→ Σ′, Ψ′ (5.13)

where σ(Φ)↓δβ = {Ψ′} (5.14)

for a fresh meta-variable Ψ′.

Forthly, applying σ to E(Ψ) yields

σ(E(Ψ)) = σ(Ψ0), x : σ ∗Ψ(E)[= σ ∗Ψ(E′)], σ(Ψ1) (5.15)

63

Then, by applying lemma 5.39 to 5.13 and by the definition of elaboration, we
get

` Σ′, E(σ(Ψ)) ↪−→ Σ′, E(Ψ′) (5.16)

Then, by applying the induction hypothesis for (7), we get

` Σ′, σ(E(Ψ)) ↪−→ Σ′, E(σ(Ψ)) (5.17)

Therefore, we have

` Σ′, σ(E(Ψ)) ↪−→ Σ′, E(Ψ′) (5.18)

Thus, we have

E(Ψ′) = Ψ′0, x : σ ∗Ψ(E)[= σ ∗Ψ(E′)],Ψ′1 (5.19)

for some Ψ′0 and Ψ′1.

Since dom(Σ) and dom(Σ′) are disjoint, by definition of σ we have

dom(σ(Ψ0)) ⊇ {y1, . . . , yn} (5.20)

Because of 5.20, we know that σ ∗Ψ0(E) only contains y1, . . . , yn. Therefore,
by applying the rule elabType to 5.5, 5.14, 5.19 and 5.20, we get

Σ′ ` σ(I).x : [σ(I).y1 /y1, . . . , σ(I).yn /yn]σ ∗Ψ0(E) (5.21)

Thus, by applying lemma 5.35 to 5.21, we get

Σ′ ` σ(I).x : σ([I.y1 /y1, . . . , I.yn /yn]E) (5.22)

Hence, applying the definition of σ for I.x in 5.22 yields

Σ′ ` σ(I.x) : σ([I.y1 /y1, . . . , I.yn /yn]E).

as desired.

This shows that the typing judgment Σ ` E : E′ for expressions is preserved
along morphism application σ.

The proof of the cases for the rules constDef and elabDef are analogous to proofs
of the cases for the rules constType and elabType, respectively. This shows that the
equality judgment Σ ` E .

= E′ is preserved along morphism application σ.

2. Derivation of the judgment Σ ` I : Φ.

• Case instConst:
`Σ Theory i : Φ in Σ

instConst
Σ ` i : Φ

This follows immediately from rule mapInstance.

64

• Case morphFrag:
` idΣ , ψ : Σ, Ψ→ Σ

morphFrag
Σ ` {ψ} : {Ψ}

By applying the induction hypothesis for (8) to the premise of morphFrag , we
get

` idΣ′ , σ(ψ) : Σ′, σ(Ψ)→ Σ′ (5.23)

By applying the rule morphFrag to 5.23, we get

Σ′ ` {σ(ψ)} : {σ(Ψ)} (5.24)

Thus, applying the definition of σ for {ψ} and {Ψ} to 5.24 yields

Σ′ ` σ({ψ}) : σ({Ψ}).

This shows that the typing judgment Σ ` I : Φ for instances is preserved along
morphism application σ.

3. Derivation of the judgment Σ ` τ Kind .

• Case baseKind :

baseKind
Σ ` theoryKind

By definition of σ for theory, we have Σ′ ` σ(theory) Kind .

• Case depKind :
Σ, x : E ` τ Kind

depKind
Σ ` (x : E) τ Kind

By lemma 5.34 and the induction hypothesis for (3), we have

Σ′, x : σ(E) ` σx(τ) Kind (5.25)

By applying the rule depKind to 5.25, we get

Σ′, x : σ(E) ` (x : σ(E))σx(τ) Kind (5.26)

Thus, applying the definition of σ for (x : σ(E))σx(τ) in 5.26 yields

Σ′, x : σ(E) ` σ((x : E) τ) Kind .

This shows that the well-formedness judgment Σ ` τ Kind for kinds is preserved
along morphism application σ.

4. Derivation of the judgment Σ ` Φ : τ .

• Case theoryFrag:
`Σ, Ψ Theory

theoryFrag
Σ ` {Ψ} : theory

By applying the induction hypothesis for (6a) to `Σ, Ψ Theory , we get

`Σ′, σ(Ψ) Theory (5.27)

65

By applying the rule theoryFrag to 5.27, we get

Σ′ ` {σ(Ψ)} : theory (5.28)

Thus applying the definition of σ for {Ψ} and theory in 5.28 yields

Σ′ ` σ({Ψ}) : σ(theory).

• Case bind :
Σ, x : E ` Φ : τ

bind
Σ ` (x : E) Φ : (x : E) τ

By lemma 5.34 and the induction hypothesis for (4), we have

Σ′, x : σ(E) ` σx(Φ) : σx(τ) (5.29)

By applying the rule bind to 5.29, we get

Σ′ ` (x : σ(E))σx(Φ) : (x : σ(E))σx(τ) (5.30)

Thus applying the definition of σ for (x : E) Φ and (x : E) τ in 5.30 yields

Σ′ ` σ((x : E) Φ) : σ((x : E) τ).

• Case appl :
Σ ` Φ : (x : E2) τ Σ ` E1 : E2

appl
Σ ` ΦE1 : [E1/x]τ

By applying the induction hypotheses (4) and (1a) to the premises of appl , we
get

Σ′ ` σ(Φ) : σ((x : E2) τ) (5.31)

Σ′ ` σ(E1) : σ(E2) (5.32)

By applying the definition of σ for (x : E2) τ to 5.31 and applying the rule appl
to 5.31 and 5.32, we get

Σ′ ` σ(Φ)σ(E1) : [σ(E1)/x]σx(τ) (5.33)

By lemma 5.35, we get

Σ′ ` σ(Φ)σ(E1) : σ([E1/x]τ) (5.34)

Thus applying the definition of σ for ΦE1 to 5.34 yields

Σ′ ` σ(ΦE1) : σ([E1/x]τ).

• Case const:
`Σ Theory ϕ : τ = Φ in Σ

const
Σ ` ϕ : τ

This follows immediately from rule mapTheoryFamily .

This shows that the kinding judgment Σ ` Φ : τ for theory families is preserved
under morphism application σ.

66

5. Derivation of the judgment Σ ` Φ : τ .

• Case theoryFrag

`Σ, Ψ Theory
theoryFrag

Σ ` {Ψ} : theory

We want to show that Σ′ ` σ({Ψ}↓δ)≤σ({Ψ}).

By definition 5.26 and the definition of σ for {Ψ}, we have

σ({Ψ}↓δ) = σ({Ψ})
= {σ(Ψ)} (5.35)

By lemma 5.37, we have Σ′ ` {σ(Ψ)}≤{σ(Ψ)}.
Hence, by 5.35, we have

Σ′ ` σ({Ψ}↓δ)≤σ({Ψ}).

• Case const
`Σ Theory ϕ : τ = Φ in Σ

const
Σ ` ϕ : τ

Since we have ϕ : τ = Φ in Σ and Σ is well-formed, we know via rule addTheoryFamily
that

Σ ` Φ : τ (5.36)

By applying the induction hypothesis for (5) to 5.36, we get

Σ′ ` σ(Φ↓δ)≤σ(Φ) (5.37)

Since ` σ : Σ→ Σ′, we know via rule mapTheoryFamily that there exists a
well-formed theory family Φ′ over Σ′ such that ϕ := Φ′ in σ and a well-formed
theory morphism σ0 from Σ0 to Σ′ such that

Σ′ ` σ0(Φ)≤Φ′

where Σ0 is the fragment of Σ that does not contain ϕ : τ = Φ. Since σ0(Φ) =
σ(Φ), we have

Σ′ ` σ(Φ)≤Φ′ (5.38)

By transitivity (lemma 5.37) of 5.37 and 5.38, we have

Σ′ ` σ(Φ↓δ)≤Φ′

We have ϕ↓δ= Φ↓δ and σ(ϕ) = Φ′. Thus, we have

Σ′ ` σ(ϕ↓δ)≤σ(ϕ)

67

• Case bind
Σ, x : E ` Φ : τ

bind
Σ ` (x : E) Φ : (x : E) τ

We want to show

Σ′ ` σ(((x : E) Φ)↓δ)≤σ((x : E) Φ) (5.39)

Since we have ` σ : Σ→ Σ′, we also have ` σx : Σ, x : E→ Σ′, x : σ(E).

By applying induction hypothesis for (5) with σx : Σ, x : E → Σ′, x : σ(E) to
the premise Σ, x : E ` Φ : τ , we get

Σ′, x : σ(E) ` σx(Φ↓δ)≤σx(Φ) (5.40)

Since σx(Φ ↓δ) and σx(Φ) are β-equal to ((x : σ(E))σx(Φ ↓δ))(x) and ((x :
σ(E))σx(Φ))(x), respectively, we have

Σ′, x : σ(E) ` ((x : σ(E))σx(Φ↓δ))(x)≤ ((x : σ(E))σx(Φ))(x) (5.41)

By applying the rule parTheoryInc to 5.41, we get

Σ′ ` (x : σ(E))σx(Φ↓δ)≤ (x : σ(E))σx(Φ) (5.42)

By applying definition 5.17 of σ and definition 5.26 of δ-normal form to 5.42,
we get 5.39 as desired.

• Case appl
Σ ` Φ : (x : A) τ Σ ` E :A

appl
Σ ` Φ(E) : [E/x]τ

We want to show that

Σ′ ` σ(Φ(E)↓δ)≤σ(Φ(E)) (5.43)

By applying induction hypothesis for (5) and (4) to Σ ` Φ : (x : A) τ , and by
definition 5.17, we get

Σ′ ` σ(Φ↓δ)≤σ(Φ) (5.44)

Σ′ ` σ(Φ) : (x : σ(A))σx(τ) (5.45)

Since we have 5.45, we know that 5.44 is derived from rule parTheoryInc. There-
fore, we have

Σ′, x : σ(A) ` σ(Φ↓δ)(x)≤σ(Φ)(x) (5.46)

By applying rule substClosure in lemma 5.37 to 5.46, we get

Σ′ ` σ(Φ↓δ)(σ(E))≤σ(Φ)(σ(E)) (5.47)

By applying definition 5.17 to 5.47, we get

Σ′ ` σ(Φ↓δ (E))≤σ(Φ(E)) (5.48)

Hence, by definition 5.26 of δ-normal form for Φ(E), we get 5.43 as desired.

68

This shows that the refinement judgment Σ ` Φ≤ τ Φ′ for theory families is preserved
along morphism application σ.

6. Derivation of the judgment `Σ,Ψ Theory .

• Case emptyTheory:

emptyTheory
` · Theory

a) We want to show that `Σ′, σ(·) Theory : This follows immediately by def-
inition 5.17 of σ and the premise ` σ : · → Σ′.

b) We want to show that ` σ ∗ · : · → Σ′, σ(·). This follows immediately
by definition 5.18 of σ ∗ · and definition 5.17 of σ(·), and the premise
` σ : · → Σ′.

• Case addConstant: Assume Ψ = Ψ0, x : E1[= E2]. Then we have the following
derivation via rule addConstant :

`Σ, Ψ0 Theory Σ,Ψ0 ` E1 Inhabitable [Σ,Ψ0 ` E2 : E1] x /∈ dom(Σ,Ψ0)
addConstant

`Σ,Ψ0, x : E1[= E2] Theory

We want to show that

a) `Σ′, σ(Ψ0, x : E1[= E2]) Theory .

b) ` σ ∗ (Ψ0, x : E1 = E2) : Σ, (Ψ0, x : E1 = E2)→ Σ′, σ(Ψ0, x : E1 = E2).

By applying the induction hypotheses (6a), (1c) and (1a) respectively to the
first three premises of addConstant with morphism σ ∗Ψ0 : Σ, Ψ0 → Σ′, we
get

`Σ′, σ(Ψ0) Theory (5.49)

Σ′, σ(Ψ0) ` σ ∗Ψ0(E1) Inhabitable (5.50)

Σ′, σ(Ψ0) ` σ ∗Ψ0(E2) : σ ∗Ψ0(E1) (5.51)

Since dom(Ψ0, x : E1 = E2) and dom(Σ′) are disjoint, we know that x is fresh
for Σ′. Then, by applying the rule addConstant to 5.49, 5.50 and 5.51, we get

`Σ′, σ(Ψ0), x : σ ∗Ψ0(E1)[= σ ∗Ψ0(E2)] Theory (5.52)

a) Thus, by applying the definition of σ for Ψ0, x : E1[= E2] in 5.52 we get

`Σ′, σ(Ψ0, x : E1 = E2) Theory

as desired.

b) By induction hypothesis for (6b), we have

` σ ∗Ψ0 : Σ, Ψ0→ Σ′, σ(Ψ0) (5.53)

Therefore, we have

` σ ∗Ψ0 : Σ, Ψ0→ Σ′, σ(Ψ0), x : σ ∗Ψ0(E1)[= σ ∗Ψ0(E2)] (5.54)

Since we have 5.52 and

x : σ ∗Ψ0(E1)[= σ ∗Ψ0(E2)] ∈ Σ, σ(Ψ0), x : σ ∗Ψ0(E1)[= σ ∗Ψ0(E2)]

69

we apply rule constType to get

Σ′, σ(Ψ0), x : σ ∗Ψ0(E1)[= σ ∗Ψ0(E2)] ` x : σ ∗Ψ0(E1) (5.55)

By applying rule mapConstant to 5.54, 5.55 and 5.51, we get

` σ ∗Ψ0, x := x : Σ, Ψ0, x : E1[= E2]→ Σ′, σ(Ψ0), x : σ ∗Ψ0(E1)[= σ ∗Ψ0(E2)].

By definition 5.18, we get

` σ ∗ (Ψ0, x : E1[= E2]) : Σ, Ψ0, x : E1[= E2]→ Σ′, σ(Ψ0, x : E1[= E2])

as desired.

• Case addInstance: Assume Ψ = Ψ0, ι : Φ. Then we have the following deriva-
tion via rule addInstance:

`Σ, Ψ0 Theory Σ, Ψ0 ` Φ : theory ι /∈ dom(Σ,Ψ0)
addInstance

`Σ, Ψ0, ι : Φ Theory

We want to show that

a) `Σ′, σ(Ψ0, ι : Φ) Theory .

b) ` σ ∗ (Ψ0, ι : Φ) : Σ,Ψ0, ι : Φ→ Σ′, σ(Ψ0, ι : Φ).

By applying the induction hypothesis for (6a) and (6b) respectively to the first
premise of addInstance with theory morphism σ : Σ→ Σ′, we get

`Σ′, σ(Ψ0) Theory (5.56)

` σ ∗Ψ0 : Σ,Ψ0→ Σ′, σ(Ψ0) (5.57)

By applying the induction hypothesis for (4) and (2) respectively to the second
premise of addInstance with theory morphism σ ∗Ψ0 : Σ,Ψ0 → Σ′, σ(Ψ0) and
by the definition of σ for theory, we get

Σ′, σ(Ψ0) ` σ ∗Ψ0(Φ) : theory (5.58)

Since dom(Ψ0, ι : Φ) and dom(Σ′) are disjoint, by definition of σ for Ψ, we have

i /∈ dom(Σ′, σ(Ψ0)) (5.59)

Then, by applying the rule addInstance to 5.56, 5.58 and 5.59, we get

`Σ′, σ(Ψ0), ι : σ ∗Ψ0(Φ) Theory (5.60)

a) Thus, applying the definition of σ for Ψ0, ι : Φ in 5.60 yields

`Σ′, σ(Ψ0, ι : Φ) Theory

as desired.

b) Since we have 5.60, we know that ι : σ ∗Ψ0(Φ) is in

Σ′, σ(Ψ0), ι : σ ∗Ψ0(Φ)

Then by applying the rule instConst to 5.60, we get

Σ′, σ(Ψ0), ι : σ ∗Ψ0(Φ) ` ι : σ ∗Ψ0(Φ) (5.61)

70

Since we have 5.57, we also have

` σ ∗Ψ0 : Σ,Ψ0→ Σ′, σ(Ψ0), ι : σ ∗Ψ0(Φ) (5.62)

Since dom(Ψ0, ι : Φ) and dom(Σ′) are disjoint, by applying the definition
of σ for Ψ in 5.61 and 5.62, we have

` σ ∗Ψ0 : Σ,Ψ0→ Σ′, σ(Ψ0, ι : Φ) (5.63)

Σ′, σ(Ψ0, ι : Φ) ` ι : σ ∗Ψ0(Φ) (5.64)

Then by applying the rule mapInstance to 5.63 and 5.64, we get

` (σ ∗Ψ0), ι := ι : Σ,Ψ0, ι : Φ→ Σ′, σ(Ψ0, ι : Φ) (5.65)

Since dom(Ψ0, ι : Φ) and dom(Σ′) are disjoint, by applying the definition
of σ ∗Ψ in 5.65, we get

` σ ∗ (Ψ0, ι : Φ) : Σ,Ψ0, ι : Φ→ Σ′, σ(Ψ0, ι : Φ)

as desired.

• Case addTheoryFamily: Assume Ψ = Ψ0, ϕ : τ = Φ. Then we have following
derivation via rule addTheoryFamily :

`Σ,Ψ0 Theory Σ,Ψ0 ` Φ : τ ϕ /∈ dom(Σ,Ψ0)
addTheoryFamily

`Σ, (Ψ0, ϕ : τ = Φ) Theory

We want to show that

a) `Σ′, σ(Ψ0, ϕ : τ = Φ) Theory .

b) ` σ ∗ (Ψ0, ϕ : τ = Φ) : Σ, (Ψ0, ϕ : τ = Φ)→ Σ′, σ(Ψ0, ϕ : τ = Φ).

By applying the induction hypothesis for (6a) and (6b) respectively to the first
premise of addTheoryFamily with theory morphism σ : Σ→ Σ′, we get

`Σ′, σ(Ψ0) Theory (5.66)

` σ ∗Ψ0 : Σ,Ψ0→ Σ′, σ(Ψ0) (5.67)

By applying the induction hypothesis (4) respectively to the second premise of
addTheoryFamily and to 5.67, we get

Σ′, σ(Ψ0) ` σ ∗Ψ0(Φ) : σ ∗Ψ0(τ) (5.68)

Since dom(Ψ0, ϕ : τ = Φ) and dom(Σ′) are disjoint, by definition of σ for Ψ, we
have

ϕ /∈ dom(Σ′, σ(Ψ0)) (5.69)

Then, by applying the rule addTheoryFamily to 5.66, 5.68, 5.69, we get

`Σ′, σ(Ψ0), ϕ : σ ∗Ψ0(τ) = σ ∗Ψ0(Φ) Theory (5.70)

a) Thus, applying the definition of σ for Ψ0, ϕ : τ = Φ in 5.70 yields

`Σ′, σ(Ψ0, ϕ : τ = Φ) Theory

as desired.

71

b) Since we have 5.67, we also have

` σ ∗Ψ0 : Σ,Ψ0→ Σ′, σ(Ψ0), ϕ : σ ∗Ψ0(τ) = σ ∗Ψ0(Φ) (5.71)

Since we have 5.70, we know that

ϕ : σ ∗Ψ0(τ) = σ ∗Ψ0(Φ) ∈ Σ′, σ(Ψ0), ϕ : σ ∗Ψ0(τ) = σ ∗Ψ0(Φ) (5.72)

ϕ↓δβ = σ ∗Ψ0(τ) (5.73)

Then by applying the rule const to 5.70 and 5.72, we get

Σ′, σ(Ψ0), ϕ : σ ∗Ψ0(τ) = σ ∗Ψ0(Φ) ` ϕ : σ ∗Ψ0(τ) (5.74)

Since dom(Ψ0, ϕ : τ = Φ) and dom(Σ′) are disjoint, by applying the defi-
nition of σ for Ψ in 5.74 and 5.71, we have

` σ ∗Ψ0 : Σ,Ψ0→ Σ′, σ(Ψ0, ϕ : τ = Φ) (5.75)

Σ′, σ(Ψ0, ϕ : τ = Φ) ` ϕ : σ ∗Ψ0(τ) (5.76)

By the reflexivity rule in lemma 5.37, we have

Σ′, σ(Ψ0, ϕ : τ = Φ) ` σ ∗Ψ0(Φ)↓δβ ≤σ ∗Ψ0(Φ)↓δβ (5.77)

Since we have 5.73, by appyling the definition of δβ-form (definition 5.27),
we get

Σ′, σ(Ψ0, ϕ : τ = Φ) ` σ ∗Ψ0(Φ)↓δβ ≤ϕ↓δβ (5.78)

By applying lemma 5.38 to 5.78, we get

Σ′, σ(Ψ0, ϕ : τ = Φ) ` σ ∗Ψ0(Φ)≤ϕ (5.79)

Then by applying the rule to 5.71, 5.76 and 5.79, we get

` σ ∗ (Ψ0, ϕ : τ = Φ) : Σ, (Ψ0, ϕ : τ = Φ)→ Σ′, σ(Ψ0, ϕ : τ = Φ)

as desired.

7. Derivation of the judgment `Σ,Ψ Theory . We proceed by induction on the declara-
tions in Ψ. Since Ψ is simple, we have the following three cases:

• Case Ψ = ·: By definition 5.29 of inclusion morphism and lemma 5.32, we get
`Σ′ ↪−→ Σ′ immediately.

• Case Ψ = Ψ0, x : E[= E′]: We want to show that

`Σ′, σ(E(Ψ0, x : E[= E′])) ↪−→ Σ′, E(σ(Ψ0, x : E[= E′]))

This follows immediately from the definition of elaboration and σ.

• Case Ψ = Ψ0, ι : Φ: We want to show that

`Σ′, σ(E(Ψ0, ι : Φ)) ↪−→ Σ′, E(σ(Ψ0, ι : Φ))

72

Firstly, by definition of elaboration and σ, we have

σ(E(Ψ0, ι : Φ)) = σ(E(Ψ0)), ι.Ψ1 (5.80)

where ι.Ψ1 denotes the list of symbol declarations that replace ι : Φ after the
elaboration of Ψ1 for

σ ∗Ψ0(Φ↓δβ) = {Ψ1} (5.81)

Similarly, by definition of elaboration and σ, we have

E(σ(Ψ0, ι : Φ)) = E(σ(Ψ0)), ι.Ψ2 (5.82)

where ι.Ψ2 denotes the list of symbol declarations that replace ι : σ ∗Ψ0(Φ)
after the elaboration Ψ2 for

σ ∗Ψ0(Φ)↓δβ = {Ψ2} (5.83)

Secondly, from the derivation of `Σ,Ψ0, ι : Φ Theory , we know that

Σ ` Φ : τ (5.84)

Then, by applying the induction hypothesis for (5) with morphism σ ∗Ψ0 :
Σ,Ψ0 → Σ′ to 5.84, we get

Σ′ ` σ ∗Ψ0(Φ↓δ)≤ theory σ ∗Ψ0(Φ) (5.85)

We know that σ ∗Ψ0(Φ↓δβ) = σ ∗Ψ0(Φ↓δ). Then we have

σ ∗Ψ0(Φ↓δ)↓δβ = {Ψ1} (5.86)

Since the rule theoryFragInc is the only primitive rule from which 5.85 can be
derived, we know that

` Σ′,Ψ1 ↪−→ Σ′,Ψ2 (5.87)

Thus, from 5.83, 5.86 and 5.87, we know that all declarations xi : Ei[= Di] in
σ ∗Ψ0(Φ↓δβ) are also in σ ∗Ψ0(Φ).

Hence, we have

`Σ′, σ(E(Ψ0, ι : Φ)) ↪−→ Σ′, E(σ(Ψ0, ι : Φ))

as desired.

8. Derivation of the judgment ` idΣ, ψ : Σ,Ψ→ Σ. We look at all the derivations of
this judgment where i) ψ = ·, and ii) ψ 6= ·.

• Case ψ = ·: By lemma 5.32, we immediately get ` idΣ′ : Σ′→ Σ′. Then by
definition of σ for ψ0, we get ` idΣ′ , · : Σ′, · → Σ′ as desired.

73

• Case ψ = ψ0, x := E: Then we have the following derivation of the second
premise of (8) via the rule mapConstant .

` idΣ, ψ0 : Σ,Ψ0→ Σ Σ ` E : idΣ, ψ0(E1) [E = idΣ, ψ0(E2)]
mapConstant

` idΣ, (ψ0, x := E) : Σ, (Ψ0, x : E1[= E2])→ Σ′

We want to show that ` idΣ′ , σ(ψ0, x := E) : Σ′, σ(Ψ0, x : E1[= E2])→ Σ′.

First, by applying the induction hypothesis for (8) to ` idΣ, ψ0 : Σ,Ψ0→ Σ
with morphism σ : Σ→ Σ′, we get

` idΣ′ , σ(ψ0) : Σ′, σ(Ψ0)→ Σ′ (5.88)

Secondly, by applying the induction hypothesis for (1a) to Σ ` E : idΣ, ψ0(E1)
with morphism σ : Σ→ Σ′, we get

Σ′ ` σ(E) : σ(idΣ, ψ0(E1)) (5.89)

By applying lemma 5.33 to 5.89, we get

Σ′ ` σ(E) : (idΣ, ψ0) ;σ(E1) (5.90)

By applying lemma 5.36 to 5.90, we get

Σ′ ` σ(E) : σ ∗Ψ0 ; (idΣ′ , σ(ψ0))(E1) (5.91)

By applying lemma 5.33 to 5.91, we get

Σ′ ` σ(E) : (idΣ′ , σ(ψ0))(σ ∗Ψ0(E1)) (5.92)

Thirdly, we apply σ to the both sides of the equation E = idΣ, ψ0(E2) to get

σ(E) = σ(idΣ, ψ0(E2)) (5.93)

By applying lemma 5.33 to the right-hand side of 5.93 we get

σ(E) = (idΣ, ψ0) ;σ(E2) (5.94)

By applying lemma 5.36 to the right-hand side of 5.94 we get

σ(E) = σ ∗Ψ0 ; (idΣ′ , σ(ψ0))(E2) (5.95)

By applying lemma 5.33 to the right-hand side of 5.95 we get

σ(E) = (idΣ′ , σ(ψ0))(σ ∗Ψ0(E2)) (5.96)

Then, by applying the rule mapConstant to 5.88, 5.92 and 5.96, we get

` idΣ′ , σ(ψ0), x := σ(E) : Σ′, σ(Ψ0), x : σ ∗Ψ0(E1)[= σ ∗Ψ0(E2)]→ Σ′(5.97)

Thus, applying the definition of σ in 5.97 yields

` idΣ′ , σ(ψ0, x := E) : Σ′, σ(Ψ0, x : E1[= E2])→ Σ′

as desired.

74

• Case ψ = ψ0, ι := I: Then we have the following derivation of the second
premise of (8) via the rule mapInstance.

` idΣ, ψ0 : Σ,Ψ0→ Σ Σ ` I : idΣ, ψ0(Φ)
mapInstance

` idΣ, (ψ0, ι := I) : Σ, (Ψ0, ι : Φ)→ Σ

We want to prove that ` idΣ′ , σ(ψ0, ι := I) : Σ′, σ(Ψ0, ι : Φ)→ Σ′.

By applying the induction hypothesis for (8) and (2) to the first two premises
above and by lemma 5.33 and lemma 5.36, we get

` idΣ′ , σ(ψ0) : Σ′, σ(Ψ0)→ Σ′ (5.98)

Σ′ ` σ(I) : idΣ′ , σ(ψ0)(σ ∗Ψ0(Φ)) (5.99)

Then by applying the rule mapInstance to 5.98, 5.99, and the definition of σ,
we get

` idΣ′ , σ(ψ0, ι := I) : Σ′, σ(Ψ0, ι : Φ)→ Σ′ (5.100)

as desired.

• Case ψ = ψ0, ϕ := Φ does not exist since Ψ is simple.

Preservation under Elaboration We have introduced theory elaboration in defini-
tion 5.20. Here we state that the elaboration of a well-formed theory Σ yields a well-formed
theory.

Theorem 5.41. Assume `Σ Theory. Then we have `E(Σ) Theory.

Proof. Assume a TFI/F theory Σ. By definition of elaboration, we know that the theory
family declarations ϕ : τ = Φ and expression declarations x : E[= E′] remain unmodified.
It suffices to show that the elaboration of instance declarations i : Φ yield well-formed
declarations. Since Σ is a well-formed theory, we know that all the instance declarations
ι : Φ in Σ are well-formed as well. Then, by the rule elabType, we know that the projections
ι.x of ι are well-formed.

5.3 Discussion

In this chapter, we have introduced our foundation-independent framework TFI for rep-
resenting declarative languages and their translations. The main novelty of TFI is the
notion of theory families, which we have introduced as a new primitive for declarative
frameworks. This is orthogonal to the well-established primitives that formal languages
have.

Theory families are in principle very similar to record types in the sense that both of
them are essentially a “container” of a list of declarations. The type system of TFI clearly
separates theory families from the type system of the foundations that can be added in
TFI. Thus, abstractions of a foundation cannot bind over theory families. TFI uses a
kinding relation to separate theory families from the types of a foundation. In practice, it

75

could be useful to allow instances as parameters of a theory family (see concrete examples
in Chapter 6).

The main difference between record types and theory families is that theory families
may have type declarations in their body, which record types can only do in the pres-
ence of universes such as in the calculus of constructions [CH88] and Martin-Löf type
theory [ML74].

A necessary characteristic of TFI is that definitional equality on theory families is not
preserved along theory morphisms (recall rule (5) of theorem 5.40). This relaxation is the
key feature that allows adequate theory translations in chapter 7.

76

Chapter 6

A Logical Framework with
Sequences

In section 3.5 we mentioned that sequences of expressions are often needed to define the
declaration patterns of a declarative language, e.g., for n-ary function symbol declarations
in first-order logic, and discussed that sequences should be introduced at the level of
foundations.

Types

Nat

Seq

LF

Seq ∪g LF

LFS

f

g g∗

In this chapter we develop two new foundations within
TFI specifically for that purpose. We develop the foun-
dation Seq (section 6.1), which represents sequences as
first class citizens in a type theory, and the foundation
LFS (section 6.2), which is based on a type theory with
dependent function spaces of flexible arity and sequence
arguments.

Both Seq and LFS are foundations in the sense of def-
inition 4.8 from chapter 4. Seq is an extension of the
foundation Nat from example 4.11, and introduces new
primitives to construct sequence expressions and ellipses.
LFS is intuitively an extension of the foundation LF from
example 4.10 with the sequence expressions from Seq .

The diagram on the right illustrates the modular struc-
ture of the formation of these two new foundations where
normal −→ and dashed arrow 99K denote total and partial foundation morphisms from
definition 4.18, respectively. The hooked arrow ↪−→ denotes inclusion of foundations as in
definition 4.14. We will explain the diagram in detail in the following sections.

6.1 Sequences

6.1.1 Syntax

SymSeq introduces the following symbols as primitives for constructing sequence expres-
sions and ellipses: empty, concat, index, ellipsis, length and seqtype. It also contains
the same symbols in SymNat from example 4.11 except for the symbol type ∈ SymNat .
The relation between the foundations Nat and Seq is given by the foundation morphism
f : SymNat → ExpSeq that maps the symbol type to the expression @(seqtype; 1) and all
other symbols in SymNat themselves.

77

f(x) =

{
@(seqtype; 1) if x = type

x otherwise
(6.1)

Before we discuss the Seq expressions formed over SymSeq in detail, we will introduce
notations for them in figure 6.1, and we use these notations in the remainder of this thesis
in addition to the notations introduced in figure 4.8. We use the meta-variables E, E′ for
arbitrary expressions formed over SymSeq .

Expression Notation

empty ·
@(concat;E,E′) E,E′

@(index;E,E′) EE′

β(@(ellipsis; 1, E) ; x ; E′) [E′]Ex=1

@(length;E) |E|
@(seqtype;E) typeE

Figure 6.1: Notations for Seq-Expressions

We classify Seq-expressions into three syntactic categories: term sequences, type se-
quences and kinds. As we will discuss in full detail in section 6.1.2, term sequences are
typed by type sequences; and type sequences are kinded. The grammar in figure 6.2 shows
the formation of the expressions in each syntactic category. We will use the meta-variables
S, T for term sequences, U , V for type sequences and K for kinds.

Kinds K ::= typeS

Type Sequences U, V, . . . ::= · | U, V | US | [U]Sx=1 | a | nat | S ≤ T
Term Sequences S, T, . . . ::= · | S, T | ST | [S]Tx=1 | x | 0 | 1 | S + T | S − T |

|S| | |U | | |K|

Figure 6.2: Grammar of Seq

Term sequences S, T are formed from
• the empty term sequence ·,
• the concatenation S, T of two term sequences S and T ,
• the n-th element Sn of a term sequence S,
• the term sequence ellipsis [S(x)]nx=1 that takes an argument n : nat and binds

the symbol x : nat in S,
• term sequence symbols x,
• the natural numbers 0 and 1,
• the sum n+m of two natural numbers n and m,
• the difference n−m of the natural number n from m,
• the lengths |S|, |U | and |K| of sequences S, U and K, respectively.

[S(x)]nx=1 is a sequence ellipsis constructor for term sequences. The intended mean-
ing of [S(x)]nx=1 is that it reduces to the term sequence S(1), . . . , S(n′) by substituting
for x in S the natural numbers 1, . . . , n′ whenever n reduces to a natural number n′. We

78

can also think of [S(x)]nx=1 as a special map operator that applies to each element of the
sequence 1, . . . , n′ the mapping x 7→ S(x).

Type sequences U , V are formed analogously. In particular, we have type sequence
symbols a, the type nat of natural numbers, the type m ≤ n for the less-than or equal
relation between two natural numbers m and n, and the analogous constructors for type
sequence concatenation U, V as well as the type sequence ellipsis constructor
[U(x)]nx=1.

Notation 6.1. We will write En for the sequence [E]nx=1 where x does not occur free in E.
Since we use both the superscript En and the subscript En notation for Seq-expressions,
we will use the notation E(n) whenever we want to use enumerated meta-variables as in
E(1), . . . , E(n).

Note that the base kind type of Types is not part of Seq . Instead, we have kinds
typen for n : nat. The intuition for sequence kinds is that type sequences of length n are
kinded by typen.

Notation 6.2. We will write type for type1.

Examples Now we will fortify our intuitions by a number of useful examples, which we
will use as abbreviations for a number of common operations on sequences.

First, we define the reversal of a sequence expression:

Example 6.3 (Revert). The following operation takes a sequence expression E as argument
and reverts the order of the elements in E:

reverseE = [E|E|+1−x]
|E|
x=1.

Next, we define the prefix operator that returns the first n elements of a sequence:

Example 6.4 (Prefix). The operator prefix takes a sequence expression E, a natural
number n and a proof q that n ≤ |E| and returns the first n elements in E:

prefixE nq = [Ex]nx=1.

If the argument n is 0, then [Ex]0x=1 reduces to the empty sequence (as we will mention in
the conversion rules for Seq in section 6.1.3), and prefixE 0 q returns the empty sequence.

Similarly, we can now define the suffix operator that returns the elements of a sequence
starting from its n+ 1-th element:

Example 6.5 (Suffix). The operator suffix takes a sequence expression E, a natural
number n and a proof q that n ≤ |E| and returns the sequence of elements of E starting
from index n+ 1:

suffixE nq = [Ex+n]
|E|−n
x=1

Our sequence ellipsis constructor [E]nx=1 has a fixed starting index, namely 1. Using
the reversal of a sequence, it is straightforward to define a new ellipsis operator that
constructs E(n), . . . , E(1). We give that operator a new notation [E]x=n

1 :

Example 6.6 (Reversal of Ellipsis).

[E(x)]x=n
1 = reverse [E(x)]nx=1

for n ≤ |E|.

79

More generally, we can define generalized sequence ellipsis E(m), . . . , E(n) for
m ≤ n as follows:

Example 6.7 (Generalized Sequence Ellipses).

[E(x)]nx=m = [E(m+ x− 1)]n−m+1
x=1

for m ≤ n and n ≤ |E|.
Similarly, we can define the reversal of the generalized ellipsis E(n), . . . , E(m) for

m ≤ n:

[E(x)]x=n
m = reverse [E(x)]nx=m

for m ≤ n and n ≤ |E|.

6.1.2 Type System

In figure 6.3 we give the typing and equality judgments for well-formed Seq expressions.
Note that these judgments are special cases of the foundational judgments in figure 4.2.
The judgments for well-formed Seq theories and theory morphisms are inherited from our
framework TFI (see figure 5.3).

Judgment Meaning

Σ ` E Inhabitable E is an inhabitable sequence expression over Σ.
Σ ` S : U S is a well-formed term of type U over Σ.
Σ ` U :K U is a well-formed type of kind K over Σ.
Σ ` K : kind K is a well-formed kind over Σ.
Σ ` S .

= T Term sequence S is equal to T over Σ.
Σ ` U .

= V Type sequence U is equal to V over Σ.
Σ ` K .

= L Kind K is equal to L over Σ.

Figure 6.3: Judgments of Seq

We use the judgment Σ ` S : U to denote the typing relation between well-formed
term sequences S and well-formed type sequences U over Σ. We will often write Σ ` S :U
(where U : typen is implied) as Σ ` S :U : typen by giving the kind typen in gray color to
keep track of the length of S and U for the purpose of documentation. This is redundant
because the length is statically known, but it helps with the readability of the inference
rules. Most importantly, term sequences are typed by type sequences of the same length,
and type sequences are kinded by typen, where n is their length.

The judgment Σ ` U : K denotes the kinding relation between well-formed type se-
quences U and well-formed kinds K over Σ. And the judgment Σ ` K : kind denotes
well-formed kinds K over Σ.

Moreoever, we have a separate equality judgment for well-formed term sequences, type
sequences and kinds, respectively.

Now we define the set RulesSeq of the inference rules of Seq . The foundational rules in
RulesSeq are

• the translations f(R) of the rules R in RulesNat except for the rules type and typeInh
from figure 4.5, along the foundation morphism f from 6.1,

• the typing rules in figure 6.4, figure 6.5, figure 6.6, figure 6.7, figure 6.8 and

80

• the equality rules in figure 6.9 and figure 6.10.

It is easy to check that f maps each rule in RulesNat to a derivable rule in Seq .

Inhabitable Expressions Inhabitable Seq-expressions are type sequences U : typen.
We give this as a rule in figure 6.4.

Σ ` U : typen

typeInhab
Σ ` U Inhabitable

Figure 6.4: Inhabitable Seq-Expressions

Σ ` n : nat : type
seqKind

Σ ` typen : kind

`Σ Theory
emptyType

Σ ` · :type0

Σ ` U : typem Σ ` V : typen
typeConcat

Σ ` U, V : typem+n

`Σ Theory
emptyTerm

Σ ` · : · : type0

Σ ` S : U : typem Σ ` T : V : typen

termConcat
Σ ` S, T : U, V : typem+n

Figure 6.5: Sequence Introduction Rules

Sequence Introduction Rules In figure 6.5 we give the typing rules sequence intro-
duction.

The rule seqKind makes typen a valid kind. Then the empty type sequence · is kinded
by type0, and the empty term sequence · is typed by the empty type sequence.

Since typen is a kind for every n : nat, type sequences U : typen represent a sequence
of types of length n. Therefore, in the case of type sequences concatenation, the kind
typem+n of the concatenation U, V respects the sum of the lengths of U and V . Note that
V does not depend on U . Similarly, the type U, V of the term sequence concatenation
S, T respects the sum of the lengths of S and V .

Example 6.8. We have 0, 1 : nat, nat : type2. Recall notation 4.12 for the use of
meta-level natural numbers such as 2 to denote the natural number expressions.

81

Sequence Elimination Rules In figure 6.6 we introduce the rules for sequence elimi-
nation.

The intuition behind the rule termIndex is that term sequences S are typed by type
sequences U index-wise: Each element Sx of S at index x is typed by the element Ux of U
at the same index. Moreover, both for term and type sequences, Ex is only well-formed if
x ranges from 1 to the length of E. Therefore, in both rules termIndex and typeIndex we
add the necessary premises to implement the index-within-bounds check.

Note that for type sequences U : typen, Ux is always a type.

Σ ` S : U : type|S| Σ ` : 1 ≤ x : type Σ ` : x ≤ |S| : type
termIndex

Σ ` Sx : Ux : type

Σ ` U : typen Σ ` : 1 ≤ x : type Σ ` : x ≤ n : type
typeIndex

Σ ` Ux : type

Figure 6.6: Sequence Elimination Rules

Σ ` n : nat : type Σ, x : nat, x∗ : 1 ≤ x, x∗ : x ≤ n ` S : U : type Σ ` U : type
termEll

Σ ` [S]nx=1 : [U]nx=1 : typen

Σ ` n : nat : type Σ, x : nat, x∗ : 1 ≤ x, x∗ : x ≤ n ` U : type
typeEll

Σ ` [U]nx=1 : typen

Figure 6.7: Ellipsis Introduction Rules

Ellipsis Introduction Rules In figure 6.7 we give the rules for ellipsis introduction.
The intuition here is that term sequence ellipses [S]nx=1 are typed by type sequence ellipses
[U]nx=1 of the same length, and both rules termEll and typeEll restrict the body of the
ellipsis constructor to length 1.

Note that [E]nx=1 actually binds three variables in E: The index x and two assumptions
x∗ and x∗ that guarantee that x is within 1 and n. Here the framework reserves the fresh
names x∗ and x∗ for every name x to avoid the capturing of the names in Σ that E is
formed over. These assumptions can be used later on to discharge the proof obligations
posited by the rules termIndex and typeIndex and by the subtraction of natural numbers,
e.g., the derivation of the judgment

Σ, x : nat, x∗ : 1 ≤ x, x∗ : x ≤ n ` Sx : Ux : type

as a premise in the rule termIndex for deriving Σ ` [Sx]nx=1 : [Ux]nx=1 : typen.

82

Σ ` S : U
termLength

Σ ` |S| : nat
Σ ` U :K

typeLength
Σ ` |U | : nat

Σ ` K : kind
kindLength

Σ ` |K| : nat

Figure 6.8: Introduction Rules for the Length Operator

The Length Operator We give the introduction rules for the length operator in fig-
ure 6.8 and give its definition in figure 6.9. The length of a sequence expression is a natural
number expression in Seq :

In particular, the empty sequence has length 0 and the length of the concatenation of
two sequences | E,F | is equal to the sum of the length of each sequence E and F . The
length of term sequence name x : U is determined by the length of the sequence U it is
typed by. The length of a type sequence name is determined similarly. The length of an
ellipses [E]nx=1 is n. And the length of any element En of a sequence expression E is 1.
Finally, every natural number expression n : nat has length 1.

lenEmpty
Σ ` | · | .= 0

Σ ` x : U
lenTermSym

Σ ` |x| .= |U |
Σ ` a :K

lenTypeSym
Σ ` |a| .= |K|

Σ ` S : U Σ ` n : nat
lenTermEll

Σ ` |[S]nx=1|
.
= n

Σ ` U :K Σ ` n : nat
lenTypeEll

Σ ` |[U]nx=1|
.
= n

Σ ` S : U Σ ` n : nat
lenTermInd

Σ ` |Sn|
.
= 1

Σ ` U :K Σ ` n : nat
lenTypeInd

Σ ` |Un|
.
= 1

Σ ` S : U Σ ` T : V
lenTermConcat

Σ ` | S, T | .= |S|+ |T |
Σ ` U :K Σ ` V : L

lenTypeConcat
Σ ` | U, V | .= |U |+ |V |

Σ ` S : nat
lenNat

Σ ` |S| .= 1

Σ ` n : nat
lenKind

Σ ` |typen| .= n

Figure 6.9: Equality Rules for the Length Operator

Now we can state the following properties using the length operator: Term sequences
are typed by type sequence of the same length, and type family sequences are kinded by
kinds of the same length.

Lemma 6.9. The following statements hold:

• If Σ ` S : U , then Σ ` |S| .= |U |.

83

• If Σ ` U :K, then Σ ` |U | .= |K|.

Proof. The proof proceeds by a straightforward induction on derivations.

6.1.3 Conversions

Now we present the conversion rules for Seq-expressions in figure 6.10. These rules capture
the intended semantics of the two operations [E]nx=1 and Ex.

Σ, x : nat ` x : nat
extensionality

Σ ` E .
= [Ex]

|E|
x=1

Σ ` n .
= 1 + . . .+ 1

seqBindElim
Σ ` [E]nx=1

.
= [1/x]E, . . . , [n/x]E

Σ ` E .
= E(1), . . . , E(n) Σ ` |E(y)| .= 1 for y = 1, . . . , n Σ ` x .

= 1 + . . .+ 1
seqIndexElim

Σ ` Ex
.
= E(x)

Figure 6.10: Conversion Rules

The rule extensionality is an expansion rule and corresponds to η-expansion in simple
type theory. seqBindElim and seqIndexElim are rule schemes that denote a family of rules
consisting of one rule for every meta-level natural number n.

For instance, seqBindElim denotes the following rules:

• Case n = 0:
Σ ` n .

= 0

Σ ` [E]0x=1
.
= ·

• Case n = 1:
Σ ` n .

= 1

Σ ` [E]1x=1
.
= [1/x]E

• Case n = 2:
Σ ` n .

= 1 + 1

Σ ` [E]2x=1
.
= [1/x]E, [1 + 1/x]E

and so on.

This means that ellipses [E]nx=1 are expanded if n is normal. Note that the case n = 0
of seqBindElim means that [E]0x=1 normalizes to the empty sequence.

In seqIndexElim, E(1), . . . , E(n) are meta-variables for expressions, x is normal and E
is a sequence expression whose elements have length 1. In that case, sequence elements
can be projected.

84

6.2 LF with Sequences

Seq LF

Seq ∪g LF

LFS

g

g∗

In this section we take the generative union of the foun-
dations Seq and LF along the partial foundation mor-
phism g : SymLF → ExpSeq , where g maps the symbol
type ∈ SymLF to the Seq-expression type1. By defini-
tion 4.19 of generative unions, the foundation morphism
g∗ : SymLF → ExpSeq∪gLF is defined as follows:

g∗(x) =

{
type1 if x = type

x otherwise
(6.2)

This modular construction allows combining the foun-
dations Seq and LF via an instantiation that maps all occurrences of the symbol type in
the rules of LF with the expression type1.

Then we extend the generative union Seq ∪g LF with one more primitive symbol:
compose, a flexary symbol for the composition of a sequence of n functions. We will call
the resulting foundation LFS .

compose adds new expressions of the form @(compose;E) to the syntax of LFS and is
denoted as ;E.

6.2.1 Syntax

As a result of modular construction in the diagram above, SymLFS consists of the symbols
of SymSeq , the symbols λ, Π, app of SymLF and the symbol compose. Note that the
symbol kind of SymLF does not occur twice in SymLFS due to set union.

We give the full grammar of LFS in figure 6.11. All productions for LF are retained
but generalized to sequences. Here we mention the additional formations only:

Kinds K ::= typeS | Πx :A.K

Type Seq. Families U, V . . . ::= a | Πx :U. V | λx : U. V | U S
| · | U, V | US | [U]Sx=1

| nat | S ≤ T

Term Sequences S, T . . . ::= x | λx : U. S | S T
| · | S, T | ST | [S]Tx=1 | ;S
| 0 | 1 | S + T | S − T
| |S| | |U | | |K|

Figure 6.11: LFS Grammar

More specifically, term sequences in LFS are formed from, in addition to term
sequences in Seq ,
• term sequence abstractions λx : U. S that bind symbols x in term sequences S,
• term sequence applications S T of term sequences S to term sequences T ,
• the flexary composition ;S of elements of S.

Type sequence families are formed from, in addition to type sequences in Seq ,
• dependent type sequences Πx :U. V that bind sequence variables x : U in V ,
• type sequence abstractions λx : U. V that bind sequence variables x : U in V ,

85

• type sequence applications U S of type family sequences U to term sequences S.

The intuition behind the primitives of LF that are now flexary in LFS is the following:
Both λ and Π binders for sequences are flexary variable binders, i.e., bindings x : U
formalize variable sequences. For example, the binding x : U (1), . . . , U (n) corresponds to
binding x(1) : U (1), . . . , x(n) : U (n). Then both binders can return a sequence expression.
Accordingly, sequence applications f T are flexary applications that apply a function f
to an argument sequence T . Likewise, the function f can be a sequence expression: the
application (f (1), . . . , f (n))T returns the sequence of applications (f (1) T), . . . , (f (n) T).

Moreover, the intended meaning of flexary composition ;S is that it takes a sequence
of functions of length 1 and returns their composition. Thus, ; (f (1), . . . , f (n)) s reduces to
f (n) (. . . (f (1) s) . . .). Notably, this is more general than a fold operator because the type
of each f (i) may depend on i.

Kinds K are formed, in addition to the base kind in figure 6.2, from Πx :U.K.

Examples Now, we give more operations on sequences.

We define the map operator that maps each element x of a sequence to f(x) for a
unary function f .

Example 6.10 (Map). The operator map that takes a function f : Πx : U.E′, a sequence
expression E : E′, and returns the sequence f(E(1)), . . . , f(E(n)) whenever E reduces to
E(1), . . . , E(n):

map f E = [f Ex]
|E|
x=1

Next, we can use our flexary composition and the sequence ellipsis constructor to define
the fold operator:

Example 6.11 (Fold). The left folding operator is defined as:

foldl f E s = (; [λx : A. f xEi]
n
i=1) s

Thus foldl f E s reduces to (f . . . (f (f aE1)E2) . . . En) for a folding function f : A →
B → A, a start element s : A and a sequence E : Bn.

Similarly, we define the right folding operator as:

foldr f E s = foldl f (reverseE) s

Using sequence operations, we can define flexary versions of mathematical operators.
In particular, we can define the flexary version of any associative binary operator using
the fold operation:

Example 6.12 (Flexary Operators). Consider a monoid with carrier M : type, binary
operation ◦ : M →M →M and unit element e : M . Then we define the flexary operation
◦∗ as follows:

◦∗ : Πn : nat.Mn →M = λn : nat. λx : Mn. foldl ◦ x e

This immediately yields the power operator:

power : M → nat→M = λx : M.λn : nat. ◦∗ xn

86

6.2.2 Type System

In addition to the judgments in figure 6.3, LFS uses the judgment Σ ` U Quantifiable.
The type system of LFS inherits all the rules from RulesSeq , the typing rules depType,

abstr , app of LF in figure 4.6 for Π, λ and application, respectively, the conversion rules of
LF in figure 4.7 via the generative union, and introduces the rule typeQuan in figure 6.12,
the rule composition in figure 6.13, and the conversion rules in figure 6.14.

The foundation morphism g′ : SymLF → ExpSeq∪gLF maps the rules type, typeInh in
figure 4.5 and typeQuan in figure 4.6, respectively, to the derivation cases of the rules
seqKind from figure 6.5, typeInhab from figure 6.4 and seqTypeQuan in figure 6.12 for
n = 1. Note that g′ maps the rule kindInh of LF in figure 4.5 to itself.

The rule seqTypeQuan permits the λ- and Π-binders to bind term sequences x : U .

Σ ` U : typen
seqTypeQuan

Σ ` U Quantifiable

Figure 6.12: Quantifiable Expressions

The rule composition handles ;S by checking that the functions in S are actually
composable. This is easiest if we restrict attention to the composition of simple functions.
In the case where n = 0, we have U : type and the empty sequence S : · of functions.
Applying the flexary composition to the empty sequence gives the identity function on U
(note that the element U1 of U : type at index 1 is equal to U).

Σ ` U : typen+1 Σ ` S : [Ui → Ui+1]ni=1
composition

Σ`;S : U1 → Un+1

Figure 6.13: Typing Rule for Flexary Function Composition

6.2.3 Conversions

The rules in figure 6.14 define the length operator for the new symbols in LFS :

lengthλ
Σ ` |λx : U.E| .= |E|

lengthΠ
Σ ` |Πx : U.E| .= |E|

lengthApp
Σ ` |f S| .= |f |

lengthComp
Σ ` |;S| .= 1

Figure 6.14: Equality Rules for the Length Operator

Functions λx : U.E and Π-expressions are allowed to return sequences. In both ex-
pressions, their length is determined by the length of their bodies. Functions f an be
sequences themselves. In that case, the length of an application f S is determined by the

87

length of f . Function composition is restricted to a sequence of functions of length 1 and
the resulting function ;S has length 1.

Now we give the conversion rules for LFS -expressions that mix expressions from Seq
and LF . Binders distribute over sequences (figure 6.15 and figure 6.16):

emtpyΠ
Σ ` Πx : ·. E .

= [·/x]E

seqΠ
Σ ` Πx : (U, V). E

.
= Πy : U.Πz : V. [(y, z)/x]E

emtpyλ
Σ ` λx : ·. E .

= [·/x]E

seqλ
Σ ` λx : (U, V). E

.
= λy : U. λz : V. [(y, z)/x]E

Figure 6.15: Conversion Rules for LFS -Binders — the Binding

seqBodyΠ
Σ ` Πx : U. (E,F)

.
= (Πx : U.E), (Πx : U.F)

emtpyBodyΠ
Σ ` Πx : U. · .= ·

seqBodyλ
Σ ` λx : U. (E,F)

.
= (λx : U. E), (λx : U. F)

emtpyBodyλ
Σ ` λx : U. · .= ·

Figure 6.16: Conversion Rules for LFS -Binders — the Scope

We have the following rules for sequence application in figure 6.17. Functions f take
a sequence of arguments S, T by curring. In particular, the application of a function f to
the empty sequence returns f itself. The application of a sequence of functions (f, g) to
an expression E is a sequence of applications (f E), (g E). The application of the empty
sequence to an expression returns the empty sequence.

88

seqArgs
Σ ` f (S, T)

.
= (f S)T

emptyArgs
Σ ` f · .= f

seqFun
Σ ` (f, g)E

.
= (f E), (g E)

emptyFun
Σ ` · E .

= ·

Figure 6.17: Conversion Rules for Function Applications

Figure 6.18 gives the conversion rules for that combine the index operator with binders
and application:

indexΠ
Σ ` (Πx : U.E)n

.
= Πx : U.En

indexλ
Σ ` (λx : U.E)n

.
= λx : U.En

indexApp
Σ ` (f E)n

.
= fnE

Figure 6.18: Conversion Rules for Sequence Projection

Last but not least, the conversion rules for the flexary composition are given in fig-
ure 6.19.

Meta-Properties These conversions have the effect that LFS is conservative over LF
in the following sense: If we have Σ ` S : U : typen and all terms of type nat reduce to
1 + . . . + 1, then n reduces to m, and S and U reduce to S(1), . . . S(m) and U (1), . . . , U (m),
and S(i) : U (i) for i = 1, . . . ,m in the LF type system.

This means that if the involved natural number expressions normalize, then LFS -
expressions reduce to sequences of LF -expressions, and LFS -judgments reduce to se-
quences of LF -judgments. Under this condition, the normal LFS expressions are se-
quences of normal LF expressions. Consequently, an adequate encoding of objects as
LF -expressions, yields an adequate encoding of sequences of objects as LFS -expressions.

Additionally, reducing full LFS to LF would require a formalization of sequences in
LF already, which is doable, but also very costly.

89

emptyComp
Σ ` ; · .= λx : U. x

seqComp
Σ ` ; (f, g)

.
= λx. (; g) ((; f)x)

Σ ` |f | .= 1
unitComp

Σ ` ; f
.
= f

Figure 6.19: Conversion Rules for Flexary Composition

6.2.4 Stand-Alone Version

For the purpose of documentation, we give a version of the LFS -rules in figure 6.20 and
figure 6.21 that is not modular. These rules together with the rules of Seq constitute the
LFS as a standalone foundation.

Σ ` U : typem Σ, x : U ` V : typen

depType
Σ ` Πx :U. V : typen

Σ ` U : typem Σ, x : U ` S : V : typen

termAbstr
Σ ` λx : U. S : Πx :U. V : typen

Σ ` S : Πx :U. V : typen Σ ` T : U : typem

termAppl
Σ ` S T : [T/x]V : typen

Σ ` U : typem Σ, x : U ` K : kind
depKind

Σ ` Πx :U.K : kind

Σ ` U : typem Σ, x : U ` V :K
typeAbstr

Σ ` λx : U. V : Πx :U.K

Σ ` V : Πx :U.K Σ ` T : U : typem

typeAppl
Σ ` V T : [T/x]K

Figure 6.20: Typing Rules for Abstraction, Π-Formation and Application

90

Σ, x : U ` S : V : typem Σ ` T : U : typen

β-Conv1
Σ ` (λx : U. S)T

.
= [T/x]S

Σ, x : U ` V : typem Σ ` T : U : typen

β-Conv2
Σ ` (λx : U. V)T

.
= [T/x]V

Σ, x : U ` x : U Σ ` S : Πx :U. V
η-Conv1

Σ ` λx : U. (S x)
.
= S

Σ, x : U ` x : U Σ ` V : Πx :U.K
η-Conv2

Σ ` λx : U. (V x)
.
= V

Figure 6.21: β- and η-Conversions

6.3 Discussion

In this chapter we have introduced a new foundation LFS for sequences and ellipses that
supports flexary functions and sequence arguments. LFS is novel in the development
of sequences compared to existing approaches: We use term sequences a1, . . . , an that
are typed component-wise by a type sequence A1, . . . , An. Importantly, type sequences
A1, . . . , An are not types themselves – they are simply sequences of types.

Like sequences and contrary to indexed types and list types, this has the advantage that
we do not change the underlying type theory. No representational artifacts are needed to
flatten sequences or to apply a function to a sequence of arguments. And like for indexed
types, the length of a sequence is statically known.

Moreover, the sequence constructs in LFS are expressive enough to define a number
of interesting operations on sequences including the fold operator and the map operator.
An overview of which sequence operators can be expressed in LFS is given in the table
below:

Operation Availability

length object-level
map defined
fold defined
revert defined
prefix defined
suffix defined
concatenation primitive
empty primitive

Not surprisingly, introducing sequences as a language primitive required natural num-
bers: We used a fragment of natural numbers with addition and a special subtraction that
does not introduce negative numbers, which proved very useful for defining operators for
sequences.

Furthermore, it is an important aspect of LFS that the length of sequence expressions
is embedded into their types. This has the consequence that we never quantify over

91

sequences of arbitrary length. This is not a limitation, because we can always quantify
over the length of a sequence.

Meta-Properties The foundation Seq is a relatively simple language with carefully
chosen primitives for natural numbers and sequence expressions.

Type checking in Seq is harder than type checking e.g., lists, because the length of a
sequence is part of the type system. Therefore, type checking in Seq requires reasoning
about the length of a sequence. In particular, we need to check that the index i in Si is
actually within the boundaries of the length of S.

This yields a collection of constraints on natural number variables involved during type
checking. This reduces type checking to provability in Presburger arithmetic. Therefore,
we conjecture that type checking for Seq is decidable. We conjecture that type checking
for LFS , on the other hand, is not decidable because of flexary composition, because it
permits defining multiplication.

Alternative Approaches The approaches used by frameworks that support sequences
can be categorized as we discuss below:

Lists We can represent flexary operators as unary operators that take a list as an argu-
ment. In that case, we represent a1 + a2 + a3 as +(List(a1, a2, a3)).
Actually, this tacitly assumes that we have at least a flexary list constructor.
In a pure fixary language, we would have to represent it as
+(cons(a1, cons(a2, cons(a3, nil)))), which is quite different from the informal mathemat-
ical object.

This approach permits using variables that quantify over sequences, and – using map
and fold – it is easy to represent ellipses. This is widely used in programming languages,
where lists are an accepted foundational data type.

In mathematics however, it is artificial to use lists since any formal mathematical
theory for flexary operators would depend on the theory of lists, which itself is rarely used
in informal mathematics. Another drawback is that all arguments must have the same
domain. To permit different argument domains, we must allow lists whose elements have
different types (or use sufficiently imprecise types).

Sequences Sequence types use a monadic type constructor Seq : type → type like lists
and enjoy the same advantages. The difference is that sequences are always flattened,
i.e., the canonical functions Seq(Seq(A)) → SeqA and A → Seq(A) are inclusions. For
example, Seq(a, b,Seq(c, d), e, f) = Seq(a, b, c, d, e, f). This makes sequence types closer
to informal mathematics because they need less representational artifacts. Variants of
sequence types occur in some programming languages but are rare in typed languages for
formalized mathematics.

Sequences are more common in untyped languages. In the absence of a type system
and in the presence of flattening, there is no need to write f(Seq(a, b, c)) at all. Instead,
we can simply write f(a, b, c) (even if one of the arguments is another sequence).

This approach is used in Common Logic (CL [Com07]), an untyped flexary variant of
first-order logic. There, every non-logical symbol is flexary and variables may quantify
over sequences. This substantially complicates the semantics because models must inter-
pret every function symbol as a function that takes an arbitrary sequence of arguments;
incidentally a proof theoretical semantics is not defined in CL.

92

[KB04] defines a flexary first-order logic and studies its semantics. The signature
defines the arity of each non-logical symbol, and the arity can either be fixed or flexible.
Similarly, variables are divided into individual and sequence variables.

Mathematica [Wol12] also uses untyped sequences, including sequence variables. Func-
tions are fixary, but flexary functions can be defined by matching arguments against se-
quence patterns. Because Mathematica focuses on computation rather than logic, this is
less problematic than for CL.

The untyped approaches to sequences usually cannot represent ellipses well because
they tend to lack higher-order functions.

Indexed types Mixed-type lists can be represented concisely in Martin-Löf type theory
[ML74], calculus of constructions [CH88] and related languages. Example implementations
are Agda [Nor05] and Coq [Coq14]. If we write [n] for the type containing 0, . . . , n − 1,
we call objects of type T : [n] → type indexed types. Mixed-type lists can be defined as
indexed terms l : Πi : [n]. T (i). Then flexary functions can be declared concisely as binary
functions that take a natural number n and term indexed by [n].

Ellipses can be represented very elegantly now, e.g., a1, . . . , an is simply λi. ai. More-
over, contrary to all of the above, the length of a sequence is statically known, which
permits static index-within-bounds checking when accessing an element of a sequence.
Quantification only affects sequences of a certain length, e.g., ∀x : [n]→ A.F ; to quantify
over all sequences, we can use ∀n.∀x : [n]→ A.F .

A disadvantage is the substantial commitment at the language level, which goes far
beyond simply adding sequences: The language must be able to express the types [n] and
[n]→ type (e.g. via inductive constructions and a universe hierarchy in Coq).

93

94

Chapter 7

Declarative Languages and their
Translations in TFI

Our work in chapters 4, 5 and 6 has prepared us to present a solution to the research
problems we discussed in chapter 1: In this chapter, we show how we overcome the over-
generation problem of declarative logical frameworks we discussed in section 3 and define
how to adequately represent declarative languages and their translations.

In particular, we use theory families from chapter 5 to give an adequate representation
of declarative languages and specific language translations.

To simplify notation, we will fix an arbitrary foundation F throughout the whole
chapter and give our definitions and results relative to F .

For concrete examples of declarative languages, we will instantiate F with our foun-
dation LFS from chapter 6. We choose to work within LFS , because specifying the
declaration patterns of many well-established declarative languages like first-order logic
requires the expressivity of sequences. In fact, we designed LFS specifically for this task.

7.1 Representing Declarative Languages

We represent declarative languages as theories in TFI. More specifically, for an arbitrarily
fixed foundation F , we define F-languages in TFI:

Definition 7.1 (F-Languages). An F-language is a well-formed theory in TFI/F .

The novelty in our representation is that we can use theory families of TFI to represent
the declaration patterns of a language L. This provides a means to specify the syntactic
shape of an arbitrary theory of L. Then, we can define the theories of L as theories in
TFI/F that only contain declarations that conform to a declaration pattern of L.

Terminology 7.2. We will refer to a declaration pattern of L as an L-pattern, and to a
specific instantiation of an L-pattern ϕ as a ϕ-instance. We will also say L-instance to
a ϕ-instance when ϕ is not of specific relevance.

As an example, we give the syntax of first-order logic and its declaration patterns from
section 1.1.1 in TFI/LFS below. The examples that we will present in this chapter are
not modular intentionally. In chapter 9 we give our examples modularly for the sake of
better readability.

Example 7.3 (FOL Syntax in TFI/LFS). The TFI/LFS theory FOL represents the syntax
of first-order logic:

95

FOL = {
term : type

form : type

ded : form → type

Fun = (n : nat) {
f : termn → term

}
Pred = (n : nat) {

p : termn → form
}
Axiom = (F : form) {

a : ded F
}

false : form
⇒ : form → form → form
∀ : (term → form)→ form
.
= : term → term → form
}

Here term and form are the LFS -types of first-order terms and formulas, respectively.
U → V is a notation for the LFS -type constructor Πx : U. V where x does not occur in
V . Note that → is a flexary operator in LFS : U1, . . . , Un → V normalizes to U1 → . . .→
Un → V .

The declaration pattern Fun allows for the declaration of n-ary function symbols of the
form f : termn → term that take a sequence of first-order terms of length n and return a
first-order term for any natural number n. Similarly, the declaration pattern Pred allows
for the declaration of n-ary predicate symbols of the form p : termn → form for any
natural number n. Recall that termn abbreviates the sequence expression [term]nx=1. This
includes the case n = 0 of contants and propositional variables.

Axiom formalizes the shape of axiom declarations. Each axiom declaration must be
of the form a : ded F for some first-order formula F : form. These declaration patterns
precisely describe what kind of symbol declarations are allowed in the theories of FOL.

Next, we add first-order logical symbols: For simplicity, we only consider the logi-
cal connectives false for falsehood and ⇒ for implication. Moreover, FOL declares the
first-order universal quantifier ∀ using higher-order abstract syntax, and the binary pred-
icate symbol

.
= for the equality of first-order terms. The remaining connectives and the

existential quantifier are defined in terms of the given ones in the usual way.

LFS is expressive enough to define logics with flexary logical operators. For that
reason, we choose to formalize our example languages the standard way using fixary prim-
itives, and define their corresponding flexary versions using the fixary ones:

∧∗ : formn → form = λF : formn. foldl ∧ F true
∨∗ : formn → form = λF : formn. foldl ∨ F false
⇒∗ : formn → form → form = λF : formn. λG : form. foldr ⇒ F G
∀∗ : (termn → form)→ form

= λF. ; [λf : termi → form. λy : termi−1. ∀λx : term. f (y, x)]1i=n F

The flexary conjunction ∧∗ takes a natural number n and then a sequence of n con-
juncts. We have ∧∗F1 . . . , Fn = (. . . (true ∧F1) . . .)∧Fn and ∧∗· = true. For disjunction,

96

we use ∨∗ F = foldl ∨ F false accordingly. For implication, which is not associative, we
define ⇒∗ : formn → form → form and ⇒∗ F G = foldr ⇒ F G.

The definition of flexary quantifiers is more involved. Intuitively, we want ∀∗ F =
∀λx1 : term. . . .∀λxn : term. F (x1, . . . , xn). Let [;G(i)]1i=n be the ellipsis in the definiens of
∀∗. Then the type of G(i) is (termi → form)→ (termi−1 → form), and when constructing
G(n) (. . . (G(1)F) . . .), each G(i) introduces ∀xi. Note that all variables are called x, the
names xi are introduced when LFS α-renames x during capture-avoiding substitution.

The alternative approach would be to introduce all language primitives as flexary
operators without initially introducing fixary ones.

Now we define the theories of a declarative language L in TFI/F :

Definition 7.4 (Theories of F-Languages). Let L be an F-language, and L,Σ be a well-
formed TFI/F-theory.

We say that Σ is a strict L-theory if Σ is strict in the sense of definition 5.3.

Moreover, we say that Σ is an L-theory if the elaboration E(Σ) of Σ is equal to the
elaboration E(Σ′) of a strict L-theory Σ′ up to the renaming of symbols.

Note that the instance declarations ι : Φ in a strict L-theory Σ have the form either

ι : ϕE1 . . . En or ι : {Ψ}

for an L-pattern ϕ and a strict theory fragment Ψ. Moreover, symbol declarations x : E =
E′ are only allowed with definiens to restrict the possibility of introducing new symbol
declarations that do not respect L-patterns. This guarantees that only those TFI/F-
theories that comply with the L-patterns are actually L-theories.

Now, we give the first-order theory of monoids as an example of a (strict) FOL-theory:

Example 7.5 (FOL-Theory of Monoid). Consider the following formalization of the theory
of monoids as a strict FOL-theory:

Monoid = {
include FOL
e : Fun 0
◦ : Fun 2
neutl : Axiom ∀λx : term. e.f ◦ .f x == x
...
}

Furthermore, the following theory in TFI/LFS is a FOL-theory:

Monoid ′ = {
include FOL
e : term
◦ : term → term → term
neutl : ded ∀λx : term. e ◦ x == x
...
}

The elaboration of Monoid is the following TFI/LFS -theory:

97

E(Monoid) = {
include FOL
e.f : term
◦.f : term → term → term
neutl .a : ded ∀λx : term. e.f ◦ .f x == x
...
}

Note that E(Monoid ′) is equal to E(Monoid) up to renaming of the declared symbols.
And the elaboration of FOL is equal to itself.

Technically, our definition of strict L-theories allows nested instance declarations of
the form

ι : {ι1 : {. . . {ιn : {x : E = E′}} . . .}}
which is equivalent to

ι.ι1.ιn.x : E = E′

after elaboration. Nested instance declarations are rarely necessary to declare in a theory.
They will usually appear as a result of translating strict theories, typically for n = 1 for
the depth of the nesting.

Now that we have defined L-theories, we will group together those theory morphisms
that are between L-theories:

Definition 7.6 (L-Morphisms). Let L be an F-language, Σ and Σ′ be strict L-theories.
We call the TFI/F-morphism fragment σ in idL, σ : L,Σ → L,Σ′ an L-morphism
from Σ to Σ′.

This definition is intuitively captured by the following diagram:

L

L,Σ L,Σ′
idL, σ

The intuition behind definition 7.6 is that the strict L-theories and the L-morphisms
form a category, namely the theory category of L. It is worthwhile to remark that if the
theories of a declarative language are represented adequately by strict L-theories, then
usually the theory morphisms are represented adequately by L-morphisms as well.

Now we give a second example of a F-language and its theories in order to exemplify
language translations in section 7.2.

Example 7.7 (SFOL Syntax in TFI/LFS). The TFI/LFS -theory SFOL below is similar
to FOL except that we use an LFS -type sort to encode the set of sorts and an LFS type
family tm indexed by sort that provides the type tm S of terms of sort S, i.e., t : tm S
means that t is of sort S. Universal quantification ∀ is sorted, i.e., it first takes a sort
argument S and then binds a variable of type tm S.

The declaration pattern Sort allows for the declaration of sorts s : sort . The declaration
patterns SortedFun and SortedPred formalize the shape of declarations of sorted n-ary
function and predicate symbols of the form f : tm s1 → . . . → tm sn → tm t and q :
tm s1 → . . . → tm sn → form, respectively, for sorts s1 : sort , . . . , sn : sort and t : sort .
Recall that the sequence [tm si]

n
i=1 normalizes to tm s1, . . . , tm sn and the type [tm si]

n
i=1 →

tm t normalizes to tm s1 → . . .→ tm sn → tm t.

98

SFOL = {
sort : type

tm : sort → type

form : type

ded : form → type

Sort = {
s : sort

}
SortedFun = (n : nat, s : sortn, t : sort) {

f : [tm si]
n
i=1 → tm t

}
SortedPred = (n : nat, s : sortn) {

q : [tm si]
n
i=1 → form

}
Axiom = (F : form) {

m : ded F
}

false : form
⇒ : form → form → form
∀ : ΠS : sort . (tm S → form)→ form
}

Like in FOL, we define the flexary version of the logical symbols in SFOL. The
definitions for the flexary logical connectives are as in example 7.3. Here we only need to
define the flexary quantifiers for SFOL:

∀∗ : ΠS :sortn. (Sn1 → form)→ form

= λS. λF. ; [λf : Si1 → form. λy : Si−1
1 . ∀λx : tm Si. f (y, x)]1i=n F

where Sba is an abbreviation for [tm Sj]
b
j=a. The definition of the flexary existential quan-

tifier follows analogously.

Now we introduce the theory of vector spaces as an SFOL-theory:

Example 7.8 (SFOL-Theory of Vector Spaces). VectorSpaces is a strict SFOL-theory that
formalizes the theory of vector spaces.

VectorSpaces = {
include SFOL
vec : Sort
sca : Sort
0 : SortedFun 0 · sca.s
+ : SortedFun 2 vec.s , vec.s vec.s
}

Here vec and sca instantiate the declaration pattern Sort to introduce sorts for vectors
and scalars, respectively. 0 instantiates the declaration pattern SortedFun with arity 0,
the empty sequence · for the domain and the sort sca.s for the codomain. + instantiates
SortedFun with arity 2, the sequence vec.s , vec.s for the domain sort vec.s for both
arguments and the sort vec.s for the codomain.

99

7.2 Representing Language Translations

In section 3.2 we have discussed the main problems with the representation of language
translations in declarative logical frameworks and exemplified those problems via a list
of important language translations. The three main problems are i) whether an existing
translation is adequate for expressions, ii) whether the representation of a translation is
well-defined for L2-theories, iii) whether the representation of a translation is adequate
for theories.

In the following we give a new definition of a language translation based on declaration
patterns which addresses the last two problems above in particular.

Definition 7.9 (F-Translations). Let L and L′ be two F-languages. We say that a
TFI/F-morphism l : L → L′ is a strict F-translation from L to L′ if for every ϕ := Φ
in l, we have that Φ is strict (in the sense of definition 5.3).

In the following we will fortify our intuition by defining a translation from SFOL to FOL
using declaration patterns. Recall that we have classified this translation as inadequate
in LF, because it is not possible to give a translation from SFOL to FOL in LF that
maps sorted function symbols of SFOL to a FOL function symbol that is coupled with
the axiom that results from the relativization of the sorts. Strict F-translations overcome
this problem:

Example 7.10 (Translation from SFOL to FOL). We give a strict LFS -translation from
SFOL to FOL below:

S2F : SFOL → FOL = {
sort := term → form
tm := λx : term → form. term
form := form
ded := λF : form. ded F

Sort := Pred 1

SortedFun := (n : nat, s : (term → form)n, t : term → form) {
ι : Fun n
f : termn → term = ι.f
wellsorted : Axiom ∀∗λx : termn. (∧∗([si xi]ni=1)) ⇒ t (f x)

}

SortedPred := (n : nat, s : (term → form)n) Pred n

Axiom := (F : form) Axiom F

false := false
⇒ := λF : form. λG : form. F ⇒ G
∀ := λs : term → form. λp : term → form. ∀λx : term. (s x) ⇒ (p x)
}

The translation of the logical primitives of SFOL is straightforward.

Our main contribution in this example is the translation of the SFOL-patterns: Sort is
mapped to Pred 1 specifying that for each sort declaration s : sort , there is one declaration
of a corresponding unary predicate symbol.

SortedFun is mapped to a theory family expression that i) takes arguments LFS natural
number n : nat for the arity, an LFS sequence s : (term → form)n of n first-order unary
predicates and a first-order unary predicate t : term → form, and ii) returns an instance

100

f ′ of an n-ary first-order function symbol, a function f identical to the function introduced
by f ′, and a corresponding axiom for the function introduced by f ′.

SortedPred is mapped to the theory family abstraction with arguments LFS natural
number n : nat and an LFS sequence s of n first-order unary predicates, and returns the
FOL-pattern Pred with argument n.

This specifies that for every n-ary SFOL predicate symbol declaration, there must be
a corresponding n-ary FOL predicate symbol declaration.

The translation of Axiom is straightforward: Every axiom declaration in an SFOL
theory is mapped to an axioms declaration in the corresponding FOL theory.

Note that the mapping of each four declaration patterns comply with definition 7.9:
SortedFun is mapped to theory family expression whose body respects FOL-patterns. Sort ,
SortedPred and Axiom are mapped to theory family expressions in terms of FOL-patterns.

Moreover, the symbol declaration f : termn → term = ι.f in the translation of
SortedFun is required by the rule mapTheoryFamily in figure 5.5: we have the requirement
that the judgment L′ ` l(ϕ) ≤ Φ holds for the assignment ϕ := Φ in a TFI/F-morphism
l.

The above translation becomes non-strict if we have the following pattern assignments
instead:

Sort :=
{
s : term → form

}
SortedFun := (n : nat, s : (term → form)n, t : term → form) {

f : termn → term
wellsorted : Axiom ∀∗[x : termn] (∧∗([si xi]ni=1)) ⇒ t (f x)

}

Definition 7.11 (Theory Translation). Let L and L′ be two F-languages and l : L→ L′

be a strict F-translation. The translation of an L-theory Σ along l is l(Σ).

Moreover, the translation of an expression E over an L-theory Σ is l ∗ Σ(E).

This definition is captured by the following diagram:

L L′
l

L,Σ L′, l(Σ)
l ∗ Σ

Note that we still translate theories along morphisms using homomorphic extensions.
However, our definition of homomorphic extension is different as it is applied to theory
families and their instances.

Example 7.12. We give the translation of the SFOL-theory VectorSpaces along the strict
LFS -translation S2F from example 7.10.

101

SFOL FOL
S2F

VectorSpaces S2F (VectorSpaces)
S2F ∗VectorSpaces

S2F (VectorSpaces) consists of the following declarations1:

S2F (VectorSpaces) = {

vec : S2F ∗VectorSpaces(Sort)

sca : S2F ∗VectorSpaces(Sort)

0 : S2F ∗VectorSpaces(SortedFun) 0 · S2F ∗VectorSpaces(sca.s)

...
}

This is equal to the theory:

S2F (VectorSpaces) = {

vec : Pred 1

sca : Pred 1

0 : ((n : nat, s : (term → form)n, t : term → form)
{

ι : Fun n
f : termn → term = ι.f
wellsorted : Axiom ∀∗λx : termn. (∧∗([si xi]ni=1)) ⇒ t (f x)

}
) 0 · sca.s

...
}

We get the following theory after β-normalization:

S2F (VectorSpaces) = {
vec : Pred 1

sca : Pred 1

0 :

ι : Fun 0
f : term = ι.f
wellsorted : Axiom ∀∗λx : term0. (∧∗([·i xi]0i=1)) ⇒ sca.s (f x)

...
}

1Here (and in the next couple of following theories) we omit the respective symbol declaration for the
translation of + for the sake of readability, and put vertical dots to notify the reader of this omission.

102

Elaborating S2F (VectorSpaces) results with the following theory:

E(S2F (VectorSpaces)) = {
vec.p : term → form

sca.p : term → form

0.ι.f : term

0.f : term = 0.ι.f

0.wellsorted : ded true ⇒ sca.s (0.f x)

...
}

Using the non-strict translation in example 7.10, we get the following theory:

S2F (VectorSpaces) = {
vec :

{
s : term → form

}
sca :

{
s : term → form

}
0 :

{
f : term
wellsorted : Axiom ∀∗[x : term0] (∧∗([·i xi]0i=1)) ⇒ sca.s (f x)

}
+ :

{
f : term → term → term
wellsorted : Axiom ∀∗[x : term2] (∧∗([(vec.s , vec.s)i xi]

2
i=1)) ⇒ vec.s (f x)

}
}

After normalizing the sequence expressions and elaborating the declarations in S2F (VectorSpaces)
we get:

E(S2F (VectorSpaces)) = {
vec.s : term → form
sca.s : term → form
0.f : term
0.wellsorted .a : ded true ⇒ sca.s (f x)
+.f : term → term → term
+.wellsorted .a : ded vec.s x1 ∧ vec.s x2 ⇒ vec.s (f x)
}

Main Theorem Finally, we have the following main result in this chapter:

Theorem 7.13. Assume two F-languages L, L′ and a strict F-translation l : L → L′.
Then for every strict L-theory Σ, the translation l(Σ) of Σ is a strict L′-theory.

Proof. By mutual induction on the formation of Σ and Φ, we prove (1) our claim and
(2) if Φ is strict, then l(Φ) is strict.

We have the following cases for Σ:

• Case ·: We have l(·) = ·, which is trivially strict.

103

• Case Σ0, x : E = E′:

We have l(Σ0, x : E = E′) = l(Σ0), x : l ∗ Σ0(E) = l ∗ Σ0(E′), which is strict by
induction hypothesis (1).

• Case Σ0, i : Φ:

We have l(Σ0, i : Φ) = l(Σ0), i : l ∗ Σ0(Φ). By induction hypothesis (1), we have that
l(Σ0) is a strict L′-theory. Since l is a strict F-translation, it follows that l ∗ Σ0 is
a strict F-translation. Then, by induction hypothesis (2) we get that l ∗ Σ0(Φ) is
strict.

We have the following cases for Φ:

• Case ϕ: Since l is a strict F-translation, it follows immediately that l(ϕ) is strict.

• Case (x : E) Φ0: We have l((x : E) Φ0) = (x : l(E)) l, x := x(Φ0). Since l is a strict
F-translation, it follows that l, x := x is a strict F-translation. Hence, l((x : E) Φ0)
is strict by induction hypothesis (2).

• Case Φ0(E): We have l(Φ0(E)) = l(Φ0)(l(E)), which is strict by induction hypoth-
esis (2).

• Case {Ψ}: We have l({Ψ}) = {l(Ψ)}, which is strict by induction hypothesis (1).

With this theorem, we have that strict theories are translated to strict theories along
a strict language translation. This is a very crucial result that is required for adequate
representations of language translations.

7.3 Induced Languages and Translations

Recall the LF-induced languages DLF (L) in definition 2.18. We can now define the corre-
sponding operation DF (−) for an arbitrary F in a way that does not over-generate. We
will omit the superscript F for the sake of readability.

Definition 7.14 (F-Induced Languages). Let L be an F-language. L induces a declara-
tive language DF (L), where

• the D(L)-theories are the strict L-theories,

• the expressions over a D(L)-theory Σ are the TFI/F-expressions over L,Σ.

Here, the main difference to the definition of LF-induced languages in definition 2.18
is that the notion of L-theory used in our definition excludes all symbol declarations that
are not L-instances.

Definition 7.15 (F-Induced Translations). Let T be a strict F-translation from L to L′.
T induces a language translation D(T) : D(L)→ D(L′), where

• th : ThD(L) → ThD(L′) maps a D(L)-theory Σ to T (Σ),

• exp is a family of mappings expΣ : ExpD(L)(Σ) → ExpD(L′)(th(Σ)) that map an
expression F over Σ to T ∗ Σ(F).

Note that definition 7.15 is well-defined due to theorem 7.13. Definition 7.15 is a
significant achievement of this thesis.

104

7.4 Discussion

In our meta-framework, we use theory families to give adequate representations of declar-
ative languages. More specifically, we use theory families to represent the declaration
patterns of F-languages. This allows us to talk about the shape of an arbitrary theory of
an F-language.

Moreover, we use the instantiations of theory families, i.e., L-instances, as a crucial
syntactic means to build individual theories of declarative languages L. In particular,
our definition of strict theories of a declarative language overcomes the over-generation
problem by restricting a theory to declarations that can only be expressed using a L-
pattern.

Furthermore, declaration patterns play a significant role in specifying translations be-
tween declarative languages. Similar to the definition of the theories of a language, our
definition of strict language translations makes sure that theories are translated adequately
between languages. In particular, strict theories of a declarative language are guaranteed
to be translated to strict theories.

This result is a crucial step towards obtaining a similar result for non-strict theories.
In an implementation of our framework, it would be possible to implement a procedure
that computes for every symbol declaration x : E, a corresponding declaration pattern
that x instantiates. Using such a pattern-checking procedure, it would be possible to
define a pattern-based language translation that translates a non-strict L-theory Σ to a
non-strict L′-theory by i) computing the corresponding strict L-theory Σ∗ for Σ, assuming
that Σ∗ can be uniquely determined, ii) translating Σ∗ along a strict language translation
l : L→ L′, and iii) elaboration the resulting theory l(Σ∗) to a non-strict L′-theory.

L L′

L,Σ L′,Σ′

L′, l(Σ∗)L,Σ∗

l

Note that TFI cannot guarantee that there is a unique strict L-theory that corresponds
to a particular non-strict L-theory, because the declaration patterns formalized in L may
overlap: If, for example, in FOL, one declares both {c : term} and (n : nat) {f : termn →
term} as FOL-patterns, then a declaration t : term in a FOL-theory Σ would match both
patterns, and thus we could give two strict-theories for Σ.

Finally, our approach proves to cover a broad range different declarative languages: In
chapter 9 we evaluate our approach to create a graph of adequately represented languages
and their translations.

105

106

Chapter 8

Extension Principles in TFI

In section 1.3 we discussed the extension principles that declarative languages typically
employ for theory formation. In this chapter, we describe our methodology to represent
extension principles in TFI/F and to translate them along F-translations. As before, we
fix an arbitrary foundation F .

In section 8.1 we develop our representation of extension principles, and in section 8.1
we use TFI/F theory morphisms to translate extension principles. For running examples,
we instantiate F with our foundation LFS from chapter 6.

8.1 Representing Extension Principles

Recall our definition of F-languages from definition 7.1. In an F-language L, the extension
principles of L can be intuitively captured by theory families:

Definition 8.1 (Extension Principles of L). Let L be an F-language. An extension
principle of L is a theory family declaration of the form ϕ : τ = Φ.

Then, the instance declarations ι : ϕE1 . . . En introduce new declarations that make
use of the extension principle ϕ.

Definition 8.2. An extension principle ϕ : τ = Φ, for Φ = (x1 : E1, . . . , xn : En) {Ψ},
is called derived if all symbol declarations in Ψ have a definiens; otherwise, it is called
primitive. Moreover, it is called strict if Φ is strict.

In the case of representing conservative extension principles, the proof that the cor-
responding primitive L-extension principle is conservative is a meta-argument that must
be carried out as a part of the proof that L is an adequate TFI/F representation of the
represented language. However, we can show generally that the conservativity of a derived
L-extension principle follows from that of the primitive ones.

In the following, we will represent the extension principles we discussed in section 1.3.
We have the option to give strict or non-strict extension principles. The former is necessary
to translate L-extension principles along strict F-translations. The latter is more general.
In particular, we will give the SFOL-extension principles in strict form as we will translate
them later in section 8.2 and 9.3. We will give the extension principles in FOL and HOL
in non-strict form.

We will state every extension principle in the smallest theory in which it is meaning-
ful. This also documents the (often implicit) foundational assumptions of each extension
principle.

107

FOL-Style Explicit Definitions In figure 8.1 we define FOL-style explicit definitions
for FOL in TFI: The extension principle explicitDef takes the arity n : nat and the
definiens t : term as arguments and declares an n-ary function symbol f : termn → term
and the corresponding axiom f(x1, . . . , xn) = t.

ExplicitDefinition = {
include FOL
explicitDef = (n : nat, t : term) {

f : termn → term
ax : ded ∀∗x : termn. f x

.
= t

}
}

Figure 8.1: Extension Principle for FOL Explicit Definitions in TFI/LFS

Implicit Definitions Recall the special case of implicit definitions in section 1.3 for
nullary function symbols in (sorted) first-order logic. We give a representation for it in
FOL in figure 8.2.

ImplicitDefinition = {
include FOL
∃! : (term → form)→ form = . . .
impldef = (P : term → form,m : ded ∃!x : term. P x) {

c : term
ax : ded P c

}
}

Figure 8.2: Extension Principle for FOL Implicit Definitions in TFI/LFS

The theory ImplicitDefinition includes FOL and defines the unique existential quanti-
fier ∃! and a theory family impldef , which specifies implicit definitions of unary functions
in first-order logic. impldef takes a first-order unary predicate P : term → form and a
proof m that there exists a unique term x for which P holds. It returns the declarations
c : term for a nullary FOL-term and an axiom ax : ded P c stating the property P holds
for c.

We can give a strict version of impldef by giving the following declarations in its body
instead:

c : Fun 0
ax : Axiom P c.f

Example 8.3 (Monoids). We define the theory of monoids as a theory of FOL with implicit
definitions below, and introduce the unit element e using the FOL-extension principle
impldef :

108

Monoid∗ = {
include ImplicitDefinition
◦ : Fun 2
neutr : Axiom ∃x : term. ∀y : term. y ◦ .f x .

= y
e : impldef (λx : term.∀y : term. (x ◦ .f y .

= x ∧ y ◦ .f x .
= x))M

}

◦ is the binary operation in monoids and M denotes the required LFS proof term for
the unique existence of e. Here we omit the associativity axiom for the sake of simplicity.

Implicit Definitions in Sorted First-Order Logic The theory FunctionDefinition
in figure 8.3 introduces the extension principle of function definitions in SFOL for any
n-ary function f .

FunctionDefinition = {
include SFOL
function =

(
n : nat, D : sortn, C : sort ,
means : [tm Di]

n
i=1 → tm C → form,

existence : ded ∀∗x : [tm Di]
n
i=1.∃y : tm C.means x y,

uniqueness : ded ∀∗x : [tm Di]
n
i=1. ∀y : tm C.∀y′ : tm C

means x y ∧means x y′ ⇒ y
.
= y′

)
{

f : SortedFun nDC
ax : Axiom ∀∗x : [tm Di]

n
i=1.means x (f x)

}
}

Figure 8.3: SFOL-Style Function Definitions in TFI/LFS

This is an example of a very commonly used extension principle in the Mizar language
[TB85]. In Mizar, the axiom ax is called the definitional theorem induced by the implicit
definition.

Using the extension principle function, we can introduce an instance of the form c :
function nDC P E U that introduces n-ary function symbols f over the sorts in D that

is defined by the property P where E and U discharge the induced proof obligations for
existence and uniqueness. Recall that ∀∗ is the flexary universal quantifier in SFOL defined
in example 7.7.

We can give a non-strict version of FunctionDefinition by giving the following decla-
rations in its body:

f : [tm Di]
n
i=1 → tm C

ax : ded ∀∗x : [tm Di]
n
i=1.means x (f x)

109

Case-Based Function Definitions In Figure 8.4, the theory CaseBasedFunction in-
troduces the extension principle of case-based definitions for unary functions in SFOL.
Functions f from sort A to sort B are defined using n different cases where each case is
guarded by the predicate ci together with the respective definiens di. Such a definition
is well-defined if for all x ∈ A exactly one out of the ci x is true. Here ∨! is the flexary
exclusive or: ∨!(F1, . . . , Fn) holds if exactly one of its arguments holds. We define it as
follows:

∨! : formn → form = ∨∗ [∧∗ [¬Aj]i−1
j=1, Ai, [¬Aj]

i+1
j=1]ni=1

where ∨∗ and ∧∗ are flexary disjunction and conjunction, respectively, from example 7.3.

CaseBasedFunction = {
include SFOL
casedef =

(
n : nat, A : sort , B : sort , c : (tm A→ form)n, d : (tm A→ tm B)n,
ρ : ded ∀x : tm A. ∨! [ci x]ni=1

)
{

f : SortedFun 1AB
ax : Axiom ∀x : tm A. ∧ [ci x ⇒ (f x) = (di x)]ni=1

}
}

Figure 8.4: Case-Based Definitions in TFI/LFS

Then the instance f : casedef nAB c1 . . . cn d1 . . . dn ρ corresponds to the following
function definition:

f(x) =

d1(x) if c1(x)
...

...
dn(x) if cn(x)

We can give a non-strict version of FunctionDefinition by giving the following decla-
rations in its body:

f : tm A→ tm B
fax : ded ∀x : tm A. ∧ [ci x ⇒ (f x) = (di x)]ni=1

HOL-Style Type Definitions The theory TypeDefinition in figure 8.5 introduces the
extension principles of type definition in HOL (we introduce HOL in figure 9.10 in sec-
tion 9.1.3). Our symbol names follow the implementation of this definition principle in
Isabelle/HOL [NPW02].

Instances of the form t : typedef AP ρ introduce a new non-empty type T that is
isomorphic to the subtype of A defined by the predicate P . Since all HOL-types must
be non-empty, a proof ρ of the non-emptiness of this subtype must be supplied. It is
elaborated to the following constant declarations:

• t.T : tp is the new type,

• t.Rep : tm t.T → tm A is an injection from the new type t.T to A,

110

TypeDefinition = {
include HOL
typedef = (A : tp, P : tm A→ tm o,nonempty : ded ∃x : tm A.P x) {

T : tp
Rep : tm T → tm A
Abs : tm A→ tm T
Rep′ : ded ∀x : tm T. P (Rep x)
Rep inverse : ded ∀x : tm T.Abs (Rep x)

.
= x

Abs inverse : ded ∀x : tm A.P x⇒ Rep (Abs x)
.
= x

}
}

Figure 8.5: HOL-Style Type Definitions

• t.Abs : tm A→ tm t.T is the partial inverse of t.Rep from A to the new type t.T ,

• t.Rep′ states that the property P holds for any term of type t.T ,

• t.Rep inverse states that the injection of any element of type t.T to A and back is
equal to itself,

• t.Abs inverse states that if an element satisfies P , then injecting it to t.T and back
is equal to itself.

8.2 Translating Extension Principles

Since L-extension principles are theory families, we can translate them along TFI-theory
morphisms. In particular, we can translate extension principles between F-languages.
Here we will give one example using the strict LFS -translation S2F from example 7.10.

Example 8.4 (Translation of function in FOL). The translation of the SFOL-extension
principle function from figure 8.3 along S2F is as follows:

S2F (function) =
(

n : nat,
D : (term → form)n,
C : term → form,
means : termn → term → form,
existence : ded ∀∗λx : termn.∧∗ [Di xi]

n
i=1 ⇒

(∃λy : term.∧∗ [Di xi]
n
i=1 ∧ (means x y)),

uniqueness : ded ∀∗λx : termn. (∧∗ [Di xi]
n
i=1) ⇒

(∀λy : term. (C y) ⇒ (∀λy′ : term. (C y′) ⇒
(means x y ∧means x y′ ⇒ y

.
= y′)))

)
{

f ′ : Fun n
f : termn → term = f ′.f
ax : Axiom ∀∗λx : termn. (∧∗([Di xi]

n
i=1)) ⇒ C (f x)

wellsorted : Axiom ∀∗λx : termn.means x (f x)
}

111

Then, we can recover the implicit definitions of nullary functions in FOL using the
translation of function:

ImplicitDefinition = S2F (function) 0 · λx : term. true

We get the following definiens for ImplicitDefinition after β-normalizing S2F (function) 0 ·
λx : term. true:

ImplicitDefinition =
{

f : term
ax : ded (true ⇒ true)
wellsorted : ded means · (f ·)

}

8.3 Discussion

Our novel development of theory families in TFI/F enables representing, besides the dec-
laration patterns, the extension principles of a language in declarative logical frameworks.
We regard each extension principle as one language feature that permits extending the
theories of a declarative language in a specific way. Theory families allow us to repre-
sent individual extension principles, and furthermore to add language extensions to any
declarative language in a generic way.

This further facilitates the automation of translating language extensions along lan-
guage translations. This is very important: Given a declarative language L, its extension
principles represented as theory families in an L-theory Ext and a translation µ from L to
L′, our methodology permits translating the extension principles of L along l and obtains
the respective extension principles for L′ (as the diagram below illustrates):

L L′

L,Ext L′, l(Ext)

l

One important open question is how certain properties of extension principles, such as
conservativity, behave under language translations in TFI.

112

Chapter 9

An Atlas of Declarative Languages

In this chapter we present a graph of adequately represented declarative languages and
their translations, which we obtained using declaration patterns.

Formerly inadequate translations

Forms

PL

Types

FOLFOL+

ML

SFOL

PSFOL

HOL

PHOL

SFOL+

PSFOL+

HOL+

PHOL+

Sets

Figure 9.1: Language Atlas

Modularity We will present our language graph in a modular way that facilitates the
reuse of shared content amongst the languages we consider. For this purpose, we will use
the following notations: Firstly, we will write

T = {
include S
Ψ
}

113

as in notation 5.8 for named theories S = {Σ} and T = {Σ,Ψ}, and say that T includes
(the declarations in) S or simply that T extends S with Ψ.

Secondly, we will write

T = {
include S with {ϕ := Φ}
Ψ
}

for S = {Σ, ϕ : τ = Φ′,Σ′} and T = {Σ, ϕ : τ = Φ,Σ′,Ψ}, where the definiens Φ′ of ϕ is
replaced by Φ.1. We will use this notation for multiple assignments ϕ1 := Φ1, . . . , ϕn := Φn

as well in the obvious way.

Similarly, we will write

T = {
include S with {x := E}
Ψ
}

for S = {Σ, x : E′,Σ′} and T = {Σ, x : E′ = E,Σ′,Ψ}.

9.1 Declarative Languages

In this section, we present the languages in our atlas. We group them into propositional
languages in section 9.1.1, single-typed languages in section 9.1.2, many-typed languages
in section 9.1.3 and polymorphic languages in section 9.1.4.

While we choose LFS as the specific foundation to define these languages, we will
actually use sequences and natural numbers to define the declaration patterns of each
language L in our atlas, and restrict the definition of L-expressions to the LF subset of
LFS .

9.1.1 Propositional Languages

Logical Formulas In figure 9.2, we give an auxiliary TFI/LFS -theory Forms of logical
formulas.

Forms = {
form : type

ded : form → type

Axiom = (F : form) {
a : ded F

}
}

Figure 9.2: Representation of Logical Formulas

1Since the assignment ϕ := Φ maps ϕ to Φ it must respect the judgment Σ ` Φ′≤Φ.

114

Forms introduces a type form for formulas and a type family ded that assigns for
every formula F : form the type of the proof of F . Forms also introduces one declaration
pattern named Axiom for axiom declarations of the form a : ded F for some formula F .

Note that we do not need to add a separate declaration pattern for theorems since we
write theorems F as symbol declarations t : ded F = D with definiens D, where D is an
LFS-term for the proof of F .

Propositional Logic We can build our first language on top of Forms: Propositional
logic.

PL = {
include Forms
PropSym = {

p : form
}
false : form
⇒ : form → form → form
}

Figure 9.3: Representation of Propositional Logic in LFS

The theory PL in figure 9.3 represents the propositional logic syntax by including the
declarations of Forms and adding two symbols false and⇒ for falsehood and implication,
respectively. Here, we only give false and⇒ as the primitive logical connectives and define
the remaining connectives in terms of the primitive ones in the usual way.

Note that PL inherits the symbols form and ded as well as the pattern axiom decla-
rations from Forms.

Modal Logic The theory ML in figure 9.4 represents the syntax of modal logic. It
includes the declarations in PL and adds the symbols � and � for the modal operators of
necessity and possibility, respectively.

ML = {
include PL
� : form → form
� : form → form
}

Figure 9.4: Representation of Modal Logic

9.1.2 Single-Typed Languages

The single-typed languages we consider in this section are i) first-order logic, ii) the proof
theory of first-order logic, and iii) set theory.

115

FOL = {
include Forms
term : type

Fun = (n : nat) {
f : termn → term

}
Pred = (n : nat) {

p : termn → form
}
include PL with {

PropSym := Pred 0
}
∀ : (term → form)→ form
∃ : (term → form)→ form
.
= : term→ term → form

}

Figure 9.5: Representation of FOL

First-Order Logic In example 7.3, we gave a representation of FOL syntax in TFI/LFS .
In figure 9.5 we integrate our representation of FOL into our language atlas.

The novelty here is that we can explicitly represent the relation between PL-theories
and FOL-theories in our framework: A PL-theory consists of propositional variables, which
are nullary predicates in first-order logic. We develop the representation of FOL on top
of PL by including PL in FOL and mapping the PL-pattern PropSym for propositional
variables to the pattern expression Pred 0 for nullary predicate symbols. Note that our
notation include PL with PropSym := Pred 0 introduces the declaration PropSym =
Pred 0 in FOL.

FOL+ extends FOL with the declaration acc : term → term → form. In section 9.2.2,
we will use the binary predicate acc as the accessibility relation between two ML worlds
in FOL.

Proof Theory Besides the syntax of logics, declarative logical frameworks like LF have
been used for representing the proof theory. In our work in [HR11], we presented a case
study of representing FOL syntax, proof theory and (for the first time) model theory in
LF. Representations of the proof theory have been given in LF in, for example, [PSK+03,
Soj10, CHK+11].

The proof theory of a logic is typically specified as a set of inference rules. In logical
frameworks based on the Curry-Howard isomorphism, such as LF and LFS, inference rules
of a logic can be represented as symbol declarations.

In the following we only consider FOL proof theory as an example and will represent
it in TFI/LFS in terms of natural deduction rules. We only give the introduction and the
elimination rules for the universal quantifier ∀ as examples in figure 9.6.

Occasionally, the proof theory may add declaration patterns. An example is the con-
gruence of n-ary function symbols in FOL-theories. For any n-ary FOL function symbol
f , we want a proof in the respective theory of the FOL proof theory that f is congruent.

116

FOLPF = {
include FOL with {Fun := congruence}
∀I : Πx : tm S. ded F x→ ded ∀F
∀E : ded ∀F → Πx : tm S. ded F x
}

Figure 9.6: FOL Proof Theory in TFI/LFS

For that purpose, we may add a declaration pattern in the representation of FOL proof
theory, which allows declarations of n-ary function symbols f together with a proof term
that proves congruency of f :

congruence = (n : nat) {
f : termn → term
f∼= : Πx : termn.Πx′ : termn. ded [xi

.
= x′i]

n
i=1 → ded (f x

.
= f x′)

}

Set Theory We give parts of our representation of set theory in figure 9.7. The full
version is quite involved and can be found in [HR11]. The version in [HR11] uses LF as
the underlying framework, and here we present new developments that use declaration
patterns and extension principles, and therefore require TFI/LFS .

Sets = {
include FOL
include FOLPF
include ImplicitDefinition
set : type = term
∈ : set → set → form
//axioms
Element = (A : set ,nonempty : ded ∃x : set . x ∈ A) {

x : Fun 0
xin : Axiom (x.f ∈ A)

}
∅ : impldef (λx : set . ∀y : set .¬ (y ∈ x))M
}

Figure 9.7: Representation of Axiomatic Set Theory in TFI/LFS

Our representation of set theory is based on FOL and its proof theory FOLPF . More-
over, we use the extension principle of implicit definitions to define set operators.

First, we declare the symbol ∈: set → set → form for the membership relation between
two sets (i.e., FOL-terms). Here we omit the LFS-encodings of the usual axioms of set
theory and refer the reader to [HR11].

Then, using the extension principle of implicit definitions, we define the standard set
operators in a way that is close to how they are defined in mathematical practice. Here
we only give the empty set as an example:

∅ : impldef (λx : set .∀y : set .¬ (y ∈ x))M

117

where M denotes the existence proof for the empty set and uses the proof rules in FOLPF
and the axioms of set theory. Set union, unordered pairs and power set can be defined in
a similar way. This is different than our version in [HR11], where set operators are defined
using a primitive description operator.

Furthermore, we introduce a declaration pattern Element that permits declaring ele-
ments of a non-empty set A : set . It expands into a new set x, and an axiom xin that
states the membership relation between x and A. Note that Element requires a proof
term for the non-emptiness of A as an argument.

Note that we do not need to declare a separate pattern for set declarations as they are
a special case of the pattern Fun in FOL with arity 0.

9.1.3 Many-Typed Languages

Types The second base theory in our atlas is Types, which consists of the shared com-
ponents of the typed languages. We will use Types for all typed or sorted declarative
languages.

Types = {
tp : type

tm : tp → type

}

Figure 9.8: Base Theory for Typed Languages

In Types, we first introduce a TFI/LFS type tp : type. We will use tp to represent the
universe of all L-types in a language L that classify L-expressions into multiple disjoint
sets. Then we introduce a type family tm that assigns for every L-type S : tp, the type
tm S of L-terms x of L-type S.

Sorted First-Order Logic Recall our representation of SFOL from example 7.7. Here
we integrate that representation into our language atlas.

SFOL includes the declarations from Forms and Types, and adds declaration patterns
for sort declarations s : tp, and n-ary SFOL function and predicate symbol declarations in
SFOL-theories. Moreover, it includes all logical connectives from PL. Note that PL only
allows declaration of propositional variables q : form, which is a special case of predicate
declarations where the arity is 0. Therefore, we map the declaration pattern PropSym
to SortedPred 0 · when we include PL in SFOL. SFOL includes the declaration pattern
Axiom of PL.

The symbols ∀ and ∃ represent the universal and the existential quantification of sorted
terms, respectively. The symbol

.
= represents the equality of SFOL-terms of the same sort.

The theory SFOL+ in our language atlas is an extension of SFOL with the distinguished
sort i : tp.

Higher-Order Logic The next language with multiple types in our atlas is higher-order
logic. The theory HOL in figure 9.10 represents the HOL syntax by including the theory
Types and adding the following declarations: The declaration pattern BaseType allows the
declaration of base types a : tp, and TypedSym allows the declaration of typed symbols
c : tm A of any HOL-type A : tp. Then HOL declares a distinguished base type o : tp for

118

SFOL = {
include Forms
include Types

Sort = {
s : tp

}
SortedFun = (n : nat, s : tpn, t : tp) {

f : [tm si]
n
i=1 → tm t

}
SortedPred = (n : nat, s : tpn) {

p : [tm si]
n
i=1 → form

}
include PL with {

PropSym := SortedPred 0 ·
}
∀ : (tm S → form)→ form
∃ : (tm S → form)→ form
.
= : tm S → tm S → form
}

Figure 9.9: Representation of SFOL in TFI/LFS

higher-order formulas. Note that this is the intrinsic way of representing object-level HOL
formulas, in contrast to the extrinsic way, which uses o : type in LFS .

Next, HOL includes Forms by mapping the LFS -type form of formulas to the LFS -
type tm o of HOL formulas.

Then, we introduce the HOL type constructor, binder and the application operator:
=⇒ is a type constructor that constructs a HOL type A =⇒ B given two HOL types
A : tp and B : tp. lam constructs a HOL abstraction lam f given an LFS abstraction
f : tm A→ tm B. Given a HOL abstraction f : tm (A =⇒ B) and a HOL term x : tm A,
@ constructs the HOL application f @x of f to x. Then we add higher-order connectives,
quantifiers and equality.

We also define a flexary function type constructor, flexary λ-abstraction, and flexary
application in terms of the fixary ones.

=⇒∗ : tpn → tp → tp
= λA : tpn. λB : tp. foldr =⇒ AB

lam∗ : ([tm Ai]
n
i=1 → tm B)→ tm (A=⇒∗B)

= λF. ; [λf : [tm Aj]
i
j=1 → tm

(
[Aj]

n
j=i+1=⇒∗B

)
.

λy : [tm Aj]
i−1
j=1. lam λx : tm Ai. f (y, x)

]1i=n F
@∗ : tm (A=⇒∗B)→ [tm Ai]

n
i=1 → tm B

= λF. λa. ; [λf : Ani =⇒ B. @ f xi]
n
i=1 F

The theory HOL+ in our language atlas is an extension of HOL with a distinguished
HOL type i : tp.

119

HOL = {
include Types
BaseType = {

a : tp
}
TypedSym = (A : tp) {

c : tm A
}
o : tp
include Forms with {

form := tm o
}
=⇒ : tp → tp → tp
lam : (tm A→ tm B)→ tm (A =⇒ B)
@ : tm (A =⇒ B)→ tm A→ tm B

false : tm o
⇒ : tm (o =⇒ o =⇒ o)
∀ : tm ((A =⇒ o) =⇒ o)
.
= : tm (A =⇒ A =⇒ o)
}

Figure 9.10: Representation of HOL in TFI/LFS

9.1.4 Polymorphic Languages

In this section we represent polymorphic languages by adding shallow polymorphism on
top of SFOL and HOL as a new feature. Our main intuition is that non-polymorphic lan-
guages are special cases of the polymorphic ones, and we can explicitly show this relation
in our representations by exploiting declaration patterns. In fact, the crucial difference
between the representations of polymorphic languages and their non-polymorphic versions
is in the legal declarations, e.g., polymorphic sorted first-order logic theories may declare
n-ary type operators and polymorphic function and predicate symbols. This shows the im-
portance of declaration patterns in our framework as this difference could not be captured
in frameworks like LF.

In the following we give our representation of polymorphic SFOL and polymorphic
HOL.

Polymorphic SFOL Figure 9.11 illustrates the representation of sorted first-order logic
syntax with polymorphic type constructors in theory PSFOL. PSFOL includes the base
theories Forms and Types for formulas and types, respectively. Then we specify the
declaration patterns:

• TypeOp permits n-ary type operators t : tpn → tp in PSFOL-theories.

• PolyFun permits polymorphic function symbols f in PSFOL-theories, which take
m type arguments a1, . . . , am, then n term arguments of types A1(a1, . . . , am), . . . ,
An(a1, . . . , am) and return an expression of type B(a1, . . . , am). Note that we use

120

higher-order abstract syntax to represent typesA withm free variables a1 : tp, . . . , am :
tp as LFS expressions A : tpm → tp.

• PolyPred permits polymorphic predicate symbols p in PSFOL-theories, which take
m type arguments a1, . . . , am, then n term arguments of types A1(a1, . . . , am), . . . ,
An(a1, . . . , am).

• PolyAxiom permits polymorphic axioms F in PSFOL-theories, which take m type
arguments a : tpm.

PSFOL = {
include Forms
include Types
TypeOp = (n : nat) {

t : tpn → tp
}
PolyFun = (m : nat, n : nat, A : (tpm → tp)n, B : tpm → tp) {

f : Π a : tpm. [tm (Ai a)]ni=1 → tm (B a)
}
PolyPred = (m : nat, n : nat, A : (tpm → tp)n) {

p : Π a : tpm. [tm (Ai a)]ni=1 → form
}
PolyAxiom = (m : nat, F : tpm → form) {

q : Π a : tpm. ded (F a)
}
include SFOL with {

Sort := TypeOp 0
SortedFun := (n : nat, A : tpn, B : tp) PolyFun 0nAB
SortedPred := (n : nat, A : tpn) PolyPred 0nA
Axiom := (F : form) PolyAxiom 0F

}
}

Figure 9.11: Representation of Polymorphic SFOL in TFI/LFS

Finally, PSFOL inherits its logical symbols from SFOL and interprets the SFOL-
patterns as special cases of the PSFOL-patterns. For example, the SFOL-pattern Sort
for sort declarations is a special case of the PSFOL-pattern TypeOp with arity 0.

PSFOL+ extends PSFOL with the distinguished sort i : tp from SFOL+.

Polymorphic HOL We give our representation of polymorphic higher-order logic in the
theory PHOL in figure 9.12. Our representation follows a similar structure as in PSFOL.

The main feature of the PHOL syntax is that PHOL theories are allowed to declare
type operators, higher-order function symbols that may take type arguments and axioms
with type variables. For each one of these, we have a declaration pattern in PHOL. Then,
PHOL includes the logical symbols of HOL and interprets the HOL-patterns as special
cases of the PHOL-patterns.

PHOL+ extends PHOL with the distinguished HOL type i : tp from HOL+.

121

PHOL = {
include Types
TypeOp = (n : nat) {

τ : tpn → tp
}
TypedPolySym = (m : nat, τ : tpm → tp) {

c : Πa : tpm. tm (τ a)
}
PolyAxiom = (m : nat, F : tpm → tm o)) {

q : Π a : tpm. ded (F a)
}
include HOL with {

BaseType := TypeOp 0
TypedSym := (τ : tp) TypedPolySym 0 τ
Axiom := (F : tm o) PolyAxiom 0F

}
}

Figure 9.12: Representation of Polymorphic HOL in TFI/LFS

9.2 Language Translations

In this section, we present our novel translations in our language atlas. The main char-
acteristic of these translations is that they exploit declaration patterns to describe the
embeddings.

Notation 9.1. In the following we will write, for the sake of readability,

µ : S → T = {
include µ′

...
}

whenever S includes S′ and, µ′ : S′ → T is a translation from S′ to T .

9.2.1 Embeddings of Weaker Languages

In this section we introduce language translations that embed less expressive languages,
into more expressive ones. These translations are i) from PL to HOL, ii) from FOL to
HOL, iii) from SFOL to HOL, iv) from PSFOL to PHOL,and v) from FOL to SFOL.

Translating PL to HOL A translation from PL to HOL must map every propositional
formula of type form to a higher-order formula of type tm o.

The theory morphism P2H in figure 9.13 is a strict language translation from PL to
HOL. Recall that both PL and HOL include the theory Forms: PL includes Forms with
no modifications, whereas HOL includes Forms by mapping the type form to the type
tm o of HOL formulas, and therefore adding the declaration form : tp = tm o in HOL.
Then, in P2H , it suffices to map the type form in PL to the type form in HOL.

122

P2H : PL → HOL = {
form := tm o
PropSym := {

p′ : TypedSym o
p : tm o = p′.c

}

false := false
⇒ := λF : o. λG : o. (⇒ @F) @G
}

Figure 9.13: A Strict Translation from PL to HOL.

Next, for every declaration q : form in a PL-theory, a corresponding HOL formula
q : tm o must be declared. Therefore, every propositional variable must be mapped to
a HOL-symbol of HOL-type o. In a strict translation from PL to HOL, this is specified
by mapping the PL-pattern PropSym to the instantiation of the HOL-pattern TypedSym
with the type tm o. We add the second declaration q : tm o = ι.c in the mapping of
PropSym to fulfill the inclusion requirement in mapTheoryFamily of the translation of the
body {q : form} of PropSym.

Moreover, the below diagram commutes if our translation contains the following as-
signments:

Forms

PL HOL
P2H

We map each PL connective to an LFS -expression of the same arity in terms of the
respective HOL connective. For example, implication ⇒ in PL is mapped to an LFS -
expression that takes two HOL-formulas F : tm o and G : tm o as arguments and applies
the HOL implication to them (⇒ @F) @G.

A non-strict variant of P2H would map PropSym to {q : tm o}.

Translating FOL to HOL We embed first-order logic in higher-order logic by giving
a strict LFS -translation from FOL to HOL+ in figure 9.14. We map the type term of
FOL-terms to the distinguished base type tm i for HOL individuals. Then n-ary first-order
function and predicate symbols are mapped to n-ary HOL functions over the distinguished
base type: We instantiate the HOL+-pattern TypedSym with the HOL+-types in=⇒∗i and
in=⇒∗o, respectively. Logical symbols of FOL are mapped to their respective counterparts
in HOL+.

Translating SFOL to HOL We give a strict LFS -translation from SFOL to HOL in
figure 9.15.

123

F2H : FOL → HOL+ = {
include P2H
term := tm i
Fun := (n : nat) {

f ′ : TypedSym (in =⇒∗ i)
f : [tm i]ni=1 → tm i = λx : [tm i]ni=1. f

′.c @∗ x
}

Pred := (n : nat) {
p′ : TypedSym (in =⇒∗ o)
f : [tm i]ni=1 → tm i = λx : [tm i]ni=1. p

′.c @∗ x
}

Axiom := (F : tm o) Axiom F
∀ := λF : tm i→ tm o. ∀@ (lam F)
∃ := λF : tm i→ tm o. ∃@ (lam F)
.
= := λs : tm i. λt : tm i. (

.
= @ s)@ t

}

Figure 9.14: A Strict LFS -Translation from FOL to HOL+

Since SFOL includes PL, we include the translation P2H in S2H using our notation
in 9.1.

Then we give the following assignments for the SFOL-patterns:

• For any sort declaration s : sort in an SFOL-theory, we need a HOL base type s : tp.
Therefore, we map the SFOL-pattern Sort to the HOL-pattern BaseType.

• For any n-ary function symbol f : tm s1 → . . .→ tm sn → tm t in an SFOL-theory,
we need an n-ary HOL-function, and therefore give i) an instance f of the HOL-
pattern TypedSym with the respective HOL-type tm (s1 =⇒ . . . =⇒ sn =⇒ t) in
terms of the flexary HOL type constructor =⇒∗, and ii) an LFS-term f ′ defined in
terms of f .

• For any n-ary predicate symbol p : tm s1 → . . .→ tm sn → form in an SFOL-theory,
we give i) an instance p of the an HOL-pattern TypedSym with the respective HOL-
type tm (s1 =⇒ . . . =⇒ sn =⇒ o) in terms of the flexary HOL type constructor
=⇒∗, and ii) an LFS-term p′ defined in terms of p.

Then we map ∀, ∃ and
.
= to their counterparts in HOL.

It is important to mention that our translation makes the following diagram to com-
mute:

PL

SFOL HOL

P2H

S2H

124

S2H : SFOL → HOL = {
include P2H
Sort := BaseType
SortedFun := (n : nat, s : tpn, t : tp) {

f ′ : TypedSym (s =⇒∗ t)
f : [tm si]

n
i=1 → tm t = λx : [tm si]

n
i=1. f

′.c @∗ x
}
SortedPred := (n : nat, s : tpn) {

p′ : TypedSym (s =⇒∗ o)
p : [tm si]

n
i=1 → tm o = λx : [tm si]

n
i=1. p

′.c @∗ x
}
∀ := λs : tp. λp : tm s→ tm o. ∀@ (lam p)
∃ := λs : tp. λp : tm s→ tm o. ∃@ (lam p)
.
= := λs : tp. λx : tm s. λy : tm s.

.
= @x@ y

}

Figure 9.15: A Translation from SFOL to HOL

The only non-trivial case to check is the translation of the PL-pattern PropSym along
the arrows in the diagram. Recall that in figure 9.9, SFOL includes PL by mapping
PropSym to SortedPred 0 ·. Then we want to show that P2H (PropSym) = S2H (SortedPred 0 ·).

Recall that in figure 9.13, we have

P2H (PropSym) =

{
p′ : TypedSym o
p : tm o = p′.c

}
Now we compute S2H (SortedPred 0 ·):

S2H (SortedPred 0 ·)

=

(
(n : nat, s : tpn)

{
p′ : TypedSym (s=⇒∗o)
p : [tm si]

n
i=1 → tm o = λx : [tm si]

n
i=1. p

′.c @∗ x

})
0 ·

=

{
p′ : TypedSym (·=⇒∗o)
p : [tm ·i]0i=1 → tm o = λx : [tm ·i]0i=1. p

′.c @∗ x

}
=

{
p′ : TypedSym o
p : tm o = p′.c

}
as desired.

Furthermore, we give a strict LFS -translation from SFOL+ to HOL+ by including the
translation from SFOL to HOL and mapping the SFOL+-sort i : tp to the HOL+-type
i : tp.

Translating PSFOL to PHOL We give a strict LFS -translation from PSFOL to
PHOL in figure 9.16:

Since PSFOL and PHOL include SFOL and HOL, respectively, we first include the
translation S2H from SFOL to HOL. The pattern assignments in PS2PH is similar to
those in S2H : We map the PSFOL-pattern TypeOp for n-ary type operators to the re-
spective PHOL-pattern TypeOp for n-ary type operators. Then or every polymorphic
sorted function and predicate symbol, we give an instantiation of the PHOL-pattern

125

PS2PH : PSFOL → PHOL = {
include S2H
TypeOp := (n : nat) TypeOp n
PolyFun := (m : nat, n : nat, A : (tpm → tp)n, B : (tpm → tp)) {

f ′ : TypedPolySym m (λa : tpm. [Ai a]ni=1 =⇒∗ (B a))
f : Πa : tpm. [tm (Ai a)]ni=1 → tm (B a)

= λa : tpm. λx : [tm (Ai a)]ni=1. f
′.c @∗ a@∗ x

}
PolyPred := (m : nat, n : nat, A : (tpm → tp)n) {

p′ : TypedPolySym m (λa : tpm. [Ai a]ni=1 =⇒∗ o)
p : Πa : tpm. [tm (Ai a)]ni=1 → tm o

= λa : tpm. λx : [tm (Ai a)]ni=1. p
′.c @∗ a@∗ x

}
PolyAxiom := (m : nat, F : tpm → tm o) PolyAxiom mF
}

Figure 9.16: A Strict LFS -Translation from Polymorphic SFOL to Polymorphic HOL

TypedPolySym for polymorphic symbols in PHOL-theories. Finally, we map the PSFOL-
pattern PolyAxiom to the respective PHOL-pattern PolyAxiom.

We have the following commuting diagram:

SFOL

PSFOL

HOL

PHOL

S2H

PS2PH

The non-trivial cases for showing the commutativity of the above diagram are the
SFOL-patterns SortedFun and SortedPred . For example, SortedPred is mapped to

(n : nat, s : tpn)

p′ : TypedPolySym 0 (s=⇒∗o)
p : [tm si]

n
i=1 → tm o

= λx : [tm si]
n
i=1. p

′.c@∗x

in PHOL along both paths through the diagram.

Translating FOL to SFOL We give an embedding of first-order logic in sorted first-
order logic by fixing a distinguished sort for the universe of first-order terms. For that
reason, we give a translation from FOL to SFOL+ by mapping the type term of FOL-terms
to the distinguished SFOL+-sort tm i and the type form to itself. Then FOL-patterns for
n-ary function and predicate symbols are mapped to the respective SFOL-patterns using
the distinguished short i:

Fun := (n : nat) SortedFun n in i
Pred := (n : nat) SortedPred n in

The FOL-pattern Axiom is mapped to the SFOL-pattern Axiom.

126

9.2.2 Semantics

In this section we give translations of i) HOL and its polymorphic version PHOL into set
theory, and ii) modal logic into Kripke models formalized in first-order logic.

Set-Theoretical Semantics of HOL We give a strict LFS -translation H2Z from HOL
to Sets in figure 9.17. H2Z represents the set-theoretic semantics of HOL. The key idea
of this translation is that HOL types are interpreted as sets.

T2Z : Types → Sets = {
tp := set
tm := λs : set . set
}

H2Z : HOL → Sets = {
include T2Z
BaseType := Fun 0
TypedSym := (τ : set) {

c : Fun 0
ax : ded c ∈ τ

}
}

Figure 9.17: A Strict LFS -Translation from HOL to Sets

In particular, the LFS -type tp for HOL terms is mapped to the LFS -type set for sets.
Then the LFS -type o : tp of HOL formulas is mapped to the set {0, 1} of the boolean
truth values. Consequently, all true formulas are interpreted as terms provably equal to
the element 1, and false ones as 0.

For the details of this translation, we refer the readers to our case-study in [HR11]. In
that case study, we used LF as the underlying logical framework. Our translation in LFS
enriches that case-study with declaration patterns.

Translating PHOL to Sets We give a translation from PHOL to Sets in figure 9.18.

Note that we get the equality
.
= on sets from FOL.

Kripke-Semantics of Modal Logic We give a strict LFS -translation from ML to
FOL+ in figure 9.19.

The key idea in this translation is that ML-formulas are interpreted as unary FOL-
predicates by mapping the LFS-type form of formulas in ML to the LFS-type term → form
of unary predicates in FOL. Then ML axioms are interpreted as FOL axioms that hold
for every FOL term: For any axiom declaration m : ded F in a ML-theory, we have a
corresponding declaration m : ded ∀x : term. F x in FOL. This is captured by the mapping
of the ML-pattern Axiom. The mapping of the connectives for falsehood, negation and
implication are straightforward. The modal operators � and � of ML are interpreted using
the FOL+-symbol acc for the accessibility relation between the interpretations of two ML
worlds in FOL.

127

PH2Z : PHOL → Sets = {
include T2Z
TypeOp := (n : nat) Fun n
TypedPolySym := (m : nat, τ : setm → set) {

c′ : Fun m
c : Πa : setm. set = λa : setm. c′.f a
ax : Axiom ∀∗λx : setm.(c x) ∈ (τ x)

}

PolyAxiom := (m : nat, F : setm → set) {
q : Axiom ∀∗λx : setm. (F x)

.
= 1

}
include H2Z
}

Figure 9.18: A Translation from PHOL to Sets

M2F : ML → FOL+ = {
form := term → form
ded := λF : term → form. ded ∀x : term. F x
Axiom := (F : term → form) Axiom ∀x : term. F x
false := λx : term. false
⇒ := λF : term → form. λG : term → form. λx : term. (F x) ⇒ (Gx)
Prop := Pred 1
� := λF : term → form. λx : term. ∀λy : term. (acc x y)⇒ (F y)
� := λF : term → form. λx : term. ∃λy : term. (acc x y) ∧ (F y)
}

Figure 9.19: Semantics of ML

9.3 Extension Principles

In this section, we add the individual extension principles we represented in section 8.1
into our language atlas from figure 9.1.

If we take only those nodes of our atlas that we need for the extension principles we
selected, we have the diagram in figure 9.20.

The strength of our approach of representing extension principles in a logical framework
is that every individual principle can be specified in a separate theory that extends a
certain declarative language. In particular, we can translate extension principle from one
declarative language to another.

The ability to add extension principles to declarative languages and to translate them
between languages is also very powerful. For example, function definitions in SFOL can
now be translated to FOL or HOL using the translations we have given in section 9.2.

Translating Extension Principles of SFOL to FOL

In section 8.2 we have given the translation of the SFOL-extension principle function in
FOL.

128

HOLFOL SFOL

FunctionDefinition

CaseBasedFunction

TypeDefinition

S2F (FunctionDefinition)

S2F (CaseBasedFunction)

S2H (FunctionDefinition)

S2H (CaseBasedFunction)

S2HS2F

Figure 9.20: A Graph of Extension Principles

Now we translate the SFOL-extension principle casedef from figure 8.4 along the strict
LFS -translation S2F :

S2F (casedef) =
(
n : nat, A : term → form, B : term → form,
c : (term → form)n,
d : (term → term)n,
ρ : ded ∀x : term. (Ax)⇒ ∨∗[ci x]ni=1

)
{

f : Fun 1
ax : Axiom ∀∗λx : term. (Ax) ⇒ B (f x)
wellsorted : Axiom ∀x : term.∧∗ [ci x ⇒ (f x) = (di x)]ni=1

}

Translating Extension Principles from SFOL to HOL

Now we translate the SFOL-extension principles along the strict LFS -translation S2H :
The translation of the SFOL-extension principle function from figure 8.3 along the

strict LFS -translation S2H from figure 8.3 is as follows:

S2H (function) =
(
n : nat, D : tpn, C : tp,
means : [tm Di]

n
i=1 → tm C → o,

existence : ded ∀∗λx : [tm Di]
n
i=1.∃λy : tm C.means x y,

uniqueness : ded ∀∗λx : [tm Di]
n
i=1.∀λy : tm C.∀λy′ : tm C.

means x y ∧means x y′ ⇒ y
.
= y′

)
{
f : TypedSym(D=⇒∗C)
f ′ : tm [Di]

n
i=1 → tm C = λx. f @∗ x

ax : Axiom ∀∗λx : [tm Di]
n
i=1.means x (f x)

}
The translation of the SFOL-extension principle casedef from figure 8.4 along the strict

LFS -translation S2H from figure 8.3 is as follows:

129

S2H (casedef) =
(
n : nat, A : tp, B : tp, c : (tm A→ tm o)n,
d : (tm A→ tm B)n, ρ : ded ∀x : tm A.∨![ci x]ni=1

)
{
f : TypedSym (A =⇒ B)
f ′ : TypedSym A→ tm B = λx. f@x
ax : Axiom ∀x : tm A.∧∗ [ci x ⇒ (f x) = (di x)]ni=1

}

9.4 TPTP Languages

9.4.1 Overview

TPTP [SS98] was introduced as a simple representation format for benchmark problems for
automated theorem provers (ATPs) in first-order logic (FOL). It has been very successful
at combining [PS07a], applying [DFS04], and evaluating [PSS02] ATPs. In fact, it has
become the standard input language for first-order theorem provers with most provers
supporting it natively. The TPTP problem library comprises about 20000 problems from
about 50 domains and comes with extensive tool support [Sut10]. TPTP has also been
used as a knowledge representation format for other large libraries [Urb06, PS07b].

While TPTP originally handled only classical unsorted FOL, it has gradually expanded
to a variety of logics. These include in particular typing [BRS08, SSSB12], polymorphism
[BP12], higher-order types [BRS08], and arithmetic [SSSB12]; a modal version was pro-
posed in [RO09]. These extensions have been defined by extending the TPTP syntax.
We expect the future interest in additional extensions to rise further as theorem provers
are tackling more and more complex languages. Extensions that have been suggested or
are already under development include, for example, product types, dependent types, and
description and choice operators.

Thus, TPTP is a very promising candidate for a universal interface language for ATP
developers and users. Such a language would permit the smooth integration of ATP
(problem-solving) systems and (problem-generating) applications. As long as we only
work with classical untyped first-order logic, this is already possible. But in general, the
successful communication between ATP systems crucially depends on a common under-
standing of the semantics. Because different ATP systems make different logical assump-
tions, which are often implicit in the implementation or only documented informally, the
growing number of logics that are of interest to ATP systems present new challenges for
interface languages.

It is not always obvious what the relations between different TPTP logics are. For
example, there are intuitive sublanguage relations between untyped FOL, typed FOL, and
higher-order logic. But these can be difficult to specify precisely, especially when the larger
language introduces new concepts and then recovers the smaller language as special cases.

We can solve this problem by representing TPTP languages within TFI/LFS . Actually,
our language atlas in figure 9.1 already covers the existing TPTP languages.

Thus, using our framework, we can give formalizations of the TPTP logics and transla-
tions between them. Concretely, we get the representations of the syntax and the declara-
tions patterns of the first-order, typed first-order, polymorphic first-order and higher-order
TPTP logics from our language atlas, and translations between them.

130

9.4.2 TPTP in a Logical Framework

Our language atlas in figure 9.1 covers the existing TPTP logics. Figure 9.21 illustrates
the nodes in our language atlas that correspond to the specific TPTP logics.

Language Atlas TPTP

FOL FOF
SFOL+ TFF0
HOL+ THF0
PSFOL+ TFF1

Figure 9.21: TPTP Logics in the Language Atlas

The syntax we used in the atlas differs from the TPTP syntax via a simple renaming
of the primitive symbols, which we show in figure 9.22.

FOL FOF

First-order formulas form $o
First-order terms term $i
Universal quantifier ∀ !
Existential quantifier ∃ ?

SFOL+/PSFOL+ TFF0 /TFF1

Sorts tp $tType
Terms of a sort tm $tm
Distinguished base type ι $i
Universal quantifier ∀ !
Existential quantifier ∃ ?

HOL+/PHOL+ THF0 /THF1

Higher-order terms i $i
Higher-order formulas o $o
Provability judgment ` `
Type constructor =⇒ >
Func. abstraction lam ˆ
Func. application @ @
Univ. quantifier ∀ !
Exist. quantifier ∃ ?

Figure 9.22: TPTP Logical Symbols

The only technical difference is that SFOL+ uses an LFS-type form : type in order
to distinguish formulas from terms, whereas the description of TFF0 in [SSSB12] uses a
TPTP-type $o : $tType for the formulas. Our representation has the advantage that we
do not need case distinctions in order to avoid $o as an argument of a function or predicate
symbol or of a quantifier.

The TPTP syntax supports polymorphism for higher-order logic. However, that part
of the TPTP syntax has not been yet specified. By representing the TPTP languages in a
logical framework with modularity, we are able to specify polymorphic higher-order logic
for TPTP, called THF1 , by combining TFF1 and THF0 (as illustrated in figure 9.23).

131

TFF0 THF0

TFF1 THF1

Figure 9.23: Polymorphic Higher-Order Logic in TPTP

Translating TPTP Languages

FOF

Forms Types

THF0TFF0 TFF1

Figure 9.24: TPTP Logics

We are able to relate the TPTP languages by the language translations we have given
in our language atlas. An overview is given in figure 9.25.

FOF TFF0 THF0

TFF1 THF1

Figure 9.25: Translations between TPTP Languages

132

Chapter 10

Conclusion

10.1 Summary

This thesis is centered around a new concept we have identified within the context of
declarative languages: declaration patterns — patterns that specify the shape of the dec-
larations in the theories of a declarative language L. We use declaration patterns as the
defining characteristics of the theories of L by regarding every L-theory as a list of symbol
declarations that conform to a declaration pattern of L.

Even though declaration patterns are a significant part of the informal definitions of
declarative languages, they were not recognized as an essential primitive concept in the
formalizations of these languages in logical frameworks prior to this thesis. Early for-
malizations, in particular in declarative logical frameworks, focused on representing the
expressions and the proof systems. The theories were known but not specified explicitly.
The later development of tool support for logical frameworks enabled large-scale formal-
izations, such as the LATIN logic atlas, where it was not feasible to leave declaration
patterns implicit any longer.

Following this motivation, we have developed TFI — a calculus-based, foundation-
independent meta-framework for representing declarative languages. The key novelty of
TFI is the novel primitive notions of theory families and their instantiations, which we
invented for defining declaration patterns.

Declaration patterns proved crucial in addressing the research problems we discussed
in section 3: TFI permits adequate representations of declarative languages and their
translations, and enables to give representations of extension principles.

More specifically, the main problem with declarative logical frameworks like LF has
been that they over-generate the theories of the represented language, leading to an inade-
quate representation in the framework. Using declaration patterns, we were able overcome
the over-generation problem by formally defining the theories of a language within TFI
itself.

Secondly, we identified that declarative logical frameworks like LF are not expressive
enough to formalize many interesting language translations adequately. TFI improves on
this problem by defining pattern-based language translations that are adequate.

Thirdly, declaration patterns proved to be a very suitable concept for representing
extension principles in declarative logical frameworks. In particular, TFI provides a sys-
tematic approach to represent individual extension principles as well as to build theories
by appealing to them. This feature has been completely absent in previous declarative
frameworks.

In particular, we have given the representations of a collection of widely used extension

133

principles from mathematics and theorem proving.

We have evaluated TFI by developing an atlas of adequately represented declarative
languages including the representation of several commonly used extension principles,
which are interrelated by adequate language translations. Our atlas demonstrates that
our design choices for representing declaration patterns cover a broad range of different
languages including the TPTP logics.

Our main contribution to the field of logical frameworks is the novel approach of
defining declarative languages and translations using declaration patterns. We believe
that declaration patterns will be a standard part of future logical frameworks.

10.2 Applications

We have integrated the notion of declaration patterns within the MMT API [Rab13b] —
the implementation of the MMT system.

The Mizar Mathematical Library in OMDoc In [IKRU13] declaration patterns
served as a major representation tool to translate the Mizar mathematical library into
the OMDoc format [Koh06]. The representation of Mizar in LF [IR11] was enriched over
30 declaration patterns (directly given within the MMT API) for the various extension
principles of Mizar. The translation was implemented within the MMT API and parsed
every Mizar article to produce a corresponding OMDoc representation as a list of instances
of the Mizar declaration patterns. The produced OMDoc representations were used for
querying the Mizar library, which was integrated into the Mizar interface.

Compiling Logics The work [CHMR12] introduced an architecture implemented in the
MMT API that permits generating logic implementations in the Heterogeneous Tool Set
(Hets) [MML07] from their representations in LFS . The architecture used the declaration
patterns of a logic L in LFS for the automatic generation of datatypes and functions for
parsing and static analysis of L in Hets.

Flexary Operators for Formalized Mathematics LFS proved to be a very suitable
foundation for defining flexary languages and to give representations of flexary mathemat-
ical operations. In [HRK14] we used LFS and flexary versions of SFOL and HOL to define
various mathematical concepts such as polynomials.

10.3 Future Work and Directions

Tool Support The natural next step towards systematic practical applications is a full
implementation of TFI and in particular of TFI/LFS .

Regarding TFI, the existing infrastructure for declaration patterns in the MMT API
already provides the initial steps. The main open problem is how to integrate pattern-
based translations into the MTT API: MMT assumes that the equality judgment is always
preserved along theory morphisms whereas TFI relaxes this assumption for the case of dec-
laration patterns. This difference in the treatment of equality would need to be addressed.

Regarding TFI/LFS , the MMT API can already reflect some modular composition
of foundations to a certain degree: In an implementation of a specific foundation within
the MMT API, the rules of the foundation are implemented as special MMT constants,
which are given as Scala functions. The main open problem will be the integration of

134

foundational morphisms into the MMT API to allow for modular implementation of, in
particular, the rules of a foundation. Another open problem is to formally investigate the
decidability of LFS type-checking, which we conjectured to be undecidable, and to find a
proper heuristic for the implementation.

Meta-Properties of LFS Besides type-checking, other meta-properties of LFS should
be investigated in full detail. In particular, conservativity of LFS over LF and canonical
forms of LFS are two important meta-properties that remain as open problems at the
moment.

Functorial Translations Most declarative languages naturally form a category. In-
deed, most abstract logical frameworks define a declarative language using a category of
theories and the a translation between two declarative languages using a functor between
the respective two theory categories.

Using declaration patterns, we are able to define theory categories, which are usually
adequate for the declarative languages represented in TFI.

However, pattern-based translations in TFI cannot always induce a functor between
these theory categories. In particular, translating theory morphisms σ : Σ1 → Σ2 along
a pattern-based translation is only possible for the simple case where σ is a renaming.
We cannot translate morphisms σ that map instance symbols ι to instance expressions I.
This is a major open problem for the future.

135

136

Bibliography

[ACTZ06] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. Crafting a Proof
Assistant. In T. Altenkirch and C. McBride, editors, TYPES, pages 18–32.
Springer, 2006.

[Bar92] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2.
Oxford University Press, 1992.

[BCC+04] S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and M. Kohlhase.
The Open Math Standard, Version 2.0. Technical report, The Open Math
Society, 2004. See http://www.openmath.org/standard/om20.

[Ber90] S. Berardi. Type dependence and constructive mathematics. PhD thesis, Di-
partimento di Matematica, Università di Torino, 1990.

[BP12] J. Blanchette and A. Paskevich. TFF1: The TPTP Typed First-Order Form
with Rank-1 Polymorphism. 2012. in preparation.

[BRS08] C. Benzmüller, F. Rabe, and G. Sutcliffe. THF0 – The core of the TPTP
Language for Higher-Order Logic. In A. Armando, P. Baumgartner, and
G. Dowek, editors, 4th International Joint Conference on Automated Reason-
ing, pages 491–506. Springer, 2008.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.
In J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4, pages 65–89, 1996.

[CF58] H. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Information and
Computation, 76(2/3):95–120, 1988.

[CHJ+13] M. Codescu, F. Horozal, A. Jakubauskas, T. Mossakowski, and F. Rabe. Com-
piling Logics. In N. Mart́ı-Oliet and M. Palomino, editors, Recent Trends in
Algebraic Development Techniques 2012, pages 111–126. Springer, 2013.

[CHK+11] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. Project
Abstract: Logic Atlas and Integrator (LATIN). In J. Davenport, W. Farmer,
F. Rabe, and J. Urban, editors, Intelligent Computer Mathematics, pages
289–291. Springer, 2011.

[CHK+12] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and K. So-
jakova. Towards the Heterogeneous Tool Set Hets. In T. Mossakowski and

137

http://www.openmath.org/standard/om20

H. Kreowski, editors, Recent Trends in Algebraic Development Techniques
2010, pages 139–159. Springer, 2012.

[CHMR12] M. Codescu, F. Horozal, T. Mossakowski, and F. Rabe. Compiling Logics. In
Workshop on Algebraic Development Techniques, 2012.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5(1):56–68, 1940.

[CMM13] Mihai Codescu, Till Mossakowski, and Christian Maeder. Checking conser-
vativity with hets. In Reiko Heckel and Stefan Milius, editors, Algebra and
Coalgebra in Computer Science - 5th International Conference, CALCO 2013,
Warsaw, Poland, September 3-6, 2013. Proceedings, volume 8089 of Lecture
Notes in Computer Science, pages 315–321. Springer, 2013.

[Com07] Information technology — Common Logic (CL): a framework for a family of
logic-based languages. Technical Report 24707:2007, ISO/IEC, 2007.

[Coq14] Coq Development Team. The Coq Proof Assistant: Reference Manual. Tech-
nical report, INRIA, 2014.

[dB70] N. de Bruijn. The Mathematical Language AUTOMATH. In M. Laudet, ed-
itor, Proceedings of the Symposium on Automated Demonstration, volume 25
of Lecture Notes in Mathematics, pages 29–61. Springer, 1970.

[DFS04] E. Denney, B. Fischer, and J. Schumann. Using Automated Theorem Provers
to Certify Auto-generated Aerospace Software. In D. Basin and M. Rusinow-
itch, editors, Automated Reasoning - Second International Joint Conference,
pages 198–212. Springer, 2004.

[FS87] J. Fiadeiro and A. Sernadas. Structuring Theories on Consequence. In D. San-
nella and A. Tarlecki, editors, Recent Trends in Data Type Specification, vol-
ume 332, pages 44–72. Springer, 1987.

[GB86] J. Goguen and R. Burstall. A study in the foundations of programming
methodology: specifications, institutions, charters and parchments. In D. Pitt,
S. Abramsky, A. Poigné, and D. Rydeheard, editors, Workshop on Category
Theory and Computer Programming, pages 313–333. Springer, 1986.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for specifica-
tion and programming. Journal of the Association for Computing Machinery,
39(1):95–146, 1992.

[Gor88] M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 73–128. Kluwer-Academic Publishers, 1988.

[GR02] J. Goguen and G. Rosu. Institution morphisms. Formal Aspects of Computing,
13:274–307, 2002.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Jour-
nal of the Association for Computing Machinery, 40(1):143–184, 1993.

138

[HKR12] F. Horozal, M. Kohlhase, and F. Rabe. Extending MKM Formats at the
Statement Level. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka,
V. Sorge, and M. Wenzel, editors, Intelligent Computer Mathematics, pages
64–79. Springer, 2012.

[How80] W. Howard. The formulas-as-types notion of construction. In To H.B. Curry:
Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479–
490. Academic Press, 1980.

[HR11] F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical
Logical Framework. Theoretical Computer Science, 412(37):4919–4945, 2011.

[HR12] F. Horozal and F. Rabe. Representing Logics of Theorem Provers. see http:

//kwarc.info/frabe/Research/HR_tptp_12.pdf, 2012.

[HRK14] F. Horozal, F. Rabe, and M. Kohlhase. Flexary Operators for Formalized
Mathematics. In S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban,
editors, Intelligent Computer Mathematics, pages 312–327. Springer, 2014.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic
representations. Annals of Pure and Applied Logic, 67:113–160, 1994.

[IKRU13] M. Iancu, M. Kohlhase, F. Rabe, and J. Urban. The Mizar Mathematical
Library in OMDoc: Translation and Applications. Journal of Automated
Reasoning, 50(2):191–202, 2013.

[IR11] M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Mathemat-
ical Structures in Computer Science, 21(4):883–911, 2011.

[KB04] Temur Kutsia and Bruno Buchberger. Predicate logic with sequence variables
and sequence function symbols. In Andrea Asperti, Grzegorz Bancerek, and
Andrej Trybulec, editors, Mathematical Knowledge Management, MKM’04,
number 3119 in LNAI, pages 205–219. Springer Verlag, 2004.

[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009. see
https://trac.omdoc.org/LATIN/.

[Koh06] M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Docu-
ments (Version 1.2). Number 4180 in Lecture Notes in Artificial Intelligence.
Springer, 2006.

[MAH06] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs – proof
management for structured specifications. Journal of Logic and Algebraic
Programming, 67(1-2):114–145, 2006.

[Mes89] J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings,
Logic Colloquium, 1987, pages 275–329. North-Holland, 1989.

[ML74] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In Pro-
ceedings of the ’73 Logic Colloquium, pages 73–118. North-Holland, 1974.

[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set.
In O. Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture
Notes in Computer Science, pages 519–522, 2007.

139

http://kwarc.info/frabe/Research/HR_tptp_12.pdf
http://kwarc.info/frabe/Research/HR_tptp_12.pdf
https://trac.omdoc.org/LATIN/

[MOM94] Narciso Mart́ı-Oliet and José Meseguer. What is a logical system? chap-
ter General logics and logical frameworks, pages 355–391. Oxford University
Press, Inc., New York, NY, USA, 1994.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML, Revised edition. MIT Press, 1997.

[Nor05] U. Norell. The Agda WiKi, 2005. http://wiki.portal.chalmers.se/agda.

[NPW02] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. Springer, 2002.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer, 1994.

[Paw95] Wieslaw Pawlowski. Context institutions. In M. Haveraaen, O. Owe, and
O. J. Dahl, editors, Recent Trends in Data Type Specification, Lecture Notes
in Computer Science, pages 436–457. Springer-Verlag, 1995.

[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a meta-
logical framework for deductive systems. Lecture Notes in Computer Science,
1632:202–206, 1999.

[PS07a] L. Paulson and K. Susanto. Source-Level Proof Reconstruction for Interactive
Theorem Proving. In K. Schneider and J. Brandt, editors, Theorem Proving
in Higher Order Logics, pages 232–245. Springer, 2007.

[PS07b] A. Pease and G. Sutcliffe. First Order Reasoning on a Large Ontology. In
J. Urban, G. Sutcliffe, and S. Schulz, editors, Empirically Successful Auto-
mated Reasoning in Large Theories, number 257 in CEUR Workshop Pro-
ceedings, pages 59–69, 2007.

[PSK+03] F. Pfenning, C. Schürmann, M. Kohlhase, N. Shankar, and S. Owre. The
Logosphere Project, 2003. http://www.logosphere.org/.

[PSS02] F. Pelletier, G. Sutcliffe, and C. Suttner. The Development of CASC. AI
Communications, 15(2-3):79–90, 2002.

[Rab06] F. Rabe. First-Order Logic with Dependent Types. In N. Shankar and U. Fur-
bach, editors, Automated Reasoning, pages 377–391. Springer, 2006.

[Rab13a] F. Rabe. A Logical Framework Combining Model and Proof Theory. Mathe-
matical Structures in Computer Science, 23(5):945–1001, 2013.

[Rab13b] F. Rabe. The MMT API: A Generic MKM System. In J. Carette, D. As-
pinall, C. Lange, P. Sojka, and W. Windsteiger, editors, Intelligent Computer
Mathematics, pages 339–343. Springer, 2013.

[RK13] F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1–54, 2013.

[RO09] T. Raths and J. Otten. Building a Problem Library for First-Order Modal
Logics. In TABLEAUX 2009 Position Papers and Workshop Proceedings,
2009.

140

http://wiki.portal.chalmers.se/agda
http://www.logosphere.org/

[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF. In J. Cheney
and A. Felty, editors, Proceedings of the Workshop on Logical Frameworks:
Meta-Theory and Practice (LFMTP), pages 40–48. ACM Press, 2009.

[Soj10] K. Sojakova. Mechanically Verifying Logic Translations. Master’s thesis,
Jacobs University Bremen, 2010.

[SS98] G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

[SSSB12] G. Sutcliffe, K. Claessen S. Schulz, and P. Baumgartner. The TPTP Typed
First-order Form with Arithmetic. In Logic for Programming, Artificial Intel-
ligence, and Reasoning, 2012. to appear.

[Sut10] G. Sutcliffe. The TPTP World - Infrastructure for Automated Reasoning.
In E. Clarke and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, pages 1–12. Springer, 2010.

[SW83] D. Sannella and M. Wirsing. A Kernel Language for Algebraic Specification
and Implementation. In M. Karpinski, editor, Fundamentals of Computation
Theory, pages 413–427. Springer, 1983.

[TB85] A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In
A. Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 26–28, 1985.

[Urb06] J. Urban. MPTP 0.2: Design, Implementation, and Initial Experiments. Jour-
nal of Automated Reasoning, 37(1-2):21–43, 2006.

[Wol12] Wolfram Research, Inc. Mathematica 9.0, 2012.

141

	1 Introduction
	1.1 Declarative Languages
	1.1.1 Logics
	1.1.2 Type Theories

	1.2 Language Translations
	1.3 Extension Principles

	2 State of the Art
	2.1 Logical Frameworks
	2.1.1 Abstract Logical Frameworks
	2.1.2 Declarative Logical Frameworks
	2.1.3 Adequacy
	2.1.4 Design Principles

	2.2 Foundation-Independent Meta-Frameworks
	2.3 Libraries of Language Representations

	3 Research Problems and Methodology
	3.1 Representing Declarative Languages
	3.2 Representing Language Translations
	3.3 Representing Extension Principles
	3.4 Research Objectives
	3.5 Methodology
	3.5.1 Declaration Patterns
	3.5.2 Sequences
	3.5.3 Modular Foundations

	3.6 Thesis Outline

	4 Modular Foundations
	4.1 Syntax
	4.2 Type System
	4.3 Examples
	4.4 Modularity
	4.5 Discussion

	5 Theory Families and Instantiations
	5.1 Syntax
	5.1.1 Grammar
	5.1.2 Examples
	5.1.3 Meta-Level Definitions

	5.2 Type System
	5.2.1 Judgments and Rules
	5.2.2 Preservation of Judgments

	5.3 Discussion

	6 A Logical Framework with Sequences
	6.1 Sequences
	6.1.1 Syntax
	6.1.2 Type System
	6.1.3 Conversions

	6.2 LF with Sequences
	6.2.1 Syntax
	6.2.2 Type System
	6.2.3 Conversions
	6.2.4 Stand-Alone Version

	6.3 Discussion

	7 Declarative Languages and their Translations in TFI
	7.1 Representing Declarative Languages
	7.2 Representing Language Translations
	7.3 Induced Languages and Translations
	7.4 Discussion

	8 Extension Principles in TFI
	8.1 Representing Extension Principles
	8.2 Translating Extension Principles
	8.3 Discussion

	9 An Atlas of Declarative Languages
	9.1 Declarative Languages
	9.1.1 Propositional Languages
	9.1.2 Single-Typed Languages
	9.1.3 Many-Typed Languages
	9.1.4 Polymorphic Languages

	9.2 Language Translations
	9.2.1 Embeddings of Weaker Languages
	9.2.2 Semantics

	9.3 Extension Principles
	9.4 TPTP Languages
	9.4.1 Overview
	9.4.2 TPTP in a Logical Framework

	10 Conclusion
	10.1 Summary
	10.2 Applications
	10.3 Future Work and Directions

