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Abstract

A faithful simulation of the sea ice drift in a coupled sea ice-ocean model is
one of the key prerequisites for a reliable simulation of the sea ice, ocean and
atmosphere interactions. To achieve this goal we should continue improving
model physics and constructing parameterizations for relevant sub-gird pro-
cesses. Also a validation of the simulations against the observational data is
essential. The main aim of this work is to demonstrate the importance of the
sea ice motion for the underlaying ocean. In the scope of the ongoing and antic-
ipated Arctic climate change it has been demonstrated that the changes in the
atmosphere and ocean have large impacts on the sea ice cover. At present, it is
still unclear if the changes in the sea ice motion itself can also have a feedback
effect on the ocean. In this work we hypothesize that a change in the sea ice
motion can cause significant changes in the ocean properties and circulation.
To test the hypothesis we use two sensitivity studies that help to isolate sea
ice motion processes and quantify the contribution of the process to the Arctic
climate system. Our main results show that the immobile landfast ice in the
model simulation shifts the flaw polynya, location of strong winter sea ice and
brine production away from the coast in the more saline ocean waters and more
brine reaches the Arctic halocline. This strengthens the halocline that shields
cold surface waters and sea ice from the warm Atlantic Water layer underneath.
In addition we find that a general change in the sea ice internal strength leads
to substantial changes in the ocean properties and circulation. Under weaker
and more mobile sea ice Atlantic Water layer temperatures are reduced by 0.2
K. The Eurasian basin circulation in the Atlantic Water layer is increased and
this leads to the volume transports adjustments at the Arctic Straits. This
effect shows that the Arctic sea ice properties and motion are not only impor-
tant for the Arctic ocean, but may have consequences also for the global ocean
circulation.
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4.8 Hovmöller diagrams of monthly mean salinity and river water
fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Mean April (2000-2010) salinity, temperature, river water frac-
tion and buoyancy frequency along the section across the Makarov
Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.10 Mean April (2000-2010) salinity, temperature, river water frac-
tion and buoyancy frequency along the section across the Eurasian
Basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



List of Tables

2.1 The overview of the datasets used in the validation . . . . . . . . 24
2.2 The validation results of the drift vector components of the satel-

lite products and model simulations with the in-situ measure-
ments for the Laptev Sea mid-shelf in winter 2007/2008 . . . . . 35

vii



viii



List of Acronyms

ADCP Acoustic Doppler Current Profiler

AIW Arctic Intermediate Water

AIW Arctic Intermediate Water

AMOC Atlantic Meridional Overturning Circulation

AMSR-E Advanced Microwave Scanning Radiometer

AO Arctic Oscillation

AOMIP Arctic Ocean Model Intercomparison Project

ARP Arctic Rapid change Pattern

ASAR Advanced Synthetic Aperture Radar

AW Atlantic Water

AWI Alfred Wegener Institute

AWL Atlantic Water Layer

Barents Sea Branch )

BG Beaufort Gyre

CERSAT Center for Satellite Exploitation and Research

CMCC Continious Cross Correlation Method

CORE Coordinated Ocean Research Experiment

CTRL control run

FSB Fram Strait Branch

ICESat Ice, Cloud, and land Elevation Satellite

IFREMER French Research Institute for Exploitation of the Sea

LF landfast ice run

MITgcm Massachusetts Institute of Technology General Circulation Model

ix



MIZ Marginal Ice Zone

MODIS Moderate Resolution Imaging Spectroradiometer

NAOSIM North Atlantic/Arctic Ocean - Sea Ice Model

NCAR/NCEP National Centers for Environmental Prediction/National Center
for Atmospheric Research

NSIDC National Snow and Ice Data Center

OSI-SAF EUMETSAT Ocean and Sea Ice Satellite Application Facility

P compressive sea ice strength

P* maximal compressive sea ice strength empirical constant

PIOMAS Pan-Arctic Ice-Ocean Modeling and Assimilation System

QuikSCAT Quick Scatterometer

SLP Sea Level Pressure

SSM/I Special Sensor Microwave/Imager

SST Sea Surface Temperature

T sea ice tensile strength

TD Transpolar Drift

WEAK weak sea ice run

WSC West Spitzbergen Current

z* rescaled vertical coordinate

x



Chapter 1

Introduction

This thesis is organized in the following way: in this Chapter Sections 1.1

and 1.2 give a brief introduction of the investigated research area, Section 1.3

outlines the aims and research hypothesis, Section 1.3 describes the applied

methods, Section 1.4 introduces the papers that form the core of the thesis in

Chapters 2, 3 and 4. Finally, Chapter 5 gives a summary of the findings.

1.1 Arctic Ocean

The Arctic Ocean or the Arctic Mediterranean is the world smallest ocean.

On the southern rims it is connected to the Atlantic Ocean through the Fram

Strait and through the Canadian Archipelago and to the Pacific Ocean through

the Bering Strait. The Arctic Ocean has a perennial sea ice cover that reaches

its maximal extent in winter when it covers most of the ocean’s surface and

its minimal extent in summer when the sea ice cover is confined only to the

deep basins. Although the Arctic Ocean takes less than 4 % of the global

ocean surface is gathers more than 10 % of the global continental river runoff

(de Couet and Maurer, 2009).

The Arctic Ocean sea ice and ocean surface circulation is characterized by the

anticyclonic Beaufort Gyre (BG) in the Amerasian Basin and the Transpolar

Drift (TD) that carries the sea ice and surface water from the Siberian Seas to-

wards Fram Strait (light blue arrows on Figure 1.1). The interannual variability

in the strength and location of the ocean surface current system components

depends on the Sea Level Pressure (SLP) over the Amerasian Basin and North

Atlantic (Govorucha and Gerasimov, 1970; Proshutinsky and Johnson, 1997;

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: The Arctic Ocean and its marginal seas. The sea ice and surface
circulation is schematically represented by light blue and mid-depth circulation
by red arrows (simplified from Rudels et al (1994)).
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Figure 1.2: Arctic Ocean Oscillation: positive phase with a strong Arctic high
(left) and negative phase with the weak Arctic high. Credit: J. Wallace, Uni-
versity of Washington.

Johnson et al, 1999). If the Islandic Low expands further from the North At-

lantic to the Barents and Kara seas, the anticyclonic circulation is weak and

the TD widens and slows down. If the anticyclonic circulation over the Am-

erasian basin is strong, the TD is positioned closer to the Siberian shelfbreak

and faster. The corresponding atmospheric circulation anomaly was character-

ized by Thompson and Wallace (1998) as the Arctic Oscillation (AO). The AO

index is defined as the leading principal component of Northern Hemisphere

SLP. A strong positive AO index from 1989 till 1995 with weaker Polar High

over the Amerasian Basin and therefore weaker anticyclonic circulation and

stronger westerlies in the subpolar latitudes was interpreted as the main cause

for the steady decrease of the Arctic sea ice extent and sea ice thinning in the

1990s (Rigor et al, 2002). In addition to the local SLP changes in the Arctic,

during the AO positive phase the stronger westerlies bring more warmth and

moisture to Eurasian catchment areas and increase the continental runoff of the

Arctic rivers that also influence the Arctic Ocean surface hydrography.

Since 1995 the AO has been predominantly near-neutral or negative, but the

sea ice extent and thickness were still decreasing (Comiso et al, 2008; Haas

et al, 2008; Kwok et al, 2009). This Arctic Paradox (Overland and Wang,

2005) was addressed by Zhang et al (2008) who pointed out another pattern

in the atmospheric circulation, the third principal component of the Northern

Hemisphere SLP: a dipole structure between the Eurasian Arctic coast and

North Pacific named Arctic Rapid change Pattern (ARP). In recent years the

ARP replaced the AO as the leading SPL pattern. The ARP is associated with

the polar-ward winds that transfer more heat from subpolar latitudes into the
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Figure 1.3: Arctic ocean vertical stratification and winter processes maintaining
the Arctic halocline.

Arctic (Overland and Wang, 2010). The anomalous Eurasian Arctic coast high

and North Pacific low occur during the ARP’s negative phase, which strengthen

meridional atmospheric heat transport and enhance Atlantic Water (AW) inflow

into the Arctic Ocean (Zhang et al, 2008).

In the Arctic Ocean surface layer that is driven by these atmospheric circulation

patterns the seasonal sea ice melt and freezing cycle maintains the fresh upper

ocean waters at the freezing point. In contrast, the ocean temperature below

the halocline (Figure 1.3) increases again and at mid-depth the Arctic Ocean

has temperatures up to several degrees above zero. The bulk of this warm and

salty water is composed of Atlantic Water (AW) that enters the Arctic Ocean

though the Fram Strait and the Barents Sea. Also the anticyclonic surface

circulation is contrasting the mid depth circulation of the Atlantic Water Layer

(AWL) characterized by generally cyclonic motion, most of which occurs in

boundary currents along the deep ridges and shelf breaks (red arrows on Figure

1.1, Rudels et al (1994)). Before entering the central Arctic Ocean basins via

Fram Strait or the Barents Sea both AW branches experience heat loss and are

modified by ice melt and freeze, as well as river runoff. Both branches feed

the AWL and after passing through the basins leave the Arctic ocean proper

on return through the Fram Strait as Arctic Intermediate Water (AIW). The

AIW flows into the Nordic Seas and has an important role in the dense water

formation that feed the Atlantic Meridional Overturning Circulation (AMOC)

(Schmitz and McCartney, 1993; Swift, 1984).

The cold and fresh surface layers are decoupled form the mid-depth salty and
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warm AWL by a strong halocline (Figure 1.3) which is maintained by the cold

brines formed on the shelf seas (Aagaard et al, 1981; Martin and Cavalieri, 1989;

Cavalieri and Martin, 1994a; Winsor and Björk, 2000) and by winter convection

in the northern Barents Sea (Rudels et al, 1996). The cold and fresh waters flow

off the shelves and sink along the shelf break, where they mix with the adjacent

warm AW. Several authors report about the temperature fluctuations of the

AW in the 20th century (Schauer et al, 2004; Polyakov et al, 2005a; Dmitrenko

et al, 2008a). If the warming signal detected in the last decade would continue

(Dmitrenko et al, 2008a) this could weaken the halocline and some heat could

reach the surface layer and contribute to further fast reductions of the Arctic

sea ice cover. Also an eastward redirection of the riverine water would result in

the surface layer salinification in the Eurasian Basin and halocline weakening

as already observed by Johnson and Polyakov (2001) during the positive AO

phase in the 1990s. The mid-depth and to some extend also deep water mass

modifications detected in the Arctic Ocean in the last decade can exit through

the Fram Strait and the Nordic Seas, reach the deep convection areas in the

North Atlantic (Karcher et al, 2011) and influence the AMOC.

The combination of the ongoing changes in atmospheric conditions, drifting

and landfast ice, and continental runoff are driving the changes in the Arctic

Ocean sea ice cover. The Arctic sea ice is getting thinner (Kwok and Rothrock,

2009), more mobile (Rampal et al, 2009; Spreen et al, 2011) and the sea ice

extent is shrinking (Stroeve et al, 2012). The reasons for the changes have been

under vigorous inspection in the scientific community in various observational

and modeling studies (Shimada et al, 2006; Perovich et al, 2008; Kauker et al,

2009; Polyakov et al, 2010; Kattsov et al, 2010; Zhang et al, 2012).

1.2 Siberian Seas

The Eurasian shelf with its shallow seas is the largest shelf in the world and

it occupies about 1/3 of the Arctic Ocean area. The eastern part of it, the

Siberian shelf which is commonly divided into Kara, Laptev East Siberian and

Chukchi Sea, is the shallowest (depth rarely exceeding 200 m) and freshest

part of it, as it receives water from the great Siberian rivers: Ob, Yenisei

and Lena. Together with smaller rivers they contribute approximately 2100

km3/year of freshwater (Prange, 2003). This large inflow of river water strongly

affects temperature, salinity and other ocean parameters. Peterson et al (2002)

analyzed the average annual discharge from the six largest Eurasian rivers and
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Figure 1.4: Siberian Seas and average position of the landfast ice edge (red dash
line).

discovered an increase of 7% from 1936 to 1999. This agrees with the steady

increase in the northern Eurasian precipitation over the 20th century (Kattsov

and Walsh, 2000; McClelland et al, 2004).

Landfast ice (also fast, shore-fast ice) is a dominating feature in the Siberian

Seas during winter as it can extend a few kilometers from the coast in the west-

ern part of the Laptev Sea or in the Chukchi Sea to several hundred kilometers

in the southeastern Kara, Laptev and East Siberian Seas. This creates a vast

hydrologically distinct inner shelf region outlined by the landfast ice edge and

decoupled from the atmosphere with sea ice that is immobile and mechani-

cally fastened to the coast or to the sea floor. Landfast ice consolidates in late

November and remains fixed until early July break up (Rigor and Colony, 1997).

For drifting sea ice, the landfast ice edge forms an advanced winter shore line

and heavy ridging occurs along this edge during onshore wind events. During

the prevailing offshore winds pack ice is advected seaward from the landfast ice

edge and narrow stretches of open water and young ice - flaw polynyas, occur.

Frequent polynya events, low winter temperatures and prevailing northward ice

drift make the Siberian flaw polynya system a major source of the sea ice pro-

duction for the TD (Eicken et al, 1997; Rigor and Colony, 1997; Alexandrov

et al, 2000). The possible contribution of the Siberian flaw polynyas to the

formation of dense saline shelf waters was addressed by Aagaard et al (1981);

Martin and Cavalieri (1989); Cavalieri and Martin (1994b); Winsor and Björk

(2000); Dmitrenko et al (2005b); Bauch et al (2009); Krumpen et al (2011).

The role of this immobile ice cover for the riverine water redistribution was

summed up by Proshutinsky et al (2007).
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Figure 1.5: Left: Photo of leveled landfast ice, right: polynya in the Chukchi
Sea during SIZONet sea ice campaign at Barrow, Alaska, May 2010.

The knowledge about the general circulation patterns in the Siberian Seas is

based on the Russian historical datasets from predominantly summer expe-

ditions. Its main characteristic is the eastward alongshore Siberian Coastal

Current that is forced by winds, river runoff and ice melt (Govorucha and

Gerasimov, 1970; Weingartner et al, 1999). The current direction is variable

and it can revert westward (Münchow et al, 1999). Just north of the shelf break

the much better studied TD system begins.

Local atmospheric circulation over the Siberian Seas is governed by the large

scale atmospherics circulation over the Arctic Ocean. The Laptev Sea, in par-

ticular, is situated within the zero vorticity contour separating the SLP centers

over the Amerasian Basin and North Atlantic (Johnson and Polyakov, 2001).

This position renders its hydrography very sensitive to the shifts between pre-

dominant cyclonic and anticyclonic atmospheric circulation (Dmitrenko et al,

2005a) and several authors distinguish between periods with predominant cy-

clonic and predominant anticyclonic regimes (Dmitrenko et al, 2005a; Bauch

et al, 2009; Abrahamsen et al, 2009). The winds are parallel to the isobars

and the Coriolis force deflects the ocean and sea ice motion on the Northern

hemisphere to the right. The mean surface current direction is usually per-

pendicular to the wind direction. On the shallow shelf, however, the current

is essentially controlled by wind stress and bottom friction and the Coriolis

force becomes insignificant. The surface current aligns almost completely with

the wind direction. Thus, the cyclonic regime on the Laptev Sea shelf drives

”onshore” surface currents that divert the riverine water eastward towards the

East Siberian Sea. In the ”offshore” anticyclonic regime the riverine water is

advected northward.

The declining summer sea ice cover is opening large areas of open water in the
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Siberian Seas (Comiso et al, 2008; Stroeve et al, 2012). The modified surface

fluxes should lead to warmer and fresher surface layer. Analysis of the historical

datasets show that during the negative AO phase from 1930-1965 the Siberian

Seas surface waters have been cooled with a trend of over 0.5◦C per decade

while in turn in the 1965-1995 positive AO phase the trend has been similar,

but opposite in sign (Steele et al, 2008). Timokhov and Tanis (1997, 1998) show

decadal scale changes in the surface water temperatures of a degree or more.

Dmitrenko et al (2010), however analyzed the historical dataset with addition of

the data from Russian-German expeditions in the 1990s and 2000s and report

no significant warming over the Laptev Sea shelf deeper than 10-15 m. In

summer 2007, when a prominent minimum in sea ice extent was observed, the

atmospheric circulation over the Siberian Seas was cyclonic Abrahamsen et al

(2009); Hölemann et al (2011) -”onshore”. Most of the seas were ice free and

absorbed unusual amount of heat. Steele et al (2008) and Frolov et al (2009)

report a +2◦C to +5◦C anomaly in the sea surface temperature (SST). The

bottom water temperatures anomaly on the mid-shelf was more than +3◦C

(Hölemann et al, 2011). The possible reduction of landfast ice cover extent or

duration in the future would result in flaw polynyas located in the fresher coastal

waters and less brine would reach the Arctic halocline. The modifications of the

shelf water masses that feed the Arctic Ocean surface and partly intermediate

layers might lead to changes in the Arctic Ocean stratification (Figure 1.3).

1.3 Scope of this work

The main aim of this work is to demonstrate the importance of the sea ice

motion for the underlaying ocean. Sea ice motion is transporting sea ice from

the area where the sea ice formed through the freezing processes to the area

where it melts and releases freshwater and takes up latent heat from the ocean

and atmosphere. The sea ice drift, and in particularly the divergent sea ice

motion causes opening of leads and polynyas, where more sea ice is formed

and the ocean’s freshwater is removed, stored in solid form in the sea ice and

latent heat is released to the atmosphere. The remaining surface ocean water

depleted in freshwater still contains the salt and thus has a higher density than

the underlaying water and therefore sinks to the depth where its buoyancy is

neutral.

The sea ice is also a layer between the atmosphere and ocean and is transmitting

and transforming the wind stress to the ocean surface. How much momentum
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is transfered from the atmosphere to the ocean depends on the sea ice internal

stress. The main tool for our investigations is a numerical sea ice-ocean coupled

model described in Section 1.3 where processes outlined above are represented

by equations.

A faithful simulation of the sea ice drift in a coupled sea ice-ocean model is one

of the key prerequisites for a reliable simulation of the sea ice, ocean and at-

mosphere interactions. Apart from improving model physics and constructing

parameterizations for relevant sub-gird processes also validation of the simu-

lations against the observational data is essential. But the Arctic Ocean is a

remote region, generally inaccessible during the severe winter weather condi-

tions. Satellite remote sensing products (Ezraty et al, 2006; Lavergne et al,

2010) offer a large improvement in the spatial and temporal availability of ob-

servational ice drift data, but they also need to be validated with the in-situ

data. For the remote coastal regions such as the Siberian Seas there are even

fewer ice drift field observations available, as the manned stations and drift-

ing buoys are usually positioned in the thicker sea ice of the Central Arctic.

Alternatively a numerical model simulation offers a temporally and spatially

holistic view on the processes in the Arctic Ocean. At this point the model

simulations, satellite and in-situ observations should be seen as complimentary

research approaches that benefit from each other and not as alternatives.

In the scope of the ongoing and anticipated Arctic climate change (Kwok and

Rothrock, 2009; Spreen et al, 2011; Stroeve et al, 2012) it has been demonstrated

that the changes in the atmosphere (Shimada et al, 2006; Perovich et al, 2008)

and ocean (Polyakov et al, 2010) have a large impact on the sea ice cover. It has

also been shown that the thinning of the sea ice is preconditioning further fast

reductions in the sea ice (Haas et al, 2008; Zhang et al, 2012). The hypothesis

of the sea ice positive feedback where the loss of the Arctic sea ice will lead

to albedo increase and consequently to even faster warming of the Arctic has

been widely accepted by the scientific community. At present, it is still unclear

if the changes in the sea ice motion itself can also have a feedback effect on

the ocean. In this work we hypothesize that a change in the sea ice motion

will cause significant changes in the ocean properties and circulation. To test

the hypothesis we use two sensitivity studies that help to isolate sea ice motion

processes and quantify the contribution of the process to the Arctic climate

system.
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Data and Methods

The main tool for our investigations is a numerical sea ice-ocean coupled model.

State-of-the-art sea ice models are all based on the same set of primitive equa-

tions that are simplified descriptions of the processes in nature. The sea ice

is usually simulated by a dynamical-thermodynamical models such as Hibler

(1979) or Hunke and Dukowicz (1997). The base of the thermodynamical model

is the energy balance of the sea ice:

Qa +Qw + ρiLi
∂h

∂t
= 0 (1.1)

where Qa is the heat exchange of the sea ice with the atmosphere and Qw with

the ocean. ρi is the sea ice density. Li is the latent heat taken up or released

during sea ice growth: ∂h
∂t > 0 or sea ice melt: ∂h

∂t < 0, where h is sea ice

thickness and t is time.

The base of the sea ice dynamical model is the momentum balance (Hibler,

1979):

mi(
∂~u

∂t
+ ~u · ∇~u) = τa + τw −mif~k × ~u−mig∇Htilt +∇ · σ (1.2)

where mi is the sea ice mass per unit area and ~u is the sea ice velocity. On

the right-hand side of the equation the terms are τa - atmospheric stress, τw

- oceanic stress, mif~k × ~u - Coriolis term (f is the Coriolis parameter and k

is the unit vector normal to the surface), mig∇Htilt - horizontal tilt term (g

is gravitational acceleration and Htilt is the sea surface tilt) and finally the

divergence of the ice stress tensor ∇·σ that describes the internal sea ice forces

stemming from ice interactions like rafting, ridging and fracturing. This is the

only term in the equation which depends directly on the sea ice properties itself.

Hibler (1979) uses a rheology that connects σ with the strain rate tensor ε̇, a

basic variable describing the sea ice behavior, and considers the sea ice as a

viscous plastic fluid. This means that at small σ and ε̇ acting upon sea ice,

sea ice behaves like a viscous fluid and undergoes no deformation. But when

a certain threshold is reached sea ice behaves like a plastic material and is

permanently deformed. σ is defined as:
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σij = 2ηε̇ij + ((η − ζ)(ε̇11 + ε̇22)− P

2
)δij , (1.3)

where σij and ε̇ij are two-dimensional stress and strain rate tensors and δij is

the Kroeneker delta function. ζ - bulk viscosity, η - shear viscosity and P -

maximal compressive sea ice strength are defined as:

ζ = P/2∆, (1.4)

η = ζ/e2, (1.5)

and

P = P ∗h exp(−C∗(1−A)), (1.6)

where ∆ =
√

(ε̇211 + ε̇222)(1 + e−2) + 4
e2
ε̇212 + 2ε̇11ε̇22(1− e−2) is a term intro-

duced for brevity and e is the eccentricity constant. The maximal compressive

sea ice strength P in this rheology varies with the sea ice thickness and con-

centration (A), whereas P ∗ and C∗ - sea ice strength parameters are empirical

constants.

To track the consequences of the perturbing the sea ice motion the sea ice model

is coupled to a regional ocean model. In this study we use two models: The

North Atlantic/Arctic Ocean - Sea Ice Model (NAOSIM) and the Massachusetts

Institute of Technology general circulation model (MITgcm). Both models cover

the same domain enclosing the northern North Atlantic, the Nordic Seas and

the Arctic Ocean (Figure 1.6) on a rotated grid with the grid equator passing

through the geographical North Pole. Both models have similar numerics, but

differ in the spatial resolution.

NAOSIM is a coupled ocean-sea ice model developed at the AWI (Gerdes et al,

2003; Karcher et al, 2003; Fieg et al, 2010). Here we use the highest resolving

version of NAOSIM (Fine Resolution Model), that has a horizontal grid spacing

of 1/12◦. In the vertical, the model has 60 levels. Near the surface, the vertical

resolution is 10 m. There is a minimum number of three grid cells in the vertical,

limiting the representation of shallow topography. The ocean component of the

model is based on the Modular Ocean Model MOM-2 of the Geophysical Fluid

Dynamics Laboratory (Pacanowski, 1995). It is coupled, following the scheme

developed by Hibler and Bryan (1987), to a dynamic-thermodynamic sea ice

model (Hibler, 1979) which employs a viscous-plastic rheology. River water

discharge is incorporated as in Prange and Gerdes (2006). River water influx is
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Figure 1.6: Model domain of NAOSIM and MITgcm and the bathymetry of the
MITgcm.
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distributed over the first three levels in the vertical to improve vertical mixing

of the fresh water near the river mouths (Fieg et al, 2010). The model includes a

passive salinity tracer to follow the spreading of the river water. NAOSIM is an

established model in the Arctic community participating in the Arctic Ocean

Model Intercomparison Project (AOMIP, http://www.whoi.edu/projects/

AOMIP/).

Massachusetts Institute of Technology General Circulation Model - MITgcm

(Marshall et al, 1997) is a community effort model available at http://mitgcm.

org/. The numerous users of the code update, develop, maintain and document

the model code on a regular basis. The model configuration we have used is

similar to the NAOSIM, but it has a coarser horizontal resolution of 1/4◦ (∼28

km). The vertical resolution is adjusted to the surface and halocline studies

and its 36 levels are unevenly distributed in a way that the top 500 m of

the water column is divided into 20 levels and the depths below 2000 m have

only 6. The very thin surface layer thickness under sea ice requires a non-

linear free surface and the use of the rescaled vertical coordinate z* (Figure

1.7, (Campin et al, 2008)). Non-linear free surface and z* are an example of

options that are not available at NAOSIM. The MITgcm sea ice model is based

on a version of the viscous-plastic dynamic-thermodynamic sea ice model of

Zhang and Hibler III (1997) with some adaptations and many further numerical

options and parameterizations described by Losch et al (2010).

To validate our sea ice drift simulation in the Laptev Sea we have used a unique

mooring (Figure 1.8) dataset from winter 2007/08 and a self produced sea mo-

tion product. Other data used for the validation in our research are publically

available remote sensing sea ice products and sea ice and ocean databases.

1.4 Overview of the Papers

The main aim of this thesis is to investigate the effect of the sea ice motion on

the underlaying ocean.

In the first paper:

Polona Rozman1, Jens Hölemann, Thomas Krumpen, Rüdiger Gerdes, Cor-

nelia Köberle, Thomas Lavergne, Susanne Adams and Fanny Girard-Ardhuin,

2011: Validating Satellite Derived and Modeled Sea Ice Drift in the

Laptev Sea with In-Situ Measurements of Winter 2007/08. Polar Re-

1This paper has been published under Polona Itkin’s maiden name Rozman.
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Figure 1.7: Schematic view of two vertical coordinate options under thick sea
ice: a - z vertical coordinate with rigid lid, b - z* vertical coordinate with non-
linear free surface. In a the first layer is a mixture of sea ice and water with the
first level empty, while in b the sea surface position is depressed by the weight
of sea ice and the scaling of the coordinate to avoid the problem of disappearing
level. The figure is adopted from Campin et al (2008).

search, 30, 7218, DOI: 10.3402/polar.v30i0.7218.

we address the challenge of cross-validating the point observations, remote sens-

ing products and model simulations. Our research area is the Southeastern

Laptev Sea, a coastal region that is especially difficult to simulate due to the

partial cover with the immobile landfast sea ice. The land contamination of the

satellite sea ice grid points close to the coast and a general lack of the in-situ

data make this validation attempt especially difficult. To address the latter

problem we present a unique dataset composed of two points with mooring

measurements over the winter 2007/08. We use an approach novel in the sea

ice research: circular statistics to compare the sea ice drift directions.

Our main findings are that correlations of sea ice direction between the in situ

data and the remote sensing products are high, about 0.8. Similar correlations

are achieved by the model simulations. The sea-ice drift speed is the more

challenging variable as some of the satellite products and model have have

only moderate correlations of about 0.6 to the in situ records. The landfast

ice parameterization implementation in the model was successfully tested for

its influence on the sea-ice drift. In contrast to the satellite products, the

model drift simulations have a full temporal and spatial coverage and results

are reliable enough to be used as sea-ice drift estimates on the Laptev Sea Shelf.
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Figure 1.8: Mooring scheme of the two moorings which data forms the dataset.
The instrument monitoring the sea ice drift is the ADCP (Acoustic Doppler
Current Profiler) at 3 m above the bottom. Credit: Torben Klagge, IFM-
Geomar, Kiel.
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As our main aim remains to study the impact of the sea ice motion on the

ocean we then attempted to develop a landfast ice paramterization that would

be applicable for more than a single winter and dependent as well on the sea

ice properties. Landfast ice is immobile level sea ice (Figure 1.5) and the most

logical property to use was the compressive sea ice strength (P) that prevents

the sea ice from deforming. To inspect a general impact of P on the sea ice and

ocean we performed a sensitivity study that was motivated also by the observed

changes of sea ice motion due to the climate change.

Our second paper is therefore:

Polona Itkin, Michael Karcher and Rüdiger Gerdes, 2014: Is weaker Arctic

sea ice changing the Atlantic water circulation? In press for the Journal

of Geophysical Research - Oceans.

In this paper we perform a sensitivity study by comparing two MITgcm model

simulations that differ only in the P* constant: 25700 N/m2 (control run:

CTRL) and 15000 N/m2 (weak sea ice run: WEAK). In WEAK the sea ice

velocities are generally higher than in CTRL. Through the momentum transfer

to the ocean and difference in the sea ice cover distribution these differences

are reflected not only in the surface layer, but also in the mid-depth AWL of

the ocean. Differences in the sea ice extent in the marginal sea ice zone (MIZ)

lead to a reduction of the AWL temperatures by 0.2 K in WEAK comparing to

CTRL. The increased sea ice mobility in the central Arctic in WEAK results

in faster and deeper ocean’s anticyclonic BG which hampers the cyclonic AW

circulation beyond the Lomonosov Ridge and enhances the loop of the AW in

the Eurasian Basin. As a results of both mechanisms, the Fram Strait net out-

flow increases by 0.46 Sv whereas as a reaction the Davis Strait net outflow is

weaker by 0.28 Sv.

The main lesson that we learn with this study for our landfast ice parametriza-

tion development is that the P* parameter choosing (and P definition) should

be done with care and that a uniform change of P* to achieve the immobile

landfast ice in the Siberian Seas would have Arctic wide consequences for the

ocean properties. Therefore we decided for a parameterization that would only

effect the local sea ice properties in the shallow and river runoff characterized

Siberian Seas.

In our third paper:

Polona Itkin, Martin Losch and Rüdiger Gerdes, 2014: Landfast ice af-

fects the stability of the Arctic halocline: evidence from a numerical
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model. Submitted to the Journal of Geophysical Research - Oceans,

we return to the research problem of the sea ice drift and landfast ice in

the Siberian Seas. We present a landfast parametrization depending on the

bathymetry, where we double the P* and introduce the sea ice tensile strength

T (resistance to divergence) in the coastal regions shallower than 30 m. This cre-

ates an immobile sea ice cover that shields the river plume residing on the shelf

from the wind stress and positions the polynyas further offshore in the more

saline waters. A sensitivity study where we compare a control run (CTRL)

to a run with the landfast ice parametrization (LF) shows that the landfast

ice has local impact on the sea ice thickness and Arctic wide impact on the

halocline stability. We recommend to include our simple landfast parametriza-

tion into the regional climate and biogeochemical models that study freshwater

distribution, water column stability and nutrient availability.
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Abstract

A correct representation of the ice movement in an Arctic sea ice - ocean coupled

model is essential for a realistic sea ice and ocean simulation. The aim of this

study is to validate the observational and simulated sea ice drift for the Laptev

Sea shelf region with in-situ measurements of winter 2007/08. Several satellite

remote sensing datasets are first compared to the mooring measurements and

afterwards to the sea ice drift simulated by the coupled sea ice-ocean model.

The different satellite products have a correlation to the in-situ data ranging

from 0.56 to 0.86. The correlations of sea ice direction or individual drift vector

components between the in-situ data and the observations are high, about 0.8.

Similar correlations are achieved also by the model simulations. The sea ice

drift speed of the model and of some satellite products have only moderate

correlations of about 0.6 to the in-situ record. The standard errors for the

satellite products and model simulations drift components are similar to the

errors of the satellite products in the central Arctic and are in the range of

0.03 m/s. The fast ice parameterization implementation in the model was

also successfully tested for its influence on the sea ice drift. The model drift

simulation have contrary to the satellite products a full temporal and spatial

coverage and results are reliable enough to use them as sea ice drift estimates

on the Laptev Sea shelf.

2.1 Introduction

A faithful simulation of the sea ice velocities in a coupled sea ice-ocean model

is one of the key prerequisites for a reliable simulation of the sea ice, ocean and

atmosphere parameters. To achieve it, data gathered by manned stations, drift-

ing bouys and lately satellite sensors have been used extensively in pan-Arctic

sea ice model validations (Lemke et al, 1997; Kreyscher et al, 2000a; Martin

and Gerdes, 2007) and data assimilations (Meier et al, 2000; Rollenhagen et al,

2009). For the remote coastal regions such as the Laptev Sea shelf there are very

few ice drift field observations available. Satellite remote sensing products offer

a large improvement in the spatial and temporal availability of observational

data, but the retrieval algorithms give products with discontinuous temporal

coverage at the grid points closest to the coast (Ezraty et al, 2006; Lavergne

et al, 2010) that are consequently hard to inspect for inconsistency.

Sea ice motion is important as a transport of fresh water and latent heat. Its
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Figure 2.1: Left: Laptev Sea bathymetry (Jakobsson et al, 2008). The fast ice
extents in December 2007 (solid red line) and in May 2008 (dashed red line)
determine the position of the mid-shelf flaw polynya. The mooring stations
Anabar and Khatanga are labeled by letters ”A” and ”K”, respectively. The
distance from the fast ice edge to the mooring stations changes from about 100
to 20 km, while the distance to the furtherest ASAR tracking point changes
from about 300 to 250 km during the winter. The black dashed box represents
the area of the ASAR image on the right. Right: ASAR (Advanced Synthetic
Aperture Radar) satellite image from 30th April 2008 showing the fast ice in
the southeastern Laptev Sea. The Lena delta is at the bottom of the image.
An advanced flaw polynya with low backscatter values in the open water area
(dark area) developed at the fast ice edge (marked by dashed red line). The
high backscatter values (bright area) in the polynya indicates presence of the
newly formed ice.
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shear and convergent motion causes dynamical ice growth and influences the

ice thickness distribution. The sea ice drift, and in particularly the divergent

sea ice motion causes opening of leads and polynyas. The extensive Laptev Sea

polynya system (Figure 2.1) is estimated to contribute as much as 20% of the

sea ice area transported through Fram Strait (Rigor and Colony, 1997) Despite

this there was so far no validation of the sea ice drift focusing on the Laptev Sea

shelf, where low ice concentrations and fast movements in the polynya zones

could influence the quality of the ice drift products (Ezraty et al, 2006).

North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM) that we use in this

paper (model is described in more detail in section Model Description) gives a

relatively good representation of the large scale Arctic sea ice features such as

Beaufort Gyre, Transpolar Drift and sea ice export out of Fram Strait (Karcher

et al, 2003; Martin and Gerdes, 2007). However, the performance of this pan-

Arctic model in the sea ice drift over the shelf has yet not been validated. The

primary aims of this paper is to examine the quality of the available ice drift

data and use it for a simple validation of the model results on the Laptev Sea

shelf.

Similarly to other sea ice models NAOSIM is not able to simulate the formation

of fast ice (König Beatty and Holland, 2010; Adams et al, In press). Due to

this deficiency the simulated flaw polynya does not occur at the fast ice edge,

but directly at the coast instead. The dislocation of the polynya results in

severe regional biases in sea ice concentration, ice growth, ice thickness, winter

temperature and salinity distribution. A significantly improved representation

of sea ice concentration as well as ocean temperature and salinity distribution

was obtained by including the fast ice in the model (Rozman, 2009; Adams

et al, In press). The fast ice edge region is usually refered to as the mid-shef,

while the regions coastward and seaward from the edge are refered to as inner

and outer shef, respectively. The secondary aim of this paper is to show that

in the outer shelf the parameterization does not have a significant impact on

the sea ice drift.

2.2 Observational Data

Observational data analyzed in this study are in-situ data from two moored sta-

tions as well as satellite remote sensing products. Mooring data were retrieved

from upward-looking Acoustic Doppler Current Profilers (ADCP Teledyne-RDI

Workhorse Sentinel 300 kHz) deployed by the ”Laptev Sea System Project”
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in the eastern Laptev Sea mid-shelf. The mooring station ”Anabar” was de-

ployed at 74.33◦N, 128.00◦E at a depth of 30 m and station ”Khatanga” at

74.71◦N, 125.29◦E at a 43 m depth (Figure 2.1). The devices were operating

from September 2007 until August 2008 and they were recording the ice move-

ments at the sea surface above them as described by Belliveau et al (1990).

All available sources of satellite-based ice drift products regardless the spatial

resolution were used for the validation of the model simulations. Table 2.1

shows an overview of the used data.

The sea ice drift vectors distributed by Center for Satellite Exploitation and Re-

search (CERSAT), at the French Research Institute for Exploitation of the Sea

(IFREMER), Plouzané (France), were processed from pairs of Advanced Mi-

crowave Scanning Radiometer aboard EOS/Aqua (AMSR-E) images acquired

by the 89 GHz channels and with 6.25 km pixel size (Ezraty et al, 2006) -

from here on we name the product IFREMER. The gridded drift data has a

spatial resolution of 31.25 km. For this study, 3-day drift vectors were used.

The dataset is only available from October until the onset of ice melt at the

beginning of May and has quality flags indicating the input data and method

used for the drift estimation.

The second ice drift product used for the validation is the low resolution sea ice

drift dataset (62.5 km equally spaced grid) of the EUMETSAT Ocean and Sea

Ice Satellite Application Facility (OSI-SAF) (Lavergne et al, 2010), also pro-

cessed from AMSR-E images and available from October till May. Conversely to

the IFREMER product, it computes 2-day ice motion vectors from the 37 GHz

channels (12.5 km pixel size), hence the coarser spatial resolution. The Laptev

Sea has many coastal areas and two vast archipelagos. Consequently, the coarse

resolution of the latter product considerably limits its use for comparison in the

southernmost parts of the sea. At the Khatanga mooring location no OSI-SAF

data are available and a point more northward had to be analyzed instead.

The third ice drift product we generated from Advanced Synthetic Aperture

Radar (ASAR) satellite images. An ASAR image covers an area of approxi-

mately 400× 800 km2 with a spatial resolution of 150× 150 m2 (Cordey et al,

2004). We used the ASAR scenes for the sea ice drift detection at the mooring

locations and at six locations in the eastern Laptev Sea outer shelf (Figure 2.1)

chosen in a way to form a 1◦ grid. We manually tracked the movements of

remarkable ice floes in the vicinity of these points to obtain drift vectors. The

floes were tracked inside a search window with a radius proportional to the

scale of the ice drift and preferably chosen in a way that they drifted directly
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through the grid points. On average the search window radius was under 5 km.

The ASAR images were available from November until April with major gaps

in January and March. The time difference between two images varies from 2

to 4 days.

temporal
availability

initial temp.
resolution

source spatial
resolution

type quality
flags

error
estimate

ADCP September
2007- August
2008

30 min mooring 2 points E no 0.0004
m/s

IFREMER October- April 3 days AMRS-E/
EOS-Aqua

31.25 km L yes 0.026
m/s,
35◦

OSI-SAF October- April 2 days AMRS-E/
EOS-Aqua,

62.5 km L yes 0.015
m/s

ASAR November-
April

12 h - 4 days ASAR/
ENVISAT

1◦ (5 km) L no 0.004 -
0.002
m/s

Table 2.1: The overview of the datasets used in the validation. Type ’E’ stands
for Eulerian type of motion and type ’L’ for Lagrangian. The error estimate
for the ADCP instrument given here is a mean error velocity of the Khatanga
mooring record. This error is estimated on the basis of the difference between
the velocities measured by the four beams of the device and is a measure of
combination of a horizontal homogeneity and errors caused by malfunctioning
equipment (Instruments, 1996). The error for the Anabar mooring which was
later corrected for the compass bias is larger - 0.001 m/s.

The estimated errors of the satellite remote sensing data are low. Validation

of both, the IFREMER 3-day ice drift and the OSI-SAF 2-day product have

been conducted against drifting buoys in the central Arctic (Ezraty et al, 2006;

Lavergne et al, 2010). For the IFREMER product Girard-Ardhuin and Ezraty

(2005) report standard deviations of 6.7 km and 35◦, which corresponds to

0.026 m/s uncertainty on the drift speed. For the OSI-SAF product Lavergne

et al (2010) document a standard deviation of 2.6 km, which translates into

0.015 m/s uncertainty on the zonal and meridional drift component. One should

note, however, that the reference dataset used for both validation exercises were

different, as well as the collocation methods and time period.

ASAR drift was extracted from the geolocated images. The geolocation uncer-

tainty could result in an error of up to 2 pixels (300 m) (Rosich and Meadows,

2004). We estimate that the deformation of the tracked ice floe could con-

tribute to an error of another 1-3 pixels and therefore result in a drift error for

the tracked floe of around 0.004 m/s. The true error of the ASAR drift com-

pared to the real velocities at the tracking points (position of the tracked ice
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floe was not exactly at the tracking point) is unknown. The ice drift situation

in the northern 4 points was homogeneous, while the southern most points were

very close to the flaw polynya where the sea ice drift is more heterogeneous.

2.3 Model Description

NAOSIM is a coupled ocean-sea ice model developed at Alfred Wegener Insti-

tute for Polar and Marine Research (Gerdes et al, 2003; Karcher et al, 2003;

Fieg et al, 2010). The model domain encloses the northern North Atlantic, the

Nordic Seas and the Arctic Ocean. The highest resolving version of NAOSIM

(Fine Resolution Model) has a horizontal grid spacing of 1/12◦ on a rotated

spherical grid where the equator runs across the North Pole. Near the surface

vertical resolution is 10 m. The ocean component of the model is based on the

Modular Ocean Model MOM-2 of the Geophysical Fluid Dynamics Laboratory

(Pacanowski, 1995). It is coupled to a dynamic-thermodynamic sea ice model

(Hibler, 1979) which employs a viscous-plastic rheology. The wind forcing in

this experiment was taken from the 6-hourly NCAR/NCEP (National Centers

for Environmental Prediction/National Center for Atmospheric Research) re-

analysis data. Fast ice information (Figure 2.1: left) was integrated in the model

in a way that the fast ice covered cells were excluded from the calculation of the

sea ice momentum balance. Fast ice remained at rest while all thermodynamic

calculations were performed as usual. Such procedure was already successfully

applied by Lieser (2004). There a fast ice parameterization on the basis of sea

ice thickness and bathymetry in a 1/4◦ model was used. To enable a realistic

representation of the flaw polynya processes in our high resolution model, we

used prescribed high resolution fast ice area instead. Monthly fast ice masks

for winter 2007/08 (from December to May) were obtained from thermal bands

of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard

EOS/Aqua (Adams et al, In press).

2.4 Data Analysis Methods

All ice drift data, modeled and observed, were converted to 3-day running

mean ice drift to average out tidal and inertial movements of sea ice and obtain

comparable quantities. The OSI-SAF 2-day means were first divided into daily

means and then re-averaged to 3-day means. The low temporal resolution

did not allow a complete averaging of the ASAR drift estimates for which in
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some cases single values were used to represent the 3-day period. The satellites

carrying AMSR-E and ASAR sensors fly over the Laptev Sea twice per day,

usually at noon and midnight. The three day means in all of the AMSR-E

products are calculated from noon first day until noon of the fourth day (in

total 3 to maximum 8 overflights as the neighboring scenes overlap in high

latitutes). To avoid a phase shift between the datasets also the mooring and

modeled ice drift was calculated for the same time window. As noon images

of ASAR are rare most of the images we analyzed were taken at midnight

(typically 2-3am UTC) and consequently the ASAR time series still have a

small time shift compared to other time series.

We converted the data on the meridional and zonal sea ice movement to two

sea ice drift properties: speed (magnitude) and direction (angle) and analyzed

them separately. We first examined the time series of speed and sine of direc-

tion for all datasets and checked that there is no or minimal time shift between

them. In section Observed Sea Ice Drift we show results of the linear regression

analysis for the correlations between the observational datasets for speed and

circular regression for the directional correlations. The ADCP record has the

full time coverage and is the only dataset measured in-situ at the drifting ice

surface. Despite this the mooring record represents a point measurement, while

the satellite products represent gridded information (as also the model output

is) produced from individual daily snapshots. No mooring with ice drift record-

ing device has ever been recovered in the Laptev Sea outer shelf. In this paper

we therefore compared the ADCP data to all other observational datasets in

the mid-shelf. In the outer shelf, where no such data is available, we made a

cross-comparison of all other data. In section Simulated Sea Ice Drift we then

show the correlations between the observational data and the model simula-

tions. If available we also analyzed the observational data with the best quality

flags only. Finally, in section Drift Vector Validation we compare the zonal and

meridional drift vectors of all satellite remote sensing products and model simu-

lations to the in-situ data. This eases the comparison with previously published

validation statistics for the central Arctic.

Statistics such as linear regression analysis are not appropriate for the analysis

of the circular data where the numerical value for the parameter depends on

the assignment of zero-direction and direction of rotation. The angles such as

0◦ and 359◦ are as numerical values very distant and would result in erroneous

mean values if regular arithmetic mean is applied. Various circular (directional)

statistics methods have been suggested and used over the past decades to over-

come this problem (Fisher, 1996; Jammalamadaka and Sengupta, 2001). The
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mean of an angular dataset is computed by treating all angular measurements

as points on a unit circle, and computing the resultant vector of the unit vectors

determined by the data points (Fisher, 1996; Jammalamadaka and Sengupta,

2001). The mean direction is the direction of this resultant vector, and the

mean resultant length provides a measure of concentration of the circular data.

For the angular data α with statistical population n, mean direction ᾱ is defined

as

ᾱ =


arctan

(
S
C

)
if S > 0, C > 0

arctan
(
S
C

)
+ π if C < 0

arctan
(
S
C

)
+ 2π if S < 0, C > 0

(2.1)

where S and C are

S =

n∑
i=0

sin(αi) (2.2)

C =
n∑
i=0

cos(αi) (2.3)

The circular variance is defined as 1 − R̄ where R =
√
S2 + C2 and R̄ = R/n.

Its values fall in the interval [0, 1], where data highly concentrated around one

direction take values close to 0, while widely dispersed data have values close to

1. Statistical mean and variance for linear variables x,y or circular variables α,β

were then used for calculation of statistical bias (x̄− ȳ or ᾱ− β̄) and variance

ratio F (varx/vary or varα/varβ).

One of the possible measures of correlations between two circular variables was

suggested by Jammalamadaka and Sengupta (2001) where for two angular data

sets α and β the circular correlation coefficient rαβ is defined as

rαβ =

n∑
i=1

sin(αi − ᾱ) sin(βi − β̄)√√√√ n∑
i=1

sin2(αi − ᾱ) sin2(βi − β̄)

(2.4)

If α and β are independent, rαβ is close to 0 and if the two variables are

rotationally dependent the rαβ would be close to ±1. The correlation is then
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defined as r2
αβ. This is an analogue formula to the classical linear regression

correlation coefficient where for two linear variables x and y the correlation

coefficient rxy is defined as rxy =
n∑
i=1

(xi − x̄)(yi − ȳ)/σxσy.

2.5 Observed Sea Ice Drift

Figure 2.2 shows scatter diagrams and statistical coefficients for the Khatanga

and Anabar mooring locations in the mid-shelf. The ADCP and IFREMER

datasets agree well in the direction of the drift. The statistical correlation

between datasets are high (r2 = 0.8), statistical bias is low and and variance

ratio (F ) is close to 1. The correlations of ASAR and OSI-SAF datasets to the

ADCP record are lower (r2 = 0.6) with both, ASAR and OSI-SAF datasets

underestimating the ADCP measured speeds. There was no OSI-SAF drift

point available for the exact Khatanga location and a point further off-shore

was analyzed instead. Consequently it is not surprising that the correlations of

all datasets with the OSI-SAF are moderate.

On the outer shelf correlations between the datasets are higher than in the mid-

shelf region (r2 from 0.65 to over 0.8). In Figure 2.3 we show scatter diagrams

and statistical coefficients for the combination of data for all six points on the

ASAR grid.

2.6 Simulated Sea Ice Drift

The time series of sea ice drift speed and direction in Figures 2.4 and 2.5 show

that the model is simulating the ice drift in comparison with the observed drift

well. The model is underestimating the ADCP velocities, but is simulating all

of the peak speed events from the consolidation of the sea ice cover in Novem-

ber on. The directions during the high speed events are represented correctly.

Erroneous drift directions occur mainly during the events with low drift speed.

The speeds lower than 0.035 m/s would contribute to a displacement up to 9

km during the 3-day averaging period. As this movement is a subgird process

for a model with 1/12◦ horizontal grid resolution we excluded this directions

from the circular regression analysis. The displacements smaller than half of

a pixel (3.12 km for IFREMER product and 6.25 km for OSI-SAF) are also

not detectable by the tracking algorithms. Apart from a slight reduction in

speed in the second part of the winter there is no significant change in ice drift
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Figure 2.2: Scatter plots of sea ice drift speed and direction at the Anabar and
Khatanga mooring locations for observational data comparison from November
2007 till May 2008. The numbers on the plots show number of data pairs in the
analysis - N , correlation value (r2) - R, statistical bias - bias, variance ratio - F ,
standard deviation of the error - SE. Speed units are m/s and direction values
are degrees. All correlations shown are statistically significant at probability
0.99 (P value less than 0.001).
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Figure 2.3: Scatter plots of sea ice drift speed and direction in the outer shelf
for observational data comparison from November 2007 till May 2008. The
numbers on the plots show number of data pairs in the analysis - N , correlation
value (r2) - R, statistical bias - bias, variance ratio - F , standard deviation of
the error - SE. Speed units are m/s and direction values are degrees. All
correlations shown are statistically significant at probability 0.99 (P value less
than 0.001).
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Figure 2.4: Simulated sea ice drift speed (top) and direction (bottom) without
(full red line) and with (dashed red line) integrated fast ice compared to obser-
vational and remote sensing drift for the Khatanga mooring location from 15th
October 2007 till 15th May 2008. The gray box in the top graphs marks the
speeds that were not included into the directional correlation analysis.

simulation after the integration of the fast ice for any of the analyzed locations

on the mid- or outer shelf (Figures 2.4 and 2.5).

Figures 2.6 and 2.7 show scatter diagrams and statistical coefficients of the

observational data and the model simulations. The model speed simulations

have low statistical bias compared to all observational data, but the variance

ratio (F ) is high when compared to all of the datasets, except compared to the

ASAR drift speed. The simulated directions have a moderate bias, but variance

ratio (F ) slightly lower than 1.

The simulated sea ice speed at the mooring locations and in the outer shelf is

moderately correlated to the observational speeds (r2 from 0.4 to 0.7). The

regression line shows a general underestimation of the speed compared to ob-

servations. Once the directions simulated at low speeds were removed from the

statistical analysis the circular correlations to the observational datasets are

moderate to high (r2 from 0.5 to 0.9). Using only the best quality flags for the

IFREMER and OSI-SAF datasets the number of data points in time reduces,

but the correlations do not improve.
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Figure 2.5: Simulated sea ice drift speed (top) and direction (bottom) without
(full red line) and with (dashed red line) integrated fast ice compared to obser-
vational and remote sensing drift for the for a point in the outer shelf (77◦N ,
125◦E) from 15th October 2007 till 15th May 2008. The gray box in the top
graphs marks the speeds that were not included into the directional correlation
analysis.
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Figure 2.6: Scatter plots of sea ice drift speed and direction at the Anabar
and Khatanga mooring locations for model simulation with the fast ice and
observational data comparison from November 2007 till May 2008. The data
points included into the statistical analysis are marked by blue dots. The
points with drift speed under 0.035 m/s at the drift direction scatter plots are
marked by green dots. The numbers on the plots show number of data pairs
in the analysis - N , correlation value (r2) - R, statistical bias - bias, variance
ratio - F , standard deviation of the error - SE. Speed units are m/s and
direction values are degrees. All correlations shown are statistically significant
at probability 0.99 (P value less than 0.001). Numbers printed in red (black)
show the statistical characteristics of the model simulations with (without) the
fast ice.
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Figure 2.7: Scatter plots of sea ice drift speed and direction at in the outer shelf
for model simulation with the fast ice and observational data comparison from
November 2007 till May 2008. The data points included into the statistical
analysis are marked by blue dots. The points with drift speed under 0.035 m/s
at the drift direction scatter plots are marked by green dots. The numbers on
the plots show number of data pairs in the analysis - N , correlation value (r2)
- R, statistical bias - bias, variance ratio - F , standard deviation of the error
- SE. Speed units are m/s and direction values are degrees. All correlations
shown are statistically significant at probability 0.99 (P value less than 0.001).
Numbers printed in red (black) show the statistical characteristics of the model
simulations with (without) the fast ice.
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2.7 Drift Vector Validation

N bias~u bias~v SD~u SD~v r2~u r2~v

IFREMER 187 -0.006 0.002 0.030 0.027 0.90 0.93
OSI-SAF 242 0.040 0.006 0.040 0.031 0.69 0.84
ASAR 180 0.003 0.005 0.027 0.021 0.73 0.86
NAOSIM 190 0.005 0.014 0.033 0.025 0.85 0.87
NAOSIM - FI 169 0.009 0.014 0.037 0.025 0.84 0.87

Table 2.2: The validation results of the drift vector components of the satellite
products and model simulations with the in-situ measurements for the Laptev
Sea mid-shelf in winter 2007/2008. The columns show statistical parameters
for the zonal (~u) and meridional (~v) components of the drift: number of data
pairs in the analysis - N , statistical bias - bias, standard deviation of the error
- SE and correlation value - r2. Velocity units are m/s. All correlations shown
are statistically significant at probability 0.99 (P value less than 0.001).

The comparison of the zonal and meridional drift component of satellite prod-

ucts and model simulations to the in-situ data shows high correlations (r2 higher

than 0.7, Table 2.2), but higher standard deviations of errors as in the central

Arctic basin (Table 1). The mean measured error velocity for the Khatanga

mooring ADCP is 0.0004 m/s (Table 1), while the error velocity for the Anabar,

which compass bias was calibrated only after the instrument was recovered, is

0.001 m/s. For the model again only the drifts with speed higher than 0.035

m/s were analyzed.

2.8 Discussion

The observational data and model simulations were compared at two mooring

locations in the mid-shelf dominated by the polynya activity and at six regularly

spaced points in the outer shelf region where the thin ice gradually grows into

the pack ice.

The comparison of the satellite observational data shows that ice drift directions

are all moderatelly to highly correlated to the ADCP record. The IFREMER

product is also highly correlated in speed. The ASAR and OSI-SAF speeds

are only moderately correlated, regarding the temporal and spatial mismatch

a relatively good result. While the ASAR datasets still have a small phase

shift due to prevailing midnight overflights and 3-day averages based on a small

number of images, the OSI-SAF product does not cover the Khatanga mooring

location and an alternative location further offshore was used in comparison.
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The scatter diagrams on Figures 2.2 and 2.3 show that the IFREMER dataset

only occupy certain discrete values. This ”quantization noise” is a well known

effect of the robust Maximum Cross Correlation method (Kwok et al, 1998;

Girard-Ardhuin and Ezraty, 2005; Lavergne et al, 2010) that the IFREMER

dataset algorithm is using for the ice drift estimation. The effect causes no

obvious problems at this stage of the model validation. The OSI-SAF product

is using the Continious Cross Correlation Method (CMCC) (Lavergne et al,

2010) which avoids this problem.

For the mooring locations the model simulation is in good agreement with the

ADCP and satellite remote sensing data (Figure 2.4). The simulated ice drift

speeds compared to these datasets are very similar starting from November,

when the sea ice cover in the Laptev Sea becomes relatively stable. It is re-

markable that the simulated and ADCP speeds match not only in phase, but

also in magnitude and the model is able to simulate the early winter extreme

velocities (peaks in Figure 2.4). The ice drift directions are similar for the whole

observation period and especially during the high speeds. The time series also

show the scarcity of the satellite retrieved data, which can be unavailable on

the scale of weeks.

The statistical bias of the model results is much lower on the outer shelf than

on the mid-shelf. The variance ratio (F ) of directions decreases on the outer

shelf as well and shows that the simulated model directions are more disperse

than observed.

The correlations between all of the observational data and the model simulations

are slightly higher on the mid-shelf than on the outer shelf. This is surprising as

in the dynamic mid-shelf environment, dominated by polynya events, the model

should have more difficulties with correct simulations than on the relatively

homogeneous outer shelf. The reason for this unexpected result is probably

a smaller number of observations analyzed on the mid-shelf. As we decided

to exclude all of the drift directions for drift speed lower than 0.035 m/s, a

relatively larger part of the data was excluded on the mid-shelf where the ice

velocity is generally lower and only the fastest movements (top 50%) of the

data entered the analysis. In the outer shelf almost 70% of all data entered the

analysis.

There is still some remaining phase shift (Figure 2.4) between the model and

the observations due to the temporal resolution of the wind forcing data. The

6-hour wind situation does not represent the wind changes during the 6 hour

interval. The time shift error is occurring randomly and depends on the timing



37 2.8. DISCUSSION

of the wind direction change. This error can only be excluded by a high enough

temporal resolution of the forcing data or by full coupling of the model.

Furthermore, differences in observed drift arise also because the measurement

techniques are principally different. The model and the mooring velocities are

Eulerian while the remote sensing velocities are Lagrangian. The high correla-

tion between the ADCP and the IFREMER data shows that the averaged La-

grangian velocities around the mooring location are comparable to the Eulerian

velocities measured over the mooring station. The classical sea ice drift valida-

tion was done with the drifting buoys that also represent a Lagrangian type of

measurements (Ezraty et al, 2006; Lavergne et al, 2010). IFREMER and OSI-

SAF drift products are spatial averages, while the ADCP record and ASAR

drift data represent a non-averaged single point/floe drift. Each drift vector

from the OSI-SAF product pertains to an area of approximately 120×120 km2

while the IFREMER vectors pertain to roughly 60 × 60 km2 (4 times less),

thanks to the higher resolution of the 89 GHz channels. This results were then

gridded to the spatial resolutions of 62.5 km and 31.25 km, respectively.

The model simulations and the ASAR dataset are systematically underestimat-

ing the in-situ measured speed, when velocities are higher than 0.1 m/s. The

reasons for too low simulated drift speeds could be found in a too low wind

stress or to high ocean drag influencing momentum balance of the sea ice in

the model. The ASAR dataset peak speeds are systematically lower than the

ones of IFREMER, OSI-SAF and ADCP by about a half. For the ASAR drift

only remarkable features in sea ice such as big pressure ridges and hummocks

were used for tracking. Despite a great surface roughness, detectable also by

high backscatter signatures on the ASAR images, these features are not drift-

ing as fast as one would expect from a greater wind stress acting on their sails.

It seems that the friction between rough jagged floes is an important sink of

energy for shearing at floe boundaries (Rothrock, 1975). The big ice floes, as

used for tracking on the ASAR images, are therefore less appropriate for the

estimation of the prevailing ice drift situation. The ASAR velocities which have

been retrieved specifically for this research have still been proven to be an use-

ful alternative source of information, independent from other satellite remote

sensing products. In November and December, when there are occasionally no

AMSR-E ice drift products available (Figures 2.4 and 2.5), ASAR derived speed

and direction are similar to the in-situ measured and to the simulated.

The standard deviations of the error for the satellite products and model sim-

ulations validated with the ADCP record are in the range of 0.03 m/s (Table
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2.2). Compared to the buoy validation performed in the central Arctic and

Canadian Archipelago this errors are slightly higher (for 0.005 m/s) for the

IFREMER (Ezraty et al, 2006) and double for the OSI-SAF product (Lavergne

et al, 2010). This confirms our hypothesis that the errors of the estimates are

higher over the shelf seas. The in-situ ice drift velocities measured in the Laptev

Sea mid-shelf are relatively higher then in the buoy validation set that was used

by Ezraty et al (2006) and Lavergne et al (2010). A part of this error can be cer-

tanly attributed to the inhomogeneous drift environment in the mid-shelf. The

datasets used in this paper also exhibit frequent peaks in speeds over 0.1 m/s,

while such events in the buoy datasets were not common. This suggests that

despite the larger errors the satellite and simulated velocities are still relatively

good estimates.

The fast ice parameterization has no major impact on the ice drift simulations

apart from additionally reducing the drift speed in the mid shelf region during

the periods with low speeds (in our case: from February on). This effect is

hardly detectable further offshore (Figure 2.5). The correlations of model results

with and without fast ice parameterization with the observational data are

similar (Figures 2.6, 2.7).

NAOSIM was already validated by Martin and Gerdes (2007) with the prod-

uct merged from Quick Scatterometer (QuikSCAT) and Special Sensor Mi-

crowave/Imager (SSM/I) drift estimations provided by CERSAT/IFREMER.

The product has a spatial resolution of 62.5 km and is available for the central

Arctic only. Using monthly means from 3- or 6-day products the validation was

preformed for the period 1992 - 2001. NAOSIM, similarly to other models in the

Arctic Ocean Model Intercomparison Project (AOMIP), slightly overestimated

the drift speeds. The model also had a slight deviation of the drift angles to

the right. On the other hand, NAOSIM on the Laptev shelf underestimates the

drift speed and has a slight angle deviation to the left. This again points at the

systematic differences between the central Arctic and the shelf seas.

The above mentioned AOMIP intercomparison also revealed the differences

between the simulations of different sea ice-ocean coupled models. Although

it has been estimated that the 70 % of short term ice drift variability is ex-

plained by the wind variability (Thorndike and Colony, 1982) and the models

in the project all used identical atmospheric forcing, the resulting sea ice drift

simulations differed substantially (Martin and Gerdes, 2007). To explain the

differences in the model performances Martin and Gerdes (2007) pointed out

the differences in the implementation of the atmospheric and oceanic forcing,
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among them the actual prescription of the wind stress and the implementation

of the ocean-ice drag term.

For the NAOSIM in this case study the correlation of simulated sea ice drift to

the in-situ data in sea ice direction or in individual vector components largely

exceeds the 70 % of the variability that should be explained by the wind vari-

ability (Thorndike and Colony, 1982). This means that not only wind stress,

but also other important contributors to the sea ice momentum balance such

as the ocean-ice drag, the internal sea ice stress and the Coriolis force (Harder

et al, 1998), are realistically implemented in the model. Another evidence for

the role of the ocean and ice dynamics in the model is the spatial variability

between the drift records at the Khatanga mooring location (Figure 2.4) and

in the outer shelf (Figure 2.5). The difference between the both time series is

much larger as expected from a difference between two grid points of the wind

forcing data with a spatial resolution of 1.875◦ (Kanamitsu et al, 2002).

2.9 Conclusions

In this paper we used unique in-situ sea ice drift records from the Laptev Sea

shelf to validate the satellite remotes sensing products and model simulations.

Our results show that:

1. The fast ice parameterization in the model has no major impact on the

sea ice drift simulations and it’s smoothing effect disappears already at

distance larger than 100 km (about 10 model grid points).

2. The standard deviations of the error for the satellite products validated

with the in-situ record are larger on the shelf than in the central Arctic.

The errors for the satellite products and model simulations are in the

range of 0.03 m/s.

3. The sea ice drift remote sensing products compared to the in-situ mooring

records give good estimates for the shelf regions. Especially the high

resolution IFREMER product has a high correlation and low standard

deviation compared to the in-situ data.

4. For the validation of the sea ice drift on the Eurasian shelf simulated

by the eddy resolving sea ice models we recommend the use of the in-

situ data and high resolution satellite retrieved products. Because of the
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differences between the products in our validation we recommend to use

more than one satellite product for the validation.

5. The correlation of simulated sea ice drift to the in-situ data in sea ice

direction or in individual vector components is at least 0.84. To achieve

a more realistic simulations of the drift speed, the calculation of the wind

stress and ocean drag terms should be studied closely. The model drift

simulation have contrary to the satellite products a full temporal and

spatial coverage and the correlations to the in-situ data are high enough

to use them as sea ice drift estimates on the Laptev Sea shelf.
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Abstract

With a numerical model we test the sensitivity of the Arctic Ocean circulation

at mid-depth (212-1200 m) to the change in the sea ice rheology parameter P ∗

that controls the sea ice compressive strength. We show that the reduction of

the sea ice strength via P ∗ within commonly used envelope reduces the sea ice

extent and consequently enhances the ocean surface heat loss in the marginal

ice zone. This leads to cooling of the Atlantic water inflow into the Arctic

Ocean. As a result Eurasian Basin and Amerasian Basin temperatures are in

average cooled by 0.1 ◦C and 0.05 ◦C, respectively. An increased sea ice drift

speed in the central Arctic leads to an enhanced circulation of the anticyclonic

Beaufort Gyre of the Amerasian Basin, which in turn weakens the cyclonic

Atlantic water circulation below and enhances the recirculation of the Atlantic

water in the Eurasian Basin. Consequently the balance of the volume fluxes

through the Arctic gateways changes. Fram Strait net outflow increases by

0.46 Sv, Barents Sea Opening net inflow increases by 0.19 Sv and Davis Strait

net outflow decreases by 0.28 Sv. This may spread the effects of the sea ice

strength change beyond the limits of the Arctic Ocean and into the deep water

convection zones in the North Atlantic. These substantial effects should be

considered also in the model optimization efforts where P ∗ is commonly used

as one of the tuning parameters to achieve better sea ice simulations, whereas

the effects on the ocean circulation are rarely taken into account.

3.1 Introduction

Where the Arctic Ocean is covered by sea ice, its fresh upper ocean waters are

close to the freezing point. At mid-depth the Arctic Ocean has temperatures

up to several degrees above zero, ranging from about 4 ◦C at the inflow in

Fram Strait to 0-1 ◦C in the central Arctic Ocean. The bulk of this warm and

salty water is composed of Atlantic Water (AW) that enters the Arctic Ocean

though the Fram Strait and the Barents Sea (Rudels et al, 1994). The multi-

year surface circulation is characterized by the anticyclonic Beaufort Gyre in

the Amerasian Basin and a Transpolar drift that transports the sea ice and

surface water towards the Fram Strait (light blue arrows on Fig. 2.1). The ex-

tent of the Beaufort Gyre and the orientation of the Transpolar drift change on

multi-year timescale, driven by changes in the large scale wind fields. A high

Arctic Oscillation (AO) leads to small Beaufort Gyre and a Transpolar drift

oriented from the Bering Strait to Fram Strait, while a low AO leads to a large
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Figure 3.1: The model domain and bathymetry. The sea ice and surface cir-
culation is schematically represented by light blue arrows and the mid-depth
circulation by red arrows (for the Arctic Ocean simplified from Rudels et al
(1994) and for the Nordic Seas and North Atlantic from Eldevik et al (2005)).
The oceanographic sections for the comparison with the observational data in
the West Spitzbergen Current and the Kola section in the Barents Seas are
marked by green and purple color, respectively. The black lines and black and
grey boxes mark the sections and regions used in the model analysis.
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Beaufort Gyre and shifts the Transpolar drift axis eastward. In contrast, the

mid-depth circulation of the Atlantic Water Layer (AWL), typically defined by

its potential temperatures as roughly above 0 ◦C below the halocline which is

located at about 200 m depth (300 m depth in the Beaufort Sea) (Carmack et al,

1997; Swift et al, 1997), is characterized by generally cyclonic motion, most of

which occurs in boundary currents along the deep ridges and shelfbreaks (red

arrows on Fig. 2.1, Rudels et al (1994)). Before entering the central Arctic

Ocean basins Fram Strait Branch (FSB) and the Barents Sea Branch (BSB

experience heat loss and are modified by ice melt and freeze-up, the latter also

by river runoff (Rudels et al, 1994). Both AW branches feed the AWL and after

passing through the basins leave the Arctic ocean on return through the Fram

Strait as Arctic Intermediate Water (AIW). The AIW flows into the Nordic

Seas and has an important role in the dense water formation that feeds the

Atlantic Meridional Overturning circulation (Schmitz and McCartney, 1993;

Swift, 1984). The pathways of the AWL circulation as deduced from hydro-

graphic observations were confirmed by dispersion of anthropogenic tracers in

observations and model experiments (Smith et al, 1999; Karcher et al, 2012).

Based on model simulations and few observations, recently questions have been

raised regarding periods of potential breakdown or even reversal of the cyclonic

circulation of the upper part of the AWL in the Amerasian Basin (Karcher et al,

2012). Additionally, recent observational studies report on the warming of the

FSB (Beszczynska-Möller et al, 2012) as well as the AWL in the central Arctic

(Polyakov et al, 2005b; Dmitrenko et al, 2008b).

Along with the changes in the ocean also the Arctic sea ice cover is changing:

it is getting thinner (Kwok and Rothrock, 2009), more mobile (Rampal et al,

2009; Spreen et al, 2011) and the sea ice extent is shrinking (Stroeve et al, 2012).

The reasons for the changes have been investigated in various observational and

modeling studies (Shimada et al, 2006; Perovich et al, 2008; Polyakov et al,

2010; Kattsov et al, 2010; Zhang et al, 2012) that revealed that the observed

changes are complex and connected with numerous feedbacks. In an attempt

to artificially isolate and understand the effects of only one changing sea ice

property, the sea ice strength, we perform a modeling sensitivity experiment by

changing the value of a single rheology parameter and pay specific attention to

the response in the ocean.

It has been hypothesized that the inflow of the warm AW to the Arctic Ocean

has an influence on the decline of the sea ice extent and thickness (Polyakov

et al, 2010; Ivanov et al, 2012). In our study we investigate if there is any

reverse connection: can a change in the Arctic sea ice characteristics influence
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the flow in the AWL and the AIW outflow?

In numerical models sea ice motion is based on employing a rheology (e.g.

Hibler (1979); Hunke and Dukowicz (1997)) that connects the sea ice motion

to the sea ice mechanical properties. One of these properties is the maximal

compressive sea ice strength (P ). In the viscous-plastic rheology introduced by

Hibler (1979) P is described by the formula

P = P ∗h exp(−C∗(1−A)), (3.1)

where h and A are sea ice thickness and concentration, whereas P ∗ and C∗

are sea ice strength parameters that are empirical constants. While changing

C∗ does not have a major effect on the sea ice properties (Juricke et al, 2013),

P ∗ needs to be set in a way to optimize sea ice drift (Hibler and Walsh, 1982;

Kreyscher et al, 2000b) or can be estimated from observational data by cal-

culating the force exerted by the wind over sea ice (Tremblay and Hakakian,

2006). The P ∗ values estimated by Hibler and Walsh (1982) and Kreyscher

et al (2000b) are 15.000 N/m2 and 27.500 N/m2. None of these two values is

extreme, both fit well into the interval of commonly used values (e.g. 5000 -

50000 N/m2 used by Sumata et al (2013); 5000 - 35000 N/m2 used by Juricke

et al (2013)) and are often used in the Arctic sea ice-ocean models (Martin and

Gerdes, 2007). The aim of our research is to examine the sensitivity of the

ocean simulations to the model optimization exercises by changing P ∗ as this

is often overlooked.

The outline of this paper is as follows. In section 3.2 we describe the model and

experimental setup. Section 3.3 contains an assessment of the model perfor-

mance using observations. In sections 3.4, 3.5 and 3.6 we present and discuss

the simulation results. A summary of our findings and final remarks are in

section 3.7.

3.2 Model and sensitivity study setup

Our model is a regional coupled sea ice ocean model based on the Massachusetts

Institute of Technology General Circulation Model code - MITgcm (Marshall

et al, 1997; MITgcm Group, 2014a) with the model domain covering the Arctic

Ocean, Nordic Seas and northern North Atlantic (Fig. 2.1). The horizontal

resolution is 1/4◦ (∼28 km) on a rotated grid with the grid equator crossing
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the geographical North Pole along 30◦W. The model vertical grid consists of

36 unevenly distributed levels. The upper ocean spanning from 0 to 212 m is

resolved in 15 levels with thickness increasing from 2 to 42 m. The mid-depth

ocean spanning from 212 to 1200 m is resolved in 12 levels with thickness in-

creasing from 43 to 100 m. The deep ocean layer spanning from 1200 to 4500

m is resolved in 10 levels with thickness spanning from 100 to 500 m. Thus, the

resulting vertical resolution of the surface layer is enhanced on the account of

the poor resolution in the deep layer. The AWL layer in this study is defined

by the constant depth boundaries of 212 and 1200 m. Vertical mixing in the

ocean interior is parameterized by a K-Profile Parameterization (KPP) scheme

(Large et al, 1994) and tracers (temperature and salinity) are advected with

an unconditionally stable seventh-order monotonicity preserving scheme (Daru

and Tenaud, 2004) that requires no explicit diffusivity. The sea ice model is

a dynamic-thermodynamic sea-ice model with a viscous-plastic rheology de-

scribed by Losch et al (2010) and based on Zhang and Hibler (1997). The

model has a non-linear free surface and sea ice that depresses the surface ocean

layer according to it mass. We avoid numerical issues associated with too thin

ocean surface layer when the ice becomes too thick by using a rescaled vertical

coordinate z* (Campin et al, 2008) that distributes the excursion of the free

sea surface between all vertical levels to the bottom.

The model is initialized by the PHC climatology (Steele et al, 2001) and has ini-

tially no sea ice cover. For the spin-up we run the model for 30 years with atmo-

spheric climatology from the Coordinated Ocean Research Experiment (CORE)

version 2 based on the reanalysis from the National Center for Atmospheric Re-

search/National Centers for Environmental Prediction (NCAR/NCEP) (Large

and Yeager, 2009). Subsequently the model is driven from 1948 to 2007 by real-

istic daily atmospheric data also provided by CORE. Surface salinity in ice free

regions is restored to a mean salinity field (PHC climatology) with a time scale

of 180 days to avoid model drift. River runoff was prescribed for the main Arctic

rivers according to the Arctic Ocean Model Intercomparison Project (AOMIP,

http://www.whoi.edu/projects/AOMIP/) protocol and treated like a surface

volume flux. Open boundaries are formulated following Stevens (1990) and are

located at 50◦N in the Atlantic and just south of the Bering Strait. Tempera-

ture and salinity at the open boundaries are taken from the PHC climatology.

The Bering Strait inflow is prescribed to 0.8 Sv. The stream function at the

open boundary in the Atlantic Ocean is corrected at the end of the run for the

sea surface height fluctuations in the model domain and the model is re-run

with the new stream function.
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In this study we are comparing two identical experiments with the only differ-

ence being the P ∗ parameter of the sea ice model rheology:

• control run (CTRL): P ∗=27.500 N/m2 (the value estimated by Hibler and

Walsh (1982))

• low P ∗ run (WEAK): P ∗=15.000 N/m2 (the value estimated by Kreyscher

et al (2000b))

For our study we have used one of the longest atmospheric reanalysis available

(60 years, 1948-2007) so that the differences between the runs in the sensitiv-

ity study can fully develop. The first 20 years of the simulations (1948-1967)

are considered to be influenced by adjustment processes in the ocean and are

excluded from the calculation of temporal means for the analysis, but are still

shown in the time series to track the development of the differences between

the runs.

The statistical significance of the sensitivity experiment has been assessed for

all the time series and maps which show the difference between the two experi-

ments. We have de-trended the time series to calculate the standard deviation

of the CTRL to test if the time series of the WEAK lay within one standard

deviation envelope. To test if the mean of the difference between the runs is

different from zero we employed a t-test for paired differences of dependent

samples (Wilks, 1995; Von Storch and Zwiers, 2001):

t =
µ̄D

SD/
√
n
, (3.2)

where µD is the mean difference, S2
D is the variance of the differences between

the CTRL and WEAK and n is the size of the sample of differences. We have

compared the obtained t value to the critical value for the significance at 2%

confidence level for a two-sided test.

3.3 Comparison to observations

To demonstrate that our model simulation is able to capture the relevant ob-

servations, we perform a comparison of CTRL to observational data. We focus

on comparing the sea ice results, since the thin layer of sea ice is sensitive to

the changes in both layers that it divides, ocean and atmosphere and is as such
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an indicator of the coupled system performance. Since the beginning of the

satellite remote sensing era the sea ice observations have become widely avail-

able and here we can address the sea ice concentration, sea ice thickness, sea

ice volume and sea ice drift. For the mid-depth ocean fewer long time series

are available and we compare the temperature time series at the Fram Strait

and Barents Sea Opening and the circulation of the water masses in the model

domain.

The sea ice concentration data for the model validation are obtained from EU-

METSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF): Global

sea ice concentration reprocessing dataset (OSI-SAF, 2013). The accuracy of

the OSI-SAF sea ice concentration during the winter is estimated to 5-10% (in

the MIZ up to 12%) and to up to 20% during the summer. The model tends

to overestimate the sea ice extent in the Marginal Ice Zone (MIZ) throughout

the year; it also overestimates the summer sea ice concentration on the Arctic

Shelf, and underestimates it in the Central Arctic (Fig. 3.2).

We compare the model sea ice thickness to the ICESat (Ice, Cloud, and land El-

evation Satellite) sea ice thickness maps (Zwally et al, 2002). The ICESat maps

are only available for the central Arctic where the sea ice thickness is greater

than 1 m. For 2007, which is the last year of our model run the maps are avail-

able for the February/March and October/November (Fig. 3.3, panels a and c).

The comparison shows that our model captures the general sea ice distribution

pattern (Fig. 3.3, panels b and d), but has too much ice in the Canadian Basin

and too little in the area directly adjacent to the Canadian Archipelago and

Northern coast of Greenland, both in winter and in fall. The large uncertainty

of the ICESat sea ice thickness (0.7 m) (Kwok and Cunningham, 2008) prevents

a more detailed comparison.

The time series of the sea ice volume data are obtained from the Pan-Arctic

Ice-Ocean Modeling and Assimilation System (PIOMAS) version 2.1 (Schweiger

et al, 2011). PIOMAS is a sea ice ocean coupled model with assimilated sea ice

concentration observations and sea surface temperatures in the ice free regions.

Since the large spatial and temporal coverage of the sea ice thickness data is not

available, PIOMAS sea ice volume is a commonly used dataset used to estimate

the performance of the models that do not assimilate any observational data.

The time series of the Arctic sea ice volume on Fig. 3.3, panel e show that

our model captures very well the sea ice volume decline of the recent decades.

Our model simulations have higher sea ice volume as the PIOMAS, despite

the fact that our model domain does not extend to the North Pacific which is
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Figure 3.2: March (a,b) and September (c,d) mean (1988-2007) sea ice concen-
tration observations by OSI-SAF and the differences model minus OSI-SAF.
On b and d: blue color means model is underestimating sea ice concentration,
red color means model is overestimating sea ice concentration.
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Figure 3.3: Sea ice thickness comparison: a - ICESat February/March 2007, b
- CTRL February/March 2007, c - ICESat October/November 2007, d - CTRL
October/November 2007, e - Monthly sea ice volume for CTRL, for CTRL with
the sea ice thickness capped at 10 m (model 10 m) and for the PIOMAS model.
The temporal means are printed in the colors corresponding to the legend.
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the case for the PIOMAS. The reason for this overestimation is the very thick

ice that accumulates in our model in the straits of the Canadian Archipelago.

Similarly to our model, PIOMAS has problems reproducing thick sea ice along

the Canadian and Greenland coast (Schweiger et al, 2011). If we limit the sea

ice thickness used in the sea ice volume calculation to the maximum of 10 m,

our simulations get even closer to the PIOMAS dataset.

We have compared the sea ice drift of our model to the monthly satellite remote

sensing products provided by the National Snow and Ice Data Center (NSIDC)

(Fowler et al, 2013) and Centre ERS d’Archivage et de Traitement (CERSAT)

(Girard-Ardhuin and Ezraty, 2012). We are using two datasets as it has been

pointed out before e.g. by Martin and Gerdes (2007) and recently by Sumata et

al (submitted to the JGR) that the ice drift products might differ substantially.

The histograms of March and September sea ice drift speed show that our model

is biased towards high drift speeds (Fig. 3.4). The differences between the model

and the satellite drift products are in places smaller than the differences between

the NSIDC and CERSAT products which underlines the high uncertainties in

the sea ice drift observations.

Hydrographic data for the Kola section (1958-2007) are from the Knipovich

Polar Research Institute of Marine Fisheries and Oceanography (PINRO, http:

//www.pinro.ru). The section comprising 4 CTD stations is located in the

Murman Current along 33◦30′E between 71◦N and 73◦N. The data is averaged

over 0 to 200 m depth. While our simulation has a low temperature bias of

about 1 ◦C (Fig. 3.5, panel a), the linear correlation between the model and

observations is high, 0.8 and significant at 1% confidence level.

To compare the simulated temperature of the Fram Strait inflow we have

chosen a region in the West Spitzbergen Current (WSC) between 78◦30′ -

79◦12′N and 5◦ - 9◦E. We used hydrographic data from the World Ocean

Database 2009 (http://www.nodc.noaa.gov/OC5/WOD), HydroBase3 (http:

//www.whoi.edu/science/PO/hydrobase) and from cruises of the Alfred We-

gener Institute and the Norwegian Polar Institute (Schauer et al, 2008; Hughes

and Holliday, 2006) from 1956 to 2007. For each station, the vertical mean of

50-500 m was obtained after interpolating temperature linearly to fixed depths

in 10 m steps. Station means were averaged over each summer (May to Octo-

ber). By choosing a large depth interval we captured the whole WSC core in

the observations and in our model. Panel b on Fig. 3.5 shows that despite the

low linear correlation between the model and observations, 0.28, the modeled

values lie inside the error bars of the observations and depict a warm phase in
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Figure 3.4: Histograms of March (a) and September (b) sea ice drift speed
for period 1992-2007 for the satellite remote sensing products (CERSAT and
NSIDC) and our model. Bin width is 0.5, begining at 0.5 cm/s.
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Figure 3.5: a: Vertical mean 0-200 m annual temperature at the Kola section
in the central Barents Sea. b: Vertical mean 50-500 m summer temperature
in the WSC. Error bars on the observational time series denote one standard
deviation. No error is provided for years with less than five measurements. No
error information is provided to the Kola section. The temporal means from
1958 to 2007 are printed in the colors corresponding to the legend.

the 1990s, followed by a cool phase and the strong warming period in recent

years.

The AWL circulation in our model (arrows on Fig. 3.8, panel a) is closely

following pathways described by Rudels et al (1994). The warm mid-depth

water is entering the Arctic Ocean from the Nordic Seas through the Fram

Strait and Barents Sea Opening. Part of it circumnavigates the Eurasian Basin

and exits again on the western side of the Fram Strait, while the other part

flows over the Lomonosov Ridge into the Amerasian Basin where it follows the

topographical features of the shelf break (e.g. Chukchi Cap) flows north of the

Canadian Archipelago and Greenland and exits in the Fram Strait.

Despite a bias in the sea ice extent and the Kola temperature time series the

overall model performance is reasonable. Some of the biases in the simulation

can be attributed to the biases in the atmospheric forcing as demonstrated by
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e.g. Hunke and Holland (2007) and Lindsay et al (2014).

3.4 Sea ice and ocean surface

Figs. 3.6 and 3.7 show the differences between the CTRL and the WEAK

experiment. All maps are March means (1968-2007) as the differences in sea

ice winter extent and thickness are largest for the performed runs. Differences

based on the annual means are similar to the winter patterns (not shown). The

value of P ∗ determines P and reducing P ∗ almost by half has a similar effect on

P (Fig. 3.6, panels a and b) despite an increase of the sea ice thickness (Fig. 3.7,

panels a and b). Fig. 3.6, panels c and d show the mean sea ice motion in CTRL

and WEAK minus CTRL. In WEAK the anticyclonic motion of the sea ice in

Beaufort Gyre is enhanced in comparison to CTRL, whereas the Transpolar

Drift is slower. Overall, the ocean surface stress, calculated as sum of the wind

stress and internal ice stress (Losch et al, 2010) is higher in WEAK (color

shading of the same panels). The highest ocean surface stresses occur in the ice

free ocean and in the East Greenland Current, where sea ice is the most mobile.

However, the highest relative differences between the experiments (calculated

as ocean stress difference between the WEAK and CTRL normalized by local

mean ocean stress in CTRL) occur in the relatively slow ice of the central

Arctic.

Lower P ∗ in WEAK increases the compressibility of the sea ice and through

the differences in the sea ice motion this is reflected also in the sea ice thickness

(Fig. 3.7, panels a and b) and concentration (Fig. 3.7, panels c and d). Due to

enhanced converging motion of sea ice and consequently sea ice thickening we

find in WEAK thick ice accumulation in the Beaufort Gyre, along the Canadian

Archipelago and along the Greenland coast. Some smaller areas of increased

thickness are seen north of Bering Strait and around Svalbard and Severnaya

Zemlya. The MIZ in WEAK has lower sea ice concentration related to reduced

sea ice export from the Arctic to the northern Nordic Seas and the Barents

Sea (not shown). This pattern is reflected in the surface heat flux differences

of WEAK minus CTRL (Fig. 3.7, panels e and f). Locally in the MIZ the

differences amount up to 40 W/m2.
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Figure 3.6: Sea ice and ocean surface properties: left - CTRL, right - WEAK
minus CTRL: a,b: compressive sea ice strength (P ); c,d: ocean surface stress
magnitude (color) sea ice drift (vectors - only every 5th vector is shown, on panel
a velocities are capped at 1 cm/s for better comprehension). All variables are
March means for the period from 1968 to 2007. Hatched polygons cover the
areas where the differences between WEAK and CTRL are significant at 2%
confidence level for a two-sided test.
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Figure 3.7: Sea ice and ocean surface properties: left - CTRL, right - WEAK
minus CTRL: a,b: sea ice thickness; c,d: sea ice concentration; e,f: surface
heat fluxes. The hatched polygon covers the area where the differences between
WEAK and CTRL are significant at 2% confidence level for a two-sided test.
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3.5 Mid-depth ocean

Turning to the differences in the AWL (212 - 1200 m) we find all Arctic basins

to be considerably cooler in the case of WEAK (Fig. 3.8). The differences

are especially large in the Eurasian Basin, but the signal spreads also into the

Amerasian Basin. In WEAK also the temperatures in the boundary current in

the Nordic Seas are much lower. Compared to the AWL circulation in CTRL

the circulation in the Eurasian Basin is enhanced and in the Amerasian Basin

the dominant flow is across the basin from the Lomonosov ridge towards the

Alaskan Coast. The cyclonic gyre of the AWL in the Amerasian Basin is pushed

away from the Eurasian shelfbreak, reduced in size, but enhanced in velocity.

Additionally a small anticyclonic gyre develops in the Amerasian Basin between

Chukchi Cap and the Lomonosov Ridge. The gyre is reaching to the bottom

of the AWL (not shown) and is returning the water mass back to the Eurasian

Basin (visible also as vectors on Fig. 3.8, panels b and e).

The temporal development of the AWL temperatures reveals that the differences

between WEAK and CTRL develop already in the first years of the simulations

(Fig. 3.9). During the first year differences occur in the Nordic Seas, mostly

in the MIZ, and in the Barents Sea. During the second year the differences

are visible in the outflow through St. Anna Trough, while in the Nordic Seas

recirculation and propagation of the cold signal southward beyond the Denmark

Strait becomes apparent. During the third year the difference signal has traveled

around the whole cyclonic gyre in the Nordic Seas and reached the bifurcation

point of the Norwegian Current to the BSB and FSB north of the Scandinavian

Peninsula. The propagation of the negative (cold) signal is not uniform and also

positive differences occur locally. Fig. 3.9, panels a and b show that the signal

reaches the Eurasian Basin partly through Fram Strait and partly through

the St. Anna Trough while a minor part reaches the basin through the strait

between Svalbard and Franz-Josef Land. Integrated over the entire basins a

cooling trend is apparent in both basins, though significantly more pronounced,

and with an earlier onset in the Eurasian basin as compared to the Amerasian

Basin (Fig. 3.10, panel a). The cooling that develops off the Barents Sea

shelf and in the Nordic Seas spreads with the cyclonic circulation of the AWL

throughout the Eurasian Basin. After 4 to 5 years the time series of temperature

north of Severnaya Zemlya (downs. SAT on Fig. 3.10 panel b) show the arrival

of a strong cooling. The signal recirculates along the Siberian shelf slope and

the Lomonosov Ridge and reaches the area upstream of Fram Strait 15 years

into the simulation (ups. FS Fig. 3.10, panel b). The temperatures in the Fram
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Figure 3.8: Temperature and velocity means (1968-2007) in the AWL (212 -
1200 m): a - CTRL, b - WEAK, c - WEAK minus CTRL. Hatched polygons
cover the areas where the differences between WEAK and CTRL are significant
at 2% confidence level for a two-sided test. Speed mean (1948-2007) difference
between WEAK and CTRL in the: d - surface (0-50 m), e - AWL (212-1200
m). Velocities are represented by vectors. Only every 5th vector is shown. To
enhance comprehension of the maps only velocities in areas with the surface
layer and AWL thicker than 50 m are shown.
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Figure 3.9: Development of the AWL (212 - 1200 m) temperature differences
WEAK minus CTRL in during: a - first, b - second and c - third year of the
simulations.

Strait outflow (FS outflow on Fig. 3.10, panel c) remain predominately cooler

after 20 years into the simulation. The temperatures in the St. Anna Trough

inflow (SAT inflow on Fig. 3.10, panel c) become cooler in WEAK already

during the first years of the simulation. The temperatures in the Fram Strait

inflow (FS inflow on Fig. 3.10, panel c) are fluctuating and no stable offset in

temperature between WEAK and CTRL occurs, but after about 10 years into

the simulation the inflow is mostly colder in the case of WEAK, likely enhanced

by the recirculation of the colder temperature signal in the Nordic Seas. The

WEAK time series of temperature in the Eurasian and Amerasian Basin are

outside of the one standard deviation envelope around the CTRL time series.

For all of the time series, the mean difference of the means between the WEAK

and CTRL is significant at the 2% confidence level.

Mean (1968-2007) temperature sections at the St. Anna Trough and the Fram

Strait (Fig. 3.11) show that at both gateways water masses are cooler in WEAK,

with the exception of the uppermost layers in the Fram Strait. In the St. Anna

Trough the AW core which originates from the FSB partially enters the trough

on the western slope, recirculates and exits on the eastern side together with

the BSB. In the case of WEAK, the cooler FSB thus contributes to the cooler

AW leaving St. Anna Trough to feed into the AWL.

The changes in the FSB and BSB temperatures are connected also to the change

in the volume fluxes across the Arctic Straits (Fig. 3.12). WEAK has stronger

net Barents Sea Opening inflow (by 0.19 Sv), stronger net Fram Strait outflow

(by 0.46 Sv) and weaker net Davis Strait outflow (by 0.28 Sv) comparing to

CTRL. The mean difference of the mean volume fluxes is significant at the 2%

confidence level.
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Figure 3.10: Development of the AWL (212 - 1200 m) temperatures: a - time
series of vertically averaged temperature for the AWL in the Eurasian (EB) and
Amerasian Basin (AB), b - for the box area in the Eurasian Basin downstream
the St. Anna Trough (downs. SAT) and box area in the Eurasian Basin up-
stream the Fram Strait (ups. FS), c - for the upper AWL (212 - 700 m) inflow
to the Arctic Ocean at the St. Anna Trough (SAT inflow) and Fram Strait (FS
inflow) and lower AWL (700 - 1200 m) outflow at the Fram Strait (FS outflow),
f - for the box area in the Eurasian Basin downstream the St. Anna Trough
(downs. SAT) and box area in the Eurasian Basin upstream the Fram Strait
(ups. FS). The 1968-2007 means and standard deviations are printed in the
colors corresponding to the legend.
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Figure 3.11: Mean temperature (1968-2007) sections at the key regions: St.
Anna Trough and Fram Strait: CTRL (a,c) and WEAK minus CTRL (b,d).
Both sections are oriented zonally and reader looking into the page is facing
northwards.
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Figure 3.12: Time series of the net volume fluxes at the major Arctic Straits:
Fram Strait (FS), Barents Sea Opening (BSO), Davis Strait (DS). c - sea surface
height difference between the Arctic Ocean north of the Canadian Archipelago
and the Labrador Sea. The temporal means and standard deviations 1968-2007
are printed in the color corresponding to the legend.
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3.6 Connecting the sea ice and mid-depth ocean

In the Barents Sea and in the northern Nordic Seas WEAK has lower sea ice

concentration than CTRL. Large areas of the ocean exposed directly to the

atmosphere in the Barents Sea lead to a high heat loss at the ocean surface and

to strong cooling of the AW that sinks to the bottom and forms the dense part

of the BSB (Fig. 3.13, panels a, b and c). Although the areal and temporal

mean difference between CTRL and WEAK in surface heat fluxes in the Barents

Sea is only 2.8 W/m2 (Fig. 3.13, panel b), this alone can lead to a substantial

difference in the bottom water temperature. Calculating the total amount of

heat Q for a mean year and grid box area and inserting it to formula Q =

cp ∗m∗∆T (where m is mass, cp = 3994 J/kg/K is heat capacity), will in a 200

m deep water column yield in a temperature change ∆T of 0.1 K. This matches

the mean temperature difference between WEAK and CTRL in the St. Anna

Trough inflow into the Eurasian Basin (SAT inflow on Fig. 3.10, panel c).

While the net surface outflow (0-170 m) from the Barents Sea into the Eurasian

Basin through the section between Svalbard and Severnaya Zemlya is very sim-

ilar in both runs, the net deep outflow (170-212 m) is increases in WEAK with

respect to CTRL and indicates a stronger dense water production on the Bar-

ents Sea shelf (SSZ surface and SSZ bottom on Fig. 3.13, panel d). At the

same time, Barents Sea Opening volume fluxes (BSO inflow on Fig.3.13 panel

d) show a stronger net inflow into the Barents Sea. The mean difference of

the means is significant at the 2% confidence level, except for the net surface

inflow between Svalbard and Severnaya Zemlya. The relation of stronger BSB

formation and lower sea ice extent in the Barents Sea has been pointed out

already in a sensitivity study by Harms et al (2005).

The FSB in WEAK is cooled by enhanced surface heat loss in the northern

Nordic Seas, just as the BSB is conditioned in the Barents Seas. The cooling

in the northern Nordic Seas in case of WEAK is apparent down to the deep

part of the Fram Strait inflow (700-1200 m). This is a consequence of cooling

of the whole boundary current in Nordic Seas (Fig. 3.9, panels a, b and c) and

the recirculation of the colder water in the Nordic Seas. When the colder water

mass recirculates towards the bifurcation in the Norwegian current lead to an

additional decrease in temperature. We interpret the intensified cooling in the

deep WSC starting about 20 years into the simulation as consequence of the

arrival of colder water from the BSB reaching the Fram Strait as a part of the

AIW. The maximum in temperature difference between WEAK and CTRL in
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Figure 3.13: Time series of the annual mean sea ice and ocean variables for
the Barents Sea: a - sea ice extent, b - surface heat flux, c - bottom (170-212
m) water temperature, d - net bottom (170 m - bottom) volume outflow into
the Arctic between Svalbard and Severnaya Zemlya (SSZ deep), net surface (0 -
170 m) volume outflow into the Arctic between Svalbard and Severnaya Zemlya
(SSZ surface) and Barents Sea Opening net inflow into the Barents Sea (BSO
inflow). The temporal means and standard deviations 1968-2007 are printed in
the colors corresponding to the legend.
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the WSC in the Fram Strait is at the lower AWL depth (Fig. 3.11, panel d).

Finally the temperature difference between CTRL and WEAK in the Eurasian

Basin stabilize by 0.2 K.

The AWL circulation is not only governed by the inflow at the Arctic gateways,

but also by local processes in the central Arctic, e.g. by surface stresses imposed

by the combination of wind stress and sea ice motion. In WEAK the faster sea

ice drift in the anticyclonic Beaufort Gyre (Fig. 3.6, panel d) leads to an

intensification of the oceanic Beaufort Gyre (Fig. 3.8, panel e). Yang (2009)

observed a faster sea ice motion and a gradual intensification of the Beaufort

Gyre in the 1977-2006 that could not be attributed to the changes in the wind

stress, but rather to the changes in the sea ice dynamical properties. The

intensification of the Beaufort Gyre is accompanied with a steepening of the

slope in the halocline and as a consequence of Ekman pumping also a deepening

of the halocline (see e.g. Rabe et al (2011) and Karcher et al (2012)). This

leads to a hampering of the underlying cyclonic circulation of the AW boundary

current. A similar process has been described by Karcher et al (2012). They

found that a strong anticyclonic Beaufort Gyre in the Amerasian Basin after

2004 led to a reduction and partial stopping of AW inflow from the Eurasian

Basin into the Amerasian Basin. Instead, an intensification of the recirculation

of AW in the Eurasian Basin along the interior ridges took place. A similar

situation appears in our study where a part of the AW entering Amerasian

Basin from the Eurasian Basin is returned due to a small anticyclonic gyre that

develops in the Amerasian Basin between Chukchi Cap and the Lomonosov

Ridge (Fig. 3.8, panel e). Also here the loop of the AWL in the Eurasian Basin is

enhanced and leads to an intense BSB core marked by cool temperatures looping

along the Eurasian Basin side of the Lomonosov Ridge towards the Fram Strait.

We suggest that the arrival of this plume about 20 years into the simulation

(Fig. 3.10, panel c) triggers an adjustment in the fluxes through Fram Strait,

together with the recirculation signals in the Nordic Seas. Thus, the net volume

fluxes through both entrances to the Arctic, Fram Strait and the Barents Sea

Opening change and necessarily lead to an adjustment of the volume fluxes

through Davis Strait. The decrease of the Davis Strait outflow follows the

increase in the East and then West Greenland Current fluxes originating from

the Fram Strait outflow and the resulting sea surface rise in the Labrador Sea

(Fig. 3.12, panel b), as described by McGeehan and Maslowski (2012). The

mean sea surface height difference between WEAK and CTRL is significant at

2% confidence level. The difference is high in the 3 decades between 1968 and

1998 which matches the timing of enhanced differences in the volume fluxes
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between the straights (Fig. 3.12, panel a).

3.7 Summary and conclusions

We have presented a study in which we reduce the sea ice strength parameter

P ∗, commonly used as a tuning parameter in sea-ice models, to investigate the

sensitivity of the ocean circulation to this change. As a result, we find a number

of modifications of the Arctic Ocean circulation from the surface down to lower

AWL depths. Primary results of the imposed reduction of ice strength is a lower

sea ice concentration in the MIZ and more mobile sea ice in the central Arctic.

This leads to an enhanced surface heat loss in the MIZ, stronger dense water

formation that contributes to colder and more abundant BSB that cascades

down the St. Anna Trough and is fed by an intensified inflow from the Barents

Sea Opening. The FSB in the WSC, which is warmer than the BSB, is also

experiencing enhanced surface heat loss in the MIZ. This leads to a cooling of

the Eurasian Basin of about 0.2 K. In addition, cooling of the mid-depth Nordic

Seas along the entire basin’s margin, including the Denmark Strait sill region,

takes place. This is a consequence of an intensified heat loss in the Nordic

Seas MIZ in addition to a colder BSB which, after recirculation in the Arctic

Ocean, reaches Fram Strait as a part of the AIW. The loop closes when after

recirculation inside the Nordic Seas, the part of the cooling signal which moves

into the WSC enters the Arctic Ocean and is another contributor to the cooler

AWL there.

In the Arctic Ocean the reduced sea ice strength leads to a more mobile sea

ice in the central Arctic which in turn leads to an enhancement of the anticy-

clonic Beaufort Gyre circulation of the sea ice and the upper ocean. The latter

suppresses the cyclonic AW circulation in the Amerasian Basin and reduces

the flow of the AW boundary current beyond the Lomonosov Ridge. Instead

the shorter loop of the AW in the Eurasian Basin enhances. Changes also ap-

ply for the volumetric balance between the Arctic straits. In the case of the

weaker sea ice stronger net inflow (by 0.19 Sv) in the Barents Sea takes place

in conjunction with stronger net outflow (by 0.46 Sv) in the Fram Strait and

weaker net outflow (by 0.28 Sv) in the Davis Strait. The transport in Fram

Strait adjusts to the propagation of the cooling in the FSB and the BSB and

leads to further adjustments in the Davis Strait transports when the anomalies

propagating in the West Greenland Current reach the Labrador Sea and rise

the local sea surface height. Using an atmosphere-ice-ocean coupled model Wu



67 3.7. SUMMARY AND CONCLUSIONS

et al (2006) and Rinke et al (2013) demonstrated a connection of the Barents

Sea sea ice cover reduction to the Beaufort Sea atmospheric circulation, while

in the present study sea ice concentration in the Barents Sea and ice-ocean

circulation in the Beaufort Gyre are triggered solely by changes in the P ∗.

In addition to the local changes in the circulation and hydrography in the

Arctic Ocean as a consequence of changes in ice strength, we found changes in

the mid depth AIW exiting the Arctic Ocean in the Fram Strait and changes

in the southward boundary current in the Nordic Seas from Fram Strait to

the Denmark Strait. These may have an impact on the Atlantic Meridional

Overturning Circulation (AMOC) since they directly feed into overflows over

the Greenland-Scotland sills. The discovered change in the ratio of the Fram

and Davis Strait volume transports might result in a change of the water mass

characteristics in the deep water formation areas in the Labrador Sea that also

feed the AMOC.

These significant changes in the mid-depth ocean temperature and volume

fluxes show that those model optimization exercises in which P ∗ is used to

improve ice extent and thickness simulations should be done with care and

with an assessment of the imposed changes in the ocean properties.

We also believe that from this study we can learn about possible consequences

of a weakening of the sea ice strength, as an element of ongoing reductions in

the Arctic sea ice cover (Stroeve et al, 2012) and acceleration in speed (Rampal

et al, 2009; Spreen et al, 2011). Our experiments suggest that the decrease of

the sea ice cover in the MIZ has a potential to milden the observed AW inflow

warming (Polyakov et al, 2010; Beszczynska-Möller et al, 2012).
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Abstract

Landfast ice covers large surface areas of the winter Siberian Seas. The immobile

landfast ice cover inhibits divergent and convergent motion, hence dynamical

sea ice growth and re-distribution, decouples winter river plumes in coastal seas

from the atmosphere and positions polynyas at the landfast ice edge offshore. In

spite of the potentially large effects, state-of-the-art numerical models usually

do not represent landfast ice in its correct extent. A simple parametrization of

landfast ice based on bathymetry and internal sea ice strength is introduced its

effects on the Arctic Ocean are demonstrated. The simulations suggest that the

Siberian landfast ice impacts the Arctic halocline stability through enhanced

brine production in polynyas located closer to the shelf break and by re-directing

river water to the Canadian Basin. These processes strengthen the halocline in

the Canadian Basin, but erode its stability in the Makarov and Eurasian Basin.

4.1 Introduction

One of the dominant characteristics of the winter Arctic shelf seas is landfast ice

(also land-fast, fast or shore-fast ice), sea ice that is immobile and mechanically

fastened to the coast or to the sea floor. As there is no compressive deformation,

landfast ice grows only thermodynamically and rarely exceeds thicknesses of

1.5 m (Romanov, 2004). It can extend a few (Beaufort Sea, Chukchi Sea,

Western Laptev Sea) to several hundred kilometers from the coast into the

ocean (Kara Sea, Eastern Laptev Sea, East Siberian Sea, see Fig. 4.1). The

mechanisms that determine the landfast ice formation, extent and decay are

not fully understood. To complicate things further, these mechanisms differ

regionally. In the Chukchi and Beaufort Sea the landfast ice edge is found at

relatively shallow depth of 18 m (Mahoney et al, 2007), while on the Eurasian

shelf this depth is between 25 and 30 m (Dmitrenko et al, 2005b; Proshutinsky

et al, 2007). In the Chukchi and Beaufort Sea the landfast ice is immobilized

behind a row of bottom reaching pressure ridges (Mahoney et al, 2007). In

the Kara Sea the landfast ice is formed behind a row of small islands parallel

to the coast (Divine et al, 2004). At the landfast ice edge in the Laptev and

East Siberian Seas grounded pressure ridges are rare (Reimnitz et al, 1994;

Eicken et al, 2005). Proshutinsky et al (2007) proposed that the landfast ice

edge occurs where the warm intermediate Atlantic water reaches the surface

after upwelling at the shelfbreak. König Beatty and Holland (2010) attributed

the landfast ice extent to the mechanical properties of the sea ice. Strong
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Figure 4.1: The Arctic Ocean and its marginal seas. The sea ice and surface
circulation is schematically represented by light blue and mid-depth circulation
by red arrows (simplified from Rudels et al (1994)), respectively. The landfast
ice edge is depicted by the magenta dash line. The coastal current in the Laptev
and East Siberian Seas is schematically represented by the black arrows. The
black lines and box mark the sections and regions used in the model analysis.

freshwater and brackish sea ice (Dethleff et al, 1993; Eicken et al, 2005) formed

in low salinity shelf seas with high river water content might ground at wide and

shallow sand banks (Dethleff et al, 1993; Reimnitz et al, 1994) and from there

extend with long tongues toward the landfast ice edge. Tides in the region are

very weak and the tidal amplitudes of up to 10 cm in the Southeastern Laptev

Sea (Fofonova et al, 2014) might not be large enough to deform the extensive

landfast ice cover.

Especially in the Siberian Seas, where landfast ice has the largest extent, it is

thought to have three roles:

1. Landfast ice limits the sea ice thickness by preventing sea ice compres-

sion (e.g. pressure ridges) in convergent motion of sea ice. By the same

token it lowers the sea ice production by preventing sea ice divergence

and lead formation. If these processes are not adequately represented in

a numerical model, simulated thickness fields are not realistic (Johnson

et al, 2012).



CHAPTER 4. ROLE OF THE LANDFAST ICE... 72

2. An immobile lid of the landfast ice effectively decouples the inner shelf

from the atmosphere and affects the river water distribution. The seasonal

runoff of the large Siberian rivers (Ob, Lena, Yenisei) determines the water

masses of the shallow Siberian shelf. In a summer with strong onshore

winds large parts of the summer maximal discharge can be held back on

the inner shelf until winter (Dmitrenko et al, 2005a). The large amount

of the fresh river water in the Arctic surface layer enhances the ocean

stratification.

3. The extent of landfast ice determines the areas of low sea ice concentration—

so called flaw polynyas (also flaw lead polynyas or flaw leads)—along the

landfast ice edge during offshore wind conditions. The water in these

polynyas is more saline than directly at the coast, where ocean salinities

remain low due to fresh river water inflow and consequently more brine

is rejected during sea ice production. The brine formed in the winter

shelf seas maintain, along with the cool water formed by winter convec-

tion north of the Barents Sea (Rudels et al, 1996), the Arctic halocline

(Aagaard et al, 1981; Martin and Cavalieri, 1989; Cavalieri and Martin,

1994a; Winsor and Björk, 2000). The cold and saline water flows off the

shelves and sinks along the shelf break where it feeds into the halocline

layer (Fig. 4.2), which decouples the cold Arctic surface layer from the

warm intermediate-depth Atlantic layer. The surface layer stays cold with

temperatures close to the freezing point due to a seasonal sea ice melting

- freezing cycle and the layer is fresh due to a strong river runoff. In con-

trast, the ocean temperature at mid-depth is up to several degrees above

zero. This warm and saline Atlantic water enters the ocean through the

Nordic Seas (Fig. 4.1).

Landfast ice has been found important for the accurate simulation of the sea

surface height (Proshutinsky et al, 2007) and sea ice thickness Johnson et al

(2012). Although landfast ice is also important for the processes maintaining

the Arctic halocline, it is usually not properly represented in state-of-the-art

sea ice-ocean models. In this study we demonstrate the effects of the landfast

ice for the Arctic halocline.

The outline of this paper is as follows. In section 4.2 we describe the numerical

model for the sensitivity study. In Section 4.2.1 we describe the details of

the landfast ice parametrization. In sections 4.3, 4.4 and 4.5 we present and

discuss our results. A summary of our findings and final remarks are given in

section 4.6.
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Figure 4.2: Arctic Ocean vertical stratification and winter processes maintaining
the Arctic halocline.

4.2 Model setup

Our model is a regional coupled sea ice - ocean model based on the Mas-

sachusetts Institute of Technology General Circulation Model code - MITgcm

(Marshall et al, 1997; MITgcm Group, 2014b) with a model domain covering

the Arctic Ocean, Nordic Seas and northern North Atlantic. The horizontal

resolution of is 1/4◦ (∼28 km) on a rotated grid with the grid equator passing

through the geographical North Pole. The model has 36 vertical levels unevenly

distributed in a way that the surface layer is well resolved at the cost of the

poor resolution in the deep layer. The shelf bottom topography has realistic de-

tails that allow dense brine to flow downslope and off the shelf. Vertical mixing

in the ocean is parameterized by a K-Profile Parameterization (KPP) scheme

(Large et al, 1994) and tracers (temperature and salinity) are advected with

an unconditionally stable seventh-order monotonicity preserving scheme (Daru

and Tenaud, 2004) that requires no explicit diffusivity. The sea ice model is a

dynamic-thermodynamic sea-ice model with a viscous-plastic rheology (Losch

et al, 2010). The model has a non-linear free surface and sea ice that depresses

the surface ocean layer according to its mass. We avoid numerical issues asso-

ciated with too thin surface layers when ice gets very thick by using a rescaled

vertical z*-coordinate (Campin et al, 2008) that distributes the excursion of

the free sea surface between all vertical levels to the bottom. The same model

set-up has been used by Itkin et al (2013) except that now the vertical back-

ground diffusivity has been lowered to 10−6 m2/s as recommended by Nguyen

et al (2009) to achieve a better defined Arctic halocline.
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The model is initialized by the PHC climatology (Steele et al, 2001) and has

initially no sea ice cover. For a spin-up we run the model for 30 years forced by

the atmospheric climatology of the Coordinated Ocean Research Experiment

(CORE) version 2 based on a reanalysis of the National Center for Atmospheric

Research/National Centers for Environmental Prediction (NCAR/NCEP) (Large

and Yeager, 2009). Subsequently the model is driven from 1948 to 1978 by

daily atmospheric data also provided by CORE. Our model experiments start

in 1979 and continue until 2010. They are forced by the atmospheric reanalysis

– The Climate Forecast System Reanalysis (NCEP–CFSR) (Saha et al, 2010).

Surface salinity in ice free regions is restored to a mean salinity field (PHC

climatology) with a time scale of 180 days to avoid model drift. River runoff

was treated like a surface volume flux and it was prescribed for the main Arctic

rivers according to the Arctic Ocean Model Intercomparison Project (AOMIP,

http://www.whoi.edu/projects/AOMIP/) protocol. Open boundaries are for-

mulated following Stevens (1991); they are located at 50◦N in the Atlantic and

just south of the Bering Strait. Temperature and salinity at the open boundaries

are taken from the PHC climatology. The Barents Strait inflow is prescribed as

0.8 Sv and the stream function at open boundary in the Atlantic Ocean derived

from a North Atlantic simulation (Gerdes and Köberle, 1995) and modified to

balance the net volume flow in the model domain.

4.2.1 Landfast ice Parameterization

The mechanisms that determine the landfast ice formation and extent depend

of the specific region and are not fully understood. There have been many

attempts to model or parameterize landfast ice. Lieser (2004) developed a pa-

rameterization based on the ratio of sea ice thickness and total water column

depth. For a specified threshold ratio the grid cells assigned as landfast ice re-

mained at rest and surface momentum flux into the ocean was set to zero. His

approach in a 1/4◦ (28 km) model resulted in too thick landfast ice that even

survived the summer. A similar procedure was used in higher horizontal resolu-

tion models (3-12 km) by Johnson et al (2012) and Rozman et al (2011). Both

studies use prescribed landfast ice areas obtained from bathymetrical limits or

observations. In the Kara Sea, where the landfast ice forms over deep waters

behind a row of coastal islands, Olason (2012) successfully modeled landfast

ice by adjusting the internal sea ice strength parameters in the viscous-plastic

rheology of Hibler (1979).

Our model grid does not resolve small islands and shallow topographical features
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in the Siberian Seas, where the landfast ice might get grounded. Therefore we

designed a simplified and uniform parametrization based on König Beatty and

Holland (2010) that takes into account water column depth and landfast ice

internal strength. The latter is justified by a sharp salinity gradient between

the shallow shelf waters of the Kara, Laptev and East Siberian Sea and the

deep ocean. In 1992, Dethleff et al (1993) documented freshwater ice up to

100 km seaward off the Lena Delta. In 1999 the freshwater and brakish sea ice

with salinity below 1 was confined to the coastal waters adjacent to the eastern

Lena Delta with water depth less than 10 m, while river water on average still

contributed 62 % of the landfast ice further offshore in the southeastern Laptev

Sea (Eicken et al, 2005). .

In the widely used sea ice strength parametrization (e.g. Hibler (1979); Zhang

and Hibler III (1997)) compressive strength P depends just on the sea ice

thickness h and concentration A:

P = P ∗h exp(−C∗(1−A)), (4.1)

where the empirical sea ice strength parameters, P ∗ = 2750N/m2 and C∗ = 20

are constants.

The landfast ice parametrization used in this study takes into account the un-

resolved shallow topographical features inside the maximal landfast ice edge

mark (25 m) and increased sea ice internal strength attributed to the lower

sea ice salinity in the same area by setting the P ∗ to the double of the drift

ice. Such landfast ice would still fail under strong offshore wind if the distance

between the coastline and 25-m-bathymetrical boundary is large. To prevent

this we amended the sea ice rheology in the regions shallower than 25 m with

sea ice tensile strength T following König Beatty and Holland (2010):

ζ =
P + T

2∆
, (4.2)

η =
P + T

2∆e2
= ζ/e2, (4.3)

and

p = P − T, (4.4)

where ζ is bulk viscosity, η is shear viscosity, e = 2 is eccentricity constant and

p is the pressure term. This moves the elliptical yield curve in the principal
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Figure 4.3: The effect of the landfast ice parametrization on the mean April
(2000-2010) sea ice concentration (a,b) and motion (c,d). a,c - CTRL, b,d -
LF. Speed 1 mm/s is contoured by blue line. Mean April landfast edge from
the AARI dataset (1997-2006) is depicted by gray dash line.

stress space into the I. quadrant, when the water column is shallower than 25

m and leaves the curve unmodified otherwise. T = P
2 , which is consistent with

the estimates by Tremblay and Hakakian (2006).

For the sensitivity study we compare a control run (CTRL) and a landfast ice

run (LF) that differ only in this additional landfast ice parameterization.

4.3 Impact of the landfast parameterization on the

sea ice

In the Laptev and East Siberian Sea the landfast ice cover forms in December,

reaches its maximal extent in April, breaks up into fully drifting ice in May

or June and melts in summer. Starting in May, the atmospheric temperatures

are too warm to have a significant amount of brine produced in the polynya.

Hence, in this study we define wintertime as the months December to April. In

our model landfast ice breaks up completely in early summer. At atmospheric

temperatures above zero and when A drops below 1, sea ice looses its internal

strength exponentially making P ∗ irrelevant, because P depends exponentially

on A.

If we define coastal sea ice with drift speeds below 1 mm/s as landfast ice, then

the parametrization in LF comparing to CTRL leads to substantially larger
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areas of landfast ice in April, during the annual maximal extent (Figure 4.3

panels a and b). The simulated landfast ice is slow enough for polynyas to form

at its seaward edge (Figure 4.3 c and d). The 1 mm/s contour and polynyas in

LF agree better with the 1997-2006 landfast ice edge produced by the Arctic

and Antarctic Research Institute, Saint Petersburg, Russia (Smolyanitsky et al

(2007), hereafter AARI dataset). In LF, however, the Laptev Sea the polynya is

located too far away from the coast. This might be a consequence of the coarse

model resolution and the high P ∗ value. In the Kara Sea our parametrization

has only a minor effect because the shelf sea ice is much deeper than the 25 m

threshold we use in the parametrization and the small offshore islands there are

located in areas where the surrounding seas exceed the depth of 150 m.

The effect of the parametrization is clearly visible in the sea ice thickness maps

(Fig. 4.4). LF sea ice is thinner by up to 30 cm under the regions affected by

the landfast ice parametrization in the Kara, Laptev, East Siberian, Chukchi

and Beaufort Seas. The difference pattern accurately matches the landfast ice

extent from the AARI dataset (Fig. 4.3). The largest negative differences are

in the polynya at the landfast ice edge in the East Siberian and Laptev Seas,

while in the coastal regions of the Laptev Sea differences are positive to reflect

the erroneous polynya location in the CTRL.

The thinner sea ice in the landfast ice area in LF is a consequence of exclusive

thermodynamic sea ice growth. The thermodynamical growth itself is also

different between the runs (Fig. 4.4): in both cases the highest growth rates

occur in the polynyas. In LF this is further offshore than in CTRL.

As a volume of water is thermodynamically turned into sea ice, salt is ex-

pelled from this volume and remains in the ocean. Because this process in-

creases the salinity in the surface ocean, one can define a ’virtual salt flux’

Sflux = FWfluxS, where FWflux is freshwater flux and S is the salinity of

the surface water minus 4 where the salinity is equal or higher than 4. This

approximates the constant sea ice salinity of 4 in our model. The resulting

Sflux differences resemble the difference pattern in the thermodynamic growth

(Fig. 4.4). Because Sflux depends also on the sea surface salinity its is relatively

low in the East Siberian Sea although the sea ice production there is high. Sflux

is an order of magnitude higher and opposite in sign compared to the virtual

salt flux generated by the sea surface salinity restoring (not shown). Salinity is

only restored to climatology in the ice free part of the model grid cell.

The largest differences in the winter sea ice cover between the runs are found in

the Laptev and East Siberian Seas. This is the area with the greatest landfast
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Figure 4.4: Mean winter (2000-2010) sea ice thickness, thermodynamical growth
and salt flux from the sea ice thermodynamical growth: a - CTRL, b - LF minus
CTRL.
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ice extent over the shallow shelf and hence our parametrization has the largest

effect there. In time series, we compare the contributions of wintertime sea ice

concentration, thickness, sea ice production, ocean surface salinity and Sflux

to wintertime dense shelf water production in both simulations (Fig. 4.5). The

mean sea ice concentration over the Siberian Seas is high and very similar in

both simulations. This is not surprising as the differences between the runs

are mainly in the positioning of the polynyas within the Siberian Seas. The

sea ice concentrations are a little lower in CTRL as the drifting sea ice allows

more small leads. Sea ice is about 10 cm thinner in LF than in CTRL. This

is a consequence of less ridging through convergent motion in the landfast ice

area and less advection of sea ice into the region. In contrast, there is more

thermodynamically grown sea ice in LF. While the polynyas in LF are shifted

offshore into more saline sea water, a higher fraction of fresh river water reduces

the salinity in the shelf seas. Towards the end of the runs these counteracting

effect leads to a similar surface salinity in polynyas in both runs. Still, higher

sea ice production leads to higher Sflux in LF.

The differences in the sea ice production and Sflux between CTRL and LF are

geographically distributed as expected so that we conclude that this sensitivity

study can be used to estimate the importance of the landfast ice for the Arctic

Ocean halocline stability.

4.4 Impact of the landfast parameterization on the

Arctic halocline

In this section we compare the end of winter (April) climatologies (2000-2010)

because of the high seasonality of the mixed layer depth in the Arctic. First

we examine the buoyancy, b = −g ρ−ρ0ρ0
at the top of the halocline (25 – 30 m).

The differences between LF and CTRL show regional effects of the landfast

ice parametrization with less buoyancy in LF in the Canadian Basin and more

buoyancy centered in Makarov and Eurasian Basins (Fig. 4.6a and b).

To understand the relevance of these differences to the water column stability

we examine three oceanographic sections; each section runs through one of the

major Arctic basins: Canadian, Makarov and Eurasian as shown on Fig. 4.1

and 4.6. In the first section running from the Eurasian coast over the Wrangel

Island to the Ellesmere Island (Fig. 4.7) there is increased salinity by locally up

to 0.6 at the halocline layer in LF (25 – 30 m), while the surface layer tends to
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Figure 4.5: Mean winter (December-April) sea ice time series for the Laptev
Sea and East Siberian Sea. CTRL and LF are represented by solid and dash
lines, respectively: a - mean sea ice concentration and thickness with total sea
ice production; b - sea surface salinity of the areas with the production higher
than 30 cm, salt flux resulting from the production and river water content.
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Figure 4.6: Mean April (2000-2010) buoyancy at the top halocline (25-30 m):
a - CTRL, b - LF minus CTRL. Black lines mark the profile sections across
Canadian, Makarov and Eurasian Basins (Figs. 4.7, 4.9, and 4.10). Gray line
marks a section for the time series at the Eurasian shelf break (Fig. 4.8).

be fresher than in CTRL. Especially in the surface layer, the differences are not

homogeneous and locally have alternating signs. Along with the increased tem-

perature at the top halocline depth this suggests this layer is fed by relatively

warm shelf bottom water mixed with brine originating from the sea ice pro-

duction. This influence is supported by the Hovmöller diagrams of differences

at the section across the pathway of the water masses from the East Siberian

Sea to the Canadian Basin (Fig. 4.8 a and b). In LF, this shelf water has

continuously larger salinity at the halocline depth (panel a), while the surface

layer is typically fresher which generally is associated with higher river water

content (panel b). The salinity and river water fraction in the surface layer

differences are not constant in time. Notably the salinity difference is positive

in the early 1990s and in the mid 2000s. Both events are accompanied with a

negative difference in river water fraction. The differences in temperature and

salinity described above have consequences for the stratification. The buoyancy

frequency N2 is larger in LF than in CTRL pointing to a higher stability at the

winter mixed layer depth.

In contrast, the second section which runs from East Siberian Sea to the North-

ern Greenland (Fig. 4.9) shows a different pattern with higher salinities by up to

0.8 in the surface layer that reflects a decreased river water content in LF com-

pared to CTRL. The salinity at the depth of the halocline only increases only

by about 0.1, such that the overall stability of the upper halocline is reduced.

The third section runs from the Laptev Sea to the Fram Strait (Fig. 4.10). Here
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the differences between the runs are similar as in the second section, but not

as pronounced. While there is still less river water in the surface layer, the

halocline layer has more river water in LF than in CTRL. Here, the landfast

ice parametrization has no clear effect on the halocline stability. This is again

supported by the Hovmöller diagrams of differences at the section across the

pathway of shelf water from the Laptev Sea (Fig. 4.8 c and d). In LF, the sur-

face layer is mostly more saline, while the time series of the river water fraction

differences show a strong seasonal cycle with typically less river water in the

surface layer in the winter and more in the summer (not shown).

4.5 Discussion

Landfast ice simulated in LF grows almost exclusively thermodynamically and

allows very little ice production due to convergent motion (dynamical sea ice

growth). Therefore the coastal regions covered by landfast ice in LF are thin-

ner than in CTRL. To some extent, the arbitrary choice of the 25 m isobath

for turning on the parameterization place the polynyas in the approximately

observed positions.In contrast, in CTRL polynyas are located directly on the

coast. The shift of the polynyas from the coast in CTRL toward a realistic land-

fast ice edge location in LF moves the brine production closer to the shelfbreak

and into more saline ocean where more brine is produced per sea ice volume.

To determine if the amount of brine produced in our simulations is realistic

we first compare the available sea ice production estimates for the Laptev Sea.

In LF during 2000s a mean of 144 km3 of sea ice is produced per winter (not

shown, but Fig. 4.5a shows winter sea ice production for the East Siberian

and Laptev Sea, roughly half of which is produced in that Laptev Sea. That

is above Rabenstein et al (2013)’s estimate of 94±27km3 for the southeastern

Laptev Sea for winter (late December till mid-April) 2007/2008. Willmes et al

(2011) estimate a lower 55±15 km3 for the entire Laptev Sea during winter,

but these authors only took into account ice production in areas with sea ice

thinner than 20 cm.

Our results indicate that with an appropriate representation of landfast ice more

river water is stored in the Siberian Seas. While in CTRL more river water is

dispersed by the wind acting through the drifting sea ice, in LF this river

water is protected from the wind by the immobile shield of the landfast ice and

remains on the shelf. From there the river water plume is driven northeastward

by geostrophic currents (black arrows on Fig. 4.1) into the Canadian Basin
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Figure 4.7: Mean April (2000-2010) salinity, temperature, river water fraction
and buoyancy frequency along the section across the Canadian Basin.
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Figure 4.8: Hovmöller diagrams of monthly mean salinity and river water frac-
tion differences between LF and CTRL: average over an oceanographic section
at the Eurasian shelf break north of the East Siberian Sea (a,b) and at the
Laptev Sea shelf break (c,d). Sections are marked by gray lines on Fig. 4.1
and 4.6.)
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Figure 4.9: Mean April (2000-2010) salinity, temperature, river water fraction
and buoyancy frequency along the section across the Makarov Basin
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Figure 4.10: Mean April (2000-2010) salinity, temperature, river water fraction
and buoyancy frequency along the section across the Eurasian Basin.
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and less river water reaches other parts of the Arctic. In LF, in summers with

strong offshore winds the increased amounts of the river water stored on the

shelf during the winter are driven northwards into the European and Makarov

Basins. Still, these river water pulses do not change the sign of the salinity

differences in the surface layer and and do not affect the halocline stability.

The combined effect of increased brine export to the Central Arctic and redis-

tribution of the river water from the winter shelf in LF compared to the CTRL

changes the buoyancy at the Arctic halocline. In the Canadian Basin the sur-

face layer freshens locally due to increased river water content as a consequence

of the landfast ice parametrization, while the halocline layer becomes saltier

due to the difference in the brine production in the Siberian polynyas. Both

surface and halocline depth differences make the halocline in LF stronger. Our

simulation supports Nguyen et al (2012)’s conclusions that the Canadian Basin

halocline is maintained by the dense water formed on the Eurasian shelf.

In the Makarov and Eurasian Basin the difference signal is dominated by the

increase in the surface salinity that is again the consequence of the redirection

of the river water to the Canadian Basin. Consequently the already weak

halocline in this sector of the Arctic (Boyd et al, 2002; Rudels et al, 2004)

is further eroded in LF. The effect of the landfast ice resembles that of the

Great salinity anomaly (Steele and Boyd, 1998; Johnson and Polyakov, 2001)

observed in the early 1990s, where the changes in the wind circulation enhanced

the river water export to the Canadian Basin and increased brine production

in the Siberian Seas polynyas that eroded the Arctic halocline over substantial

parts of the Arctic Ocean. During the Great salinity anomaly and similarly also

in the mid 2000s landfast ice in LF has an effect outweighing the anomalous

offshore winds and the differences in surface salinity and river water content of

the shelf waters originating form the East Siberian Sea during these two periods

change the sign (Fig. 4.8a and b).

Yu et al (2014) detected a general decrease of the Arctic landfast ice extent

of 7±1.5 % per decade in the period from 1976 till 2007. In the Chukchi,

Laptev and East Siberian Seas also the landfast ice season is getting shorter,

reflecting the general negative trend in the summer sea ice extent in the Siberian

Seas (Comiso et al, 2008; Stroeve et al, 2012). According to our results this

trend should have implications for the halocline stability. The reduction in the

extent and duration in the Siberian Seas would lead to a weaker halocline in the

Canadian Basin, but conversely also to a stronger halocline in the Makarov and

and Eurasian Basins. Especially for the latter two basins the Atlantic water
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layer has been reported to be warming (Polyakov et al, 2010). In such a case,

the loss of the landfast ice would inhibit the heat transport from the Atlantic

Water layer to the surface and delay the further rapid sea ice loss in the Arctic.

4.6 Summary and conclusions

An accurate representation of the landfast ice in a sea ice-ocean coupled model

has an impact not only on the winter sea ice and brine production but also on

the river water distribution. The landfast ice in the LF shields the river water

that remains on the shelf in winter from the winds and promotes northeastward

flow of the river water with the coastal currents. We have been able to show this

in a sensitivity study with a simple-to-implement landfast ice parametrization

that generated landfast ice over extensive areas of the Laptev and East Siberian

Seas. In LF more river water reaches the Canadian Basin and less the Makarov

and Eurasian Basin. Also the polynyas are located closer to the shelf break.

From there more brine reaches the halocline depth of the Canadian Basin. The

surface salinity decrease due to the river water and the halocline salinity increase

due to the brine both strengthen the halocline in the Canadian Basin, whereas

in the Makarov and Eurasian Basins the surface salinity increase erodes the

already low halocline stability. Consequently in the latter two basins where the

Atlantic water layer is still relatively warm and the halocline is already eroded,

extensive landfast ice further weakens the halocline and promotes entraining

Atlantic water into the ocean mixed layer that might lead to sea ice melt.

Based on our simulations we recommend to include our landfast ice parametriza-

tion to those regional numerical models that address the halocline stability and

shelf - deep basin exchanges. The stratification modified by brine produced in

the polynyas and the river water that supplies the Arctic Ocean with sediments,

nutrients, and pollutants are key factors for biogeochemical processes.
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Chapter 5

Summary and Concluding

Remarks

In this thesis our key hypothesis was that a change in the sea ice motion causes

significant changes in the ocean properties and circulation.

1. For the Siberian Seas remote sensing products give a good estimate of

the sea ice drift direction, but compared to a point in-situ measurements

underestimate the sea ice drift speed. The model of a high spatial resolu-

tion as NAOSIM is able to reproduce a reasonable sea ice motion in the

coastal areas.

2. Exact landfast ice parametrization can be achieved by prescribing a land-

fast ice mask. But due to the unavailability of such mask for a clima-

tological simulation (landfast ice exhibits internannual variability) and

unknown trends of the landfast ice extent in the future we decided for

a more dynamical landfast ice parameterization where the sea ice in the

shallow regions has tensile strength (resistance to divergence) and a dou-

bled compressive strength (resistance to convergence and deformation).

3. Landfast ice in the model simulation shifts the flaw polynya, location of

strong winter sea ice and brine production away from the coast in the

more saline ocean waters and more brine reaches the Arctic halocline.

This strengthens the halocline that shields cold surface waters and sea ice

from the warm AWL underneath.

4. A general change in the sea ice internal strength leads to substantial

changes in the ocean properties and circulation. Under weaker and more

89
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mobile sea ice AWL temperatures are reduced by 0.2 K. The Eurasian

basin circulation in the AWL is increased and this leads to the volume

transports adjustments at the Arctic Straits.

5. The results from this sensitivity study can be understood as test of the

two modes in the Arctic sea ice: prior to the recent climate change and

thereafter.

This confirms our hypothesis. The slowing down and stopping of the sea ice

motion over parts of the Siberian Seas by the means of the landfast ice results

in changes of salinity of the Arctic halocline layer. The increase in the sea

ice motion by means of decreasing the sea ice internal strength (P) results

in changes of the AWL temperature and volume transports across the Arctic

Straits. The latter effect shows that the Arctic sea ice properties and motion

are not only important for the Arctic ocean, but may have consequences also

for the global ocean circulation.

5.1 Outlook

A logical continuation of the work done for this thesis would be to downscale

the MITgcm to a higher resolution and preform first a validation of the sea ice

motion for the whole Arctic and then also a similar validation of the near coast

sea ice motion in the Siberian Seas as it was done with NAOSIM in the Paper

1.

The landfast ice parametrization should be tested and possibly adjusted for the

high resolution of the MITgcm. Further improvements towards a more physi-

cally based landfast ice parametrization would be to define the P* parameter

as a function of the brine volume. In engineering sea ice strength is commonly

defined as a function brine volume vb (Timco and O’Brien, 1994; Timco and

Weeks, 2010) in the empirical formulas:

vb = Si(
49.185

|Ti|
+ 0.532), (5.1)

where Si and Ti are the sea ice salinity and temperature, respectively. The uni-

axal sea ice compressive strength σc for a horizontally loaded first year columnar

ice is defined as:



91 5.1. OUTLOOK

σc = 37(ε̇).22(1−
√

vT
270

), (5.2)

where ε̇ is the strain rate and vT = vb+va is the total porosity which takes into

account also the volume of the air bubbles in the ice (va). The tensile strength

σt for horizontally loaded samples is approximated by:

σt = 4.278vT
−.6455. (5.3)

Another interesting task would be to explore the trends in the landfast ice

duration and extent in the scope of the future climate changes. The current

parametrization is sea ice concentration dependent which is in turn a function

of the air temperature. This means that in the future warmer climate the land-

fast ice season would be appropriately shortened. The atmospheric forcing for

the future climate could be obtained from one of the Coupled Model Intercom-

parison Project (CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/) coupled cli-

mate models participating in the Intergovernmental Panel for Climate Change

(IPCC) assessment reports.

Our research focuses of the importance of the sea ice internal stress for the sea

ice mobility, but the sea ice motion depends on other factors as well. In the sea

ice momentum balance equation 1.3 sea ice motion depends on the τa and τo -

air and ocean stress. The intensity of the air-ice and ocean-ice is defined by the

drag coefficients. While in nature the sea ice surface and underside are roughed

by ridges, melt ponds and ice floe edges, in the state-of-the-art climate models

the drag coefficients are kept constant in time and space without considering

their dependence on the ice surface and bottom topography. Changing this

values should have a significant influence on the sea ice motion.
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(2013) A combined approach of remote sensing and airborne electromagnetics

to determine the volume of polynya sea ice in the Laptev Sea (vol 7, pg 947,

2013). CRYOSPHERE 7(4):1107–1108, DOI {10.5194/tc-7-1107-2013}

Rampal P, Weiss J, Marsan D (2009) Positive trend in the mean speed and

deformation rate of Arctic sea ice, 1979-2007. Journal of Geophysical Re-

search: Oceans 114(C5), DOI 10.1029/2008JC005066, URL http://dx.doi.

org/10.1029/2008JC005066

Reimnitz E, Dethleff D, Nurnberg D (1994) Contrasts IN Arctic shelf sea-ice

regimes and some implications - Beaufort Sea versus Laptev Sea. Marine

Geology 119(3-4):215–225, DOI 10.1016/0025-3227(94)90182-1, 4th Interna-

tional Conference on Paleoceanography (ICP IV), KIEL, Germany, Sep. 21-

25, 1992

Rigor I, Colony R (1997) Sea-ice production and transport of pollutants in the

Laptev Sea, 1979–1993. Science of the Total Environment, The 202(1-3):89–

110

Rigor I, Wallace J, Colony R (2002) Response of sea ice to the Arctic Oscillation.

Journal of Climate 15:2648–2663

Rinke A, Dethloff K, Dorn W, Handorf D, Moore JC (2013) Simulated Arc-

tic atmospheric feedbacks associated with late summer sea ice anomalies.



BIBLIOGRAPHY 104

Journal of Geophysical Research: Atmospheres 118(14):7698–7714, DOI

10.1002/jgrd.50584, URL http://dx.doi.org/10.1002/jgrd.50584

Rollenhagen K, Timmermann R, Janjic T, Schröter J, Danilov S (2009) As-
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