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Zusammenfassung

Die zentrale Fragestellung meines Dissertationsprojektes „Ökonometrische Un-
tersuchung internationaler Finanzmärkte“ ist der Zusammenhang globaler Fi-
nanzmärkte in Bezug auf Informations- und Volatilitätsübertragung. Mit Hilfe
verschiedener ökonometrischer Methoden werden gezielt Dynamiken offenge-
legt und einige der in der Literatur als Standard angesehenen Phänomene
hinterfragt.

Der erste Teil behandelt die sogenannten Informations- und Volatilitätsspill-
overs. Von zentraler Bedeutung ist hier die Tatsache, dass aus globaler Sicht
der Handel an Börsen als kontinuierlich angesehen werden kann. Aus diesem
Grund sollte es möglich sein, Informations- und Volatilitätsspillovers um den
Erdball in Übereinstimmung mit der Abfolge aus Öffnen und Schließen der
Märkte in Asien, Europa und den USA nachzuvollziehen. Der zweite Teil der
Arbeit setzt sich mit Kointegration von Aktienmärkten und den speziellen Her-
ausforderungen von Finanzmarktdatensätzen auseinander. Kointegration ist
eine ökonometrische Methode, welche herangezogen wird, um den Integrations-
grad internationaler Finanzmärkte zu messen. Die Ergebnisse sind jedoch sehr
heterogen. Wir zeigen, dass internationale Finanzmärkte nicht kointegriert
sein können, sofern das „random walk“-Modell für Aktienpreise zutrifft. Mit
Hilfe einer Simulationsstudie werden Gründe herausgearbeitet, warum Kointe-
grationstests andere Schlussfolgerungen nahelegen können. Schließlich widmet
sich der letzte Teil der Dissertation der Informationsübertragung von den USA
nach Europa zur Zeit der Eröffnung der US-amerikanischen Märkte. Es wird
gezeigt, dass Nachrichten aus den USA (welche durch Quantile der Rendite-
verteilung des S&P 500 identifiziert werden) einen signifikanten Einfluss auf
die Renditen und die Volatilität des DAX ausüben und sowohl schnell als auch
effizient von deutschen Händlern verarbeitet werden.

Schlagwörter:
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Summary

The central problem of the dissertation project “Econometric Analysis of In-
ternational Financial Markets” is the question how financial markets around
the globe are linked in terms of information and volatility transmission. Us-
ing different econometric techniques some of the dynamics are unraveled and
explanations for phenomena taken for granted in the literature so far are pro-
posed.

More precisely, the first aspect covered concerns information and volatility
spillovers around the globe, the central aspect being that from a global point
of view stock trading is continuous. We therefore state that information and
volatility spillovers are traceable around the globe in accordance with the se-
quence of opening and closing of financial markets in Asia, Europe and the
USA. The second subject deals with cointegration of financial markets and the
peculiarity of financial data. Cointegration is an econometric technique which
is quite frequently used to asses the degree of integration of financial markets.
The results are, however, far from being clear-cut. We show that international
financial markets are not cointegrated given the commonly used random walk
model for stock prices is true. By means of simulation studies we elaborate
reasons why the results of cointegration tests can be misleading.

Finally we take a closer look at the information transmission from the USA to
Europe at the time when the US markets open. We show that news originating
in the USA (which are identified using quantiles of the S&P 500 index return
distribution) have a significant impact on the returns and the volatility of the
German DAX and are processed rapidly and efficiently by German traders.

Keywords:
financial markets; spillovers; cointegration; volatility; event study
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Chapter 1

Introduction

The Asian crisis, the mortgage crisis, the Lehman Brothers bankruptcy: all
these events seemingly originated in one global area or even in one country
alone, but still ended in turmoil on the stock markets around the globe. This
comes as no surprise as both stock and commodity markets all over the world
are highly interdependent due to the complex and interwoven network of trade
and finance. The benefit of such close relatedness is that traders in all markets,
and in stock markets in particular, benefit from a wide range of hedging and
diversification opportunities. On the downside, however, any surprising or
even shocking event may induce a substantial increase in the volatility of prices
and, thus, threaten not only local but also global trading. Furthermore, such
events are usually associated with huge losses on the stock markets, which is
of course in sharp contrast with the traders’ goal of maximizing their profit.
It is therefore vital for all traders to be aware of the interdependence of stock
markets. Knowledge of not only how, but also how fast and how efficiently
information and volatility is transmitted between stock markets around the
globe, is therefore beneficial for the individual trader as well as for the market
as a whole.

This study uses different econometric approaches to characterize the infor-
mation transmission mechanisms between global financial markets as well as
to describe their interrelatedness in general. Chapter 2 which was written
in collaboration with Robert Jung, analyses the transmission of return and
volatility spillovers between international financial markets. We are particu-
larly interested in creating a model that captures the characteristic sequence
of the opening and closing of financial markets around the globe. For this pur-
pose, we use stock market index futures of three representative indices, namely
the Dow Jones Euro Stoxx 50 future, the S&P 500 future and the Nikkei 225
future as proxies for the three major economic regions Europe, USA and Asia.
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Returns (which are cleaned for volatility influences) and realized volatilities are
developed separately with a structural vectorautoregressive model, thereby ac-
counting for the particular, sequential time structure of opening and closing
of the stock markets where the futures are traded. Within this framework,
we test hypotheses in the spirit of the Granger-causality tests, investigate the
short run dynamics in the three markets using impulse response functions, and
identify leadership effects through variance decomposition. Our key results are
as follows. Not unexpectedly, return spillovers are found to be weak and short
lived, while volatility spillovers are more pronounced and persist. Information
from the home market is essential for both returns and volatilities, while the
contribution from foreign markets is less pronounced in the case of returns than
it is in the case of volatility. Our results are sound with respect to the way
the volatility series is computed. Possible gains when applying this modeling
strategy as opposed to separate modeling of the time series are illustrated by
a short forecast evaluation and an application to the stock market crash on
January 14 and 15, 2008.

A further method which is widely used in the empirical financial literature to
model the interdependence of financial markets is that of cointegration. The
hypothesis is that stock markets are highly interdependent due to the pres-
ence of common stochastic trends. More precisely, the long run behavior is
assumed to be identical for all stock markets while short run deviations are
possible. An issue here is how to identify this relationship. Financial data very
often violate the assumptions which are required to derive most cointegration
tests. In Chapter 3 we therefore briefly investigate the influence of one particu-
lar characteristic of financial data, namely heteroscedasticity, on the Johansen
(1991) test for cointegration, the latter being one of the most widely used tests
in this context. We use two different cointegration concepts—stationary and
stochastic—and evaluate the performance of the Johansen Trace and Maximum
Eigenvalue test following some heteroscedasticity and correlation assumptions.
We find that the tests in general are quite reliable. However, in some circum-
stances they seem more apt in detecting cointegration if the data are indeed
cointegrated, than in not rejecting cointegration if the data are not cointe-
grated.

Chapter 4 then revisits the cointegration framework in the context of inter-
national financial markets. Although intuitively this econometric technique
seems very attractive to model market relationships, we show that interna-
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tional financial markets are not cointegrated if the widely-used random walk
model is indeed the appropriate and true model to describe stock prices on
a daily basis. We take up and extend previous work by Granger (1986) and
Richards (1995) and show that empirical findings are compatible with our
theoretical framework. We conclude that results on cointegration of financial
markets in previous studies might be due to the lack of power of the testing
framework. This is carried out by means of an empirical experiment where
we use 28 stock market indices and test for bivariate cointegration. We then
simulate indices according to our theoretical model and try to mimic the out-
come of the empirical study. We identify common random walk components,
correlated innovations and heteroscedasticity as the driving forces behind our
empirical results. In particular heteroscedasticity, in conjunction with other
features, is a factor which deceives the Johansen cointegration test.

In Chapter 5 we take a closer look at the German stock market and investi-
gate how it is impacted by the opening of the stock markets in the USA. In
contrast to the spillover analysis in Chapter 2, we now study the intraday influ-
ences from the USA on Germany. The methodological approach here is using
an event study framework to study the impact on returns. Volatility will be
measured as realized volatility and analyzed with nonparametric techniques.
For the purpose of this study, it is necessary to distinguish days with good US
news surprises from days with surprising bad US news. We use quantiles of the
S&P 500 index return distribution to identify them and to separate them from
days when there is no surprising news content. In order to check the adequacy
of this selection process, these days are matched with events of macroeconomic
importance. We find that the German market reacts to US news announce-
ments which typically precede the opening of the New York Stock exchange.
The opening of the market itself and the beginning of trading in the USA is not
found to affect German stock prices. On average days, there is no measurable
impact on the DAX. Furthermore, once important news is transmitted it is
absorbed rapidly into prices. As far as volatility is concerned, we find that the
news days identified are marked by significantly higher volatility, both in the
morning and in the afternoon, in comparison to days without any news events.
Indeed, it is of no importance whether the news is good or bad. Moreover, we
can attribute the reported w-shape of volatility (Masset, 2008) in the German
stock market to the unexpected news which originate in the USA: on average
days, DAX volatility is u-shaped, a feature which is commonly found for stock
markets around the globe. If we consider solely the news days, volatility peaks
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around half past two in the German afternoon trading.

Chapter 6 reviews the results and draws conclusions to the study.



Chapter 2

Financial Market Spillovers Around The
Globe

2.1 Introduction

A little while ago the interdependence of international financial markets once
again was highlighted by the breakdown of the US mortage financing system.
A country-specific peculiarity has spread its effects across the global financial
markets. With the burst of the housing bubble and the subsequent decline
of the value of mortage assets the so-called mortgage-backed securities (MBS)
as well as collateral debt obligations (CDO) deteriorated significantly. Inter-
national diversification which is usually intended to lower a portfolio’s risk
position led to the infection of financial markets around the world. Owners
of MBSs and CDOs had to face a significant loss. The crisis found (for the
time being) its peak in the stock market crash 14th and 15th January 2008.
The way it developed, starting in Asia and not even in the USA, shows how
interwoven and sensitive financial markets are.

The investigation of these linkages between international financial markets and
in particular the transmission of shocks between them has been in the focus of
academic researchers and financial practitioners alike for quite some time now.
The workhorse in the empirical financial literature for joint modeling of return
and volatility transmissions has been the class of (multivariate) Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) models which date
back to the seminal papers of Engle (1982) and Bollerslev (1986). Important
early contributions to this literature are Susmel and Engle (1994) and Lin,
Engle, and Ito (1994). Recent papers include Savva, Osborn, and Gill (2005),
Baur and Jung (2006), and Wongswan (2006). Typically, these papers concen-
trate on two financial markets or geographical regions. Moreover, they employ
data from (mostly) daily or weekly stock market indices.
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The present study deviates from this literature in three important ways. First,
we propose separate models for the mean and the volatilities of financial market
returns. In particular, we use realized volatilities as suggested by Andersen,
Bollerslev, Diebold, and Labys (2001) and estimated daily volatilities as pro-
posed by Bollen and Inder (2002). Second, we seek to model the short run
dynamics of financial markets around the globe using structural vectorautore-
gressive (SVAR) models. This enables us to test various hypotheses in the spirit
of Granger-causality testing. Moreover, we can use impulse response functions
to analyze short-run dynamics in the system of global financial markets. Fi-
nally, we can adopt variance decomposition to identify leadership effects in
both the mean and volatility system. Third, we base the empirical analysis on
index future data instead of the underlying indices to overcome the widely doc-
umented stale quote problem. While some of these issues have been addressed
in the literature on financial market linkages before, it is the combination em-
ployed in our paper that is novel. To illustrate the possible gains which arise
from the combination of the proposed methods we perform a short forecast
evaluation.

Global or around-the-clock shock transmission has been employed by Diebold
and Yilmaz (2009) who analyze 16 global stock markets using a Garman and
Klass (1980) type estimator for volatility. They assume the latter to be sta-
ble across one week, an assumption which remains questionable. They then
estimate separately a model for the returns and the volatility measure and
find that roughly 30% of innovation in returns and volatility is due to for-
eign markets. In contrast to that, Polasek and Ren (2001) used a multivariate
VAR-GARCH-in-mean model, estimated on daily stock index return data, to
trace the effects of only three markets on each other: Germany, the USA and
Japan. Despite the appealing model the authors seem to ignore the sequence
of trading as they allow only lagged influences between the markets. As they
use daily data, there should be contemporaneous influence from one market
to the next, depending on how the day t is defined. This is due to the fact
that trading on the various financial markets around the globe takes place se-
quentially: when the stock exchanges in Asia close, the European exchanges
open and later in the same day the American stock exchanges open. This all
happens within the very same trading day and has to be accounted for. We
intend to solve this issue by using a structural VAR model instead of a reduced
form model only. This allows us to capture the (artificially) contemporaneous
effects in the sequence of opening and closing of stock markets. Koutmos and
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Booth (1995) recognized this issue and introduced the distinction of calendar
time and trading time when analyzing the spillovers between the New York,
London and Tokyo stock exchanges. The authors estimate their multivariate
EGARCH-model in trading time thus aligning trading around the globe to the
same time index. Our intention, however, is to model the spillover effects in
calendar time. This allows us to explicitly account for the sequential trading
around the globe.

Using a similar methodology like Polasek and Ren (2001) but index future data
instead of the underlying stock market indices Pan and Hsueh (1998) examine
the linkages between two markets only: the USA and Japan. They perform
contemporaneous correlation as well as spillover analysis. Regarding the latter,
they find weak, positive mean spillover effects and negative variance spillover
effects from the Japanese trading to the USA. In the other direction, they find
a negative variance, but no mean spillover effect from the USA to Japan.

When working with intra-day data as we do in this study, Hamao, Masulis,
and Ng (1990) introduced the useful distinction between overnight returns
(close-to-open) and daytime returns (open-to-close) and, associated with it,
contemporaneous correlation and spillover effects. The latter seeks to measure
the impact of daytime returns or volatilities of a chronologically upstream
market on the daytime returns or volatilities of the following market(s). Thus,
spillovers are calculated on the basis of non-overlapping return time spans
enabling us to identify possible causal effects in the sense of Granger (1969).

For the subsequent analysis we rely on proxies for three economic regions in
the world. As we are interested in around-the-globe information transmission,
we select a representative stock index future for Europe, America and Asia
which, taken together, almost fully cover 24 hours in terms of trading time.
We draw on the Dow Jones Euro Stoxx 50 future as a representative for the
European market, the S&P500 future to represent the market in the United
States and the Nikkei 225 future as a proxy for the Asian market.

The study continues as follows. Section 2.2 presents the econometric model
along with the variables used for estimation as well as the specific time struc-
ture of the analysis. Section 2.3 describes the data and section 2.4 presents
the empirical results. Section 2.5 presents a short forecast application of the
spillover model to the crisis of January 2008. Section 2.7 concludes.
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2.2 Econometric Model

In the introduction spillovers were defined as the impact of one market on the
chronologically following market. In order to trace these effects we estimate
separately a structural vectorautoregressive model (SVAR) of order p for both
the standardized log-returns (r̃) and the logarithms of the volatility measures
(σ; to be defined below) of the Dow Jones Euro Stoxx 50 future (FESX), the
S&P500 future (FSP) and the Nikkei 225 future (FNI). This approach has two
important advantages: first, when creating the volatility time series, we use
the information available more efficiently then we would when using a GARCH
model. The realized volatility measures effectively incorporate more informa-
tion than using only squared, lagged error terms from the mean equation in
the GARCH equation. Second, in the context of a multivariate GARCH model
the specific opening and closing sequence of financial markets would require
contemporaneous effects of the variances on each other. Such a model, how-
ever, is, to the best of our knowledge, not identifiable. Using an SVAR model
with volatility measures on the other hand allows straight-forward estimation
of the volatility dynamics. Care, however, has to be taken when modeling the
return series due to the presence of heteroscedasticity which we will address
with an approach similar to weighted least squares estimation.

The return of the individual futures is measured as the difference in the loga-
rithm of the respective transaction prices, that is,

rt+∆ = ln pt+∆ − ln pt . (2.1)

This calculation assumes a continuously compounded basis. In the following
analysis we need, for example, intraday returns in which case pt would be the
opening price on day t and pt+∆ would constitute the transaction price at a
specific time within the day. The latter is usually the last price fixed at the
close of the stock market.

As is well known, return time series suffer from heavy tails and volatility clus-
tering which is also the case here. As we follow an approach which models
returns and volatilities separately we have to account for the presence of con-
ditional heteroscedasticity in the return time series. We therefore standardize
the returns by their realized volatility which has recently been proposed by
Pesaran and Pesaran (2007). This proceeding ensures that the return series
are approximately Gaussian and homoscedastic. Pesaran and Pesaran (2007)
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argue that the interpretation of correlations estimated with non-gaussian re-
turns can be misleading and therefore propose to standardize the returns. They
refer to returns standardized by realized volatilities as ”devolatized returns”.
Denote these devolatized returns by r̃t, then

r̃t =
rt
σt

(2.2)

and σt is the square root of the realized volatility measure as defined below.

For the investigation of the volatility linkages we consider two different mea-
sures: the realized volatility measure as proposed by Andersen, Bollerslev,
Diebold, and Labys (2003) and the daily volatility estimate proposed by Bollen
and Inder (2002). Both methods seek to overcome the well documented market
microstructure effects present in high-frequency financial data when estimating
the unobservable volatility process.

Andersen, Bollerslev, and Diebold (2002) argue that due to market microstruc-
ture frictions it is undesirable to sample returns infinitely often as would be
required to approach the true underlying volatility. When summing up the
squared returns, one would at the same time accumulate the noise present in
the market which would lead to non-trivial measurement errors. To overcome
this issue the realized volatility of Andersen et al. (2003) is, therefore, calcu-
lated using returns computed over sufficiently large time intervals ∆. Specifi-
cally, they define the daily realized variance on day t as

σ2
t,∆ =

1/∆
j=1
r2t−1+j∆,∆ (2.3)

where 1
∆ defines the number of intervals used for calculating the volatility mea-

sures. In a sample containing observations from 24 hours continuous trading,
1
∆ would be 96 in case that the individual intervals were 15 minutes long. The
realized volatility is then given by the square-root of σ2

t,∆. In their application,
for example, Andersen et al. (2003) use thirty minute returns when computing
the realized volatility of exchange rates.

A drawback in using, for example, returns computed over 15 minute intervals
is the loss of information contained in the observations within the interval.
Bollen and Inder (2002) therefore propose a VARHAC estimator to explicitly
account for the different autocorrelation structures in intraday returns induced
by market microstructure effects. Specifically, they estimate for each trading
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day t and for each return series an AR-model

rτ,t =
pt
j=1
αj,t rτ−j,t + ετ,t (2.4)

where τ is the intraday time stamp. The optimal lag length per day pt is
chosen by an information criterion. The purpose of this procedure is to purge
the returns from microstructure noise. The estimate of the daily volatility is
then computed as

σ2
t = RSSt1− pt

j=1
α̂j,t

2 , where RSSt =
nt

j=pt+1

rτ,t − pt
j=1
α̂j,t rτ−j,t

2

(2.5)

and nt is the number of observations per day. The estimator (2.5) is efficient
in the sense that it utilizes all the available high-frequency data.

To model the volatility transmission between the three major financial centres
around the globe, we follow Andersen, Bollerslev, Christoffersen, and Diebold
(2006) who suggest to treat the derived volatility time series as if it was di-
rectly observed. This allows for the straightforward application of standard
estimation techniques which are briefly presented in the following.

To trace the spillover effects we suggest to use a structural VAR model on a
daily frequency. Let xt be the (3 × 3) vector which contains the r̃i,t or the
ln(σi,t), respectively. Then the structural model is given by


x1,t

x2,t

x3,t

 =


a1

a2

a3

+


0 0 0
b21,0 0 0
b31,0 b32,0 0



x1,t

x2,t

x3,t

+

+
p
i=1


b11,i b12,i b13,i

b21,i b22,i b23,i

b31,i b32,i b33,i



x1,t−i

x2,t−i

x3,t−i

+


ε1,t

ε2,t

ε3,t

 (2.6)

or in matrix notation by

xt = a+
p
i=0
Bixt−i + εt (2.7)

where the index t indicates a trading day and p is the order of the vector au-
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toregression. The matrix B0 will be lower diagonal with zeros on the main
diagonal due to the time structure of our analysis. Consider Figure 2.1 which
presents the trading times of the stock markets in consideration. Let a partic-
ular trading day t start at 23:00 GMT. As we run a regression on a daily basis,
anything that happens between 23:00 GMT and 22:59 GMT of the following
day will be indexed with t. This restricts the possible causal influence in our
SVAR-model: the FNI can only be influenced by the FESX and the FSP of the
previous trading day t− 1 as it is the market which opens first on day t. The
FESX on day t, however, may be influenced by the same day FNI (as the Sin-
gapore Exchange will be closed again by the time Eurex opens) and the FSP
of the previous trading day. Similarly, the FSP on day t may be influenced by
the same day FESX and FNI as both markets in Europe and Singapore were
already or are still open on that day t.

The described ordering, however, is not unique as there is no natural justifi-
cation for why a particular trading day t should start at 23:00 GMT. It will,
therefore, be useful to shift the beginning of the notational day t to the opening
of the Singapore stock market, to the opening of Eurex and to the opening of
the Chicago Mercantile Exchange and to estimate the model anew each time.
This can be used as a check for robustness of the model: the artificial cut
between t and t− 1 somewhere between 0:00 and 24:00 GMT is not supposed
to influence the estimation results.

If the markets were fully efficient in terms of information processing we would
expect the matrix B1 to be upper diagonal and the model to be an AR(1)-
model only in the case of the return model. This would reflect that markets
immediately adjust to new information and that information which is generated
in an upstream market is accounted for immediately. In case of the volatility
model we do not have any a priori assumptions on how the AR-matrices would
be structured. To be able to justify the often described volatility persistence
(see, for example, Poterba and Summers, 1986; Kearns and Pagan, 1993) we
would expect the order of the autoregressive model p to be greater than one.

The specific structure of the SVAR model, or more precisely the fact that
the matrix B0 only contains non-zero elements on the lower diagonal, per-
mits direct, linewise estimation of the model by ordinary least-squares. This
circumvents the necessity of Cholesky Decomposition which would otherwise
be used to back out the structural parameters after estimation of the reduced
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form VAR
xt = Ca+

p
i=1
CBixt−i +Cεt (2.8)

which results from (2.7) by premultiplication with C = (I−B0)−1. The same
structure, however, would only allow for exactly one variable ordering in the
Cholesky Decomposition: the sequence of influence will always be from Japan
to Europe to the United States to Japan and so on.

In order to trace the linkages between the three stock markets we perform
impulse response analysis and variance decomposition (see Hamilton, 1994,
for example). For the mean model, their interpretation is straightforward.
In case of the volatility model it may seem more complicated at first glance
as the variance of a variance measure would be the fourth moment of the
original time series already. However, we will follow the hands-on approach
of Andersen et al. (2006) who use the realized volatilities as if they were an
ordinary, i.e. observed time series. Consequently the conclusions drawn from
impulse response analysis and variance decomposition are only considered in
the context of the volatility model without direct linkages to the mean model.

In the above situation variance decomposition is an additional tool to detect
spillovers (both in mean and volatility): It provides an answer to the question
of which proportion of an s-step-ahead forecast error variance can be attributed
to a shock in any one market. Based on this idea Hasbrouck (1991) introduced
a decomposition of the long-run variance of a time series. Its purpose is to
derive the contribution of the innovation error in one stock market to the
total variation present in the system. This is what ultimately measures the
magnitude of the spillover effect: the contribution of one market to the price
discovery or the volatility realization of the other markets.

2.3 Institutional Aspects and Data Description

For the subsequent analysis we can exploit the richness of our datasets con-
taining intra-daily transaction prices of the Dow Jones Euro Stoxx 50 future
(traded at Eurex), the S&P500 future (traded at the Chicago Mercantile Ex-
change, CME) as well as the Nikkei 225 future (traded at the Singapore Ex-
change, SGX). The datasets are obtained from Olsen Financial Technologies
and are sampled in minutes. The data cover futures contracts over an al-
most four years-period from 1st July 2002 to 31st May 2006. All futures are
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denominated in local currencies.

The data are split into an estimation part covering 1st July 2002 to 29th May
2006 and a holdout part (two days: 30th and 31st May 2006) which we use to
illustrate the forecast accuracy of our model.

Previous studies dedicated to spillover analysis like Lin et al. (1994) and Baur
and Jung (2006) used indices instead of futures. The usage of stock marked
indices, however, brings along the so-called stale quote problem. This means
that the index when calculated for the first time in the morning of the new
trading day might be calculated based on data from the previous trading day
and does, thus, not reflect new information. The reason is that when the
index is calculated in the morning for some stocks new prices may not yet be
available. In this case, the previous day closing price - a stale quote - is used
to calculate the index.

To overcome the stale quote problem, it is necessary to use a suitable proxy
for the opening quote of the stock index. Proposals in the literature vary from
opening plus 5 minutes into the trading day up to opening plus 30 minutes.
While such proxies help to overcome the stale quote problem, they deplete
the data from vital information necessary to correctly measure the spillover
effects we seek to identify. In today’s electronic markets new information is
rapidly incorporated into quotes and, thus, also reflected in transaction prices.
The strategy to approximate the “true” first quote by a quote 5 or 10 minutes
after the market’s opening might, thus, dilute the results in the same way as
the stale quote problem: prices of some underlying stocks might have already
changed within these 5 or 10 minutes. The approximative opening quote would
then again not reflect the true opening index value.

The use of index future data helps to overcome the stale quote problem without
loss of information from the market opening. Index futures are self-contained
securities and, thus, the first transaction in the morning of a new trading
day is driven only by information available to the market at this point in
time. A slight drawback of using futures is that a continuous dataset is not
available for a time horizon greater than nine months. So in order to obtain
a continuous sample covering the four years period the single future contracts
are combined such that the future closest to maturity is selected into the
continuous sample. The transition from one future to the next occurs always
mid March, June, September, and December. The last trading day is excluded
to avoid possible influence of the settlement and to ensure continuity within the



14 Financial Market Spillovers Around The Globe

single days (especially for the calculation of the realized volatility measure).
Earlier transmission as is sometimes advocated in the literature does not seem
plausible as the traded volume almost entirely shifts to the new contract after
settlement of the previous one (see also Carchano and Pardo, 2009).

An important aspect of our analysis is the creation of a dataset (both for
the returns and for the volatilities) containing daily data which are free from
overlaps within the day. Throughout the four years, this is not an issue for the
trading at the SGX (see Figure 2.1). Our dataset contains data from the Open
Outcry Trading period which starts at 7:55 and ends at 14:25 Singapore Time
(SGT) with a one hour interruption from 10:15 to 11:15 SGT. These times
did not change within the four years where data are available. As there is no
overlap in trading times between the SGX and the CME as well as between
the SGX and Eurex, we calculate the log-returns for the FNI as open-to-close
returns.

The FSP is traded from 8:30 to 15:15 Central Standard Time (CST) throughout
the four years. Its return is also calculated as open-to-close return. The trading
times at Eurex changed during the four years. Before 21st November 2005
continuous trading started at 9:00 and ended at 20:00 Central European Time
(CET). From 21st November 2005 on, Eurex extended trading hours for OTC-
trade of their benchmark products from 9:00 to 22:00 CET. So before the
extension there was an overlap of 4.5 hours while it extended to 6.5 hours after
20th November 2005. In order to obtain a clean-cut time structure we remove
overlapping trading hours of the US and the European market by calculating
the FESX return as open to 13:30 CET. We restrict ourselves to this timespan
following the idea of Menkveld, Koopman, and Lucas (2007) who suggest to
interrupt such a time series according to economically relevant points in time.
We choose to truncate the German time series (and not the FSP) keeping in
mind the considerations of Susmel and Engle (1994). Applied to the present
context the reasoning is as follows: recall again that information can only
be transmitted from east to west. In this case the European morning trade
should convey information which is interesting for the traders in the United
States and accounted for as soon as trading opens. When both markets are
open, global information should be processed in both markets equally. So
spillovers to the Japanese market should be originating in the US market as it
contains additional information as compared to the FESX because its trading
hours are up to two hours 15 minutes longer.
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Cutting the FESX data at 13:30 CET also ensures that we have the same time
of trading in the morning in the European market throughout the sample, even
during the one week when the daylight savings time is introduced in the USA
already while in Europe it is only introduced one week later.

The return data are sampled such that common days without trading (week-
ends and common holidays) are excluded from the sample. If at least one
market is open for trading the respective day remains in the sample. The
market(s) which is (are) closed is (are) assigned a return of zero to indicate
that adjustment to new information was not possible on that respective day.
This proceeding leaves us with a sample containing 1,019 daytime returns
when the FNI is ordered first. In the other cases one observation is lost as
the first FNI return (or the first FNI and FESX returns) is (are) dropped
when we let the day start in Europe or in the USA, respectively. Table 2.1
provides descriptive statistics of the standardized return series. As can be
seen the standardization leaves the time series slightly leptokurtic. The null
hypothesis of the Jarque-Bera test that the standardized returns are indeed
normally distributed cannot be rejected in two of the three cases. The bottom
part of Table 2.1 presents sample correlations between the FNI, FESX and
FSP in t with FNI, FESX and FSP in t and t − 1, respectively. It should be
noted that FNIt and FSPt−1 are negatively correlated and that the size of the
negative correlation is remarkably high. FESXt and FSPt−1 are also negatively
correlated but to a lower extent.

As regards the intraday volatilities we choose to use 5-minute returns for the
calculation of the realized variance in Equation (2.3) as done, for example, by
Andersen et al. (2006) in order to circumvent market microstructure effects. As
the futures are not continuously traded but only a few hours a day we restrict
the calculation of the daily realized variance to the available time span. This
means that we do not include overnight returns in the calculation of the day
t realized variance and we calculate the necessary squared returns only while
the future is actually traded.

In case of the volatility estimator proposed by Bollen and Inder (2002) we
compute the returns on a one-minute basis. As in the case of the mean returns,
both measures of the FESX volatility are calculated using only data until 13:30
CET. Although the measure has initially been proposed for transaction data,
we can still justify its application with one-minute returns. As we have a
dataset available containing transaction data of the FESX we calculated the
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VARHAC volatility estimator based on transaction data. It turned out that the
Schwarz Information Criterion suggested on average a lag length of 7.4 (varying
between 3 and 50). As the average elapsed time between two transactions is 2
seconds, this corresponds, on average, to a 15 seconds lag (varying from 6 to 100
seconds). So when aggregating the data to one minute intervals we should still
expect some autocorrelation structure. It seems reasonable to assume that the
FNI and FSP show a similar structure and, thus, to apply the same proceeding
to these futures, too. When calculating the VARHAC estimator the lag choice
of the Schwarz Information Criterion is on average 2 lags for the FNI, 5 lags
for the FESX and 2 lags for the FSP. This result is in accordance with the
choice of 5-minute intervals for the calculation of the realized volatilities.

Following the example of Andersen et al. (2006) we use the log of the realized
volatilities σt in our estimation. Again, the dataset contains 1,019 observations
and days with no trade in all but at least one market are assigned a volatility
of zero in the closed markets. Andersen et al. (2001) show in an empirical
study that the usage of ln(σ) should bring along approximate normality which
allows for the straight-forward application of standard estimation techniques.
Standard tests for normality, however, are on the edge of rejection of the
hypothesis that the data are indeed normally distributed in our case. Tables
2.2 and 2.3 provide the skewness and kurtosis measures along with the Jarque-
Bera test statistics and p-values. It should be noted that negative values of
the mean, median and minimum are possible due to taking the logarithm of
the volatility measure. Further, the modeling of log-volatilities guarantees that
forecasts of the realized volatility are positive. The convention to assign a value
of zero to a closed market when at least one market is open is carried over to
the log-volatilities, too.

The lower part of Tables 2.2 and 2.3 present again sample correlations of
the σFNI,t, σFESX,t and σFSP,t with their contemporaneous and lagged values.
For both volatility measures they are substantially higher than in the case of
the returns which suggests already that the interdependence of the volatilities
might be more pronounced than dependence among the returns.
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2.4 Empirical Results

In the following section we restrict ourselves to the presentation of the esti-
mation results based on one variable ordering only, namely when the day t
starts at the opening of the Singapore Exchange, that is at 23:55 GMT. In
this case, the variable ordering is FNI - FESX - FSP. This specification is,
however, arbitrary. The estimation has therefore been performed with the two
other possible orderings (FESX - FSP - FNI, i.e. starting the day when the
European markets open, and FSP - FNI - FESX, i.e. starting the day when
the New York market opens) as well. The ordering imposes restrictions on
the matrix B0 of contemporanous effects. The estimation results proved to
be robust to the variable ordering. Neither the coefficient estimates nor the
subsequent impulse response analysis and variance decomposition differ quali-
tatively. Results based on ordering the FESX or FSP first are available from
the authors upon request.

In order to evaluate the stability of our results with respect to time, the sam-
ple has been split into half and the estimation has been conducted on both
subsamples. The estimated parameters changed slightly in absolute value. All
in all, the implications deducted from the estimates do not change. The signs
of the estimated parameters still point in the same directions despite some of
those coefficients which are not significant. So a static model is an appropriate
approach to model the time period at hand.

2.4.1 Modeling Daily Returns

The return model is estimated with p = 1 lag as suggested by information
criteria. As we can rely on approximate normality of the error term in the
model we perform a simple parametric bootstrap (see, for example, MacKin-
non, 2006) to calculate the standard errors of the parameter estimators. The
estimation results are presented in panel 1 of Table 2.4.

The first striking result is the negative and significant estimate for b11,1, that
is, the influence of the previous day FSP on the FNI. The estimated coefficient
of −0.1360 is also quite high and would imply that, on average, if CME closes
with a high return, the following trading at SGX realizes a substantially neg-
ative return. This result is consistent, however, with the sample correlations
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presented in Table 2.1. The same negative influence, albeit to a lesser extent,
is found for the influence of the FSP on the FESX.

The other results are more in line with expected findings. The influence of the
FNI-trade on day t on the return of the subsequent trading of the FESX is
positive and significant. The same is true for the influence of the Eurex morning
return and the influence of the FNI return on the FSP which are positive, yet
not statistically significant. We also find for all three index futures that the
influence of the market which precedes directly is greater in magnitude than the
influence of the market which is again one step further away. For example the
influence of the FESX return on the FSP return (b32,0 = 0.0484) is greater than
the influence of the FNI-return (b31,0 = 0.0185) which preceded the trading in
Europe.

Regarding the signs of the estimates, our results also support the often docu-
mented characteristic of negative autocorrelation in return series. The coeffi-
cients on the own lag-return of the FNI, FESX and FSP (that is, the coefficients
on the main diagonal ofB1) are all negative. As regards statistical significance,
however, only the b22,1 element is significantly different from zero.

The hypothesis that financial markets are efficient and that, thus, there is no
influence of trading which lies more than 24 hours back in time is supported
by our results. The lower diagonal elements in the B1-matrix are both small
in absolute value and not statistically significant.

Consider once again the sign and the absolute value from the perspective of
the individual markets. Japan’s daytime return is most susceptible to foreign
information. This is not only true for the immediately preceding trading in the
United States, but also, albeit to a lower extent, for the trading in the European
morning which lies 7 hours 45 minutes (and still 5 hours 45 minutes after 20th
November 2005) further back than trading at the CME. Moving to Europe, we
find a positive significant mean spillover from the same day trading in Japan
and a negative and significant mean spillover from the previous trading day
in the United States. The overall magnitude as measured by b21,0 and b23,1 is
slightly smaller than for the Japanese market. So the European market seems
to be less susceptible to foreign information than the Japanese market. Moving
on to the USA, the market there seems to have a very self-sufficient position.
There are no (significant) spillovers neither from Europe nor from Japan which
would affect US trading.
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Impulse response analysis also suggests that markets are efficient. Panels 1-3
in Figure 2.2 show that a shock in one market is indeed perceptible in the sub-
sequent markets, but that its influence dies out quickly. It is usually already
the second trading day after the shock where that specific shock is not per-
ceptible any more. The size of the impact of an innovation shock follows the
suggested timing structure in two of the three possible cases. Consider panel 1
which presents a shock to the FNI-return in Singapore. Clearly, the reaction
is most important for the own return. But then we find the influence dying
out through the day, meaning that the reaction of Eurex is more intense than
the reaction of the CME. The second panel considers a shock in the morning
trade of the FESX. As can be seen the impact on the trading in the USA is
lower than the impact on the trading at the SGX which is contrary to what we
would have expected. The last panel presents the reaction on a shock in the
USA. Again, the impact is greatest on the own return, followed by the impact
on the return of the FNI which is traded subsequently. However, as we neglect
that the FSP and FESX are traded simultaneously for at least 4.5 hours (the
afternoon trading period in Germany), the influence of the American market
on the European market might be understated.

The fact that the effect of an innovation shock in one market on day t dies out
quickly would also be supported by the cumulative impulse response functions
(which are not printed). The reason is that already from t + 1 to t + 2 the
difference is almost not perceptible any more.

So what we conclude from our analysis is the following. We find small, di-
minishing and short lived mean spillover effects from the USA and Europe to
Japan and from Japan and the USA to Europe in the chronological ordering
as expected. The US market turns out to be robust against return spillovers.

2.4.2 Volatility Modeling

The VAR models for the two different volatility measures (Equations (5.8)
and (2.5)) are estimated with p = 4 lags as suggested by information crite-
ria. As heteroscedasticity is not an issue here (see also Andersen, Bollerslev,
Christoffersen, and Diebold, 2005) we use again a parametric bootstrap (see,
for example, MacKinnon, 2006) to derive the standard errors. Subsequently,
the acronyms ABDL-model and BI-model will be used to refer to the SVAR
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model based on the realized volatility measure of Andersen et al. (2003) and
the daily volatility measure of Bollen and Inder (2002), respectively.

It turns out that the estimation results from the ABDL- and the BI-model are
not qualitatively different. We conclude from this finding that both measures
efficiently account for possible microstructure effects and that our results are
robust with respect to the way the volatility series is computed. We therefore
restrict ourselves to the presentation and discussion of the results based on
the realized volatilities used in the ABDL-model and only highlight striking
differences. The parameter estimates are presented in Table 2.5.

The estimation results of the ABDL-model suggest that volatility in one market
immediately influences the volatility in the market which is open subsequently.
This is reflected by the coefficients in the matrices B0 and B1: in B0 the lower
diagonal elements are all positive and (besides the b31,0-element) significantly
different from zero. As regards the matrixB1, the upper diagonal elements are
positive and statistically significant (on a 5 percent significance level) as well.
So we conclude that there is a significant volatility spillover effect from one
market to the next. The elements on the main diagonal of B1 are positive and
statistically significant as well, whereas the elements below the main diagonal
are not statistically significant. In the higher order lags only the elements on
the main diagonal (with one exception in the matrix B2) are significant. In
short our results indicate that there are spillovers from one market to the next
which affect the volatility of the upstream market immediately. When looking
more than 24 hours back in time, only the volatility in the home market exerts
an effect on the respective volatility which supports the notion of volatility
persistence.

Considering the relative sizes of the coefficient estimates we find that volatil-
ity in Europe is most influenced by the volatility in the two other markets.
Also the chronological ordering is reversed as the influence of the US mar-
ket volatility of the previous trading day is higher than the influence of the
Japanese market’s volatility which would precede directly. The same reversal
is found for the Japanese market which is influenced to a greater extent by
the European volatility than by the US volatility. As regards the US market,
the chronological order is restored as the influence on its volatility stems in
principle from Europe.

The same conclusions can be drawn from the estimation of the BI-model.
The signs of the coefficients remain the same for all parameters that were
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significant in the ABDL-model. The size changes somewhat for the effects of
USA and Europe on Japan which are almost equivalent in the BI-model (which
is mainly due to a reduction in the European influence). Also the effect of the
US volatility on European volatility is more pronounced. In the higher order
lags we find the coefficients indicating the effect of Japan onto Europe to be
significant for p = 1 and p = 2. This would imply that there is still an influence
from the Japanese market on European volatility after more than 24 hours.

The impulse response functions presented in Figure 2.3 once again support the
finding that volatility persists across a few trading days. In panels 1 and 2
which present a one unit shock to the FNI and FESX volatility, respectively,
it can be seen that in the home market it takes longer until the effect of a
shock dies out. Unfortunately this result is slightly corroborated by the third
graph which depicts the reaction to a unit-shock in the FSP. It seems that
the reaction of the FESX volatility is somewhat heavier than that of the home
index future FSP volatility. All in all, the impulse response analysis suggests
that there is volatility persistence as it takes on average 10 to 15 trading days
until the impact of a volatility shock is not perceptible any more. This is
supported by the cumulative impulse response functions which are presented
in Figure 2.4.

2.4.3 Market Leadership

When comparing the results of the mean model and the volatility model we
conclude that spillovers are more pronounced in the realized variance of the
index futures than in their return itself. This is supported by the decompo-
sition of the long-run variance as suggested by Hasbrouck (1991). Consider
panel 2 in Tables 2.4 and 2.5: it turns out that in the long run, the return of a
market is to roughly 99% determined by information events which happen in
the home market. This is surprisingly also the case for events happening in the
United States. As far as the ABDL realized volatilities are concerned it is only
the Japanese market which seems quite self-sufficient: its own contribution
amounts to 95.82%. If the variables are ordered differently the contribution
of the home market even raises slightly up to 97.04% (when the day begins at
the opening of Eurex, details not reported). However, there seem to be more
important interlinkages between Europe and the United States, a result which
one would probably expect due to the political and economic ties. The total
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variance in FSP-trading is caused to 9.75% by events in Europe. The contri-
bution in the other direction amounts to 12.50%. The findings of the BI-model
point in the same direction. The difference is that the US market seems more
self-sufficient than the European market, but their ties are still remarkable.

This highlights how interwoven European and US financial markets are com-
pared to their linkages with Asian markets. At the same time it clearly indi-
cates a slight dominance of the US market.

2.5 Model Evaluation

An important aspect when deciding to model returns and volatilities separately
instead of using, for example, a GARCH model, was the finding of Andersen
et al. (2003) that forecasts based on realized volatility were more accurate than
those based on other forecast methods. In order to check the joint forecasting
ability of our models we also perform a simple forecast evaluation. We eval-
uate whether an out of sample return forecast based on the estimated SVAR
models can compete with a univariate modeling approach forecasting the de-
volatized return and the realized volatility separately and compare these two
to a univariate GARCH(1,1) model-based forecast as well as a forecast based
on a univariate AR(1) model. Note that the evaluation is meant to compare
a forecast of the log-returns, not the devolatized returns. We therefore undo
the devolatization when using the multivariate and univariate models, i.e. we
forecast the volatility and the standardized returns separately and combine
the results according to Equation (2.2). In order to account for distributional
aspects of the log-returns, the GARCH model as well as the univariate AR(1)
model are estimated by maximum likelihood assuming t-distributed errors.

To evaluate the accuracy of the forecast we use the Mean Absolute Error
(MAE), the Mean Absolute Percent Error (MAPE) and the Mean Percent
Error (MPE) measures (e.g. Makridakis, Wheelwright, and Hyndman, 1998)
which are defined as

MAE = 1
s

s
t=1
|rt − r⋆t | · 100, (2.9)

MAPE = 1
s

s
t=1

rt − r⋆trt
 · 100, (2.10)
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MPE = 1
s

s
t=1

rt − r⋆t
rt
· 100, (2.11)

where s is the forecast horizon and r⋆t is the forecast of rt.

The evaluation measures are reported in 2.6. Detailed estimation results of
the different models are not reported, but are available from the authors upon
request. What we find is that the multivariate model always performs better
than any of the univariate models. To justify the usage of our estimation
preceeding in contrast to the other approaches, consider the differences in
MAPE of the one step ahead - forecast between these models. When modeling
mean and volatility separately, the forecast of the FNI based on this approach
is distinctly better (by almost 16 percentage points) than the forecast based on
the GARCH-model and slightly better than the forecast based on the AR(1)-
model. In case of the FESX forecast the model is only slightly worse (by
1.5 percentage points) than the GARCH model and performs better than the
AR(1)-model. In case of the FSP, the univariate model and the GARCH model
are nearly equivalent and perform both better than a univariate AR(1)-process.
The picture remains the same for a two step ahead forecast. Note that the SGX
was closed on the last day in the sample, so the forecast evaluation measures
did not change.

To summarize the findings of the forecast evaluation, we clearly see two advan-
tages in our modeling approach. First, the forecast based on the strategy of
separate modeling of returns and variances pays off in terms of forecast accu-
racy. And second, by this approach we avoid the delicate issues arising when
using a multivariate GARCH model within the context of a structural VAR
approach, especially the issues concerning the identification of a structural
GARCH process.

2.6 Application of the Spillover Model to the Stock Market
Crash 14th and 15th January 2008

As the spillover model has been designed to consider the influence of previous
markets on the actually open market, it is interesting to evaluate what it can
tell about the stock market crash in January 2008. In consequence of the US
mortage crisis which came about in summer 2007, the markets heavily reacted
to information which accrued over the weekend 12th and 13th January 2008.
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The avalanche started in the Asian markets where for example the Nikkei 225
lost 3.9% (calculated as close-to-close-return). It continued its way to Europe
where the EuroStoxx 50 lost 7.3%. The US markets being closed on that
Monday, there was no reaction so far. The downward movement continued on
the following Tuesday in Asia and was slightly reversed in Europe (which was
probably due to the announcement of the Federal Reserve Bank in the USA to
lower interest rates by 75 basis points). The US market in the following was
only slightly hit by the wave which the other markets had to stand the day
before. The S&P 500 fell by only 1.1 percent which is far less than the other
indices.

To evaluate whether our spillover model is capable of tracing these influence
effects we use the model to predict what should have happened during the
third week in January 2008 based on data of the preceding week. We forecast
both the mean and the volatility model and combine the results according
to Equation (2.2) to obtain the log-returns in which we are interested. This
is a forecast only, the coefficient estimates are not updated. This means we
have an almost four years estimation period where the markets were quite
stable. Then there is a gap of one and a half years where the mortage crisis
slowly built and finally the event period January 2008. We use daily open,
high, low, and close data from the Nikkei 225, EuroStoxx 50 and S&P 500
indices as futures data are not readily available. These data are obtained from
finance.yahoo.com. Further, due to the lack of availability of intraday data the
volatility is measured by a simple range based estimator (Garman and Klass,
1980) as

σ2
GK,t = 0.5(logHt − logLt)2 − (2 log 2− 1)(logCt − logOt), (2.12)

where Ht is the day’s high, Lt the day’s low, and Ot and Ct are open and close
prices, respectively. This approximation is motivated by the high correlation
of this volatility measure and the realized volatility of Andersen et al. (2003).
The European morning returns also have to be approximated by open-to-close
returns. Although we are only interested in sign forecasts, we nevertheless
compute the mean percent error (MPE) to evaluate total model performance.
The MPE is given as

MPE = 1
s

s
t=1

rt − r⋆t
rt
· 100, (2.13)
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where s is the forecast horizon and r⋆t is the forecast of rt.

Once we use our model to predict what should have happend during this third
week of January 2008, the results are quite encouraging (cp table 2.7). For
the week 14th to 18th of January the model is able to predict the correct
sign of the returns in 11 out of 15 cases. A forecast based on the random walk
assumption should, on the other hand, only deliver the right sign in about 50%
of all cases. One case, where the market in the USA is closed on Monday, 14th
January, the model has to fail as it has not been designed to explicitly account
for holidays. As the model intends to predict effects of uptime markets on
the following markets, an indication of the direction in which the market will
develop is what we would expect the model to be able to tell us1. A prediction
of the actual returns should not necessarily be accurate. It turns out that the
deviation from the true returns ranges in between 0.0018 (prediction for the
Nikkei225 on Tuesday, 15th January 2008) and 0.0857 (prediction for Europe
on Monday, 14th January 2008, where also the predicted sign is incorrect).
Looking at the model prediction as a whole the model seems quite able to
trace the effects of events in previous markets on the following markets. It
may therefore support an investor in evaluating his/her gut feeling when it
comes to judge rumors in international financial markets.

2.7 Concluding Remarks

Our paper contributes to the fast growing literature in empirical financial eco-
nomics dedicated to the investigation of international financial market linkages.
We propose a new modeling strategy to capture the short-run daytime spillover
dynamics of the main financial centres around the globe. Specifically, we em-
ploy structural vectorautoregressive models for the mean and the volatilities
of the daytime returns which draw their structure from the natural, chrono-
logical ordering of the trading in the three markets (Europe, USA and Japan)
used in our study. This allows us to provide impulse response and variance
decomposition analysis as well as Granger-type causality testing within this
well established framework.

For the mean system we find only short lived significant spillovers on Japan and

1See also Christoffersen and Diebold (2006) who state, inter alia, that “Short-run return
forecasting (...) is (...) difficult, and perhaps even impossible. (...) There is substantial
evidence that sign forecasting can often be done with surprising success.”
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Europe, albeit in a small order of magnitude. It turns out that the Japanese
market is the most susceptive to foreign information, originating both from
Europe and the United States. The European market, on the other hand, only
reacts to information spilling over from the Japanese market. This indicates
that, while the US and European markets are closed, the markets in Asia
efficiently process information which then spill over to Europe, the market
which opens first after Asian markets close. The US market, however, seems
to have a particular position in that we do not find spillovers neither from
Europe nor from Japan to the USA.

As regards volatility spillovers, we find that all markets react more intensely to
the volatility of the previous market than in the case of the return spillovers.
The effect originating in foreign markets dies out within one trading day, the
influence of the home market is persistent, however, across four lags. In con-
trast to the findings of the mean model the timing seems to be less important
for volatility spillovers as it is not always the market which was open before
which exerts the greatest influence. Our findings are robust with respect to
the way the volatility series is computed.

The estimated dynamical systems can ultimately be employed to trace and
forecast the impact of a shock in one of the worlds leading markets on the
other markets as well as to perform a forecast of the returns in the markets.
We find that the contribution of the separate modeling approach in the multi-
variate context is threefold. First, the multivariate structure allows for a more
accurate forecast of the return series than a univariate approach. Second, the
(univariate) separation of returns and volatilities and their detached forecast
turns out to perform on average better than a univariate forecast based on
a GARCH-model or an AR-model. And finally, the application of structural
VARs is econometrically better manageable than the usage of multivariate
GARCH models within this structural context. The application to the recent
financial crisis which has been triggered by the US house crisis also shows en-
couraging results. The model thus seems able to trace the linkages between
international stock markets and highlights once again the interdependence of
global financial markets.
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Figure 2.2: Return Model: Impulse Response

The graphs depict the response of the FNI (left column), FESX (middle column), and
FSP returns (right column) to a one standard deviation shock in Singapore (first row),
Europe (second row), or the USA (third row), respectively. The dashed lines are two
standard error bounds.
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Figure 2.3: ABDL Volatility Model: Impulse Response

The graphs depict the response of the FNI (left column), FESX (middle column), and
FSP volatilities (right column) to a one standard deviation shock in Singapore (first
row), Europe (second row), or the USA (third row), respectively. The dashed lines are
two standard error bounds.
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Figure 2.4: ABDL Volatility Model: Cumulative Impulse Response

The graphs depict the cumulative impulse response of the FNI
(solid line), FESX (dotted line), and FSP volatilities (dashed
line) to a one-unit shock in Singapore (panel 1), Europe (panel
2), or the USA (panel 3), respectively.
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Table 2.1: Descriptive Statistics of log-Returns

FNI FESX FSP
Mean 0.0108 0.0050 0.0449
Median 0.0000 0.0000 0.0184
Maximum 2.8399 2.5500 2.5358
Minimum −3.0747 −2.5755 −2.9090
Variance 1.0168 0.8509 0.9693
Skewness −0.0584 −0.0455 −0.1383
Kurtosis 2.8027 2.4232 2.7461
Jarque-Bera 2.2315 14.4744 5.9862

(0.3277) (0.0007) (0.0501)
Sample Correlations
FNIt 1.0000
FESXt 0.1064 1.0000
FSPt 0.0257 0.0604 1.0000
FNIt−1 −0.0372 0.0341 0.0620
FESXt−1 0.0634 −0.0593 0.0044
FSPt−1 −0.1290 −0.0991 −0.0244
The table provides descriptive statistics for the devolatized log-
returns of the Dow Jones Euro Stoxx 50 future, the S&P500 future
and the Nikkei 225 future. Note that the return for the FESX is
calculated as open-to-1330. The Jarque-Bera test for normality is
presented together with p-values which are given in parentheses.
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Table 2.2: Descriptive Statistics of log-Volatilities (ABDL)

FNI FESX FSP
Mean −0.3675 −1.1244 −0.6467
Median −0.2794 −1.3877 −0.7613
Maximum 2.2171 3.1176 2.7808
Minimum −2.8674 −4.4321 −3.5935
Variance 0.5967 1.4915 0.7677
Skewness −0.2580 0.5371 0.5771
Kurtosis 2.9952 2.6892 3.5959
Jarque-Bera 11.3019 53.1023 71.6503

(0.0035) (< 0.0001) (< 0.0001)
Sample Correlations
σFNI,t 1.0000
σFESX,t 0.5175 1.0000
σFSP,t 0.4559 0.6953 1.0000
σFNI,t−1 0.6060 0.4934 0.4467
σFESX,t−1 0.5201 0.8036 0.6920
σFSP,t−1 0.4557 0.7126 0.6737
The table provides descriptive statistics of the daily volatility mea-
sure as proposed by Andersen et al. (2003) in logarithms of the Dow
Jones Euro Stoxx 50 future, the S&P500 future and the Nikkei 225
future. The Jarque-Bera test for normality is presented together
with p-values which are given in parentheses.
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Table 2.3: Descriptive Statistics of log-Volatilities (BI)

FNI FESX FSP
Mean −0.3058 −1.0124 −0.5140
Median −0.1826 −1.3039 −0.6532
Maximum 2.6407 3.4985 2.7650
Minimum −2.9700 −3.9332 −2.8722
Variance 0.5246 1.4509 0.6964
Skewness −0.3663 0.6047 0.6656
Kurtosis 3.4272 2.8087 3.6079
Jarque-Bera 30.5342 63.6552 90.9388

(< 0.0001) (< 0.0001) (< 0.0001)
Sample Correlations
σFNI,t 1.0000
σFESX,t 0.5564 1.0000
σFSP,t 0.4791 0.7432 1.0000
σFNI,t−1 0.6723 0.5517 0.4854
σFESX,t−1 0.5494 0.8268 0.7267
σFSP,t−1 0.4897 0.7528 0.7310
The table provides descriptive statistics of the daily volatility measure
as proposed by Bollen and Inder (2002) in logarithms of the Dow
Jones Euro Stoxx 50 future, the S&P500 future and the Nikkei 225
future. The Jarque-Bera test for normality is presented together with
p-values which are given in parentheses.
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Table 2.4: Mean Model

Panel 1: SVAR coefficient estimates
FNI FESX FSP

a 0.0186 0.0048 0.0477
(0.5472) (0.8772) (0.1300)

BFNI,0 0.0000 0.0000 0.0000
(-) (-) (-)

BFESX,0 0.1087 0.0000 0.0000
(0.0006) (-) (-)

BFSP,0 0.0185 0.0484 0.0000
(0.5435) (0.1240) (-)

BFNI,1 -0.0436 0.0810 -0.1360
(0.1562) (0.0097) (<0.0001)

BFESX,1 0.0418 -0.0668 -0.0730
(0.1951) (0.0296) (0.0183)

BFSP,1 0.0553 -0.0003 -0.0166
(0.0867) (0.9914) (0.6039)

Panel 2: Long-run Variance Decomposition
FNI FESX FSP

FNI 0.9782 0.0045 0.0173
FESX 0.0110 0.9802 0.0087
FSP 0.0040 0.0025 0.9938
The table provides in panel 1 the structural VAR estimates
for the mean model given in Equation (2.7) where the vari-
ables are ordered as FNI - FESX - FSP. P-values are given
in parentheses. Panel 2 presents the long-run variance de-
composition according to Hasbrouck (1991). It is to be read
as the proportion in the forecast error variance in row i due
to the variance in column j.



2.7 Concluding Remarks 35

Table 2.5: ABDL Volatility Model

Panel 1: SVAR coefficient estimates
FNI FESX FSP

a 0.0026 -0.0986 -0.0027
(0.9487) (0.0187) (0.9498)

BFNI,0 0.0000 0.0000 0.0000
(-) (-) (-)

BFESX,0 0.1113 0.0000 0.0000
(0.0005) (-) (-)

BFSP,0 0.0568 0.0881 0.0000
(0.0639) (0.0052) (-)

BFNI,1 0.2960 0.1169 0.0705
(< 0.0001) (0.0002) (0.0266)

BFESX,1 -0.0072 0.2732 0.1864
(0.8278) (< 0.0001) (< 0.0001)

BFSP,1 0.0256 0.0433 0.1435
(0.4480) (0.1788) (< 0.0001)

BFNI,2 0.1402 -0.0268 0.0087
(< 0.0001) (0.3978) (0.7852)

BFESX,2 -0.0233 0.1264 0.0942
(0.4846) (0.0001) (0.0040)

BFSP,2 -0.0481 0.0615 0.2241
(0.1532) (0.0707) (< 0.0001)

BFNI,3 0.0783 -0.0243 −0.0356
(0.0191) (0.4761) (0.2751)

BFESX,3 -0.0090 0.1912 0.0490
(0.7725) (< 0.0001) (0.1370)

BFSP,3 0.0019 0.0064 0.0783
(0.9554) (0.8458) (0.0170)

BFNI,4 0.1807 0.0127 0.0002
(< 0.0001) (0.6826) (0.9954)

BFESX,4 0.0437 0.1006 −0.0042
(0.1890) (0.0010) (0.8960)

BFSP,4 0.0042 0.0437 0.1076
(0.8955) (0.1545) (0.0007)

Panel 2: Long-run Variance Decomposition
FNI FESX FSP

FNI 0.9582 0.0290 0.0137
FESX 0.0173 0.8584 0.1250
FSP 0.0120 0.0975 0.8922
The table provides in panel 1 the structural VAR estimates for the
volatility model given in Equation (2.7) where the volatilities are
calculated as proposed by Andersen et al. (2003) and are ordered
as FNI - FESX - FSP. P-values are given in parentheses. Panel
2 presents the long-run variance decomposition according to Has-
brouck (1991). It is to be read as the proportion in the forecast
error variance in row i due to the variance in column j.
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Table 2.6: Out of sample Forecast Evaluation

Panel 1: one step ahead forecast
Mulitvariate Univariate Univariate Univariate

Model Model GARCH(1,1) AR(1)

M
A

E FNI 0.8274 0.8915 0.9534 0.8938
FESX 0.8072 0.8508 0.8364 0.8791
FSP 1.4424 1.5272 1.5254 1.5470

M
A

PE FNI 105.1314 113.2727 121.1348 113.5627
FESX 98.2613 103.5717 101.8124 107.0138
FSP 96.2996 101.9589 101.8413 103.2784

M
PE

FNI 105.1314 113.2727 121.1348 113.5627
FESX 98.2613 103.5717 101.8124 107.0138
FSP 96.2996 101.9589 101.8413 103.2784

Panel 2: two steps ahead forecast
Mulitvariate Univariate Univariate Univariate

Model Model GARCH AR(1)

M
A

E FNI 0.8274 0.8915 0.9534 0.8926
FESX 1.2386 1.2649 1.2587 1.2790
FSP 1.0578 1.1184 1.1040 1.1042

M
A

PE FNI 105.1314 113.2727 121.1348 113.4141
FESX 98.8679 101.7887 100.9719 103.5083
FSP 95.5841 100.9861 99.0180 98.2548

M
PE

FNI 105.1314 113.2727 121.1348 113.4141
FESX 98.8679 101.7887 100.9719 103.5083
FSP 95.5841 100.9861 99.0180 98.2548

The table provides the out of sample forecast evaluation comparison for the
separate VAR models for mean and volatility (Multivariate Model), their
univariate counterpart (Univariate Model), a univariate GARCH(1,1) model
with t-distributed errors (Univariate GARCH(1,1)) and a univariate AR(1)
model with t-distributed errors (Univariate AR(1)). Panel 1 contains the
evaluation of the one step ahead forecast while panel to contains the two
steps ahead forecast. MAE is the mean absolute error, MAPE is the mean
absolute percent error and MPE is the mean percent error as defined in section
2.5.
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Table 2.7: Forecast of Third Week in January 2008

Nikkei 225 EuroStoxx 50 S&P 500
Panel 1: 14th January 2008
true -0.0278 -0.0742 0.0000
predicted -0.0073 0.0114 0.0206
MPE 73.5694 115.4070 –
Panel 2: 15th January 2008
true -0.0430 0.0170 -0.0019
predicted -0.1120 0.0521 -0.0001
MPE -160.6299 -205.8090 97.2642
Panel 3: 16th January 2008
true 0.0057 -0.0544 0.0213
predicted 0.0366 -0.0106 0.0002
MPE -543.9730 80.5720 99.0609
Panel 4: 17th January 2008
true 0.0108 0.0554 0.0089
predicted -0.0592 0.0108 0.0111
MPE 649.4364 80.5307 -25.3950
Panel 5: 18th January 2008
true 0.0276 -0.0124 -0.0199
predicted 0.0988 -0.0422 0.0106
MPE -258.5521 -239.8869 153.2014
The table provides the one step ahead forecasts of the open-to-close-
returns of Nikkei 225, EuroStoxx 50 and S&P 500 for the week 14th
to 18th January 2008. MPE is the mean percent error as defined
in Equation (2.13).



Chapter 3

A Note on the Influence of
Heteroscedasticity on the

Johansen Cointegration Test

3.1 Introduction

Quite a number of empirical studies in the financial literature use the cointegra-
tion framework to explain long-term relationships between asset prices, market
indices, interest rates or currencies (Barassi, Caporale, and Hall, 2005; Haug,
MacKinnon, and Michelis, 2000; Masih and Masih, 2004, and various others).
Obviously, the results crucially hinge on the reliability of cointegration tests.
The workhorse in empirical finance nowadays is the Johansen (1988, 1991)
methodology to test and estimate cointegrated systems. Financial data quite
often, however, violate the assumptions (normality, homoscedasticity; see, for
example, Tsay, 2005, ch.3) which were made to derive the tests. Heteroscedas-
ticity is probably the most prominent feature which is still often neglected,
albeit some recent theoretical research provides possibilities to account for it
(e.g. Wong, Li, and Ling, 2005). This note therefore will address the question
whether the identification of cointegration hinges on time varying volatility.

This question is twofold. On the one hand it means whether the presence of
heteroscedasticity impedes the detection of a cointegration relationship if it
does indeed exist. There is evidence that the traditional cointegration tests
perform well under certain conditions. In particular, in the studies of Lee
and Tse (1996) or Mantalos (2001) heteroscedasticity is only an issue in the
innovations’ variance. However, there is also a branch of literature that tries
to explicitly account for the presence of heteroscedasticity in the unit root
behavior when testing for cointegration, for example McCabe, Leybourne, and
Harris (2006). On the other hand, if cointegration is indeed not given, a
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cointegration test should also be powerful enough as to indicate its absence.
Lee and Tse (1996) show that the way volatility is modeled influences the
performance of the Johansen cointegration test to some extent and, thus, its
reliability.

Although there are more cointegration tests than just the likelihood ratio tests
of Johansen (1991)1, these are the most widely used ones in the recent empiri-
cal literature. The system maximum likelihood estimator also provides asymp-
totically efficient estimates of the cointegrating vector(s) and the adjustment
coefficients. Further, Seo (2007) shows (both theoretically and by means of a
simulation study) that the maximum likelihood estimator is far more efficient
than OLS-based estimation in the context of error correction models with con-
ditional heteroscedasticity. The focus of this note lies on the evaluation of the
trace and the maximum eigenvalue test. We use two different cointegration
concepts—stationary cointegration in the sense of Engle and Granger (1987)
and stochastic cointegration in the sense of Harris, McCabe, and Leybourne
(2002)—and different data simulation models to investigate the reliability of
the Johansen testing framework under various heteroscedasticity and correla-
tion assumptions. Note that this study is not designed like a typical size and
power study where one would calibrate the size of a test under the null hypoth-
esis and then investigate the power under the alternative hypothesis. Here we
take the critical values as given, i.e. there is no size adjustment. Our focus
lies on the evaluation of the tests if a cointegration test is conducted without
taking particular features of financial data into account. In their respective
studies Toda (1995) and Haug (1996) also proceed in this way.

We continue as follows. The next section establishes the theoretical cointegra-
tion framework and presents Johansen’s trace and maximum eigenvalue tests
for cointegration. Section 3.3 then describes the different data generating pro-
cesses. Simulation results are presented in section 3.4. Section 3.5 concludes.

3.2 Cointegration Models and Tests

Before conducting the simulation experiment we briefly establish the general
cointegration framework, differentiating between stationary cointegration as
introduced by Engle and Granger (1987) and stochastic cointegration which

1e.g. residual based tests (Engle and Granger, 1987; Hansen, 1990), tests based on prin-
cipal components (Harris, 1997) and a number of system tests (Saikkonen, 1992, and others)
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has recently been brought forward by Harris et al. (2002). The first subsection
describes these two different cointegration models. The second subsection then
considers the Johansen method to test for cointegration.

3.2.1 Model Framework

An important aspect of two (or more) I(1) variables is that there may exist
a stationary, linear combination of these variables. In this case the variables
are cointegrated CI(1, 1) in the sense of Engle and Granger (1987). The rela-
tionship is called stationary cointegration as it requires the combination of the
I(1) variables to be strictly stationary. For illustration, consider the VAR(p)
model

yt =
p
i=1
Aiyt−i + ut (3.1)

with yt a vector of n I(1) variables, Aj are (n×n)-matrices of parameters and
ut an n-vector of Gaussian errors. If the I(1) variables in yt are cointegrated,
then by the Granger Representation Theorem (Engle and Granger, 1987) the
VAR model in (3.1) can be written in the form of a vector error correction
model (VECM)

∆yt = αβ′yt−1 +
p−1
i=i
Bi∆yt−i + ut (3.2)

where αβ′ = −I + p
i=1Ai and Bj = −ki=jAi. The characteristic feature

of this model is that the VAR in first differences still contains the level yt.

If the assumption that the variables have a constant unit root is relaxed this is
the context of stochastic unit root processes and stochastic cointegration. The
notion of stochastic unit root processes has been introduced by Granger and
Swanson (1997) and then elaborated in the context of cointegration by Harris
et al. (2002). Stochastically integrated processes are characterized by a non-
constant unit root which is stochastic and varies around unity over time. Such
a process can be stationary for some periods and then be mildly explosive for
others. In the context of cointegration, the linear combination of stochastically
integrated variables will not be strictly stationary any more. Stochastic coin-
tegration (as opposed to stationary cointegration) only requires the absence of



3.2 Cointegration Models and Tests 41

I(1) behavior. McCabe et al. (2006) define the following model:

yt = µ+ Πwt + ut + Vtht
wt = wt−1 + ηt
ht = ht−1 + vt (3.3)

where ut, ηt, vt and Vt are mean zero stationary processes (which may be
correlated), wt and ht are vectors of integrated processes with w0 = η0 and
h0 = v0. The characteristic feature of this model is the presence of the ran-
dom term Vtht which causes non-linear shocks in the data generating process
of yt which, thus, consists of a constant, an integrated process, and a shock
term containing additively a linear and a non-linear component. Vtht is het-
eroscedastic as it depends on ht which is an integrated process. In contrast
to an I(1) series, ∆yt is not stationary as it still contains the level wt−1. To
illustrate the behavior of the individual time series, consider the i-th element
of yt

yi,t = µi + π′iwt + ui,t + v′i,tht , (3.4)

where π′i and v′i,t are the i-th row of Π and Vt, respectively. If π′i ̸= 0, pi,t is
said to be stochastically integrated. If, in addition, E[v′i,tvi,t] > 0, pi,t is het-
eroscedastically integrated (HI). If, on the other hand, v′i,t = 0, pi,t is simply
I(1), so the variance of a change does not depend on t. Hence, the concept of
stochastic integration covers both heteroscedastic integration and I(1) behav-
ior. When neglecting the trend term and assuming v′i,t = 0, the representation
in (3.4) corresponds to a common stochastic trends representation which is
similar to an individual element in Equation (3.1) above.

3.2.2 Johansen Cointegration Test

The Johansen (1988) method is based upon the full-information maximum
likelihood estimation of the so-called reduced rank model2. Recall the VAR
representation of the VECM in Equation (3.2). Under the hypothesis of r
cointegration relations, β is an (n × r) matrix containing the r cointegration
vectors and α an (n× r) matrix of adjustment coefficients. In this case, only
r distinct linear combinations of the level yt appear in Equation (3.2).

2Refer to Hamilton (1994) or Lütkepohl (2005) for further details.
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For notational simplicity let Zt =

∆y′t−1, . . . ,∆y′t−p+1

′
. Conduct the re-

duced rank regressions

∆yt = ξ0 + ΞZt + ut
yt = θ0 + ΘZt + vt

to obtain the residuals ût and v̂t. Next calculate their sample variance-
covariance matrices as

Σ̂uu = 1
T

T
t=1
ûtû

′
t

Σ̂vv = 1
T

T
t=1
v̂tv̂
′
t

Σ̂uv = 1
T

T
t=1
ûtv̂

′
t = Σ̂vu.

Johansen (1988) shows that the maximum likelihood estimator of α and β is a
function of these moments and that it can be found by choosing the eigenvalues
(λ1, . . . , λr) from the normalized eigenvalues solving the equation

| λΣ̂vv − Σ̂vuΣ̂
−1
uuΣ̂uv| = 0

which are ordered λ1 > λ2 > ... > λn. Due to the necessary normalization
finding the eigenvalues of the above expression and subsequently normalizing
them is equivalent to finding the eigenvalues of the matrix

M = Σ̂−1
vv Σ̂vuΣ̂

−1
uuΣ̂uv.

The maximum value of the likelihood function under the assumption that there
are r cointegration relationships is then given as

L⋆ = −Tn2 log(2π)− Tn2 −
T

2 log | Σ̂uu |

−T2

r
i=1

log(1− λi). (3.5)

Based on the likelihood in Equation (3.5), Johansen (1991) derives two likeli-
hood ratio tests: the so-called maximum eigenvalue test and the trace test. The
maximum eigenvalue (λmax) test determines under its null hypothesis whether
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the (r+ 1)th eigenvalue is still different from zero. The alternative hypothesis
is that eigenvalues are only different from zero up to λr. If the null hypothesis
can be rejected, λr+1 as well as the remaining eigenvalues λr+2 to λn which are
smaller than λr+1 can be considered to be zero. The test statistic is given by

−T log(1− λr+1) .

The test, thus, examines the hypothesis of r + 1 cointegrating vectors against
the alternative of (at most) r cointegrating vectors. Usually the test is for-
mulated in terms of the rank of the cointegration matrix Π = αβ′. If Π has
rank 0 there are n unit roots in the VAR and zero cointegration vectors. If in
contrast Π has full rank n there are no unit roots and the data were stationary
in the first place. For the maximum eigenvalue test this means that we check
the null hypothesis of rank r + 1, H0 : rk(Π) = r + 1, against the alternative
that the rank is smaller than or equal to r + 1, H1 : rk(Π) ≤ r.

The trace test considers the null hypothesis that Π = αβ′ is of rank r against
the alternative of an unrestricted model where Π has full rank n. The test
statistic (usually referred to as ’trace statistic’, see Johansen and Juselius,
1992) is given as

−T
n

i=r+1
log(1− λi).

Note that under the null hypothesis of no cointegration (r = 0) the eigenvalues
converge to zero. If all the eigenvalues indeed are zero, there are n unit roots in
the VAR in Equation (3.2). Critical values for both tests have been obtained by
means of Monte Carlo Simulations by, for example, Osterwald-Lenum (1992)
and MacKinnon, Haug, and Michelis (1999).

In order to determine the number of cointegrating vectors, especially in absence
of any a priori knowledge about their number, Johansen (1992) suggests to
use a general to specific approach using the trace test to avoid underestimation
of the number of cointegrating vectors. More precisely, one would start with
the null hypothesis that r = 0, i.e. that there are zero cointegrating vectors.
If this hypothesis is rejected, the next null hypothesis to be tested is r = 1.
Upon rejection of the null hypothesis, a new one is formed until r = n. The
first non-rejection of a null hypothesis r = i (i = 0, . . . , n) calls the procedure
to a halt and indicates that there are i cointegrating vectors. In case that the
trace test suggests r = n the time series are stationary.
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3.3 Simulation Design

The simulation considers different data generating processes which are related
to estimations and simulations previously conducted in the literature.

3.3.1 A Bivariate Model

The first model considered is inspired by the simple microstructure model given
by Hasbrouck (1995) in his introduction. The variance of an error term here,
however, is not necessarily constant over time but may follow a GARCH(1,1)
process. In order to investigate the influence of heteroscedasticity on the coin-
tegration test, we need a model which is cointegrated as well as one which is
not cointegrated. Both of these models will have the same error terms. The
mean equation of the cointegrated model reads as follows:

xt = xt−1 + σ1,tu1,t
yt = xt−2 + σ2,tu2,t (3.6)

where x and y are cointegrated processes, so the difference xt − yt = σ1,tu1,t +
σ1,t−1u1,t−1 − σ2,tu2,t is a stationary process as long as the error processes are
stationary. We compare this model with a not cointegrated version where yt
does not depend on xt−2 but on its own lagged term:

xt = xt−1 + σ1,tu1,t
yt = yt−1 + σ2,tu2,t . (3.7)

In both cases the innovations’ variance may follow separate GARCH(1,1) pro-
cesses which are given as

σ2
1,t = a1,0 + a1,1u21,t−1 + a1,2σ2

1,t−1

σ2
2,t = a2,0 + a2,1u22,t−1 + a2,2σ2

2,t−1 . (3.8)

a1,1 + a1,2 and a2,1 + a2,2 are restricted to be lesser than 1 in order to assure a
stationary GARCH process. u1 and u2 are independent white noise processes.
We consider three different settings for the GARCH process in Equation (3.8).
First, let a1,0 = a2,0 = 1 and the remaining ai,j = 0 in which case the errors
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ui are homoscedastic. Second, both x and y exhibit heteroscedastic errors by
setting a1,0 = a2,0 = 0.1, a1,1 = 0.04, a1,2 = 0.94, a2,1 = 0.05 and a2,2 = 0.93.
And third, only x exhibits heteroscedastic errors while the errors in y are
homoscedastic using the same parameterization as in the previous cases.

3.3.2 VAR-GARCH

The second data generating process is a multivariate vectorautoregressive model
with possibly heteroscedastic errors. The mean model is simulated via

zt = a0 +Azt−1 + ut (3.9)

if the variables are not to be cointegrated. If the variables in zt are to be
cointegrated, we simulate the VECM form

∆zt =
2
i=1

Γi∆zt−i + Πzt−1 + ut . (3.10)

The errors ut are assumed to be multivariate normally distributed with mean
zero and variance Σt which is specified as a BEKK model of Engle and Kroner
(1995):

Σt = C ′C + F ′ut−iu′t−iF +G′Σt−jG. (3.11)

The models are implemented as follows. For the specification where the data
are not cointegrated the unrestricted VAR(1) in Equation (3.9) is simulated
with A1 as the identity matrix and the constant a0 =


0.001 0.006 0.002

′
.

The system, thus consists of three independent random walks. The innovations
may be correlated (see below). In order to simulate cointegrated data we
implement the VECM in Equation (3.10) with

Π = αβ′ =

0.4 0.2 0.4

 
1 −0.8 −0.6

′

Γ1 =


0.1676 −0.020 0.022
0.322 0.003 −0.116
0.151 0.116 0.420

 Γ2 =


0.001 0 0

0 0.006 0
0 0 0.002;

 .
The rank of Π is one. The two models (3.9) and (3.10) are not directly com-
parable in the sense that they specify the same unit root processes. For the
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purpose of this study, however, it is only important that we can distinguish a
setting with cointegration and a setting without cointegration.

We then implement the BEKK model in Equation (3.11) in the following way.
First, to check implementation, the matrix C is the identity matrix and F
and G are zero which results in uncorrelated, homoscedastic innovations in
the VAR. Second, the rows of C are specified as


1 0 0; 0.2 1 0; 0.03 0.09 1


which induces contemporaneous correlation in the (still homoscedastic) errors.
Finally, we fully specify the BEKK (following the empirical example in Lütke-
pohl, 2005) as

C =


0.04 0 0
0.001 0.03 0
0.005 0.003 0.09

 F =


0.25 0.004 0.030
0.004 0.33 0.024
0.030 0.024 0.038



G =


0.94 0.023 0.02
0.023 0.86 0.04
0.02 0.04 0.90

 .

3.3.3 The Heteroscedastic Cointegration Model of McCabe, Leybourne, and
Harris (2006)

The third model in the simulation experiment is the stochastic cointegration
model of Harris et al. (2002) in Equation (3.1). It is implemented as a slightly
modified version of the data generating process considered by McCabe et al.
(2006) in the following way:

xt
yt

 =
 1 0

(1− d1) d1

w1,t

w2,t

+
vx,t 0
vy,t 0

hx,t
hy,t

+
ux,t
uy,t

 . (3.12)

The difference to the original version of McCabe et al. (2006) lies in the matrix
Π (cp. Equation (3.3)). It contains an element π21 = (1− d1) here whereas it
is implemented as π21 = 1 by McCabe et al. (2006). There is only a difference
when the two processes are not cointegrated: in the case where π21 = 1, the
series yt contains the same random walk component as xt plus another random
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walk. If π21 = (1 − d1), the two series will be two completely independent
random walks. The data generating process was then implemented according
to

ux,t = 0.5ux,t−1 + ϵ1,t uy,t = −0.5uy,t−1 + ϵ2,t
vx,t = −0.8vx,t−1 + 0.3d2ϵ3,t vy,t = 0.8vy,t−1 + 0.2d3ϵ4,t
w1,t = w1,t−1 + ϵ5,t w2,t = w2,t−1 + ϵ6,t
hx,t = hx,t−1 + ϵ7,t hy,t = hy,t−1 + ϵ7,t

with (ϵ1,t, ϵ2,t, ϵ3,t, ϵ4,t, ϵ5,t, ϵ6,t, ϵ7,t, ϵ8,t) a multivariate Gaussian white noise pro-
cess. Contemporaneous correlation may be induced by cov(ϵ2,t, ϵ4,t) =
cov(ϵ4,t, ϵ5,t) = 0.5. Whether xt and/or yt are I(1) or HI is determined by
d2 and d3, respectively. If one of them is equal to zero, the respective series
will be an I(1) series. If d2 and/or d3 are different from zero, xt and/or yt are
heteroscedastically integrated. Whether the series are cointegrated depends
on d1: if d1 ̸= 0 there is no cointegration in any sense whilst xt and yt are
cointegrated if d1 = 0.

3.3.4 General Simulation Design

All simulations have been conducted in GAUSS using 10,000 replications for
each experimental setting. In the simulation of the data, the first 200 observa-
tions are discarded to avoid startup effects (cp., inter alia, Haug, 2002). The
random seed to initiate the random number generator has been set to 746283.
Tests are conducted on the α = 5% significance level for 100 observations and
α = 1% for 1000 observations. The two estimated cointegration models are
both specifications without deterministic trends. Model one (CIM 1 in the
latter) allows for an intercept in the VAR specification, while for model two
(CIM 2) the intercept is moved to the cointegration equation.

Note that the cointegration tests are performed stepwise as suggested by Jo-
hansen (1992). The respective rejection rates reported in Tables 3.1 to 3.4 for
the hypotheses r = 1 and r = 2 (where applicable), thus, depend upon rejec-
tion of the first null hypothesis r = 0. More precisely, if the hypothesis r = 0
is rejected in less than 100% of all simulation runs, the following hypothesis
tests are based on less than 10,000 replications. Again, we follow an empiri-
cist’s approach and conduct the tests as we would treat a single sample. We



48
A Note on the Influence of Heteroscedasticity on the

Johansen Cointegration Test

then check how the tests behave given that we know the true data generating
process. In proceeding this way (in accordance to Haug, 1996, for example),
however, we can not control the significance level of the test as a whole. This
problem, however, is not the focus of this study.

3.4 Simulation Results

The first model setting considered is the design in Equations (3.6) to (3.8).
The simulation results are summarized in Table 3.1, an example for a simulated
dataset for each setting is provided in Figure 3.1. Cases 1 and 2 are designed
such that the assumptions needed for derivation of the test are fulfilled. In
Case 1 the data are cointegrated and the errors are homoscedastic. So when
using the true cointegration model for the test (which is CIM 1 here), H0 : r = 0
is always rejected. For H0 : r = 1, we find rejection rates which are very close
to the chosen significance level. When using the wrong testing model (CIM 2)
the data are considered stationary 6 to 10 times more often than would be
expected under the given significance level. This is true for both the trace as
well as the maximum eigenvalue test. In Case 2 the data are not cointegrated.
Here we find rejection rates of the first null hypothesis r = 0 close to the
significance level when using CIM 1 as testing model. When using CIM 2, it
turns out that the maximum eigenvalue statistic is less reliable than the trace
statistic to reject cointegration, i.e. to not reject the first null hypothesis that
r = 0.

In Cases 3 and 4 we introduce heteroscedastic errors as specified in Equa-
tion (3.8). If the data are cointegrated (Case 3) we find that the hypothesis
that the data are not cointegrated is rejected in as many cases as is suggested
by the significance level when using CIM 1. Again, when using CIM 2, the
test is more inclined to suggest stationarity of the data. In the absence of
cointegration (Case 4) the test still performs well (rejection rates of H0 : r = 0
close to the significance level) when the correct testing model CIM 1 is used.
When using CIM 2, rejection rates of the null hypothesis of no cointegration
rise similar to Case 2 with homoscedastic errors.

The last setting considered is that only one data series exhibits heteroscedastic
errors while the errors of the other data series are homoscedastic. Again, for
both the case with cointegration (Case 5) and the case without cointegration
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(Case 6) we find that the tests perform well given the correct testing model is
used (CIM 1). Otherwise the trace statistic is somewhat less reliable than the
maximum eigenvalue statistic. We conclude from this part of the simulation
that if the underlying models are of simple structure (in particular, the errors
are uncorrelated) the Johansen tests are quite reliable to either identify or reject
cointegration. Only the choice of the testing model is crucial in some cases.
In an empirical study where the true structure of the data generating process
is not known it, thus, seems advisable to specify both models and perform
the tests, unless a theoretical model suggests the use of only one particular
specification.

The second model considered is the multivariate cointegration model specified
in Equations (3.9) to (3.11) which, for convenience, is limited to three data
series. In contrast to the model considered before, contemporaneous correla-
tion may be induced via the full specification of a variance-covariance matrix
through a multivariate GARCH model in BEKK representation3. Simulation
results are presented in Table 3.2 and samples of the different data generating
processes are depicted in Figure 3.2. For the first case where the data are not
cointegrated and the errors are uncorrelated and homoscedastic, we find rejec-
tion rates of the first null hypothesis r = 0 which are close to the significance
level, especially in large samples when using CIM 1, the correct specification
of the VAR. When using CIM 2, the rejection rates rise by a factor 2 in case
of the trace statistic, but remain close to the significance level when using the
maximum eigenvalue statistic. The rejection rates for the hypotheses r = 1
and r = 2 are not necessarily meaningful any more as they are only tested
once the first null hypothesis has been rejected. For Case 2 with cointegrated
data we keep the assumptions on the innovations. It turns out that both tests
(in both CIM 1 and 2) always reject H0 : r = 0. As we have one cointegration
relationship only, the second null hypothesis r = 1 should not be rejected. For
small samples we find a slightly higher than α rejection rate while in large sam-
ples it is close to α. Again, the maximum eigenvalue statistic is more reliable
if the underlying test model is misspecified.

In Cases 3 and 4 we induce contemporaneous correlation in the innovations.
The results of the testing remain stable compared to Cases 1 and 2. So contem-
poraneous correlation is not found to affect the cointegration test negatively.

3A VECH representation has been specified as well. As the conclusions to be drawn are
qualitatively the same as for the BEKK model, results are not reported.
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In Cases 5 and 6 the innovations are heteroscedastic and contemporaneously
correlated through the specification of a covariance matrix. We find that for
the model without cointegration the rejection rate of the first null hypothesis
that the data are not cointegrated is rejected more often than expected, even
in large samples. This is true for both the trace as well as the maximum
eigenvalue test. On the other hand, if the data are indeed cointegrated, both
tests reliably reject H0 : r = 0. However, the rejection rates of the second null
hypothesis r = 1 are higher than they should be given the significance level.
So one would be inclined to assume more than one cointegration relationship
in too many cases. The following null hypothesis r = 2 is then also rejected in
more cases than expected. So it seems in general that the test is more capable
of detecting cointegration if it is present (which is at least partially due to the
way the test is conducted, trying to avoid under-estimation of the number of
cointegrating vectors) than to reject it if it is not present.

The third model considered is the heteroscedastic cointegration model by Mc-
Cabe et al. (2006) as given in Equation (3.12). Simulation results are sum-
marized in Table 3.3 for the case with correlated errors and in Table 3.4 for
uncorrelated errors. One realization of the data generating process with cor-
related errors for each parameter setting is given in Figure 3.3. Note again
that the difference to the previous models lies in the assumption about the
non-stationarity behavior which has been deterministic so far, i.e. for any t
the data were non-stationary. In the case of heteroscedastic integration the
degree of integration is stochastic and varies around one. When applying the
Johansen test to this model framework we find the following. In the first case
where d1 = 1, d2 = d3 = 0, the data are individually integrated of order 1 and
not cointegrated, the shocks to the system, however, are correlated. We find
that under these circumstances the Johansen test overrejects the null hypoth-
esis of no cointegration about 2-6 times more often than would be acceptable
under the respective significance level. This is true for both the trace as well
as the maximum eigenvalue test. The choice of CIM 2 even leads to rejection
rates of the true null hypothesis r = 0 which are 4-14 times higher as the sig-
nificance level on which tests are conducted. The second null hypothesis r = 1
is, at least under CIM 1, rejected in accordance with α. The reason for this
behavior is solely due to the contemporaneous correlation in the innovations
process. Once cov(ϵ2,t, ϵ4,t) = cov(ϵ4,t, ϵ5,t) = 0 the performance of the test is
far better in the sense that rejection rates correspond to the significance level.
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The second setting is d1 = d2 = d3 = 0, i.e. the data are cointegrated, but still
not heteroscedastically integrated. In small samples the power of the trace and
maximum eigenvalue test to reject the wrong null hypothesis r = 0 is weak:
rejection rates are well below (100 − α)%. Rejection of H0 : r = 1 is about
twice as much as suggested by α under CIM 1 and ten times under CIM 2.
In large samples, the test performs well as regards H0 : r = 0 with rejection
rates of 100%. However, rejection rates are well above an acceptable rate for
H0 : r = 1. Again, this is largely due to the contemporaneous correlations in
the ϵi,t.

In Cases 3 and 4, both (d2 = d3 = 1) or one (d2 = 1, d3 = 0) of the data series
are individually heteroscedastically integrated, but they are not cointegrated
(d1 = 1). Here the Johansen test erroneously rejects the null hypothesis of no
cointegration far too often. We find rejection rates which are between 40 and
99%, irrespective whether CIM 1 or 2 is used. Contemporaneous correlation
in the innovations slightly worsens this effect.

In the last two settings 5 and 6, again either both (d2 = d3 = 1) or one (d2 = 1,
d3 = 0) of the data series are individually heteroscedastically integrated. Now,
however, the two series are cointegrated (d1 = 0) as well. Here the influence
of contemporaneous correlation is again more important. If we use CIM 1 we
find, particularly in large samples, the rejection rates to be close to 100% for
H0 : r = 0. Non-rejection of the second null hypothesis that r = 1 is well
above the significance level, ranging from 30-65% if the errors are correlated
and 20-50% if the errors are uncorrelated. Surprisingly, matters are worse in
large samples. If CIM 2 is used for testing, the rejection rates for r = 1 even
raise. It, thus, seems that heteroscedastic integration of time series leads the
Johansen tests to the conclusion that the data in question are stationary. If
only one of the data series is heteroscedastically integrated while the other one
is strictly I(1), the performance of the tests improves substantially. Rejection
rates of H0 : r = 0 are at 100% in large samples for both CIM 1 and 2. If
the errors are uncorrelated, rejection rates of the second H0 : r = 1 are 2-5
times higher than would be suggested by the significance level. If the errors
are correlated, the rate of wrong rejections rises to 13% in small samples and
even 12% in large samples.
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3.5 Concluding Remarks

The previous simulations support the notion that the Johansen cointegration
test is largely unaffected by either heteroscedasticity or contemporaneous cor-
relation individually. Only when these features are combined the performance
of the tests weakens. Under such circumstances it seems that they are more
capable to detect cointegration if it is indeed present (albeit with a tendency
to overestimate the number of cointegrating vectors) than to not reject the
first null hypothesis of no cointegration if the data are not cointegrated. This
finding is in line with the reported tendency to slightly overestimate the num-
ber of cointegrating vectors by Ho and Sorensen (1996) in the context of high
dimensional cointegrated VARs. It also corresponds to the results of Lee and
Tse (1996) who find increasing, albeit (as they say) not serious size distortion if
GARCH-type heteroscedasticity is present in the data and the variance tends
to explosive behavior.

A crucial point in our simulations is whether the data are truly I(1) or het-
eroscedastically integrated. In the latter case, the Johansen framework is not
reliable enough to detect cointegration. This, however, is purely due to the
fact that the data can be locally stationary which is the conclusion the Jo-
hansen tests tend to draw more often than would be appropriate. So care-
ful pre-analysis of the data is necessary to determine the appropriate testing
framework.

From all the simulations it should become clear that the choice of the test model
is crucial. We limited the study to two settings (without trend and an intercept
either in the VAR or in the cointegrating equation). However, more settings are
possible (inclusion of a deterministic trend together with or without a constant,
for example) and inconsiderate application might lead to wrong conclusions.
There are, in our view, two ways to avoid erroneous conclusions. First, the
tested model can be justified by theory, i.e. theory suggests the inclusion or
exclusion of certain model parameters. The cointegration test in this case also
coincides with a test of the model. The second option would be to thoroughly
test the data (whether they drift or trend) and then to still test more than one
model setting to make sure the conclusions are robust.
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Figure 3.1: Data from the bivariate model

no cointegration,
homoscedastic errors

cointegration,
homoscedastic errors

no cointegration,
heteroscedastic errors

cointegration,
heteroscedastic errors

no cointegration,
mixed errors

cointegration,
mixed errors

The graphics present data series which are simulated according to bivariate data
generating process given in Equations (3.6) - (3.8).
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Figure 3.2: VAR-BEKK Data

no cointegration,
uncorrelated, homoscedastic errors

cointegration,
uncorrelated, homoscedastic errors

no cointegration,
correlated, homoscedastic errors

cointegration,
correlated, homoscedastic errors

no cointegration,
heteroscedastic errors

cointegration,
heteroscedastic errors

The graphics present data series which are simulated according to the multivariate
data generating process given in Equations (3.9) - (3.11).
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Figure 3.3: MLH Data

no cointegration,
I(1) data series

cointegration,
I(1) data series

no cointegration,
heteroscedastically integrated data

cointegration,
heteroscedastically integrated data

no cointegration,
mixed data

cointegration,
mixed data

The graphics present data series which are simulated according to the data gen-
erating process of McCabe et al. (2006) given in Equation (3.12) using correlated
innovations.
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Table 3.1: Results from the bivariate model

Trace statistic λmax statistic
CIM obs α(%) r = 0 r = 1 r = 0 r = 1
Case 1: cointegration, homoscedastic errors

1 100 5 100.00 5.51 100.00 5.51
1 1000 1 100.00 0.89 100.00 0.89
2 100 5 100.00 30.99 100.00 30.99
2 1000 1 100.00 9.98 100.00 9.98

Case 2: no cointegration, homoscedastic errors
1 100 5 5.87 9.37 5.78 3.29
1 1000 1 0.96 3.12 0.97 0.00
2 100 5 12.86 44.48 7.49 22.43
2 1000 1 2.79 24.73 1.40 5.00

Case 3: cointegration, heteroscedastic errors
1 100 5 100.00 5.65 100.00 5.65
1 1000 1 100.00 0.88 100.00 0.88
2 100 5 100.00 31.09 100.00 31.09
2 1000 1 100.00 10.04 100.00 10.04

Case 4: no cointegration, heteroscedastic errors
1 100 5 6.30 8.41 6.04 3.31
1 1000 1 1.04 1.92 1.02 0.00
2 100 5 13.03 43.82 7.50 23.60
2 1000 1 2.73 27.11 1.39 4.32

Case 5: cointegration, mixed errors
1 100 5 100.00 5.71 100.00 5.71
1 1000 1 100.00 0.91 100.00 0.91
2 100 5 100.00 31.25 100.00 31.25
2 1000 1 100.00 10.02 100.00 10.02

Case 6: no cointegration, mixed errors
1 100 5 5.98 9.03 5.87 3.24
1 1000 1 0.97 4.12 1.01 0.99
2 100 5 12.91 44.93 7.43 23.82
2 1000 1 2.69 26.02 1.41 4.96

The table reports empirical rejection rates of the respective null
hypotheses which are:
• Trace statistic: H0 : rg(Π) = r vs H1 : rg(Π) > r;
• Maximum Eigenvalue (λmax) statistic: H0 : rg(Π) = r vs

H1 : rg(Π) = r + 1;
the hypothesis r = 1 is only tested if the hypothesis r = 0 has been
rejected.
CIM is the underlying cointegration model. 1 is no trend, intercept
in VAR; 2 is no trend, intercept in the cointegration equation. obs
is the number of observations and α is the significance level (in per
cent).
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Table 3.2: Results from the VAR-BEKK model

Trace statistic λmax statistic
CIM obs α(%) r = 0 r = 1 r = 2 r = 0 r = 1 r = 2
Case 1: no cointegration; uncorrelated homoscedastic errors

1 100 5 7.18 7.66 20.00 7.18 2.92 0.00
1 1000 1 0.94 2.13 0.00 1.04 0.00 0.00
2 100 5 11.19 20.02 60.71 7.67 4.30 18.18
2 1000 1 2.26 4.87 27.27 1.09 0.00 0.00

Case 2: cointegration; uncorrelated, homoscedastic errors
1 100 5 100.00 7.84 8.42 100.00 7.50 3.60
1 1000 1 100.00 0.90 1.11 100.00 1.03 0.00
2 100 5 100.00 15.11 46.13 100.00 9.44 25.85
2 1000 1 100.00 2.79 25.81 100.00 1.42 8.45

Case 3: no cointegration; correlated, homoscedastic errors
1 100 5 7.25 7.45 20.37 7.18 2.92 0.00
1 1000 1 0.99 2.02 0.00 1.04 0.00 0.00
2 100 5 11.23 20.04 59.56 7.68 4.30 18.18
2 1000 1 2.18 4.59 30.00 1.16 0.00 0.00

Case 4: cointegration; correlated, homoscedastic errors
1 100 5 100.00 7.92 10.10 100.00 7.51 3.86
1 1000 1 100.00 0.98 1.02 100.00 1.11 0.00
2 100 5 100.00 15.33 45.34 100.00 9.12 24.01
2 1000 1 100.00 2.75 24.73 100.00 1.43 9.09

Case 5: no cointegration; heteroscedastic errors
1 100 5 8.60 9.30 13.75 8.14 3.32 3.70
1 1000 1 2.44 4.51 0.00 1.86 100.00 0.00
2 100 5 12.58 17.57 56.11 8.47 4.25 16.67
2 1000 1 1.87 3.74 42.86 1.45 0.00 0.00

Case 6: cointegration; heteroscedastic errors
1 100 5 99.99 9.63 10.49 100.00 8.84 4.64
1 1000 1 100.00 2.93 4.44 100.00 2.33 3.00
2 100 5 100.00 16.23 45.29 100.00 10.72 25.09
2 1000 1 100.00 2.53 15.02 100.00 1.75 4.00

The table reports empirical rejection rates of the respective null hypotheses which
are:
• Trace statistic: H0 : rg(Π) = r vs H1 : rg(Π) > r;
• Maximum Eigenvalue (λmax) statistic: H0 : rg(Π) = r vs H1 : rg(Π) =
r + 1;

the hypothesis r = 1 is only tested if the hypothesis r = 0 has been rejected; the
hypothesis r = 2 is only tested if the hypothesis r = 1 has been rejected;
CIM is the underlying cointegration model. 1 is no trend, intercept in VAR;
2 is no trend, intercept in the cointegration equation. obs is the number of
observations and α is the significance level (in per cent).
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Table 3.3: Results from the McCabe et al. (2006) model with correlated errors

Trace statistic λmax statistic
CIM obs α(%) r = 0 r = 1 r = 0 r = 1
Case 1: no cointegration, I(1) data

1 100 5 9.06 7.06 8.77 3.19
1 1000 1 6.09 1.97 6.52 0.92
2 100 5 22.86 51.22 13.54 32.50
2 1000 1 14.82 22.94 9.33 10.18

Case 2: cointegration, I(1) common trend
1 100 5 55.65 10.21 56.63 7.24
1 1000 1 100.00 2.26 100.00 2.26
2 100 5 81.29 47.52 68.71 41.44
2 1000 1 100.00 17.04 100.00 17.04

Case 3: no cointegration, HI data
1 100 5 59.36 27.29 55.37 25.05
1 1000 1 98.03 57.95 97.35 58.21
2 100 5 77.25 69.68 63.53 66.47
2 1000 1 99.21 79.80 97.90 80.12

Case 4: no cointegration, HI and I(1) data
1 100 5 43.11 10.93 42.39 8.04
1 1000 1 91.80 6.49 91.53 6.41
2 100 5 64.59 53.82 51.18 46.72
2 1000 1 95.29 30.93 92.89 30.39

Case 5: cointegration, HI data
1 100 5 91.41 27.35 91.10 26.47
1 1000 1 100.00 64.61 100.00 64.61
2 100 5 98.07 67.76 95.08 67.55
2 1000 1 100.00 84.79 100.00 84.79

Case 6: cointegration, HI and I(1) data
1 100 5 78.91 13.69 78.62 12.05
1 1000 1 100.00 12.23 100.00 12.23
2 100 5 93.64 57.01 86.60 55.28
2 1000 1 100.00 40.70 100.00 40.70

The table reports empirical rejection rates of the respective null
hypotheses which are:
• Trace statistic: H0 : rg(Π) = r vs H1 : rg(Π) > r;
• Maximum Eigenvalue (λmax) statistic: H0 : rg(Π) = r vs

H1 : rg(Π) = r + 1;
the hypothesis r = 1 is only tested if the hypothesis r = 0 has been
rejected;
the data are simulated according to Equation (3.12), the innova-
tions are correlated;
CIM is the underlying cointegration model; 1 is no trend, intercept
in VAR; 2 is no trend, intercept in the cointegration equation. obs
is the number of observations and α is the significance level (in per
cent).
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Table 3.4: Results from the McCabe et al. (2006) model with uncorrelated
errors

Trace statistic λmax statistic
CIM obs α(%) r = 0 r = 1 r = 0 r = 1
Case 1: no cointegration, I(1) data

1 100 5 7.38 8.81 7.38 3.66
1 1000 1 3.97 2.27 4.28 0.93
2 100 5 18.23 47.28 10.97 26.07
2 1000 1 8.92 15.92 5.78 5.71

Case 2: cointegration, I(1) common trend
1 100 5 55.23 8.17 57.75 5.58
1 1000 1 100.00 1.45 100.00 1.45
2 100 5 81.02 42.94 70.10 37.38
2 1000 1 100.00 13.62 100.00 13.62

Case 3: no cointegration, HI data
1 100 5 52.16 24.37 49.19 21.61
1 1000 1 96.42 50.73 95.36 51.04
2 100 5 70.62 66.19 57.61 61.99
2 1000 1 97.98 75.87 95.99 76.05

Case 4: no cointegration, HI and I(1) data
1 100 5 35.54 10.47 35.61 7.27
1 1000 1 85.38 4.93 85.05 4.74
2 100 5 56.95 52.48 43.73 43.75
2 1000 1 90.74 25.80 86.79 24.66

Case 5: cointegration, HI data
1 100 5 90.34 18.33 91.65 17.52
1 1000 1 100.00 49.06 100.00 49.06
2 100 5 97.75 57.96 95.78 57.53
2 1000 1 100.00 73.80 100.00 73.80

Case 6: cointegration, HI and I(1) data
1 100 5 77.90 9.23 80.05 7.88
1 1000 1 100.00 5.01 100.00 5.01
2 100 5 93.44 47.77 87.31 45.75
2 1000 1 100.00 27.23 100.00 27.23

The table reports empirical rejection rates of the respective null
hypotheses which are:
• Trace statistic: H0 : rg(Π) = r vs H1 : rg(Π) > r;
• Maximum Eigenvalue (λmax) statistic: H0 : rg(Π) = r vs

H1 : rg(Π) = r + 1;
the hypothesis r = 1 is only tested if the hypothesis r = 0 has been
rejected;
the data are simulated according to Equation (3.12), the innova-
tions being uncorrelated;
CIM is the underlying cointegration model; 1 is no trend, intercept
in VAR; 2 is no trend, intercept in the cointegration equation. obs
is the number of observations and α is the significance level (in per
cent).



Chapter 4

On Cointegration of International
Financial Markets

4.1 Introduction

For many years now financial econometrics has dedicated a lot of effort and re-
sources to the analysis of the linkages between international financial markets.
In the context of the present turmoil the question how exactly these markets
are linked and how these linkages can be described best is again in the focus
of researchers. A great number of empirical studies have already documented
that financial markets around the globe are not independent (at the least be-
cause of worldwide monetary and commodity flows). The assumption that
they even share common stochastic trends is therefore also quite plausible at
first sight. This is the reason why cointegration analysis has been one of the
dominating tools in the study of interrelatedness of financial markets since the
seminal work of Engle and Granger (1987) and Johansen (1988).

Based on the assumption that stock markets in different countries share com-
mon stochastic trends, numerous studies have tried to detect those. One of
the first was Kasa (1992) who can identify one common stochastic trend for
the stock markets of the U.S., Japan, England, Germany, and Canada. He
used monthly and quarterly data over a period of almost 16 years which suits
the notion that cointegration is a long term concept while short run devia-
tions from the common trend are possible. More recent contributions include
Choudhry, Lu, and Peng (2007), Lagoarde-Segot and Lucey (2007), Constanti-
nou, Kazandjian, Kouretas, and Tahmazian (2008) and Valadkhani and Chan-
charat (2008). These studies have in common that they all identify exactly one
common stochastic trend. However, there is no economic or financial theory
predicting how many common stochastic trends there should be. Empirically,
Click and Plummer (2005), for example, who investigate the relationship be-
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tween five ASEAN stock markets on a daily basis for four years, find that
these markets are cointegrated. The authors can, however, identify only one
cointegrating vector. This means that there would be four stochastic trends
which influence the cointegration relationship. The authors conclude that in
this case the integration of these financial markets is far from being perfect.
Empirical work, thus, cannot conclude how many stochastic trends financial
markets share. How many cointegrating vectors will be found, therefore, crit-
ically depends on how many markets are analyzed.

It is not only unclear how many stochastic trends international financial mar-
kets would share. Empirical results whether financial markets do share one ore
more stochastic trends at all are mixed. The studies cited above all find evi-
dence for the existence of a cointegration relationship. In contrast, Chan, Gup,
and Pan (1997) who analyse 18 stock market indices, find that these markets
are not cointegrated. The analysis is conducted using monthly data from 1961
to 1992. Pascual (2003) studies whether the degree of integration between the
French, German, and UK stock market increases. He does not find a cointegra-
tion relationship using quarterly observations from 1960 to 1999 either. The
results of Narayan and Smyth (2005) who investigate the relationship between
the stock markets of New Zealand, Australia and the G7 countries, are mixed,
depending on which test they use to detect cointegration. Their analysis is
based on real monthly observations from 1967 to 2003.

As regards financial theory, the existence of cointegration relationships in the
long run would contradict the Efficient Market Hypothesis (EMH). The latter
requires that returns and, thus, future prices, be not predictable. A common
model frequently used in the literature which captures this behavior of stock or
index returns at high frequencies is the random walk model for stock prices. It
dates back to work by Fama (1965) and Malkiel (1973) and has ever since fre-
quently been applied (see, inter alia, Black, 1986; Richardson, 1993; Lewellen,
2002; Godfrey, Granger, and Morgenstern, 2007) and tested, albeit with mixed
results (see, inter alia, Bondt and Thaler, 1985; Fama, 1995; Worthington and
Higgs, 2009). Cointegration by contrast would allow for some kind of pre-
dictability in the long run, even though short run predictions are not possible.
This argument is not limited to stock markets. Granger (1986) shows that
gold and silver prices are not cointegrated once these prices are generated on
an efficient market.

This study suggests that under the assumption that stock prices are generated
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according to the random walk model, international financial markets are not
cointegrated. It follows similar arguments as put forward by Richards (1995)
who claims that stock return indices in one stock market cannot be cointegrated
if one assumes that excess returns are generated according to the Capital As-
set Pricing Model (CAPM). He argues that the company specific shocks of one
company would have to be offset by shocks of the other company. However,
both of these shock would have to be completely unexpected, but identical
in size and direction. He states that this would rule out the possibility that
any management decision permanently affected a company’s stock price. He
summarizes that these company specific shocks “will not translate into a coin-
tegrating relationship between the actual return indices for the two (or more)
assets.” It seems that this result has been neglected in the literature on cointe-
gration of financial markets since then. This paper will therefore reinforce the
argumentation that company specific shocks eventually inhibit the existence
of cointegration relations (as defined by Engle and Granger, 1987) between
international stock market indices. In contrast to Richards (1995) who seeks
to explain the results of Kasa (1992) obtained on low frequencies, our line of
argumentation will keep features of high frequency data in mind. Our model
will therefore be different from Richards (1995), in that we will not rely on the
CAPM, but the more general random walk model for stock prices. It is widely
accepted that on high frequencies stock prices are modeled best by a random
walk. Further, Richards (1995) attributed some of the results in the literature
specifically to a small sample bias in the Johansen (1988) cointegration testing
framework. This issue can be regarded as overcome as high frequency data (in
particular daily data) are nowadays widely (and even freely) available. How-
ever, daily data are marked by other features (e.g. heteroscedasticity) which
have to be taken into account when testing international financial markets for
cointegration.

The chapter proceeds as follows. Section 4.2 outlines the common random
walk model of stock prices and derives the implications for stock indices and
cointegration. It shows that stock market indices from different countries are
not cointegrated and illustrates the result using a simple example. Section 4.3
presents the results of a cointegration and correlation analysis of 28 stock
indices. The features found in this section are modeled by simulation methods
in section 4.4 to illustrate the adequacy of our model assumptions. Section 4.5
concludes.



4.2 Stock Prices, Indices and Cointegration 63

4.2 Stock Prices, Indices and Cointegration

The basic model for stock prices which is widely used in the literature assumes
that log-prices follow a random walk. The model can be written as

pi,t = pi,t−1 + et, (4.1)

where pi,t is the price of stock i in time t (in logarithms). The error term
et is a white noise process with E [et] = 0 and Variance σ2

t . Whether the
variance is time dependent or not will not influence the theoretical result, so
we suppress the time subscript in σ2 in the subsequent outline. The model
may contain a drift term δt, but there is an ongoing debate on whether a drift
term is compatible with information efficient markets (Malkiel, 1973; Edwards
and Magee, 2001). The following results hold irrespective of the inclusion of a
drift term which is therefore neglected in the following as well.

Following the idea of latent factor models in finance, we allow the error term
in Equation (4.1) to consist of different components, namely a global, a lo-
cal and an idiosyncratic component (cp. Dungey, Martin, and Pagan, 2000;
Jung, Liesenfeld, and Richard, 2010). Thus, et is a multivariate white noise
process with E [et] = 0 and Variance Σ. The error term in Equation (4.1),
thus, needs to be written as ι′et where ι is a (3× 1)-vector of ones. A common
assumption would then be that et ∼ N(0,Σ). The errors are serially uncor-
related (E[ei,t, ei,t−1] = 0), but may be cross-sectionally correlated such that
E[ei,t, ej,t] ̸= 0.

A stock market index is usually calculated as a weighted and normalized sum
of individual stock prices. Without loss of generality we assume that an index
Xj is calculated as

Xj,t =
n
i=1
wi · pi,t, (4.2)

where wi is the weight for asset i. As Xj is composed of n price series which
are assumed to follow a random walk, the index will be a weighted sum of n
random walks and, thus, also be non-stationary.

The crucial question which arises is whether any two stock market indices X1

and X2 of countries 1 and 2, respectively, are cointegrated in the sense of Engle
and Granger (1987). This is the case if and only if X1 − βX2 is stationary1.

1In a bivariate cointegration analysis one of the coefficients in the cointegrating vector is
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This will happen if the linear combination of the indices successfully eliminates
the stochastic trends which compose the individual stock prices. However, if
stock i is an element of X1 and at the same time not an element of X2 (for all
stocks i), X1 and X2 cannot be cointegrated. The reason is that the individual
stochastic trends which are contained in the individual stocks do not cancel
out, as the random walk contained in stock i will be different from the random
walk contained in stock i⋆. As in the present framework two stock market
indices are weighted averages of distinct I(1)-series, no linear combination
exists which removes all stochastic trends. So for any β, X1−βX2 ∼ I(1) and
the stationarity requirement is violated. No cointegrating vector exists which
would assure that X1−βX2 ∼ I(0). Therefore, the indices are not cointegrated
in the sense of Engle and Granger (1987).

This result also holds for market indices in one country as long as their basis,
i.e. the stocks used to calculate them, are not identical. The same is true for
the cross-listing of stocks which also does not alter the result. Cross-listing,
i.e. the listing of a company on two exchanges in two different countries, would
imply that a stock k is contained in both indices X1 and X2. A cointegration
relationship between these two stocks most likely exists due to the law of one
price (e.g. Hasbrouck, 1995; Grammig, Melvin, and Schlag, 2005) which allows
only for temporary price deviations, but no fundamental ones. As regards the
indices, however, only if all stocks are the same, i.e. one index is the exact
reproduction of the other, these indices will be cointegrated. Two such indices
are, to the best of our knowledge, not calculated on any stock exchange.

In order to illustrate the result that stock market indices of different countries
are not cointegrated in the assumed context, we limit ourselves to two indices
which are composed of only two stock prices each. Rewrite these four stock
prices as

p1,t = p1,t−1 + gt + l1,t + ε1,t =
t
s=1
gs +

t
s=1
l1,s +

t
s=1
ε1,s

p2,t = p2,t−1 + gt + l1,t + ε2,t =
t
s=1
gs +

t
s=1
l1,s +

t
s=1
ε2,s

p3,t = p3,t−1 + gt + l2,t + ε3,t =
t
s=1
gs +

t
s=1
l2,s +

t
s=1
ε3,s

p4,t = p4,t−1 + gt + l2,t + ε4,t =
t
s=1
gs +

t
s=1
l2,s +

t
s=1
ε4,s, (4.3)

usually normalized to 1 as in X1 − βX2 where the cointegrating vector is (1 -β).
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where gt is the global, lj,t the local and εi,t the idiosyncratic innovation in et
of Equation (4.1). We assume that the initial values g0 = lj,0 = εi,0 = 0. The
indices are then constructed as

X1,t = w1p1,t + (1− w1)p2,t
X2,t = w2p3,t + (1− w2)p4,t. (4.4)

Substituting the individual prices in (4.4) by the respective stock prices in (4.3)
gives

X1,t = w1p1,t−1 + (1− w1)p2,t−1 + gt + l1,t + w1ε1,t + (1− w1)ε2,t

=
t
s=1
gs +

t
s=1
l1,s + w1

t
s=1
ε1,s + (1− w1)

t
s=1
ε2,s (4.5)

X2,t = w2p3,t−1 + (1− w2)p4,t−1 + gt + l2,t + w2ε3,t + (1− w2)ε4,t

=
t
s=1
gs +

t
s=1
l2,s + w2

t
s=1
ε3,s + (1− w2)

t
s=1
ε4,s. (4.6)

In order for X1 and X2 to be cointegrated, the linear combination X1 − βX2

would have to eliminate the global, the two local as well as the four stock spe-
cific stochastic trends. Denote by ût the residuals of a cointegration regression:

ût = X1,t − βX2,t

=
t
s=1
gs − β

t
s=1
gs +

t
s=1
l1,s − β

t
s=1
l2,s + w1

t
s=1
ε1,s

+ (1− w1)
t
s=1
ε2,s − βw2

t
s=1
ε3,s − β(1− w2)

t
s=1
ε4,s. (4.7)

Cointegration would require ût to be stationary. This is, however, not the case
as it still contains random walk components. As can be seen easily, for β = 1
only the global stochastic trend is eliminated. The local and the stock specific
stochastic trends, however, are still present. Thus, X1 − βX2 still contains a
combination of stochastic trends and is not stationary. More precisely,

ût = ût−1 + l1,t − βl2,t + w1ε1,t + (1− w1)ε2,t − βw2ε3,t − β(1− w2)ε4,t (4.8)

which is an AR(1) process. The last result holds for any possible β ∈ R. The
only difference in ût will be that it also contains (1 − β)gt, i.e. the global
innovation.



66 On Cointegration of International Financial Markets

One might criticize the assumption about the error term. Dividing it into
global, local and idiosyncratic components might artificially and needlessly
increase the number of stochastic trends in the price process. Allowing for
one innovation term only, however, does not alter the result. As long as there
are stock specific innovations which are modeled as a martingale difference
sequence, the stock market index will always be a weighted average of stock
specific stochastic trends and local innovations l1,t − βl2,t would not appear in
the process ût in Equation (4.8). In economic terms, this means that there is
always stock specific information which affects the share price of one company
only and does not affect the share price of another company. It may happen
that a certain news event affects the distribution of the innovations of other
companies as well, i.e. the innovations are correlated, but they still are not
exactly identical. Identity and corresponding weights, however, are what is
required for the indices to be cointegrated in the sense of Engle and Granger
(1987).

An important feature of financial time series which has been often documented
in empirical studies is that return models exhibit heteroscedastic errors. In the
theoretical derivation of the result why international financial markets are not
cointegrated, the presence of heteroscedasticity does not matter. We show the
relationship of returns which exhibit heteroscedasticity and level log-prices in
an appendix to this chapter. A time-varying variance does only influence the
behavior of the random walk in such a way that it would be more volatile. The
important feature, the non-stationarity, is, however, not affected.

This argumentation easily extends to the multivariate case where it will be
impossible to find a cointegration vector β such that a linear combination β′x
with x an (n×1) vector of stock market indices, will be stationary. The global
trend again may cancel out, but the stock specific innovations do not.

A further property which has frequently been documented in the empirical
literature is the high correlation between stock market indices. According to
the model framework above, there are possibly two sources which would induce
correlation between indices. First, there may be stochastic trends which are
common to the individual prices. If there is a global stochastic trend, this
very same trend will be contained in both indices. Thus, the indices would not
be independent any longer and therefore exhibit some degree of correlation
which depends on the variance of the global trend relative to the variance of
the idiosyncratic innovations. Second, index correlation could also be induced
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by cross-sectionally correlated innovations which is not ruled out by the above
setting. We will show how these features interrelate in the simulation study in
the next but one section.

4.3 An Empirical Example

In order to evaluate the theoretical result in Section 4.2 we first analyse a
dataset of 28 stock indices2 which are taken from finance.yahoo.com. The
dataset covers daily close values between 1st March 2001 and 28th February
2009, i.e. we have 2084 observations. In case of a national holiday in one
country, the previous closing value has been substituted as the still valid value
as is standard in the literature. A necessary condition for any pair of two
indices to be cointegrated is that each single index is integrated of order 1. We
therefore perform Augmented Dickey-Fuller tests with individual lag-length
selection using the Schwarz Information Criterion. The indices are all found
to be non-stationary.

As financial time series are usually found to exhibit heteroscedastic errors, we
use the Ljung-Box test for autocorrelation (see Ljung and Box, 1978) on the
squared levels and the squared log-returns of each index, the squared variables
being a crude measure of the variance of the respective time series. The tests
are conducted using ten lags. We find that both the stock market indices
as well as the respective return time series exhibit time dependence in the
variance.3

We perform bivariate cointegration tests among all possible combinations of the
indices. As we have 28 indices, there are 378 possible index pairs. To perform
cointegration tests we rely on the Johansen (1988) methodology. We use the
Johansen (1991) test instead of the Engle and Granger (1987) two-step method
in order to keep the study comparable to Kasa (1992) and Richards (1995).

2AEX (Netherlands), All Ordinaries (Australia), Austrian Traded Index (Austria), Eu-
ronext Bel-20 (Belgium), Bovespa (Brazil), BSE Sensex (India), CAC 40 (France), CASE 30
(Egypt), DAX (Germany), Dow Jones Industrial Average (USA), Euro Stoxx 50 (Europe),
Financial Times Stock Exchange (UK), Hang Seng (Hongkong), IPC (Mexico), ISEQ 20
(Ireland), Jakarta Composite (Indonesia), FTSE Bursa Malaysia KLCI Index (Malaysia),
Madrid General (Spain), MerVal (Argentina), MIB TELEMATICO (Italy), Nasdaq Compos-
ite (USA), NZX 50 (New Zealand), Nikkei 225 (Japan), OMX Copenhagen-20 (Denmark),
Oslo Exchange All Share (Norway), PSI 20 (Portugal), S&P 500 (USA), S&P TSX Compos-
ite (Canada), Seoul Composite (South Korea), S&P 400 (USA), OMXS (Sweden), Straits
Times Index (Singapore), SMI (Switzerland), TSEC (Taiwan), Tel Aviv TA-100 (Israel)

3To conserve space, the results of the I(1) and heteroscedasticity tests are not printed.
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We restrict the analysis to using the trace test as the maximum eigenvalue
test leads to the same conclusions. The model used for testing is a simple
VAR without intercept and one lagged term. As regards the cointegration
relationship we use both the specification with and without intercept. P-values
are calculated using the response surface tables of MacKinnon et al. (1999).

In the first case without intercept in the cointegration relationship (model 1),
the trace test indicates that 46 out of the 378 combinations (i.e. 12.17 %) are
cointegrated when performed on a 5% significance level. When adding an inter-
cept in the cointegrating equation (model 2), we find that (based on the trace
test) 36 out of 378 (i.e. 9.52 %) stock index combinations are cointegrated. As
we have 2084 observations, we repeat the test on a more conservative signif-
icance level of 1%. We now find that 17 out of 378 combinations (4.50%) or
9 out of 378 (2.38%) combinations, respectively, are cointegrated. Hence we
find a tendency to reject the null hypothesis of no cointegration about twice
as often as the significance level would allow given the assumption that indices
are not cointegrated is true.

Whether the null hypothesis of no cointegration is rejected or not also depends
on the time period which is analyzed. Intuitively, this should not be the case:
if a cointegration relationship existed and was identified between t and t+1000
days, then it should also be identifiable between t+5 and t+1005 days. In order
to illustrate that this assumption does not hold in the context of international
stock market indices, we restrict the dataset and perform the cointegration
test on a window of 1042 observations moving through the full dataset in
weekly steps (i.e. we have 208 times 378 tests). The result is graphically
illustrated in Figure 4.1. The solid line gives the rejection rates based on
model 1 while the dashed line represents the rejection rates based on model
2. The first observation depicted corresponds to the sample window starting
1st March 2001 and ending 25th February 2005 while the last corresponds to
24th February 2005 to 25th February 2009. Across all windows we find on
average 20% of the stock market indices to be cointegrated, both based on
model 1 and model 2. As the graph in Figure 4.1 stresses, the rejection rates
are quite volatile when moving through the sample, ranging between 6 and
46%. This range is similar for both models used, but the results are usually
quite different as is shown by the deviant pattern of the two lines. In the
subsequent simulation study we will show that a possible explanation for this
behavior lies in the presence of common stochastic trends, i.e. the global and
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local shocks, and heteroscedasticity in the error term in Equation (4.1).

In order to calibrate the simulation model in the following section, we also
calculate pairwise correlation measures for the stock indices and the return
series. We find that correlation between the indices is on average 0.7997 (with
a standard deviation of 0.1741). Correlation is lowest for AEX and MerVal
(0.1043) and highest for OSEAX and S&P TSX (0.9901). As regards returns,
the average correlation is found to be 0.3758 (with a standard deviation of
0.2052). Correlation is lowest between ATS and KLSE returns (0.0366) and
highest for DJIA and S&P 500 returns (0.9780).

4.4 A Simulation Experiment

In order to see whether the theoretical considerations in Section 4.2 are in
line with the empirical findings in Section 4.3 we conduct a short simulation
experiment. We simulate prices according to the model

pi,t = pi,t−1 + ι′et, (4.9)

where et is a (3× 1)-vector of (un-)correlated global, local, and stock specific
innovations. ι is a (3 × 1)-vector of ones. The elements of e follow a normal
distribution with E [es] = 0 and Var[es] = 1. The magnitude of the variance
does not influence the following results. The initial values pi,0 are set to zero.
The first 200 observations of the simulated price series are discarded.

Indices are then calculated as a weighted sum of the individual price series.
In order to follow the simple model in Section 4.3, we use two price series to
construct an index (subsequently referred to as two-stocks index). As stock
market indices are never composed of two stocks only, we also construct two
indices using 30 price series for each index (as in the DAX or the DJIA, for
example; we will refer to this index composition as thirty-stocks index). In
both cases the weights are wi = 1

n
where n is the number of price series used

to calculate the index. The study is conducted for sample sizes of T = 500
and T = 1000 observations. The simulations are run with Gauss using the
“KISS + Monster”-based random number generator and 10,000 replications.
The Johansen (1991) test is conducted using only a model without drift and
critical values are obtained using the response surface tables of MacKinnon
et al. (1999).
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4.4.1 The Benchmark Case

In case that the error term of the model in Equation (4.9) only contains an
individual component (i.e. the second and the third element of et are zero), the
resulting index is a weighted average of two I(1) series. Hence, we expect the
cointegration test, testing whether two such indices are cointegrated, to reject
the null of no cointegration as often as implied by the significance level. As
regards correlation, the two indices should not be correlated as the individual
errors of the simulated prices are independent.

The results of the simulation support these assumptions. We first test the null
hypothesis that the data have zero common stochastic trends (to which we
will refer to subsequently as the null hypothesis of no cointegration) against
the hypothesis that there are more than zero common stochastic trends. The
rate of rejection of this null hypothesis corresponds to the significance level
in all of the four cases (see Table 4.1 for details). The second hypothesis
whether there is one common stochastic trend (tested against the alternative
that there are more than one common stochastic trends) is only calculated if
the first hypothesis is rejected. Rejection of this null hypothesis would indicate
that the data are stationary. The rejection rates of this null hypothesis are
very low (less than 1%). Our main focus, however, lies on the first hypothesis.
As the rejection rates of the second hypothesis are quite low throughout all
tests (usually lower than the significance level on which the test is conducted),
we will not discuss these results subsequently.

As regards the sample correlation of the simulated indices, we find that it is
on average close to zero. As the indices are two independent random variables,
this is what we expected. However, this is not in line with the empirically
found high correlation of the indices. We therefore relax the assumption on
the individual errors and allow for some correlation there. We construct the
time series such that the innovations’ correlation varies between -0.6 and 0.6.
The range is somewhat arbitrary, but we believe it is justifiable. One the
one hand, we need high and positive correlation if the correlation between the
indices is to go up at all. One the other hand, as the correlation approaches one,
the individual prices would be identical. We, thus, require the correlation to
be distinctly lower than one. Further, negative correlation has to be allowed
as well because it would otherwise rule out any hedging possibilities. If all
correlations would be set to exactly 0.6, the index correlation would be 0.6 as
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well. We believe, however, that this case is not empirically relevant. Table 4.1
(lower panel) reports possible results with random entries in the covariance
matrix (which is assured to be positive definite in the simulation). What we
see is that on average, correlation is fairly low, especially when using 30 stock
prices to construct the index. The cointegration test is not affected by the
correlation in the individual errors. Its rejection rates are still close to the
chosen significance level. We therefore conclude that correlation between price
innovations alone can not explain the empirical findings of high correlation and
relatively too high rejection rates of the cointegration test. We believe that
this is a strong hint to the presence of common factors which we will elaborate
further in the following subsection.

4.4.2 The Model with Common Global and Local Components

We now add the common components to the model in Equation (4.9). As we
consider a two-countries case, they represent a global stochastic trend which is
common to all stock prices, and an area specific local stochastic trend which
only concerns the stocks of one of the indices. The results are summarized in
Table 4.2.

With the innovations being uncorrelated we find that the cointegration test
still performs well in the sense that rejection rates are close to the chosen
significance level. This means that the sheer presence of a stochastic trend
which is common to both indices does not mislead the cointegration test. This
shows that while the assumption of a common stochastic trend is sensible, the
indices are not cointegrated.

Sample correlation of the two indices, however, rises to 0.36 for the two-stocks
index or even 0.45 for the thirty-stocks index. The higher correlation is only
due to the inclusion of the common random walk component. It basically
constitutes a random variable present in all price processes which are therefore
dependent. The latter is reflected in the higher correlation compared to the
benchmark case.

In a second setting we again allow the errors to be correlated4. We assume
that the global and local components are moderately positive correlated and

4The correlation matrices are constructed such that the fully specified model reflects the
empirically found features while still being compatible with empirical findings (eg. Harvey,
1991)
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that individual errors within one area j are correlated with each other as well
as with the local component. In the latter case, correlation can be negative.
The correlation between the individual innovations of different areas is still
zero. In case of two constituents of an index, the covariance matrix Σ of the
errors e = (g, l1, l2, ε1,1, ε1,2, ε2,1, ε2,2) is given as

g l1 l2 ε1,1 ε1,2 ε2,1 ε2,2

g 1.00
l1 0.60 1.00
l2 0.45 0.20 1.00
ε1,1 0.00 0.20 0.00 1.00
ε1,2 0.00 −0.30 0.00 −0.40 1.00
ε2,1 0.00 0.00 0.30 0.00 0.00 1.00
ε2,2 0.00 0.00 0.10 0.00 0.00 0.20 1.00

We assume that global and local components are dependent with covariance
σg,l1 = 0.6 and σg,l2 = 0.45. The idiosyncratic shocks are independent from
the global innovations (last four entries in the first column), but covary with
the local component (second and third column). In country 1 one stock is
negatively correlated with the local component and with the other stock. In-
dividual innovations are independent across countries (e.g. columns four and
five contain zeros in rows six and seven). Although the choice of the entries
will influence the outcome in this subsection, the general conclusions are not
affected. For the thirty-stocks index the structure of the covariance matrix is
preserved (i.e. global and local components are still correlated while country
1 innovations and country 2 innovations are not). The entries, however, are
random and can be positive or negative.

While the cointegration test still performs as expected, correlation between
the two-stocks indices is up to 0.55, which is higher than in the previous
model without correlation. For the thirty-stocks indices correlation is now
lower by 0.05 to 0.1. The reason for this behavior is that there are two dif-
ferent sources inducing dependence: (1) the common random walk component
which is present in every single price series (and, thus, induces correlation);
and (2) correlation among the idiosyncratic innovations. So if the innovations
were only positively correlated, correlation between the indices would rise. As
we allow for negative correlation as well, the correlation between the indices
can be lower than in the first case with uncorrelated errors.
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Although in the two prices case, correlation is higher than if the errors were
not correlated, while being even a little lower in the thirty prices case, the
magnitude is still considerably lower than in the empirical study. Of course
this is to some extent due to the way the covariance matrix is defined. Higher
relative covariance values, however, are not plausible as the series would almost
be identical as correlation goes to 1. So the presence of common random walk
components as well as correlated errors alone cannot sufficiently explain the
empirically found high correlation.

4.4.3 The Model with Individual Heteroscedastic Errors

So far the simulation has not been able to reflect the tendency to overreject
the null hypothesis of no cointegration which has been found in the empirical
analysis in Section 4.3. A decisive feature of financial time series, namely
heteroscedasticity, has been neglected so far as well. We therefore model the
individual errors in e of Equation (4.9) as GARCH(1,1) processes according to

ei,t =

hi,t νi,t

hi,t = 0.01 + γe2i,t−1 + ωhi,t−1

νi,t ∼ N(0, 1) . (4.10)

The parameters of the GARCH-model vary: ω follows a uniform distribution
(between 0.90 and 0.98 and γ = 1−ω−0.01). The model thus exhibits the com-
monly documented pattern of high volatility persistence (eg. Akgiray, 1989)
while the variance process itself is assured to be stationary. In the basic setting
we simulate the model free of common components and let the errors be inde-
pendent. As in the benchmark case, we find that correlation is on average close
to zero. At the same time the test for cointegration becomes less reliable. The
trace test rejects the null hypothesis that the time series are not cointegrated
about two to three times as often as suggested by the chosen significance level
(cp. Case 1 in Table 4.3). So the presence of heteroscedasticity in the level
price series seems to mislead the Johansen test. This is mainly due to the high
volatility persistence. However, if we lower ω such that it varies between 0.55
and 0.65, the cointegration test performs well within the expected limits.

In the second setting we add the common global and local components while the
errors νi,t are still uncorrelated. Again we find the tendency of the cointegration
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test to slightly overreject the null hypothesis of no cointegration (cp. Case 2
in Table 4.3). This level is also similar to what we found in the empirical
example. The correlation between the simulated indices increases due to the
common random walk component in both index series. It varies around 0.4,
which is higher than in the benchmark case, but still lower than in the empirical
example.

In the third setting we allow the individual errors to be correlated as in Sub-
section 4.4.2. We now find features within the simulated data which are similar
to those found in the empirical analysis: the correlation is high (between 0.7
and 0.85) and the rejection rate of the null hypothesis that the indices are not
cointegrated is approximately two to three times higher than the significance
level would allow for (cp. the lower part of Table 4.3). The rise of the corre-
lation is due to the additional source of dependence among the errors which is
induced through the structure of the covariance matrix.

Variation of the parameters in the GARCH-model shows that as ω increases,
the rejection rates of the null of no cointegration of the Johansen trace test
increase. At the same time, the correlation measure diminishes slightly. So
the more persistence there is in the variance equation, the less reliable the
Johannsen methodology seems to be.

4.4.4 An Example containing a Drift Term

We now add a drift term δ to the model in Equation (4.9) and simulate prices
according to

pi,t = δ + pi,t−1 + ι′et . (4.11)

The magnitude of δ is modeled as one standard deviation divided by 50 times
the number of observations in the sample (δ = σ

50T ). It has been determined
empirically using the index data. We estimate an AR(1)-model with drift term
and compare the size of this estimate with the standard deviation of the data.
The drift term turns out to be on average 65 times smaller than the standard
deviation of the sample.

Table 4.4 holds the results for the different settings. Case 1 (uncorrelated
innovations and no common components) is not printed to conserve space.
The general conclusions concerning cointegration which were presented in the
previous subsections, still hold. However, with respect to sample correlation
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the results are different. The correlation ranges now from 0.9 to 0.99 in most
cases which is a lot higher than in the case without drift and also higher than
what we found using real world data. We therefore conclude that the market
indices in Section 4.3 can best be described by models which do not contain a
drift term.

4.5 Concluding Remarks

The Chapter shows that under the assumption that stock prices follow the
common random walk model, international financial markets cannot be coin-
tegrated in the sense of Engle and Granger (1987). Cointegration is eventually
inhibited by company specific innovations which are permanently absorbed
into stock prices. These individual random walk components do not cancel in
a cointegration regression.

In a simulation study we model the typical features of financial assets (corre-
lation, heteroscedasticity) in order to replicate the characteristics of real world
data. We find hints that the combination of correlated innovations, common
random walk components, and heteroscedasticity describes those features best.
The common component as well as correlation of the errors mainly drive the
empirically found high correlation while heteroscedasticity leads the Johansen
cointegration test to slightly overreject the null hypothesis of no cointegration.
In the absence of heteroscedastic errors in the simulation, however, correla-
tion is also lower than in the empirical example. So according to our model,
global financial markets most probably do share at least one common stochas-
tic trend, the global trend. This trend, however, cannot be identified by means
of cointegration analysis. A feature showing that the market indices are inter-
related is the relatively high correlation among them. It is considerably higher
when common global and local stochastic trends are present than in their ab-
sence. High correlation, of course, is due to the fact that the same stochastic
component appears in each of the individual stock prices.

Appendix: Heteroscedasticity in Returns and Levels

Financial research suggests that a model for stock returns should account for
time dependence of the variance. A possible autoregressive model for stock
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returns is

rt = art−1 + εt

ht (4.12)

ht = ω + αεt−1 + βht−1. (4.13)

According to the strong form Efficient Market Hypothesis, a = 0. As log-
returns are calculated as the first difference of the log-prices

rt = pt − pt−1, (4.14)

the random walk model for log-prices may also be marked by time varying
variance in the error terms:

pt = pt−1 + rt (4.15)

= pt−1 + εt

ht (4.16)
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Figure 4.1: Rolling Cointegration Test - Rejection rates of H0 : r = 0

The graphic depicts the rejection rates of the null hypothesis that the rank of the
cointegration matrix is zero resulting from the rolling cointegration test. The solid
line presents rates based on the model without intercept in the cointegration rela-
tionship while the dashed line presents the rates based on the model with intercept
in the cointegration relationship. Tests were conducted on a 5% significance level.
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Chapter 5

The Impact of US News on the German
Stock Market

5.1 Introduction

When looking at a graph plotting high frequency observations of the DAX
index, a quite frequently observable feature is a jump of the DAX around
2.30 p.m. or 3.30 p.m. These times correspond to the time when macroeco-
nomic news are usually announced in the USA and the opening of the New
York Stock Exchange (NYSE), respectively. Figure 5.1 presents some examples
when the DAX dropped or rose quite substantially at these times. However, on
a great number of days the behavior of the DAX index is smoother in the sense
that it does not exhibit such jumps (see the examples in the last row of Figure
5.1). This paper seeks to show that the different behavior of the DAX index on
these days is driven by unexpected news. It relies on event study methodology
to evaluate whether a significant influence of US generated information on the
German DAX does exist at all and to estimate its size. Further, it addresses
the question how and how fast this news is processed by the German market
and its impact on the general level of volatility in the market.

In this respect, the paper links two strands in the literature. The first strand
deals with information and volatility transmission between financial markets
and is usually referred to as spillover literature. This literature analyses the
impact of news generated in foreign markets on the home market. It dates
back to three important papers by Hamao et al. (1990), Susmel and Engle
(1994) and Lin et al. (1994). Hamao et al. (1990) study the interdependence
between the Tokyo, London, and New York markets and find, amongst other,
evidence of price volatility spillovers from New York to Tokyo and to London.
Susmel and Engle (1994) explore spillovers between the London and New York
stock markets on an hourly basis using ARCH models. They find that the
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spillovers are most pronounced around the opening of the NYSE. Lin et al.
(1994) analyse the relationship between the Tokyo and New York markets
and identify weak influence of open-to-close returns on close-to-open returns.
These studies rely essentially on GARCH models and use low frequency data
(up to hourly returns). More recent contributions to this literature are Booth,
Martikainen, and Tse (1997) and Baur and Jung (2006). Diebold and Yilmaz
(2009) and Dimpfl and Jung (2007) also analyse mean and volatility spillovers.
However, instead of using (G)ARCH-models these authors rely on VAR-models
and propose different methods to account for time varying second moments.

The second strand in the literature connected to the present paper is the study
of the impact of news announcements. The outstanding characteristic of this
literature is the widespread use of event study methodology. The first work as-
sociated with this field is Dolley (1933) who examined the price effect of stock
splits. Since then, the methodology has been further developed and refined.
An early contribution is Ederington and Lee (1993) who investigate the im-
pact of news announcements on interest rates and foreign exchange futures and
find that these announcements have an important impact on daily and weekly
volatility. More recent studies in this area include Muntermann and Guettler
(2007) and Kerl and Walter (2007). The former investigate intraday effects of
ad hoc disclosures on German stocks and find that stock prices react within
half an hour to the announcements. Kerl and Walter (2007) analyse the impact
of personal finance magazines’ buy recommendations on German stocks. They
find that these recommended stocks earn significant abnormal returns within
five days after publication. Adams, McQueen, and Wood (2004) determine
the reaction of high frequency stock returns on inflation news. However, they
do not rely on the event study technique as such but estimate a return model
with time dummies for the event of interest. Surprisingly, they do not find an
instantaneous reaction of stock prices to unanticipated news announcements.
Hess (2004) also relies on dummy variables to identify the determinants of
unanticipated macroeconomic news announcements on T-bond futures. Sim-
ilarly, Hess, Huang, and Niessen (2008) measure the effect of macroeconomic
news on commodity futures. In general, these studies are designed such that
they evaluate the impact of local events on local stock markets, individual
stocks, futures or commodities.

The present paper contributes to the literature by combining the two strands
in order to shed light on the intraday information transmission from the US
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to the German stock market. We investigate whether the occasional jumps of
the DAX in the early afternoon trading are information driven or whether ob-
serving jumps at this point in time is merely coincidental. The paper therefore
introduces event study techniques to the spillover literature and extends the
use of this methodology to the analysis of events which took place in a for-
eign market on the home market. An important difference to the traditional
spillover literature lies in the way the spillover effect is measured. When us-
ing GARCH- or VAR-models, the significant parameter estimates indicate the
spillover effect and its direction, the absolute value of the estimate indicates
its magnitude. In contrast, the present paper seeks to quantify the impact of
information spillovers in terms of abnormal, i.e. unexpected index returns as
compared to a still to be defined normal, i.e. expected return.

More precisely, we address the following questions: Does the opening of the
NYSE per se contain information which is valuable to investors in Germany?
This could be the case if German investors await the valuation of news by US
investors and act only subsequently. The second question we ask is about the
impact of news announcements which on a regular basis take place before the
opening of the NYSE. Do German investors take advantage of the fact that
the market is open and act immediately after new information is released?

The motivation for the first question is that if important news is announced
in the USA, German investors might wait and see how their US counterparts
process this information. One might assume that US investors can interpret
information about the US economy or US companies more accurately and,
thus, judge their price impact more precisely. The reason is that they are
closer to the market and therefore have more insight into the functioning of
the US economy as well as into the trading mechanism at a US stock exchange.
When information of global importance (such as US unemployment figures or
interest rate changes, for example) is released, its long-term impact on stock
prices needs to be assessed and US trading agents might have an informational
advantage. If this is the case it might be rational for cautious German traders
to await the reaction of US traders to such news announcements. In the end,
such information is still local information albeit its possible global relevance.
In this situation the impact of the news announcements should, thus, not be
identifiable before the opening of the first US stock market. In other words,
the reaction of the German stock market to such news should only take place
at or after 3.30 p.m. Central European Time (CET). If this is the case, our
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results would be in line with findings of King and Wadhwani (1990) who show
that the UK stock market does not immediately react to US macroeconomic
news announcements. We will refer to this situation as hypothesis (i).

In case that the price impact of the released information is obvious and eas-
ily interpreted, German investors should take advantage of the fact that the
German market is already open at the time of the news release. This suggests
that they would react immediately after the announcement instead of awaiting
the actions of their US counterparts. So hypothesis (ii) states that the price
impact is measurable immediately after US macroeconomic news is usually
released (around 2.30 p.m. CET). Recent findings of Andersen, Bollerslev,
Diebold, and Vega (2007) show that this is the case for the UK stock market
and, thus, contradict the results of King and Wadhwani (1990). Of course, the
two studies differ in terms of the applied methodology.

We believe that the event study methodology is a very appropriate way to
analyse this issue for the German stock market because it allows to account
for normal or expected reactions of the stock market. The two hypotheses as
formulated above imply different abnormal return patterns of the DAX in the
Frankfurt afternoon trading. The first hypothesis would implicate that abnor-
mal returns arise very closely around the opening of the NYSE, i.e. around
3.30 p.m. CET. The second hypothesis, however, suggests that abnormal DAX
returns will be observed already one hour before the opening of the NYSE, i.e.
around 2.30 p.m. CET. Nikkinen and Sahlström (2004) have also addressed
the question how valuable US macroeconomic announcements are to German
and Finish investors. The authors use the methodology of Ederington and Lee
(1993) and find a significant impact on implied volatility which stems from
US information whereas local information seems to be unimportant. Although
the basic idea of their paper is similar, the implementation is different. We
measure the impact of the news release within the trading day on the return
distribution of the DAX index whereas Nikkinen and Sahlström (2004) anal-
yse implied volatility of the whole trading day. We find an abnormal return
pattern around 2.30 p.m. and, hence, conclude that German investors immedi-
ately react to US news announcements which precede the opening of the New
York Stock exchange. The opening of the market itself and the beginning of
trading in the USA is not found to affect German stock prices. On average
days, there is no measurable impact on the DAX.

If the identified news events are unforeseen, there will be valuation insecurity



86 The Impact of US News on the German Stock Market

in the market, especially in the early afternoon trading. In this case, the risk
of trading is higher and, thus, we expect volatility to be higher than on quiet
days. We therefore conclude the study by testing whether volatility is different
on days with announcements from days without announcements. We find that
volatility is generally higher on announcement days (irrespective of whether
good or bad news are transmitted). These days are marked by a generally
higher level of volatility also in the morning, but the increase in the afternoon
is still significant.

The Chapter is organized as follows. Section 5.2 outlines the event study
methodology. Section 5.3 describes the data along with the mechanism used to
identify events and to classify them into positive and negative ones. Section 5.4
provides the empirical results and interpretations and section 5.5 concludes.

5.2 Methodology

In order to measure the price impact of the opening of the NYSE and the
preceding news announcements on the German stock market, an event study
will be designed as follows. First, we define the event depending on the two
hypotheses. If the hypothesis that the opening of the NYSE contains informa-
tion which is valuable for German investors is true, the event takes place at
τH(i) = 3.30 p.m. CET. If, however, the hypothesis that the impact is due to
news announcements is true, the event takes place at τH(ii) = 2.30 p.m. CET.
Figure 5.2 illustrates the timing of the event study. In any of the two cases we
would expect an abnormal return closely around these times.

An abnormal or unexpected return is defined as the actual return over the
event window minus the expected or normal return over this period. So we
define

εit = Rit − E [Rit | Xt] (5.1)

where εit, Rit and E [Rit] are abnormal, actual, and normal returns, respec-
tively, on day i at time t. The underlying time unit to conduct the analyses
and to estimate the models will be one minute, i.e. the interval [t, t + 1) cor-
responds to one minute. Xt is the conditioning information for the normal
performance model. We propose to use either the so-called constant-mean-
return model or an autoregressive model of order p (AR(p)) as information
set. The first model assumes the return during a specific trading day i to be
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constant, i.e.
Rit = µi + νit . (5.2)

This model essentially amounts to estimating the mean return over the esti-
mation window. In the present case the beginning of the estimation window
is set to t = T0 = 10.30 a.m. CET only in order to exclude any overnight val-
uation effects on the DAX return distribution and to exclude volatility effects
as implied by the well-documented volatility smile. Asian news events should
also be processed and priced by 10.30 a.m. already. The estimation window
ends at t = T1 = 1.30 p.m., i.e. two hours before the opening of the NYSE and
only 7.30 a.m. EST. This should assure that we include as much information
as possible in the estimation of the normal DAX returns while simultaneously
avoiding the possible influence of US events. Stopping at 1.30 p.m. also reduces
volatility influences which have recently been documented by Masset (2008)
who shows the volatility pattern of the DAX to be W-shaped with a spike at
2.30 p.m. (see also Figure 5.5 and the discussion of volatility below). To check
the robustness, the estimation window has been extended to T1 = 2.00 p.m.
and shortened to T1 = 1.00 p.m. The results presented below are robust to
this alteration.

As an alternative to the mean model we also propose an AR(p) model in order
to account for possible market microstructure effects:

Rit = µi +
p
k=1
βkRi,t−k + νit . (5.3)

It is estimated separately for each day i with individual lag length p determined
by the Bayesian Information Criterion of Schwarz (1978). Of course, in case
that p = 0 the two models coincide.

For the estimation to be valid we need to assume trading days to be independ-
ent, i.e. νit and νjt are independent for all i ̸= j. We believe that this is not an
issue as we are working on high frequency data. If νit and νjt were dependent,
this would imply an effect taking place every day at exactly time t, say, for
example, at 11.32 a.m. We are unaware of any such systematic and regular
event in the Frankfurt morning trading1.

The next step is to measure and analyse abnormal returns. In case of the
constant-mean-return model in Equation (5.2) abnormal returns are calculated

1The Intraday Auction at 1 p.m. CET is a technical feature of the trading at the Frankfurt
Stock Exchange and does not provide any relevant information itself.
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as
ε̂it = Rit − µ̂i . (5.4)

In the AR(p) model in Equation (5.3) abnormal returns are defined as the
difference between actual returns in the event window and predicted returns of
an s-steps out-of-sample forecast of the model. Out-of-sample in this context
means that the forecast is based solely on data in the estimation window. A
dynamic forecast is not suitable because it would mix information from two
different information sets. Hence,

ε̂it = Rit − R̂it (5.5)

where R̂it are appropriately forecasted returns (in contrast to the estimated
µ̂i in Equation (5.4)). Abnormal returns are then aggregated within a day to
calculate cumulated abnormal returns CARi =


t ε̂it.

In order to test whether the measured abnormal returns are significantly differ-
ent from zero, we rely on two most commonly used test statistics which differ
in the required statistical assumptions about the abnormal returns. The first
is a standard cross-sectional test (note that the cross section in this context
are the different days i). In order to be valid it requires that abnormal returns
are normally distributed and that there is no cross-sectional dependence in
abnormal returns while the event may influence the variance. It is given as

tcs =

1
N

N
i=1
CARi 1

N(N − 1)

N
i=1


CARi −

1
N

N
i=1
CARi

2 . (5.6)

The second test statistic has been developed by Boehmer, Masumeci, and
Poulsen (1991). In contrast to Equation (5.6) it uses standardized cumulated
abnormal returns to ensure that all the CARs have unit variance. This proce-
dure allows for consistent estimation of the standard deviation in the denom-
inator if the event induced variance differs across days. Define SCARi as the
cumulated abnormal returns on day i divided by an estimate of their standard
deviation (see, for example, Campbell, Lo, and MacKinley, 1997, for details).
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The test statistic is then calculated as follows:

tBMP =

1
N

N
i=1
SCARi 1

N(N − 1)

N
i=1


SCARi −

1
N

N
i=1
SCARi

2 . (5.7)

Boehmer et al. (1991) show that their test statistic is robust to variance changes
induced by the event. Both tcs and tBMP are approximately standard normally
distributed under the null hypothesis that the event does not have an impact
on the return distribution.

In order to conduct the volatility analysis we rely on realized volatilities as in-
troduced by Andersen et al. (2003). We use five-minute intervals and calculate
realized volatility measures as follows:

σ2
i,∆ =

1/∆
j=1
R2
i−1+t∆,∆ (5.8)

where ∆ is the time interval and R2
i−1+t∆,∆ are log-returns on day i (in percent)

within the respective time horizon. We construct a measure for the morning
(from 10.30 a.m. to 12.30 p.m.) and for the afternoon (from 2.00 to 4.00 p.m.)
volatility. As for the event study we exclude the period of overnight insecurity
and the end of the trading day as we are only interested in the effect of the
opening of the US market. To test whether the measures actually differ, we use
the Wilcoxon signed-rank test (see Gibbons and Chakraborti, 2003, pp.196ff)
as realized volatilities are by construction not normally distributed and we
don’t want to impose any assumptions.

5.3 Data and Event Identification

The study is conducted using DAX data obtained from Tick Data. The sample
covers high frequency DAX index observations from July 2003 to August 2008.
The data have been resampled to one minute intervals in order to compute log-
percentage-returns. Subsequently, the sample is split by days and 2.30 p.m.
and 3.30 p.m. CET are marked as possible event times. The lead or lag of one
hour in spring and autumn when times are switched to or from daylight-saving
time, respectively, is taken into account.
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The present paper does not rely on an external definition of event dates. To
identify these dates and to distinguish between days with good news events
and bad news events we rely on the S&P 500 index close-to-open return. It
serves both as an indicator that a news event took place and simultaneously
as a proxy for the quality of the event. The S&P 500 data are also obtained
from Tick Data.

We assume that any kind of news event taking place in the USA while it
might have an impact on the German DAX will definitely have an impact
on the S&P 500. If the event is indeed of global importance we expect a
substantial reaction of the S&P 500 which should translate into a high close-
to-open return. As this index contains 500 individual stocks from different
sectors it seems reasonably broad to capture globally relevant events while
reducing the weight of sector specific local events which would otherwise blur
our identification. Further, a strong reaction of the S&P 500 should only be
observed if the announced content is surprising. Extreme close-to-open returns
should, therefore, occur if and only if a surprise in the information flow has
occurred some time before the opening of the NYSE. So by detecting the
extreme events mirrored by the S&P 500 index, we seek to identify the arrival
of surprising information. In particular, we do not discriminate between the
type of information (e.g. political or economic).

While all information which has accrued during the night and in the morning
will be reflected in the S&P 500 close-to-open return, we need to identify those
days where an extreme return is driven by US news only. Although the US
stock markets are largely autonomous in terms of information generation and
processing (see, for example, Diebold and Yilmaz, 2009), we need to make
sure that information which originates from Europe does not influence the
identification procedure. To filter the S&P 500 close-to-open returns we fit
an AR(1)-GARCH(1,1) model and include the DAX close-to-open return as
an additional explanatory variable in the mean equation. The model reads as
follows:

rSP,i = µ+ β1rSP,i−1 + β2rDAX,i + ei
ei =


hi εi

hi = ω + αe2i−1 + γhi−1 (5.9)

where rSP,i and rDAX,i are close-to-open returns of the S&P 500 and the DAX
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index, respectively, and εt follows a t−distribution with m degrees of freedom.
We use a t-distribution because a test of the ε̂t rejected the normality assump-
tion. The estimated degrees of freedom are 1/0.2706 ≈ 4 (see Table 5.2) and,
hence, support the choice of a t-distribution. The DAX close-to-open return
accounts for any non-US information which has accrued in Asia and in Europe
(until the opening of the Frankfurt market at 9 a.m. CET) while stock mar-
kets in the USA were closed. So any innovation εi in rSP,i should be due to US
information only. Estimation results of the GARCH model are summarized in
Table 5.2. The estimates are in line with findings of other papers which use
GARCH models with financial data. They are not discussed any further as
this model is only an auxiliary estimation to identify event days.

Day i is subsequently labelled ’good news day’ if the residual ε̂i resulting from
the estimation of Equation (5.9) exceeds a certain threshold. This threshold is
defined as the q-th quantile of the residual distribution. We, thus, identify a
good news day if ε̂i > ε(1−q) and a bad news day if ε̂i < εq. All other days are
marked as average with no particular incidents. Days where the US markets
were closed while there was trading in Europe were removed from the sample
because there might have been a news event but our algorithm cannot identify
it. A similar identification strategy has already been applied by Fabozzi, Ma,
Chittenden, and Pace (1995). These authors, however, define the threshold
explicitely as a return of 2%.

Descriptive statistics of the S&P 500 close-to-open and the DAX intraday
returns are given in Table 5.1. Note that the number of S&P 500 close-to-open
returns and the number of days in the DAX dataset are different. To determine
the conditional return quantiles of the S&P 500 the complete dataset has been
used. More precisely, days where the Frankfurt market was closed completely
or closed before 14.30 p.m. CET while there was trading in New York are
included. For the subsequent event study, days where there was no trading in
Germany at 14.30 p.m. were eliminated from the DAX dataset (the last day
of the year, national holidays) as well as days without trading in New York.
As can be seen in the first panel of Table 5.1, the identified event days differ
quite substantially from the average across all days in terms of the S&P 500
close-to-open return (which is higher by a factor 45 on days with positive
news announcements and lower by a factor −45 on days with negative news
announcements). A similar pattern is true for the DAX. On days with negative
announcements the difference is even more pronounced.
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In order to check the validity of the event identification procedure we determine
events which actually took place on the dates marked good news day or bad
news day. It turns out that the identification is quite successful. To mention
only a few, reconsider the DAX plots of the introductory example in Figure 5.1.
The upper panel shows the development of the DAX value on Friday, 3 October
2003 and on Friday, 2 April 2004. Both dates are marked by the announcement
of positive data about the US job market. On 2 April 2004, for example, the
general economic outlook turned out to be good. The US Department of
Labor announced that the number of jobs created rose considerably more than
expected: 308,000 jobs (without agricultural sector) had been created while
only 103,000 new jobs had been expected by analysts.

The graphs in the second row show the DAX value on Friday, 6 August 2004
and on Friday, 27 October 2006. On 6 August 2004 the US job market turned
out to be less dynamic than expected. The Department of Labor disclosed
figures that only 32,000 new jobs had been created while 228,000 had been
expected. Further, the oil price reached a new peak and, thus, a slowdown in
economic growth became quite likely. The matching procedure marked this
day as a bad news day. 27 October 2006 was again characterized by US GDP
figures which were disappointing as analysts said. However, it is not marked
as a bad news day by our procedure. This is not surprising as the reaction
in general was quite weak with the Dow Jones losing 0,60% and the S&P 500
losing 0,85%. In Europe the markets did not react substantially either: the
Euro Stoxx 50 closed trading with a loss of 0,25% and the DAX lost 0,34%
and closed with 6262,54 points.

For the remaining days identified as news days we are in most cases able to
trace back which news was announced. It generally consists of job market data
or general economic indicators. In a few cases it was also political information
like George W. Bush winning the 2004 presidential election on 3 November
2004. We therefore believe that our approach is valid and viable to identify
US American (news) events of global importance. Applying this procedure we
are convinced that we do not have an endogeneity problem as we effectively
first identify the event (although through means of an empirical identification).
It turns out that a day which is not within the q = 5% quantile but where the
DAX still exhibits a sharp increase or decrease around 2.30 or 3.30 p.m. is then
in the q = 10% quantile. However, extending the quantile also includes quite
a number of days where a specific and significant event cannot be identified.
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This happens scarcely when the quantile is set to q = 5%.

5.4 Empirical Results

In order to test the hypotheses (i) and (ii) as stated in the introduction we
calculate abnormal returns for different event windows. The results presented
below are based on the AR(p) model. Lag length varies between p = 1 and p =
10, but short specifications dominate. As regards sensitivity to the modeling,
the results of the mean model in general point to the same conclusions although
the estimated impact is less pronounced in some cases2. This is, of course,
due to the short lag length and the fact that the estimated autoregressive
parameters are also small in absolute value. So the impact of past returns
vanishes quickly and the forecast will converge to the estimated intercept which
is similar to the intercept of the mean model.

5.4.1 How does the DAX depend on the US?

The first hypothesis suggests that the opening of the NYSE contains itself
information which is valuable to investors in Germany. Under this hypothesis
we expect an abnormal return behavior around 3.30 p.m. CET. In a first step
we therefore set the event window to 3.30 to 3.35 p.m. CET. The result of
this proceeding is summarized in Table 5.3. The outcome does not support
the hypothesis. First, for all possible news categories the average cumulative
abnormal returns (CARs) are quite small in absolute value. Any of the test
statistics suggests that they are not statistically significant. Further, the sign
of the estimated CARs on good and bad news days is the opposite of what
we would have expected. So we are inclined to reject the hypothesis that the
opening of the NYSE per se provides valuable information to German investors.

It might be, however, that some information which is generated during the
opening auction of the NYSE is already disseminated and translated into prices
in Germany. We therefore redefine the event window to include 10 minutes
before and after the opening of the NYSE. The results are given in Table 5.4.
CARs are on average negative, negative on good news days and positive on bad
news days. Again, they are small in absolute value. The t-statistics suggest

2Detailed estimation results of the mean model are available upon request.
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that they are significant on average days as well as on days with positive news
announcements, but not on days with negative news announcements. Together
with the previous results we conclude that the opening of the NYSE does not
per se contain valuable information for German investors. The signs of the
CARs, however, may be a hint that there is some kind of reversal effect around
3.30 p.m. CET which would be compatible with hypothesis (ii).

The second hypothesis states that the news releases which take place roughly
one hour before the opening of the New York market are responsible for the
observed jumps in the DAX. In this case we need to address two questions: do
the news releases affect trading in Germany? And if so, how fast is the reaction
to the information, given that it is not observable any more when the NYSE
opens? To address the first issue, we enlarge the event window substantially
from 2.30 to 3.30 p.m. CET, the hour before the NYSE opens for trading.
The calculated CARs and tests are presented in Table 5.5. We find that on
average the cumulative abnormal returns in this period are zero. However,
on days with good news announcements we have a significant positive CAR
of 0.25 percentage points. On negative days, the CAR is of −0.13 percentage
points. As regards the absolute value of the estimates, they may not seem
too important, but one has to bear in mind that these figures give abnormal
returns within one hour of trading. If this behavior would prevail the whole
day, i.e. 8.5 hours, one could expect an average abnormal return of 2.13% on
good news days or −1.09% on bad news days. Considering that the average
daily DAX return is 0.023% and the average daily absolute return in the sample
is 0.68% this is not a neglectable amount. In terms of index points, at a DAX
level of 8000 the abnormal return on good announcement days corresponds
to an additional gain of 20 index points. On days when negative news are
announced, the associated abnormal loss is 10 index points at an index level
of 8000 points. On average, the abnormal return is zero.

We are aware of the fact that for an event study analysis to be precise, an
event window of 60 minutes would be too large in the present context. In the
event study literature event windows of less than five minutes are generally
considered to create meaningfull and concise results. Further, we expect the
greatest effect immediately at the beginning of the news release time. We there-
fore repeat the analysis for a shorter window ranging from 2.30 to 2.32 p.m.
Assuming that news are generally released at that time and if markets react
rationally, i.e. without delay, we would expect abnormal returns to be signifi-
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cant even within this short time frame. This is indeed what we find. Table 5.6
summarises these results. Although comparatively small in absolute value, the
abnormal returns are significant for both good and bad news releases. This is
supported by any of the computed t-statistics. As regards the size, approxi-
mately 50% of the cumulative abnormal returns are realized within the first
three minutes after the announcement on good news days and even 80% on
bad news days. The fact that the cumulative abnormal returns still grow until
3.30 p.m. can be ascribed to the difference between the announcement time set
by the model and the actual announcement where the important information
might be released by officials directly in their first sentence or just a bit later.
As news announcements do never carry an exact time stamp it is impossible
to exactly define the time it took place. Therefore the time set here is in our
view a sensible approximation, but still only an approximation which leads to
the described pattern of abnormal returns.

What do the results presented so far mean for the visually observed jumps at
3.30 p.m.? We conclude that there is no systematic dependence of the German
investors on the US markets. Specifically, German investors don’t seem to
wait for their US counterparts before they start trading. On the contrary,
they rationally incorporate any information as soon as it is available. The
occasional jumps observable at the time of the NYSE opening, thus, seem
coincidental. Reconsidering again the results presented in Table 5.4, the signs
of the CARs indicate a slight adjustment.

Setting the news quantile to q = 10%, i.e. allowing 20% of the days in the sam-
ple to be good or bad news days, respectively, does not alter the results quali-
tatively. We still find that the CARs are significant around 2.30 to 2.32 p.m.
In absolute value, however, they are slightly smaller. This is perfectly compat-
ible with the methodological approach as we possibly include more days with
news of weaker global importance which should lower the estimated impact
and thus the size of the CARs. At the opening of the NYSE we still do not
find significantly abnormal return behavior. Only around the opening (be-
tween 3.20 and 3.40 p.m. CET) are effects found to be statistically significant.
Again, the calculated CARs carry the inverse sign, i.e. they are estimated to
be positive on bad news days and vice versa. and are small in absolute value
(≤ 0.042). Allowing only for q = 2% of the days in the sample to be associated
with good or bad news announcements renders most of the CARs insignificant.
The absolute values are more pronounced for good news days. For bad news
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days, however, the effect sometimes almost vanishes.

5.4.2 Speed of Reaction

The above results in general suggest that the average German investor reacts
immediately to news announcements in the USA rather than to the opening
up of the US markets and, thus, implicitly to valuation suggestions of US
investors. The question which arises naturally in this context is how fast the
reaction of German traders is. In other words, how long does it take until
prices in Germany fully reflect the US information? To answer this question
we have a closer look at the event time around 2.30 p.m. First, we allow for
an event window of 10 minutes. If the information is absorbed sufficiently
quickly after the beginning of the announcement we would expect significant
cumulative abnormal returns between 2.30 and 2.40 p.m. while they should be
neglectable in size and probably not be significant in the following 10 minutes.
Table 5.7 summarises the estimation results for the first 10 minute interval.
We find that both positive and negative news days exhibit significant excess
returns compared to the average day. As regards the size of the coefficients,
we find that roughly 70% of the cumulative abnormal returns which have been
documented for the time period 2.30 to 3.30 p.m. are already realized within
the first ten minutes of this time window on good news days. On bad news
days, we even find that they are completely realized within these ten minutes.
It turns out that repeating the calculation of the CARs 10 minutes later, i.e.
between 2.40 and 2.50 p.m., renders all results insignificant. So we conclude
that any relevant information generated in the process of news announcements
in the wake of the opening of the NYSE is absorbed quickly into the German
market.

To illustrate the speed and the time of the news transmission we plot the
cumulative abnormal returns between 2.25 and 3.45 p.m. CET. A graph based
on the AR(p) model is given in Figure 5.3. On an average day there are no
abnormal returns measurable during the time span of interest (the solid line).
The plot supports the second hypothesis and shows a sharp increase or decrease
around 2.30 p.m. which we interpret as the incorporation of US news into the
German market. Good news positively influence the German DAX (dashed
line) while negative news announcements negatively impact on the DAX value
(dotted line).
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5.4.3 Stability in light of the Financial Crisis

The study was carried out using data until August 2008. The reason is that
we did not want the events in September and October 2008 to influence the
results. In some cases, the reaction of the stock markets during the turmoil in
September and October 2008 did not seem to be news driven only. At some
stage it seemed more like a race to the bottom. Further, there is no common
agreement in the literature yet on how to handle the present crisis. If the
study is repeated3 including data until 20 October 2008, the general results
are not altered. However, as the S&P 500 return was large negative on quite a
number of days, the quantile search technique would prefer these days as bad
news days, even if, for the above mentioned reasons, not all days might have
revealed truly new information (at least not unexpected information). The
same might be true already for the rest of the sample. However, there the
influence of an occasional misclassification error should not be as important
as here where we are to include only eight more weeks compared to 5 years
before. On average, however, the results still suggest that the reaction of the
DAX takes place at 2.30 p.m. already and not at 3.30 p.m. So even in periods
of crisis German investors behave rationally in the sense that they process
information as soon as it is available.

5.4.4 On the Difference between Positive and Negative Announcements

Inclusion of the time period until 20th October 2008 also helps to explain the
surprisingly different size of a reaction on positive and negative news days
as reported in Figure 5.3. During the period July 2002 to August 2008 the
number of days with positive returns and probably positive news announce-
ments outnumbered those with negative returns and/or news announcements.
Thus, the events included in the analysis favor more important positive news
as compared to negative announcements, i.e. the selection of positive news an-
nouncement days is more strict than the selection of negative announcement
days which are simply less numerous. Therefore, even weaker reactions are
considered negative reactions. Extending the sample and thus including more
negative information mass puts more weight on the negative side. For the
returns from 2.30 to 2.40 p.m., for example, the negative average CARs are

3Detailed results are available on request.
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−0.181 as compared to −0.126. The CARs on positive days are also slightly
higher (0.00191 instead of 0.00178) which is probably also due to the inclusion
of this highly volatile period. In general, positive and negative announcement
days are more similar than when using the period up to August 2008 only.

Another way to further investigate this issue is to use absolute conditional
returns of the S&P 500 index. We thereby set the threshold such that the
innovations ε̂i (cp. Equation (5.9)) within a range −εc < ε̂i < εc are marked
as normal. εc is the critical value of the distribution of absolute residuals ε̂i, e.g.
the 90% quantile. Returns which are outside this interval are then considered
unusual and the day is marked as positive or negative event day, respectively.
When again allowing 10% of the days to be news days, the threshold is now
±0.1699, i.e. it is slightly lower for positive days and almost unchanged for
negative days (cp. Table 5.1). Using this approach on the dataset from July
2002 to August 2008, we find that a difference between positive and negative
news still prevails although to a slightly lesser extent. Figure 5.4 summarizes
the results. In general, the cumulative abnormal returns are lowered, especially
for the days marked as good news days. We therefore conclude that in the
end there is no real difference between the reaction to positive and negative
announcements. The difference found above is due to the modeling strategy.
Still, the conclusions drawn in sections 5.4.1 and 5.4.2 are not affected.

5.4.5 Volatility Analysis

The above analysis as well as the descriptive statistics in Table 5.1 strongly
suggest that announcement days do not only differ in terms of returns, but
also in terms of volatility. A plot of squared five-minute returns as a proxy
for instant volatility supports this assumption. As can be seen in Figure 5.5,
the volatility graph of announcement days always lies above the graph which
corresponds to no news days. Volatility peaks at around 2.30 p.m. (which is
compatible with the findings of Masset, 2008) and then seems to remain at a
higher level than in the morning. The peak at 2.30 p.m., however, seems to be
largely due to high volatility on announcement days.

The results of the formal comparison of realized volatility in the morning and
the afternoon are summarized in Table 5.8. We find that realized volatility is
in general significantly higher on announcement days, both in the morning and
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in the afternoon. On average, afternoon volatility on good news days is about
twice as high than on days without news announcements while it is about three
times as high on days with bad news announcements. The difference between
good and bad news days, albeit economically not negligible, is not found to be
statistically significant. In the morning, volatility is 1.5 to two times higher on
announcement days than on quiet days. The difference between good and bad
news days is smaller than in the afternoon and again not statistically signifi-
cant. So the important conclusion to draw is that volatility in both conditions
is higher than usual. It, thus, seems that German investors are somewhat
apprehensive in expectation of some still unknown news announcement. This
strengthens the view that the identified days really are informative and provide
surprising information.

Volatility is generally higher in the afternoon than in the morning. The in-
crease is greater on days with announcements (factor 2 to 2.5) than on normal
days (factor 1.5). So even though German investors do have a timing advan-
tage, valuation insecurity seems to persist to some degree. This finding may
also help to explain the seemingly odd result in Table 5.4 where we found
significant negative abnormal returns for average and positive announcement
days while they were found to be positive (albeit not significant) on negative
announcement days from 3.20 to 3.40 p.m. It seems that once the NYSE
opens, there may be some adjustment or correction needed. This does not
contradict the results presented above: while German investors exploit their
timing advantage, they need to react again once they observe the reaction of
US investors. In case that these investors judge the news differently, there
may arise a need to adjust to the new circumstances. If we again consider
the graph of cumulated abnormal returns in Figure 5.3, it seems that German
investors are slightly overconfident on days with good news announcements.
Hence, there is a negative abnormal return once the NYSE opens. On days
with negative announcements, the (inverse) pattern is there as well, but CARs
are not significant.

5.5 Concluding Remarks

This paper studies the behaviour of the DAX index in the early afternoon
trading in Frankfurt. It shows that it is most likely that surprising news
events which take place in the US before the opening of the NYSE are the



100 The Impact of US News on the German Stock Market

reason for the occasionally observable jumps. Using event study methodology
the paper shows that around 2.30 p.m. abnormal returns are possible which is
one hour before the first US market opens and the time when macroeconomic
news are usually announced. It is further found that the opening of the stock
market itself does not (or only negligibly) alter the DAX return pattern. Once
US information of global importance is publicly available it is quickly absorbed
into prices in Germany. The outcome of the study is compatible with rational
behaviour. If there is good or bad news which concerns German investors
as well as US investors, the reaction of the German market takes place one
hour earlier than in the US for the simple reason that the US market is still
closed. Still, volatility on announcement days is generally higher than average,
especially in the afternoon. So while there is a timing advantage, valuation
insecurity still persists due to the still unknown precise reaction of US investors
to the same news event. A small adjustment effect is found once the US stock
market finally opens.

The design of the study, unfortunately, is as such that there is no possibility
to exploit arbitrage gains from the knowledge of a possible DAX reaction. The
reason is that the proxy which has been used here to distinguish good news
days from days with bad or no news is not availably yet at 2.30 p.m.
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Figure 5.1: Plot of DAX Index Value

The graphs depict the value of the DAX index on 3 October 2003 (top left), 2 April
2004 (top right), 6 August 2004 (middle left), 27 October 2006 (middle right), 29 July
2004 (bottom left), and 30 May 2005 (bottom right).
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Figure 5.2: Event Study Timeline
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The graphic illustrates the event study time line along with the estimated
models. T0 and T1 define the estimation window start and end time. τH(i)
is the time the event takes place under Hypothesis (i) and τH(ii) is the time
the event takes place under Hypothesis (ii).
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Figure 5.5: DAX volatility plot

The graph depicts the pattern of squared log-returns (calculated over 5 minute inter-
vals) as a proxy for intraday volatility. The solid line represents days without news
announcements while the dashed line represents the days with news announcements
(both positive and negative).
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Table 5.1: Descriptive Statistics

S&P 500 return ALL POS NEG
number of days 1301 66 65
mean 0.0059 0.2668 −0.2514
minimum −0.9347 0.0802 −0.9347
maximum 0.6745 0.6745 −0.1469
standard deviation 0.1120 0.1095 0.1107
threshold (p=0.05) 0.1721 −0.1671

DAX ALL POS NEG
number of days 1280 65 64
avg. morning return 0.0002 0.0028 -0.0049
avg. morning RV 0.0049 0.0069 0.0094
avg. afternoon return 0.0000 0.0026 -0.0009
avg. afternoon RV 0.0078 0.0143 0.0233
The table provides descriptive statistics for the S&P 500 close-to-
open returns (upper panel) and the DAX returns (lower panel). ALL
is the average across all days in the sample, POS is days with positive
news announcements and NEG is days with news announcements of
negative content. Returns in the lower panel are averages across
one minute intervals. RV is the realised volatility of Andersen et al.
(2001) calculated on five-minute intervals. Morning is the estimation
window from 10.30 a.m. to 12.30 p.m. CET, afternoon is from 2.00
to 4.00 p.m. CET., encompassing all considered event windows.

Table 5.2: GARCH model estimates for S&P 500 close-to-open returns

Variable Estimate SE t-value p-value
µ 0.0016 0.0021 0.7688 0.4422
β1 0.0427 0.0254 1.6811 0.0936
β2 0.0521 0.0060 8.7240 <0.0001
ω 1.098E-8 6.056E-9 1.8127 0.0699
α 0.0390 0.0127 3.0709 0.0022
γ 0.9561 0.0133 71.8872 <0.0001
1/m 0.2706 0.0322 8.4037 <0.0001
Log Likelihood 7977.4991 R2 0.0587
The table provides the estimation results of the GARCH model in
Equation (5.9). SE is the standard error of the estimate.
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Table 5.3: CAR at the NYSE opening

ALL POS NEG
M(CAR) −0.0003 −0.0046 0.0033
M(SCAR) −0.0219 −0.1011 −0.0616

tcs −0.1111 −0.3891 0.2603
(0.9116) (0.6985) (0.7955)

tBMP −0.5277 −0.6559 −0.3970
(0.5978) (0.5142) (0.6927)

The table provides the average cumulative abnormal re-
turns (CAR) and standardised CARs along with the ap-
propriate test statistics. CARs are calculated around
the opening of the NYSE (3.30 - 3.35 p.m. CET) based
on the AR(p) model. P-values are given in parentheses.
ALL is the average across all days in the sample, POS
is days with positive news announcements and NEG is
days with news announcements of negative content.

Table 5.4: CAR around the NYSE opening

ALL POS NEG
M(CAR) −0.0123 −0.0660 0.0012
M(SCAR) −0.1113 −0.4860 −0.0289

tcs −2.9330 −3.3615 0.0607
(0.0034) (0.0013) (0.9518)

tBMP −3.1130 −3.8377 −0.2397
(0.0019) (0.0003) (0.8113)

The table provides the average cumulative abnormal re-
turns (CAR) and standardised CARs along with the ap-
propriate test statistics. CARs are calculated around
the opening of the NYSE (3.20 - 3.40 p.m. CET) based
on the AR(p) model. P-values are given in parentheses.
ALL is the average across all days in the sample, POS
is days with positive news announcements and NEG is
days with news announcements of negative content.
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Table 5.5: CAR during the news release time

ALL POS NEG
M(CAR) −0.0004 0.2508 −0.1284
M(SCAR) −0.0785 1.0993 −0.5199

tcs −0.0387 3.4469 −1.6132
(0.9692) (0.0010) (0.1116)

tBMP −1.5942 3.6160 −1.7356
(0.1112) (0.0006) (0.0875)

The table provides the average cumulative abnormal re-
turns (CAR) and standardised CARs along with the ap-
propriate test statistics. CARs are calculated for the
news release time (2.30 - 3.30 p.m. CET) based on the
AR(p) model. P-values are given in parentheses. ALL is
the average across all days in the sample, POS is days
with positive news announcements and NEG is days with
news announcements of negative content.

Table 5.6: CAR at the beginning of the news release time (1)

ALL POS NEG
M(CAR) 0.0089 0.1293 −0.1040
M(SCAR) 0.1285 2.4912 −2.1651

tcs 2.0180 4.2523 −2.9472
(0.0438) (0.0001) (0.0045)

tBMP 1.2774 4.1465 −3.2393
(0.2017) (0.0001) (0.0019)

The table provides the average cumulative abnormal re-
turns (CAR) and standardised CARs along with the ap-
propriate test statistics. CARs are calculated for the be-
ginning of the news release time (2.30 - 2.32 p.m. CET)
based on the AR(p) model. P-values are given in paren-
theses. ALL is the average across all days in the sample,
POS is days with positive news announcements and NEG
is days with news announcements of negative content.
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Table 5.7: CAR at the beginning of the news release time (2)

ALL POS NEG
M(CAR) 0.0037 0.1779 −0.1260
M(SCAR) −0.0015 1.8337 −1.3438

tcs 0.6123 3.7411 −2.7948
(0.5405) (0.0004) (0.0069)

tBMP −0.0207 3.6314 −3.0564
(0.9835) (0.0006) (0.0033)

The table provides the average cumulative abnormal re-
turns (CAR) and standardised CARs along with the ap-
propriate test statistics. CARs are calculated for the be-
ginning of the news release time (2.30 - 2.40 p.m. CET)
based on the AR(p) model. P-values are given in paren-
theses. ALL is the average across all days in the sample,
POS is days with positive news announcements and NEG
is days with news announcements of negative content.
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Chapter 6

Summary and Conclusion

We are interested in the way international financial markets are linked. To
this end, econometrics offers a vast toolbox that enables us to investigate and
model different, yet related aspects of the interplay of financial markets on
a worldwide scale. Understanding this interdependence structure is vital to
investors and politicians alike as was painfully experienced in 2007 and 2008,
two years which saw a great financial crisis associated with huge losses on stock
markets all over the world. With only slowly recovering economies and a barely
averted refinancing problem of Greece the crisis is probably far from being over.
The focus of this study is on how information and shocks in general are spread
and processed around the world, and it is as such linked to the broad field of
market efficiency (in terms of efficient information processing).

As a first step, we trace global information and volatility transmission. Nowa-
days stock trading is only discontinuous if we limit ourselves to one stock
market. However, from a global point of view, there is always an open market
with investment opportunities. Information is, therefore, not only generated
but also processed continuously. Keeping this thought in mind we model return
and volatility spillovers between the three major financial centres USA, Europe
and Asia, thereby covering almost 24 hours of trading activity. We find that
dependence in the mean returns is weak and short-lived whereas dependence
in the volatility dynamics is much more pronounced. We can thus conclude
that it is beneficial to look back in time, especially for markets in Europe that
are not only dependent on the behaviour of the US markets, but also respond
to events in the Asian markets.

We then approach the aspect of long-term relationships between stock markets
and therefore reconsider the context of cointegration in international financial
markets. First of all we investigate the properties of the Johansen cointegration
test in order to check that the influence of time varying volatility does not
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affect the results of the test. We find, however, that in certain circumstances
volatility is an issue when testing for cointegration. Taking this knowledge into
account, we show in a second stage that if the underlying true model for stock
prices is the random walk model, cointegration is not a suitable framework
with which to describe the interdependence of international financial markets.
Stock specific individual innovations (or information) are the driving forces
behind our theoretical result and provide the reason why stock market indices
cannot be cointegrated. We show with the help of both an empirical and a
simulation experiment that stock market indices most likely share a common
stochastic trend component which, however, cannot be identified within the
cointegration framework. This way we can explain both the heterogeneous
results regarding stock market cointegration reported in the literature as well as
the often documented comovement and high correlation between stock markets
which is probably driven by a global common factor.

Finally, we move on to an intra-daily investigation of the dependence of the
German stock market on US news surprises. We show that news which is gen-
erated abroad (at a time when the US markets are still closed) is immediately
and efficiently incorporated into prices in the German stock markets. At the
same time, these surprises cause a peak in volatility in the early afternoon
trading in Germany, leading to a w-shape of the intraday volatility pattern.
On average days without news from the US this shape is u-formed as it is for
most other stock markets. Once the stock market opens in the USA we find
only minor adjustments taking place in Germany.

The primary goal of the different studies is to highlight the interplay between
stock markets around the globe and to offer suitable models to describe it. We
show that information generated in one market may have a global impact on
prices and volatility—spilling over from one country to the next and/or be-
ing absorbed in a common world factor. Although the way of measuring this
impact differs, the central message behind the studies is identical: financial
markets around the globe are highly interdependent. Furthermore, with re-
spect to information processing, we conclude that both in terms of speed and
timing, stock market agents behave rationally and that markets are informa-
tion efficient.
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