
Design and Development of a VR System for

Exploration of Medical Data Using Haptic

Rendering and High Quality Visualization

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

DOKTOR DER NATURWISSENSCHAFTEN

Dr. rer. nat.

genehmigte Dissertation

von

M.Sc. Roman Vlasov

2016



Referent: Prof. Dr. Franz-Erich Wolter
Korreferent: Prof. Dr. Gabriel Zachmann
Tag der Promotion: 4. November 2016



Kurzzusammenfassung

Haptische Exploration fügt der Arbeit mit 3D Daten eine neue Dimension hinzu: Die

Möglichkeit, Objekte zu berühren. Dies erlaubt neue Möglichkeiten in der medizinischen

Simulation, Ausbildung und präoperativen Planung in einer Virtual Reality Umgebung.

Eine einzelne Momentaufnahme einer solchen haptischen Rückkopplung besteht aus

drei Schritten: Kollisionserkennung, Kollisionsantwort und Kraftgenerierung. Um ein

natürliches, verzögerungsfreies Arbeiten zu ermöglichen, wird eine Wiederholrate von

mindestens 1 kHz benötigt, für die es unterschiedliche Ansätze von oberflächen- und

voxelbasierten Renderingmethoden gibt. Ein Nachteil fast aller bisher verwendeten Ver-

fahren ist dabei, dass entweder keine Garantien für die Einhaltung der Wiederholrate

gegeben werden kann oder die simulierten Objekte einer speziellen topologischen Struk-

tur entsprechen müssen. Dies ist besonders für sensible Prozesse wie die Operationspla-

nung kritisch. Um dies zu beheben, wurde eine neue, robuste und schnelle (150 kHz)

Methode entwickelt, die Ansätze aus Ray Casting und Path Finding kombiniert und

dabei nahezu konstante Zeitkomplexität hat. Da die Methode ohne zeitaufwendige Ini-

tialisierung arbeitet und auf impliziten Oberflächenmodellen eingesetzt werden kann,

lassen sich auch dynamische Objekte abbilden. Darauf aufbauend präsentieren wir ein

flexibles Deformation Framework, das es erlaubt, unsere haptische Renderingmethode

mit verschiedenen Deformationsmodellen zu kombinieren. Es wird ein neues Echtzeit-

Visualisierungs-Verfahren vorgestellt, um die graphische Darstellung der Segmente mit

der Simulation zu synchronisieren und eine interaktive (bleibende) Echtzeit-Deformation

der Objekte zu ermöglichen. Für diesen Zweck wurden zwei auf Potential Fields basierende

Methoden für die lokale Deformations-Simulation entwickelt und eingesetzt. Die erste

Methode verwendet reguläre Potential Fields. Die zweite Methode nutzt unsere neuen

Cuboid Fields aus. Weiterhin zeigen wir, dass diese Cuboid Fields für das haptis-

che Rendering von Volumendaten besser geeignet sind. Darüber hinaus schlagen wir

einen Prototyp einer globalen Deformationsmethode vor. Der gesamte Ansatz aus den

vorgeschlagenen Methoden zum haptischen Rendering, zur Visualisierung und Deforma-

tion (Deformation Framework) erfordert keine Vorkalkulation.

Das in dieser Arbeit vorgestellte Deformation Framework und alle Haptik Rendering-

Visualisierungs und Deformations-Methoden wurden komplett neu entwickelt. Das De-

sign und die Entwicklung dieser Methoden waren das Hauptziel dieser Arbeit. Diese

Arbeit wurde durch das Siemens/DAAD Postgraduate Programme unterstützt.



Abstract

Haptic exploration adds an additional dimension to working with 3D data: a sense of

touch. This is especially useful in areas such as medical simulation, training and pre-

surgical planning, as well as in museum display, sculpting, CAD, military applications,

assistive technology for blind and visually impaired people, entertainment and others.

Each haptic rendering frame consists of three stages: collision detection, collision re-

sponse and force feedback generation. In order to feel the 3D data smoothly, an update

rate of at least 1 kHz is required. There exist different surface- and voxel-based haptic

rendering methods. Unaddressed practical problems for almost all of them are that

no guarantees for collision detection could be given and/or that a special topological

structure of the objects is required. Here we present a novel and robust approach

based on employing the ray casting technique to collision detection and path finding for

collision response. The approach is very fast (150 kHz) and does not have the aforemen-

tioned drawbacks while guaranteeing nearly constant time complexity, independent of

data resolution. This is especially important for delicate procedures, e.g. pre-operation

planning. The collision response uses an implicit surface representation, which can be

used with dynamically changing objects, as no precalculation is needed. Further on, we

present our flexible deformation framework allowing us to use our haptic rendering ap-

proach together with deformation models. We present our graphics approach which we

use to keep the graphics representation of segments up-to-date during the deformation

simulation. The challenge here is to reflect deformations of objects interactively. Further

on, we propose two local deformation simulation approaches based on the method of

potential fields. The first approach uses “regular” potential fields. The second approach

uses our novel cuboid fields. Further on, we demonstrate that cuboid fields are better

suited to haptic rendering of volumetric data. Additionally, we introduce the prototype

of the global deformation approach. The resulting haptic rendering approach combined

with our proposed approaches for deformation simulation within our deformation frame-

work does not require any pre-calculated structure and works “on the fly”.

Our deformation framework and all our haptic rendering and deformation simulation

approaches were fully developed by us from scratch. Their design and development

was the main aim of this work. This project was supported by a grant provided by

Siemens/DAAD Postgraduate Programme.



German Keywords: Virtuelle Realität; Haptik Rendering; Visualizierung

English Keywords: Virtual Reality; Haptic Rendering; Visualisation



Preface

I would like to thank Prof. Dr. Franz-Erich Wolter for giving me the possibility to make

the PhD at Welfenlab and for supervising and guiding me during the doctoral studies. I

would like to thank Dr. Karl-Ingo Friese for helping me all the way during the doctoral

studies, for giving me very useful advices, for his support and for helpful comments. I

would like to thank Prof. Dr. Nadia Magnenat-Thalmann for a possibility to work at

her research institute in Singapore and for giving me one day a week to work on my

PhD there. Working there was an amazing and an important and useful experience. I

would like to thank Dr. Alexander Vais, Hannes Thielhelm, Roman Burg, Victor Opilat,

Neetha Das, Sergej Zerr, Philipp Blanke, Jan Rzepecki, Andreas Tarnowsky, Maximilian

Klein, Martin Gutschke, Ricardo Millan, Benjamin Berger, Rasmus Buchmann and my

other friends and colleagues for their support, for checking my dissertation and for giving

helpful comments and advices. I would like to thank Ms. Ilona Esz and Mrs. Anca

Vais for their support and for their help guiding me through all the formalities which

one faces during the doctoral studies. I would like to thank Jakob Riga for his Bachelor

thesis which I co-supervised and which became a section in this dissertation.

I would like to thank my parents and my family for their support and patience all this

time.

And of course I would like to thank the DAAD for sponsoring the research by a grant

provided by Siemens/DAAD Postgraduate Programme (DAAD is Deutscher Akademis-

cher Austausch Dienst - German Academic Exchange Service).

Hannover, 2016 Roman Vlasov

ii



Contents

Contents

1 Introduction 1

2 Basics and Definitions 4

2.1 Haptic Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Types of Input/Output Devices . . . . . . . . . . . . . . . . . . . 6

2.1.3 Haptic displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Cutaneous displays . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Passive Haptics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.6 Synchronization of Different Devices . . . . . . . . . . . . . . . . 11

2.1.7 Additional Definitions . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.8 Degrees-of-Freedom (DoFs) . . . . . . . . . . . . . . . . . . . . . 13

2.1.9 Haptic Rendering Pipeline . . . . . . . . . . . . . . . . . . . . . . 13

2.1.10 Controlling a Haptic Display . . . . . . . . . . . . . . . . . . . . . 15

2.1.11 Passivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.12 Direct Rendering and Virtual Coupling . . . . . . . . . . . . . . . 17

2.1.13 Stability and Force Feedback Update Rate . . . . . . . . . . . . . 18

2.1.14 Stability Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Volumetric Data Processing Pipeline . . . . . . . . . . . . . . . . 21

iii



Contents

2.2.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Surface Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Direct Volume Rendering . . . . . . . . . . . . . . . . . . . . . . . 25

3 Literature Overview 30

3.1 Visualization by Direct Volume Rendering . . . . . . . . . . . . . . . . . 31

3.1.1 Rendering with 2D Textures . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Shear-Warp Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Rendering with 3D Textures . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Splatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.5 Ray Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.6 Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Haptic Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Rigid-Rigid Methods . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Methods with Allowed Data Modification . . . . . . . . . . . . . . 66

3.2.3 Rigid-Defo Methods . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.4 Defo-Defo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Our Haptic Rendering Approach 96

4.1 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Collision Detection using Ray Casting . . . . . . . . . . . . . . . . . . . . 97

4.3 Collision Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Additional Remarks on Collision Response . . . . . . . . . . . . . . . . . 103

4.5 Time and Space Complexities of Collision Response . . . . . . . . . . . . 107

4.6 Force-Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Workspaces and Movement/Rotation of Objects . . . . . . . . . . . . . . 110

iv



Contents

4.8 Improved Collision Response . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.9 Improved Force-Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.10 Prototype System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.11 Dealing with Synchronization Issues . . . . . . . . . . . . . . . . . . . . . 118

4.12 Scheme of the Prototype System . . . . . . . . . . . . . . . . . . . . . . . 119

4.13 Dealing with Java Virtual Machine Issues . . . . . . . . . . . . . . . . . . 123

4.14 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.15 Results for the Improved Approach . . . . . . . . . . . . . . . . . . . . . 125

4.16 Discussion and Future Outlook . . . . . . . . . . . . . . . . . . . . . . . 128

5 Our Deformation Framework and Deformation Approaches 130

5.1 Our Deformation Framework . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Update of Graphics Representation . . . . . . . . . . . . . . . . . . . . . 132

5.2.1 Possible Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.2 Update for Marching Cubes . . . . . . . . . . . . . . . . . . . . . 137

5.3 Introduction to Potential Fields Approach . . . . . . . . . . . . . . . . . 145

5.4 Characteristics of Potential Fields Approach . . . . . . . . . . . . . . . . 147

5.5 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.6 Interaction Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.7 Commonly Used Interaction Potentials . . . . . . . . . . . . . . . . . . . 154

5.7.1 Lennard-Jones Potential . . . . . . . . . . . . . . . . . . . . . . . 154

5.7.2 Mi Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.7.3 Morse Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.7.4 Composite potentials . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.8 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.9 Initial Positions and Velocities of Potential Fields . . . . . . . . . . . . . 158

v



Contents

5.10 Moving Local Simulation Area . . . . . . . . . . . . . . . . . . . . . . . . 161

5.11 Reuse of Potential Field Objects . . . . . . . . . . . . . . . . . . . . . . . 162

5.12 Binding to Initial Positions . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.13 Interaction with Borders of the Simulation Area and with Empty Space . 164

5.14 Correspondence to Parameters of Real Materials . . . . . . . . . . . . . . 165

5.15 Taking into Account Voxel Intensities . . . . . . . . . . . . . . . . . . . . 168

5.16 Interactions of the IP with Potential Fields . . . . . . . . . . . . . . . . . 170

5.17 Dissipation in Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.18 Cuboid Potential Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.19 Correspondence to Parameters of Real Materials for Cuboid Potential

Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.20 Limit Maximum Interaction Force . . . . . . . . . . . . . . . . . . . . . . 180

5.21 “Multi-Layered” Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.22 Speed-up Structure to Find Interactions . . . . . . . . . . . . . . . . . . 181

5.23 Force-feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.24 Time and Space Complexities of the Potential Fields Approach . . . . . . 186

5.25 Update of Volumetric Data for the Potential Fields Approach . . . . . . 187

5.26 The Global Simulation using Potential Fields . . . . . . . . . . . . . . . . 188

5.27 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.28 Results – Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.28.1 Adding Meta–Information . . . . . . . . . . . . . . . . . . . . . . 196

5.28.2 MultiScaleHuman Project . . . . . . . . . . . . . . . . . . . . . . 199

5.28.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.29 Discussion and Future Outlook . . . . . . . . . . . . . . . . . . . . . . . 209

6 Summary and Outlook 213

vi



Contents

Bibliography 217

vii



List of Figures

List of Figures

2.1 A user is manipulating the purple object using the Phantom haptic device

and feeling force feedback reactions when collisions occur (source: our

work [225]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Head mounted display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Sensor gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Limb tracking device (Polhemus FastTrak) (source: [100]) . . . . . . . . . 7

2.5 Joystick with force feedback . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Example of a 3-DoFs haptic display: Novint Falcon . . . . . . . . . . . . 9

2.7 Examples of 6-DoFs haptic displays: Phantom Premium 6DOF and INCA

6D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Example of an n-DoFs device (source: [14]) . . . . . . . . . . . . . . . . 10

2.9 One of tactile displays used in [9] (source: [9]) . . . . . . . . . . . . . . . 11

2.10 Visual virtual kitchen (left) and passive haptic kitchen (right) (source:

[100]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.11 Difference between the tool and the handle: the tool is the whole alien,

the handle is the red part of it. (source: [77]) . . . . . . . . . . . . . . . 12

2.12 General haptic rendering pipeline (source: our work [227]) . . . . . . . . 14

2.13 Virtual coupling (source: [51]) . . . . . . . . . . . . . . . . . . . . . . . . 17

2.14 The naive haptic rendering algorithmn (source: [82]) . . . . . . . . . . . 19

2.15 The force direction changes after crossing the middle line (source: [82]) . 20

2.16 Unexpected force discountinuities in magnitude and direction (source: [82]) 20

viii



List of Figures

2.17 Volumetric data as “bricks” in a rectilinear grid (source: [89]) . . . . . . 23

2.18 (left) (Single) scattering and shading, (middle) Shadowing and (right)

Multiple scattering optical models (source: presentation for [65]) . . . . . 26

2.19 Combinations of the classification and shading techniques (source: mod-

ified from [38]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Aliasing artifacts become visible at edges of slice polygons (source: [190]) 32

3.2 Fractional positions of slices (source: presentation for [65]) . . . . . . . . 33

3.3 Principles of the shear-warp-algorithm for the parallel projection (source:

[190]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Principles of the shear-warp algorithm for the perspective projection

(source: [190]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Slices are parallel to the image plane (source: presentation for [65]) . . . 36

3.6 Idea of Splatting (source: [38]) . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Idea of ray casting (source: [38]) . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 A comparison between alpha blending (A) and maximum intensity pro-

jection (B) (source: [190]) . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Ray tracing (source: Wikipedia article “Ray tracing”) . . . . . . . . . . . 42

3.10 Visual subtraction of the haptic device (source: [54]) . . . . . . . . . . . 44

3.11 Idea of [3] (source: [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.12 When a new plane equation causes the tool to be embedded in the surface,

the algorithm will artificially lower the plane to the tool position and then

raise it linearly to the correct position afte n force loop cycles (source:

[137]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.13 God-object method (source: [82]) . . . . . . . . . . . . . . . . . . . . . . 47

3.14 Actual and configuration space obstacles (source: [198]) . . . . . . . . . . 48

3.15 Cut of the bounding spheres hierarchy (source: [198]) . . . . . . . . . . . 49

3.16 Point shell and voxmap (source: [141]) . . . . . . . . . . . . . . . . . . . 50

ix



List of Figures

3.17 The DLR’s bi-manual haptic interface used in the VR simulator for teler-

obotic on-orbit servicing (source: [200]) . . . . . . . . . . . . . . . . . . . 52

3.18 Haptically textured Hammer and textured Helicoidal Torus (source: [177]) 54

3.19 The haptic thread runs at force update rates of 1 kHz simulating the

dynamics of the grasped object and computing force feedback, while the

contact thread runs asynchronously and updates contact forces (source:

[175]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.20 (Wireframe) the finest resolution of the objects; (in color) adaptively

selected resolution for haptic rendering of the contact areas (source: [82]) 56

3.21 Constraint-based 3-DoFs haptic rendering of muscle fibers (source: [98]) . 57

3.22 Normal cones (source: [106]) . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.23 Collision-free path finding using 6-DoFs haptic rendering (source: [105]) . 60

3.24 The constraint-based approach allows to remove force artifacts typically

found in virtual coupling approaches (the handle is shown in green)

(source: [168]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.25 Constrains adaptation technique: when a new constraint (here the verti-

cal plane), which would create too strong constraint force, appears (a),

it is first translated so that it is satisfied by the current haptic device

configuration (b), and then step-by-step returned to its initial position

(c-d) (source: [168]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.26 Detecting a contact with bone in [224] (source: [224]) . . . . . . . . . . . 63

3.27 Stages of the sphere packing algorithm (source: [235]) . . . . . . . . . . . 64

3.28 System architecture for [41] (source: [41]) . . . . . . . . . . . . . . . . . . 65

3.29 Effects of the “tools” for data modification in [12] (source: [12]) . . . . . 67

3.30 Deformation experiments on point-based models (source: [222]) . . . . . 69

3.31 Use of local refinement technique in order to ensure the physical fidelity

while bounding the global computation load in order to guarantee ani-

mations with the desired frame-rate (source: [57]) . . . . . . . . . . . . . 70

x



List of Figures

3.32 The first two series of example interaction: (2)-(4) – calculation of de-

formations of object B and the force conveyance, (5)-(7) – calculation of

deformations of object A and the force conveyance (source: [119]) . . . . 71

3.33 Laparoscopic training system from [19] (source: modified from [19]) . . . 72

3.34 (left) Discretization of the stomach. (right) Support (influence zone) and

shape function of the node I (sources: [56, 19]) . . . . . . . . . . . . . . 74

3.35 Multirate architecture for [56] (source: [56]) . . . . . . . . . . . . . . . . 75

3.36 (left) Tetrahedral decomposition of the liver model and (right) the liver

model being deformed (source: [171]) . . . . . . . . . . . . . . . . . . . . 76

3.37 Multirate system architecture for [171] (source: modified from [171]) . . . 76

3.38 Layered representation of an object in [75]: (left) low-resolution proxies

(meshes) used for collision detection and haptic interaction; (middle) de-

formable tetrahedral mesh; (right) highly detailed surface mesh for the

deformable skin simulation (source: [75]) . . . . . . . . . . . . . . . . . . 77

3.39 Multirate system architecture for [75] (source: [75]) . . . . . . . . . . . . 78

3.40 Nested point-tree: (left) the multi-resolution pointshell and (right) the

hierarchy, the traversal order and tree levels. Particle-repulsion levels are

0-1, 2-5, and 6-19 in this case (source: [16]) . . . . . . . . . . . . . . . . . 79

3.41 Architecture of the system from [130] (source: [130]) . . . . . . . . . . . . 81

3.42 Vertex displacements along their normals (done by the vertex shader)

(source: [130]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.43 Normal calculation (done by the fragment shader) (source: [130]) . . . . 82

3.44 Mass-spring model (source: [42]) . . . . . . . . . . . . . . . . . . . . . . . 83

3.45 Multirate multithread architecture used in [30, 31] (source: [31]) . . . . . 85

3.46 Two-finger contact model in [30, 31] (source: [31]) . . . . . . . . . . . . . 86

3.47 Example from [63]: a deformable ball inleracting with a deformable cylin-

der (source: [63]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.48 The motion of a deformable object split in two parts: a deformable motion

in its current configuration and a rigid motion in the world coordinate

system (source: [64]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



List of Figures

3.49 The interactive snap-in and snap-out task on deformable pipes from [64]

(source: modified from [64]) . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.50 Approximation of deformed distance field for k=3. (a) Proxies (squares)

and the query pointshell point at x. (b) Three-nearest neighbors. (c) k

approximations of x in the undeformable distance field (source: [18]) . . 91

3.51 In each simulation step in the visual loop, a linear approximation Fc
∗ of

the coupling force Fc between handle and the rest of the tool is computed,

that encapsulates the constrained dynamics of the tool (source: [77]) . . 92

3.52 The rigid handle (in green) is selected as a part of the hand. Connections

between the probe, handle, tool and handle proxy are equal to those in

[77] (source: modified from [78]) . . . . . . . . . . . . . . . . . . . . . . . 93

3.53 System architecture used in [135] (source: [135]) . . . . . . . . . . . . . . 94

4.1 A segment as the bit cube. Brown – 1, gray – 0 (source: modified from

[89]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 The ray from the previous position p1 to the current one p2 is cast with

1-voxel steps until an obstacle is found or p2 is reached (source: our work

[226]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Example of execution of the original “sliding along the surface” approach

(source: our work [226]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 v1 and v2 are N26-neighbour empty-space border voxels for p2. (a) p2 is

on the border between empty and filled voxels, and both v1 and v2 are

not considered because (v1−p2,d2−p2) < 0 and (v2−p2,d2−p2) < 0.

(b) p2 is in the middle of border empty-space voxel, and v2 is considered

because (v2 − p2,d2 − p2) > 0 . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Since (v1−p3,d2−p2) > 0, (v2−p3,d2−p2) > 0 and (v3−p3,d2−p2) > 0

(where v1,v2,v3 ∈ Vp3), v1, v2 and v3 will be taken into consideration . . 105

4.6 N26-neighbour empty-space border voxels shown in our system (the seg-

ment is triangulated using the modified marching cubes algorithm – see

section 5.2) for details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 The case when Vp3 6= Vp2 , shown in our prototype system . . . . . . . . . 106

xii



List of Figures

4.8 The positive scenario of limiting the movement of the IP (blue) by the

plane perpendicular to (d1,d2) and going through d2 (green) . . . . . . . 106

4.9 The negative scenario of limiting the movement of the IP (blue) by the

plane perpendicular to (d1,d2) and going through d2 (green). The IP

should follow the full path shown in blue, but can only follow the part of

it drawn in solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10 The positive scenario of limiting the movement of the IP (blue) by the

plane (green) in the way described in point 4 in section 4.4 . . . . . . . . 107

4.11 The negative scenario of limiting the movement of the IP (blue) by the

plane (green) in the way described in point 4 in section 4.4. The IP

should follow the full path shown in blue, but can only follow the part of

it drawn in solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.12 Forces involved in the computation of force-feedback in section 4.6 . . . . 109

4.13 Adjusting the metal mesh (in purple) to the eyeball using the INCA 6D

haptic device (source: our work [225]) . . . . . . . . . . . . . . . . . . . . 111

4.14 Phantom Omni haptic device . . . . . . . . . . . . . . . . . . . . . . . . 116

4.15 Phantom Premium 1.5 6-DOF haptic device . . . . . . . . . . . . . . . . 116

4.16 INCA 6D haptic device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.17 Our approach is multi-rate and multi-threaded . . . . . . . . . . . . . . . 120

4.18 Part 1 of the structure diagram of our approach: devices and algorithms 121

4.19 Part 2 of the structure diagram of our approach: scene objects and their

usage by threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.20 The Torso data set (source: our work [226]) . . . . . . . . . . . . . . . . 126

4.21 The data set Headbig (source: our work ([227]) . . . . . . . . . . . . . . . 126

4.22 The data set Headsmall (source: our work [227]) . . . . . . . . . . . . . . 127

5.1 Our multi-rate and multi-threaded approach with added simulation of

deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Part 2 of the structure diagram of our approach with added simulation

of deformations: scene objects and their usage by threads . . . . . . . . . 134

xiii



List of Figures

5.3 Part 3 of the structure diagram of our approach with added simulation of

deformations: scene objects and their usage by threads, and deformation

simulation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 The difference between graphics rendering without (a) and with (b) smooth-

ing. The data set Headsmall is visualized . . . . . . . . . . . . . . . . . . 139

5.5 The difference between graphics rendering without (a) and with (b) smooth-

ing. The Torso data set is visualized . . . . . . . . . . . . . . . . . . . . 140

5.6 The difference between the local smoothing algorithm (a) and the global

smoothing algorithm (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.7 The potential fields based simulation of powder grains used in printing

(source: [80]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.8 The distribution of fluid and proppant particles – simulated using poten-

tial fields approach (source: [120]) . . . . . . . . . . . . . . . . . . . . . . 148

5.9 General interaction potential and the corresponding interaction force for

σ < a < b (source: [116]) . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.10 The Face-Centered Cubic (FCC) lattice. Black spheres correspond to the

centers of potential fields for the FCC packing (source: modified from

Wikipedia article “Cubic crystal system”) . . . . . . . . . . . . . . . . . 159

5.11 A unit cell of the FCC packing contains 4 lattice points (potential fields)

in total. Potential fields are illustrated as spheres . . . . . . . . . . . . . 160

5.12 The FCC packing within the simulation area in our simulation. Potential

fields are illustrated as spheres . . . . . . . . . . . . . . . . . . . . . . . . 161

5.13 Our interaction forces in two-dimensional case: (a) and (b) – no forces,

(c) – attraction forces, (d) – repulsive forces. Potential fields with var-

ied equilibrium distance acube are represented as imaginary “cubes” with

centers at p1 and p2. The side length of a voxel is a. . . . . . . . . . . . 174

5.14 The space is divided into areas being assigned to different processors.

Each such area contains cubic grid cells with side acut (source: modified

from [115]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

xiv



List of Figures

5.15 The prototype of the global deformation simulation using potential fields.

Potential fields are illustrated as spheres of diameter a (the equilibrium

distance). Each potential field “owns” voxels within da (da ≥ 0.5a), which

are associated with it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.16 The Torso data set with visual debug information . . . . . . . . . . . . . 192

5.17 The data set Headbig with visual debug information . . . . . . . . . . . . 192

5.18 The data set Headsmall with visual debug information . . . . . . . . . . . 193

5.19 Triangles before (left) and after (right) discretization (source: [194]) . . . 197

5.20 Ray casting with 1–voxel from step P1 to P2 to find the hit voxel for the

voxel cube with triangle index coding (source: [194]) . . . . . . . . . . . 198

5.21 The 001 pelvis final l Improved Goal data set used in [194]) (source: [194])200

5.22 The pelvis r 5 data set used in [194]) (source: [194]) . . . . . . . . . . . . 201

5.23 The ydm testsphere1 data set used in [194]) (source: [194]) . . . . . . . . 202

5.24 Our prototype system presented on the CeBIT 2015 within the scope of

the MultiScaleHuman project (source: [186]) . . . . . . . . . . . . . . . . 203

5.25 Example of the knee joint multi-scale data set (source: [221]) . . . . . . . 204

5.26 The Bone segment for the bone drilling scenario . . . . . . . . . . . . . . 206

5.27 The force feedback for the bone drilling scenario . . . . . . . . . . . . . . 207

5.28 The Skin and the Skull segments for the needle insertion scenario . . . . 207

5.29 The force feedback for the skin and skull bone penetration scenario. The

force feedback increases the first time starting from 800 ms – when the

skin is penetrated. The force feedback increases the second time starting

from 4000 ms – when the bone is hit . . . . . . . . . . . . . . . . . . . . 208

5.30 The Liver and the Bone segments for the needle insertion scenario . . . . 208

5.31 The force feedback for the liver and bone penetration scenario. The force

feedback increases starting from 5000 ms – when the bone is hit . . . . . 209

xv



List of Tables

List of Tables

4.1 Resulting update rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2 Resulting update rates for the Improved Approach . . . . . . . . . . . . . 128

5.1 Resulting ranges of update rates for the deformation framework . . . . . 194

5.2 Resulting average update rates for the deformation framework . . . . . . 194

5.3 The update rates for the deformation simulation . . . . . . . . . . . . . . 196

5.4 The update rates for the deformation simulation, normalized by the num-

ber of voxels in the simulation area . . . . . . . . . . . . . . . . . . . . . 196

5.5 Haptic update rates for the approach presented in [194] . . . . . . . . . 199

xvi



List of Tables

List of Abbreviations

2D – Two-Dimensional

3D – Three-Dimensional

6D – Six-Dimensional

AABB – Axis Aligned Bounding Box

API – Application Program Interface

BD-Tree – Bounded Deformation Tree

CPU – Central Processing Unit

CT – Computed Tomography

DAAD – Deutscher Akademischer Austauschdienst (German Academic Exchange Ser-

vice)

DoF – Degree-of-Freedom

DVR – Direct Volume Rendering

EU – European Union

FEM – Finite Element Method

FFC – Face-Centered Cubic

GPU – Graphics Processing Unit

GUI – Graphical User Interface

HIP – Haptic Interaction Point

HU – Hounsfield unit

HWS – Haptic Workspace

xvii



List of Tables

IP – Interaction Point

IST – Inner Sphere Trees

JNA – Java Native Access

LMD – Local Minimum Distance

MIP – Maximum Intensity Projection

MMCA – Modified Marching Cubes Algorithm

MRI – Magnetic Resonance Imaging

MRT – Magnetic Resonance Tomography

MWS – Workspace of Movement

PAFF – Point-Associated Finite Field

PC – Personal Computer

QSA – Quasi-Static Approximation

RAM – Random Access Memory

SNCH – Spatialized Normal Cone Hierarchies

SPH – Smoothed Particle Hydrodynamics

SWS – Scene Workspace

TCP/IP – Transmission Control Protocol/Internet Protocol

VM – Virtual Machine

VR – Virtual Reality

VWS – View Workspace

YADiV – Yet Another Dicom Viewer

YDMF – YaDiV Deformable Model Framework

xviii



Chapter 1. Introduction

Chapter 1

Introduction

With the evolution of medical scanning devices, especially Computed Tomography (CT)

and Magnetic Resonance Imaging (MRI), 3D volume data is nowadays widely used in

modern medicine. These modalities have become an integral part of a clinical practice.

Resulting 3D images are used for diagnosis, therapy planning, interventional guidance,

and follow-up. 3D volume data is also in use in geology, CAD-applications, entertain-

ment and other areas.

In order to significantly increase usability and efficiency of work with 3D data, an ad-

ditional dimension could be added to a virtual system - a sense of touch. This could be

done using a haptic device. With a haptic device a user can both manipulate a virtual

object and feel force feedback reactions. Source data could be in different representa-

tions (triangulated surface, hexahedrons, volumetric, ...), but we focus on a volumetric

one, since it is a direct output from the scanning devices. Other data types can be

transformed to this one, if necessary.

Our goal was to design and develop a VR system, which integrates all stages of (medical)

volume data processing and provides a user with a haptic interface and high-quality

visualization. Stages of the volume data processing are presented in detail in section

2.2.1.

The general challenges of haptic rendering are a huge amount of volumetric data per

object, stability and that it requires and update rate of at least 1 kHz. There exist

many haptic rendering methods, but almost all of them have drawbacks that (1) “thin”

obstacles could be skipped or an interaction point could go inside them and/or (2) a

certain topological structure of objects is needed, such as connectivity or number of holes.

The last is also an important issue, since the real medical data we work with can have any

1



Chapter 1. Introduction

structure, especially if segmentation has been done automatically. The aforementioned

drawbacks are not acceptable for precise procedures such as pre-operation planning in

surgery.

Here we present a novel approach published in [227, 225] that does not have these prob-

lems while guaranteeing nearly constant time complexity independent of data resolution

by employing ray casting for the collision detection and a “sliding along a surface” model

for the collision response. Additionally, no precalculations or explicit surface represen-

tations are needed. This means that a virtual scene may be both dynamic and static

and that objects can be dynamically changed. To our best knowledge, the use of ray

casting in haptic rendering is a novel interdisciplinary approach being on the cutting

edge of visualization and haptic rendering research areas. Our method was implemented

and tested within our VR system based on the framework provided by the YaDiV plat-

form [73, 72] – a powerful virtual system for working with 3D volume data, which was

developed at our Institute. This allows us to combine novel haptic rendering meth-

ods for exploration of medical data with high-quality visualization. Our approach has

nearly constant time complexity independent of data resolution and is very fast – up to

750 points can be simulated at haptic update rates (1 kHz) for the collision detection

only and up to 150 points for the collision detection and collision response (both values

are given for a moderate end-user PC). This allows to perform object-object collision

detection at a sufficient speed. Further on, we present our improved haptic rendering

approach published in [226], which employs local path finding for collision response and

employs an improved force feedback generation scheme. We show that the path finding

paradigm can be successfully employed in other research areas, such as haptic rendering

in our case.

For the advanced contact resolution, we focus on a flexible framework which allows us

to use our above mentioned improved approach of haptic rendering of volumetric data

together with deformation models. We show that it is feasible to do so, since our haptic

rendering approach adds its properties including collision detection guarantee and non-

penetration guarantee to the selected deformation model. Furthermore, we present our

graphics approach which we use to keep the graphics representation of objects up-to-

date during the deformation simulation. The challenge here is to reflect deformations

of objects interactively.

In order to validate our framework, we propose our local deformation simulation ap-

proach based on the method of potential fields, where potential fields can be considered

as specific finite elements, i.e. discrete carriers of properties of the medium [99]. Further

on, we introduce our novel cuboid potential fields (see remarks in section 5.18) and pro-

2



Chapter 1. Introduction

pose how to use them for the local deformation simulation. We demonstrate that cuboid

potential fields are better suited to haptic rendering of volumetric data. Furthermore,

we show how to establish the correspondence of parameters of our proposed deforma-

tion simulation models to parameters of real materials, and propose a way to take the

heterogeneity of the simulated material into account. Additionally, we introduce the

prototype of the global potential fields based deformation approach. The potential field

based deformation simulation approaches are a good “illustration”, because they ini-

tially do not have the “nice” properties of our haptic rendering approach. Additionally,

the resulting combined haptic rendering approach with our proposed deformation simu-

lation approaches within our deformation framework does not require any pre-calculated

structure and works “on the fly”. The haptic update rate of our deformation framework

remains stable when a deformation simulation is added. It does not decrease for both

local and global simulation approaches. Furthermore, the haptic update rate is still

orders of magnitude higher than the required 1 kHz.

The deformation framework, as well as all our haptic rendering and deformation simu-

lation approaches, was fully developed by us from scratch, without the use of any third

party libraries.

The thesis is structured as follows. In chapter 2 we give basics, definitions and general

overview of haptic rendering and of visualization of volumetric data. In chapter 3 we

give an extensive overview and classification of existing visualization and haptic render-

ing methods and their advantages and disadvantages. In chapter 4 we present our haptic

rendering approach for volumetric data being published in our works [227, 225], and its

improvements being published in our work [226]. We also discuss implementation de-

tails, and give the results of tests with real volumetric data. In chapter 5 we propose our

flexible deformation framework which allows us to use our improved approach of haptic

rendering of volumetric data presented in chapter 4 together with deformation models.

Furthermore, we present our graphics approach which we use to keep the graphics rep-

resentation of segments up-to-date during the deformation simulation. Furthermore, we

introduce our novel cuboid potential fields and our potential fields based deformation

simulation approaches. Further on, we give the results of tests with real volumetric

data. In chapter 6 we present the summary and future outlook.

3



Chapter 2. Basics and Definitions

Chapter 2

Basics and Definitions

In this chapter we give definitions and general overview of visualization and haptic

rendering. It is divided into two main sections, respectively.

4



Chapter 2. Basics and Definitions

Figure 2.1: A user is manipulating the purple object using the Phantom haptic device

and feeling force feedback reactions when collisions occur (source: our work [225])

2.1 Haptic Interaction

Haptic devices add a new dimension to simulation frameworks: feeling the objects. With

a haptic device a user can both manipulate a virtual object and feel force feedback

reactions.

Haptic devices are useful in a medical simulation and training, museum display, paint-

ing, sculpting, CAD, visualization, military applications, assistive technology for blind

and visually impaired people, interaction technologies with scientific data [187], enter-

tainment and other applications. For more details see e.g. [140, 97]. Additionally, user

studies were performed showing that a training with haptic devices gives better results

than a training without them [156, 205, 202].

Note [177]: The first haptic device, “an ultimate display with force feedback”, was

suggested by Ivan Sutherland in 1965.

2.1.1 Definitions

Definition [82, 174, 177]:

The term haptic (from the Greek haptesthai, meaning “to touch”) is an adjective used

to describe something relating to or based on the sense of touch. Haptic is to touching

as visual is to seeing and as auditory is to hearing.

5



Chapter 2. Basics and Definitions

Figure 2.2: Head mounted display

Definition [82, 174, 177, 203]:

Haptic rendering is a process of computing and generating forces and torques in re-

sponse to user interactions with virtual objects.

(See an example in figure 2.1.)

2.1.2 Types of Input/Output Devices

Definition:

Tracking devices – devices which track the position and/or orientation of objects in

3D space, i.e. track a specified number of degrees-of-freedom (DoFs).

Below we list commonly used tracking devices/types:

� A Computer mouse – probably, the most well-known and widespread tracking

device. It tracks two DoFs

� A head tracking device (or head mounted display) – a helmet with small

displays in front of eyes and sensors tracking the position and orientation of the

head.

� Full hand tracking devices – usually a glove with sensors (e.g. Wireless Cyber-

GloveII – see figure 2.3) tracking orientation of the user’s hand including fingers.

This allows to perform user interactions in a more natural way (e.g. in navigation

tasks, see [82]). Position of the hand is also tracked by some models

6



Chapter 2. Basics and Definitions

Figure 2.3: Sensor gloves

Figure 2.4: Limb tracking device (Polhemus FastTrak) (source: [100])

� Full body tracking – this is the most complicated tracking task and a subject

of much ongoing research. Achieving highly accurate data in real-time is still an

unsolved problem [82]. Example of a limb tracking device is shown in figure 2.4

� Set of sensors, which could be fixed on arbitrary objects at arbitrary places.

Examples of such sets are optic sensors with a camera tracking system (like IO-

tracker/4 ) and inertia sensors (like InertiaCube3 Wireless)

� A haptic display is also a tracking device. See the next section for details.

2.1.3 Haptic displays

Definition:

A kinesthetic display – a device which tracks its own position and/or orientation and

stimulates the kinesthetic sense of the user via a programmable force feedback. It is

allowed that the device has 0 DoFs, i.e. it doesn’t track any DoFs.

7



Chapter 2. Basics and Definitions

Figure 2.5: Joystick with force feedback

Remarks:

The kinesthetic sense is e.g. a sense of rough surface features. In other words, it is a

sense that tracks the positions of the limbs.

Definition:

A haptic display (a haptic device) – we define it as another name for the kinesthetic

display.

Remarks:

� Some authors (e.g. [72]) assume that haptic displays are not only kinesthetic

displays but also cutaneous displays (see section 2.1.4 for definition of the last

term)

� It is assumed in some works that tracking devices are also haptic displays.

Further we list common and important types of haptic displays:

� Game manipulators with force feedback – manipulators like joystick or wheel

are actually haptic displays because they track the position and can give a pro-

grammable force feedback

� 3-DoFs haptic displays

� 6-DoFs haptic displays – 6-DoFs devices become more and more popular now

8



Chapter 2. Basics and Definitions

Figure 2.6: Example of a 3-DoFs haptic display: Novint Falcon

Figure 2.7: Examples of 6-DoFs haptic displays: Phantom Premium 6DOF and INCA

6D

9



Chapter 2. Basics and Definitions

Figure 2.8: Example of an n-DoFs device (source: [14])

� n-DoFs haptic displays – such devices still can be rarely seen, since they are

usually produced for simulation of very specific tasks. Examples of general-purpose

n-DoFs devices are a force feedback glove (figure 2.8) and a force feedback chair.

2.1.4 Cutaneous displays

Definition:

A cutaneous display (tactile display) is a device which can track its own position

and/or orientation and stimulate the cutaneous perception of the user.

Such devices are used when it is necessary to give a perception of texture and roughness,

e.g. a perception of fabrics [9, 10, 8].

Devices of this group could be based on different principles: electromagnetic displays,

pneumatic displays, displays with electroactive polymers, air jet displays and others.

An interested reader can find out more in the work of Allerkamp [8] devoted to the

cutaneous perception.

2.1.5 Passive Haptics

Definition [100]:

Passive haptics is augmenting a high-fidelity visual virtual environment with low fi-

delity physical objects.

10



Chapter 2. Basics and Definitions

Figure 2.9: One of tactile displays used in [9] (source: [9])

Figure 2.10: Visual virtual kitchen (left) and passive haptic kitchen (right) (source:

[100])

The PhD thesis of Insko [100] is devoted to this topic. The author considered situations

when a user is immersed into a virtual emvironment with a head mounted display and

can walk in there by walking in the real world. According to Insko, the most disturbing

unnatural property of virtual environments is the ability of users to pass through visual

obstacles. In order to eliminate this drawback the author proposed to add low-fidelity

physical objects like styrofoam blocks and particle-board countertops to the real-world

according to high-fidelity obstacles in the virtual environment (see figure 2.10).

2.1.6 Synchronization of Different Devices

Different types of input/output devices could be used together in one system, but syn-

chronization problems could arise in this case. See e.g. the recent work of Hwang et al.

11



Chapter 2. Basics and Definitions

Figure 2.11: Difference between the tool and the handle: the tool is the whole alien, the

handle is the red part of it. (source: [77])

[96] devoted to this issue in case of simultaneous use of a haptic display and a full-hand

tracking device.

2.1.7 Additional Definitions

Definition:

A probe (or end-effector) (of a haptic display) is the part of the device the posi-

tion/orientation is tracked for (passive /DoFs) and a force feedback is applied to (active

DoFs).

Definition [77]:

A tool (in a virtual world) is an object in the virtual world, which the user manipu-

lates via the probe. Further we will use the term tool if it is understandable by context

what is meant. A particular case of the tool is the (haptic) interaction point (if the

object is a 3D point).

Definition [77]:

A handle (in a virtual world) is a grasped part of the tool.

Remarks:

The difference between the tool and the handle is shown in figure 2.11.

12



Chapter 2. Basics and Definitions

2.1.8 Degrees-of-Freedom (DoFs)

One of the characteristics of any haptic display and therefore a haptic rendering al-

gorithm is the number of DoFs. Generally, information about any particular DoF of

the device can be processed in an arbitrary way. But as far as haptic displays were

created to make working with a virtual reality (VR) environment more intuitive and

convenient, manipulations with a device’s probe usually correspond to those with an

object (e.g. movements to movements, rotations to rotations). Further we will assume

such a correspondence by default.

The following DoFs are commonly used in haptic rendering:

� 3-DoFs in 3D-space – processing of translations along axes and synthesis of

linear force feedback OR processing of rotations and synthesis of angular force

feedback

� 6-DoFs in 3D-space – processing of translations and rotations and synthesis of

linear and angular force feedback. 6-DoFs haptic rendering became quite common

and widespread nowadays

� n-DoFs – haptic rendering for devices, which have any other number of DoFs.

The simpliest example is a game joystick (2-DoFs in 2D-space). A more interesting

case is haptic rendering for n > 6, since this is a field of much ongoing research,

because there exist no general methods and widespread devices.

Remarks: Further we consider devices with at least 1-DoF if not stated otherwise.

2.1.9 Haptic Rendering Pipeline

There exist different variations of the haptic rendering pipeline, but generally it looks

as shown in figure 2.12. In this section we give an overview of each step. We consider

6-DoFs, but the pipeline could be generalized to n-DoFs.

A haptic rendering application should solve three main tasks: contact determination

(also called collision detection), collision response and generation of force feedback. All

stages are often tightly integrated in order to effectively use a solution of one task for

solving others. In the sections below we consider them in more detail.

13



Chapter 2. Basics and Definitions

Figure 2.12: General haptic rendering pipeline (source: our work [227])

Contact Determination

An application should make contact determination between the tool and other objects

in a virtual world according to the configuration of those and position/orientation

of the probe. The application should not only detect colliding objects, but also find

points/areas of the contact. Depending on how much the virtual environment is chang-

ing during the simulation process (e.g. whether objects can move or not, are they

deformable or not) different methods should be applied. We consider them in more

detail for every paper in the section 3.2, which is devoted to the detailed overview of

haptic rendering approaches.

Various hierarchy structures could be used for contact determination, like those de-

scribed in [82] (sensation preserving contact levels-of-detail), [84, 206] (OBB Trees),

[106] (spatialized normal cone hierarchies), [188] (continuous collision detection), [198]

(hierarchy of bounding spheres), [102] (bounded deformation tree – BD-Tree), [235]

(inner sphere tree), [15, 16, 18] (point-based BD-Tree, nested point tree hierarchy).

Additionally, a review of publicly available collision detection systems can be found in

[206].

Collision Response

Using information from the collision determination step, the application should make

an appropriate collision response (i.e. physical simulation) between interacting objects

(including the tool) in the virtual world. Different authors proposed different solutions

to this task (see e.g. an overview [176]), and the solutions could be classified as follows:

14



Chapter 2. Basics and Definitions

� constraint-based (if a collision is found then stop the simulation and formulate a

constraint problem in order to find collision forces, accelerations, velocities and

positions)

� impulse-based

� vector fields, including potential fields

� meshless method of finite spheres

� penalty-based (apply collision forces based on the amount of objects’ interpenetra-

tion)

– local-penetration methods

– pre-contact penalty forces.

The methods are discussed together with corresponding haptic rendering approaches in

section 3.2.

Generation of Force Feedback

The application should generate a force feedback in order to give the user a feeling of

the virtual world. Feedback forces and torques are generated according to the colli-

sion response and other forces in the system. “Other forces (and torques)” could be

e.g. gravity or magnetic forces. For training purposes, there could also be forces (and

torques) which e.g. track the user along a predefined way or let him/her do pre-recorded

actions (for example, in surgical simulation). Additionally, force feedback may allow a

user to feel different fields and to feel streamlines of vector data – see [98].

There are important stability issues concerning the force feedback genera-

tion. They are discussed in sections 2.1.13, 2.1.14.

2.1.10 Controlling a Haptic Display

According to [82], there are two ways of controlling a haptic display:

1. admittance control – a user applies a force to the device, and the application

moves the probe according to the simulation

15



Chapter 2. Basics and Definitions

2. impedance control – a user moves the probe of the device, and the application

produces forces. This scheme was firstly suggested in 1985 by Hogan [94] for

contact tasks in manipulation in robotics.

The drawback of the admittance control scheme is that instabilities may arise

� during a free-space motion in the virtual world, because the probe must move at

high accelerations under small applied forces

� when the probe rests on a stiff physical surface.

But this control scheme is stable for rendering of stiff virtual surfaces.

Conversely to the admittance control scheme, the drawback of the impedance control is

that instabilities may arise in the simulation of stiff (rigid) virtual surfaces, because the

device must react with large changes in force to small changes in position. Although a

free-space motion is quite stable.

According to [82] and [177], the impedance control scheme is cheaper and easier to

construct and is usually used nowadays.

Remarks:

Further we consider the impedance control scheme if not stated otherwise.

2.1.11 Passivity

Definition [82]:

A subsystem is passive if it does not add energy to the global system.

Remarks [82]:

A composite system obtained from two passive subsystems is always stable.

Colgate et al. [50] analyzed passivity (stability) conditions for 1-DoF haptic rendering

of a virtual wall modeled as a viscoelastic (the virtual spring and damper) unilateral

constraint and found the necessary and sufficient condition for the passivity:

b >
KT

2
+B, B ≥ 0 (2.1)

or if B is allowed to be negative then

b >
KT

2
+ |B|, (2.2)

16



Chapter 2. Basics and Definitions

Figure 2.13: Virtual coupling (source: [51])

where:

K – the stiffness of the virtual wall;

B – the damping of the virtual wall;

T – the sampling period;

b – the inherent damping of the device.

These results give guidelines for a design of haptic interface: in order to implement very

stiff constraints (high K,B) it is helpful to maximize b and minimize T .

2.1.12 Direct Rendering and Virtual Coupling

There exist two main techniques of handle manipulation:

� direct rendering – apply manipulations with the probe directly to the handle

� virtual coupling – connect the haptic probe to the handle through a virtual

spring-damper connection – see figure 2.13. For 6-DoFs there are usually two such

connections: one for translations and one for rotations. This technique was firstly

proposed by Colgate et al. [51]. Additionally, the authors showed that haptic

rendering will be still passive in this case (see section 2.1.11).

Direct rendering is useful if a haptic rendering method can perform all the stages (con-

tact determination, collision response and force feedback generation) at an update rate

sufficient for a stable user interaction (1 kHz).

But what should one do if e.g. contact determination or collision response can only per-

form at much lower frequencies? The solution is to decouple the synthesis of interaction

17



Chapter 2. Basics and Definitions

forces from the simulation of the virtual environment, i.e. to provide force feedback at

1 kHz but make the physics computations, say, at 30 Hz. Such approaches are called

multirate approaches, and virtual coupling is good in these cases [176]. However

direct rendering could also be used if e.g. an intermediate representation for fast force

feedback calculations is built at a sufficiently high update rate.

2.1.13 Stability and Force Feedback Update Rate

As stated in [82], one can measure the quality of haptic rendering in terms of a

dynamic range of forces (impedances) that can be simulated in a stable manner, that is

a force should be very low for movements in free space and high for contacts between a

rigid tool and rigid objects. So, the probe should stop quickly if rigid contact between the

tool and a virtual obstacle occurs. But because of the sample and latency phenomena,

unstable behavior of the probe could arise in such cases. Such instability is felt by a user

in a form of disturbing oscillations. It is even possible that the tool passes through an

obstacle because of a fast movement, or it appears at different sides of it in successive

frames. See section 2.1.14 for a detailed description of the problems.

In connection with these issues Colgate et al. showed in the work [50] devoted to

passivity and stability analysis, that a key factor for achieving a high dynamic range of

forces, while ensuring stable haptic rendering is a computation of feedback forces at a

high update rate. According to Brooks et al. [37] it should be at least 0.5-1 kHz. If the

update rate is lower then in addition to stability problems a user can also feel motion

“jerks” of the haptic device because of the high fidelity of the human kinesthetic system.

In [82] Glengloss et al. wrote that sensing bandwidth for kinesthetic feeling can be as

high as 400 Hz, and 5 - 10 kHz for cutaneous perception.

2.1.14 Stability Problems

A force update rate of 1 kHz is generally not sufficient for stable haptic rendering, as

shown in the example below.

Example showing the insufficiency of a force update rate of 1 kHz for stable

haptic rendering:

Let us assume that “the basic concept” (term from [82]), i.e. a naive method, is used.

For simplicity we consider 3-DoFs only and a tool as a point. For each haptic iteration,

the stages of the naive haptic rendering approach are as follows:

18



Chapter 2. Basics and Definitions

Figure 2.14: The naive haptic rendering algorithmn (source: [82])

1. Collision detection:

if (the tool is inside some obstacle) then

collision appeared

else

no collision

end if

2. Collision response is penalty-based:

if (collision appeared) then

push the tool out to the closest surface of the obstacle

end if

3. Force feedback generation is penetration-distance-based:

if (collision appeared) then

return a force, which is proportional to the distance at which the tool was

pushed out

else

return 0

end if

For the above naive method, the following stability problems could occur if the tool

moves too fast (“too fast” depends on sizes of obstacles):

1. the tool passes through an obstacle, i.e. it appears at different sides of it in

successive frames

2. unexpected force discontinuities when the tool crosses boundaries of internal Voronoi

cells of the obstacle’s surfaces, i.e. if the tool is inside one Voronoi cell at one frame

and is inside other Voronoi cell at the next frame. See figures 2.15, 2.16.

19



Chapter 2. Basics and Definitions

Figure 2.15: The force direction changes after crossing the middle line (source: [82])

Figure 2.16: Unexpected force discountinuities in magnitude and direction (source: [82])

Even if the issues mentioned in the above example are solved, the following problems

could still be presented:

If the tool has reached an obstacle and is located on its surface, but the user is still

moving the probe against it, then the distance between the probe and the tool in the

virtual world becomes larger and larger. If virtual coupling is used then the coupling

force could drastically increase, and the same problems as with “too fast tool movement”

will appear. Additionally, precision of all computations involving the coupling force will

decrease because of the large force value, and this will lead to numerical problems.

Another issue in this case is that an overflow of the coupling force value could happen.

Remarks:

1. For a 6-DoFs haptic rendering there are the same stability issues for linear move-

ments and linear forces, and problems of the same nature for rotations and torques

2. Other issues may appear if the tool is not a point but an object (e.g. if the tool

has some very big or very small parts compared to sizes of obstacles).

As the conclusion, “clever” collision detection, collision response and force feedback

generation methods should be used in order to provide stable haptic rendering even at

1 kHz.

20



Chapter 2. Basics and Definitions

2.2 Visualization

2.2.1 Volumetric Data Processing Pipeline

Nowadays volumetric data processing and visualization, especially medical imaging, are

widely used for analysis, diagnosis, illustration (Rößler et al. [195]) and other pur-

poses such as neurosurgery planning and reconstruction of industrial CT (Computed

Tomography).

Generally, four stages of a medical image processing and visualization pipeline are usu-

ally arranged (see Chen et al. [43] for details):

Further we give a brief explanation of each stage.

Reconstruction. This stage is also named “Geometry Processing or Construction”

in [43]. It is the process to generate 3D volume data set from the data which lacks

in geometrical, topological and semantical information. E.g. data which is acquired

by the Computed Tomography procedure: the absorption along X-rays, which are sent

through the observed object from the different positions. There are several different

reconstruction algorithms for medical and industrial CT scanners.

Registration. A matching process of different reconstructed data sets, obtained from

the same source, is called registration. Example: after the reconstruction of several

different data sets of the same patient, which may be acquired under different conditions,

the data sets usually do not match perfectly. For instance, this could happen because the

patient had different positions in the different scanners or because of different parameters

for the scanners (e.g. different distortions). Registration is needed in this case.

Segmentation. Segmentation is a process to extract certain structures from a volume

data set. In medical context this can be anatomical organs, e.g. kidney, liver or bones,

or pathological structures, like tumors. The direct volume rendering technique (see sec-

tion 2.2.4 for details) provides some kind of implicit segmentation during rendering via

a transfer function (the transfer function describes how the intensity values in the data

set are mapped to colors and opacities; see definitions in section 2.2.2). E.g. in data

sets obtained by CT it is easy to extract bone tissue with a transfer function. Unfortu-

nately, there are several structures which can not be extracted by implicit segmentation.

Explicit segmentation algorithms are used in this case, which apply to each voxel a tag

21



Chapter 2. Basics and Definitions

indicating if it belongs to a certain structure or not.

Visualization. Visualization is a representation of data in a native, intuitively clear and

easily-understandable way. There are several different rendering techniques. For some

techniques rendering time is a key criterion (real-time rendering), and for some other

of them quality (realism) of the rendered image is a key one. Multi-volume rendering

is also a very useful technique due to its ability to render different datasets at the

same time, especially if rendering in real-time is performed [195, 108]. The stages

above are usually realized in bounds of different projects, but a promising tendency of

their incorporation in the bounds of one system could be currently seen, e.g. a system

presented by Lundström in [133] and the YaDiV system of Friese et al. [73].

2.2.2 Data Representation

Definition:

We assume that volumetric data V is presented as a set of volumetric elements

(voxels)

{x, s, l}, where

x – coordinates of a voxel;

s – a scalar value associated with the voxel (intensity value, or intensity);

l (arbitrary type) – application specific data, such as data, that indicates whether this

voxel corresponds to a certain segment or not.

In the field of medical visualization volume data is usually acquired with Computed

Tomography (CT) or Magnetic Resonance Tomography (MRT). The result of such an

acquisiting process is a data set consisting of pairs < coordinates, intensity value >,

where the scalar value is a value measured by the scanning device (e.g. the value of

unabsorbed X-rays) [43]. One can take a look for a description of volume data and

related terms in [110].

From the geometrical point of view, volumetric data is a set of 3D points in 3D space.

As far as it is usually acquired by medical scanning devices, the distances between the

points along a coordinate axis are usually equal, i.e. they are positioned at nodes of

some rectilinear grid. For easier imagination, it is common to think about the data as of

“bricks” in a rectilinear grid – see figure 2.17 (but actually it is still a set of 3D points).

Remarks:

Further we assume that all voxels in a given data set are positioned in the nodes of some

22



Chapter 2. Basics and Definitions

Figure 2.17: Volumetric data as “bricks” in a rectilinear grid (source: [89])

rectilinear grid, if not stated otherwise.

Since the scanned data has no color or tissue information, a segmentation step of the

data could be further needed. That is, if explicit segmentation algorithms are used, a

tag is applied to each voxel. This tag indicates if the voxel belongs to a certain structure

or not and is denoted in our definition of volumetric data as l.

The segmentation process is a large field of research, and a lot of different approaches for

different purposes have already been proposed (see e.g. [43] and [72] for an overview and

suggested methods). As long as we assume that the scanned data is already segmented,

segmentation is not in scope of our research.

Unformal definition:

A transfer function describes how < coordinates, intensity value > pairs (< x, s >

pairs in terms of our definitions) for voxels of a given data set are mapped to colors and

opacities.

Remarks:

We need more than just the intensity as parameters of the transfer function because

different segments of volumetric data could have different intensity-to-color-and-opacity

mappings. For this we use the “coordinates” parameter in order to determine the seg-

ment we need to make the mapping for.

Definition:

A transfer function f for volumetric data V is the mapping

23



Chapter 2. Basics and Definitions

f : X × S 7→ C × I, (2.3)

where

X ⊂ R3 – a convex hull of the input coordinates of V ;

S ⊂ R – a convex hull of the input intensities of V ;

C – a set of colors;

I – a set of opacities.

Remarks:

We use a convex hull in the definitions of X and S, because a voxel can be sampled not

only at one of the given discrete positions of V , but also between them. An interpolation

is needed in such a case, leading to additional positions and intensities (see [138] for an

evaluation of interpolation techniques). All such values are included into convex hulls

of initial positions and intensities of V .

Below we present a classification of visualization techniques for volumetric data. A

detailed overview of concrete approaches is given in section 3.1. One can also take a

look at other overviews in [190, 89, 65, 88, 143].

In general, one could divide visualization techniques into polygonal rendering and vol-

umetric rendering. Further we present each of them in more detail.

2.2.3 Surface Rendering

This type of rendering is well-known, quite widespread and fully supported by current

graphics hardware due to the possibility to parallelize the rendering process. Data to

be drawn is represented as polygons (usually, triangles). This type of rendering is not

in focus of our work, and we would like to refer interested readers e.g. to a deep state-

of-the-art overview by Akenine-Moller et al. [7].

Surface rendering is useful when an explicit surface representation for a volumetric object

is given. But usually one just has a set of voxels, i.e. a set of points with additional

parameters. Therefore if one wants to use surface rendering then polygons should be

retrieved from the volumetric data. It could be easily done for iso-surfaces (an iso-

surface is a level set of a continuous function whose domain is 3D-space; unformally,

it could e.g. represent regions of a particular density in a 3D CT scan): polygonal

iso-surfaces could be obtained e.g. by the Marching Cubes algorithm [129, 126] or one

based on it [158]. But if one also wants e.g. to draw other voxels in semi-transparent

24



Chapter 2. Basics and Definitions

mode then problems will appear since almost all of them usually do not have any explicit

surface representation [89, 88]. It would be very time and memory consuming to create

such a polygonal representation.

In order to avoid the aforementioned problems, Direct Volume Rendering (DVR) tech-

niques were proposed.

2.2.4 Direct Volume Rendering

The idea of DVR is to render volumetric data directly. Direct methods display voxel

data by evaluating an optical model which describes how the volume emits, reflects,

scatters, absorbs, refracts and occludes the light [139].

Optical Models

Almost all important optical models for DVR are described in a survey paper by Nelson

Max [139], and we briefly summarize them here:

� Absorption only. The volume consists of particles, which only absorb the light

and do not scatter or emit any. Partial absorption (attenuation) of the light is

allowed

� Emission only. The volume consists of particles, which emit the light only

� Absorption and emission. The volume consists of particles which absorb and

emit the light

Remarks: According to [89, 88], the “Absorption and emission” model with a

restriction that only a directional light parallel to the viewing direction is allowed,

is nowadays the most common one in DVR

� (Single) scattering and shading. In addition to absorption and emission of

particles this model includes scattering of illumination from light sources. One light

ray could be scattered by a particle only once, any opaque and semi-transparent

objects on the way of the ray to the particle are ignored. Additionally, normals of

particles are needed for determination of direction of the scattered ray

� Shadowing. In addition to features of the previous model, opaque and semi-

transparent objects between the light sources and the illuminated particles are

25



Chapter 2. Basics and Definitions

Figure 2.18: (left) (Single) scattering and shading, (middle) Shadowing and (right)

Multiple scattering optical models (source: presentation for [65])

taken into account: a light ray from a light source could be stopped or attenuated

on its way

� Multiple scattering. This model includes all features of the previous model and

has a support for an incident light that has already been scattered by multiple

particles before it is scattered toward the eye. One light ray could be scattered

sequentially by several particles. One ray could also be reflected as several rays

with smaller intensities. One ray could be partially reflected and partially go

through a particle if the particle is semi-transparent and has a non-zero albedo

� Multiple scattering and refraction. This model is not described by Nelson

Max [139]. In addition to features of the previous model refraction of light rays is

allowed.

Since the “Absorption and emission” optical model with allowance of only a directional

light parallel to the viewing direction is the most common one, we will take a look at

a rendering integral for it. We will describe it in the way as it was done in [38] and

[143], but adapt it to the selected optical model. The rendering integral Iλ(x, r), i.e.

the amount of the light of wavelength λ coming from a ray direction r that is received

at location x on the image plane, is:

Iλ(x, r) =

L∫
0

Cλ(s)µ(s)e
−

s∫
0

µ(t)dt
ds, (2.4)

where

L – the length of the ray r;

µ – absorption (extinction) coefficient at the specified position on the ray r;

Cλ – amount of the light of wavelength λ emitted at the specified position on the ray r.

Remarks: Further we assume that µ and Cλ have two different types of parameters:

26



Chapter 2. Basics and Definitions

� µ(s) and Cλ(s), where s ∈ R is a position on the specified (by a context) ray (i.e

the ray is parameterized and s is the parameter)

� µ(v) and Cλ(v), where v ∈ R3 is a position in 3D-space.

If and only if for s on the specified ray its actual position in 3D-space is equal to v

then

µ(s) = µ(v) and Cλ(s) = Cλ(v).

Note: One can assume such function definitions as definitions of overloaded functions

in the C++ programming language (functions which have the same name but different

input parameters).

Most of practical volume rendering algorithms discretize the above integral into series

of sequential intervals i of width ∆s:

Iλ(x, r) =

L/∆s∑
i=0

Cλ(si)µ(si)∆s ·
i−1∏
j=0

e−µ(sj)∆s. (2.5)

According to [139], if µ(sj) is a constant value inside a voxel with side ∆s at the ray

position sj, then the opacity α of that voxel is α = 1− e−µ(sj)∆s.

Taking into account the above representation of opacity, using the Taylor series approx-

imation of the exponential term and dropping all but the first two terms, we get the

equation

Iλ(x, r) =

L/∆s∑
i=0

Cλ(si)α(si) ·
i−1∏
j=0

(1− α(sj)). (2.6)

Cλ and µ (and therefore α) could be approximated in different ways depending on the

concrete rendering pipeline and method.

Remarks:

In the above formulas the starting position of the ray (0) is at the border of the volume,

which is the most distant from the “eye” and the end position of the ray (L) is at the

“eye” (i.e. at x on the image plane). Using the formulas one can implement either a

back-to-front or a front-to-back compositing algorithm for computation of the rendering

integral.

27



Chapter 2. Basics and Definitions

In case a transfer function f is used to find Cλ and µ, formulas for them look as follows:

Cλ(si) = fCλ (p(si), s(p(si)) , (2.7)

where

si – a position on the ray;

fCλ – a “part” of the transfer function f returning a value of Cλ for the given parameters;

p – a function which returns a position in 3D space for the given position on the ray;

s – an intensity for the given 3D position in the volume V .

For µ the formula is similar.

Generally, two ways of applying a transfer function in order to find Cλ and µ at an

arbitrary position in the volume (i.e. not only at discrete positions of source voxels) are

distinguished: pre-classification and post-classification [66].

� Pre-classification – the following computation order is used: (1) Use the transfer

function in order to determine necessary colors and opacities of the source voxels

for the next step → (2) interpolation of the colors and opacities in order to find a

color and opacity at the given ray position.

� Post-classification – the following computation order is used: (1) Interpolate

intensities of the source voxels in order to find the necessary intensity at the given

ray position → (2) use the transfer function in order to determine the color and

opacity.

I.e. the difference is in the time of application of the transfer function: before or after

the interpolation. These classification approaches are analogous to Gouraud shading –

interpolating a shaded color (i.e. colors and opacities for pre-classification), and Phong

shading – interpolating a normal (i.e. intensities for the post-classification).

Post-classification gives much better visual results ([66, 38, 139]).

Additionally, in case where shading is supported (i.e. “(Single) scattering and shading”

or more sophisticated optical model is in use), pre-shading and post-shading techniques

are distinguished:

� pre-shading – the illumination model is evaluated at the source voxels

� post-shading – the illumination model is evaluated for the interpolated data.

Post-shading gives better visual results ([66, 38]).

28



Chapter 2. Basics and Definitions

The shading could also be applied before or after the classification, which gives four

different combinations of these techniques shown in figure 2.19 , where “reconstruction”

represents an interpolation (of colors and opacities or intensities depending on the case).

In the case when the shading is performed before the classification, intensities are used

Figure 2.19: Combinations of the classification and shading techniques (source: modified

from [38])

for shading computations. According to [66, 38], “post-classification and post-shading”

combination gives the best visual results.

29



Chapter 3. Literature Overview

Chapter 3

Literature Overview

In this chapter we give an extensive overview and classification of existing visualization

and haptic rendering methods and their advantages and disadvantages. The chapter is

divided in two sections – visualization (DVR) and haptic rendering respectively.

30



Chapter 3. Literature Overview

3.1 Visualization by Direct Volume Rendering

Below an overview of commonly used DVR algorithms is given.

The authors of [143] distinguish two types of methods: fast but low quality methods

and slow but high quality methods. We will also use this classification and group the

methods as follows:

� fast but low quality – Rendering with 2D Textures, 2D Multi-Textures Rendering,

Shear-Warp Algorithm, Rendering with 3D Textures

� slow but high quality – Splatting, Ray Casting, Ray Tracing.

Nowadays some of generally slow but high quality methods perform at interactive frame

rates thanks to a new hardware, and we will mark this out in detailed descriptions of

the methods.

The methods are described in order of increasing visual quality of the final image.

3.1.1 Rendering with 2D Textures

There are several works fully devoted to this technique and its enhancements, e.g.

[66, 190, 67, 45, 242, 191]. The idea is to create three axis-aligned stacks of 2D textures

of initial volume data at initialization, and then render each axis-aligned stack as a set of

flat textured polygons (“slices”) in back-to-front order. An alternative rendering strat-

egy is to render only the stack, which is the most perpendicular to the viewing ray. When

the slices are drawn, a transfer function for mapping of < coordinates, intensityvalue >

pairs to colors and opacities is used.

The optical model here is “Absorption and emission” with a restriction that only a di-

rectional light parallel to the viewing direction is allowed (see section 2.2.4).

“+”:

� Simplicity

� Fast rendering speed (on both CPU and GPU) compared to high-quality methods

mentioned earlier at the beginning of section 3.1

� Bilinear interpolation for 2D textures if graphics hardware is used [190]

31



Chapter 3. Literature Overview

Figure 3.1: Aliasing artifacts become visible at edges of slice polygons (source: [190])

� Interactive on standard graphics hardware.

“-”:

� Three times more memory is needed than required just to store volume data

� Sampling rate depends on the viewing axis

� Aliasing artifacts become visible at edges of slices because of a low sampling rate,

i.e. because of fixed number of slices (see figure 3.1). Algorithm should be signifi-

cantly changed in order to remove these artifacts [190]

Remarks: This disadvantage has been somehow neglected by a method proposed

in [67]: add polygons perpendicular to the viewing axis and connect borders of

neighbouring slices

� If graphics hardware is used and all textures are stored in the video memory, then

it takes a long time to update the volume data

� Low visual quality of the final image compared to the high-quality methods [143]

� Fixed number of slices causes visual artifacts (“jerks”) for “fly-through” applica-

tions, i.e. when the camera goes through the volume

� Transparency artifacts when the slices, which are impossible to sort by distance

to the view point because of their overlaps, are rendered. This could happen e.g.

if the angles between the viewing direction and all two axes are 45 degrees.

In order to make the sampling rate independent of the viewing axis, to make it adjustable

(unfixed) and to get triliniar interpolation, the authors of [191] proposed the 2D Multi-

32



Chapter 3. Literature Overview

Figure 3.2: Fractional positions of slices (source: presentation for [65])

Texture Rendering method. They suggested to make the following changes to the

source method:

� Axis aligned polygon slices now could not only have a fixed position but an arbi-

trary one on the axis. This means, that it is allowable to specify fractional slice

positions, where integers correspond to slices existing in the source slice stack,

and the fractional part determines the position between two adjacent slices. The

number of rendered slices is now independent of the number of slices contained in

the volume and can be adjusted arbitrarily

� For each polygonal slice its texture is computed via a texture blending between

two textures corresponding to two neighbouring original slices from the source

slice stack. The blending is performed with weights proportional to the distances

between the given slice and the original slices along the main stack’s axis (see

figure 3.2).

The performance of the method decreases if additional stacks are added.

3.1.2 Shear-Warp Algorithm

There are several works fully devoted to this technique and its enhancements, including

[25, 178, 122, 123]. The method was proposed by the authors of [122, 123], and its

implementation on GPU was presented in [25]. In the shear-warp algorithm the volume

is projected onto the image plane slice by slice. The idea in case of parallel projection is

shown in figure 3.3. The projection takes a place not directly on the final image plane,

but on an intermediate plane named a base plane ([65]), which is aligned not with the

33



Chapter 3. Literature Overview

Figure 3.3: Principles of the shear-warp-algorithm for the parallel projection (source:

[190])

Figure 3.4: Principles of the shear-warp algorithm for the perspective projection (source:

[190])

viewport but with the volume. The volume itself is sheared in order to turn the direction

of oblique projection into the direction that is perpendicular to the base plane. This

allows to make a fast implementation of the projection procedure: the entire slice can

be projected by simple two-dimensional image resampling. After the projection of all

the slices to the base plane has been finished, the base plane image is warped to the

final image plane. A perspective projection can be accommodated similarly by scaling

the volume slices in addition to shearing (see figure 3.4). When the slices are drawn, a

transfer function for mapping of < coordinates, intensity value > pairs to colors and

opacities is used.

There are three axis-aligned slice stacks, and during rendering the slice stack whose axis

is mostly parallel to the viewing direction is used in order to avoid a situation when

viewing rays may pass between two slices without intersecting one of them [190].

The optical model here is “Absorption and emission” with a restriction that only a di-

34



Chapter 3. Literature Overview

rectional light parallel to the viewing direction is allowed (see section 2.2.4).

“+”:

� Fast rendering speed (on both CPU and GPU; according to [65] this is the fastest

software volume rendering method) compared to the high-quality methods men-

tioned earlier at the beginning of section 3.1

� Bilinear interpolation for 2D textures if graphics hardware is used [190]

� Sampling rate is constant

� Interactive on standard graphics hardware [25].

“-”:

� “Switching” effect because of change of a slice stack when the “main” axis (the

axis being mostly parallel to the viewing direction) is being changed [190]

� Three times more memory is needed than required just to store the volumetric

data

� The constant sampling rate causes visual artifacts (“jerks”) for “fly-through” ap-

plications, because it is not sufficient in such cases

� Low visual quality of the final image compared to the high-quality methods [143]

� If graphics hardware is used and all textures are stored in video memory, then it

takes a long time to update the volumetric data.

3.1.3 Rendering with 3D Textures

There are several works fully devoted to this technique and its enhancements and ap-

plications [243, 79, 66, 190, 132, 249, 58, 127, 195]). It was first proposed in [243]. In

this method the volume data is stored as a 3D texture. Since graphics hardware can

only draw polygons, every time when we want to render the volumetric data we cre-

ate viewport-aligned flat polygon slices of the volume (see figure 3.5) and draw them

in back-to-front order. When the slices are drawn, a transfer function for mapping of

< coordinates, intensity value > pairs to colors and opacities is used.

35



Chapter 3. Literature Overview

Figure 3.5: Slices are parallel to the image plane (source: presentation for [65])

The optical model here is “Absorption and emission” with the restriction that only a

directional light parallel to the viewing direction is allowed (see section 2.2.4).

“+”:

� Simplicity

� Relatively fast rendering speed (both on CPU and GPU; this method is a trade-

off between quality of the final image and the rendering speed) compared to the

high-quality methods mentioned earlier at the beginning of section 3.1

� Sampling rate is constant

� Trilinear interpolation if graphics hardware is used [190]

� Interactive on standard graphics hardware.

“-”:

� For graphics hardware: method is not suitable in the presented form if the 3D

texture does not fit into the video memory

� The constant sampling rate causes visual artifacts (“jerks”) for “fly-through” ap-

plications, because it is not sufficient for such cases

Remarks: In order to somehow neglect this disadvantage a non-constant sample

rate could be used [143]

� Relatively low visual quality of the final image compared to the high-quality meth-

ods [143]

36



Chapter 3. Literature Overview

Figure 3.6: Idea of Splatting (source: [38])

� If graphics hardware is used and all textures are stored in the video memory, then

it takes a long time to update the volumetric data.

3.1.4 Splatting

There are several works devoted to this DVR technique [251, 44, 189, 237, 238, 148,

149, 147]. The method was initially proposed by Westover [237]. The intensity values of

volumetric data are resampled according to the specified parameters (regular or irregular

grid), and the samples are projected onto the image plane in front-to-back order. Each

voxel is represented as a radially symmetric interpolation kernel equivalent to the sphere

with a fuzzy boundary [190]. Projecting such a structure generates a so-called footprint

or splat on the image plane. The values of pixels of the image plane are accumulated,

while the voxels are being projected. This process is shown in figure 3.6. Splatting

classifies (finds colors and opacities for < coordinates, intensity value > pairs via a

transfer function) and shades the samples prior to projection. Although the authors of

[148] also proposed a method allowing classification and shading to be performed after

the projection.

The optical model here is either “(Single) scattering and shading” or “Absorption and

emission” with a restriction that only a directional light parallel to the viewing direction

is allowed (see section 2.2.4). It depends on whether a shading of samples is performed

or not. If the shading is performed then normals for the samples will be computed.

37



Chapter 3. Literature Overview

“+”:

� Adaptive resampling of volumetric data [238]

� Works well for “fly-through” applications

� High quality of the final image [38]

� Antialiasing effect [143].

“-”:

� Computationally expensive compared to the low-quality methods [143]

� Inaccuraties on the final image because of the averaging effect of the interpolation

kernel [143].

3.1.5 Ray Casting

There are a lot of works devoted to this DVR technique and its enhancements and spe-

cial applications [124, 86, 132, 38, 39, 249, 192, 87, 196, 133, 125, 89, 65, 88, 144, 197,

145, 117, 13, 236, 55, 108, 247]. In fact, this is the most popular technique nowadays

[196, 89, 88]. Additionally, already in 2003 the authors of [117] showed that interactive

ray casting is possible on standard graphics hardware. The idea of ray casting in vi-

sualization is to numerically evaluate the volume rendering integral (see section 2.2.4)

in a straightforward manner. The optical model is “Absorption and emission” with a

restriction that only a directional light parallel to the viewing direction is allowed. For

each pixel of the image a ray is cast into the scene (see figure 3.7). Along the cast ray the

intensity values of the volumetric data (s in our definition of volumetric data in section

2.2.2) are resampled at equidistant intervals, usually using trilinear interpolation [65].

After the resampling an approximation of the volume rendering integral along the ray in

either back-to-front or front-to-back order is computed. In this process the mapping of

< coordinates, intensity value > pairs for the resampled points to colors and opacities

according to a previously selected transfer function is used.

Remarks [139]: It is important that the intensity values instead of colors and opacities

are interpolated, because fine details would be missing otherwise. I.e. it is important

that the transfer function is applied not before the resampling (pre-classification) but

after it (post-classification) [66]. See section 2.2.4 for details.

38



Chapter 3. Literature Overview

Figure 3.7: Idea of ray casting (source: [38])

The commonly used improvement for ray casting is to use the “(Single) scattering and

shading” optical model. In order to use this model, gradients or normals for object

surfaces are computed and then used for lighting computations of the sampled points of

the volumetric data.

Additionally, in order to imitate “true” reflections, a precomputed environment mapping

was proposed. This technique is well-known in polygonal rendering and came from there,

especially from computer games. For a more detailed overview over the ray casting

technique see [65].

Other techniques for imitation of the “Shadowing” (e.g. [87, 196]) and even “Multi-

ple scattering” [113] optical models were proposed. Such enhancements of the original

method are possible at the cost of longer computation time. Additionally, other vari-

ations, enhancements and applications of ray casting, e.g. interactive ray casting of

large medical data [38], CPU-based ray casting of large data [86], illustrative context-

preserving volume rendering [39], an opacity peeling approach [192], multi-volume ren-

dering [195] and both multi-volume and multi-geometry rendering [108] (implemented

using NVidia CUDA [163]) were presented by different authors. For a more detailed

overview of these techniques we refer the interested reader to [89, 65, 88, 196]. Ad-

ditionally, recently Crassin et al. [55] proposed a method for interactive rendering of

very large data (about 82003 voxels). The authors used an adaptive view dependent

data structures and made the assumption that details are mostly concentrated on the

interface (i.e. the surface) between free space and clusters of density. Therefore this

method could give bad results for medical data, because not only the interfaces but the

39



Chapter 3. Literature Overview

whole data set should be rendered in high quality.

“+”:

� Trilinear interpolation

� Works well for “fly-through” applications

� High quality of the final image [38] (even for the “Absorption and Emission” optical

model)

� Interactive on standard graphics hardware (shown in [117]).

“-”:

� More computationally expensive compared to the low-quality methods

� Aliasing artifacts if the sample rate is not selected approprietly [143]

� Misses some details due to point sampling [143].

An important particular case of ray casting is a Maximum Intensity Projection

(MIP) approach. A detailed description could be found e.g. in [190] and [65]. The idea

is to use the maximum intensity value of all resampled points along the cast ray instead

of using the approximation of the volume rendering integral. This maximum intensity

value together with the coordinates of corresponding resampled point is then mapped

to colors and opacities according to the previously selected transfer function.

MIP is quite fast and simple and could be used in some special cases, e.g. visualization

of vascular structures [190, 65], but its major drawback is that the depth information is

completely lost [190].

3.1.6 Ray Tracing

There are a lot of works devoted to this method and its enhancements and applications

[114, 180, 232, 28, 219, 214, 231, 11, 71, 239, 35, 230, 181, 24, 229, 228, 52, 59, 211, 212,

70, 60, 92, 6, 131, 210, 207, 109, 248]. In the modern form ray tracing was introduced

in [239] in 1980. Ray tracing is not only a DVR technique but a general approach

40



Chapter 3. Literature Overview

Figure 3.8: A comparison between alpha blending (A) and maximum intensity projection

(B) (source: [190])

for high quality rendering of different kinds of data. This method was successfully

applied for rendering of polygonal models, NURBS, volumetric data and other object

representations. Additionally, ray tracing is used in the movie industry in order to

generate photorealistic scenes.

Note: There exists another kind of ray tracing called Distributed Ray Tracing. It was

introduced in [52] and is presented in some works, e.g. [35]. The difference is that the

camera is represented not by a point but by a lens. In order to achieve that, multiple

samples per pixel are taken, so that each sample is associated with a different position

on the camera lens.

The idea of ray tracing is as follows (see figure 3.9 for an illustration). For each pixel

of the final image a “primary” ray is thrown into the scene. When the ray reaches a

scene object, it could produce new rays (depending on material properties) – reflection,

refraction and shadow rays. These rays are traced according to the following rules:

� Shadow rays are cast from the current hit point cast to all light sources. If they

can reach a light source then it means that the reached light source makes a

contribution into the lighting of the hit point, and the color is computed and

returned. If a shadow ray hits another object then the ray is traced recursevely as

the primary ray and then returns the color of the intersection point

� Reflected rays are traced recursevely as primary rays

� Refracted rays are traced recursevely as primary rays.

The depth of recursion is limited. After all rays returned color values, the values are

41



Chapter 3. Literature Overview

Figure 3.9: Ray tracing (source: Wikipedia article “Ray tracing”)

combined according to the weights of the new rays and material properties at the current

hit point. The result is then returned as the result of ray tracing for the current primary

ray.

A transfer function is used to obtain material properties for a hit point.

Remarks:

A transfer function here could have more output parameters than in the definition in

section 2.2.2, because not only colors and opacities could be used for description of ma-

terials.

The optical model here is “Multiple scattering and refraction”.

To our best knowledge, no fully functional ray tracing system for medical visualization

of real size volumetric data (1283, 2563 voxels or more) at interactive frame rates (8-30

Hz or more for a viewport of 1024x768 or 1024x1024 pixels) for high-end consumer PCs

was presented. It is partially because the ray tracing algorithm itself is hardly appliable

to the current GPU architecture. Recently presented works [6, 131, 207, 109] show that

interactive ray tracing on GPU is already possible for scenes up to 1M triangles and

2562 voxels, but not for richer scenes. Ludvigsen and Elster [131] guess that future GPU

hardware together with the NVidia OptiX [164] ray tracing API could be promising.

“+”:

� High quality of the final image. The quality is much higher than for other methods

being considered in our overview

42



Chapter 3. Literature Overview

“-”:

� Much more computationally expensive than other methods being considered in

our overview

� Hardly applicable to the current GPU architecture

� Aliasing artifacts

Remarks: The last disadvantage could be eliminated by tracing additional rays

for pixels, where the artifacts have appeared.

43



Chapter 3. Literature Overview

Figure 3.10: Visual subtraction of the haptic device (source: [54])

3.2 Haptic Interaction

Below we overview a variaty of haptic rendering methods. We should mention that there

are generally two kinds of works devoted either to general haptic rendering methods or

to more specific approaches for surgical simulation. We mostly write here about methods

of the first kind, because we present our contributions more in this area (we considered

important particular use cases in our own method, but without loss of generality).

We should also note, that not all works of the second kind describe haptic rendering

methods generally or fully enough, or could be generalized from particular use cases, and

we consider only those of them which meet the aforementioned requirements. Among

the papers of the second kind, one can mark out e.g. Kühnapfel et al. [118], Kuroda et

al. [119], Nakao et al. [156], Basdogan et al. [19], De et al. [56], Maciel et al. [135].

A good overview of most popular methods in surgical simulation can be found in the

overview paper of Basdogan et al. [20].

Additionally, there are some extra works being related or useful in the field of haptic

rendering, e.g. Bickel et al. [27] (devoted to capturing and modeling of a non-linear

heterogeneous soft tissue; could be useful, because some of the haptic rendering methods

use captured tissue properties), Cosco et al. [54] (devoted to a visual subtraction of the

haptic device for mixed (augmented) reality, see figure 3.10), Palmerius et al. [179]

(the authors have shown how subdivision of proxy movements can improve precision

of volume haptic rendering), Nealen et al. [157] and Otaduy et al. [169] (the last two

papers present overviews being devoted mostly to non-real-time physical models for

deformable objects; these models could be used for haptic rendering in a reduced form,

as well as in simple or special cases (e.g. Garre and Otaduy [77]), or become interactive

in the near future because of increasing computer performance).

44



Chapter 3. Literature Overview

Figure 3.11: Idea of [3] (source: [3])

3.2.1 Rigid-Rigid Methods

For methods from this group the tool and all objects in the virtual world are rigid.

Therefore there are only rigid-rigid interactions.

� Adachi et al. [3] and Mark et al. [137] – Adachi et al. were the first who

proposed an intermediate representation of the virtual environment.

As far as collision detection with complex objects worked too slowly for haptic

rendering at that time (1995-1996), the authors proposed to use two threads, so

that in the slow thread a tangential plane on the virtual surface at the nearest

point from the position of the probe is transmitted to the fast force-feedback

thread and serves there as a unilateral constraint (a virtual plane). A spring-

damper penetration-based collision response was used for collision detection for

high frequency computations. The authors developed their own “SPICE” haptic

display, which required a haptic update rate of 500 Hz or more.

A drawback of the method is that force discontinuities could arise if the new plane

equation, which is transmitted from the thread with low frequency computations,

causes the tool in the fast thread to be embedded in the new surface. This could

happen if the tool in the fast thread is on one side of the virtual plane (out of

the object) during the current iteration of the slow thread, and on the opposite

side (inside the object) at the new iteration, i.e. after the new equation has been

transmitted.

45



Chapter 3. Literature Overview

Figure 3.12: When a new plane equation causes the tool to be embedded in the surface,

the algorithm will artificially lower the plane to the tool position and then raise it linearly

to the correct position afte n force loop cycles (source: [137])

Later on, Mark et al. [137] adapted and extended the method. They used two

intermediate representations: tool-plane and point-to-point springs (where one of

the points is controlled by the probe). The idea of these representations altogether

is to apply a penetration-based spring-based force to the probe. Additionally, the

authors proposed an interpolation between two successive intermediate represen-

tations in order to eliminate strong force discontinuities arising in [3]. The idea is

shown in figure 3.12. The authors reported about an update rate of approximately

1 kHz for the force-feedback thread.

� Salisbury, Zilles et al. [203] – the authors proposed a 3-DoFs haptic rendering

method for polygonal objects. They used the virtual coupling and several object

representations: initially a vector fields representation was employed (drawbacks

could be found in [250]), but later on a god-object representation was proposed.

The main idea is the following:

The method is used for collision detection, collision response and force feedback

generation. It is constraint-based and stops the virtual contact point (the god-

object) from penetrating into other objects. The method tracks the god-object

so that it remains on the surface when a virtual object is probed. In more detail,

knowing the positions of the god-object at the current and previous frames, a set

of surfaces constraining an inter-frame motion are identified, and then the new

position is computed using Lagrange multipliers as a constrained optimization

problem.

Note: One should mention that no fast “high-level” collision detection was con-

sidered, since [250] was fully devoted to the idea of the god-object method.

Additionally, the authors pointed out, that in opposite to graphics rendering, a

small part of the data is used for haptic rendering, because generally only local

46



Chapter 3. Literature Overview

Figure 3.13: God-object method (source: [82])

interactions appear. Therefore the authors suggested to decouple these local in-

teraction computations from global object dynamics and use a “local window” for

haptic rendering.

The authors presented a support for surface friction and “texture rendering” for

their system. They also mentioned, that it could be a good idea to represent a non-

homogeneous material via a potential field, although no results were presented.

Remarks: The term “texture rendering” in [203] is actually not haptic render-

ing of texture producing a tactile perception, but height-field-based kinesthetic

rendering. This means, that only kinesthetic sensations are produced and only a

kinesthetic display was used.

In [250] the authors reported about objects consisting of about 600 triangles and

an update rate of approximately 1 kHz for haptic rendering.

� Ruspini et al. [198] – the authors proposed a “Virtual proxy” 3-DoFs haptic

rendering method for polygonal objects, which is an extension of the god-object

method [203].

Ruspini et al. suggested to model the tool (the virtual proxy) as a sphere and

to solve the optimization problem in the configuration space (see figure 3.14).

At each frame, the position of the probe in the virtual environment is set as a goal

for the tool. Then possible constraint surfaces are identified using the ray between

the old position of the virtual proxy (the tool) and the goal position. After that

a quadratic optimization problem is solved and a subgoal position is found. This

process is repeated until the subgoal position could not be closer to the goal.

The authors incorporated a force shading technique allowing smooth haptic

rendering of a surface, similar to the Phong shading in computer graphics. This

is done by interpolation of object normals. Additionally, the authors included a

47



Chapter 3. Literature Overview

Figure 3.14: Actual and configuration space obstacles (source: [198])

support for the static, viscous and dynamic friction being realized by adding a

dynamic behaviour to the tool.

For faster computations, a bounding spheres hierarchy representation was used for

scene objects (see figure 3.15).

The authors wrote that a haptic rendering update rate is “typically greater than

1 kHz”. Additionally, they mentioned that object translations and rotations are

allowed and are performed at an update rate of only 30 Hz because of the client-

server application architecture (the server – haptic rendering, the client – the

remaining computations).

It was pointed out that an arbitrary number of objects could be presented in the

scene, and the objects could be interactively added and removed. Among the

presented examples, the maximum number of polygons per object was “more than

24000”. It was not reported about the maximum number of polygons in the scene.

Because of the difference in the server and the client update rate, environmental

objects move “jerky” from the point of view of the haptic server. Therefore “jerky”

forces could appear in case of a contact between the tool and such a moving object.

Additionally, the authors mentioned that in bad cases the tool could lie outside of

an object at one haptic iteration and within it at the next haptic iteration.

� McNeely et al. [141] – 6-DoFs haptic rendering using voxmaps and pointshells

was firstly proposed in this paper and then improved in later works. The idea is

the following:

Dynamic objects are represented by a set of surface point samples plus associated

inward pointing surface normals, collectively called a point shell. Actually, there

48



Chapter 3. Literature Overview

Figure 3.15: Cut of the bounding spheres hierarchy (source: [198])

is only one dynamic object – the tool. The environment consisting of static objects

is collectively represented by a single spatial occupancy map called a voxmap

(see figure 3.16). The voxmap will be sampled when a contact with the point shell

appears.

The authors introduced four types of voxels and used a voxel tree (based on oc-

tree) for faster collision detection calculations. Pre-contact penalty forces (also

called a “force layer”) were used in order to avoid objects interpenetration. The

virtual coupling and numerical integration of Newton-Euler equation were used.

No multirate force computations were employed. According to this work and [233],

although haptic rendering works at 1 kHz, the fixed 1 ms timestep force calcula-

tions leads to the same instability problems as those generally mentioned in section

2.1.14.

The authors reported about the scene with static geometry voxelized from 593409

polygons and the tool represented by the pointshell consisting of up to 600 points.

� Wan and McNeely [233] – this is an evolution of the previous work of McNeely

et al. [141]. In order to eliminate instability problems, the authors replaced

Newtonian dynamics with a quasi-static approximation (QSA) approach. The

idea is to ignore any dynamic properties and solve the static equilibrium at each

haptic timestep. The equilibrium is found for the system consisting of collision

penalty “spring-like” forces and spring-based virtual coupling forces. The exclusive

49



Chapter 3. Literature Overview

Figure 3.16: Point shell and voxmap (source: [141])

use of spring forces ensures that QSA yields a linear problem.

The authors wrote that the QSA approach increased stability of haptic rendering

compared to [141], but sacrifies the dynamic realism [233, 142].

There is only one dynamic object – the tool – allowed in the system.

The authors reported about the virtual scenario with static geometry voxelized

from 25700 polygons and contained 176220 surface voxels and the tool represented

by 4754 points obtained from the model consisting of 4600 polygons.

� McNeely et al. [142] – this is also an evolution of [141], but not an evolution

of [233]. The approach realizes an order-of-magnitude improvement in the spatial

accuracy at the cost of reduced haptic fidelity, which is proved to be acceptable

[142].

Compared to [141], the authors extended the object voxelization beyond its surface

to some degree and introduced distance fields on voxelized data. Additionally, if

the volumetric data is obtained from polygonal data then surface-voxel, edge-voxel

and vertex-voxel distance fields will be used in order to speed up collision detec-

tion computations. The authors also made optimizations to the original method

(1) by introducing the dynamically adjustable MaxTravel value (the maximum

allowed movement per frame) for points representing the tool, (2) by exploiting

50



Chapter 3. Literature Overview

the hierarchical temporal coherence for the voxel tree and (3) by introducing point

drifting.

Remarks: As far as the maximum movement per frame of the points repre-

senting the tool (MaxTravel) is limited by authors to 1
2

voxel, this drastically

increases haptic rendering stability of the system, because problems with “too

fast” movement dissapeared, e.g. going through thin objects or appearing of force

discontinuities because of crossing of boundaries of internal Voronoi cells.

Additionally, the authors made a dynamic pre-fetching of voxel data being too

big to fit into the RAM, and introduced a collaborate multi-user haptic rendering

approach. Although the latter approach has a drawback that there could be a

divergence of multiple tool instances occuring when an object, e.g. a thin wall, is

trapped between them.

Among the presented examples, the largest scene contains 1,78x109 voxels obtained

from 2,76x106 triangles for the environment and 1,14x106 points obtained from

40476 triangles for the tool.

� Sagardia et al. [201] – in this work the authors proposed improvements of the

voxmap-pointshell algorithm from [141]: fast algorithms to generate voxmaps and

pointshells.

Given the polygonal model, the most important part of the voxmap generation

algorithm is to find surface-voxels. This is done in the following way. Initially

the polygonal model is placed in the empty voxmap. Further, for each triangle of

the polygonal model, the candidate surface-voxels within the triangle’s bounding

box are found and checked for collision against the triangle. In case they collide,

they are marked as surface-voxels. The authors proposed several optimizations

for fast navigation through the triangle’s bounding box to find these candidate

surface-voxels, as well as a separation axis theorem based approach for fast collision

detection between the triangle and the found candidate surface-voxels.

In order to obtain a pointshell of the polygonal model, its voxmap is generated first.

Further, the pointshell is obtained from the voxmap by projecting the surface-voxel

centers onto the corresponding triangles. The projection is based on a nonlinear

optimization method that finds the closest points on the triangle to the voxel

centers.

The authors reported about the increased “quality” of generated voxmaps and

pointshells compared to previous generation approaches. Further on, the genera-

51



Chapter 3. Literature Overview

Figure 3.17: The DLR’s bi-manual haptic interface used in the VR simulator for teler-

obotic on-orbit servicing (source: [200])

tion process is 2 to 52 times faster for voxmaps and is 1.8 to 19 times faster for

pointshells.

The proposed approach was later used in the DLR’s Virtual Reality simulator

for telerobotic on-orbit servicing with visual and haptic feedback [200] (see fig-

ure 3.17).

� Gregory, Lin et al. [85] – in this paper the authors proposed a sophisticated 6-

DoFs haptic rendering system for polygonal objects. Additionally, environment is

not fully static – the system can interactively handle a few moving environmental

objects.

At the preprocessing step all objects are decomposed to a set of convex primitives,

and the whole collision detection technique generally consists of two steps:

1. AABB collision detection

2. exact collision detection between pairs of convex primitives in expected con-

stant time per pair (the authors proposed an incremental algorithm, which

uses information from the previous haptic frame).

In more detail, Gregory, Lin et al. used an extended technique of the virtual proxy

[198] and a time coherence based prioritization for the sweep-and-prune algorithm.

In order to minimize penetration depth computations, pre-contact collisions were

used – surface borders were incremented by a small delta = current velocity ·
force update period.

52



Chapter 3. Literature Overview

Spring-based penalty-based collision response and a spring-based force feedback

approach were employed in the system. Additionally, the authors used the adapted

force shading technique from [198] (interpolation of force normals in order to

achieve smooth surface haptic rendering) and linear smoothing for forces and

torques in order to minimize haptic rendering discountinuities between successive

frames and to achieve higher stability of haptic interaction. In order to further

increase the stability, the maximum allowed force difference between successive

frames was introduced.

There are no multirate force computations in the system. Haptic rendering works

at 1 kHz or more. The system worked well with objects decomposited into 10-30

convex primitives.

The authors mentioned that instabilities could arise in some cases, e.g. in the

peg-in-the-hole scenario or if the user exerts too much force.

Examples with up to 13 environmental objects were presented. Objects could

move, rotate and interact with each other. Each object consisted of a few hundreds

polygons.

� Otaduy, Lin et al. [172] and Otaduy and Lin [173] – the authors proposed

6-DoFs haptic kinesthetic rendering of interactions between triangulated models

with haptic textures (i.e. objects “with fine surface details” in terms of haptics

rendering). The papers are based on the PhD thesis of Otaduy [177]. Collision

detection between low-resolution meshes is based on the contact levels of detail

(see descriptions of Otaduy and Lin [175], [176] for more details).

In order to represent textured objects, the authors associated a height field with

each of them. Basing on results of perceptual studies from Klatzky et al. [112]

and others, Otaduy, Lin et al. proposed a rendering technique which uses a gradi-

ent of directional penetration depth into the height fields for computing adopted

penalty-based collision response and force feedback. In order to speed up haptic

rendering, computations of the aforementioned penetration depth and gradient at

every contact were implemented on GPU.

In opposite to [177], a multirate architecture (a 1 kHz haptic thread and lower

frequency simulation thread) and the virtual coupling were used.

The authors mentioned that discontinuities in collision detection between low-

resolution objects is a potential source of instabilities. Additionally, stability

problems from [175, 176] take place. Additionally, in [177] it was pointed out

that the high gradient of penetration depth produces high contact stiffness, which

53



Chapter 3. Literature Overview

Figure 3.18: Haptically textured Hammer and textured Helicoidal Torus (source: [177])

can also induce instabilities. Another important issue of the presented method is

that in contact scenarios with large contact areas, e.g. for the problem of screw

insertion or for a contact between interlocking features, the definitions of a local

and directional penetration depth are not applicable. This could lead to incorrect

haptic rendering. One more issue is that the algorithm is susceptable to aliasing

problems (as other sample-based techniques).

Due to the limitations of the method all objects in the scene are static, except for

the tool.

Examples with the tool and up to two environmental objects were presented. The

largest scene contains 433152 triangles for the tool (represented by 518 triangles

model with haptic texture) and 658432 triangles for the environmental object

(represented by 720 triangles model with haptic texture) .

� Otaduy and Lin [175], [176] – the authors proposed a 6-DoFs haptic rendering

approach for polygonal objects represented by triangle meshes. These papers are

based on the PhD thesis of Otaduy [177]. All objects in the scene are static, except

for the tool.

Note: For illustrations of these and some later works of the authors, one can take

a look at Otaduy [170].

Collision detection is based on the sensation-preserving object simplification tech-

nique in order to make computations faster. The idea of the technique is to intro-

duce some metrics of sensation of haptic rendering, build multi-resolution levels

of details (LODs) and then select appropriate LODs of collided objects according

54



Chapter 3. Literature Overview

Figure 3.19: The haptic thread runs at force update rates of 1 kHz simulating the

dynamics of the grasped object and computing force feedback, while the contact thread

runs asynchronously and updates contact forces (source: [175])

to the introduced metrics at contact areas during haptic rendering. See [177] and

[82] for more details.

Used haptic rendering scheme is shown in figure 3.19.

The authors employed viscoelastic penalty-based collision response. Additionally,

they used the virtual non-linear viscoelastic coupling between tool coordinates and

orientation in the contact thread and the haptic thread.

As stated in [175, 176, 177], there are some limitations of the system, e.g. geomet-

ric discontinuities in contacts between collided objects in the output of collision

queries. Additionally, there will be haptic rendering instabilites e.g. if the tool

passed through scene objects. The authors mentioned that instabilites arise due

to discrete timestep computations and use of penalty based methods.

Examples with the tool and one environmental object were presented. The largest

scene contains 47339 triangles for the tool and 40180 triangles for the environmen-

tal object.

� Kim et al. [111] – the authors presented an “implicit-based” haptic rendering

technique for volumetric data with an additional pre-processing step.

The implicit surface S of the object is described by the implicit function f , also

called potential :

S =
{

(x, y, z) ∈ R3|f(x, y, z) = 0
}
. (3.1)

The set of points for which f = 0 defines the implicit surface. Additionally, if

f > 0 then the point is outside the object. If f < 0 then inside.

55



Chapter 3. Literature Overview

Figure 3.20: (Wireframe) the finest resolution of the objects; (in color) adaptively

selected resolution for haptic rendering of the contact areas (source: [82])

In the algorithm of the authors the volumetric representation is defined using a

discrete potential stored on a 3D regular grid. The potential value of each point

indicates the proximity to the surface and is generated at the pre-processing step

using the closest point transform (CPT). CPT converts the explicit representation

of geometric surface of the input triangulated model into an implicite one.

The proximity to the surface is determined by sampling the potential value at the

position of the device manipulator in the scene. If the distance becomes zero or

changes sign, then a collision appeared. The virtual interaction point is constrained

by the surface and moves along it. A spring-damper model between the position

of the manipulator and the interaction point is used.

Additionally, a friction force and haptic texturing are supported. The friction force

takes into account the friction coefficient and the depth of penetration. The haptic

texturing is simulated by applying Gaussian noise and texture patterns directly

to the potential value of each point in the 3D grid.

Additionally, a virtual sculpting prototype was proposed: when the position of the

device manipulator is applied at a region close to the actual surface for a period

of time, a force field is created. This forcee field propagates through time to the

neighboring nodes, changing their potential values.

The authors reported about a constant haptic update rate of 1 kHz. There were

presented examples with the interaction point and one object in the scene. The

biggest input model consisted of 11820 triangles transformed into the 150x150x150

grid. For the sculpting prototype it was reported about 7468 triangles and the

56



Chapter 3. Literature Overview

Figure 3.21: Constraint-based 3-DoFs haptic rendering of muscle fibers (source: [98])

70x70x70 grid respectively.

� Ikits et al. [98] – this work is devoted to a constraint-based technique for haptic

volume exploration, and the authors showed example applications of their method

for tracing heart muscle fibers (see figure 3.21) and exploration of diffusion tensor

fields.

Ikits et al. represented the tool as a point (called “proxy”) and introduced

constraint-based motion rules and haptic transfer functions in order to achieve

an effect of constrained 3-DoFs haptic rendering. The virtual coupling technique

was used. Due to the specificity of the method there are no collisions in the system.

No information about an exact haptic rendering rate was given.

Note: A similar task of force fields and 3D-functions exploration using 6-DoFs

haptic rendering was mentioned in Lin et al. [128].

Examples with one object for exploration were presented. The two biggest datasets

consisted of 200000 tetrahedral elements and 148190 pixels (a DT-MRI slice) re-

spectively.

� Johnson and Willemsen [104] – the authors proposed a 6-DoFs haptic render-

ing method for polygonal objects. They used spatialized normal cone hierarchies

(SNCH, see later paper Johnson et al. [106]) for fast collision detection between

the tool and an environmental object:

The distance between two parametric surfaces F (u, v) (e.g. the tool or its part)

57



Chapter 3. Literature Overview

and G(s, t) (e.g. an environmental object or its part) can be described as

D2(u, v, s, t) = (F (u, v)− F (s, t))2 . (3.2)

The extrema of this distance can be found by differentiating and finding the roots

of the resulting set of equations. The idea of the proposed SNCH search technique

is to approximately find the aforementioned extrema, i.e. local minimum distances

between the tool and the environmental object. For that, the SNC hierarchy is

firstly created. The leaf-level of the hierarchy is built on object triangles, and each

leaf consists of:

– a cone, represented by a cone axis vector colliniear to the triangle normal

– a cone semi-angle of maximum deviation of contained normal

– a sphere represented by a center and a radius, which bounds the representing

geometry.

The next level of hierarchy is built by merging the preceding level. Using this

hierarchy, all potential contacts could be found.

The authors used a cutoff (offset) from environmental objects, so that if the tool is

closer than the cutoff-distance then a collision will be assumed and a spring-based

collision response will be performed. The direct haptic rendering was used for the

force-feedback generation.

Elements of the scene could be added and deleted without preprocessing, but

precomputing of spatialized cone hierarchy for each object is necessary.

The authors reported about a haptic rendering rate of “hundreds of Hz”. Examples

of interaction between the tool and one environmental object were presented in

the paper (maximum about 5650 triangles for the tool and 23600 triangles for the

environment in one scene).

� Johnson and Willemsen [103] – this paper is devoted to an acceleration of the

system being proposed in [104] by introducing a multirate architecture.

The algorithm firstly computes all local minimum distances (LMDs) within the

cutoff distance using the global SNCH search. Then these LMDs are put into

the fast local update thread performing a local gradient descent on these LMDs

according to the new positions of scene objects and updating these LMDs (i.e.

by tracking the LMDs according to objects movement). The updated LMDs are

used for collision response computations. In parallel to this fast thread, the slow

58



Chapter 3. Literature Overview

Figure 3.22: Normal cones (source: [106])

but exact thread is executed performing the global SNCH search to compute new

exact LMDs. When it finishes an iteration, it will notify the fast thread that

the new exact LMDs are available, and the fast thread updates its set of LMDs

accordingly.

As a prerequisite to the algorithm, a topological connectivity precomputations for

each object are required.

Additionally, the authors presented an interesting use case of their system – the

training of a collision-free path finding (figure 3.23), which is described in John-

son, Willemsen and Cohen [105].

The authors reported that their haptic rendering system works at about 1 kHz.

Examples of interactions between the tool and maximum two environmental ob-

jects were presented in [106] and [105]. For those examples, the maximum total

amount of triangles in the scene was 153000 (40000 for the tool and 113000 for

the environment).

� Johnson, Willemsen and Cohen [106] – this work is based on and generally

includes [103]. Here the authors described the SNCH search in more detail and

showed that it could be adapted to estimation of model-model penetration depth

in order to get preciser collision response and force-feedback generation. This was

done by searching the maximum distance (instead of the minimum one) between

the given objects. In order to speed up the approach, the authors introduced

adaptive cutoff distances.

The drawback of the penetration depth estimation approach is that LMDs are not

59



Chapter 3. Literature Overview

Figure 3.23: Collision-free path finding using 6-DoFs haptic rendering (source: [105])

used together with it. Therefore the approach cannot handle as high-resolution

models as the approach with LMDs could. The authors showed the example with

about 8200 triangles for the tool and 11800 triangles for the environment and

reported about a haptic update rate of about a few hundreds of Hz.

� Ortega et al. [168] – the authors proposed a generalization of the 3-DoFs god-

object method for haptic interaction between rigid bodies [203] to 6-DoFs.

A multirate system architecture was used. In the slow thread the motion of the

god-object is computed, and the computations roughly consist of the following

steps:

1. compute the unconstrained accelleration, based on the previous tool configu-

ration and the currect probe configuration using the spring virtual coupling

2. compute the constrained acceleration, based on the current contact informa-

tion and the unconstained accelleration using constraint-based quasi-statics

and Gauss’ least constraint principle

3. determine the target god-object configuration and perform a continuous col-

lision detection from Redon et al. [188]. If there are no collisions then the

new god-object configuration is equal to the target configuration, otherwise

the continuous collision detection returns the new configuration.

In the fast thread force feedback is generated. The calculations are similar to

the constraint-based quasi-static computations in the slow thread, but position

and orientation of the god-object are assumed to be fixed (therefore no collision

60



Chapter 3. Literature Overview

Figure 3.24: The constraint-based approach allows to remove force artifacts typically

found in virtual coupling approaches (the handle is shown in green) (source: [168])

detection is needed) and the matrices computed in the slow thread are used. In

order to transmit the computed 6-D force (linear force + torque) to a user, the

spring-based constraint-based virtual coupling is used. Figure 3.24 shows the

difference between the constraint-based virtual coupling and the virtual coupling.

In order to smooth force feedback in a case when new constrains from the slow

thread appears in the fast thread after the update, a constrains adaptation tech-

nique was proposed – see figure 3.25.

Remarks: This technique generalizes the technique from Mark et al. [137].

Additionally, the authors put an accent that no objects interpenetration could

occure during the simulation and that the god-object can slide over other objects.

Examples with the tool and one other object in the scene were presented. The

maximum total number of triangles is 54000 (27000 for the tool and 27000 for the

second object). It was reported about 70-300 Hz for the slow thread and “above

80 kHz” for the fast thread.

Among the drawbacks of the method, the authors mentioned that the non-pene-

tration constraints linearization might reduce quality of the force applied to the

user, when a large discrepancy between configurations of the god-object and a

61



Chapter 3. Literature Overview

Figure 3.25: Constrains adaptation technique: when a new constraint (here the vertical

plane), which would create too strong constraint force, appears (a), it is first translated

so that it is satisfied by the current haptic device configuration (b), and then step-by-step

returned to its initial position (c-d) (source: [168])

haptic device occurs.

� Vidal et al. [224] – the authors made a 6-DoFs simulation of ultrasound (US)

guided needle puncture and proposed proxy-based surface/volume haptic render-

ing for that. It is used as a training tool for interventional radiology (IR) using

actual patient data.

Representation of an object is voxel-based, but its surface is represented as a

triangular polygonal mesh.

Two haptic devices are used. The first acts like a US transducer, and the second

haptic device like a needle, which can puncture through the virtual skin and tissues.

For the US transducer, the haptic rendering algorithm is proxy-based and uses the

polygon mesh of the skin surface.

For the needle, the haptic rendering has been done as follows. When the the skin

surface is explored, the proxy-based algorithm with additional friction parameters

is used. When the force applied by the needle at a given point of the skin exceeds

some threshold, the haptic rendering is switched to a second mode allowing to

penetrate internal tissues, where tissue properties are extracted from a look-up

table. Additionally, a haptic volume rendering approach is used in this mode

in order to prevent the needle penetrating bones. In more detail, if any voxel

belonging to a bone is detected along the straight line from the proxy to the

actual position of the device, then the proxy is moved to the entry point of the

line into the found bone (see figure 3.26).

The authors used a pre-measured forces of real tissue in order to make simulations

more physically realistic. More specifically, they used them in the algrorithm

generating the patient-specific anatomical model (the look-up table) basing on

the input CT scan of the patient.

62



Chapter 3. Literature Overview

Figure 3.26: Detecting a contact with bone in [224] (source: [224])

The authors mentioned that the minimal haptic update rate for any haptic ren-

dering approach must be 1 kHz, although no concrete numbers about the update

rate and size of virtual objects were given.

� Weller and Zachmann [235] – the authors proposed a 6-DoFs haptic rendering

method based on their new geometric data structure: inner sphere trees (ISTs).

The main idea is to bound (“pack”) an object from inside with a set of non-

overlapping bounding volumes. Figure 3.27 illustrates the stages of the hierarchy

building process:

1. voxelize the object (left-top)

2. compute distance from each voxel to the closest triangle (right-top; trans-

parency = distance) and remember it together with the corresponding poly-

gon (needed further for the determination of normal)

3. pick a voxel with the largest distance and put a sphere at its center (left-

bottom)

4. proceed incrementally and obtain a dense sphere packing of the object at the

end (right-bottom).

ISTs answers proximity queries similarly to classical recursive schemes which si-

multaneously traverse two given hierarchies. additionally, ISTs supports a pen-

etration query by returning a penetration volume (the volume of intersection of

the two given objects). The authors proposed variations of the both proximity

and penetration volume queries guaranteeing a predefined query time budget but

returning an average result.

63



Chapter 3. Literature Overview

Figure 3.27: Stages of the sphere packing algorithm (source: [235])

A penalty-based approach is used for collision response and force feedback com-

putations. In more detail, let us assume that we have an object represented by

a set of spheres R = {Ri} colliding with an object represented by S = {Si}. Af-

ter the penetration query has returned the set of overlapping spheres (potentially

overlapping spheres in case of the time-budget version), the amount of repulsion

force for each pair (Ri, Sj) is computed as:

f(Ri) = kc V ol(Ri ∩ Sj) nRi , (3.3)

where kc is the contact stiffness; V ol() is the volume; nRi is the contact normal.

Then, the resulting linear penalty force for the object represented by R will be:

f(R) =
∑

Ri∩Sj 6=∅

f(Ri). (3.4)

Similar to equation 3.3, a torque for each pair of overlapping spheres is:

τ(Ri) =
(
P(Ri,Sj) − Cm

)
× f(Ri), (3.5)

where Cm is the center of mass of object represented by S; P(Ri,Sj) is the point of

collision of spheres Ri and Sj, defined as a center of overlapping volume.

64



Chapter 3. Literature Overview

Figure 3.28: System architecture for [41] (source: [41])

The resulting torque is computed similar to equation 3.4.

The authors reported about maximum 700k triangles in the scene and a haptic

update rate of “at least 200 Hz on average”. Only examples with the tool and one

other object in the scene were presented.

Additionally, it was mentioned that the approach is restricted to watertight ob-

jects.

� Chan et al. [41] – the authors presented a method of 6-DoFs haptic rendering

of isosurfaces embedded within volumetric data. The virtual tool is represented

as a point-sampled surface (a point shell) and is massless.

The algorithm is based on a quasi-static formulation of motion, and multiple

contacts are allowed. The authors used a configuration solver to compute an

unconstrained and constrained motion of the tool. The architecture of the system

is shown in figure 3.28.

The collision detection is designed to work at haptic rates, and it finds the ear-

liest time at which the collision of the tool with a volumetric isosuface occurs.

The motion of the tool is constrained (the tool cannot go besides the isosurface),

and a spring-based virtual coupling between the tool and the actual position and

orientation of the device manipulator is used.

All components of the algorithm run at a haptic update rate of 1 kHz. The largest

reported resolution of the volume was 512x512x361 voxels.

� Corenthy et al. [53] – the authors proposed a 3-DoFs haptic rendering approach

to feel isosurfaces in volumetric data.

Isosurfaces are defined on tetrahedral meshes created from the volumetric data (24

tetrahedra per voxel). An isosurface is extracted dynamically in a proximity of

the interaction point according to the desired isosurface value being interactively

65



Chapter 3. Literature Overview

defined by the user. The authors pointed out that the use of tetrahedral meshes

provides continuity and watertightness of the isosurface.

A constrained movement of the tool is based on the constraint-based haptic ren-

dering algorithm by Ruspini et al. [198]. A spring-based virtual coupling between

the interaction point and the actual position of the device manipulator was used.

It is also allowed to penetrate besides the isosurface. In more detail, if the user

presses against the isosurface over the specified force threshold, this is interpreted

as if the user wants to go deeper into the data, and the isovalue will be changed

accordingly. The authors mentioned, that in practice they just check that the

distance between the position of the device manipulator and the interaction point

does not exceed the user defined threshold.

The authors wrote that the haptic update rate is 1 kHz. The two largest reported

datasets consisted of 128x256x256 voxels and 1024x1024x39 voxels respectively.

3.2.2 Methods with Allowed Data Modification

For methods of this group the tool is rigid and the environment could be modified. The

following methods could be marked out:

� Avila and Sobierajski [12] – the authors proposed a 3-DoFs haptic rendering

method for volumetric data. They used the direct haptic rendering and hap-

tic transfer functions (analogous to transfer functions for volume visualization).

For haptic rendering of iso-surfaces penalty-based force computations were used.

Forces were calculated at an update rate of 1-5 kHz. Additionally, it was possible

to modify the data with simple “tools” (see figure 3.29), and such modifications

were performed at a lower update rate.

The maximum reported volumetric data set consisted of 256x256x225 voxels.

� Foskey et al. [69] – this paper is devoted to the system “ArtNova” for 3D

model design with a haptic device. The system supports 3-DoFs haptic rendering,

dynamic viewing techniques (see the paper for details) and allows a user to put

colors and textures onto objects, and to deform them. An object is represented

by several triangulated mesh levels at different resolutions, and it is allowed to

edit any triangles of any level (triangles of other levels will be changed accordingly

to the applied deformation). A simple spring-based force model was used for

force feedback generation during mesh editing, and the generation of forces was

66



Chapter 3. Literature Overview

Figure 3.29: Effects of the “tools” for data modification in [12] (source: [12])

decoupled from the mesh editing. The force update rate was 1 kHz. The H-Collide

library (see e.g. [82]) was used for collision detection.

Examples with one modelled object in the scene were presented in the paper.

� Kim et al. [111] – this method is described in section 3.2.1. It belongs to the

current group of methods, because the authors additionally proposed a virtual

sculpting prototype.

� Cani and Angelidis [40] – this work is devoted to virtual sculpting using a

6-DoFs haptic display. The authors proposed two modelling approaches:

1. The representation of object’s shape is a discrete field function stored in an

adaptive hierarchiral 3D grid (i.e. an adaptive hierarchical voxel representa-

tion), and the surface of the sculpture is represented as an iso-surface in this

grid. The data structure was implemented using hash-tables. An adaptive

subdivision and undivision of objects is supported. For force feedback, the

authors used a viscosity force model for object editing and a spring-damper

force model for an exploration of object’s surface. In order to increase the

stability of haptic rendering, a device position filtering was introduced. Ad-

ditionally, the authors proposed and realized number of modeling tools. The

haptic rendering rate was not less than 1 kHz

2. In order to support large deformations the authors proposed another ap-

proach, because the one above is limited to only local object modifications.The

67



Chapter 3. Literature Overview

authors used a volumetric data structure and a volumetric clay model, and

the modelling approach has three “layers”: “large scale deformations” (e.g.

global bending and twisting), “volume conservation” (pushing the clay from

the cells with a density above some threshold to their neighbours) and “sur-

face tension” (moving the clay from the cells with a density value below some

threshold towards the surface of the sculptured object). Additionally, a num-

ber of virtual tools for deformation modeling were realized, like swirling and

aforementioned twisting and bending.

Note: The authors pointed out that the aim of their work was not to make a

physically accurate modeling but to create a convenient system for artists. There-

fore, all deformation computations for both approaches are not supposed to be

physically accurate.

Among the presented examples for the second method, the maximum number

of voxels was 40495. No exact quantative characteristics of objects for the first

approach were given.

� De et al. [56] – this method is described in section 3.2.3. It belongs to the

current group of methods, because topological changes for objects are allowed.

� Vashisth and Mudur [222] – this work is devoted to deformation of point-based

models using an electronic force-feedback glove. The glove has 15-DoFs (3 for each

fingertip).

As far as objects are point-based, a meshless deformation technique based on the

solution to the Kelvin problem from analytical physical mathematics was used

for deformation and force feedback computations. Additionally, as a restriction,

the tool should always be outside an object. No multirate approach for force

calculations was employed.

Remarks: Among drawbacks of the method, the authors mentioned that exag-

gerated deformations could lead to highly non-uniform density of points.

The direct rendering technique was used. There is no information about perfor-

mance of the system. Examples with one deformable object in the scene were

presented. The authors reported about objects consisting of up to 60000 points.

� Maciel et al. [135] – This method is described in section 3.2.4. It belongs to

the current group of methods, because topological changes for “cloth-like” objects

68



Chapter 3. Literature Overview

Figure 3.30: Deformation experiments on point-based models (source: [222])

are allowed.

3.2.3 Rigid-Defo Methods

Here we assume that the tool is rigid, but the environment is deformable. Up to now,

there exist methods allowing only a certain degree of deformations, so that large defor-

mations and cuts are mostly disallowed.

One can mark out the following methods belonging to the current group:

� Debunne et al. [57] – the authors presented a method for animating dynamic

deformations of a visco-elastic object with a guaranteed frame-rate, built into a

6-DoFs haptic rendering framework.

An object is represented via a tetrahedral mesh, and the proposed physical sim-

ulation approach belongs to physics-based continuous models. It is solved via an

explicit finite element method and employs the Green deformation tensor in order

to allow very large displacements.

In order to achieve an adjustable fixed frame-rate, the authors presented an adap-

tive space and time resolution technique for tetrahedral object representation.

They introduced a quality criteria that indicates where and when the resolution

for qualitative deformation modeling is too coarse. See figure 3.31.

Collision detection was made using graphics hardware, so that the tool was mod-

eled as a viewing frustum intersecting a surface of the deformable object, and was

performed only before each iteration of the visualization loop.

Collision response consists of computing an object deformation based on the sur-

face displacements imposed by the motion of the tool: affected surface points

69



Chapter 3. Literature Overview

Figure 3.31: Use of local refinement technique in order to ensure the physical fidelity

while bounding the global computation load in order to guarantee animations with the

desired frame-rate (source: [57])

are moved away from the surface along their normal directions. These computa-

tions are performed at each haptic frame, and the motion of the tool is calculated

gradually between the collision detections.

The force feedback generation was done as following:

At each haptic frame, nodes of the active mesh (the mesh used in the computations

or affected by them), which are linked to the affected surface points, are moved.

Then each moved node transmits the accumulated force to the linked surface point.

Each such point sums these forces, and at the end the forces weighted by area are

again summed up and returned to the tool.

The authors reported about a haptic update rate of approximately 1 kHz for a

few hundreds surface points being animated. Interactions with only one object in

the scene were presented in the paper.

Additionally, the authors mentioned that the method could theoretically be adapted

for handling of topological changes.

� Kuroda et al. [119] – the authors proposed an interaction model between

the interaction point and two physically-based deformable objects in the scene

for 3-DoFs haptic rendering (therefore this is actually a rigid-defo-defo method).

The model is applicable for simulations, where the interaction point pushes a

deformable object being in contact with another deformanble object. The model

allows to feel fine differences resulting from the physical behavior of neighboring

70



Chapter 3. Literature Overview

Figure 3.32: The first two series of example interaction: (2)-(4) – calculation of defor-

mations of object B and the force conveyance, (5)-(7) – calculation of deformations of

object A and the force conveyance (source: [119])

objects.

In the examples presented in the paper, the first model consisted of tetrahedrons

and the second one – of hexahedrons.

The interaction between two models is represented by series of the following pro-

cedures: update of pairs of nearest nodes, collision detection, calculation of de-

formations, conveyance of the force. All procedures are carried out on pairs of

nearest nodes, where each such pair consists of two nodes belonging to different

objects (see the example in figure 3.32).

The collision detection looks as follows. It checks, whether there is a collision

between the first node in the pair and the polygon including the second node of

the pair. If so, then the polygon is displaced forcibly.

For the deformation computations, the authors applied the mass spring model to

the “front object” (being directly pushed by the interaction point) and a simplified

Finite Element Method (FEM) to the “behind object” (located behind the front

one). The mass spring model is calculated by applying the Euler’s method to the

Newton’s movement equation.

For the simplified FEM, the size of the stiffness matrix was reduced and a linear

elasticity was used. Surface and interior nodes are distinguished. Surface nodes

71



Chapter 3. Literature Overview

Figure 3.33: Laparoscopic training system from [19] (source: modified from [19])

are classified into fixed surface nodes and free surface nodes. The force of fixed

nodes is assumed to be zero. Free nodes are classified into contact nodes and

other nodes, and the solution for contact forces is obtained by solving a small

system of equations, where the number of equations is proportional to the number

of contacts.

The authors reported about haptic update rates from 285 Hz to above 1 kHz

depending on the number of displaced nodes. The largest scene contains 158

tetharedrons for the first object and 1448 hexahedrons for the second one.

� Basdogan et al. [19] – this paper is devoted to (6-DoFs) haptics in minimally

invasive surgical simulation and training. This method is more a specific case and

a case study than most of other methods considered in our work.

The authors proposed to represent surgical tools as points and lines, and therefore

the point-object and line-object collision detection was used. In order to simulate

soft tissues of organs, the authors developed a mesh-based finite-element model

with assumed modeling simplification that high-frequency deformation modes con-

tribute little to the overall computation of deformations and forces, and therefore

dynamic equalibrium equations were transformed into a more effective form.

In order to obtain material and geometrical properties of organs, the authors

proposed to use a haptic device for recording a force and displacement response of

soft tissues. Additionally, they presented special user interaction techniques based

on force feedback for guiding a user during a training session.

It was reported about a haptic update rate of several hundreds of Hz.

72



Chapter 3. Literature Overview

� Sedef et al. [204] – the authors proposed a numerical scheme for simulating

linear viscoelastic tissue behavior using FEM, which is integrated with 6-DoFs

haptic rendering.

An object is represented as a tetrahedral mesh.

For collision detection, the authors used the following two-step scheme:

1. if the tool is outside of the given undeformed object then there are no colli-

sions else step 2

2. perform collision detection using a displacement history of nodes.

In order to interactively calculate nodal displacements and interaction forces, i.e.

in order to calculate collision response and generate force feedback, the authors

took advantage of the linearity and superposition principle:

Before interactive simulations, a response of each surface node to unit step force

and unit step displacement are pre-recorded separately. During the real-time in-

teractions the pre-recorded forces are scaled by a penetration amount in order to

calculate the reaction (interaction) forces, and the pre-recorded displacements are

superimposed in order to calculate the nodal displacements.

In order to obtain material properties of simulated object, the authors developed

a robotic indenter for minimally invasive measurement in living body of tissue

properties during the laparoscopic surgery. Measurements of the pig’s liver were

presented in the paper.

The authors reported about 100 Hz for deformation computations and 1 kHz for

force feedback. The sample object consisting of 136 tetrahedrons was used for the

system validation.

The authors used constant force feedback between iterations of the deformation

computations, what decreases a haptic rendering realism.

The deformation model was validated with ANSYS (see [204] for details), and the

validation tests “matched perfectly”. The authors mentioned that a user can even

feel a relaxation behaviour of a simulated object via a haptic device when he/she

penetrates into it with the tool and stays at a certain depth for a while.

� De et al. [56] – the authors proposed a method for “physically realistic” virtual

surgery, which uses a Point-Associated Finite Field (PAFF) approach. Defor-

mations and topology modifications of objects (except for the tool) are allowed.

This method is more a specific case and a case study than most of other methods

considered in our work.

73



Chapter 3. Literature Overview

Figure 3.34: (left) Discretization of the stomach. (right) Support (influence zone) and

shape function of the node I (sources: [56, 19])

The idea of the proposed mesh-free solution is to discretize a computational domain

(an organ) using a scattered set of points (“nodes”) with spherical influence zone

with defined nodal shape function.

The approach is a combination of mass-spring and FEM-based techniques: it is

meshless like a mass-spring technique and it solves governing partial differential

equations as a finite element technique. The approach supports the linear elastic

tissue response. In order to obtain a “real-time performance” of deformation

computations, the authors used key assumptions that any interaction between the

surgical tool and a soft tissue is local, and that a deformation field fades rapidly

with increase in distance from the tool tip. Based on these assumptions, the

authors presented two techniques:

– Real-Time Global PAFF (GPAFF) – here it is assumed that a prescribed

boundary condition changes on a very small portion of boundary, where the

surgical tool interacts with a virtual organ. Therefore it is possible to make

incremental corrections to the previously computed solution. In order to

obtain a real-time performance, precomputations of global linear stiffness

matrix, its inversion and application of fixed boundary conditions are made

in the pre-processing step

– Real-Time Local PAFF (LPAFF) – a local discretization is performed using

only a group of nodal points traveling with the tool tip.

Additionally, a smoke generation using PAFF was proposed. It can be used e.g.

for smoke simulation during cauterization.

A multirate architecture being used in the system is shown in figure 3.35.

74



Chapter 3. Literature Overview

Figure 3.35: Multirate architecture for [56] (source: [56])

For collision detection and collision response, the authors used a point-based rep-

resentation of the surgical tool (only one point at the end interacts with an object,

therefore 3-DoFs haptic rendering is actually supported) and a bounding box hier-

archy with the local neighborhood search algorithm. The force field is calculated

from the deformable field and is used for the generation of force feedback.

Examples with the tool and one other object in the scene were presented in the

paper. The authors reported about maximum 1026 nodes and 9 ms for the GPAFF

approach and 28 nodes and 14 ms for the LPAFF approach. The timings were

given for one simulation iteration. It was mentioned that maximum 1080 polygons

per simulated object were used for the GPAFF and 1364 for the LPAFF.

Since collision detection and collision response (both in the fast thread) are de-

coupled from the simulation (the slow thread) and no interpolation between con-

sequent slow simulation iterations is used in the fast thread, force feedback dis-

continuities could arise at the time when new results come to the fast thread from

the slow one. This issue is generally equal to the one in [3] (see section 3.2.1).

� Otaduy and Gross [171] – the authors proposed a 6-DoFs haptic rendering

method supporting the rigid tool and deformable environmental objects. This

work is an evolution of the rigid-rigid system from [175, 176] (see section 3.2.1).

Deformable objects are represented by tetrahedral meshes.

The authors adopted continuum mechanics in order to simulate deformable mod-

els and opted for corotational FEM methods with linear elasticity for modeling

deformable objects from [153].

The multirate architecture being used in the system is shown in figure 3.35.

The authors used a continuous collision detection from Redon et al. [188], collision

75



Chapter 3. Literature Overview

Figure 3.36: (left) Tetrahedral decomposition of the liver model and (right) the liver

model being deformed (source: [171])

Figure 3.37: Multirate system architecture for [171] (source: modified from [171])

76



Chapter 3. Literature Overview

Figure 3.38: Layered representation of an object in [75]: (left) low-resolution proxies

(meshes) used for collision detection and haptic interaction; (middle) deformable tetra-

hedral mesh; (right) highly detailed surface mesh for the deformable skin simulation

(source: [75])

response through velocity constrains and a linear contact model for force feedback

in the haptic thread. The haptic thread works at 1 kHz and the visual thread at

several tens of Hz.

Examples with the tool and one other object in the scene were presented. Number

of polygons/tetrahedrons were given for only one scene: 160 triangles for the tool

and 2560 tetrahedrons for the deformable object.

� Galoppo, Tekin, Otaduy, Gross and Lin [75] – the authors proposed a 6-DoFs

haptic rendering method supporting the rigid tool and deformable environmental

objects.

Remarks: Examples with only one deformable object in the scene were presented

in the paper.

As [171], this work is an evolution of the rigid-rigid system presented in [175, 176].

Additionally, it shares some ideas from [171].

The object representation is shown in figure 3.38.

The multirate system architecture is an evolution of the one from [175, 176] – see

figure 3.39.

The authors proposed an image-based three-step algorithm for collision queries:

1. Identify potentially colliding contact patches using low-resolution proxies

77



Chapter 3. Literature Overview

Figure 3.39: Multirate system architecture for [75] (source: [75])

2. Compute localized penetration depth fields

3. Get high-resolution skin surface collisions and directional penetration depths.

The last two steps are performed using image-space techniques with the aid of

graphics hardware, and the GPU approach itself is based on the one from [172]

and [177] (see a brief description of the last paper in section 3.2.1).

The authors simulated a deformable material with a rotationally invariant FEM

simulator with implicit integration guaranteeing stability and proposed penalty-

based collision response using the spring-damper model between vertices of de-

formable tetrahedral mesh and the penetration depth.

It was mentioned that the layered representation poses some limitations on type

of deformations, which can be modeled: an object could deform only up to 30-40%

of its radius.

In presented examples the authors used objects consisted of a low-resolution proxy

of few hundreds triangles and high-resolution tetrahedral and surface meshes with

up to 44k deformable vertices.

� Barbic and James [16] – the authors proposed a CPU based approach for 6-

DoFs haptic rendering supporting a contact between rigid and reduced deformable

objects, both with complex geometry. A distributed multi-point contact between

objects is allowed, i.e. an interaction with potentially several simultaneous contact

sites each distributed over a non-zero surface area. This work is based on the PhD

thesis of Barbic [15].

Remarks: Each mesh vertex of a general 3D deformable object has 3-DoFs. Re-

duced deformable objects are obtained by substituting these general DoFs for a

78



Chapter 3. Literature Overview

Figure 3.40: Nested point-tree: (left) the multi-resolution pointshell and (right) the

hierarchy, the traversal order and tree levels. Particle-repulsion levels are 0-1, 2-5, and

6-19 in this case (source: [16])

much smaller appropriately defined set of reduced DoFs. This allows to perform

faster computations.

The approach was designed to work with a variety of reduced deformable models,

which support the two-step simulation process: (1) the fast timestep of reduced

deformable dynamics and (2) the fast evaluation of individual deformed surface

point positions and normals in order to adaptively resolve the contact (for the time-

critical force estimation). The authors used techniques for reduced geometrically

nonlinear models from Barbic and James [17] being suitable for large deformations

with large rotations but small local strain. The techniques are based on the formal

reductions of large-deformation FEM models.

The authors proposed to use the point-based representation (pointshell) for the

first object (deformable one) and the signed-distance field for the second one. In

order to support haptic rendering of geometrically detailed models (1M points),

the pointshell is organized into a nested multi-resolution hierarchy (see figure 3.40)

by sampling points and normals from the given closed manifold oriented surface

of the object (i.e. the pointshell actually samples the surface). Point positions

are being generated by fitting a set of particles onto an offset surface (i.e onto one

being “larger” than the original one) employing ideas of particle repulsion.

The pointshell resolution should be equal or finer than the one for the distance field.

Deformed point locations are approximated by linear superposition of precomputed

displacement matrices. The authors proposed to use the precomputed sphere-tree

hierarchy in order to bound pointshell points (sphere centers are located at the

centers of the points). In fact, all together gives a point-based modification of the

Bounded Deformation Tree (BD-Tree) from [102]. Pointshells and distance fields

79



Chapter 3. Literature Overview

are computed in the pre-processing stage.

Additionally, a spatial adaptive approach, called “graceful degradation” of contact,

was introduced: if there is not enough computation time for fully completing the

tree traversal then the algorithm will still return a reasonable answer with accu-

racy dependent on the contact-configuration difficulty and the available processing

power. The graceful degradation is achieved by traversing the nested hierarchy

in the breadth-first order and rendering deeper and deeper tree levels until out of

computation time. Two separate activation thresholds were employed in order to

avoid a “gap” in the rendered depth for consecutive haptic frames. Furthermore,

a temporal coherence technique for timesampling of individual points at update

rates depending on distance to the contact, was proposed.

The authors employed penalty-based (i.e. penetration-based) spring-based contact

force computations. Contact penalty forces are determined by querying points of

the pointshell object against the one represented by the signed distance field (the

last one is manipulated).

The haptic cycle looks as follows: firstly read the position and orientation of the

haptic device, then compute contact penalty forces and torques by traversing the

nested point-tree and compute virtual coupling forces and torques between the

tool and the probe, and then calculate gradients for all of them with respect to

the simulation position. Further, in order to find the displacement of the simulated

object, the system of equations for the condition that the sum of all forces and

torques vanishes is solved. Finally, force-feedback is computed using the result of

the previous step.

In order to increase the haptic rendering stability, the authors introduced the max-

imum velocity and the maximum angular velocity, which can occur in a simulation.

Additionally, the maximum contact stiffness, which is defined as the largest in-

crease in coupling force per the given tool’s displacement so that it is linear only

up to the certain displacement and saturates to the certain value after that, was

introduced. Similar maximum values and behaviour were suggested for torques.

Furthemore, the authors mentioned that thre lack of dissipation in the standard

virtual coupling model can lead to slight instabilities, e.g. during a fast sliding

contact. In order to partially neglect them, the authors augmented the virtual

coupling by introducing a quasi-static damping: a tool’s displacement is applied

with the damping factor.

Examples with the tool and one environmental object were presented in the paper.

The authors reported about a haptic update rate of more than 1 kHz. For rigid-

80



Chapter 3. Literature Overview

Figure 3.41: Architecture of the system from [130] (source: [130])

rigid contacts, the maximum characteristics of the scene are 1.02M points for the

environmental object and the distance field resolution of 256 for the tool. For

rigid-defo contacts, that is 256k points and the resolution of 256 respectively.

Among drawbacks of the method, the authors mentioned that self-collisions were

unadressed in the system.

� Luciano et al. [130] – the authors proposed an approach for haptic rendering

of elastic deformable objects using GPU.

The scheme of the system is shown in figure 3.41.

The authors pointed out that the paper is focused on the point-based local de-

formation around the contact point, therefore a global deformation and volume

preservation were beyond the scope of research. Additionally, they mentioned,

that the algorithm can be thought of as a trade-off between real-time interaction

and sophisticated physics-based realism.

Since it was necessary to compute a deformation at the contact point and its

neighborhood, the authors proposed to employ a GPU in order to displace each

vertex in parallel. In more detail, vertices are moved along their normals in order

to deform the object’s surface: the maximum displacement is found at the contact

81



Chapter 3. Literature Overview

Figure 3.42: Vertex displacements along their normals (done by the vertex shader)

(source: [130])

Figure 3.43: Normal calculation (done by the fragment shader) (source: [130])

point, and then it decreases non-linearly as vertices are located farther away (see

figure 3.42). The computations are performed in the vertex shader.

In order to achieve realistic graphics rendering of the deformation, it is also nec-

essary to re-compute the normals of displaced surface vertices, because lighting

depends on them. The authors proposed to perturb old normals in the fragment

shader in order to reflect changes of the deformed surface. The idea is to rotate

the original normal N0 at every displaced vertex v towards the contact point c by

a certain angle Θ around the rotation axis W (see figure 3.43).

The authors reported about haptic rendering of polygonal iso-surfaces previously

extracted from the 3D volume, created from the CT scan data of the real patient.

The largest scene consists of an object with 59063 vertices and 53021 faces. Haptic

rendering for all examples was performed at about 1 kHz.

82



Chapter 3. Literature Overview

Figure 3.44: Mass-spring model (source: [42])

Among drawbacks of the method, authors pointed out that since collision detection

and the computation of forces are done with original (undeformed) geometry, the

approach cannot be extended to plastic (i.e. permanent) deformations.

� Chang et al. [42] – the authors proposed a 6-DoFs haptic rendering approach

using the mass-spring simulation model and stated about two features of concern

in their work. First, it was advantageous to enable an economical and simple im-

plementation with a generic customer computing environment and a standardized

haptic device. Second, a balance between the computation complexity and the

level of realism had to be maintained.

The mass-spring scheme was used as a dynamic model of virtual objects. A de-

formable soft tissue is composed by discrete nodes connected via springs, i.e. a

virtual object is considered as a collection of spring-connected point masses in a

grid mesh structure (see figure 3.44). A dynamic motion of node is described by

Newton’s and Hooke’s laws.

The mass-spring representation of objects is built from the given source 3D volume

83



Chapter 3. Literature Overview

data.

The penetration-based collision detection and the penetration-based spring-damper-

based force-feedback calculations were employed in the system.

The authors showed an application of their work for the brain surgery simulation

and reported about a haptic update rate of 1 kHz.

� Böttcher et al. [32], [30] – this work is based on the PhD thesis of Böttcher [31]

and was a part of the HAPTEX EU-project - Haptic Sensing of Virtual Textiles.

The work is devoted to a kinesthetic haptic rendering of virtual fabrics grasped

by two fingers. The fingers were represented via spherical tools manipulated by

two 3-DoFs probes, while the simulation of tactile perception was proposed by

Allerkamp et al. [10], [8].

An elongation of body was expressed in strains, and a motion in terms of displace-

ments with regard to the initial state. The Kawabata evaluation system was used

in order to obtain physical properties of fabrics.

For the physical simulation, the numerical solution includes:

– discretization of a textile into nodes and elements (triangles). I.e. the triangle

mesh representation was used

– representation of strains and stresses in elements

– condensation of element mass into nodes.

The second order ordinary differentional equation was obtained, and the numerical

integration yielded a sparse matrix. Then the problem was iteratively solved by

the CG (conjugate gradient) method. A nonlinear anisotropic tensile and bending

behaviour was modelled by linear elements, where the bending elements were

associated to the particles.

For collision queries, AABB bounding volume hierarchy was used.

As far as the proposed global physics simulation was not able to function at a

haptic update rate of at least 1 kHz, a multi-resolution computation model with

a finer mesh resolution near the contacts with the tools was proposed, and the

multirate system architecture was used – see figure 3.45. The local simulation

model includes:

– generation of the refined mesh at the contact

– provision of a contact geometry for the two-finger contact model (see details

below)

84



Chapter 3. Literature Overview

Figure 3.45: Multirate multithread architecture used in [30, 31] (source: [31])

– simulation at haptic real-time (not longer than 1 ms per time step)

– constraining of the system at borders

– use of the same physical model as in the global simulation.

The idea of the two-finger model (the ability to feel fingers to be in contact with

each other) was to use evenly distributed springs each one allowing a stick-slip

transition for modelling of the contact pressure (see figure 3.46). Additionally, the

ends of the springs provided the contact information for the tactile feedback.

For the force feedback transmition, a special device – GRAB Force-Feedback De-

vice – was used. The device has two 3-DoFs probes, each of them supporting

tactile feedback.

Further on, the authors proposed a run-time control technique for local simulation,

which allows to effectively use free CPU time for calculations and which ensures

the response at haptic times (less or equal to 1 ms). In more detail, as far as

an iteration of the force feedback thread always takes 1 ms, there could be some

“unspent” CPU time in case the last iterations took less than 1 ms each one. The

idea of the run-time control technique is to use this free CPU time by adapting

simulation parameters in order to make more iterations per ms or perform higher

quality (therefore longer) simulation. On the other hand, if the last iterations

took longer than 1 ms each then the control algorithm will change simulation

parameters in order to speed up the computations. The duration of the time

step is calculated using spent time prediction capabilities based on the number of

85



Chapter 3. Literature Overview

Figure 3.46: Two-finger contact model in [30, 31] (source: [31])

particles, number of faces, number of bend elements and maximum CG steps, and

then the parameters are changed accordingly. In [33] Boettcher et al. generalized

this multi-rate coupling scheme of physical simulations for haptic interaction with

deformable objects.

As far as the run-time control technique was used, a haptic update rate was al-

ways about 1 kHz. 480 triangles were used for the global simulation of fabrics,

and mostly about 128-160 triangles and 10-12 CG iteration steps for the local

thread (due to the run-time control algorithm, the last numbers were dynamically

changed).

3.2.4 Defo-Defo Methods

Methods in this group are similar to the methods from section 3.2.3, but a deformable

tool is allowed. Up to now, the tool generally has the same deformation restrictions as

those for the environment.

One can mark out the following methods belonging to the current group:

� Duriez et al. [63] – this work is devoted to the Signorini’s contact model for

deformable objects in haptic simulations and is focused on contact response. The

approach belongs to approaches with non-penetration constraints. It is an ex-

tension of Signorini’s theory [209] (1933) on rigid-deformable contacts to contacts

between deformable bodies.

86



Chapter 3. Literature Overview

The approach is time-stepped (constant timestep integration), and the formulation

is made to be independent from a collision detection technique in order to be as

generic as possible. Only two data are needed:

1. directions of the contacts

2. the spots of the contacts.

Remarks: The authors mentioned that a proximity detection method is more

suitable than just a simple collision detection. They used a proximity distance

algorithm for their experiments.

The authors considered that objects are perfectly elastic and isotropic and that

there are only frictionless contacts in the system. Under these conditions, the

normal surface stress is an unknown for the Signorini’s problem, and the shearing

surface stress is zero because of no friction.

In Signorini’s formulation, for every point in the defined proximity to another

object, two states may be distinguished:

– the point is actually a contact point

– the point is not yet a contact point.

(This is why a proximity detection approach is more suitable than a simple collision

detection.)

The authors used a finite element discretization to solve the problem and em-

ployed linear interpolation functions using tetrahedrons with four nodes. Contact

points are necessarily on the surface of the objects. To linearize the problem,

each contact’s direction is frozen during the current time step. But with linear

elements, only one point of contact allows integrating the pressure force on the

surface. Therefore, in order to be able to distribute the maximum of collision tests

between the elements, the authors used an algorithm close to the Gauss-Seidel

method for contact resolution, whose principle is to visit every contact consider-

ing that the states of all others are frozen.

In order to reach a desirable speed of calculations, coarse tetrahedral meshes were

often used for FEM deformable models and special surface meshes with more

triangles were used for collision detection. Interpolation of each vertex of the

collision mesh within its corresponding element of the FEM mesh was computed

off-line.

87



Chapter 3. Literature Overview

Figure 3.47: Example from [63]: a deformable ball inleracting with a deformable cylinder

(source: [63])

Examples with a deformable tool and one deformable object were presented. A

haptic update rate was about 160-200 Hz for 70 simultaneous contacts.

Among drawbacks of the method, the authors mentioned that different LODs for

tetrahedral and surface meshes for the same object lead to non-regular contact

surface between models and perturbs haptic feedback.

� Duriez et al. [64] – this work is an evolution of [63].

The authors incorporated the dry friction based on Coulomb’s law into their al-

gorithm. This nonlinear law describes two states on the tangential contact space:

stick and slip. The law is difficult to solve correctly in the considered multicontact

context, because it is not possible to separate its computations from contact cal-

culations: each contact’s force can modify the state of other contact spots through

the tangent space, which is also coupled, locally, to the normal one. (Though fast

and precise solutions for a single contact case were proposed by different authors.)

Computation of the contact and friction force also takes into account user defined

material and structural properties of the contacts, and each contact may also be

linked to others.

The presented method is still independent from a collision/proximity detection.

The detection algorithm should only identify potential contacts between a pair of

triangulated bodies and provide:

1. two contact points

2. their positions within the contacting triangles

3. the contact normal. If it is not provided then the normalized vector from the

second point to the first one is used.

88



Chapter 3. Literature Overview

Figure 3.48: The motion of a deformable object split in two parts: a deformable motion

in its current configuration and a rigid motion in the world coordinate system (source:

[64])

(The authors used stochastic proximity detection algorithm for their experiments.)

Deformation computations in case of no friction are as in [63]. In case of friction,

the authors incorporated the Coulomb’s law into their Gauss-Seidel-like algorithm:

for each contact the contact and friction laws are solved by considering a contribu-

tion of other contacts to be frozen. Additionally, the computation of the contact

and friction force takes into account user defined material and structural properties

of contacts, and each contact may be linked to others.

For force feedback, the authors used a global corotational approach that decouples

a rigid global motion from a deformable one. It splits the global transformation

(driven by a rigid model) from the local relative displacement (driven by the linear

deformable model). See figure 3.48. The virtual coupling technique between the

probe of the haptic device and the rigid part of the corotational model for the

manipulated virtual object is then used for the calculation of the forces returned

to the user.

The authors mentioned that the method was developed considering several de-

formable objects moving randomly and coming into contact with each other. Two

examples, with defo-rigid and defo-defo contacts respectively, were presented. In

both examples there are two objects in the scene, and a user manipulates the de-

formable one or both of them using 6-DoFs haptic displays (one device per object

was used in the last case).

A reported average haptic frame rate is about 330 Hz for 30 simultaneous contacts

without friction and about 250 Hz for 20 simultaneous contacts with friction.

� Barbic and James [18] – as [16], this work is based on [15] (see section 3.2.3).

89



Chapter 3. Literature Overview

Figure 3.49: The interactive snap-in and snap-out task on deformable pipes from [64]

(source: modified from [64])

The authors added a support for the reduced deformable tool by employing para-

metrically deformed distance fields. Deformations are assumed to be “reasonably

coarse” (low frequency).

Specifics for the distance query computations for a deformable distance field com-

pared to those for underformable one are the following:

During the pre-processing, a small pointshell (typically about 40 points) is fitted

onto the surface of the distance field object. The authors called this pointshell

proxyshell, and the points proxies. Further the proxies deform together with the

object.

In order to evaluate the deformed distance field at some query point location x for

the pointshell-based object, the following steps are performed (see figure 3.50):

1. At first, the k-nearest neighbor search is performed in order to locate k current

closest proxies (typically k=5)

2. Then local first-order deformation model at each of the k found proxies is

used in order to generate k approximations to the deformed distance field at

x. This is done by using precomputed deformation gradients and k unknown

points in the vicinity of the undeformed positions of the found proxies (one

point per proxy)

3. Then, for each of the found approximations from the previous step, their

approximation equations are inverted in order to find approximations of x in

90



Chapter 3. Literature Overview

Figure 3.50: Approximation of deformed distance field for k=3. (a) Proxies (squares)

and the query pointshell point at x. (b) Three-nearest neighbors. (c) k approximations

of x in the undeformable distance field (source: [18])

the undeformed distance field. (Informally, it is like pulling points from the

deformed distance field to the undeformed one)

4. Then k distances for the found approximations are obtained by looking up

the undeformed field

5. The final result, i.e. the value for the distance query for the deformable

distance field for the point x, is computed as the weighted sum of the k

distances calculated in the previous step.

The authors reported about a haptic update rate of “more than 1 kHz”. Examples

with the tool and one environmental object were presented in the paper. The

largest “defo-defo” scene consists of 256k points for the deformable environmental

object and the deformable tool with a distance field resolution of 256.

It was mentioned that self-collisions were unadressed in the system.

� Garre and Otaduy [77] – the authors proposed a 6-DoFs haptic rendering

method, where both the tool and environmental objects could be deformable. The

work is an evolution of the previous works of Otaduy and others [175, 176, 177,

171, 75], employs some ideas and concepts from them and has similar drawbacks.

Remarks: Examples with a deformable tool and one deformable object in [77]

and up to three deformable objects in [78] were presented.

Objects are represented by deformable tetrahedral meshes for simulation and

polygonal meshes for visualization and collision detection. A handle of the tool is

assumed to be rigid. Any area of an object could be selected as the handle.

91



Chapter 3. Literature Overview

Figure 3.51: In each simulation step in the visual loop, a linear approximation Fc
∗ of the

coupling force Fc between handle and the rest of the tool is computed, that encapsulates

the constrained dynamics of the tool (source: [77])

The proposed multirate haptic rendering architecture is shown in figure 3.51.

The authors suggested to use one-way probe-handle virtual coupling, linearized

“handle–handle proxy” coupling (handle proxy means “virtual proxy” in terms of

[198]) and virtual coupling between the handle proxy and the probe (see figure

3.51). The constrained dynamics model from Otaduy et al. [169] was used for

collision response and a co-rotational finite elements model was used for simulation

of dynamic deformations (as in [171]).

An interesting use case of the proposed system is haptic rendering of hand touch

in Garre and Otaduy [78]. The idea is that a user can manipulate the virtual

hand via the rigid handle being a part of it (see figure 3.52).

Among the examples presented in [77], the tool was represented by maximum 281

tetrahedra, and no concrete information about the tool’s surface mesh was given.

For [78], the hand was represented by maximum 1700 tetrahedra for deformation

computations and 1733 triangles for collision detection, and the environment by

maximum 271 tetrahedra and 4000 triangles respectively.

� Maciel et al. [135] – the authors proposed 6-DoFs haptic rendering for physics-

92



Chapter 3. Literature Overview

Figure 3.52: The rigid handle (in green) is selected as a part of the hand. Connections

between the probe, handle, tool and handle proxy are equal to those in [77] (source:

modified from [78])

based virtual surgery using NVIDIA’s PhysX physics liblary [165], which is GPU

accelerated. The proposed haptic rendering system supports rigid tool and de-

formable and rigid environmental objects, which could interact with each other,

move and rotate. Additionally, “cloth-like” objects, for which it is allowed to

change topological structure, and objects with joints are supported. Fluid objects

are theoretically supported – no examples were presented in the paper. There are

no limitations to make the tool deformable, “cloth-like” or with joints.

Deformable objects are assumed to be isotropic and homogeneous. Actually, the

capabilities of the system are the capabilities of PhysX for the time when the paper

was written.

The source data for PhysX is a surface mesh, and a tetrahedral one is generated

based on it. Deformation computations are performed on the tetrahedral mesh,

and the surface mesh is updated accordingly.

The proposed system architecture employs an extended Model-View-Control de-

sign pattern [76] and is shown in figure 3.53.

The PhysX’s collision detection was used for all cases except for the “soft body-soft

body” one. The last case was not efficient in PhysX, and therefore a method from

Maciel et al. [134] was employed for it. Force feedback was calculated based on

collision detection and collision response and updated at a rate of about 500 Hz.

The authors reported about an application of their system for the laparoscopic

adjustable gastric banding (LAGB) case study and presented an example with

93



Chapter 3. Literature Overview

Figure 3.53: System architecture used in [135] (source: [135])

the rigid tool and a few rigid, deformable, “cloth-like” and jointed objects in one

scene. The total number of triangles for all objects except for the tool was about

5800. The number of triangles for the user controlled surgical tool was not given.

The liver and the stomach were represented by 3000 tetrahedrons each one (for

PhysX deformation simulations).

Number of tetrahedrons for object in another example – a comparison with FEM

– was 3901.

The authors mentioned that one of the drawbacks of their system is that the

PhysX source code is closed and the API does not allow an integration of custom

algorithms. We would also like to draw attention to other drawbacks. As far as

the feedback force is updated at about 500 Hz but not at 1 kHz, force feedback

discontinuities could arise in case of a fast probe motion. Additionally, the physics

simulation is performed at only approximately 20 Hz, and no interpolation between

consequent iterations of this thread is used for collision detection. This means

that strong force feedback discontinuities could arise at the moment when results

of the iteration from the slow physics simulation thread are transmitted to the

fast collision detection thread. This problem and its cause are generally equal to

those in [3] (see section 3.2.1).

94



Chapter 3. Literature Overview

3.2.5 Summary

There exist many different surface-based and voxel-based haptic rendering methods, and

almost all of them:

� give no collision detection guarantees and/or

� require a special topology of objects and/or

� need generation of precalculated structures or an explicit surface representation.

These limitations may make it difficult to use a method in practice and may not be ac-

ceptable for such precise procedures as pre-operation planning in surgery. Additionally,

in practice the real medical data we work with can have any structure if segmentation

has been done automatically.

In order not to have the aforementioned issues, we propose our haptic rendering ap-

proach and its improvements being published in [225, 227, 226] and being presented in

chapter 4. Our approach employs ray casting for the collision detection and a “sliding

along a surface” model together with a local path finding approach for rigid collision

response. Additionally, the method operates directly on voxel data and does not use any

precalculated structures, but uses an implicit surface representation being generated on

the fly. This means that a virtual scene may be both dynamic or static. Our method

was implemented and tested within the framework provided by the YaDiV platform [73]

– a powerful virtual system for working with 3D volume data. This allows us to com-

bine novel haptic rendering methods for exploration of medical data with high-quality

visualization. Our approach has nearly constant time complexity independent of data

resolution and is very fast – for a moderate end-user PC, up to 750 points could be

simulated at about 1 kHz for collision detection without collision response, and up to

145 points for the collision detection and collision response.

95



Chapter 4. Our Haptic Rendering Approach

Chapter 4

Our Haptic Rendering Approach

In this chapter we present our haptic rendering approach for volumetric data being

published in our works [227, 225], and its improvements being published in our work

[226]. We also discuss implementation details, and give the results of tests with real

volumetric data.

Our approach addresses a recurring flaw in almost all related approaches, where the

manipulated object, when moved too quickly, can go through or inside an obstacle.

Additionally, either a specific topological structure for the collision objects is needed, or

extra speed-up data structures should be prepared. These issues could make it difficult to

use a method in practice. Our approach was designed to be free of such drawbacks. The

method operates directly on voxel data and does not use any precalculated structures,

but uses an implicit surface representation being generated on the fly.

4.1 Data Representation

Generally, 3D data could be in different representations (triangulated surface, hexahe-

drons, volumetric, ...). Here we focus on a volumetric one, since it is a direct output from

the scanning devices. Other data types could be transformed to this one, if necessary.

Furthermore, we assume that 3D data is already segmented, i.e. that a set of segments

(a set of scene objects) is provided (see section 2.2.1 for definition of segmentation). We

use a bit cube representation of segments, though other representations are possible.

In case of the bit cube representation, for each object (segment) a 3D bit array (a bit

cube) of size of the volumetric data is created. Elements of the bit cube corresponding

96



Chapter 4. Our Haptic Rendering Approach

Figure 4.1: A segment as the bit cube. Brown – 1, gray – 0 (source: modified from [89])

to the object’s voxels are then set to 1, and the rest are set to 0 – see figure 4.1 for

illustration. For further details, we suggest the reader to look into [72].

Below we present each step of our haptic rendering algorithm. Firstly, we present in de-

tail the method being published in our works [227, 225], and further on its improvements

being presented in [226].

4.2 Collision Detection using Ray Casting

The collision detection in our haptic rendering pipeline employs the ray casting tech-

nique, which has its roots in computer graphics (see section 3.1.5 for details).

For the collision detection of the interaction point (IP) following the position of the

manipulator, we perform ray casting from its last position p1 to the current one p2 –

figure 4.2(a). In more detail, we are going along the ray with 1-voxel steps – figure 4.2(b).

If the value of any bit cube representing an obstacle at the sampled point is true –

figure 4.2(c), – then a collision information and true is returned by the collision detection

procedure – figure 4.2(d). False is returned otherwise. We use 1-voxel steps, because a

minimum possible thickness of an object is also one voxel. By performing the ray casting

we can always find the exact collision, if it happened between the haptic rendering

updates, and react to it accordingly.

In order to have even higher precision for collision detection, ray casting at sub-voxel

resolution or sampling once between each pair of consecutive intersections of the ray

97



Chapter 4. Our Haptic Rendering Approach

(a) (b)

(c) (d)

Figure 4.2: The ray from the previous position p1 to the current one p2 is cast with

1-voxel steps until an obstacle is found or p2 is reached (source: our work [226])

98



Chapter 4. Our Haptic Rendering Approach

and a grid plane could be used. Though we found that a 1-voxel step is quite enough

for our experimental data.

To further speed up the computations, we firstly create a list of objects that are deter-

mined as collision candidates. For that, we check if the ray from the last position to the

current one collides with the Axis-Aligned-Bounding-Box (AABB) of each object. If so,

then the object is a candidate. The detailed collision detection is performed for these

candidates only.

Additionally, we impose a reasonable upper limit on the maximal movement of the IP

between two haptic frames. This allows us to perform localized and therefore faster ray

casting using the cached information from the previous frame and avoid possible haptic

rendering instabilities (the last is also done in [15]).

If all data has been already loaded then the time complexity of the method is

O
(
Nobj · wmaxstep

)
, where

Nobj – number of objects in the scene;

wmax – maximum path length of the IP per frame, in voxels (introduced to ensure the

stability of haptic rendering);

step – the sampling step of ray casting (chosen as 1).

Indeed, in the worst case all objects in the scene could become the collision candidates

and be checked all the way from the previous position of the IP to the current one.

Since wmax and step are either constants or have a small reasonable upper limit, we can

rewrite the time complexity as O (Nobj). Furthermore, the resulting time complexity is

independent of data resolution.

The space complexity of the method is O (Nobj).

Indeed, in the worst case all objects in the scene could become the collision candi-

dates and therefore need to be stored. Furthermore, the resulting space complexity is

independent of data resolution.

4.3 Collision Response

The collision detection method described above is used in our joint collision detection

and response stage of the haptic rendering pipeline. The method is based on the god

object/proxy paradigm. It works directly with volumetric data and has no limitations.

99



Chapter 4. Our Haptic Rendering Approach

In this section we present the method being published in our work [227]. The improved

method being published in our work [226] is presented in section 4.8.

Because of the collision detection and non-penetration guarantees the IP should not go

inside any object or pass through it. Therefore we made it slide over the surface. The

surface is calculated locally “on the fly”. The IP can encounter multiple surfaces on its

way. It is connected with the actual position of the device’s manipulator via a virtual

spring.

The position of the IP from the last haptic frame is denoted as p1, and the position

to be calculated as p2. For the device’s manipulator, we denote its last position as d1

and the current one as d2. The IP always moves in the direction of d2. Empty-space

border voxels below are the voxels which are empty but have at least one non-empty N26-

neighbour (two voxels are N26-neighbours if the first one is orthogonally or diagonally

adjacent to the second one, also see [72]).

The algorithm deals with different obstacles at the same time and looks as follows:

1. p2 := p1

2. Do the collision test from p2 to d2. If there is no collision then p2 := d2 and exit.

Else move p2 towards the collision point pcol, so that the distance between p2 and

pcol is less than the predefined ε < 1

3. While p2 6= d2 and the total path length of the IP at this haptic frame has not

exceeded wmax (see section 4.2) and it is not shorter just to move directly from p2

to d2 do:

(a) Locate empty-space border voxels neighbouring to p2

(b) Select a voxel with the maximal dot product (voxel-p2, d2-p2) > 0. If there

is no such voxel then go to step 4

(c) Move p2 to this voxel. If p2 is inside another object after this movement then

cancel the movement and go to step 4

(d) go to step 3

4. If the path length of the IP at this haptic frame > wmax or p2 = d2 or p2 = the

value of p2 at the beginning of step 2, then exit. Else go to step 2.

Remarks: There are some additional checks and details, which we omitted in the above

description for clarity. We will give a complete listing of the algorithm later in this sec-

100



Chapter 4. Our Haptic Rendering Approach

tion.

An example of how the method works is shown in figure 4.3. After the initialization at

step 1, figure 4.3(a), the collision test is performed at step 2, figure 4.3(b). There is a

collision, so the “sliding along the surface” part of the algorithm – step 3 – is executed,

figure 4.3(c). Then the conditions for the outer loop (steps 2–4) are checked at step 4.

As long as they are fulfilled, step 2, figure 4.3(d), and step 3, figure 4.3(e), are executed

again. At step 4 these conditions are met again, therefore the method starts the third

iteration of the outer loop. But the IP can not come closer to d2 this time, so nothing

is changed, and the algorithm stops at step 4.

The complete listing of algorithm is following:

1: Get p1, d1, d2

2: p2 := p1 // Initialize p2

3: p2last := p2 - (1,1,1) // make it unequal to p2

4: w := 0 // Path length travelled by the IP at this frame

5: while (p2 6=d2 and w < wmax and p2last 6=p2) do

6: p2last := p2

7: Make the collision test from p2 to d2

8: if (no collision) then

9: Move p2 towards d2 for the distance min(||d2-p2||2 , wmax − w)

10: w := w + (the above movement of p2)

11: break

12: else

13: Move p2 towards the collision point pcol so that it is at the given ε < 1 before

pcol, or for the distance (wmax − w) from p2 in case the last is shorter

14: w := w + (the above movement of p2)

15: // Slide over the obstacle in the direction of d2:

16: while w < wmax and p2 6=d2 do

17: // Is it shorter just to move from p2 towards d2

18: // without following the surface?

19: if (p2 will not be inside any obstacle if moved by 1 voxel towards d2) then

20: // We will move directly to d2 at the beginning

21: // of the next iteration of the outer loop

22: break

23: end if

101



Chapter 4. Our Haptic Rendering Approach

(a) (b)

(c) (d)

(e)

Figure 4.3: Example of execution of the original “sliding along the surface” approach

(source: our work [226])

102



Chapter 4. Our Haptic Rendering Approach

24: Locate neighbour empty-space border voxels for p2

25: Select a voxel with the biggest dot product of (voxel-p2) and (d2-p1)

26: if (the biggest dot product ≤0) then

27: break

28: end if

29: Move p2 towards the selected voxel for the distance min(||voxel-p2||2 , wmax−
w)

30: if (p2 is inside another obstacle) then

31: Cancel the above movement of p2

32: break

33: end if

34: w := w + (the above movement of p2)

35: end while

36: end if

37: end while

Note: If the empty-space border voxels are precalculated for each segment at the pre-

processing step then it gives 25% speed-up. All the frame rates in sections below are

given for the case without preprocessing.

4.4 Additional Remarks on Collision Response

The “sliding along a surface” method described in the above section needs to take into

account certain additional issues:

1. Since integral arithmetic is used for N26-neighbour voxel coordinates whereas real

arithmetic is used for coordinates of p2 at step 3b in the algorithm given in sec-

tion 4.3, angles between (d2-p2) and (voxel-p2) for some empty-space border voxels

could be more than 90 degrees in case the collision has just appeared and there-

fore p2 =pcol. In this case such empty-space border voxels will not be considered

at step 3b (figure 4.4(a)) although some of them could be good if p2 was in the

middle of the voxel but not on the border between voxels (figure 4.4(b)). Further

on, let us denote all N26-neighbour empty-space border voxels of p2 as Vp2 .

In order to deal with this issue, we additionally create a new point p3 and move it

from p2 along the ray (d2,p1) with a small step < 1 until value of at least one of

103



Chapter 4. Our Haptic Rendering Approach

(a) (b)

Figure 4.4: v1 and v2 are N26-neighbour empty-space border voxels for p2. (a) p2 is

on the border between empty and filled voxels, and both v1 and v2 are not considered

because (v1 − p2,d2 − p2) < 0 and (v2 − p2,d2 − p2) < 0. (b) p2 is in the middle of

border empty-space voxel, and v2 is considered because (v2 − p2,d2 − p2) > 0

its coordinates differs from the corresponding value of p2 by at least 1 unit (length

of a side of voxel), or until wmax is exceeded. Once one of the above conditions

are met, we find N26-neighbour empty-space border voxels for p3. Let us denote

them as Vp3 . Then, we additionally consider the dot products (voxel − p3,d2 −
p2) > 0, where voxel∈ Vp3 , for selection of a voxel to move p2 to at step 3b. See

figures 4.5 and 4.6 for illustration. Additionally, we would like to note that Vp3 is

not necessarily equal to Vp2 . Such an example is shown on the screen shot of our

prototype system in figure 4.7.

2. Since segments can be moved/rotated, their reverse transformations should be

applied to the positions being used for N26-neighbour search, and their direct

transformations should be applied to the coordinates of the found empty-space

border voxels.

3. We can not simply limit the movement of the IP by the plane perpendicular to

(d1,d2) and going through d2 (see figure 4.8), and use this limitation as a stop-

condition in line 5 of the listing of algorithm in section 4.3. This is because the

movement shown in figure 4.9 would not be possible in such a case.

4. Similar to the above remark, we can not limit the movement of the IP by the plane

going through d1 and d2 and perpendicular to the plane going through d1, d2 and

the current position of p2 by the end of the outer while-loop of the same listing

(see figure 4.10), and use this limitation as a stop-condition in line 5. The reason

104



Chapter 4. Our Haptic Rendering Approach

Figure 4.5: Since (v1−p3,d2−p2) > 0, (v2−p3,d2−p2) > 0 and (v3−p3,d2−p2) > 0

(where v1,v2,v3 ∈ Vp3), v1, v2 and v3 will be taken into consideration

Figure 4.6: N26-neighbour empty-space border voxels shown in our system (the segment

is triangulated using the modified marching cubes algorithm – see section 5.2) for details

105



Chapter 4. Our Haptic Rendering Approach

Figure 4.7: The case when Vp3 6= Vp2 , shown in our prototype system

Figure 4.8: The positive scenario of limiting the movement of the IP (blue) by the plane

perpendicular to (d1,d2) and going through d2 (green)

Figure 4.9: The negative scenario of limiting the movement of the IP (blue) by the plane

perpendicular to (d1,d2) and going through d2 (green). The IP should follow the full

path shown in blue, but can only follow the part of it drawn in solid

106



Chapter 4. Our Haptic Rendering Approach

Figure 4.10: The positive scenario of limiting the movement of the IP (blue) by the

plane (green) in the way described in point 4 in section 4.4

for this is that the movement shown in figure 4.11 would not be possible in this

case.

4.5 Time and Space Complexities of Collision Re-

sponse

Here we discuss the time and space complexities of our joint collision detection and

response stage of the haptic rendering pipeline.

Let us follow the listing of algorithm in section 4.3. The main work is done inside the

outer while-loop (lines 5-37). In line 7 the collision test is performed, therefore the

time complexity of this line is O
(
Nobj · wmaxstep

)
(see section 4.2). For the inner while-

loop (lines 16–35), lines 17–29 take O (1) and lines 30–34 take O (Nobj). In the worst

case it can be O (wmax) iterations of the innner while-loop. The outer while-loop can

also be executed maximum O (wmax) times. Additionally, we should note that p2 can

move in total only O (wmax) times during the run of the algorithm. Therefore the

total time complexity being equal to the time complexity of the outer while-loop is

O
(
wmax ·Nobj · wmaxstep

)
= O

(
Nobj · w

2
max

step

)
.

Since wmax and step are constants or have a small reasonable upper limit, we can

rewrite the above equation as O (Nobj). Furthermore, the resulting time complexity is

107



Chapter 4. Our Haptic Rendering Approach

Figure 4.11: The negative scenario of limiting the movement of the IP (blue) by the

plane (green) in the way described in point 4 in section 4.4. The IP should follow the

full path shown in blue, but can only follow the part of it drawn in solid

independent of data resolution.

The space complexity of the method is O (Nobj).

Indeed, in the worst case all objects in the scene could become the collision candidates

and therefore need to be stored for line 7. Since the algorithm works “on the fly”, no

other additional structures are required. Furthermore, the resulting space complexity is

independent of data resolution.

4.6 Force-Feedback

In this section we present the method being published in our work [227]. The improved

method being published in our work [226] is presented in section 4.9.

The specificity of our force feedback generation is that we do not use surface normals,

because we do not employ an explicit surface representation.

The total force transferred to a user via the haptic manipulator is

F = Fc + Ffr, (4.1)

where

Fc – a coupling force;

Ffr – a friction force.

108



Chapter 4. Our Haptic Rendering Approach

Figure 4.12: Forces involved in the computation of force-feedback in section 4.6

If F exceeds a maximum for a given haptic device then we scale it as to fit to the device

limitations.

A calculation of Fc yields

Fc = − d2 − p2

‖d2 − p2‖2
· (‖d2 − p2‖2 · k) = (p2 − d2) · k, (4.2)

while for Ffr we obtain

Ffr = − p1 − p2

‖p1 − p2‖2
· |Fc · n| · µ ·

Nbv

w
, (4.3)

where

k – the coefficient of the spring;

n – a normalized vector, which is perpendicular to p2-p1 and lies on the plane defined

by vectors p2-p1 and d2-p2;

µ – the friction coefficient;

Nbv – number of the border empty-space voxels, which the IP moved through in the

algorithm above at this haptic frame;

w – the total path length at this frame, also from the algorithm above.

See figure 4.12 for illustration.

We would like to note that for easier calculations |Fc · n| could be rewritten as

|Fc · n| = ‖Fc‖2 −
∣∣∣∣Fc · p1 − p2

‖p1 − p2‖2

∣∣∣∣ . (4.4)

109



Chapter 4. Our Haptic Rendering Approach

We use the given expression for Ffr because at the end of a haptic frame the IP is moved

from p1 to p2, and therefore we turn the friction force to the opposite direction (the

improved approach being published in our work [226] is presented in section 4.9). Also

we make it proportional to the part of Fc, which is perpendicular to p2-p1 in analogy to

the normal force for a dry friction. Finally, we ensure it to be proportional to Nbv, i.e.

the path length that the interaction point actually slid over a surface. We would like to

note that making the forces related to physical properties of certain materials was not

our goal on that stage of research.

Both the time and space complexities for this stage of the haptic rendering pipeline can

be written as O (1).

4.7 Workspaces and Movement/Rotation of Objects

Our system maintains several workspaces (coordinate systems):

� The first is the scene workspace (SWS), where all virtual objects are positioned.

The IP belongs to this workspace, too.

� The second is the view workspace (VWS). It defines how the user looks at the

SWS.

� The third workspace is the real workspace of the haptic device (HWS). It is mea-

sured in millimeters.

� Since it is more intuitive for the user when axes of the HWS are parallel (X and Y )

and perpendicular (Z) to the viewing plane (in other words, to the display), one

more workspace is needed – we call it the workspace of movement (MWS). This

workspace makes the axes of the HWS be always parallel to the corresponding axes

of the VWS. The MWS is needed, because in a general case the axes of the HWS

will not be parallel to the corresponding axes of the VWS after camera rotations.

Actually, the MWS differs from the SWS only in the orientation. This means that

the IP, while being positioned in the SWS, moves along the coordinate axes, which

belong to the MWS, and the right position/orientation of the IP in the SWS is

maintained all the time.

Similarly to maintaining the right position/orientation of the IP, we added a support

of movement/rotation of any object in the scene according to manipulations with the

110



Chapter 4. Our Haptic Rendering Approach

Figure 4.13: Adjusting the metal mesh (in purple) to the eyeball using the INCA 6D

haptic device (source: our work [225])

device’s probe. To accomplish this, the system goes into the special no-collision mode,

and when the object is selected, a movement and rotation of the IP are directly applied

to the object.

An example application of the described approach is verification of the metal mesh for

the surgical operation on correction of position of the eyeball in case of a complex skull

fracture as shown in figure 4.13. Please note that the way to find the form of the mesh

was developed in the bounds of the joint research project between physicians from the

Hanover Medical School, Germany, and our Institute. See [22] for details.

4.8 Improved Collision Response

The original version of our joint collision detection and response stage of the haptic ren-

dering pipeline was proposed in our work [227] and was discussed in the above sections.

In this section we present its improved version being published in [226], which uses the

path-finding approach combined with the god object/proxy paradigm.

We have found out that the use of the dot product of the vectors at step 3b of our

111



Chapter 4. Our Haptic Rendering Approach

original approach (section 4.3) in order to find the next voxel to move to sometimes

leads to an issue, namely that the IP oscillates around the point being locally the closest

surface point to d2 (let us denote it as p′2). This oscillation could happen because of

the following. If there is always a next voxel on the surface, to where the IP can move

in the direction of d2-p1 according to the conditions at step 3b, the IP may pass p′2 and

go further. This could happen because the IP will move until its total path length at

this haptic frame is less than wmax and because wmax may be not exceeded at p′2. If

d2 remains unchanged at the next haptic frame then the IP will go the way back and

will also pass p′2 backwards direction and go further because of the same reason. At the

next haptic frame the IP will go in the same direction as at the first haptic frame and

will pass p′2 again. These oscillations may continue until the position of the probe is

changed.

In order to eliminate this drawback, we suggest to replace the use of the dot product at

step 3b with the search for the voxel with the smallest distance to d2. In other words,

we suggested to use a path finding algorithm looking for a locally optimal path to d2

for the given metric and limitations. Our improved method still deals with different

obstacles at the same time and looks as follows:

1: Get p1, d1, d2

2: p2 := p1 // Initialize p2

3: Set p2last to be unequal to p2

4: w := 0 // Path length travelled by the IP at this frame

5: while (p2 6=d2 and w < wmax and p2last 6=p2) do

6: p2last := p2

7: Make the collision test from p2 to d2

8: if (no collision) then

9: Move p2 towards d2 for the distance min(||d2-p2||2 , wmax − w)

10: w := w + (the above movement of p2)

11: break

12: else

13: Move p2 towards the collision point pcol so that it is at the given ε < 1 before

pcol, or for the distance (wmax − w) from p2 in case the last is shorter

14: w := w + (the above movement of p2)

15: // Find a path to d2 along the obstacle’s surface, so that

16: // the path is locally optimal at each step:

17: while w < wmax and p2 6=d2 do

18: // Is it shorter just to move from p2 towards d2

19: // without following the surface?

112



Chapter 4. Our Haptic Rendering Approach

20: if (p2 will not be inside any obstacle if moved by 1 voxel towards d2) then

21: // We will move directly to d2 at the beginning

22: // of the next iteration of the outer loop

23: break

24: end if

25: Locate neighbour empty-sp. border voxels for p2

26: dist sq := ∞
27: Select a voxel with the smallest square distance to d2, and remember this

distance as dist sq

28: if (dist sq = ∞) then

29: break

30: end if

31: Move p2 towards the selected voxel for the distance min(||voxel-p2||2 , wmax−
w)

32: if (p2 is inside another obstacle) then

33: Cancel the above movement of p2

34: break

35: end if

36: w := w + (the above movement of p2)

37: end while

38: end if

39: end while

The time and space complexities for the improved collision response remain the same as

in the original approach. Indeed, looking for a voxel with the smallest square distance

to d2 takes O (1) because the maximum number of empty-space border voxels is limited,

and it requires O (1) space.

4.9 Improved Force-Feedback

The original version of our force-feedback generation stage of the haptic rendering

pipeline was proposed in our work [227] and was discussed in section 4.6. In this section

we present its improved version being published in [226]. The improvements were neces-

sary because the direction of the friction force Ffr could be wrong in the case of multiple

obstacles or a complex surface, since we used the direction of p2-p1. Additionally, in the

new expression for Ffr (expression 4.5) we used wbv, the path length which the IP trav-

113



Chapter 4. Our Haptic Rendering Approach

elled through empty-space border voxels, instead of the number of those empty-space

border voxels in the original expression 4.3. This was done since the IP could move less

than one voxel in the inner loop of the algorithm above.

For Ffr the updated expression can be written as

Ffr = −µ · vbv
‖vbv‖2

· |Fc · n| ·
wbv
w
, (4.5)

where

µ is the friction coefficient;

vbv =
∑

i vi, where

vi are linear path segments being travelled by the IP through the empty-space border

voxels at this haptic frame;

n – a normalized vector being perpendicular to vbv and located on the plane spanned

by vbv and d2-p2;

wbv – the length of the path where (during this haptic frame) the IP travelled through

the empty-space border voxels in the algorithm described above;

w – the total of the path covered by the IP during this frame according to the algorithm

described above.

For easier calculations |Fc · n| could be rewritten as ‖Fc‖2 −
∣∣∣Fc · vbv

‖vbv‖2

∣∣∣.
We suggest the new formula for Ffr in [226] as opposed to [227] because at the end of a

haptic frame the IP is moved from p1 to p2, so it is logical to turn Ffr into the direction

of the normalized vector given by the average obtained (via their sum) from all path

segments, where the IP travelled along a surface. Additionally, we ensure Ffr to be

proportional to the part of Fc which is perpendicular to vbv in analogy to the normal

force for a dry friction, Finally, we make it proportional to wbv, i.e. the path length that

the IP actually slid over a surface.

The time and space complexities for the improved force feedback generation remain the

same as in the original approach. Indeed, the number of vi is limited by O (wmax) =

O (1). Furthermore, in practice vbv is updated during the run of the improved joint

collision detection and response stage of our approach.

4.10 Prototype System

As it was already mentioned before, our interactive VR system is based on the YaDiV

Open-Source platform [73]. The main features of the YaDiV include reading of input

114



Chapter 4. Our Haptic Rendering Approach

data in the DICOM format and offering modules for the volumetric data processing

pipeline (the volumetric data processing pipeline is discussed in detail in section 2.2.1):

� 2D Visualization;

� 3D Volume Visualization (2D-Texturing and 3D-Texturing – see section 2.2.4 for

the basics and sections 3.1.1, 3.1.3 for an overview of the methods);

� 3D Segmentation;

� 3D Segment Visualization and Registration.

The YaDiV platform was successfully employed for teaching and educational purposes

and extended by many student projects. It is also currently used by physicians at

Hanover Medical School, Germany, in various research projects.

Our prototype system is structurally a plug-in for YaDiV. In order to allow absolute

platform independence, YaDiV was developed using the Java platform. This is the case

for our system, too. Only the device dependent part was developed using C++, because

there are no device APIs on Java being supported by the devices manufacturers. The

system is independent from a haptic display, so that a wide range of devices can be

used, including:

� Phantom Omni (figure 4.14);

� High-end Phantom Premium 1.5 6-DOF (figure 4.15);

� INCA 6D with a very large workspace of approx. 2*1*1.6m (figure 4.16).

The size of the virtual workspace can be scaled and varies from case to case.

For communication between Java and C++ we used the JNA (Java Native Access) in

the DirectMapping mode, because communication delays are less than 1 µs.

As an option, we also considered communication via the TCP-IP, but our tests showed

that it is not fast enough. In more detail, there are often (several times per second)

delays of about 1 ms, as well as delays of up to 20 ms from time to time. In order to

verify that the delays are because of communication via the TCP-IP and not because

of Java-specific issues, both the test client and the test server were also implemented in

C++ and showed the same delay of 1 ms several times per second.

115



Chapter 4. Our Haptic Rendering Approach

Figure 4.14: Phantom Omni haptic device

Figure 4.15: Phantom Premium 1.5 6-DOF haptic device

116



Chapter 4. Our Haptic Rendering Approach

Figure 4.16: INCA 6D haptic device

117



Chapter 4. Our Haptic Rendering Approach

4.11 Dealing with Synchronization Issues

The graphical representation of objects in YaDiV is re-rendered upon request. That is,

when properties (color, position and orientation, ...) of a scene object are changed, the

scene is redrawn. In more detail, when object properties are changed, a rendering thread

per object is created and executed. Together with haptic interaction, this rendering

scheme leads to synchronization problems. If we change graphics properties directly in

the haptic thread, then every change in the properties would cause a new redraw event,

creating unacceptable delays of tens of ms during the execution of the haptic thread.

Indeed, if we change graphics properties directly in the haptic thread then for every

object’s change in the haptic thread, a separate rendering thread would be created. The

creation of this thread would take a few tens of milliseconds. Besides that, thousands

of rendering threads would be running even in the case of one moving object. It would

be so because:

� the update rate of the haptic thread is at least 1000 frames/second;

� the rendering thread for the moving object would be created at each frame;

� each rendering thread would run longer than 1 ms.

In order to deal with the aforementioned issues, we proposed to use special objects

in the haptic thread, which accumulate changes of the graphics properties, and apply

them to the corresponding YaDiV entities in a dedicated synchronization thread – see

figure 4.17 (see section 4.12 for details of our prototype system). In other words, these

accumulating objects wrap all object properties which could cause re-rendering. An

access to them is made using synchronized Java-statements. In case a wrapped property

was changed, a corresponding accumulating object is added to the list of objects which

should be synchronized. The synchronization thread performs a synchronization with

the corresponding entities of the graphics thread at about 30 Hz by going through this

list.

We would like to mention that there were other synchronization issues being addressed

in our prototype system, such as correct work of the system while scene objects are

being added/deleted or modified.

118



Chapter 4. Our Haptic Rendering Approach

4.12 Scheme of the Prototype System

Our prototype system is multi-rate and multi-threaded, as it is shown in figure 4.17.

Thus, the device thread and the haptic thread run at not less than 1 kHz, while the

haptics to graphics synchronization thread runs at 30 Hz, because more frequent updates

for graphics representation are not necessary. Here, the device thread is device-specific

and is being run in the C++ part of our system. The haptics to graphics synchronization

thread is necessary because of the synchronization issues discussed in section 4.11.

We should note that in YaDiV we additionally modified polygonal rendering of segments,

as well as 2D/3D texture rendering of volumetric data in order to support rendering of

segments being moved and/or rotated.

As was mentioned above, our prototype system is structurally a plug-in for YaDiV. The

prototype system has many components. Its structure overview diagram is hence split

into two parts and is shown in figures 4.18, 4.19. Below we discuss it in more detail.

Figure 4.18 shows that our system was designed in such a way that it allows easy ad-

dition of new haptic devices, as well as collision detection/response and force-feedback

algorithms. Below we describe responsibilities of important classes shown in the dia-

gram:

� “YHapticUIPlugin”

– the main class (the entry point) of the plug-in;

– does initial loading/deleting of scene objects;

– responsible for the GUI;

� “HapticRenderer”

– responsible for all haptic rendering, does initialization/finalization etc.;

– maintains and modifies the list of scene objects (shown in figure 4.19);

� “HapticLoop” (thread) is the main haptic rendering loop. From here, the device

state is read, different haptic rendering algorithms are called and the force feedback

is sent back to the device.

Different haptic devices and haptic rendering algorithms could be easily added, since we

used abstract classes in the haptic rendering loop. Derived classes of “Abstract Device

Listener” can be not only collision detection and response algorithms, but also perform

119



Chapter 4. Our Haptic Rendering Approach

F
igu

re
4.17:

O
u
r

ap
p
roach

is
m

u
lti-rate

an
d

m
u
lti-th

read
ed

120



Chapter 4. Our Haptic Rendering Approach

F
ig

u
re

4.
18

:
P

ar
t

1
of

th
e

st
ru

ct
u
re

d
ia

gr
am

of
ou

r
ap

p
ro

ac
h
:

d
ev

ic
es

an
d

al
go

ri
th

m
s

121



Chapter 4. Our Haptic Rendering Approach

F
igu

re
4.19:

P
art

2
of

th
e

stru
ctu

re
d
iagram

of
ou

r
ap

p
roach

:
scen

e
ob

jects
an

d
th

eir
u
sage

b
y

th
read

s

122



Chapter 4. Our Haptic Rendering Approach

some special actions in response to user input, since any number of device listeners at

the same time is supported.

In figure 4.19 we show the class structure for scene objects, as well as the threads that

use them. “AbstractSceneObject” and its derivative classes contain specific object data

for haptic rendering and are used in the haptic loop. Derivative classes of “AbstractSce-

neObject” contain references to the synchronized versions of corresponding YaDiV ob-

ject entities (“Geo1”, “Geo2”, “Segment” etc.). In more detail, “SyncAbstrGeo” and

“SyncSegment” are the wrappers over the YaDiV entities. These wrappers allow safe

reading of object data and remember required changes of properties for the wrapped

entities. These wrappers are used for synchronization of properties with YaDiV’s en-

tities in the specially designated “Haptics To Graphics Synchronizer” (thread) – see

section 4.11 for details.

4.13 Dealing with Java Virtual Machine Issues

Since Java is executed on a Virtual Machine (VM) with garbage collection, we experi-

enced indeterministic delays from a few milliseconds to tens of milliseconds from time to

time during the run of the haptic system. This a is serious drawback, since the haptic

update rate should constantly be at least 1 kHz.

In more detail, when we tried to run our system on a standard VM, delays were about

0.5-4 ms (mostly 1-2.5 ms). An additional delay of 20–50 ms occurred when the memory

was full and the garbage collector did the cleaning. The delays occurred even with the

finest tuning of parameters of the Java VM and with the simplest Java application.

Additionally, we observed a strange behaviour on Linux only: when a “simple loop”

test was run on two different VMs simultaneously, both instances of the test had delays

almost at the same time. This did not happen when we ran only one “simple loop”

test at a time or ran one “simple loop” test on the VM and another one an executable

written in C++.

Because of the aforementioned drawbacks we looked for a solution and came across the

works [216], [167] which say that a real-time VM can provide a deterministic execution

time, i.e. it can eliminate the aforementioned issues. Therefore we conducted exper-

iments with two common real-time VMs: Sun JavaRTS [167] and IBM Web Sphere

Real Time [216]. We followed all recommendations of the developers, like installation

of Linux with a real-time core and fine tuning of the VM. For Sun JavaRTS we also

“downgraded” our code to Java 1.5 because that time Sun JavaRTS VM supported Java

123



Chapter 4. Our Haptic Rendering Approach

1.5 only. As a result, we found out that there are still delays of 1-3 ms.

In more detail, when our application was run without any special real-time Java features,

the delay was in the range 300 µs–3 ms (mostly 1–1.8 ms). When we used special real-

time threads and timing, the delay was 300 µs–1 ms (mostly 600 µs). The upper limit

for the delay was not good enough because the haptic thread should be updated every

millisecond, which is not possible when there is already a delay of 1 ms in addition to the

1 ms being spent for computation of haptics logic. Additionally, there were “freezings” of

graphics rendering from time to time for about a minute, which ruined the interactivity

of the application. Furthermore, the time required for the garbage collector to perform

cleaning for both the real-time Java machines was still about 11–20 ms. We would

like to note that we were unable to compile the code with real-time threads using the

evaluation version of SDK from IBM, because there were no real-time libraries included,

and we could not buy it before obtaining satisfactory test results. For Sun JavaRTS

VM, we ran our tests in both precompiled and not-precompiled modes.

In summary, we would like to point out that the observed results differ from the in-

formation stated in [216] and [167], which was officially presented by IBM and Sun

respectively.

Since Java does not provide a stable update rate even with a real-time VM, we used

a standard VM and added virtual coupling into our C++ part having nearly constant

update rate of at least 1 kHz. Using this approach, a sufficient and stable haptic update

rate is always provided to the user.

4.14 Results

For tests real medical tomography data sets were used, including Torso (520x512x512,

fig. 4.20), Headbig (464x532x532, fig. 4.21) and Headsmall (113x256x256, fig. 4.22).

For the point-object collisions only, the haptic update rate during the peak load is about

750 kHz on our moderate high-end user PC (8 x Intel Xeon CPU W5580 @ 3.20 GHz,

24 GB RAM, NVIDIA Quadro FX 5800). For the joint collision detection and response

approach the value is about 160-170 kHz. Both values exceed the minimum requirement

for real-time haptics by orders of magnitude. This efficiency and the conceptual clarity of

our approach contrasts most triangle-based approaches, where millions of triangles would

be generated and complex speeding-up traversing structures are required for the fast and

precise collision detection. The values were obtained for the virtual haptic device, which

124



Chapter 4. Our Haptic Rendering Approach

Table 4.1: Resulting update rates

Data Size Triangles Update Rate

Headsmall 113x256x256 690k 152 kHz

Torso 520x512x512 2,222 Mi 138 kHz

Headbig 464x532x532 6,136 Mi 146 kHz

is simulated in Java. For real devices, Java-C++ communication (transferring of the

device transformations and forces) since the haptic device dependent part was developed

using C++ (see section 4.10). We have measured the timings and found out that because

of these communication costs the resulting update rate is a little lower – about 150 kHz.

The values for the data sets for the joint collision detection and response approach are

shown in table 4.1. Triangles denotes number of triangles in the scene for the graphics

rendering as a reference. Triangulation was extracted from the volumetric data using a

modified marching cubes algorithm. Update Rate is given for real devices and during

the peak load.

Our prototype system was tested under Microsoft Windows, as well as under Linux.

Under Linux it was also run using the stereo graphics mode. The users found the last

one especially useful for an intuitive interaction with 3D data compared to the normal

graphics mode.

4.15 Results for the Improved Approach

Using the improved method, we repeated the tests as stated in [227] and in section 4.14.

We used the same real tomography data sets, including Torso, Headbig and Headsmall.

The results could be also found in our work [226].

The point-object collisions mode with no collision response remained unchanged, there-

fore the haptic update rate did not change and is about 750 kHz during the peak load on

our moderate high-end user PC (see section 4.14 for specifications). For our improved

joint collision detection and response approach the value is about 140-150 kHz. Both

values still exceed the minimum requirement for real-time haptics by orders of magni-

tude. The values were obtained for the virtual haptic device, which is simulated in Java.

For real devices, the resulting update rate is a little lower – about 135 kHz. As before,

the update rate is lower because Java-C++ communication and transferring of the de-

125



Chapter 4. Our Haptic Rendering Approach

Figure 4.20: The Torso data set (source: our work [226])

Figure 4.21: The data set Headbig (source: our work ([227])

126



Chapter 4. Our Haptic Rendering Approach

Figure 4.22: The data set Headsmall (source: our work [227])

127



Chapter 4. Our Haptic Rendering Approach

Table 4.2: Resulting update rates for the Improved Approach

Data Size Triangles Update Rate

Headsmall 113x256x256 690k 146 kHz

Torso 520x512x512 2,222 Mi 134 kHz

Headbig 464x532x532 6,136 Mi 141 kHz

vice transformations and forces is required. All values for the data sets for the joint

collision detection and response approach are shown in table 4.2. As in section 4.14,

triangles denotes the number of triangles in the scene for the graphics rendering as a

reference, and Update Rate is given for real devices and during the peak load.

Additionally, we would like to mention that the users of our prototype system with the

improved haptic component reported about a better and more natural haptic experience.

4.16 Discussion and Future Outlook

We presented a new haptic rendering approach employing a novel collision detection

technique based on ray casting concepts known from computer graphics. The approach

was published in [227, 225]. The method gives collision detection guarantees that a

manipulated object does not pass through “thin” obstacles and is never inside any of

them while not requiring any special topological object structure. The collision detection

was extensively tested with a new “slide along a surface” approach using an implicit

surface representation “on the fly”. The results confirm our approach to be a viable

alternative to existing techniques avoiding most common drawbacks. The prototype

was implemented as a plug-in of the YaDiV VR system and supports different haptic

devices and operation systems.

Additionally, we presented an improved version of our haptic rendering approach. The

improved approach has all properties of the original method (including an implicit sur-

face representation “on the fly”) and does not have the drawbacks described in sec-

tion 4.9. It was published in [226]. The method employs local path finding and ray

casting concepts and gives collision detection guarantees that a manipulated object does

not pass through “thin” obstacles and is never inside any of them while not requiring

any special topological object structure. Further on, we presented an improved force

feedback generation scheme, which does not suffer issues of the original scheme given

128



Chapter 4. Our Haptic Rendering Approach

in [227] and in section 4.6. The results show that our approach is a good alternative

to existing techniques, while avoiding most common drawbacks. Furthermore, it con-

trasts most triangle-based approaches, where millions of triangles would be generated

and complex speeding-up traversing structures are required for the collision detection

with the same guarantees.

Our work shows that the path finding paradigm could be successfully employed in other

research areas, such as haptic rendering in our case.

As an ongoing research, object-object interactions could be introduced, where the con-

trolled object is represented as a set of points, and the collision detection stage could

be implemented on GPUs. As was shown e.g. in [117], [196], ray casting could be effi-

ciently parallelized using GPUs and/or multi-processor systems. This will allow making

computations faster and therefore representing the controlled object with more points

and/or performing a more sophisticated collision response. We plan to conduct the tests

on the hardware which we already have at our Institute. It includes the high-end Tesla

cluster granted by NVIDIA in the context of a Professor Partnership Program, modern

graphics hardware including NVIDIA Fermi (GF 480), multi-core processor systems and

an IBM Cell Cluster.

The practical use cases of our VR system could be assembling a fractured bone being an

important step for pre-operation planning in facial surgery, putting landmarks for auto-

matic segmentation and registration methods and correction of the results of automatic

approaches (see section 5.28.1).

The next chapter is devoted to the advanced contact resolution. There we focus on a

flexible framework which allows us to use our improved approach of haptic rendering of

volume data presented in this chapter together with deformation models. We focus as

well on the modified and improved method of potential fields.

129



Chapter 5. Our Deformation Framework and Deformation Approaches

Chapter 5

Our Deformation Framework and

Deformation Approaches

In this chapter we present our flexible framework allowing us to use our improved ap-

proach of haptic rendering of volume data with collision detection guarantee which has

been presented in chapter 4 together with deformation models. We show that it is

feasible to use our previously developed haptic rendering approach together with a de-

formation model, since our approach adds its properties including collision detection

guarantee and non-penetration guarantee to the selected deformation model. This is es-

pecially important for such delicate procedures as pre-operation planning. Furthermore,

we present our graphics approach which we use to keep the graphics representation of

segments up-to-date during the deformation simulation. The challenge here is to reflect

deformations of objects interactively.

In order to validate our framework, we propose our local deformation simulation ap-

proach based on the method of potential fields (see remarks regarding the generaliza-

tion of definition of deformation in section 5.4). As stated in section 5.3, potential fields

can be considered as specific finite elements, i.e. discrete carriers of properties of the

medium.

Furthermore, we introduce our novel cuboid potential fields (see remarks in section 5.18)

and propose how to use them for the local deformation simulation. We demonstrate

that cuboid potential fields are better suited to haptic rendering of volumetric data.

Further on, we show how to establish the correspondence of parameters of our proposed

deformation simulation models to parameters of real materials, and propose a way to

take the heterogeneity of the simulated material into account. Furthermore, we extend

130



Chapter 5. Our Deformation Framework and Deformation Approaches

the classical potential fields approach in other aspects, such as adding additional forces

and parameters to the model. Additionally, we introduce the prototype of the global

potential fields based deformation approach.

The potential field based deformation simulation approaches are a good “illustration”,

because they initially do not have the “nice” properties of our haptic rendering ap-

proach presented in chapter 4. Additionally, the resulting combined haptic rendering

approach with our proposed deformation simulation approaches within our deformation

framework does not require any pre-calculated structure and works “on the fly”. Fur-

thermore, in this chapter we give the results of tests of our deformation framework and

our deformation simulation approaches with real volumetric data.

The rest of the chapter is organized as follows. Firstly, we present the structure of

our deformation framework and how our proposed deformation model fits there. Next,

we present our graphics approach. Further on, we introduce the local potential fields

approach and show how we improved it. After this, we show the correspondence of real

world parameters to the parameters of the simulation model. Further on, we present our

local cuboid potential fields approach. Further on, we present our prototype of the global

deformation potential fields based simulation approach, which is later used for validation

of how our deformation framework works with a global deformation simulation. And

lastly, we show and discuss the results.

131



Chapter 5. Our Deformation Framework and Deformation Approaches

5.1 Our Deformation Framework

The scheme of our original multi-rate and multi-threaded prototype system is described

in section 4.12. In order to simulate deformations, a new deformation simulation thread

has been added, which works at about 30 Hz – see figure 5.1.

The structure overview diagram of our original prototype system being split in two

parts is presented in section 4.12 and is shown in figures 4.18, 4.19. In order to simulate

deformations, we updated the second part of the diagram and added new components

to the new part of the diagram – part 3. See figures 5.2, 5.3.

Figure 5.3 shows that the part of our system devoted to simulation of deformations was

designed in such a way that allows to add new deformation algorithms easily. Thus,

we used “Abstract Defo Algorithm” class in the deformation loop and “Abstract Data

for Defo Algorithm” class in the “DefoObject” class. In case of potential fields based

approaches, every concrete deformation simulation algorithm uses the corresponding

concrete “data for deformation algorithm” class and the concrete potential field class

being inherited from the aforementioned abstract classes. Additionally, the “DefoOb-

ject” class has a member called “Defo Potential Fields Renderer” which is responsible for

updates of its graphics representation of potential fields. This graphics representation

is very useful for checking how do potential fields behave for the particular deformation

algorithm. “Defo Potential Fields Renderer” is inherited from “CustomSyncObj” and

updates the graphics representation of potential fields every iteration of the “Haptics

To Graphics Synchronizer” thread. “Defo Potential Fields Renderer” takes the param-

eters for potential fields by accessing the list of “BasePotentialField” being stored at

“DefoObject” and being the base class for concrete potential fields classes for concrete

deformation simulation algorithms.

5.2 Update of Graphics Representation

An update of the graphics representation of a simulated object within our deformation

framework is necessary for showing the results of the deformation simulation for the

chosen deformation model within our prototype system. The challenge here is to reflect

deformations of objects interactively.

If the chosen deformation model has its own internal representation of an object and it

does not update the volumetric data, as it is for our potential fields approaches, then

an additional step depending on the chosen deformation model is needed to update the

132



Chapter 5. Our Deformation Framework and Deformation Approaches

F
ig

u
re

5.
1:

O
u
r

m
u
lt

i-
ra

te
an

d
m

u
lt

i-
th

re
ad

ed
ap

p
ro

ac
h

w
it

h
ad

d
ed

si
m

u
la

ti
on

of
d
ef

or
m

at
io

n
s

133



Chapter 5. Our Deformation Framework and Deformation Approaches

F
igu

re
5.2:

P
art

2
of

th
e

stru
ctu

re
d
iagram

of
ou

r
ap

p
roach

w
ith

ad
d
ed

sim
u
lation

of
d
eform

ation
s:

scen
e

ob
jects

an
d

th
eir

u
sage

b
y

th
read

s

134



Chapter 5. Our Deformation Framework and Deformation Approaches

F
ig

u
re

5.
3:

P
ar

t
3

of
th

e
st

ru
ct

u
re

d
ia

gr
am

of
ou

r
ap

p
ro

ac
h

w
it

h
ad

d
ed

si
m

u
la

ti
on

of
d
ef

or
m

at
io

n
s:

sc
en

e
ob

je
ct

s
an

d
th

ei
r

u
sa

ge
b
y

th
re

ad
s,

an
d

d
ef

or
m

at
io

n
si

m
u
la

ti
on

al
go

ri
th

m
s

135



Chapter 5. Our Deformation Framework and Deformation Approaches

volumetric data from the internal representation of the chosen deformable model. For

our potential fields approach such step is described in section 5.25.

In case of graphics direct volume rendering (see section 2.2.4), the changes in the areas

of volumetric data being affected by the deformation simulation will be immediately

reflected during the next rerendering.

In case of graphics surface rendering (see section 2.2.3), the graphics surface represen-

tation of the volumetric data should be updated after the volumetric data has been

changed. Therefore an approach to update the surface representation from the volumet-

ric representation is needed. The following sections are devoted to this issue.

5.2.1 Possible Solutions

As it was already mentioned in section 4.10, we use the YaDiV Open-Source platform

[73]. The fastest graphics rendering in YaDiV is triangle-based, where triangles are

obtained using a modified marching cubes algorithm (MMCA) (see [73] for details). In

case of deformations the triangulation must be changed very fast. There are several

approaches for that, including the following:

1. The resulting triangulation of any segment is currently represented in YaDiV using

an indexed triangle list L. In order to do fast retriangulation with the MMCA

at an area of the deformation it is necessary to use an additional data structure

containing a map that links marching cube positions to the resulting triangle

positions in L. In more detail, when there is a deformation, we need to do the

following:

1) Localize the area of the triangulation, which is affected by the deformation

2) Remove all triangles affected by the deformation from L

3) Rerun the MMCA for the deformed segment within the affected area

4) Add the new triangles to L.

L is represented using two arrays (triangle array and vertex array), so when the

affected triangles are removed, the new triangles should firstly be put at their

place. In case the number of the new triangles is greater than the number of those

removed, the rest of the triangles are put at the end of the array. For that purpose,

the array is initially created bigger than necessary by a specified factor

136



Chapter 5. Our Deformation Framework and Deformation Approaches

2. Firstly divide each segment into smaller sub-segments and do the triangulation

using the MMCA for each of them so that triangles match on borders of sub-

segments. Then, when there is a deformation of a segment, rerun the MMCA with

the above boundary conditions for those sub-segments which were affected by the

deformation. A disadvantage of this approach is that it can lead to mismatch of

triangles at the edges of the sub-segment patches in case of smoothing.

In order not to create an additional data structure, to keep the core of the MMCA

unchanged and to take advantage of parallelization of retriangulation of affected sub-

segments on multi-processor machines, the second approach has been chosen. Further-

more, we eliminated the disadvantage of mismatch of triangles at the edges of sub-

segment patches. The approach is described in detail in the following section.

5.2.2 Update for Marching Cubes

When the segment is loaded and visualized for the first time, we split it into sub-segment

patches. The number of patches can vary depending on the resolution of the volumetric

data. There are different ways to split the segment into the patches. We use a regular

grid along each coordinate axis, and there is one patch per grid cell or no patches if the

MMCA did not generate any triangles within the given grid cell.

During the deformation simulation, if the volumetric representation of segment is changed

then the following will be done:

1. The corresponding area of the volumetric data will be invalidated (i.e. marked as

needed rerendering)

2. After this, the rerender request will be set for the “SyncSegment” object of the

“SyncSegmentObject”. The latter “SyncSegmentObject” is the one having the

current “DefoObject” being responsible for deformations of the given segment as

a member. See section 5.1 and figures 5.2 and 5.3 for details of relationship between

the aforementioned objects

3. After the rerender request is set for the “SyncSegment” object, it will be processed

during the next iteration of the haptics to graphics synchronization thread and the

invalidated area will be retriangulated. Additionally, other necessary operations

such as update of the axis-aligned bounding box of the segment will be performed.

On slow machines often retriangulation of invalidated areas only can be too slow

137



Chapter 5. Our Deformation Framework and Deformation Approaches

to be interactive. In this case the update is done every k-th iteration of the haptics

to graphics synchronization thread, and all the necessary data is cached between

the iterations.

For the very first visualization of the segment we use the same algorithm as for the

later updates of the graphics representation of invalidated areas during the deformation

simulation. The difference is that for the very first visualization we invalidate the whole

segment, so that all sub-segment patches are recomputed.

Further on, YaDiV uses a smoothing algorithm in order to smooth the triangulation

generated by the MMCA. The difference between graphics rendering with and without

smoothing is shown in figures 5.4 and 5.5. We should note here that the smoothing

algorithm works with the surface representation, but not with the volumetric represen-

tation. Therefore for the purposes of haptic rendering it could be reasonable to turn

off smoothing in order to see the real volumetric data. Additionally, the smoothing can

be turned off in order to have faster rerendering on slow machines. In contrast, the

smoothing can be useful e.g. in order to have better looking visuals or in case a haptic

rendering approach incorporates a smoothing algorithm working on volumetric data.

Details about the smoothing algorithm used in YaDiV can be found in [73]. The al-

gorithm smoothes vertex positions and recalculates vertex normals. The algorithm has

a degree of smoothing d, where d = 0 means no smoothing, and d > 0 indicates how

many smoothing cycles will be done. Due to the specifics of the smoothing algorithm, d

is also used to find the distance from the current vertex to other vertices being used for

smoothing. See the listing of the algorithm presented in this section for more details.

We use two approaches for the smoothing of the retriangulated area:

� The global smoothing – take into account surrounding sub-segment patches of

each patch requiring smoothing

� The local smoothing – the smoothing is done for each sub-segment patch sepa-

rately, in isolation from others.

The local smoothing works faster then the global smoothing, but can lead to mismatch

of triangles at the edges of sub-segment patches. The global smoothing does not have

this drawback but takes more time to compute. The visual difference between the local

and the global smoothing algorithms is shown in figure 5.6.

The complete listing of our algorithm for fast segment retriangulation using the MMCA

and for the smoothing of affected areas of the given segment during the deformation

138



Chapter 5. Our Deformation Framework and Deformation Approaches

(a)

(b)

Figure 5.4: The difference between graphics rendering without (a) and with (b) smooth-

ing. The data set Headsmall is visualized

139



Chapter 5. Our Deformation Framework and Deformation Approaches

(a)

(b)

Figure 5.5: The difference between graphics rendering without (a) and with (b) smooth-

ing. The Torso data set is visualized

140



Chapter 5. Our Deformation Framework and Deformation Approaches

(a)

(b)

Figure 5.6: The difference between the local smoothing algorithm (a) and the global

smoothing algorithm (b)

141



Chapter 5. Our Deformation Framework and Deformation Approaches

simulation is presented below. The following denotations are used:

dmc ∈ I+ – marching cubes distance, that is the step (in voxels) used for the MMCA;

isGlobalSmoothing – true if global smoothing is used, false if local smoothing is used;

A – the invalidated area of the given segment;

d – the above mentioned degree of smoothing for the smoothing algorithm. Due to

specifics of the smoothing algorithm, it is equal to the minimum possible width of the

zone affected by smoothing (measured from the original borders of the given sub-segment

patch), divided by dmc.

1: // I. Find the affected patches patchesToRecalc for the given A:

2: patchesToRecalc := ∅
3: for (each patch P within (A extended by the size of the patch along each coordinate

axis)) do

4: // 1.

5: if (isGlobalSmoothing = true) then

6: Extend the borders of P by (d + 2) · dmc. Since this is done for every patch,

it means that all patches will overlap for (d + 2) · dmc. This ensures that the

patches will be smoothed correctly using all the required neighbor information.

We added “+2” to d in order to have a sufficient overlapping even in case of

significant movements of vertices during smoothing and even in case of wrong

rounding and computation errors. After the smoothing we will cut the patches

to their original sizes (will be done in the later steps of the algorithm)

7: end if

8: // 2. Check whether the axis aligned bounding box (AABB) of P intersects with

the AABB of A or not:

9: // 2.1

10: Calculate the first approximation of the AABB of P by using the dimensions of

the grid cell corresponding to P

11: // 2.2

12: (AABB of P ) := (AABB of P ) ∩ (AABB of the whole segment)

13: // 2.3

14: if ( (AABB of P ) = ∅) then

15: // skip P because it is actually empty (has no non-empty voxels)

16: continue

17: end if

18: // 2.4

19: if ( (AABB of P ) ∩ (AABB of A) 6= ∅) then

142



Chapter 5. Our Deformation Framework and Deformation Approaches

20: patchesToRecalc.add(P )

21: end if

22: end for

23:

24: // II. Retriangulate the affected patches patchesToRecalc

25: for (each patch P ∈ patchesToRecalc) do

26: // 1.

27: Create a geometry object for the current patch to keep the triangulation, if it was

not created before

28: // 2.

29: Run the MMCA for P and store its results into the above created geometry object

30: end for

31:

32: // III. Do smoothing of all retriangulated sub-segment patches

33: for (each patch P within (A extended by the size of the patch along each coordinate

axis)) do

34: // 1.

35: Do steps I.2.1–I.2.3

36: // We do the above steps because some patches could have become empty

37: // after retriangulation

38: // 2.

39: Run the smoothing algorithm for P

40: // 3.

41: if (isGlobalSmoothing = true) then

42: Cut (the new triangulation of P ) to fit into original dimensions of (the grid cell

corresponding to P ), but with additional +/-dmc along each coordinate axis,

because the points could have been moved a little during the smoothing process

43: end if

44: end for

The worst time complexity of the above algorithm in case of the local smoothing is the

same as for the original MMCA with the original smoothing algorithm being initially

used in YaDiV. Indeed, in the worst case, that is if the whole segment is invalidated, the

same number of triangles will be created and smoothed, as in the original algorithm. The

only additional work to be done is to find which patches should be recalculated (step I),

which takes O(Nap) time, where Nap is the number of patches within the invalidated area

of the given segment. Since Nap is usually much less than the number triangles created

by the original MMCA, we can omit the time complexity for step I when estimating the

143



Chapter 5. Our Deformation Framework and Deformation Approaches

time complexity of the whole algorithm.

The average time complexity of the above algorithm in case of the local smoothing, that

is when only a certain area of the segment is invalidated, will be O(Nap/Npatches) times

the time complexity of the original algorithm. Here, Npatches is the number of patches

for the given segment. For instance, for our potential fields based deformation approach,

only a few patches are getting invalidated during the interaction.

The time complexity of the above algorithm in case of the global smoothing is the same

as for the local smoothing. Indeed, on step I.1 we extend the borders of P for the

fixed constant number of voxels. This increases the execution time on steps II and III

constant number of times. Therefore the time complexity of the algorithm will remain

the same.

Let us find the space complexity of our algorithm. Instead of one patch for the whole

segment in the original algorithm used in YaDiV, we need to store Npatches smaller

patches, but with the same amount of triangles in total and with the constant overhead

for storing data structures per patch. Therefore the extra space complexity compared

to the original algorithm is O(Npatches). Further on, we need to store the list of affected

patches, which requires another O(Npatches) in the worst case. In case of the global

smoothing, borders of patches are extended for the fixed constant number of voxels on

step I.1 (and will be cut at the end of the algorithm, on step III.3). But since the borders

are extended for the fixed constant number of voxels, the space complexity of the whole

algorithm will increase for a constant which can be ignored. Therefore the extra space

complexity of the above algorithm compared to the original algorithm used in YaDiV is

O(Npatches). Since Npatches is usually much lesser than the number triangles created by

the original MMCA, we can consider the space complexity of our algorithm to be the

same as for the original algorithm.

In the description of the above algorithm we omitted some technical details for clarity,

e.g. synchronization issues. Thus, the execution of step I and the execution of steps

II and III should be synchronized using patchesToRecalc, because in practice step I is

performed in another thread.

A possible improvement to the presented algorithm can be an adaptive sub-division of

the given segment into sub-segment patches: the more non-empty voxels there are in

the particular region of the segment, the more patches should be used for this region.

144



Chapter 5. Our Deformation Framework and Deformation Approaches

5.3 Introduction to Potential Fields Approach

There are several groups of simulation approaches discretizing an object or its area as a

set of material points and performing computations with them. One of such simulation

paradigms being popular nowadays is Smoothed Particle Hydrodynamics (SPH) based

on Navier–Stokes equations and being described/used e.g. in [61, 159, 151, 155, 48, 36,

213]. A disadvantage of these approaches arise from this paradigm – they are mostly

suitable for simulations of gases, liquids and highly deformable bodies, but may be not

so good for rigid or deformable objects, although some nice approaches were presented

in [46, 47].

There are also other particle-based methods employing various techniques. Tonnesen

[218] used dynamically coupled particle systems employing the Lennard-Jones potential

for geometric modeling, melting, tearing and surface reconstruction, as well as surfaces

represented using oriented particles. Neither empty space inside an object nor “small”

cuts are allowed. Baudet et al. [21] used the Lennard-Jones potential based simulation

of a particle system to track changes in the object’s shape from some partial informa-

tion provided by an ultrasound sensor. The authors of [154] presented a shape matching

approach being applied to an Euler integration scheme. Later on, in [152] the authors

extended the approach to oriented particles. De et al. [56] proposed a haptic rendering

method, which uses a point-associated finite field approach. The idea is to discretize

a computational domain (an organ) using a scattered set of points (“nodes”) with a

spherical influence zone with defined nodal shape function. The approach is a combi-

nation of mass-spring and FEM-based techniques, although it is “is vastly simplified

compared to the FEM” [56]. Wicke et al. [240] presented a method for computing

elastic strain without storing rest states or a connectivity, and the strain state of each

particle is computed by comparing the actual positions of the neighboring particles to

their assigned lattice positions. Harada et al. [90] presented a particle-based simulation

using GPU. They showed the simulation of fluids using SPH and the simulation of rigid

bodies approximated by a set of spheres.

We address the simulation problem from the point of view of theoretical mechanics, and

therefore use the paradigm of energy equations and potential fields. For the potential

fields approach, an object (or its area) is discretized using the set of potential fields with

associated material points, which interact with each other and are under the influence

of external forces and constraints - see e.g. [116] for details.

We would like to note that the potential fields method differs from SPH. As stated in

[116], for SPH particles are used as a numeric approach to integrate continuous equations

145



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.7: The potential fields based simulation of powder grains used in printing

(source: [80])

of dynamics of continuous media. For the potential fields method, equations of motion

of centers of potential fields, being defined by the balance of momentum and by the

interaction potential between the material points, are taken as the basis. That is, the

method is “truly” discrete. Additionally, Kuzkin, Krivtsov et al. [120, 121] showed

that SPH and the potential fields method are different in the respect that for SPH

viscosity is specified explicitly. Furthermore, the authors wrote that it is not rare that

computational artifacts appear for the SPH.

The potential fields method is used in a wide variety of simulations, and one can mark

out the following related works.

Krivtsov et al. [116] used the potential fields approach for calculation of mechanics

of deformable solids and for finding the relationship between micro– and macroscopic

parameters. Amrani et al. [26] proposed a 3D reconstruction methodology using the

method based on multilayer (bigger–smaller) potential fields systems using the Lennard-

Jones potential function. Its key idea is to put small potential fields in the areas where

details are required, and big ones everywhere else. Further on, as shown in papers de-

scribed below, Krivtsov and others scientifically proved that many properties of objects

can be simulated with a good agreement to real experimental results and with high

precision using methods of potential fields without any extra parameters (the methods

of potential fields are sometimes called methods of particle dynamics, where particles

are potential fields with associated material points). Such, Gilabert, Krivtsov et al. [80]

presented results for simulation of polymer particles (powder grains) used in xerographic

and printing industries (see figure 5.7). Use of the Lennard-Jones potential showed a

146



Chapter 5. Our Deformation Framework and Deformation Approaches

good agreement with the real compression tests using specimens of polystyrene. This

work was continued in [81], where the authors additionally used different levels of po-

tential “granularity” to model adhesive interaction force between two cohesive polymer

grains, and a good agreement with the elastic contact theories has been obtained. Fur-

ther on, the authors of [74] presented the hypothesis of origin of the Earth-Moon system

being simulated with the potential fields method. Indeitsev et al. [99] presented an

analysis of the relation between the spall strength and strain rate for solids using the

potential fields approach. As mentioned by the authors, in classical molecular dynamics

particles are atoms, whereas for the potential fields approach they can also be associ-

ated with other structural elements such as grains of the material, or be used as specific

finite elements, i.e. discrete carriers of properties of the medium. The authors used

Lennard-Jones potentials. They reported that the computer material considered under

spall fracture showed properties close to the properties of real materials. They men-

tioned that the results ensure satisfactory agreement with the experimental data. Hou

et al. [95] employed the Lennard-Jones potential and haptic rendering for biomolecular

docking. Podolskaya, Krivtsov et al. [185] did an analysis of stability and structural

transition in the FCC lattice under large deformations. They used the Morse potential

for the computer modeling using the potential fields approach. Kuzkin, Krivtsov et

al. [120, 121] presented a computer simulation of effective viscosity of fluid-proppant

mixture used in hydraulic fracturing (see figure 5.8). Both SPH and the potential fields

approach were used in order to have more reliable results. For the potential fields ap-

proach, the spline potential was used. The authors wrote that the results are in a good

agreement with the experimental study, are reliable and can be used for setting effective

viscosity of the mixture for practical tasks related to hydraulic fracturing.

To our best knowledge, there are no works using the paradigm of potential fields be-

ing discussed above for haptic rendering of deformable objects, especially for the local

deformation simulation. Additionally, our local simulation approach works “on-the-fly”

and does not put any requirements on topology as e.g. [218].

5.4 Characteristics of Potential Fields Approach

As mentioned in [116], the potential fields approach requires less apriori assumptions

about material properties compared to continuous methods, such as the FEM. It allows

to model complex properties using even simple potential fields, and many effects such

as plasticity and fractures can be gotten “automatically”.

147



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.8: The distribution of fluid and proppant particles – simulated using potential

fields approach (source: [120])

148



Chapter 5. Our Deformation Framework and Deformation Approaches

In contrast to the FEM, the potential fields approach can easily model a discontinuous

surface and topological changes, as well as breaks and fractures. Additionally, the poten-

tial fields approach allows to handle self-collisions. Further on, during the deformation

simulation object topology can be modified by the tool manupulated by the user, which

can have different forms by changing the potential field associated with the tool.

Remarks:

Following the above discussion, we generalize the definition of deformation to be not

necessarily a diffeomorphism. That is, the deformed solid should not necessarily be dif-

feomorphic to the original one. The deformed solid can have topological changes, such

as it can have new holes or it can be split into several solids.

Moreover, the potential fields approach is well-scalable just by adding more potential

fields. Further on, it can be parallelized well – see section 5.22 for details.

In the following sections we give the explanation of the classical method of potential

fields, as well as present our deformation simulation approaches. In the explanation of

the classical method of potential fields, we follow the works [116] and [115].

5.5 Equations of Motion

In the below sections we will use the bold font (e.g. r and χ) for vectors and the non-

bold font (e.g. r and Π ) for scalar values.

Following [116], let us consider N potential fields with associated material points. These

potential fields have pairwise interactions with each other. In case of a closed (conser-

vative) system, it follows from the energy balance equation that for each potential field

i the force acting on other potential fields equals the sum of forces acting from the other

potential fields on the potential field i:

mir̈i =
N∑

j=1,6=i

f (‖rij‖2)
rij
‖rij‖2

, (5.1)

where

mi – mass of material point associated with the potential field i;

ri – vector of position of center of potential field i;

rij – vector from the center of potential field i to the center of potential field j;

149



Chapter 5. Our Deformation Framework and Deformation Approaches

f(r) – scalar value of interaction force f between the potential fields, which is defined

as

f(r)
def
= −Π ′(r), (5.2)

where

r
def
= ‖r‖2 – distance between the centers of potential fields;

Π (r) – interaction potential (scalar value). We will consider various interaction

potentials in the next sections.

If an external conservative force field χ(ri) (vector), such as gravity, has to be added to

the system, then equation 5.1 will transform into the following:

mir̈i =
N∑

j=1,6=i

f (‖rij‖2)
rij
‖rij‖2

+ χ(ri). (5.3)

In case of a nonconservative system, that is if modeling of dissipation and/or modeling of

energy supply/removal is needed, an external nonconservative force field ψ (ri,vi) (vec-

tor) and nonconservative components Ψ (‖rij‖2 , ‖vij‖2) of pairwise interaction (scalars)

are added to the right part of equation 5.3:

mir̈i =
N∑

j=1, 6=i

f (‖rij‖2)
rij
‖rij‖2

+
N∑

j=1, 6=i

Ψ (‖rij‖2 , ‖vij‖2) rij + χ(ri) +ψ (ri,vi) , (5.4)

where

vi
def
= ṙi – velocity of potential field i;

vij
def
= vj − vi.

Remarks:

Further on we will use term position/velocity of potential field meaning position/velocity

of position/velocity of center of the potential field.

An external nonconservative force field ψ (ri,vi) is usually used for adding force in

vicinity of specified surfaces, as well as for energy removal using dissipation.

From the mathematical point of view, modeling of interactions for the described system

is a solution of the Cauchy problem for equations 5.4. Initial positions and velocities

are set according to the given task.

There are different ways of numerical integration of the equations of motion 5.4. As

stated in [115], for the method of potential fields it is necessary to integrate a lot of

150



Chapter 5. Our Deformation Framework and Deformation Approaches

equations putting some requirements on memory consumption and computation time.

Further on, most of computation time goes for calculation of the force acting on the

material point of the current potential field (right-hand side of equations 5.4). The

reason for this is that the force is significantly non-linear and that there is a big number

of summands (mainly interaction forces with neighbor potential fields). This reduces

the effectiveness of methods requiring repeated calculation of the right-hand side of

equations 5.4. This is one of the reasons why the Runge-Kutta method is rarely used in

the method of potential fields.

Since we want to model structures of large volume or with high level of detail, one

should choose numerical integration methods taking less computation time, such as

Verlet integration [223] or finite difference method [93]. Further on, one can use rectangle

methods or trapezoidal rule [107] requiring less computational resources.

For more details we refer an interested reader to the comprehensive overview of the

numerical integration of equations of motion for the method of potential fields which

has been presented in [115].

5.6 Interaction Potentials

Let us denote a pairwise interaction potential as Π (r). According to equation 5.2, the

force corresponding to this potential equals to f(r)
def
= −Π ′(r).

Let us define σ, a and b as the distances between centers of two potential fields for

which:

Π (σ) ≡ 0, Π ′(a) ≡ −f(a) ≡ 0, Π ′′(b) ≡ −f ′(b) ≡ 0. (5.5)

As in [115], further we consider only interaction potentials which have only one solution

for 5.5 and for which σ < a < b. That is, further we consider potentials having the

following properties:

� if two potential fields (their centers) get closer to each other (r < a) then they

repulse;

� if two potential fields get further from each other (r > a) then they gravitate

(attract);

� if a < r < b then the attraction force increases. Starting from r = b and further

the attraction force gets weaker, so that for larger r both the interaction potential

151



Chapter 5. Our Deformation Framework and Deformation Approaches

and the interaction force converge to 0, and for r > 2a they are already small.

Remark:

The statement that for r > 2a both the interaction potential and the interaction force

converge to 0 is correct only for interaction potentials being symmetric in all directions.

An example of such interaction potential and the corresponding force is shown in fig-

ure 5.9.

Definition:

Distance a is called an equilibrium distance. It is also called length of linkage.

Definition:

Distance b is called a critical distance, because it is the distance between the centers

of potential fields when the linkage breaks.

Remark:

We should note that in the system with more than two interacting potential fields the

equilibrium and critical distances are insignificantly different. We cover this topic in

more detail in the sections devoted to the correspondence between parameters of the

simulation model and real parameters of materials.

Let us introduce additional useful characteristics of interaction potentials.

Definition:

D is an energy of linkage. It is defined by the following equation:

D
def
= |Π (a)|. (5.6)

Definition:

f∗ is a strength of linkage, that is the maximum absolute value of the interaction

force f . It is defined as follows:

f∗
def
= |f(b)|. (5.7)

Definition:

C is a stiffness of linkage in the equilibrium position. It is defined as

C
def
= Π ′′(a) ≡ −f ′(a). (5.8)

Definition:

ε∗ is a percentage elongation of linkage when it breaks. It is also called an ultimate

152



Chapter 5. Our Deformation Framework and Deformation Approaches

(a)

(b)

Figure 5.9: General interaction potential and the corresponding interaction force for

σ < a < b (source: [116])

153



Chapter 5. Our Deformation Framework and Deformation Approaches

strain. It is defined by the following equation:

ε∗
def
=
b− a
a

. (5.9)

Let us denote a linearized interaction force fL as

fL(r) = C(a− r). (5.10)

Definition:

k∗ is a nonlinearity factor of linkage. It is defined as follows:

k∗
def
=
fL(b)

f(b)
=
C(b− a)

f∗
. (5.11)

Definition:

kv is a dynamics factor. It is expressed as follows:

kv =

√
−a

2Π ′′(a)

2Π (a)
. (5.12)

The dynamics factor characterizes how fast the perturbation in the material consisting

of potential fields is propagated compared to the critical propagation speed causing

distruction of the material (such as the speed of dissociation). The higher is kv, the

higher is the fragility of the material. See [115] for more details.

In order to speed-up computations of interactions, the interaction potential is usually

cut at the cut distance acut. That is, if centers of potential fields are further than acut

then the interaction force is considered to be 0. Usually acut = 2.1a because for r > 2a

both the interaction potential and the interaction force converge to 0 (see the beginning

of this section).

5.7 Commonly Used Interaction Potentials

There is a number of commonly used interaction potentials (see [115]), including those

being discussed below.

5.7.1 Lennard-Jones Potential

The equation for this interaction potential is

Π (r) = D

((a
r

)12

− 2
(a
r

)6
)
, (5.13)

154



Chapter 5. Our Deformation Framework and Deformation Approaches

where

D is the energy of linkage;

a is the equilibrium distance.

Therefore the corresponding interaction force is the following:

f(r) =
12D

a

((a
r

)13

−
(a
r

)7
)
. (5.14)

Additional characteristics of the potential are as follows.

From 5.6 it follows that D is an energy of linkage. According to the equation 5.7, the

strength of linkage is:

f∗ =
504

159
6

√
7

13

D

a
. (5.15)

Following 5.8, the stiffness of linkage is equal to

C = 72
D

a2
. (5.16)

According to 5.9 the percentage elongation of linkage when it breaks is:

ε∗ =
6

√
7

13
− 1 ≈ 0.109. (5.17)

Similarly, according to 5.11 the nonlinearity factor of linkage is:

k∗ =
169

7
6

√
7

13
≈ 2.910. (5.18)

Following 5.12, the dynamics factor is equal to

kv = 6. (5.19)

5.7.2 Mi Potential

This is a generalization of the Lennard-Jones potential. The equation for this interaction

potential is

Π (r) =
D

n−m

(
m
(a
r

)n
− n

(a
r

)m)
, (5.20)

where m and n are additional dimensionless parameters, and m < n.

155



Chapter 5. Our Deformation Framework and Deformation Approaches

Therefore the corresponding interaction force is the following:

f(r) =
D

a

nm

n−m

((a
r

)n+1

−
(a
r

)m+1
)
. (5.21)

Additional characteristics of the potential are as follows.

According to the equation 5.7, the strength of linkage is:

f∗ = mn
D

a
n−m

√
(m+ 1)m+1

(n+ 1)n+1 . (5.22)

Following 5.8, the stiffness of linkage is equal to

C = mn
D

a2
. (5.23)

According to 5.9 the percentage elongation of linkage when it breaks is:

ε∗ = n−m

√
n+ 1

m+ 1
− 1. (5.24)

Similarly, according to 5.11 the nonlinearity factor of linkage is:

k∗ = ε∗
n−m

√
(m+ 1)m+1

(n+ 1)n+1 . (5.25)

Following 5.12, the dynamics factor is equal to

kv =

√
mn

2
. (5.26)

5.7.3 Morse Potential

The equation for this interaction potential is

Π (r) = D
(
e−2α(r−a) − 2e−α(r−a)

)
, (5.27)

where α is an additional dimensionless parameter.

Therefore the corresponding interaction force is the following:

f(r) = 2αD
(
e−2α(r−a) − e−α(r−a)

)
. (5.28)

156



Chapter 5. Our Deformation Framework and Deformation Approaches

Additional characteristics of the potential are as follows.

According to the equation 5.7, the strength of linkage is:

f∗ =
αD

2
. (5.29)

Following 5.8, the stiffness of linkage is equal to

C = 2α2D. (5.30)

According to 5.9 the percentage elongation of linkage when it breaks is:

ε∗ =
1

αa
ln 2. (5.31)

Similarly, according to 5.11 the nonlinearity factor of linkage is:

k∗ = 4 ln 2. (5.32)

Following 5.12, the dynamics factor is equal to

kv = αa. (5.33)

5.7.4 Composite potentials

Composite potentials can be used in order to have faster computations or in order to

have some specific properties of the interaction potential, such as the continuity for the

second derivative at r = b. The solution for the latter case would be a potential having

different expressions for different ranges of r. The expressions must be constructed in a

way to fulfill the given requirements.

Another example of a composite potential is the modified potential, which has a different

action range but preserves major properties of the original potential. Such modified

potential is shown below:

Π̂ (r)
def
= Π (k(r − a) + a), (5.34)

where

Π is the given original potential;

k is the range modifier. For k < 1 the range of Π̂ (r) is greater than the range of Π (r),

for k = 1 they are equal, and for k > 1 the range is smaller.

157



Chapter 5. Our Deformation Framework and Deformation Approaches

5.8 Simulation Setup

We choose the Lennard-Jones interaction potential (see section 5.7.1), since it is proved

to be suitable for simulations (see section 5.3), and there is a clear way to find corre-

spondence between parameters of the potential and real parameters of the simulated

material (see sections 5.14, 5.15 and 5.19 for details).

Furthermore, in the following sections we present our novel approach extending the

original Lennard-Jones potential by using cuboid potential fields, as well as other im-

provements.

In order to have more precise simulation, we focus on the simulation of the smallest

elements of 3D volumetric objects – on voxels. Since an average segment has tens of

thousands to hundreds of thousands of voxels, for our deformation simulation proto-

type we limit the area of simulation by a moving local simulation area described in

section 5.10. The sizes of potential fields are chosen to be not bigger than voxels (kindly

see section 5.9 for details).

5.9 Initial Positions and Velocities of Potential Fields

Setting initial positions and velocities of potential fields is in general a non-trivial task.

It may change behaviour of simulated material [116, 115].

Since we work with complicated heterogeneous structures such as bone or muscle, we

must reflect this in our simulation. The author of [115] mentioned that one of the ways

of modeling such structures is to create “mono-grains” using only one kind of potential

fields and then press them together. Although this approach gives good results, it

requires hundreds thousands of potential fields and will be not interactive as required

by our prototype system.

We propose to use the dense Face-Centered Cubic (FFC) lattice (see figure 5.10) for

initial positions of potential fields and to set initial velocities to zero. We use the FFC

lattice because:

1. we would like to have at least one potential field per voxel;

2. initial system of potential fields should be stable, that is there should be no sig-

nificant “compression” or “tearing”. In other words, the system should be in the

state of a local minimum of the energy balance. This is achieved quite well by the

158



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.10: The Face-Centered Cubic (FCC) lattice. Black spheres correspond to the

centers of potential fields for the FCC packing (source: modified from Wikipedia article

“Cubic crystal system”)

FCC packing because distances between centers of every two potential fields on

the first coordination sphere is a – the equilibrium distance.

Initial velocities are set to zero because the material should be in the rest state until

a user starts to haptically interact with it. Heterogeneous behaviour of the simulated

material is reached by adjusting parameters of the interaction potential individually for

each pair of potential fields depending on intensities of voxels corresponding to their

initial positions. This is discussed in detail in section 5.15.

In more detail, the voxel is taken as a unit cell (not as a primitive unit cell – see Remark

below) for the FCC packing. Since we use the FCC packing, each voxel contains 4

lattice points (potential fields) in total. This is illustrated by spheres as potential fields

in figure 5.11. Indeed, the FCC cube has 6 centers of potential fields on the faces of

the cube, each giving half of potential field contribution. This results in 6 × 1
2

= 3

contribution. Additionally, the FCC has 8 centers of potential fields on the corners

giving 1
8

contribution each. This results in additional 8× 1
8

= 1 contribution.

Remark:

159



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.11: A unit cell of the FCC packing contains 4 lattice points (potential fields)

in total. Potential fields are illustrated as spheres

A primitive unit cell is constructed in such a way that it contains only one lattice point

(center of potential field) in total. That is, each vertex of the cell “sits” on a lattice

point being shared with the surrounding cells. It is considered that each lattice point

contributes 1
n

to the total number of lattice points in the cell, where n is the number of

cells sharing this lattice point.

Since each voxel contains 4 potential fields, we need Nsv × 4 potential fields for the

simulation, where Nsv is number of voxels in the simulation area.

Since a voxel is used as a unit cell for FCC packing, the equilibrium distance a for the

interaction potential is defined as

a =

√
2

2
avoxel, (5.35)

where

avoxel is the length of the side of a voxel.

160



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.12: The FCC packing within the simulation area in our simulation. Potential

fields are illustrated as spheres

5.10 Moving Local Simulation Area

As stated in section 5.8, we limit the area of our simulation, and this area can be

moved. In more detail, we set our simulation area as a cuboid with the center being

at the position of the IP. This form of the simulation area will be especially convenient

later for our potential fields approach using our novel cuboid potential fields, which is

presented in the sections below. The simulation area can also be viewed as a grid with

cells of voxel size.

Since we work on voxels, the dimensions of the simulation area are odd integer numbers

of voxels. The position of the IP is rounded to the closest integer value.

Since we:

1. know the dimensions of the simulation area, that is the maximum possible number

of voxels Nsv within the simulation “window”;

2. know that there should be Nsv × 4 potential fields for the simulation;

we create all the required potential field objects in advance. Each potential field object

has an isUsed flag being initially set to false.

161



Chapter 5. Our Deformation Framework and Deformation Approaches

Each iteration of the deformation loop (the loop designated for calculations of deforma-

tions – see section 5.1 for details regarding the structure of our deformation framework)

the position of the IP is updated. Therefore we need to update the simulation area, too,

so that the IP is still in the center of the simulation “window”. Potential fields being

outside the simulation area are disabled. For the voxels of the segment being “new” to

the simulated area new potential fields are added. This process is described in more

detail in section 5.11.

5.11 Reuse of Potential Field Objects

As mentioned in section 5.10, we create all potential field objects which can be possibly

used during the simulation in advance. This is possible because we know the maximum

possible number of voxels Nsv within the simulation “window”. On initialization, every

potential field has the isUsed flag being set to false. In order to effectively re-use

potential fields which are out of the simulation area due to the movement of the IP, each

iteration of the defo loop we do the steps outlined below. The following denotations are

used:

Aprev – the simulation area after the end of the previous iteration of the defo loop;

A – the simulation area being updated by the position of the IP in the beginning of the

current iteration of the defo loop (see details regarding this update in section 5.10);

L – the list of unused potential fields;

BC – the bit cube for the segment being processed.

1: for ( (each potential field P ) ∈ (potential fields with isUsed=true) ) do

2: if (initial position of center of P 6∈ A) then

3: P.isUsed := false

4: add P to L // Add to the list of unused potential fields

5: end if

6: end for

7: // Fill grid cells of the simulation area which are empty but should be

8: // filled by potential fields

9: for (each cell C ∈ A \ Aprev) do

10: if (BC.get(C.pos)=false) then

11: // No voxel at this position for the segment

12: continue

13: end if

14: while (need potential fields to fill the FCC packing for C) do

162



Chapter 5. Our Deformation Framework and Deformation Approaches

15: P := L.removeLast()

16: Set initial position of P according to the dense FCC packing for C

17: end while

18: end for

Remarks:

1. In line 2 we check not the current position of the center of the potential field but

its initial position, that is the position which was assigned to the center of the

potential field when it started to be in use

2. In practice we do more effective filling of the grid cells by potential fields than in

the second for–loop, and this more effective approach has O(Nsv) time complexity.

But this approach would be less illustrative than the presented one. Additionally,

we do not put potential fields within a
2

from the position of the IP in order to

avoid suddenly appearing repulsive forces causing an unstable behaviour of the

simulation system.

5.12 Binding to Initial Positions

Since we use the local simulation area, an approach to keep the potential fields inside

the simulation area is needed. Otherwise the user might be able to “press” the complete

simulation area away from its original location, because it just “hangs in the air” without

being attached to anything. Another issue would be the following. For the system of

potential fields being symmetric in all directions the configuration of the potential fields

corresponding to the minimum energy for the whole system is a sphere. Therefore the

configuration of potential fields would become a sphere after the simulation is run for a

while, i.e. the potential fields will move away from their initial positions even without

any interaction with the user. This behaviour will be presented especially if the local

simulation area is not fully packed by potential fields but has e.g. empty spaces inside

or curved surfaces.

Our first approach to keep potential fields in place is to bind their centers to their initial

positions using spring forces (see section 5.11 for details about how the initial position

of potential field is defined). The binding spring forces should be stronger than the

interaction forces between the potential fields in the initial configuration. Furthermore,

the binding forces help to keep the original structure of the object within the local

163



Chapter 5. Our Deformation Framework and Deformation Approaches

simulation area. Additionally, it may be reasonable to make the binding forces so

strong, that the potential fields always return to their initial positions.

We should note here that although the above approach works fine and fits for the purpose

of validation of our deformation framework, our experiments showed that introducing

the binding forces is less realistic and makes finding the correspondence between the

simulation parameters and parameters of the real material a non-trivial task. Therefore

we do not go in more detail for the current approach, but instead present another

approach being described in section 5.13.

5.13 Interaction with Borders of the Simulation Area

and with Empty Space

Another approach to solve the issues described in section 5.12 is to introduce interac-

tions with borders of the simulation area and with empty space. We define the empty

space as the space where voxels of the segment’s bit cube are set to zero and as the

space outside the bit cube. Since no additional explicit parameters are added into the

simulation system, it is easier to find the correspondence between simulation parameters

and parameters of the real material in this case, compared to the approach proposed in

section 5.12.

Describing our approach in more detail, it is not allowed for potential fields to leave

the simulation area or enter an empty space. In order to achieve this, the following is

done every simulation step for every active potential field (i.e. every potential field with

isUsed flag set to true) after update of forces, velocity and position:

1. Let us denote the movement of the center of the potential field from the previous

position p1 to the current position p2 as p12, and denote −p12 as p21. Additionally,

let us denote normalized vectors of p12 and p21 as n12 and n21, respectively

2. Since (1) the length of linkage for pairwise interaction of potential fields is a and

(2) borders of the simulation area and the empty space are absolutely rigid objects,

the equilibrium distance from the center of the potential field to any border of the

simulation area or to the empty space is a
2
. Therefore if the point

p2offset
def
= p2 +

a

2
n12 (5.36)

is outside the simulation area or inside the empty space then go to step 3, else exit

164



Chapter 5. Our Deformation Framework and Deformation Approaches

3. Mirror the component of velocity of potential field which is perpendicular to the

tangent plane of the border/empty space at the hit point. We should note here

that voxels forming the border of the local moving simulation area are axis aligned.

Further on, the empty space is represented by empty-space voxels, and each side

of the voxel is axis-aligned, too

4. “Cancel” the last update of the position of the center of the potential field:

p2 := p1 (5.37)

5.14 Correspondence to Parameters of Real Mate-

rials

Here we present the way to find the correspondence between simulation parameters

and parameters of real materials in the case of a homogeneous isotropic material. Our

approach to work with heterogeneous materials is presented in section 5.15.

An extensive and detailed description of properties of different packings corresponding

to initial positions of potential fields and a detailed description of how to find corre-

spondence between simulation parameters and physical properties of real materials can

be found in [115]. Here we present the main equations and how they are applied to the

local simulation deformation approach.

In order to define parameters of our simulation model, we need three basic parame-

ters (basic units): the mass, the distance and the time. Other parameters could be

represented via these parameters and dimensionless coefficients.

Let us take the mass m of the material point associated with a potential field as the basic

parameter of mass. Next, let us take the equilibrium distance a between the centers

of two potential fields in one-dimensional space as the basic parameter of distance.

Further on, let us take T0 as the basic parameter of time, where T0 is the period of

small oscillations of the first potential field around the equilibrium distance in case the

position of the second potential field is fixed, all in one-dimensional space.

Generally, the mass m of the material point associated with the potential field can be

found from the following equation:

m =
M

N
, (5.38)

165



Chapter 5. Our Deformation Framework and Deformation Approaches

where

M – the mass of the simulated object;

N – the number of potential fields being used to simulate it.

Since we do not simulate the entire object but simulate its part within the local simula-

tion area only, the equation 5.38 should be adjusted accordingly. Furthermore, since we

take into account voxel intensities, we actually use another equation to find masses of

material points associated with potential fields. This is discussed in detail in section 5.15.

In order to find the basic simulation parameter of distance a, let us first write down the

equation for the volume V of the simulated object:

V = pV0(χa)3N, (5.39)

where

p – the density of the packing of initial positions of potential fields compared to the

dense packing;

V0 – the dimensionless volume of the primitive unit cell of the dense packing being

calculated for the unit distance between the centers of the closest potential fields; its

value is a constant depending on the concrete packing, and it can be found in [115];

χ – the coefficient characterizing the change of the equilibrium distance in the dense

packing when the potential fields forming the packing interact with the potential fields

from the next coordination spheres. Its value is also a constant depending on the

concrete packing, and it can be found in [115].

It should be noted here that the values of V0 and χ in [115] are given for the case of

interaction potentials being symmetric in all directions.

From equation 5.39, the following expression for a can be written:

a =
1

χ
3

√
V

pV0N
. (5.40)

In our case, since the simulated object is represented using voxels and since we use

the FCC packing for the initial positions of potential fields in a way it is described in

section 5.9, we know the proportion between a and the size of a voxel. From this, we

can write down the equation for a – see equation 5.35.

In order to find the basic parameter of time T0, first let us write down the expression for

the stiffness of linkage C using the scalar velocity of propagation of longitudinal sound

waves in the medium vl:

C = m
( vl
λa

)2

, (5.41)

166



Chapter 5. Our Deformation Framework and Deformation Approaches

where

λ
def
=
vl
v0

, (5.42)

where v0 is a scalar velocity of propagation of longitudinal sound waves in 1-dimensional

chain of potential fields. The value of λ is a constant depending on the concrete packing,

and it can be found in [115].

From equation 5.41 and from the below expression for T0

T0 = 2π

√
m

C
, (5.43)

the following expression for T0 can be written:

T0 = 2πλ
a

vl
, (5.44)

The scalar velocity of propagation of longitudinal sound waves in the medium vl being

used in expression 5.44 can be found from the following expression (see [215] for details):

vl =

√
l1 + 2l2

ρ
, (5.45)

where

ρ – the density of the material;

l1 and l2 are the first and the second Lame’s parameters, which can be written as:

l1 =
Eν

(1− 2ν)(1 + ν)
, (5.46)

l2 =
E

2(1 + ν)
, (5.47)

where

E – Young’s modulus of the material;

ν – Poisson’s ratio of the material.

As mentioned in [115], the time step for the integration of the equations of motion is

defined as

∆t = ktT0, (5.48)

where kt is a dimensionless coefficient being normally chosen as 0.01–0.05 depending on

the required accuracy of computations.

167



Chapter 5. Our Deformation Framework and Deformation Approaches

The parameters of the interaction potential can be found using its stiffness of linkage

C, its strength of linkage f∗ and its energy of linkage D. These characteristics can be

expressed via m, a and T0 as follows:

C = 4π2 m

T 2
0

, (5.49)

f∗ =
ε∗
k∗
Ca, (5.50)

D =
1

2k2
v

Ca2, (5.51)

where ε, k∗ and kv are the characteristics of the interaction potential defined by expres-

sions 5.9, 5.11 and 5.12. Values of ε, k∗ and kv are constants for the concrete potential.

For the Lennard-Jones interaction potential kv = 6 (see expression 5.19), therefore the

expression for the energy of linkage D is as follows:

D =
1

72
Ca2. (5.52)

We would like to note that in our prototype system, in order to simplify the calculations,

we store coordinates of centers of potential fields in the voxel space, and therefore a

transformation to the coordinate system with the real spacing and back is done for

every operation with coordinates.

5.15 Taking into Account Voxel Intensities

In order to take into account the heterogeneity of the simulated material, we use an

important additional information stored in the volume data – voxel intensities. We

consider X-Ray Computed Tomography (CT) scans only, but using similar approach

it is possible to generalize it to MRI scans and other volume data with intensities.

Of course, for such approaches the range of intensities for different materials and the

correspondence to the material density could be different.

A good overview of how CT works can be found in [101] and [72]. In case of CT scans we

use the Hounsfield unit (HU) scale, also called as CT numbers (see e.g. Friese [72] and

[101]). The HU is a linear transformation of the measured original linear attenuation

coefficient µ into one in which the radiodensity of air at standard temperature and

pressure is defined as -1000 HU, and the radiodensity of distilled water at standard

temperature and pressure is defined as 0 HU:

HU(µ) = 1000× µ− µwater
µwater − µair

, (5.53)

168



Chapter 5. Our Deformation Framework and Deformation Approaches

where

µair – the linear attenuation coefficient of air;

µwater – the linear attenuation coefficient of water.

The above definition for the HU is generally used as a definition for calibration of CT

scanners with reference to water: the change for 1 HU corresponds to the change of

0.1% of (µwater − µair). Furthermore, µair is nearly 0. The use of the HU scale helps

to compare original linear attenuation coefficients acquired from different CT scanning

devices and with different X-ray beam energy spectra.

The HU value being assigned to the voxel is equal to HU(µv), where µv is the average

of all attenuation coefficients contained within the voxel.

For each particular material or organ, there is a correspondent interval of the HU values –

see section 5.28.3 for the concrete values. We assume that each segment in our simulation

represents a specific organ or material, and therefore has an associated interval of HU

values. That is, every voxel of the given segment has the HU value from the interval of

HU values associated with this segment.

As shown e.g. in [150], there is a correspondence between the HU values and the density

of the material. We use an approximation in a form of linear transformation from the

interval of HU values to the interval of densities. In more detail, for the given HU value

HU of the voxel, we use the following expression to approximate its density ρ:

ρ = ρmin +
HU −HUmin

HUmax −HUmin

(ρmax − ρmin), (5.54)

where

[HUmin, HUmax] – an interval of HU values associated with the given material;

[ρmin, ρmax] – an interval of densities associated with the given material.

If HU < HUmin then we set it as HU := HUmin. If HU > HUmax then we set it as

HU := HUmax.

The massm of the material point associated with the potential field is then approximated

by the following expression:

m = ρV0, (5.55)

where V0 is the volume of the material, which (the volume) corresponds to the material

point associated with the potential field. It is expressed as

V0 =
a3

4
, (5.56)

since there are 4 potential fields per voxel.

169



Chapter 5. Our Deformation Framework and Deformation Approaches

Furthermore, for each pair of interacting potential fields we calculate their own param-

eters of the interaction potential. For the Lennard-Jones interaction potential such a

parameter is the energy of linkage D. For the calculation of D (expression 5.53) we need

to calculate the stiffness of linkage C. For that, we use expression 5.49 but replace m

by mav, where mav is computed as

mav =
1

2
(m1 +m2), (5.57)

where m1 and m2 are the masses of the material points associated with the interacting

potential fields, each computed using expression 5.55. Further on, in order to use ex-

pression 5.49 for calculating C, the period of small oscillations T0 needs to be computed

using expression 5.44. And for that, the scalar velocity of propagation of longitudinal

sound waves in the medium vl needs to be calculated. For that, we use expression 5.45,

but replace ρ by ρav, where ρav is computed as

ρav =
1

2
(ρ1 + ρ2), (5.58)

where ρ1 and ρ2 are the densities of the material points associated with the interacting

potential fields. For calculation of the first and the second Lame’s parameters l1 and l2

(expressions 5.46 and 5.48) required for calculation of vl, one can either (a) use original

values of Young’s modulus E and Poisson’s ratio ν of the simulated material, or (b)

similar to expression 5.54 use an approximation to make E and µ proportional to the

average of the HU values of the two material points associated with the interacting

potential fields.

5.16 Interactions of the IP with Potential Fields

In order to simulate interactions of the haptic IP with potential fields, we consider the

IP as a potential field, too, but do not perform the integration of equations of motion

for it. Furthermore, for interactions between the IP and other potential fields we use

the repulsive part of the Lennard-Jones interaction potential only, because the potential

field associated with the IP does not belong to the same material as other potential

fields, and therefore there should be no attraction forces.

Additionally, the interaction potential for interactions between the potential field asso-

ciated with the IP and other potential fields can be varied, e.g. can have a different

equilibrium distance to implement a finger which is larger than the other potential

fields, can have a different expression (e.g. Mi potential or Morse potential) or can be

anisotropic. This will change the interactions.

170



Chapter 5. Our Deformation Framework and Deformation Approaches

Of course, the “IP–potential field” interactions are carried within our framework al-

lowing to use our improved approach of haptic rendering of volume data together with

deformation models (see section 5.1).

5.17 Dissipation in Our Approach

A dissipation is needed to take away extra energy from the system. The easiest way

to do it is to add the nonconservative force field ψ (r,v) for every potential field (see

expression 5.4), where r and v are position and speed of the center of the given potential

field, respectively. As suggested in [115], we use viscous friction:

ψ (r,v) = ψ (v) = −Bv, (5.59)

where B > 0 – a coefficient of viscous friction.

As mentioned in [115], a more flexible control over dissipation can be achieved using

thermostats [160, 161, 162, 208].

Following [115], let us find the correspondence of B to other parameters of the sim-

ulated system. Let us consider oscillations of the material point associated with the

potential field under the dissipative force (expression 5.59) and the linearized elastic

force (expression 5.10):

mẍ+Bẋ+ Cx = 0, (5.60)

where x is the displacement of the material point from the equilibrium position.

Let us define B0 as

B0
def
= 2
√
mC = 2mω0 =

2m

T0

. (5.61)

According to [115], B0 is the value of B turning the discriminant of the frequency

equation corresponding to the equation to 0. That is, B0 is the critical value of B:

� for B < B0 there is an oscillative motion within the system;

� for B ≥ B0 there are no oscillations because of a high dissipation.

In order not to have oscillations in our simulation system, we choose B to be a bit

greater than B0. Furthermore, in order for all potential fields of the same material to

have the same dissipative force, we use the same value of m, of ρ, of E and of ν (the

171



Chapter 5. Our Deformation Framework and Deformation Approaches

latter three are required for the calculation of C – see section 5.15 for details). We

choose them as the maximum values for the current material.

Since the above equations are for one potential field in the system of two potential

fields in one-dimentional case, in order to generalize it to the three-dimentional case

with many potential fields, the maximum number of potential fields sitting on the first

coordination sphere should be taken into account in order to ensure that B0 ≥ B for this

case. Therefore B0 should be multiplied by 5 for cuboid potential fields and should be

multiplied by 4 for regular potential fields. These numbers reflect the maximum factor

by which the stiffness of linkage along each coordinate axis increases if potential fields

are superimposed. Interaction forces with potential fields from the next coordination

spheres are negligible compared to the interaction forces from the first coordination

sphere, and therefore can be omitted.

5.18 Cuboid Potential Fields

Since the volume data consists of voxels being cuboids (or cubes in the voxel space, that

is in the coordinate system where the unit along each axis is equal to the voxel length

along this axis), it is more natural to represent a potential field as a cuboid of the size

of a voxel. That is, we introduce a potential field with a varied equilibrium distance,

so that potential fields with the associated material points, which are put in the center

of each voxel, already form a dense packing, and the system in this configuration is

already in the equilibrium state. In the following we consider cubic voxels, but all the

expressions and algorithms in this chapter can be generalized to cuboid voxels.

Important Remarks:

While cuboid potential fields are inspired by classic potential fields, they do not match

the original definition of potential field by 100%. The cuboid force field we associate

with the potential is not a potential field because only the radial component of the gra-

dient of the potential is later used for the calculation of the interaction force, and the

work integral is not path-independent. However the cuboid field fulfils a role similar to

the potential field because it has a set of equilibrium points which form a cuboid shape.

Also, if one varies only the distance and not the direction, it yields the same forces as a

spherically symmetric Lennard-Jones potential.

Our approach to use cuboid potential fields for the local deformation simulation is

designed in such a way that minimum changes to our potential fields based local de-

172



Chapter 5. Our Deformation Framework and Deformation Approaches

formation simulation approach presented earlier in this chapter are required. Instead

of using the original Lennard-Jones interaction potential, we use a potential, which we

denote as Cuboid Lennard-Jones potential Πcube. This interaction potential should keep

imaginary “cubes” of potential fields being axis aligned and touching each other. That

is, there should be repulsive forces if the “cube” of one potential field is (partially) inside

the second one, and there should be attraction forces if the “cubes” of two potential

fields do not touch each other by any side. In two-dimensional case this is shown in

figure 5.13. Therefore, the equilibrium distance for the “cubes” touching each other

but not being on the same axis should be adjusted (increased) in order not to cause

unnecessary attraction forces. We do this as follows. Firstly, let us define the potential

not as an expression but as an algorithm. The following denotations are used:

p1 and p2 – positions of centers of two interacting potential fields.

1. Choose one of the three coordinate axes, called A from now on, with the maximum

difference between p1 and p2 along it, that is the coordinate axis with the maxi-

mum length of projection of vector (p2 − p1) on it. There is always a coordinate

axis with non-zero difference, unless p1 and p2 have the same coordinates. But

this will not happen due to constraints of our simulation

2. Calculate the adjusted equilibrium distance acube answering the requirements de-

scribed in the beginning of this section:

acube =
a

|np1p2 · nA|
, (5.62)

where

a - the side length of a voxel;

np1p2 – a normalized vector (p2 − p1);

nA – a normalized vector of the coordinate axis A

3. Use acube as an equilibrium distance for the standard Lennard-Jones interaction

potential (expression 5.13):

Π (r) = D

((acube
r

)12

− 2
(acube

r

)6
)
, (5.63)

The above algorithm for calculation of Πcube can be rewritten as the following expression:

Πcube(r,np1p2) = D

((
acube(np1p2)

r

)12

− 2

(
acube(np1p2)

r

)6
)
, (5.64)

173



Chapter 5. Our Deformation Framework and Deformation Approaches

(a)
(b
)

(c)
(d
)

F
igu

re
5.13:

O
u
r

in
teraction

forces
in

tw
o-d

im
en

sion
al

case:
(a)

an
d

(b
)

–
n
o

forces,
(c)

–
attraction

forces,
(d

)
–

rep
u
lsive

forces.
P

oten
tial

fi
eld

s
w

ith
varied

eq
u
ilib

riu
m

d
istan

ce
a
cu
be

are
rep

resen
ted

as
im

agin
ary

“cu
b

es”
w

ith
cen

ters
at

p
1

an
d

p
2 .

T
h
e

sid
e

len
gth

of
a

vox
el

is
a
.

174



Chapter 5. Our Deformation Framework and Deformation Approaches

where

acube(np1p2) =
a

max (|np1p2 · nX|, |np1p2 · nY|, |np1p2 · nZ|)
, (5.65)

where nX,nY,nZ – normalized vectors along coordinate axis X, Y and Z, respectively.

Similar to section 5.6, in order to speed-up computations of interactions, the interaction

potential is usually cut at a cut distance acut. For regular potential fields it is normally

set to acut = 2.1a, because then it “captures” the first two coordination spheres and

because for r > 2a both the interaction potential and the interaction force converge to 0.

Since we use cuboid potential fields, we should take into account the varied equilibrium

distance. Therefore we can consider not coordination spheres but coordination cubes, so

that we take into account all 26 neighbors for the first coordination cube (see section 5.19

for more details). “Converting” the coordination cube back to the coordination sphere,

we will take into account all 26 neighbors if the first coordination sphere has such a radius

that even centers of the most distant of N26 neighbors of the given potential field (those

being on the diagonals of the coordination cube) are within the first coordination sphere.

Therefore its radius should be a
√

3. Then acut should be set to acut = 2.1a
√

3 ≈ 3.64a.

In practice we set it to acut = 3.7a.

5.19 Correspondence to Parameters of Real Mate-

rials for Cuboid Potential Fields

Let us find the correspondence between parameters of the simulated system and pa-

rameters of real materials when we use cuboid potential fields for our local deformation

simulation.

The expression for the mass m of the material point associated with the potential field

is the same as for the “regular” potential field (section 5.14) – see expression 5.38.

Furthermore, in the same way as described in section 5.15, we take into account the

Hounsfield unit value for each voxel, and therefore in practice we use expression 5.55 for

calculation of m. We write it down one more time below:

m = ρV0. (5.66)

But compared to “normal” potential fields, for cuboid potential fields the volume V0 at

the half of the varied equilibrium distance from the material point associated with the

175



Chapter 5. Our Deformation Framework and Deformation Approaches

potential field, that is the volume of a voxel, is calculated as

V0 = a3. (5.67)

We can write down the above expression for V0 because we know that for our local

deformation simulation using cuboid potential fields the equilibrium distance a between

the centers of two cuboid potential fields in one-dimensional space a should be equal to

the side length of a voxel. Furthermore, a should be taken as the basic parameter of

distance. Although the size of a voxel is usually explicitly given in the volumetric data

file, it can also be expressed via the equation 5.40 (see section 5.14 for details). We

write it down one more time below:

a =
1

χ
3

√
V

pV0N
. (5.68)

In order to make sure that a was chosen correctly, let us check that after finding all the

constants for the above equation, it will become a well-known expression for the side of

a cubic voxel:

a = 3

√
V

Nvxls

, (5.69)

where

V – the volume of the simulated object or the volume of the simulation area;

Nvxls – number of voxels within V . Since we explicitly chose potential fields to be cuboids

of the size of a voxel (see section 5.18), the number of potential fields N used for the

simulation of the object within V equals to Nvxls:

N = Nvxls. (5.70)

We start with V0 – the dimensionless volume of the primitive unit cell of a dense packing

being calculated for the unit distance between the centers of the closest potential fields.

In our case of cuboid potential fields, the primitive unit cell equals one voxel, therefore

its volume equals to the volume of a voxel. Since V0 is dimensionless, the expression for

it is the following:

V0 = 13 = 1. (5.71)

Another constant in the equation 5.68 is p – the density of packing for initial positions

of potential fields compared to the dense packing. In the case of cuboid potential fields

we have the densest possible packing, therefore

p = 1. (5.72)

176



Chapter 5. Our Deformation Framework and Deformation Approaches

One more constant in the equation 5.68 is χ – the coefficient characterizing the change

of the equilibrium distance in the dense packing when the potential fields forming the

packing interact with the potential fields from the next coordination spheres. For “reg-

ular” potential fields its value is a constant depending on the concrete packing, and it

can be found in [115]. But for the case of cuboid potential fields we need to calculate

its value ourselves. In order to do this, we need to understand how it is computed.

According to [115], the expression for χ for “regular” potential fields is as follows:

χ =
R1

a
, (5.73)

where the radius of the first coordination sphere R1 is written as

R1 = R%1, (5.74)

where

%1 – the relative radius of the first coordination sphere (relative to the radius of the first

coordination sphere for the one-dimensional chain of potential fields);

R – unknown value, which could be found from the expression 5.77 below.

Since we use cuboid potential fields, expression 5.74 should be rewritten as

χ =
R1

acube(np1p2)
. (5.75)

Since we use cuboid potential fields, the coordination cube instead of the coordination

sphere should be used in order to take into account all N26–neighbours of the given

potential field. It will be implicitly used if we incorporate acube(np1p2) into the expression

for %1:

%1 =
acube(np1p2)

a
. (5.76)

For the standard Lennard-Jones interaction potential, the expression for R is the fol-

lowing (see [115] for details):

R = a 6

√∑n
k=1Nk%

−12
k∑n

k=1Nk%
−6
k

, (5.77)

where

k – the number of the coordination sphere;

n – the number of considered coordination spheres;

Nk – the number of potential fields on the k–th coordination sphere;

%k – the relative radius of the k–th coordination sphere.

177



Chapter 5. Our Deformation Framework and Deformation Approaches

For the first coordination sphere only, i.e. for n = 1, expression 5.77 will become the

following:

R = a 6

√
N1%

−12
1

N1%
−6
1

. (5.78)

In order to find the value of R, we need first to understand how expression 5.77 is found.

It is found from the following equation for R:

n∑
k=1

Nk%kf(%kR) = 0, (5.79)

where f(r) is the interaction force for the given interaction potential.

For the first coordination sphere, i.e. for n = 1, and for the cuboid Lennard-Jones

potential equation 5.79 will become the following:

N1%1f(%1R) = 0. (5.80)

After replacing %1 by the right side of expression 5.76 and after taking into account that

because of the above expression for %1, N1 equals to 26, equation 5.80 will become the

following:

26
acube(np1p2)

a
f(
acube(np1p2)

a
R) = 0⇔

26
acube(np1p2)

a

12D

acube(np1p2)

((
acube(np1p2) a

acube(np1p2) R

)13

−
(
acube(np1p2) a

acube(np1p2) R

)7
)

= 0⇔

312D

a

(( a
R

)13

−
( a
R

)7
)

= 0

(5.81)

The only positive real solution for the above equation is:

R = a. (5.82)

As could be seen from the above expression, the value ofR does not depend on acube(np1p2).

Now, using expressions 5.74, 5.76 and 5.82, let us write the new expression for R1:

R1 = R%1 = a
acube(np1p2)

a
= acube(np1p2). (5.83)

Further, using the above expression and expression 5.75, let us write the new expression

for χ:

χ =
R1

acube(np1p2)
=
acube(np1p2)

acube(np1p2)
= 1. (5.84)

178



Chapter 5. Our Deformation Framework and Deformation Approaches

Now we know all the constants for expression 5.68, and therefore we can rewrite it as

follows:

a =
1

χ
3

√
V

pV0N
=

1

1
3

√
V

1 · 1 ·N
=

3

√
V

N
. (5.85)

Since N = Nvxls (expression 5.70), the above expression can be rewritten as:

a = 3

√
V

Nvxls

.

As expected, the resulting expression for a is the same as the well-known expression for

the side of a cubic voxel 5.69. This is what we wanted to check. Therefore the basic

parameter of distance a is chosen correctly.

Since we use cuboid potential fields, we also need to find a new value of λ (see expres-

sion 5.42). According to [115], for an isotropic material λ can be found as follows:

λ =

√
3M

2d(d+ 2)
, (5.86)

where

M – the coordination number, that is the number of the closest neighbors for each

potential field;

d – the dimension of space.

In case of cuboid potential fields in three-dimensional space, M = 26 and d = 3. We

insert this into the above expression, which works for potential fields, to estimate λ for

our related cuboid potential fields:

λ =

√
3 · 26

2 · 3 · 5
=

√
13

5
. (5.87)

For the basic parameter of time T0 we use the same expressions as in section 5.14, but

with updated values for the parameters and constants found in the current section. After

finding all basic parameters, parameters of interaction potentials can be found using the

same expressions as is in section 5.14.

Similarly, in order to take into account the heterogeneity of the simulated material, we

use the same expressions as in section 5.15, but with corrections and updated parameters

and constants from the current section.

179



Chapter 5. Our Deformation Framework and Deformation Approaches

Similar to section 5.14, we would like to note that in our prototype system, in order to

simplify the calculations, we store coordinates of centers of potential fields in the voxel

space, and therefore a transformation to the coordinate system with real spacing and

back is done for every operation with coordinates.

5.20 Limit Maximum Interaction Force

In order to prevent instability of the simulation system, we should limit the maximum

velocity and limit the travel distance for potential fields per a haptic frame. Such

instability can arise if centers of potential fields are at the distance r � a from each

other, causing a high repulsive force by the repulsive component of the Lennard-Jones

interaction potential. In practice limiting the velocity or the travel distance is not

effective, because the potential field will still “remember” high interaction force and will

bring it to the next haptic frame. Instead, we limit the maximum interaction force f

for each pairwise interaction of potential fields. That is, if |f | > fmax, fmax > 0 then

f = sign(f) fmax. (5.88)

5.21 “Multi-Layered” Simulation

In order to have faster simulation and higher precision of the simulation, we use a

“multi-layered” simulation approach. Each simulation step, we do calculations in close

vicinities of the position of the IP first, and then calculations of the whole simulation

area. The outline of the approach is as follows:

Let us denote the passed time since the beginning of the last simulation step as ∆t.

Further on, let us split ∆t into n parts, so that ∆t = ∆t1 + ∆t2 + ... + ∆tn, where n

is the number of sub-steps (that is, the number “layers”), which we want to have each

simulation step. Then:

� Sub-step 1: for the 1st closest vicinity around the IP – we use the integration step

∆t1

� Sub-step 2: for the 2nd closest vicinity around the IP – we use the integration

step ∆t2 for the potential fields being in the 1st vicinity, and ∆t1 + ∆t2 for the

potential fields being only in the 2nd vicinity

180



Chapter 5. Our Deformation Framework and Deformation Approaches

� Sub-step 3: for the 3rd closest vicinity around the IP – we use ∆t3 for the potential

fields being in the 1st and the 2nd vicinities, and ∆t1 + ∆t2 + ∆t2 for those being

only in the 3rd vicinity

� ...

� Sub-step n: for the n-th closest vicinity around the IP – we use ∆tn for the

potential fields being in the 1st to n − 1-th vicinities, and ∆t1 + ∆t2 + ... + ∆tn

for those being only in the n-th vicinity.

There are additional technical issues, such as dealing with the following case: if a poten-

tial field A being in the i-th vicinity interacts with a potential field B which is out of the

1st to the i-th vicinities, then B should be considered to be a part of the i-th vicinity.

Otherwise the interaction between the potential fields A and B will be ignored. Such

issues have been solved during the implementation of the approach presented above, but

their technical description lies out of focus of the current dissertation.

5.22 Speed-up Structure to Find Interactions

In order to speed-up finding of interactions between potential fields, a speed-up structure

is used.

As mentioned in section 5.6, if centers of two potential fields are further than the cut

distance acut then it is assumed that interaction forces between them are negligible, and

therefore we do not need to consider such pairs. Therefore we need to find all pairs of

potential fields for which the distance between their centers is not greater than acut.

A naive algorithm to find the interactions is to check for every potential field the distance

between its center and the center of every other potential field. But this algorithm has

time complexity of

O(N2
pf ), (5.89)

where Npf is the number of potential fields in the simulation system.

Much more effective approaches (with time complexity being proportional to Npf ) are

described in [83] and in [116, 115]. Such the authors of two latter works divide all the

space into a regular cubic grid with the side of cubic cell being equal to acut. For every

cell only interactions between potential fields inside the cell and with the potential fields

being in the N26-neighboring cells are considered, and the integration of equations of

181



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.14: The space is divided into areas being assigned to different processors. Each

such area contains cubic grid cells with side acut (source: modified from [115])

motion is being made for them only. The authors wrote that in case of multi-processor

systems these calculations can be effectively parallelized. In order to achieve this, the

simulation space is divided into bigger areas, and each area is assigned to a particular

processor. Furthermore, the grid cells being on the borders of the bigger areas being

assigned to different processors should be updated after the computations for all grid

cells is completed in order to consider interactions and results of integration from all

adjacent areas. See figure 5.14 for details.

Based on the aforementioned approach, we propose the algorithm presented below. The

presented algorithm and time complexity analysis below are given for the case when

everything is executed on one processor only. This can be seen as a theoretical analysis

preparing the future extensions to the parallel computing with multi-processors, which

will significantly speed up the computations. The proposed algorithm is as follows.

182



Chapter 5. Our Deformation Framework and Deformation Approaches

As in the aforementioned approach, the space is divided into a regular cubic grid. The

side of the cube can be set differently, but we experimented with cubic cells with the side

being equal to acut. Potential fields are assigned to corresponding grid cells depending

on coordinates of their centers. In order to create and store this assignment, we use a

multi-hash map (a multi-hash map is a hash map which can have more than one value

for the same key). Each grid cell has its own hash key, and hash keys are calculated

from coordinates of centers of potential fields in such a way that if and only if potential

fields have centers inside the same grid cell then they have the same hash key. For

instance, for the grid with cells with side being equal to acut, we create a hash key from

coordinates as below. The following denotations are used:

xR, yR, zR ∈ R – input coordinates;

x, y, z ∈ I – variables;

k ∈ I+ ∪ {0} – a hash key;

xmax, ymax, zmax ∈ I+ ∪ {0} – maximum allowed integer coordinates depending on how

many bits are used in the representation of single (long) integer value inside the com-

puter;

>> – left bit shift operation (we assume that the lowest bit is in the right-most posi-

tion);

<< – right bit shift operation;

(<predicate>) ? <value1> : <value2> – a compact notation of if–else block being

used in some programming languages, such as C++.

1: // Use the integer part of input coordinates only. By this we ensure that potential

2: // fields with centers within the same grid cell will have the same hash key

3: x := bxR/acutc
4: y := byR/acutc
5: z := bzR/acutc
6: if (|x| > xmax or |y| > ymax or |z| > zmax) then

7: // The key will not fit into long integer. Normally it means that the

8: // potential field is far away from the simulation area, so just ignore

9: // it and return the “bad key”

10: k := INVALID KEY // Special value indicating that the key is invalid

11: return

12: end if

13: // create the hash key, which has the following bit representation:

14: // |x| |y| |z| <sign of x> <sign of y> <sign of z>.

15: // Put absolute values of the coordinates into the hash key

16: k := |z|+ (|y| << bitShiftForY ) + (|x| << bitShiftForX)

183



Chapter 5. Our Deformation Framework and Deformation Approaches

17: // Put signs of the coordinates into the lowest three bits

18: k := (k << 3)+((z < 0) ? 1 : 0)+(((y < 0) ? 1 : 0) << 1)+(((x < 0) ? 1 : 0) << 2)

For the hash key constructed in the above listing, the higher bits contain absolute in-

teger values of the coordinates (with possibly equal number of bits per coordinate –

depending on the size of (long) integer representation inside the computer), and lower

three bits contain their signs: 1 for sign -1, and 0 for sign 0 or sign +1.

In order to find interactions of the potential fields having centers in the current grid cell

with other potential fields using the above presented speed-up struture, the grid cells

are iterated one by one. For every grid cell, only the interactions between potential

fields inside this cell and the interactions between potential fields inside this cell and

potential fields being in the N26-neighboring cells are considered. The visited cells have

the corresponding flag being set to true in order not to search for interactions with

potential fields from already visited grid cells. Of course, the more there are potential

fields in the system, the faster the described approach works compared to the naive

O(N2
pf ) algorithm.

Although in the worst case (when all potential fields are inside the same grid cell) the

proposed algorithm still has O(N2
pf ) time complexity, the average case time complexity

(with potential fields being distributed nearly regularly among the grid cells) is

O

(
N2
pf

Ncells

)
, (5.90)

where Ncells is the number of grid cells within the simulation area.

If Ncells ∼ Npf then the time complexity can be rewritten as

O(Npf ). (5.91)

As mentioned above, we experimented with cubic grid cells with the side being equal to

acut. Therefore the factor in the proportion Ncells ∼ Npf is reasonably small.

The space complexity is

O(Npf +Ncells). (5.92)

Indeed, we need an additional space to store all non-empty cells and to store the infor-

mation about in which cell is each potential field. Since the number of cells within the

simulation area Ncells is not greater than the total number of potential fields Npf , the

space complexity can be rewritten as

O(Npf ). (5.93)

184



Chapter 5. Our Deformation Framework and Deformation Approaches

An additional improvement to the above algorithm can be an adaptive grid cell resolu-

tion, similar to the ideas from [83].

5.23 Force-feedback

We did not need to add an extra force-feedback, because the already existing force-

feedback within our framework (see chapter 4 for details) gives good results, as expected.

Indeed: our rigid-based collision detection and response does not allow the IP to go inside

any object, and the corresponding force-feedback is delivered to the user. Further on, we

brought this force-feedback into our haptic rendering framework with collision detection

guarantee and with support for different deformation models (see section 5.1 for details

about the framework). Since we use the potential fields–based deformation approaches

described in this chapter together with this framework, the aforementioned collision

detection guarantee and the force-feedback are still “in force”. Furthermore, when the

IP, which is considered as a repulsive potential field for our deformation approach (see

section 5.16), interacts with other potential fields, it causes other potential fields to

move, causing a deformation, which is then transfered to the object’s bit cube. Once

there is a deformation, the IP can be moved further “inside” the object until it hits

its new border being computed using the updated bit cube of the object. This new

border is considered at the moment as the rigid border of the object. Therefore the hit

is computed and delivered to the user using the rigid-based approach. Once the object

is deformed again, the IP can be moved further inside until it hits the new border of the

object, which at that moment is again considered as the rigid border of the object. Then

the process is repeated again. We can note here that the haptic thread works faster than

the simulation (deformation) thread, and therefore for the most of the haptic frames

the border of the object is considered unchanged, until there are new results from the

simulation thread causing an update of the object’s bit cube.

There is also an option to consider the forces caused by the interaction of the IP’s

potential field with other potential fields to be a part of the force-feedback. But accord-

ing to our experiments and comparison of two approaches, reasonably good results are

achieved without this option.

185



Chapter 5. Our Deformation Framework and Deformation Approaches

5.24 Time and Space Complexities of the Potential

Fields Approach

First, let us estimate the time complexity. Each simulation step, the following is done:

1. The set of potential fields is being updated by reusing potential field objects (see

section 5.11). This takes O(Npf ) time, where Npf is the number of potential fields

in the simulation system

2. Interacting potential fields are being searched. According to section 5.22, this

takes O(Npf ) time in the average case and O(N2
pf ) time in the worst case

3. Interaction forces are being computed for each interacting pair. Although in the

worst case (when all potential fields are inside the same grid cell) there are O(N2
pf )

interaction pairs, the number of pairs in the average case (when potential fields are

distributed nearly regularly among the grid cells and the number of grid cells is

proportional to Npf ) is proportional to Npf (see section 5.22 for details). Therefore

the average time complexity for this step will be O(Npf ), because computing forces

for each pair takes O(1) time

4. The integration of equations of motion is done for every active potential field.

Since the integration takes O(1) time per potential field, the time complexity for

this step is O(Npf ).

As can be seen from the above summary, the overall worst case time complexity is

O(N2
pf ), (5.94)

while the overall average time complexity is

O(Npf ). (5.95)

The space complexity is

O(Npf ). (5.96)

Indeed, we need to keep data for every potential field, such as the position, the velocity,

the force and the mass. It requires O(1) space. Therefore, all potential fields require

O(Npf ) space. Further on, the speed-up structure to find interacting potentials requires

O(Npf ). In the worst case there are O(N2
pf ) interaction pairs, but it is possible to design

the algorithm so that the pairs are not stored for later processing but are processed

immediately. Furthermore, in the average case (see above for more details about what

is called the average case) there are O(Npf ) interaction pairs only.

186



Chapter 5. Our Deformation Framework and Deformation Approaches

5.25 Update of Volumetric Data for the Potential

Fields Approach

At the end of each simulation step, the segment’s volumetric data should be updated

according to the current configuration of potential fields. We do it as described below

(all coordinates are rounded to integers where needed).

1. Reset array Cvc, which keeps the number of potential fields for each voxel within

the simulation area A (where the position of the simulation area is defined by the

position of the IP in the beginning of the simulation step). Array Cvc has the size

of the simulation area and is reused every simulation step. We reset all elements

of the array by setting them to -1 indicating that there is no potential field at the

corresponding voxel

2. Fill Cvc. That is, for each potential field P with P.isUsed = true we do the

following:

(a) If the initial position of the center of P is out of A then skip P (see remark 1 in

section 5.11 for the definition of the initial position of the center of potential

field)

(b) If the value of the element of Cvc corresponding to the initial position of the

center of P is -1 then set it to 0. This will indicate that there initially was a

potential field at the current voxel

(c) If the current position of the center of P is out of A then skip P

(d) If the value of the element of Cvc corresponding to the current position of the

center of P is -1 then set it to 0. This step will be followed by the next step

where we increase the value of the element of Cvc by one, therefore the value

of the current element will be greater than 0. The current step is needed to

ensure that 0 value will be set only for those elements which initially had a

potential field at the corresponding voxel

(e) Increase the value of the element of Cvc corresponding to the current position

of the center of P by 1

3. Update voxels within A. That is, for each element Cvc[i] of Cvc do:

(a) If Cvc[i] = −1 then skip the corresponding voxel, because there initially was

no potential field at this voxel (i.e. it was empty space)

187



Chapter 5. Our Deformation Framework and Deformation Approaches

(b) If Cvc[i] ≥ 0 is less then the threshold number (it is different for the original

and cuboid potential fields based approaches) then the corresponsing voxel

is set as empty, otherwise it is set as non-empty.

The time complexity of the above method is O(Npf ). Indeed, in order to fill Cvc we go

through all the potenital fields once. Further on, in order to update voxels within A we

go through each element of Cvc once. The number of elements in Cvc is the same as the

number of voxels within A. Further on, the number of voxels within A is proportional

to Npf (see sections 5.10 and 5.18 for details).

The space complexity is O(Npf ), because we need to store the array Cvc having the size

being proportional to Npf .

5.26 The Global Simulation using Potential Fields

In addition to the local simulation approach, we propose the first prototype for the

global simulation using the potential fields approach. The goal of this prototype is

to show that our haptic rendering framework supporting different deformation models

works well with a global deformation approach.

The outline of our global simulation algorithm is as follows.

1. Initialization (done before the start of the deformation simulation). Ideally, the

union of all areas within the specified distance da being not less than 0.5a from

the centers of potential fields should cover all non-empty voxels of the segment,

and the configuration of potential fields should be in the equilibrium state (see

figure 5.15). For the current global simulation prototype we do it as follows:

(a) Set initial positions of potential fields within the segment. For our prototype,

we put them at the regular interval from each other being lesser than a

(this is needed for the next step), where the equilibrium distance a is chosen

depending on the available computational power, so that the simulation is

interactive. Furthermore, we put a potential field into the segment only if

the number of non-empty voxels within 0.5a radius from its center is greater

than the specified threshold

(b) Run the potential fields based simulation until the potential fields system

reaches an equilibrium state. During the simulation, interaction of potential

fields with empty space is done as described in section 5.13

188



Chapter 5. Our Deformation Framework and Deformation Approaches

(c) Set the initial positions of centers of the potential fields to be equal to their

current positions

(d) Bind the centers of the potential fields to their initial positions by the binding

force as described section 5.12

(e) For each potential field P , associate voxels, which are within da radius from

the center of P , with P . The voxels can be associated with several potential

fields at the same time

2. Each iteration of the deformation simulation we do the following:

(a) Compute interactions between potential fields using similar equations as for

potential fields for the local deformation simulation. The difference is that

for the global deformation simulation we additionally compute binding to

initial positions forces and do not compute interactions of potential fields

with empty space and with borders of the simulation area because we make

the simulation area for the global deformation simulation approach being

unlimited. Additionally, parameters of the simulation model are different

compared to the local simulation approach, e.g. a and m are typically larger

(b) For each potential field, if its center moved more than the specified threshold

since the last iteration of the simulation loop then we update the positions

of the associated voxels accordingly

(c) Do smoothing of the voxel positions depending on how many potential fields

“own” the voxel, depending on translations of the “owning” potential fields

and depending on other parameters. For the current version of the global sim-

ulation prototype, we move the associated non-empty voxels together with

the centers of potential fields and invalidate the changed areas of the volu-

metric data.

As could be seen from the above algorithm, some voxels of the original segment may

be omitted if the configuration of potential fields does not cover all non-empty voxels.

It is so because the goal of the current global simulation prototype was to show that

our haptic rendering framework supporting different deformation models works well

with a global deformation simulation approach, while the global deformation approach

itself is considered as a “black-box”, and therefore its details are not important for the

validation. In this sense, the proposed global simulation prototype using potential fields

answers all the requirements. Improvement of the voxel coverage, as well as better initial

positioning of potential fields and improved deformation simulation is planned for future

189



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.15: The prototype of the global deformation simulation using potential fields.

Potential fields are illustrated as spheres of diameter a (the equilibrium distance). Each

potential field “owns” voxels within da (da ≥ 0.5a), which are associated with it

work. Thus, e.g. replacement of binding to initial position forces by the paradigm of

interaction with empty space outside the segment (as for our local simulation approach)

will allow to find the correspondence between parameters of the simulation model and

parameters of real materials in the similar way as for the local simulation approach,

but considering bigger “size” of potential fields. Additionally, the global simulation

approach can be combined with our local simulation approaches.

190



Chapter 5. Our Deformation Framework and Deformation Approaches

5.27 Results

As mentioned in section 5.1, our deformation framework was designed for easy inte-

gration of different deformation simulation approaches into our prototype system. For

each of our local and global potential field based deformation simulation approaches,

a child class of the “Abstract Defo Algorithm” class is created. Within each of these

classes, required abstract methods are overloaded with the actual logic of the concrete

algorithm. Additionally, a child class of “Abstract Data for Defo Algorithm” class is

created for each child class of “Abstract Defo Algorithm” in order to cache and/or keep

the concrete deformation approach specific data between iterations of the deformation

loop. The diagram showing the relations between all the classes is shown in figure 5.3.

See section 5.1 for more details.

As mentioned in section 5.1, the deformation simulation is run in a separate deformation

thread. This ensures that our prototype system works with the stable update rate being

independent from the deformation simulation approach (if the PC has enough processor

cores). To test this, we used the same real tomography data sets, including Torso

(figure 5.16), Headbig (figure 5.17) and Headsmall (figure 5.18), as in chapter 4 and in

our works [225, 227, 226]. As was mentioned in the beginning of this chapter, we chose

the method of potential fields for deformation simulation approaches used for validation

of our prototype system. Based on it, we proposed local and global potential field based

approaches and introduced novel cuboid potential fields. These methods were described

in detail in the this chapter.

In more detail, we measured the haptic update rate for our improved joined collision de-

tection and response approach described in chapter 4 and in our work [226]. We did the

measurements without a deformation simulation, with the local potential fields based

local deformation simulation, with the cuboid potential fields based local deformation

simulation and with the global deformation simulation. The haptic update rate was

measured for real haptic devices and during the maximum load for our joined collision

detection and response approach, and during the maximum load for the selected de-

formation simulation. Under the “maximum load” a continuous interaction with scene

objects is meant. The same haptic devices as in chapter 4 and in our works [225, 227, 226]

were used (see section 4.10 for details). Additionally, compared to chapter 4 and our

works [225, 227, 226], we used a less powerful moderate end-user PC (4 x AMD FX-4100

CPU, 8 GB RAM, NVIDIA GeForce GTS 450).The obtained haptic update rates for all

the measurements are shown in tables 5.1 and 5.2, where:

Data – the name of data set;

191



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.16: The Torso data set with visual debug information

Figure 5.17: The data set Headbig with visual debug information

192



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.18: The data set Headsmall with visual debug information

Size – the size of volumetric data of the given data set;

Triangles – the initial number of triangles in the scene (i.e. when all segments are not

modified) for the graphics rendering as a reference;

No Defo Rate – the update rate of our prototype system (for our improved joined

collision detection and response approach described in chapter 4 and in our work [226])

without a deformation simulation;

Local PFs Rate – the update rate of our prototype system with the local potential

fields based local deformation simulation;

Local Cuboid PFs Rate – the update rate of our prototype system with the cuboid

potential fields based local deformation simulation;

Global PFs Rate – the update rate of our prototype system with the global potential

fields based deformation simulation.

The haptic rates were averaged over one second time intervals in order to minimize fluc-

tuations within each time interval. Sixty one–second samples were collected per each

experiment. The average resulting update rates presented in table 5.2 are the update

rates found by averaging values for all 60 one-second samples for each experiment.

As expected, the results show that the haptic update rate of the prototype system

remains stable when a deformation simulation is added. It does not decrease for both

193



Chapter 5. Our Deformation Framework and Deformation Approaches

T
ab

le
5.1:

R
esu

ltin
g

ran
ges

of
u
p

d
ate

rates
for

th
e

d
eform

ation
fram

ew
ork

D
a
ta

S
ize

T
ria

n
g
le

s
N

o
D

e
fo

R
a
te

L
o
ca

l
P

F
s

R
a
te

L
o
ca

l
C

u
b

o
id

P
F

s
R

a
te

G
lo

b
a
l

P
F

s
R

a
te

H
ead

sm
a
ll

113x
256x

256
690k

61–77
k
H

z
56–74

k
H

z
57–77

k
H

z
109–129

k
H

z

T
orso

520x
512x

512
2,222

M
i

47–65
k
H

z
59–67

k
H

z
65–71

k
H

z
49–140

k
H

z

H
ead

big
464x

532x
532

6,136
M

i
54–74

k
H

z
67–74

k
H

z
64–72

k
H

z
55–127

k
H

z

T
ab

le
5.2:

R
esu

ltin
g

average
u
p

d
ate

rates
for

th
e

d
eform

ation
fram

ew
ork

D
a
ta

S
ize

T
ria

n
g
le

s
N

o
D

e
fo

R
a
te

L
o
ca

l
P

F
s

R
a
te

L
o
ca

l
C

u
b

o
id

P
F

s
R

a
te

G
lo

b
a
l

P
F

s
R

a
te

H
ead

sm
a
ll

113x
256x

256
690k

66
k
H

z
68

k
H

z
64

k
H

z
120

k
H

z

T
orso

520x
512x

512
2,222

M
i

57
k
H

z
63

k
H

z
68

k
H

z
96

k
H

z

H
ead

big
464x

532x
532

6,136
M

i
69

k
H

z
72

k
H

z
67

k
H

z
96

k
H

z

194



Chapter 5. Our Deformation Framework and Deformation Approaches

local and global simulation approaches. Furthermore, the haptic update rate is still an

order of magnitude higher than the required 1 kHz. As in chapter 4 and in our work

[226]), the update rate still does not depend on the size of the volume data because

the algorithm works locally. The update rates are given as a range because segments

have different shape and topology and therefore calculation of interactions takes slightly

different time in different areas of segments. Another reason is that the user may not

touch the segment’s surface 100% of the time if the surface is uneven. E.g. the handle

may “fly” over some small concavities if the user moves it fast. Additionally, for the

deformation simulation, the IP never penetrates or goes through any object, but due to

specific of the potential fields based approaches there will be some haptic frames when

all potential fields are pushed away from the IP, and therefore the IP will be in the empty

space. In such cases the IP may remain in the empty space for a number of haptic frames,

what adds fluctuations into the averaged haptic update rate over one-second intervals.

These cases happen more often for global potential fields based deformation simulation

because of the bigger size of potential fields and because of the current approach used for

the global simulation (see section 5.26 for details). This results in the higher update rates

for the upper values of the range for the global simulation. Further on, the lower value

of the range of update rates for the global simulation for Headsmall data set is higher

compared to other data sets because of the smaller size of the data set, which resulted

in faster deformation simulation and smaller number of potential fields used during the

simulation. Among other reasons for the resulting update rates to be presented as a

range, there are fluctuations in the update rate in case of interactions of the IP with

thin objects or objects with empty-space voxels inside (i.e. “holes”). E.g. if there is an

interaction with a skin layer of the Headsmall data set, the handle will penetrate through

it during the deformation simulation, and then there will be some haptic frames with

no interactions until the handle reaches the bone surface. The haptic frames with no

interactions are run very fast and therefore will increase the resulting averaged update

rate.

The update rates of the deformation loop for the same data sets for the local potential

fields approach and for the cuboid potential fields approach are shown in table 5.3, where

“av.” means the average update rate of the deformation loop. The average update rate

for the deformation loop was acquired in the same way as the average haptic update rate

for our improved joined collision detection and response approach described in chapter 4

and in our work [226] (table 5.2). The measurements were conducted in the same way

as for tables 5.1, 5.2. As could be seen from table 5.3, the cuboid potential fields

approach has the same order-of-magnitude simulation time while providing a simpler

and more natural simulation for volumetric data using less potential field objects. For

195



Chapter 5. Our Deformation Framework and Deformation Approaches

Table 5.3: The update rates for the deformation simulation

Data Size Triangles Local PFs Rate Loc. Cub. PFs Rate

Headsmall 113x256x256 690k 48–92 (av. 60) Hz 29–45 (av. 30) Hz

Torso 520x512x512 2,222 Mi 49–54 (av. 51) Hz 26–30 (av. 28) Hz

Headbig 464x532x532 6,136 Mi 51–100 (av. 70) Hz 21–23 (av. 22) Hz

Table 5.4: The update rates for the deformation simulation, normalized by the number

of voxels in the simulation area

Data Size Triangles Local PFs Rate Loc. Cub. PFs Rate

Headsmall 113x256x256 690k 48–92 (av. 60) Hz 116–180 (av. 120) Hz

Torso 520x512x512 2,222 Mi 49–54 (av. 51) Hz 104–120 (av. 112) Hz

Headbig 464x532x532 6,136 Mi 51–100 (av. 70) Hz 84–92 (av. 88) Hz

the same number of potential fields, the simulation speed for the cuboid potenial fields

approach is lower compared to the “classical” local potential fields approach because

of the way the cuboid potential is computed, because we consider interaction with

more neighbors resulting in more accurate simulation and because the same number

of cuboid potential fields covers 4 times more voxels than “classical” potential fields.

The cuboid potential fields approach has the same time complexity as the “classical”

local potential fields approach, while still ensuring stability and smoothness of the force

feedback. Furthermore, if normalized by the number of voxels in the simulation area, the

simulation speed for the cuboid potential fields approach is faster than for the “classical’

potential fields approach – see table 5.4.

5.28 Results – Use Cases

5.28.1 Adding Meta–Information

Riga in his Bachelor work [194] proposed a method based on our approach. The author

of the current PhD thesis was a co-supervisor of his work. The motivation for [194] was

to enable the user to add a meta–information to virtual surfaces simply and naturally

196



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.19: Triangles before (left) and after (right) discretization (source: [194])

using a haptic device. This is needed e.g. for marking anatomic regions and landmarks.

The approach is used together with the YaDiV Deformable Model Framework (YDMF)

developed at Welfenlab by Becker, Friese et al. [23]. The idea of the approach is as

follows.

The YDMF uses a triangulated surface for the object representation. Since our approach

works with volumetric data, the output of the YDMF is voxelized first. But instead of

using a bit cube for the voxel representation of an object (a segment), the triangle index

is used. That is, each voxel stores the value equal to the index of the triangle whose

surface the voxel intersects, or the special index indicating no triangle. This is illustrated

in figure 5.19.

During the haptic interaction, our approach is used with the voxelized data obtained as

described above. In order to find the triangle with which the user is currently interacting,

our ray casting approach is used, and then the triangle is obtained using the index being

stored in the hit voxel – see figure 5.20. This takes O(1) time. If the user presses the

“mark it” button, the triangle is marked. In order to improve the force feedback, the

triangle normal can be used instead of the normal from our approach. In order to further

improve the quality of the force feedback, Phong shading of normals of adjacent triangles

can be employed. This would take O(1) because the adjacent triangles can be obtained

in O(1) time using the pre-computed adjacent triangles structure, which already exists

in YaDiV.

The approach requires additional O (Nvoxels), where Nvoxels is the number of voxels used

197



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.20: Ray casting with 1–voxel from step P1 to P2 to find the hit voxel for the

voxel cube with triangle index coding (source: [194])

198



Chapter 5. Our Deformation Framework and Deformation Approaches

Table 5.5: Haptic update rates for the approach presented in [194]

Data set Triangles Update Rate Update Rate

(no collision) (collision)

001 pelvis final l Improved Goal 478480 187 kHz 92 kHz

pelvis r 5 594624 195 kHz 115 kHz

ydm testsphere1 700 289 kHz 115 kHz

for voxelization of the given object.

The resulting update rates for the described approach are shown in table 5.5. The same

high-end user PC as in section 4.14 was used for the tests (8 x Intel Xeon CPU W5580

@ 3.20 GHz, 24 GB RAM, NVIDIA Quadro FX 5800). The data sets used for the tests

are shown in figures 5.21, 5.22 and 5.23. As concluded in [194], the haptic update rate is

much higher than the required minimum of 1 kHz. As expected, the haptic update rate

without a collision is higher than the one during a collision. Further on, the number of

triangles does not affect the update rate, because the volumetric representation is used

for the haptic interaction. The difference in update rate can appear due to different

resolution of the voxel grid, which is currently determined by the side of the smallest

triangle edge.

Further research is planned to find more optimal ways to determine the resolution of

the generated voxel grid depending on the input, as well as ways to make an adaptive

grid or to employ local voxelization only around the IP. Another research direction is to

incorporate a deformable model within our deformation framework to provide the user

with an advanced force feedback and to allow to deform the marked areas.

5.28.2 MultiScaleHuman Project

Our prototype system was presented on the CeBIT international computer expo 2013

and 2015 within the scope of the MultiScaleHuman project [186] (figure 5.24). The

Marie Curie ITN MultiScaleHuman project, funded by the European Union, visualizes

the functionality and articulation [146] of the human body under a dynamic 3D multi-

scale approach [221] – see figure 5.25. The goal of the project is to obtain a better

understanding of joint diseases and to enable a more efficient diagnosis and treatment

of patients, such as a musculoskeletal disease of the human knee.

199



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.21: The 001 pelvis final l Improved Goal data set used in [194]) (source: [194])

200



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.22: The pelvis r 5 data set used in [194]) (source: [194])

201



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.23: The ydm testsphere1 data set used in [194]) (source: [194])

202



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.24: Our prototype system presented on the CeBIT 2015 within the scope of

the MultiScaleHuman project (source: [186])

203



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.25: Example of the knee joint multi-scale data set (source: [221])

The MultiScaleHuman project proposes a multi-modal interaction with a focus on natu-

ral 3D interaction [199], as well as a semantically adaptable integrated visualization from

different spatio-temporal scales [220] and a visualization from the multi-scale biomedical

knowledge represented by an underlying ontology [4]. The haptic interaction was based

on our work (see [220]).

5.28.3 Simulation

The developed local deformation simulation approaches together with our deformation

framework can be used for simulation of drilling and for simulation of needle insertion.

Haptic techniques can be used for simulation of drilling or content removal. Among the

existing methods, one can mark out the following. Agus et al. [136] used haptic rendering

for drilling within the mastoidectomy simulator. “Subjective input” was used to tune the

parameters that control force feedback. In [5] the authors developed an analytical model

of bone erosion as a function of applied drilling force and rotational velocity. Petersik

et al. [183] presented a penetration-based approach with the main application being a

simulator for petrous bone surgery. They used the volume modification approach from

204



Chapter 5. Our Deformation Framework and Deformation Approaches

[184], but without a simulation model of the material itself. Authors of [29] presented a

system where the tool’s voxels intersecting the object’s (bone) voxels remove an amount

of the object depending on the tool’s voxels’ drilling power. Acosta et al. [1] presented

a craniotomy surgical simulator which uses a modified voxmap–point-shell model. The

bone erosion model in this work is based on density, on the point’s erosion factor and

on the tool’s bit rotational speed, but there is no physical model of the material itself.

Sewell et al. [205] made a study about the effect of haptic training on surgical drilling

proficiency showing the benefit of haptic training. The authors used a horizontal plane

which “resists” until a certain force is applied for a certain time. Kim et al. [2] presented

an approach based on point-shell (surface) and signed-distance fields (tool). The authors

used a penalty based collision response. They also used boolean operations on the tool

and on the object as the material removal model, with material stiffness as an additional

parameter (no physical model was employed). Wu et al. [245, 244] presented a voxel-

based approach to simulate dental drilling. The authors defined two layers of voxels

on the drill, where the boundary voxels are only employed to compute force feedback

and the interior voxels are adopted to remove materials from teeth. The authors used a

physical model for resistance force but a geometrically based one for material removal.

Rhienmora et al. [193] presented a dental training simulator that uses an open source

library called PolyVox [241]. The authors of [182] proposed algorithms to generate

realistic cut simulations using a mass-spring model. Additionally, they presented a drill

effect being implemented by removing the voxels which are located inside the virtual

tool. No physical model of the material behavior during material removal (drilling)

is employed. Bogone et al. [34] presented a method supporting multiple materials

and material removal. Collision detection and force-feedback are based on our collision

detection and force-feedback from [227]. The material removal approach depends on

material density, tool’s drill and wear coefficient, and there is no simulation of material

itself. Stredney et al. [217] made a simulation of procedural drilling techniques for

neurosurgical training. Force feedback is calculated on the basis of intensities of volume

data. No further details regarding the haptic rendering method and the physical model

are provided.

As was noted in the above overview, most of drilling approaches do not have a physical

model for the material itself. It is replaced by a model describing when to “disable” a

certain voxel. Contrary, our “regular” and cuboid potential fields based local simula-

tion approaches can simulate material removal not by “disabling” voxels but by their

rearrangement within the object. The scenario where the user drills the bone is shown

in figure 5.26. The force feedback over 1000 ms of the deformation simulation for this

scenario is shown in figure 5.27. As shown in the figure, the force-feedback is stable and

205



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.26: The Bone segment for the bone drilling scenario

has small fluctuations reflecting the rearrangement of voxels within the object. Similar

charts were obtained for other segments which we used for the drilling experiments.

For the simulation of needle insertion using haptic techniques, one can mark out the

following works. Coles et al. [49] proposed an interventional radiology procedures

simulator with augmented reality techniques. Webster et al. [234] presented a suturing

prototype. Heng et al. [91] proposed a Chinese acupuncture learning and training system

employing an approximation defining different tissue states and employing break limit

based, viscosity based and penalty based techniques for soft and hard tissues.

Our potential fields based local deformation simulation model allows simulation and

feeling of different tissues. For the test we use a scenario where the user penetrates

the hepar (liver) but cannot penetrate the bone – see figure 5.30. The force feedback

over time for this scenario is shown in figure 5.31. In another test scenario, the user

penetrates the skin but cannot penetrate the skull bone – see figure 5.28. The force

feedback over time for this scenario is shown in figure 5.29. As shown in the charts, the

force feedback increases when the bone is hit, preventing the user to easily penetrate into

it. Further on, the force feedback keeps increasing as long as the user presses stronger

and stronger trying to penetrate into the bone.

206



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.27: The force feedback for the bone drilling scenario

Figure 5.28: The Skin and the Skull segments for the needle insertion scenario

207



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.29: The force feedback for the skin and skull bone penetration scenario. The

force feedback increases the first time starting from 800 ms – when the skin is penetrated.

The force feedback increases the second time starting from 4000 ms – when the bone is

hit

Figure 5.30: The Liver and the Bone segments for the needle insertion scenario

208



Chapter 5. Our Deformation Framework and Deformation Approaches

Figure 5.31: The force feedback for the liver and bone penetration scenario. The force

feedback increases starting from 5000 ms – when the bone is hit

The following parameters for the “regular” and cuboid potential fields based local defor-

mation simulation models were used for the test cases for drilling and needle insertion

(see sections 5.14, 5.15, 5.17 and 5.19 for details of how the parameters are used):

� For the bone: [Emin, Emax] = [5 · 109, 21 · 109] Pa, [νmin, νmax] = [0.30, 0.32],

[HUmin, HUmax] = [700, 3000] HU, [ρmin, ρmax] = [920, 1900] kg/m3

� For the soft tissue: [Emin, Emax] = [3.4 ·104, 3.5 ·104] Pa, [νmin, νmax] = [0.47, 0.48],

[HUmin, HUmax] = [10, 60] HU, [ρmin, ρmax] = [1100, 1200] kg/m3.

The parameters were taken from different sources, including [62], [166], [68], [246]. As

proposed in section 5.15, in order to take into account the heterogeneity of the simulated

material, we make interaction forces for each pair of potential fields depend on intensities

of the corresponding voxels.

5.29 Discussion and Future Outlook

We presented a flexible deformation framework allowing us to use our improved approach

of haptic rendering of volume data with collision detection guarantee which has been

presented in chapter 4 together with different deformation approaches. The framework,

209



Chapter 5. Our Deformation Framework and Deformation Approaches

as well as our deformation simulation approaches, was fully developed by us from scratch,

without the use of any third party libraries.

In section 5.1 we proposed our framework and described it in detail. Further on, we

proposed an approach to interactively visualize the results of the deformation simulation

for the chosen deformation model within our prototype system. In more detail, we

showed how to transfer changes in the object’s structure to its volume representation,

as well as how to effectively update the graphics surface representation from the changed

volume representation. In more detail, in section 5.2 we showed how to perform fast

update of the part of the object’s surface triangulation affected by the deformation.

Further on, we showed how to effectively smooth the retriangulated area so that its

borders match with the borders of the rest of the surface.

In order to validate our deformation framework, we chose the method of potential fields

in order to introduce our novel local deformation simulation approaches. Additionally,

we introduced the prototype of the global potential fields based deformation approach.

The potential fields approaches are a good “illustration”, because they initially do not

have the properties of our haptic rendering approach. Firstly, we presented our potential

fields based local deformation simulation approach with the moving local simulation area

and how the IP interacts with the objects. Further on, in section 5.18 we introduced

the novel cuboid potential fields and showed that they fit well for the representation of

volumetric data since the volumetric data consists of voxels being cuboids. Based on

the cuboid potential fields, we proposed our cuboid potential fields based local defor-

mation simulation approach. Next, we showed how to establish the correspondence of

our proposed potential fields deformation simulation models to parameters of real ma-

terials and showed how we took heterogeneity of the simulated material into account.

Additionally, we extended the classical potential fields approach in other aspects, such

as adding additional forces and parameters to the model. Further on, we showed how

we set initial positions and velocitites of potential fields, how we reuse potential fields

objects, which kind of speed-up structures we used to find collisions, how we ensured

stability of the simulation system, how we computed force-feedback, and other aspects

of the described deformation models. Additionally, for cuboid potential fields we showed

that the equilibrium distance was chosen correctly. Further on, a prototype of a global

potential fields based deformation approach was presented.

As discussed in section 5.27, it was easy to built in different deformation simulation

approaches into our deformation framework, as expected, because we designed our de-

formation framework in this way. Furthermore, as expected our previously developed

haptic rendering approach added its properties including collision detection guaran-

210



Chapter 5. Our Deformation Framework and Deformation Approaches

tee and non-penetration guarantee to the employed deformation simulation approaches.

This is especially important for such delicate procedures as pre-operation planning. Ad-

ditionally, the resulting combined approach does not require any pre-calculated structure

and works “on the fly”. Further on, the results of tests with real volumetric data showed

that the haptic update rate of our deformation framework remained stable when a de-

formation simulation was added. It did not decrease for both local and global simulation

approaches. Furthermore, the haptic update rate was still an order of magnitude higher

than the required 1 kHz. Further on, the results showed that our novel cuboid potential

fields approach provides a simpler and a more natural simulation for volumetric data

with one to one correspondence between potential fields and voxels within the local sim-

ulation area. The approach has the same time complexity as the “classical” potential

fields approach, while still ensuring stability and smoothness of the force feedback. Fur-

thermore, if normalized by the number of voxels in the simulation area, the simulation

speed for the cuboid potential fields approach is faster than for the “classical’ potential

fields approach. In order to cover a larger simulation area and to have much shorter

integration step resulting in more precise deformation simulation, the potential fields

simulation can be speeded-up by parallelization on GPUs and/or on multi-processor

systems.

A number of possible practical use cases were presented in section 5.28. Such, in sec-

tion 5.28.1 we presented an approach to add meta–information to virtual surfaces simply

and naturally using a haptic device. This is needed e.g. for marking anatomic regions

and landmarks. The author of the current PhD thesis was a co-supervisor of this Bach-

elor thesis. In the Bachelor thesis, the virtual surface was voxelized. But instead of

using a bit cube for the voxel representation of an object (a segment), the triangle index

coding was used. This information was used later to effectively find the hit triangle

during the interaction using a haptic device. Further on, our prototype system was

presented on the CeBIT international computer expo 2013 and 2015 within the scope

of the Marie Curie ITN MultiScaleHuman project, which was funded by the European

Union (see section 5.28.2). Additionally, in section 5.28.3 we showed that the developed

deformation framework can be used for the simulation of drilling and for the simulation

of needle insertion. Our local potential fields model allows simulation and feeling of dif-

ferent tissues. Such, we presented an interaction scenario where the user can penetrate

the liver but cannot penetrate the bone.

As a future work, we plan to make areas within the same object being deformable or non-

deformable by setting which areas should and which areas should not be updated by the

potential fields approach, or which areas should be considered empty space. Moreover,

211



Chapter 5. Our Deformation Framework and Deformation Approaches

as mentioned above, the potential fields simulation can be speeded-up by paralleliza-

tion using GPUs and/or multi-processor systems in order to cover a larger simulation

area and to have much shorter integration step resulting in a more precise deformation

simulation. Another research direction would be to improve the global deformation

simulation approach and combine it with the local simulation approach. Further on, as

mentioned in section 5.28.1 the approach to add meta–information to a virtual surface

can be enriched by incorporating a deformable model within our deformation framework

to provide the user with an advanced force feedback and to allow deformations of the

marked areas.

212



Chapter 6. Summary and Outlook

Chapter 6

Summary and Outlook

In this work we presented theoretical background and novel methods for effective haptic

rendering of volumetric data.

We started with basics and definitions of haptic rendering and visualization of volumetric

data, followed by an extensive literature overview and classification of existing haptic

rendering and visualization methods. The general challenges for haptic rendering are a

huge amount of volumetric data per object, stability of haptic rendering and that haptic

rendering requires an update rate of at least 1 kHz. As follows from the literature

overview, there exist many different surface-based and voxel-based haptic rendering

methods, and almost all of them have drawbacks that the manipulated object, when

moved too quickly, can go through or inside an obstacle. Additionally, either a specific

topological structure for the collision objects is needed, or extra speed-up data structures

should be prepared. These issues could make it difficult to use a method in practice.

In this work we proposed a new haptic rendering approach, which is free of such draw-

backs. This is especially important, because in practice the real medical data we work

with can have any structure if segmentation has been done automatically. Our haptic

rendering approach employs a novel collision detection technique based on ray casting

concepts known from computer graphics. The approach was published in [227, 225].

The method gives collision detection guarantees that a manipulated object does not

pass through “thin” obstacles and is never inside any of them while not requiring any

special topological object structure. The collision detection was extensively tested with

a new “slide along a surface” approach using an implicit surface representation “on the

fly”. The results confirm our approach to be a viable alternative to existing techniques

avoiding most common drawbacks. The prototype was implemented as a plug-in of the

213



Chapter 6. Summary and Outlook

YaDiV VR system and supports different haptic devices and operation systems. Fur-

thermore, we presented an improved version of our haptic rendering approach. The im-

proved approach has all properties of the original method (including an implicit surface

representation “on the fly”) and does not have the drawbacks described in section 4.9.

It was published in [226]. The method employs local path finding and ray casting con-

cepts. Further on, we presented an improved force feedback generation scheme. The

scheme of our prototype system was presented in section 4.12. The system is indepen-

dent from a haptic display, so that a wide range of devices are supported. The results

show that our haptic rendering approach is a good alternative to existing techniques,

while avoiding most common drawbacks. Furthermore, it contrasts most triangle-based

approaches, where millions of triangles would be generated and complex speeding-up

traversing structures are required for the collision detection with the same guarantees.

Further on, in section 4.13 we described our experience of dealing with indeterministic

delays from a few milliseconds to tens of milliseconds from time to time during the run

of our prototype system on the Java VM. These delays were a serious drawback of the

Java VM, since the haptic update rate should be constantly at least 1 kHz. In order

to find the solution, we conducted experiments with two common real-time VMs: Sun

JavaRTS and IBM Web Sphere Real Time. We followed all recommendations of the

developers, but found out that there are still delays of 1-3 ms. The observed results

differed from the information stated in [216] and [167], which was officially presented

by IBM and Sun respectively. As a result, we used the standard VM and added virtual

coupling into our C++ part having nearly constant update rate of at least 1 kHz. Using

this approach, a sufficient and stable haptic update rate was always provided to the

user.

For the advanced contact resolution, we introduced our flexible deformation framework

which allows us to use our above mentioned improved approach of haptic rendering of

volumetric data together with deformation models. The scheme of the framework was

presented in section 5.1. Furthermore, we showed that our haptic rendering approach

adds its properties including collision detection guarantee and non-penetration guarantee

to the selected deformation model within the proposed deformation framework. Further-

more, we proposed an approach to interactively visualize the results of the deformation

simulation for the chosen deformation model. We showed how to transfer changes in

the object’s structure to its volume representation, as well as how to effectively update

the graphics surface representation from the changed volume representation.

Further on, in order to validate our framework, we proposed two local deformation sim-

ulation approaches based on the method of potential fields, where potential fields can be

214



Chapter 6. Summary and Outlook

considered as specific finite elements, i.e. discrete carriers of properties of the medium.

The first approach uses “regular” potential fields. The second approach uses our novel

cuboid potential fields. Further on, we demonstrated that cuboid potential fields are

better suited to haptic rendering of volumetric data. Furthermore, we showed how

to establish the correspondence of parameters of our proposed deformation simulation

models to parameters of real materials, and proposed a way to take the heterogene-

ity of the simulated material into account. Additionally, we introduced the prototype

of the global potential fields based deformation approach. The potential field based

deformation simulation approaches were a good “illustration”, because they initially

did not have the “nice” properties of our haptic rendering approach. Furthermore, the

resulting combined haptic rendering approach with our proposed deformation simula-

tion approaches within our deformation framework does not require any pre-calculated

structure and works “on the fly”. The haptic update rate of our deformation framework

remains stable when a deformation simulation was added. It does not decrease for both

local and global simulation approaches. Furthermore, the results of tests with real volu-

metric data showed that haptic update rate is still orders of magnitude higher than the

required 1 kHz.

Our deformation framework and all our haptic rendering and deformation simulation

approaches were fully developed by us from scratch, without the use of any third party

libraries.

Further on, we presented a number of possible practical use cases. Such, we presented

an approach to add meta–information to virtual surfaces simply and naturally using

a haptic device. This is needed e.g. for marking anatomic regions and landmarks.

Further on, our prototype system was presented on the CeBIT international computer

expo 2013 and 2015 within the scope of the Marie Curie ITN MultiScaleHuman project,

which was funded by the European Union. Additionally, we showed that the developed

deformation framework can be used for the simulation of drilling and for the simulation

of needle insertion. Further on, our local potential fields model allows simulation and

feeling of different tissues. Such, we presented an interaction scenario where the user

can penetrate the liver but cannot penetrate the bone.

There are numerous possible future directions of research. As an ongoing research,

object-object interactions could be introduced, where the controlled object is represented

as a set of points, and the collision detection stage could be implemented on GPUs.

As was shown e.g. in [117], [196], ray casting could be efficiently parallelized using

GPUs and/or multi-processor systems. This will allow making computations faster and

therefore representing the controlled object with more points and/or performing a more

215



Chapter 6. Summary and Outlook

sophisticated collision response. We plan to conduct the tests on the hardware which

we already have at our Institute. It includes the high-end Tesla cluster granted by

NVIDIA in the context of a Professor Partnership Program, modern graphics hardware,

multi-core processor systems and an IBM Cell Cluster. Further on, for our deformation

approaches we plan to make areas within the same object being deformable or non-

deformable by setting which areas should and which areas should not be updated by the

potential fields approach, or which areas should be considered as empty space. Moreover

the potential fields simulation can be speeded-up by parallelization using GPUs and/or

multi-processor systems in order to cover a larger simulation area and to have much

shorter integration step resulting in a more precise deformation simulation. Another

research direction would be to improve the global deformation simulation approach

and combine it with the local simulation approach. Further on, the approach to add

meta–information to a virtual surface presented in section 5.28.1 can be enriched by

incorporating a deformable model within our deformation framework to provide the

user with an advanced force feedback and to allow deformations of the marked areas.

Further on, since the voxel data is discrete, a user can feel one-voxel “stairs”, especially

in the case of low resolution of the volumetric data. Therefore smoothing techniques

can be introduced in order to provide a smoother force feedback. On another hand, in

practice it can be important to feel the real segment, and not its smoothed version. The

other practical use cases of our VR system with haptic interaction could be assembling a

fractured bone being an important step for pre-operation planning in facial surgery, and

correction of the results of automatic approaches. A broader outlook includes using our

approaches with the future generation of VR haptic devices, using our haptic rendering

system to feel nano-structures and to interactively model new nano-structures, and using

our approach as a base for controlling of a bionic prosthesis of hand.

216



Bibliography

Bibliography

[1] Eric Acosta and Alan Liu. Real-time volumetric haptic and visual burrhole simu-

lation. In Virtual Reality Conference, 2007. VR’07. IEEE, pages 247–250. IEEE,

2007.

[2] Eric Acosta and Alan Liu. Real-time volumetric haptic and visual burrhole simu-

lation. In Virtual Reality Conference, 2007. VR’07. IEEE, pages 247–250. IEEE,

2007.

[3] Y. Adachi, T. Kumano, and K. Ogino. Intermediate representation for stiff virtual

objects. Virtual Reality Annual International Symposium, pages 203–210, 1995.

[4] Asan Agibetov, Ricardo Manuel Millán Vaquero, Karl-Ingo Friese, Giuseppe

Patanè, Michela Spagnuolo, and Franz-Erich Wolter. Integrated visualization and

analysis of a multi-scale biomedical knowledge space. In Proceedings of the EuroVis

Workshop on Visual Analytics, volume 36, pages 1–5. Springer, 2014.

[5] Marco Agus, Andrea Giachetti, Enrico Gobbetti, Gianluigi Zanetti, and Antonio

Zorcolo. Real-time haptic and visual simulation of bone dissection. Presence:

Teleoperators and Virtual Environments, 12(1):110–122, 2003.

[6] T. Aila and S. Laine. Understanding the efficiency of ray traversal on gpus. In

HPG 09: Proceedings of the Conference on High Performance Graphics 2009,

pages 145–149, 2009.

[7] T. Akenine-Moller, E. Haines, and N. Hoffman. Real-time rendering. A K Peters,

Ltd., third edition, 2008.

[8] D. Allerkamp. Tactile Perception of Textiles in a Virtual-Reality System. Springer,

2011.

217



Bibliography

[9] Dennis Allerkamp. Generation of Stimuli Supporting Tactile Perception of Textiles

in a VR System. PhD thesis, Leibniz Universitat Hannover, Faculty of Electrical

Engineering and Computer Science, Welfenlab, Germany, 2009.

[10] Dennis Allerkamp, Guido Boettcher, Franz-Erich Wolter, Alan C. Brady, Jianguo

Qu, and Ian R. Summers. A vibrotactile approach to tactile rendering. Visual

Computer, 23(2):97–108, January 2007.

[11] J. Arvo. Backward ray tracing. In ACM SIGGRAPH 86 Course Notes - Devel-

opments in Ray Tracing, 12(3):259–263, 1986.

[12] R. S. Avila and L. M. Sobierajski. A haptic interaction method for volume visu-

alization. Proceedings of the 7th conference on Visualization ’96, pages 197–204,

October 2006.

[13] C. Bajaj, I. Ihm, S. Park, and D. Song. Compression-based ray casting of very large

volume data in distributed environments. Proceedings of the The Fourth Inter-

national Conference on High-Performance Computing in the Asia-Pacific Region,

2:720–725, May 2000.

[14] Y. Bar-Cohen, C. Mavroidis, C. Pfeiffer, C. Culbert, and D. Magruder. Haptic

interfaces. In Y. Bar-Cohen, editor, Automation, Miniature Robotics and Sensors

for Non-Destructive Testing and Evaluation. Editor, April 1999.

[15] J. Barbic. Real-time reduced large-deformation models and distributed contact for

computer graphics and haptics. PhD thesis, Carnegie Mellon University, Pitts-

burgh, 2007.

[16] J. Barbic and D. James. Time-critical distributed contact for 6-dof haptic ren-

dering of adaptively sampled reduced deformable models. Proceedings of the 2007

ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 171–

180, August 2007.

[17] J. Barbic and D. L. James. Real-time subspace integration for st. venant-kirchhoff

deformable models. ACM Transactions on Graphics, 24(3):982–990, 2005.

[18] J. Barbic and D. L. James. Six-dof haptic rendering of contact between geo-

metrically complex reduced deformable models. IEEE Transactions on Haptics,

1(1):39–52, January 2008.

218



Bibliography

[19] C. Basdogan, S. De, J. Kim, M. Muniyandi, H. Kim, and M. A. Srinivasan. Haptics

in minimally invasive surgical simulation and training. IEEE Computer Graphics

and Applications, 24(2):56–64, March 2004.

[20] C. Basdogan, M. Sedef, M. Harders, and S. Wesarg. Vr-based simulators for

training in minimally invasive surgery. IEEE Computer Graphics and Applications,

27(2):54–66, March 2007.

[21] Vincent Baudet, Fabrice Jaillet, and Behzad Shariat. Fitting a 3d particle system

model to a non-dense data set in medical applications. Journal for Geometry and

Graphics, 7(1):65–74, 2003.

[22] Matthias Becker. Modellbasierte orbita segmentierung und die automatisierte

bestimmung anatomisch relevanter parameter. Master’s thesis, Leibniz Universitat

Hannover, Faculty of Electrical Engineering and Computer Science, Welfenlab

AND Kiefer-, Mund und Geschitschirurgie der MHH (Hannover Medical School),

Germany, April 2011.

[23] Matthias Becker, Karl-Ingo Friese, Franz-Erich Wolter, Nils-Claudius Gellrich, and

Harald Essig. Development of a reliable method for orbit segmentation & mea-

suring. IEEE international symposium on medical measurements and applications

(MeMeA 2015), pages 285–290, May 2015.

[24] C. Benthin, I.Wald, M. Scherbaum, and H. Friedrich. Ray tracing on the cell

processor. In Proceedings of the IEEE Symposium on Interactive Ray Tracing,

pages 15–23, 2006.

[25] H. Bentoumi, P. Gautron, and K. Bouatouch. Gpu-based volume rendering for

medical imagery. International Journal of Computer Systems Science and Engi-

neering 2007, 1(1):36–42, 2007.

[26] Michaël Beuve, Mourad Amrani, Fabrice Jaillet, and Behzad Shariat. Physically

based modelling with particle systems. In International Conference on Concurrent

Engineering: Research and Applications, 2003.

[27] B. Bickel, M. Baecher, M. Otaduy, W. Matusik, H. Pfister, and M. Gross. Cap-

ture and modeling of non-linear heterogeneous soft tissue. Proceedings of ACM

SIGGRAPH 2009 papers, article 89, 2009.

[28] J. Bigler, A. Stephens, and S. G. Parker. Design for parallel interactive ray tracing

systems. Proceedings of the IEEE Symposium on Interactive Ray Tracing, pages

187–196, 2006.

219



Bibliography

[29] Nikolas H Blevins and Sabine Girod. Visuohaptic simulation of bone surgery for

training and evaluation. IEEE Comput Graph Appl, 26:48–57, 2006.

[30] G. Boettcher. Haptic Interaction with Deformable Objects. Springer, 2011.

[31] Guido Boettcher. Modelling VR Systems for Haptic Interaction with Deformable

Objects, especially Textiles. PhD thesis, Leibniz Universitat Hannover, Faculty of

Electrical Engineering and Computer Science, Welfenlab, Germany, 2010.

[32] Guido Boettcher, Dennis Allerkamp, Daniel Gloeckner, and Franz-Erich Wolter.

Haptic two-finger contact with textiles. Visual Computer, 24(10):911–922, Septem-

ber 2008.

[33] Guido Boettcher, Dennis Allerkamp, and Franz-Erich Wolter. Multi-rate coupling

of physical simulations for haptic interaction with deformable objects. Visual

Computer, 26(6-8):903–914, January 2010.

[34] Tales Nereu Bogoni and Márcio Sarroglia Pinho. Haptic technique for simulating

multiple density materials and material removal. 21st International Conference

on Computer Graphics, Visualization and Computer Vision, pages 151–160, 2013.

[35] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley, and I. Wald.

Interactive distribution ray tracing. Technical report UUSCI-2006-022, SCI Insti-

tute, University of Utah, June 2006.

[36] Robert Bridson and Matthias Müller-Fischer. Fluid simulation: SIGGRAPH 2007

course notes Video files associated with this course are available from the citation

page. ACM, 2007.

[37] F. P. Brooks Jr., M. Ouh-Young, J. J. Batter, and P. J. Kilpatrick. Project grope -

haptic displays for scientific visualization. ACM SIGGRAPH Computer Graphics,

24(4):177–185, August 1990.

[38] S. Bruckner. Efficient volume visualization of large medical datasets. Master’s

thesis, Vienna University of Technology, Austria, May 2004.

[39] S. Bruckner, S. Grimm, A. Kanitsar, and M.E. Groeller. Illustrative context-

preserving volume rendering. Proc. EuroVis ’05, pages 69–76, 2005.

[40] M.-P. Cani and A. Angelidis. Towards virtual clay. ACM SIGGRAPH 2006

Courses, pages 67–83, 2006.

220



Bibliography

[41] S. Chan, F. Conti, N.H. Blevins, and K. Salisbury. Constraint-based six degree-

of-freedom haptic rendering of volume-embedded isosurfaces. W. Hapt. Conf.’11,

pages 89–94, 2011.

[42] Y.-H. Chang, Y.-T. Chen, C.-W. Chang, and C.-L. Lin. Development scheme

of haptic-based system for interactive deformable simulation. Computer-Aided

Design, 42(5):414–424, May 2010.

[43] M. Chen, C. Correa, S. Islam, M. W. Jones, P.-Y. Shen, D. Silver, S. J. Wal-

ton, and P. J. Willis. Manipulating, deforming and animating sampled object

representations. Computer Graphics Forum, 26(4):824–852, 2007.

[44] W. Chen, L. Ren, M. Zwicker, and H. Pfister. Hardware-accelerated adaptive ewa

volume splatting. Proceedings of the conference on Visualization ’04, pages 67–74,

October 2004.

[45] A. Chihoub, Y. Chen, and M. Nadar. System and method for fast 3-dimensional

data fusion. US patent application 7439974 B2, 2008.

[46] Gabriel Cirio, Maud Marchal, Aurélien Le Gentil, and Anatole Lécuyer. tap,

squeeze and stir the virtual world: Touching the different states of matter through

6dof haptic interaction. In Virtual Reality Conference (VR), 2011 IEEE, pages

123–126. IEEE, 2011.

[47] Gabriel Cirio, Maud Marchal, Miguel A Otaduy, and Anatole Lécuyer. Six-oof

haptic interaction with fluids, solids, and their transitions. In World Haptics

Conference (WHC), 2013, pages 157–162. IEEE, 2013.

[48] Simon Clavet, Philippe Beaudoin, and Pierre Poulin. Particle-based viscoelas-

tic fluid simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 219–228. ACM, 2005.

[49] Timothy R Coles, Nigel W John, Derek Gould, Darwin G Caldwell, et al. Inte-

grating haptics with augmented reality in a femoral palpation and needle insertion

training simulation. Haptics, IEEE Transactions on, 4(3):199–209, 2011.

[50] J. E. Colgate and G. G. Schenkel. Passivity of a class of sampled-data systems:

Application to haptic interfaces. Journal of Robotic Systems, 14(1):37–47, 1997.

[51] J. E. Colgate, M. C. Stanley, and J. M. Brown. Issues in the haptic display of

tool use. Proc. of IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 140–145, 1995.

221



Bibliography

[52] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. Proceedings

of the 11th annual conference on Computer graphics and interactive techniques,

pages 137–145, January 1984.

[53] L. Corenthy, J. S. Martin, M.A. Otaduy, and M. Garcia. Volume haptic rendering

with dynamically extracted isosurface. Proceedings of Haptics Symposium 2012,

pages 133–139, 2012.

[54] F. Cosco, C. Garre, F. Bruno, M. Muzzupappa, and M. A. Otaduy. Augmented

touch without visual obtrusion. In the Proc. of the International Symposium on

Mixed and Augmented Reality, pages 99–102, October 2009.

[55] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels: ray-guided

streaming for efficient and detailed voxel rendering. Proceedings of the 2009 sym-

posium on Interactive 3D graphics and games, pages 15–22, 2009.

[56] S. De, Y.-J. Lim, M. Manivannan, and M. A. Srinivasan. Physically realistic

virtual surgery using the point-associated finite field (paff) approach. Presence:

Teleoperators and Virtual Environments, 15(3):294–308, June 2006.

[57] G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr. Dynamic real-time defor-

mations using space & time adaptive sampling. Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, pages 31–36, August

2001.

[58] Ph. Decaudin and F. Neyret. Volumetric billboards. Computer Graphics Forum,

28(8):2079–2089, 2009.

[59] D. E. DeMarle. Distributed interactive ray tracing for large volume visualization.

Master’s thesis, University of Utah, USA, 1999.

[60] D. E. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen. Distributed

interactive ray tracing for large volume visualization. Proceedings of the 2003

IEEE Symposium on Parallel and Large-Data Visualization and Graphics, pages

87–94, October 2003.

[61] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: A new paradigm

for animating highly deformable bodies. 1996.

[62] K Donina and A Yarusskaya. Density of bone. The Physics. Factbook, Ed. Glenn

Elert, 2002.

222



Bibliography

[63] C. Duriez, C. Andriot, and A. Kheddar. Signorini’s contact model for deformable

objects in haptic simulations. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2004, pages 32–37, 2004.

[64] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot. Realistic haptic rendering

of interacting deformable objects in virtual environments. IEEE Transactions on

Visualization and Computer Graphics, 12(1):36–47, January 2006.

[65] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. Rezk Salama, and

D. Weiskopf. Real-time volume graphics. ACM SIGGRAPH 2004 Course Notes,

2004.

[66] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume rendering

using hardware-accelerated pixel shading. In Proc. of Eurographics/SIGGRAPH

Workshop on Graphics Hardware 2001, pages 9–16, 2001.

[67] K. Engel and G. Paladini. Sliding texture volume rendering. US patent application

7460117 B2, 2008.

[68] Timothy G Feeman. The mathematics of medical imaging: a beginner’s guide.

Springer Science & Business Media, 2010.

[69] M. Foskey, M. A. Otaduy, and M. C. Lin. Artnova: Touch-enabled 3d model

design. In Proceedings of IEEE Virtual Reality, pages 119–126, 2002.

[70] S. Frank and A. Kaufman. Dependency graph scheduling in a volumetric ray

tracing architecture. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, pages 127–135, September 2002.

[71] H. Friedrich, J. Guenther, A. Dietrich, M. Scherbaum, H.-P. Seidel, and

P. Slusallek. Exploring the use of ray tracing for future games. Proceedings of

the 2006 ACM SIGGRAPH symposium on Videogames, pages 41–50, 2006.

[72] Karl-Ingo Friese. Entwicklung einer Plattform zur 3D-Visualisierung und -

Segmentierung medizinischer Daten. PhD thesis, Leibniz Universitat Hannover,

Germany, 2010.

[73] Karl-Ingo Friese, Philipp Blanke, and Franz-Erich Wolter. Yadiv – an open plat-

form for 3d visualization and 3d segmentation of medical data. The Visual Com-

puter, 27:129–139, 2011.

[74] EM Galimov and AM Krivtsov. Origin of the earth–moon system. Journal of

earth system science, 114(6):593–600, 2005.

223



Bibliography

[75] N. Galoppo, M. A. Otaduy, S. Tekin, M. Gross, and M. C. Lin. Interactive

haptic rendering of high-resolution deformable objects. Proceedings of the 2nd

international conference on Virtual reality, pages 215–223, 2007.

[76] E. Gamma, R. Helm, R. Johnson, and J. Vlissideset. Design patterns: Elements

of reusable object-oriented software. Addison-Wesley, 1995.

[77] C. Garre and M. A. Otaduy. Haptic rendering of complex deformations through

handle-space force linearization. In the Proceedings of the World Haptics Confer-

ence, pages 422–427, 2009.

[78] C. Garre and M. A. Otaduy. Toward haptic rendering of full-hand touch. In the

Proc. of CEIG (Spanish Computer Graphics Conference), 2009.

[79] A. Van Gelder and K. Kim. Direct volume rendering with shading via three-

dimensional textures. In 1996 Symposium on Volume Visualization, pages 23–30,

1996.

[80] FA Gilabert, AM Krivtsov, and A Castellanos. Computer simulation of mechanical

properties for powder particles using molecular dynamics. Proc. of XXX Summer

School” Advanced Problems in Mechanics”, St. Petersburg, Russia, pages 230–239,

2002.

[81] FA Gilabert, AM Krivtsov, and A Castellanos. Molecular dynamics modelling of

the adhesive interaction between fine particles. Powders and Grains 2005. Pro-

ceedings of the 5th International 5th International Conference on Micromechanics

of Granular Media. Stuttgart, Germany, 1:513–516, 2005.

[82] M. Glencross, A. G. Chalmers, M. C. Lin, M. A. Otaduy, and D. Gutierrez.

Exploiting perception in high-fidelity virtual environments. ACM SIGGRAPH

2006 Courses, July 2006.

[83] Leslie Greengard. The rapid evaluation of potential fields in particle systems. MIT

press, 1988.

[84] A. Gregory, M. C. Lin, S. Gottschalk, and R. Taylor. A framework for fast and ac-

curate collision detection for haptic interaction. ACM SIGGRAPH 2005 Courses,

pages 34–41, 2005.

[85] A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin, and D. Manocha. Six degree-

of-freedom haptic display of polygonal models. Proceedings of the conference on

Visualization ’00, pages 139–146, October 2000.

224



Bibliography

[86] S. Grimm, S. Bruckner, A. Kanitsar, and E. Groeller. Memory efficient accel-

eration structures and techniques for cpu-based volume raycasting of large data.

Proceedings of the 2004 IEEE Symposium on Volume Visualization and Graphics,

pages 1–8, October 2004.

[87] M. Hadwiger, A. Kratz, C. Sigg, and K. Buehler. Gpu-accelerated deep

shadow maps for direct volume rendering. Proceedings of the 21st ACM SIG-

GRAPH/EUROGRAPHICS symposium on Graphics hardware, September 2006.

[88] M. Hadwiger, P. Ljung, C. Rezk Salama, and T. Ropinski. Advanced illumina-

tion techniques for gpu-based volume raycasting. ACM SIGGRAPH ASIA 2008

Courses, 2008.

[89] M. Hadwiger, P. Ljung, C. Rezk Salama, and T. Ropinski. Advanced illumination

techniques for gpu-based volume raycasting. ACM SIGGRAPH 2009 Courses,

2009.

[90] Takahiro Harada, Masayuki Tanaka, Seiichi Koshizuka, and Yoichiro Kawaguchi.

Real-time coupling of fluids and rigid bodies. Proc. of the APCOM, pages 1–13,

2007.

[91] Pheng-Ann Heng, Tien-Tsin Wong, Rong Yang, Yim-Pan Chui, Yong Ming Xie,

Kwong-Sak Leung, and Ping-Chung Leung. Intelligent inferencing and haptic

simulation for chinese acupuncture learning and training. Information Technology

in Biomedicine, IEEE Transactions on, 10(1):28–41, 2006.

[92] B. Hibbard. Vis files: computational field visualization. ACM SIGGRAPH Com-

puter Graphics, 35(4):5–9, November 2001.

[93] Roger W Hockney and James W Eastwood. Computer simulation using particles.

CRC Press, 1988.

[94] N. Hogan. Impedance control – an approach to manipulation. i – theory. ii – imple-

mentation. iii – applications. ASME Transactions, Journal of Dynamic Systems,

Measurement and Control, 107:1–24, March 1985.

[95] Xiyuan Hou and Olga Sourina. Haptic rendering algorithm for biomolecular dock-

ing with torque force. In Cyberworlds (CW), 2010 International Conference on,

pages 25–31. IEEE, 2010.

225



Bibliography

[96] S.-U. Hwang, B.-C. Lee, J. Ryu, K. H. Lee, and Y.-G. Lee. Adaptive haptic ren-

dering for time-varying haptic and video frame rates in multi-modal interactions.

Computer Animation and Virtual Worlds, 21(1):25–38, January 2010.

[97] R. M. Taylor II. Haptics for scientific visualization. ACM SIGGRAPH 2005

Courses, pages 174–179, 2005.

[98] M. Ikits, J. D. Brederson, C. D. Hansen, and C. R. Johnson. A constraint-based

technique for haptic volume exploration. Proceedings of the 14th IEEE Visualiza-

tion 2003 (VIS’03), pages 263–269, October 2003.

[99] DA Indeitsev, AM Krivtsov, and PV Tkachev. Molecular dynamics analysis of the

relation between the spall strength and strain rate for solids. In Doklady Physics,

volume 51, pages 154–156. Springer, 2006.

[100] B. E. Insko. Passive haptics significantly enhances virtual environments. PhD

thesis, The University of North Carolina at Chapel Hill, USA, 2001.

[101] Simon Jackson and Richard Thomas. Introduction to ct physics. Cross-Sectional

Imaging Made Easy. Churchill Livingston, page 7, 2004.

[102] D. L. James and D. K. Pai. Bd-tree: output-sensitive collision detection for re-

duced deformable models. ACM Trans. on Graphics, 23(3):393–398, August 2004.

[103] D. Johnson and P. Willemsen. Accelerated haptic rendering of polygonal mod-

els through local descent. 12th International Symposium on Haptic Interfaces

for Virtual Environment and Teleoperator Systems (HAPTICS’04), pages 18–23,

2004.

[104] D. E. Johnson and P. Willemsen. Six degree-of-freedom haptic rendering of com-

plex polygonal models. Proceedings of the 11th Symposium on Haptic Interfaces

for Virtual Environment and Teleoperator Systems (HAPTICS’03), pages 229–

235, March 2003.

[105] D. E. Johnson, P. Willemsen, and E. Cohen. A haptic system for virtual pro-

totyping of polygonal models. Proceedings of DETC2004: 2004 ASME Design

Engineering Technical Conferences, pages 84–88, 2004.

[106] D. E. Johnson, P. Willemsen, and E. Cohen. Six degree-of-freedom haptic ren-

dering using spatialized normal cone search. IEEE Transactions on Visualization

and Computer Graphics, 11(6):661–670, November 2005.

226



Bibliography

[107] David Kahaner, Cleve Moler, and Stephen Nash. Numerical methods and software.

Englewood Cliffs: Prentice Hall, 1, 1989.

[108] B. Kainz, M. Grabner, A. Bornik, S. Hauswiesner, J. Muehl, and D. Schmal-

stieg. Ray casting of multiple volumetric datasets with polyhedral boundaries on

manycore gpus. ACM SIGGRAPH Asia 2009, 2009. article 152.

[109] S. Kashyap, R. Goradia, P. Chaudhuri, and S. Chandran. Real time ray tracing

of point-based models. Proceedings of the 2010 ACM SIGGRAPH symposium on

Interactive 3D Graphics and Games, 2010. article 4.

[110] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. IEEE Computer,

26(7):51–64, July 2007.

[111] L. Kim, A. Kyrikou, M. Desbrun, and G. Sukhatme. An implicit-based haptic

rendering technique. In Proc. of the IEEE/RSJ International Conf. on Intelligent

Robots, 2002.

[112] R. L. Klatzky, S. J. Lederman, C. Hamilton, M. Grindley, and R. H. Swendsen.

Feeling textures through a probe: Effects of probe and surface geometry and

exploratory factors. Perception and Psychophysics, 65(4):613–631, 2003.

[113] J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interactive translucent volume

rendering and procedural modeling. In Proc. of IEEE Visualization 2002, pages

168–176, 2002.

[114] A. Knoll, I. Wald, and C. Hansen. Coherent multiresolution isosurface ray tracing.

The Visual Computer, 25(3):209–225, 2009.

[115] AM Krivtsov. Deformation and fracture of solids with microstructure. Moscow,

Fizmatlit. (in Russian), 2007.

[116] AM Krivtsov and NV Krivtsova. Method of particles and its application to me-

chanics of solids. Far Eastern Mathematical Journal (in Russian), 3(2):254–276,

2002.

[117] J. Kruger and R. Westermann. Acceleration techniques for gpu-based volume

rendering. Proceedings of the 14th IEEE Visualization 2003 (VIS’03), pages 287–

292, October 2003.

[118] U. Kuehnapfel, H. K. Cakmak, and H. Maab. Endoscopic surgery training using

virtual reality and deformable tissue simulation. Computers and Graphics, 24:671–

682, October 2000.

227



Bibliography

[119] Y. Kuroda, M. Nakao, S. Hacker, T. Kuroda, H. Oyama, M. Komori, T. Matsuda,

and T. Takahashi. Haptic force feedback with an interaction model between mul-

tiple deformable objects for surgical simulations. Proceedings of Eurohaptics2002,

pages 116–121, July 2002.

[120] Vitaly A Kuzkin, Anton M Krivtsov, and Aleksandr M Linkov. Computer simu-

lation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing.

The Journal of Mining Science, 50(1):1–9, 2014.

[121] Vitaly A Kuzkin, Anton M Krivtsov, and Aleksandr M Linkov. Computer simu-

lation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing.

Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh (in Russian),

(1):3–12, 2014.

[122] P. Lacroute. 6-dof haptic rendering using contact levels of detail and haptic tex-

tures. PhD thesis, Stanford University, USA, 1995. Technical report CSL-TR-95-

678.

[123] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization

of the viewing transformation. Proc. SIGGRAPH ’94, pages 451–458, July 1994.

[124] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and

Applications, 8(3):29–37, May 1988.

[125] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics

(TOG), 9(3):245–261, July 1990.

[126] T. Lewiner, H. Lopes, A. Wilson, and G. Tavares. Efficient implementation of

marching cubes’ cases with topological guarantees. J. Graphics Tools, 8:1–15,

2003.

[127] W. Li. Invisible space skipping with adaptive granularity for texture-based volume

rendering. US patent application 7460119 B2, 2008.

[128] M. C. Lin, D. Manocha, Y. Kim, and M. A. Otaduy. Six degree-of-freedom haptic

rendering. Department of Computer Science, University of North Carolina at

Chapel Hill, February 2004.

[129] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution

3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169,

July 1987.

228



Bibliography

[130] C. J. Luciano, P. Banerjee, and S. H. R. Rizzi. Gpu-based elastic-object de-

formation for enhancement of existing haptic applications. Proceedings of the 3rd

Annual IEEE Conference on Automation Science and Engineering, pages 146–151,

September 2007.

[131] H. Ludvigsen and A. C. Elster. Real-time ray tracing using nvidia optix. EURO-

GRAPHICS 2010, 2010.

[132] E.B. Lum, B. Wilson, and K.L. Ma. High-quality lighting and efficient pre-

integration for volume rendering. In Proc. of Eurographics/IEEE Symposium on

Visualization 2004, pages 25–34, 2004.

[133] C. Lundstroem. Efficient Medical Volume Visualization - an Approach Based on

Domain Knowledge. PhD thesis, Linkoeping University, Sweden, 2007.

[134] A. Maciel, R. Boulic, and D. Thalmann. Efficient collision detection within deform-

ing spherical sliding contact. IEEE Transactions on Visualization and Computer

Graphics, 13 (3):518–529, May 2007.

[135] A. Maciel, T. Halic, Z. Lu, L. P. Nedel, and S. De. Using the physx engine for

physics-based virtual surgery with force feedback. In International Journal of

Medical Robotics and Computer Assisted Surgery, 5(3):341–353, September 2009.

[136] EE Marco Agus, Andrea Giachetti, Enrico Gobbetti, Gianluigi Zanetti, and Anto-

nio Zorcolo. Mastoidectomy simulation with combined visual and haptic feedback.

Medicine Meets Virtual Reality 02/10: Digital Upgrades, Applying Moore’s Law

to Health, 85:17, 2002.

[137] William R. Mark, Scott C. Randolph, Mark Finch, James M. Van, Verth Russell,

and M. Taylor II. Adding force feedback to graphics systems: issues and solutions.

Proceedings of the 23rd annual conference on Computer graphics and interactive

techniques, pages 447–452, August 1996.

[138] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for volume

rendering. In Proceedings of Visualization ’94, pages 100–107, October 1994.

[139] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on

Visualization and Computer Graphics, 1(2):99–108, June 1995.

[140] M. L. McLaughlin, J. Hespanha, and G. Sukhatme. Introduction to haptics.

In M. L. McLaughlin, J. Hespanha, and G. Sukhatme, editors, Touch in virtual

environments: Haptics and the design of interactive systems. 2002.

229



Bibliography

[141] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy. Six degree-of-freedom haptic

rendering using voxel sampling. Proceedings of the 26th annual conference on

Computer graphics and interactive techniques, pages 401–408, July 1999.

[142] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy. Voxel-based 6-dof haptic

rendering improvements. Journal of Haptics-e, 3(7), 2006.

[143] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A practical eval-

uation of popular volume rendering algorithms. Proceedings of the 2000 IEEE

symposium on Volume visualization, pages 81–90, October 2000.

[144] J. Mensmann, T. Ropinski, and K. Hinrichs. Accelerating volume raycasting using

occlusion frustums. In IEEE/EG International Symposium on Volume and Point-

Based Graphics, pages 147–154, 2008.

[145] J. Meyer-Spradow, T. Ropinski, and K. Hinrichs. Supporting depth and motion

perception in medical volume data. Visualization in Medicine and Life Sciences,

Springer, pages 121–133, 2007.

[146] Ricardo Manuel Millán-Vaquero, Sean Dean Lynch, Benjamin Fleischer, Jan

Rzepecki, Karl-Ingo Friese, Christof Hurschler, and Franz-Erich Wolter. Enhanced

visualization of the knee joint functional articulation based on helical axis method.

In Bildverarbeitung für die Medizin 2015, pages 449–454. Springer, 2015.

[147] K. Mueller and R. Crawfis. Eliminating popping artifacts in sheet buffer-based

splatting. Proceedings of the conference on Visualization ’98, pages 239–245, Oc-

tober 1998.

[148] K. Mueller, T. Moeller, and Roger Crawfis. Splatting without the blur. Proceed-

ings of the conference on Visualization ’99: celebrating ten years, pages 363–370,

October 1999.

[149] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. High-quality splatting on

rectilinear grids with efficient culling of occluded voxels. IEEE Transactions on

Visualization and Computer Graphics, 5(2):116–134, April 1999.

[150] Richard T Mull. Mass estimates by computed tomography: physical density from

ct numbers. American journal of roentgenology, 143(5):1101–1104, 1984.

[151] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid sim-

ulation for interactive applications. In Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 154–159. Eu-

rographics Association, 2003.

230



Bibliography

[152] Matthias Müller and Nuttapong Chentanez. Solid simulation with oriented par-

ticles. In ACM Transactions on Graphics (TOG), volume 30, page 92. ACM,

2011.

[153] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara

Cutler. Stable real-time deformations. In Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 49–54. ACM,

2002.

[154] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross.

Meshless deformations based on shape matching. ACM Trans. Graph., 24(3):471–

478, July 2005.

[155] Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross.

Particle-based fluid-fluid interaction. In Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 237–244. ACM,

2005.

[156] M. Nakao, T. Kuroda, M. Komori, and H. Oyama. Evaluation and user study of

haptic simulator for learning palpation in cardiovascular surgery. In Proceedings

of International Conference of Artificial Reality and Tele-Existence (ICAT) 2003,

pages 203–208, 2003.

[157] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Carlson. Physically-based

deformable models in computer graphics. Computer Graphics Forum, 25(4):809–

836, 2005.

[158] G. M. Nielson. Dual marching cubes. Proc. of the conference on Visualization ’04,

pages 489–496, October 2004.

[159] Daniel Nixon and Richard Lobb. A fluid-based soft-object model. IEEE Computer

Graphics and Applications, 22(4):68–75, 2002.

[160] Shūichi Nosé. A molecular dynamics method for simulations in the canonical

ensemble. Molecular physics, 52(2):255–268, 1984.

[161] Shuichi Nosé. A unified formulation of the constant temperature molecular dy-

namics methods. The Journal of chemical physics, 81(1):511–519, 1984.

[162] Shūichi Nosé. An extension of the canonical ensemble molecular dynamics method.

Molecular Physics, 57(1):187–191, 1986.

231



Bibliography

[163] NVIDIA-Corporation. Cuda programming guide.

www.nvidia.com/object/cuda home new.html.

[164] NVIDIA-Corporation. Nvidia optix ray tracing engine.

https://developer.nvidia.com/optix.

[165] NVIDIA-Corporation. Physx library. developer.nvidia.com/physx.

[166] University of Cambridge. Mechanical properties of bone.

http://www.doitpoms.ac.uk/tlplib/bones/bone mechanical.php.

[167] Oracle. Sun java real-time system 2.2 update 1 technical documentation. down-

load.oracle.com/javase/realtime/rts productdoc 2.2u1.html, April 2010.

[168] M. Ortega, S. Redon, and S. Coquillart. A six degree-of-freedom god-object

method for haptic display of rigid bodies with surface properties. IEEE Transac-

tions on Visualization and Computer Graphics, 13(3):458–469, May 2007.

[169] M. Otaduy, R. Tamstorf, D. Steinemann, and M. Gross. Implicit contact handling

for deformable objects. In Eurographics ’09, 28(2):559–568, 2009.

[170] M. A. Otaduy. Haptic rendering pipeline. IEEE International Conference on

Robotics and Automation 2007, Workshop on Haptic Perception and Rendering,

2007.

[171] M. A. Otaduy and M. Gross. Transparent rendering of tool contact with compliant

environments. Proceedings of the Second Joint EuroHaptics Conference and Sym-

posium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,

pages 225–230, March 2007.

[172] M. A. Otaduy, N. Jain, A. Sud, and M. C. Lin. Haptic display of interaction

between textured models. Proceedings of the conference on Visualization ’04,

pages 297–304, October 2004.

[173] M. A. Otaduy and M. C. Lin. A perceptually-inspired force model for haptic

texture rendering. Proceedings of the 1st Symposium on Applied perception in

graphics and visualization, pages 123–126, August 2004.

[174] M. A. Otaduy and M. C. Lin. Introduction to haptic rendering. ACM SIGGRAPH

2005 Courses, 2005.

232



Bibliography

[175] M. A. Otaduy and M. C. Lin. Stable and responsive six-degree-of-freedom haptic

manipulation using implicit integration. Proceedings of the First Joint Eurohaptics

Conference and Symposium on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, pages 247–256, March 2005.

[176] M. A. Otaduy and M. C. Lin. A modular haptic rendering algorithm for stable and

transparent 6-dof manipulation. IEEE Transactions on Robotics, 22(4):751–762,

2006.

[177] Miguel Angel Otaduy Tristan. 6-dof haptic rendering using contact levels of detail

and haptic textures. PhD thesis, University of North Carolina at Chapel Hill, 2004.

[178] G. Paladini. A memory efficient shear-warp voxel projection algorithm. US patent

application 6570952 B2, 2003.

[179] K.L. Palmerius and G. Baravdish. Higher precision in volume haptics through

subdivision of proxy movements. Proc. of EuroHaptics ’08, pages 694–699, 2008.

[180] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley. Interactive

ray tracing for volume visualization. IEEE Transactions on Visualization and

Computer Graphics, 5(3):238–250, July 1999.

[181] S. G. Parker, S. Boulos, J. Bigler, and A. Robison. Rtsl: a ray tracing shading

language. Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing,

pages 149–160, September 2007.

[182] Jie Peng, Ling Li, and Andrew Squelch. Hybrid surgery cutting using snapping

algorithm, volume deformation and haptic interaction. Journal of Man, Machine

and Technology, 2(1):35–46, 2013.

[183] Andreas Petersik, Bernhard Pflesser, Ulf Tiede, Karl-Heinz Höhne, and Rudolf

Leuwer. Realistic haptic interaction in volume sculpting for surgery simulation.

In Surgery Simulation and Soft Tissue Modeling, pages 194–202. Springer, 2003.

[184] Bernhard Pflesser, Andreas Petersik, Ulf Tiede, Karl Heinz Höhne, and Rudolf

Leuwer. Volume cutting for virtual petrous bone surgery. Computer Aided Surgery,

7(2):74–83, 2002.

[185] Ekaterina Podolskaya, Artem Panchenko, and Anton Krivtsov. Stability and struc-

tural transitions in crystal lattices. In Surface Effects in Solid Mechanics, pages

123–133. Springer, 2013.

233



Bibliography

[186] ”MultiScaleHuman Project”. http://www.welfenlab.de/multiscalehuman.html.

[187] W. Qi. Geometry based haptic interaction with scientific data. Proceedings of the

2006 ACM international conference on Virtual reality continuum and its applica-

tions, pages 401–404, 2006.

[188] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detection

between rigid bodies. Proceedings of Eurographics (Computer Graphics Forum),

21(3):279–288, 2002.

[189] L. Ren, H. Pfister, and M. Zwicker. Object space ewa surface splatting: A hard-

ware accelerated approach to high quality point rendering. Computer Graphics

Forum, 21(3):461–470, 2002.

[190] C. Rezk-Salama. Volume Rendering Techniques for General Purpose Graphics

Hardware. PhD thesis, University of Siegen, Germany, 2001.

[191] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume

rendering on standard pc graphics hardware using multi-textures and multi-stage

rasterization. In Proc. SIGGRAPH/Eurographics Workshop on Graphics Hard-

ware, pages 109–118, 2000.

[192] C. Rezk-Salama and A. Kolb. Opacity peeling for direct volume rendering. Com-

puter Graphics Forum, 25(3):596–606, 2006.

[193] Phattanapon Rhienmora, Kugamoorthy Gajananan, Peter Haddawy, Matthew N

Dailey, and Siriwan Suebnukarn. Augmented reality haptics system for dental

surgical skills training. In Proceedings of the 17th ACM Symposium on Virtual

Reality Software and Technology, pages 97–98. ACM, 2010.

[194] Jakob Riga. Entwurf und entwicklung einer haptischen eingabemethode zur er-

fassung von metainformationen auf 3d-oberflachen. Bachelor’s thesis, Leibniz

Universitat Hannover, Faculty of Electrical Engineering and Computer Science,

Welfenlab, Germany, September 2015.

[195] F. Roessler, R. P. Botchen, and T. Ertl. Dynamic shader generation for flexible

multi-volume visualization. In Proc. of IEEE Pacific Visualization Symposium

2008 (PacificVis ’08), pages 17–24, 2008.

[196] T. Ropinski, J. Kasten, and K. H. Hinrichs. Efficient shadows for gpu-based

volume raycasting. In Proceedings of the 16th International Conference in Central

Europe on Computer Graphics, Visualization (WSCG08), pages 17–24, 2008.

234



Bibliography

[197] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and K. H. Hinrichs.

Interactive volume rendering with dynamic ambient occlusion and color bleeding.

Computer Graphics Forum (Eurographics 2008), 27(2):567–576, 2008.

[198] D. C. Ruspini, K. Kolarov, and O. Khatib. The haptic display of complex graphical

environments. Proceedings of the 24th annual conference on Computer graphics

and interactive techniques, pages 345–352, August 1997.

[199] Jan Rzepecki, Ricardo Manuel Millán Vaquero, Alexander Vais, Karl-Ingo Friese,

and Franz-Erich Wolter. Multimodal approach for natural biomedical multi-scale

exploration. In Advances in Visual Computing, pages 620–631. Springer, 2014.

[200] Mikel Sagardia, Katharina Hertkorn, Thomas Hulin, Simon Schätzle, Robin Wolff,

Johannes Hummel, Janki Dodiya, and Andreas Gerndt. Vr-oos: The dlr’s virtual

reality simulator for telerobotic on-orbit servicing with haptic feedback. In 2015

IEEE Aerospace Conference, pages 1–17. IEEE, 2015.

[201] Mikel Sagardia, Thomas Hulin, Carsten Preusche, and Gerd Hirzinger. Im-

provements of the voxmap-pointshell algorithm-fast generation of haptic data-

structures. In 53rd IWK-Internationales Wissenschaftliches Kolloquium, Ilmenau,

Germany, 2008.

[202] Mikel Sagardia, Bernhard Weber, Thomas Hulin, Gerd Hirzinger, and Carsten

Preusche. Evaluation of visual and force feedback in virtual assembly verifications.

In 2012 IEEE Virtual Reality Workshops (VRW), pages 23–26. IEEE, 2012.

[203] K. Salisbury, D. Brock, T. Massie, N. Swarup, and C. Zilles. Haptic rendering:

programming touch interaction with virtual objects. Proceedings of the 1995 sym-

posium on Interactive 3D graphics, pages 123–130, April 1995.

[204] M. Sedef, E. Samur, and C. Basdogan. Visual and haptic simulation of linear

viscoelastic tissue behavior based on experimental data. 2006 International Sym-

posium on Haptic Interfaces for Virtual Environment and Teleoperator Systems

(HAPTICS’06), pages 201–208, 2006.

[205] C. Sewell, N. H. Blevins, S. Peddamatham, H. Z. Tan, D. Morris, and K. Salisbury.

The effect of virtual haptic training on real surgical drilling proficiency. Second

Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems (WHC’07), pages 601–603, 2007.

[206] S.Gottschalk. Collision Queries Using Oriented Bounding Boxes. PhD thesis,

University of North Carolina at Chapel Hill, USA, 2000.

235



Bibliography

[207] M. Shih, Y.-F. Chiu, Y.-C. Chen, and C.-F. Chang. Real-time ray tracing with

cuda. In ICA3PP 09: Proceedings of the 9th International Conference on Algo-

rithms and Architectures for Parallel Processing, pages 327–337, 2009.

[208] Nosé Shuichi. Constant temperature molecular dynamics methods. Progress of

Theoretical Physics Supplement, 103:1–46, 1991.

[209] S. Signorini. Sopra akune questioni di elastostatica. Atti della Societa ltaliana per

il Progresso delle Scienze, 1933.

[210] J. Singh and P. Narayanan. Real-time ray tracing of implicit surfaces on the

gpu. IEEE Transactions on Visualization and Computer Graphics, 16(2):261–272,

2010.

[211] L. M. Sobierajski and R. S. Avila. A hardware acceleration method for volumetric

ray tracing. Proceedings of the 6th conference on Visualization ’95, pages 27–34,

1995.

[212] L. M. Sobierajski and A. E. Kaufman. Volumetric ray tracing. Proceedings of the

1994 symposium on Volume visualization, pages 11–18, October 1994.

[213] Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. A unified particle model

for fluid–solid interactions. Computer Animation and Virtual Worlds, 18(1):69–82,

2007.

[214] L. R. Speer. An updated cross-indexed guide to the ray-tracing literature. ACM

SIGGRAPH Computer Graphics, 26(1):41–72, Januar 1992.

[215] Anthony James Merrill Spencer. Continuum mechanics. Courier Corporation,

2004.

[216] M. Stoodley, M. Fulton, M. Dawson, R. Sciampacone, and J. Kacur. Real-time

Java, Part 1: Using Java code to program real-time systems, April 2007.

[217] Don Stredney, Ali R Rezai, Daniel M Prevedello, J Bradley Elder, Thomas Kerwin,

Bradley Hittle, and Gregory J Wiet. Translating the simulation of procedural

drilling techniques for interactive neurosurgical training. Neurosurgery, 73(4):74–

80, 2013.

[218] David Love Tonnesen. Dynamically coupled particle systems for geometric model-

ing, reconstruction, and animation. PhD thesis, University of Toronto, 1998.

236



Bibliography

[219] A. van der Ploeg. Interactive ray tracing, the replacement of rasterization? B.Sc.

Thesis, Vrije University, December 2006.

[220] Ricardo Manuel Millán Vaquero, Asan Agibetov, Jan Rzepecki, Marta Ondrésik,

Alexander Vais, Joaquim Miguel Oliveira, Giuseppe Patane, Karl-Ingo Friese,

Rui Luis Reis, Michela Spagnuolo, et al. A semantically adaptable integrated

visualization and natural exploration of multi-scale biomedical data. In Informa-

tion Visualisation (iV), 2015 19th International Conference on, pages 543–552.

IEEE, 2015.

[221] Ricardo Manuel Millán Vaquero, Jan Rzepecki, Karl-Ingo Friese, and Franz-Erich

Wolter. Visualization and user interaction methods for multiscale biomedical data.

In 3D Multiscale Physiological Human, pages 107–133. Springer, 2014.

[222] A. Vashisth and S. Mudur. Deforming point-based models using an electronic

glove. Proceedings of the 2008 C3S2E conference, pages 193–197, 2008.

[223] Loup Verlet. Computer ”experiments” on classical fluids. i. thermodynamical

properties of lennard-jones molecules. Physical review, 159(1):98, 1967.

[224] F.P. Vidal, N.W. John, A.E. Healey, and D.A. Gould. Simulation of ultrasound

guided needle puncture using patient specific data with 3d textures and volume

haptics. Journal of Visualization and Computer Animation, 19:111–127, 2008.

[225] Roman Vlasov, Karl-Ingo Friese, and Franz-Erich Wolter. Ray casting for collision

detection in haptic rendering of volume data. I3D ’12 Proceedings of the ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, page 215, March

2012.

[226] Roman Vlasov, Karl-Ingo Friese, and Franz-Erich Wolter. Haptic rendering of

volume data with collision detection guarantee using path finding. In Transactions

on Computational Science XVIII, pages 212–231. Springer, 2013.

[227] Roman Vlasov, K.-I Friese, and F.-E Wolter. Haptic rendering of volume data with

collision determination guarantee using ray casting and implicit surface represen-

tation. In Proc. of Cyberworlds 2012 Int. Conference, pages 91–99, September

2012.

[228] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,

Computer Graphics Group, Saarland University, Germany, 2004.

[229] I. Wald. The rtrt core. ACM SIGGRAPH 2005 Courses, July 2005.

237



Bibliography

[230] I. Wald, C. Benthin, and P. Slusallek. Openrt - a flexible and scalable render-

ing engine for interactive 3d graphics. Technical Report TR-2002-01, Saarland

University, 2002.

[231] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic

bounding volume hierarchies. ACM Transactions on Graphics (TOG), 26(1), Jan-

uary 2007. article 6.

[232] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray tracing animated

scenes using coherent grid traversal. ACM Transactions on Graphics (TOG),

25(3), July 2006.

[233] M. Wan and W. A. McNeely. Quasi-static approximation for 6 degrees-of-freedom

haptic rendering. Proceedings of the 14th IEEE Visualization Conference (VIS03),

pages 257–262, 2003.

[234] Roger W Webster, Dean I Zimmerman, Betty J Mohler, Michael G Melkonian,

and Randy S Haluck. A prototype haptic suturing simulator. Medicine Meets

Virtual Reality, 81:567–569, 2001.

[235] R. Weller and G. Zachmann. A unified approach for physically-based simulations

and haptic rendering. Proceedings of the 2009 ACM SIGGRAPH Symposium on

Video Games, pages 151–160, August 2009.

[236] R. Westermann and B. Sevenich. Accelerated volume ray-casting using texture

mapping. Proceedings of the conference on Visualization ’01, pages 271–278, Oc-

tober 2001.

[237] L. Westover. Interactive volume rendering. Proceedings of the Chapel Hill Work-

shop on volume visualization, pages 9–16, May 1989.

[238] L. Westover. Footprint evaluation for volume rendering. ACM SIGGRAPH Com-

puter Graphics, 24(4):367–376, August 1990.

[239] T. Whitted. An improved illumination model for shaded display. Communications

of the ACM, 23(6):343–349, June 1980.

[240] Martin Wicke, Philipp Hatt, Mark Pauly, Matthias Müller, and Markus Gross.

Versatile virtual materials using implicit connectivity. In Proceedings of the 3rd

Eurographics/IEEE VGTC conference on Point-Based Graphics, pages 137–144.

Eurographics Association, 2006.

238



Bibliography

[241] D WILLIAMS. Polyvox technology. open source software available at.

http://www.thermite3d.org.

[242] J. Williams. A method for accelerating the generation and display of volume-

rendered cut-away-view of three dimensional images. US patent application

6573891 B1, 2003.

[243] O. Wilsona, A. VanGelde, and J.Wilhelms. Direct volume rendering via 3d tex-

tures. Technical report UCSC-CRL-94-19, University of Santa Cruz, 1994.

[244] Jun Wu, Dangxiao Wang, Charlie CL Wang, and Yuru Zhang. Toward stable and

realistic haptic interaction for tooth preparation simulation. Journal of Computing

and Information Science in Engineering, 10(2):021007–1–021007–9, 2010.

[245] Jun Wu, Ge Yu, Dangxiao Wang, Yuru Zhang, and Charlie CL Wang. Voxel-based

interactive haptic simulation of dental drilling. In ASME 2009 International De-

sign Engineering Technical Conferences and Computers and Information in En-

gineering Conference, pages 39–48. American Society of Mechanical Engineers,

2009.

[246] JZ Wu, RG Dong, and DE Welcome. Analysis of the point mechanical impedance

of fingerpad in vibration. Medical engineering & physics, 28(8):816–826, 2006.

[247] L. Yang and D. Xue. Systems and methods of gradient assisted volume rendering.

US patent application 7675517 B2, 2010.

[248] S.-E. Yoon, C. Lauterbach, and D. Manocha. R-lods: Fast lod-based ray tracing of

massive models. The Visual Computer (Pacific Graphics) 2006, Technical report

TR06-009, University of North Carolina at Chapel Hill, USA, 2006.

[249] X. Yuan, M. Nguyen, B. Chen, and D. Porter. High dynamic range volume visu-

alization. IEEE Visualization ’05 Proceedings, pages 327–334, 2005.

[250] C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for haptic

display. Proceedings of the International Conference on Intelligent Robots and

Systems, 3:31–46, August 1995.

[251] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa volume splatting. Pro-

ceedings of the conference on Visualization ’01, pages 29–36, October 2001.

239



Page 1 of 2

Curriculum Vitae

Name: Roman VLASOV
Born on: 14th January 1986 in Leningrad       
E-mail:   rovlasovfp@gmail.com
LinkedIn: https://www.linkedin.com/in/rovlasov

E X P E R I E N C E

Senior Software Engineer

Adpack TV  (Germany)                                                                                                                                   From   08 / 2016

Responsible for Production & Innovation

Software Engineer

Freelance                                                                                                                                                  01 / 2016 – 06 / 2016

Software Engineer / PhD Researcher

Institute of Man-Machine-Communication, Leibniz University of Hanover (Germany)                                    04 / 2015 – Present

Finalizing the PhD

Software Engineer / Research Associate

Nanyang Technological University (Singapore)                                                                                                       06 / 2013 – 03 / 2015

Virtual Reality, Visualization Frameworks

Software Engineer / PhD Researcher

Institute of Man-Machine-Communication, Leibniz University of Hanover (Germany)                                  09 / 2009 – 05 / 2013

Virtual Reality, Visualization, Haptic Rendering                                                                                                     
Sponsored by Siemens/DAAD, Exhibited on CeBIT '13 and '15

Part-Time Software Engineer

SoftDev SPb (Russia)                                                                                                                                             03 / 2008 – 08 / 2009

CAD Software

Part-Time Junior Software Engineer

Driver Inter Ltd. (Russia)                                                                                                                                       09 / 2006 – 09 / 2007

Golf Simulator, Samsung MenuTool

Researcher (Internship)

Department of Theoretical Mechanics, Saint-Petersburg State Polytechnical University (Russia)                   05 / 2006 – 08 / 2006

   Other Experience:

Teaching Assistant

Leibniz University of Hanover (Germany)                                                                                                       10 / 2010 – 02 / 2011



Page 2 of 2

 E D U C A T I O N

Leibniz University of Hanover (Germany)                                                                                2009 – Present

Finalizing the Ph.D. in Computer Science

Saint-Petersburg State Polytechnical University (Russia)                                                              2003 – 2009

M.Sc. in Applied Mathematics and Informatics

Physical and Mathematical Lyceum 239 (Russia)                                                                           2001 – 2003

High School


	Introduction
	Basics and Definitions
	Haptic Interaction
	Definitions
	Types of Input/Output Devices
	Haptic displays
	Cutaneous displays
	Passive Haptics
	Synchronization of Different Devices
	Additional Definitions
	Degrees-of-Freedom (DoFs)
	Haptic Rendering Pipeline
	Controlling a Haptic Display
	Passivity
	Direct Rendering and Virtual Coupling
	Stability and Force Feedback Update Rate
	Stability Problems

	Visualization
	Volumetric Data Processing Pipeline
	Data Representation
	Surface Rendering
	Direct Volume Rendering


	Literature Overview
	Visualization by Direct Volume Rendering
	Rendering with 2D Textures
	Shear-Warp Algorithm
	Rendering with 3D Textures
	Splatting
	Ray Casting
	Ray Tracing

	Haptic Interaction
	Rigid-Rigid Methods
	Methods with Allowed Data Modification
	Rigid-Defo Methods
	Defo-Defo Methods
	Summary


	Our Haptic Rendering Approach
	Data Representation
	Collision Detection using Ray Casting
	Collision Response
	Additional Remarks on Collision Response
	Time and Space Complexities of Collision Response
	Force-Feedback
	Workspaces and Movement/Rotation of Objects
	Improved Collision Response
	Improved Force-Feedback
	Prototype System
	Dealing with Synchronization Issues
	Scheme of the Prototype System
	Dealing with Java Virtual Machine Issues
	Results
	Results for the Improved Approach
	Discussion and Future Outlook

	Our Deformation Framework and Deformation Approaches
	Our Deformation Framework
	Update of Graphics Representation
	Possible Solutions
	Update for Marching Cubes

	Introduction to Potential Fields Approach
	Characteristics of Potential Fields Approach
	Equations of Motion
	Interaction Potentials
	Commonly Used Interaction Potentials
	Lennard-Jones Potential
	Mi Potential
	Morse Potential
	Composite potentials

	Simulation Setup
	Initial Positions and Velocities of Potential Fields
	Moving Local Simulation Area
	Reuse of Potential Field Objects
	Binding to Initial Positions
	Interaction with Borders of the Simulation Area and with Empty Space
	Correspondence to Parameters of Real Materials
	Taking into Account Voxel Intensities
	Interactions of the IP with Potential Fields
	Dissipation in Our Approach
	Cuboid Potential Fields
	Correspondence to Parameters of Real Materials for Cuboid Potential Fields
	Limit Maximum Interaction Force
	``Multi-Layered'' Simulation
	Speed-up Structure to Find Interactions
	Force-feedback
	Time and Space Complexities of the Potential Fields Approach
	Update of Volumetric Data for the Potential Fields Approach
	The Global Simulation using Potential Fields
	Results
	Results – Use Cases
	Adding Meta–Information
	MultiScaleHuman Project
	Simulation

	Discussion and Future Outlook

	Summary and Outlook
	Bibliography

