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A B S T R A C T

Modern communication networks have become a constituent part of daily life appli-

cations. Since the design of ARPANET, which is the predecessor of the Internet, a

key research focus lies on modelling and performance evaluation of communica-

tion networks. Established performance measures include quality of service (QoS)

metrics known from queueing theory, e.g., the mean queue length or mean latency.

The discovery of the statistical properties of self-similarity and long memory in

aggregate Internet traffic called into question the applicability of the performance

analysis models and assumptions used so far. This discovery was followed by the

derivation of approximations and asymptotes that indicate a significant impact of

self-similarity and long memory on the queueing performance. Self-similarity and

long memory are captured by the so-called Hurst parameter H ∈ (0.5, 1).

Stochastic network calculus emerged as a promising framework for flow level per-

formance evaluation that builds on a mathematical abstraction of data traffic flows

and network elements. It comprises instrumental concepts such as the separation of

the traffic characterization from the description of the service that is provided by

network elements, e.g., routers. The network calculus framework permits modeling

different types of statistical traffic sources as well as diverse scheduling disciplines,

which contributes to its wide applicability. Moreover, composition results enable the

evaluation of end-to-end performance for entire network paths. Network Calculus

yields mainly non-asymptotic bounds for queueing performance metrics such as

buffer occupancy and latency.

This thesis provides a performance analysis for communication networks carrying

traffic that is characterized by the statistical properties of self-similarity and long

memory. Based on stochastic network calculus we provide rigorous upper bounds

on queueing performance metrics for single nodes with long memory input traffic.

Our results strengthen conclusions from related approximations on the impact of

spare capacity and buffering on the performance. Additionally, we quantify the

influence of long memory traffic on the service provided to concurrent flows in

resource sharing scenarios.
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Based on our single node results we extend the analysis using the stochastic net-

work calculus to multi-node scenarios. We show that end-to-end delays in network

paths exhibiting long memory traffic grow super-linearly as O
(
n(log n)

1
(2−2H)

)
in the

number of traversed nodes n. This scaling compares to related results of Θ(n) for

queueing networks under independence assumptions and Θ(n log n) for networks

carrying light tailed traffic. The derived scaling characterizes the impact of long

memory on end-to-end performance over entire network paths. Our scaling result

has direct implications for fundamental questions on network dimensioning and

operations.

The significance of long memory traffic statistics is founded by its considerable

impact on the queueing performance. However, we find that the traditional methods

of acquiring such traffic properties, that are through collecting traffic traces, are

challenging due to confidentiality issues and technical limitations on logging and

storage speeds. This thesis provides a lightweight method to estimate properties of

Internet traffic, specifically its correlations, through random sampling. We analyti-

cally demonstrate the applicability of our approach for different stochastic sampling

processes. We show the impact of finite sample sizes as well as diverse sampling

parameters on the estimation accuracy and provide asymptotically unbiased esti-

mators. Complementary to trace-based approaches that reflect statistics at a single

network node, we provide a method for inferring the dominant characteristics on

end-to-end network paths. We substantiate our approach in a controlled testbed

environment using a lightweight implementation of the presented algorithms before

conducting an extensive Internet measurement campaign.

Keywords: Self-similarity, Long Range Dependence, Stochastic Network Calculus,

Performance Evaluation, Quality of Service, Sampling, Network Probing.
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Z U S A M M E N FA S S U N G

Moderne Kommunikationsnetze bilden einen elementaren Bestandteil vieler Anwen-

dungen im alltäglichen Leben. Seit der Konzipierung des ARPANET, dem Vorgänger

des Internets, ist die Modellierung und Leistungsbewertung von Datenkommunika-

tionsnetzen Gegenstand der Forschung. Als Leistungsmetriken werden Dienst-

gütekriterien, die aus der Warteschlangentheorie bekannt sind, wie z.B. die mittlere

Puffergröße bzw. Latenz, herangezogen.

Die Entdeckung der statistischen Eigenschaften der Selbstähnlichkeit und Langzeit-

korrelation im Internetverkehr hat die Annahmen und somit die Anwendbarkeit der

traditionellen Modelle bzw. Leistungsbewertungsmethoden in Kommunikations-

netzen wie dem Internet in Frage gestellt. Approximationen und asymptotische Re-

sultate aus der Literatur weisen auf einen starken Einfluss der Selbstähnlichkeit und

Langzeitkorrelation, welche mittels des sogenannten Hurst-Parameters H ∈ (0.5, 1)

beschrieben werden, auf die Dienstgüte hin.

In den letzten Jahren hat sich das stochastische Netzwerkkalkül als mathema-

tisches Rahmenwerk für die Leistungsbewertung von Kommunikationsnetzen ent-

wickelt. Dieses basiert auf der separaten Beschreibung von jeweils dem Datenverkehr

und dem von Netzwerkkomponenten bereitgestellten Dienst. Diese Betrachtung

führt zur hohen Anwendbarkeit des Netzwerkkalküls, da somit unterschiedliche

Verkehrs- und Dienstmodelle kombiniert werden können. Weiterhin ermöglichen

Kompositionsresultate die Abstraktion von Netzwerkpfaden als ein zusammenge-

fasstes Äquivalentsystem und somit die Ausweitung der Analyse auf Ende-zu-Ende

Pfade. Das Netzwerkkalkül erlaubt die Herleitung von oberen Schranken für Leis-

tungsmetriken, wie z.B. die Verteilung der Puffergröße bzw. der Latenz.

In dieser Arbeit werden basierend auf dem stochastischen Netzwerkkalkül obere

Schranken für Leistungsmetriken in Netzwerken mit langzeitkorreliertem Daten-

verkehr berechnet. Die hergeleiteten Ergebnisse werden mit Approximationen aus

der Literatur verglichen. Dabei wird der Einfluss von Pufferung bzw. Überkapazi-

täten auf die Dienstgüte gezeigt. Weiterhin wird die Auswirkung von Langzeitkor-

relationen auf die Dienstgüte konkurrierender Datenströme quantifiziert.
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Auf der Basis des stochastischen Netzwerkkalküls und der vorgestellten Ergeb-

nisse werden Leistungsschranken für Ende-zu-Ende Latenzen in Netzwerken mit

langzeitkorreliertem Datenverkehr hergeleitet. Ein grundlegendes Resultat dieser

Arbeit beziffert den Zuwachs von Ende-zu-Ende Latenzen für Netzwerkpfade mit n

Systemen in Folge auf O
(
n(log n)

1
(2−2H)

)
. Vergleichbare Resultate aus der Literatur

sind z.B. Θ(n) unter statistischer Unabhängigkeit und Θ(n log n) für Datenverkehr

mit exponentiell abklingender Burstartigkeit. Die Ergebnisse dieser Arbeit quan-

tifizieren den Einfluss der Langzeitkorrelationen auf die Netzwerkperformanz. Die

in geschlossener Form hergeleiteten Resultate haben eine grundlegende Auswirkung

auf die Dimensionierung von Netzwerken und deren Betrieb.

Der erhebliche Einfluss der statistischen Eigenschaften von langzeitkorreliertem

Datenverkehr auf die Dienstgüte in Warteschlangensystemen begründet die Er-

forschung von Methoden zur Schätzung dieser Eigenschaften. Traditionelle Metho-

den aus der Literatur basieren auf einer vollständigen Aufnahme des Datenverkehrs

an Netzwerkkomponenten, wie z.B. Routern. Im Rahmen dieser Arbeit wird eine

weniger datenintensive Schätzmethode für die Langzeitkorrelationen des Daten-

verkehrs vorgestellt, die auf zufälligem Abtasten des Verkehrs basiert. Die Rück-

gewinnung der statistischen Eigenschaften des Datenverkehrs aus den zufälligen

Beobachtungen wird analytisch bewiesen. Der Einfluss einer begrenzten Anzahl

an Beobachtungen auf die Schätzgenauigkeit wird quantifiziert. Weiterhin werden

asymptotisch erwartungstreue Schätzer für die Langzeitkorrelationen des Daten-

verkehrs vorgestellt. Diese Arbeit ergänzt traditionelle Schätzmethoden aus der

Literatur durch ein Verfahren, welches Testpakete in das Netzwerk injiziert, auf zufäl-

ligem Abtasten aufbaut und keine administrative Berechtigung an Routern erfordert.

Im Gegensatz zu traditionellen Methoden, die die statistischen Eigenschaften an

einem einzelnen Router wiedergeben, ermöglicht das vorgestellte Verfahren die

dominanten Eigenschaften entlang eines untersuchten Pfades zu schätzen. Das

präsentierte Verfahren wird in einer kontrollierten Umgebung verifiziert und es

werden Ergebnisse einer Langzeit-Internetstudie vorgestellt.

Schlagwörter: Selbstähnlichkeit, Langzeitkorrelationen, stochastisches Netzwerkkalkül,

Dienstgüte, Leistungsbewertung, zufälliges Abtasten, Netzwerktestverfahren.
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Part I

D I S S E RTAT I O N



1
I N T R O D U C T I O N

The statistical property known as long memory, or long range dependence (LRD),

has been observed for a variety of natural phenomena in the past century. Long

memory data series exhibit strong correlations that decay very slowly. Statisticians

working with empirical records in different fields such as economics, hydrology

and computer engineering reported for diverse metrics slower than exponential

decay of correlations between distant observations. This phenomenon was reported

in a prominent study of the Nile River water levels coining the so-called "Hurst"

effect. The effect named after H. Hurst is a measure for the slow decay of the

correlations that belong to long memory data series [56]. The seminal works by

B. B. Mandelbrot [85, 86, 87] introduced long memory to stochastic modeling

paving the way for numerous research works on the application of long memory

processes to diverse scientific fields. In this thesis we provide a non-asymptotic

performance evaluation of communication networks that exhibit long memory data

traffic. Complementary to the performance evaluation we contribute a framework

for estimating long memory traffic properties from sampled data subsets.

1.1 features and modeling of internet traffic

In recent years, communication networks have become an integral part of human

life, shaping basic actions such as social interaction, business and entertainment.

The dimensioning and optimization of communication networks, as well as the

deployment of heterogeneous applications by, e.g., service providers establish the

need for quantifying the performance of such networks. The performance analysis of

modern communication networks has its roots in the mathematical investigation of

telephone networks by A. K. Erlang at the beginning of the twentieth century [42, 43].

Erlang’s studies led to the introduction and development of queueing theory as

a framework of applied mathematics for performance evaluation that was later

deployed in diverse fields such as telecommunications and operations research. In

2



1.1 features and modeling of internet traffic 3

flow
flow

Figure 1.1: Network abstraction with traffic flows, internal nodes, e.g., routers, and end-
hosts at the network edge. Note that for every node each output port is modeled
by the queue-server abstraction in the bottom left.

Figure 1.1 we depict an example of a communication network with end-hosts at

the network edge and internal elements denoted as nodes in the sequel that are for

example routers or switches. We also depict packet data traffic flowing through the

network and sharing resources at different nodes.

Queueing theory abstracts network nodes as servers with queues as depicted in

the lower left corner of Figure 1.1. It provides closed form results on performance

metrics such as the distribution of the packet waiting time for single queues,

respectively, networks of queues using independence assumptions on arrival and

service times [60, 67]. Prominent queueing theory results use the Poisson traffic

model, which is based on data packets with exponentially distributed inter-arrival

times. Hence, the traffic is modelled as a memoryless process. Using the Poisson

traffic model the output queue of a network node, e.g., a router, can be abstracted

as an M|M|1 queue [67, 68]. See [10] for an overview on queueing theory results. In

the sequel we will rely on the node abstraction depicted in Figure 1.1.

For a long time the analysis of communication networks was based on the Poisson

traffic model, which was justified through the multiplexing of a huge number of

statistically independent traffic flows. The convergence of aggregate traffic to the

Poisson model, that is known for independent Bernoulli sources, is argued in the

limit for other types of sources in [20].
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Comprehensive measurements in the 1990s revealed that aggregate Internet traffic

possesses LRD and statistical self-similarity [32, 45, 72, 100, 128]. LRD and self-

similarity are captured by the so-called Hurst parameter H, that can be estimated

using numerous methods from given time series, respectively traffic traces [8, 123,

126].

A stochastic process V(t) is called self-similar if it retains its finite dimensional

distribution on different time scales apart from a stretching factor that depends

on H ∈ (0, 1) [[8] p. 48]. Thus, for a self-similar stochastic process V(t) it holds

that aHV(t) d
= V(at) for any a > 0, with d

= denoting equality in distribution. Self-

similar LRD processes exhibit heavy temporal correlations, i.e., the related increment

process Y(t) := V(t + 1) − V(t) with variance σ2
Y possesses an autocovariance1

function that decays as

cY(τ) ' H(2H − 1)σ2
Yτ2H−2 for τ → ∞, (1.1)

with lag τ and Hurst parameter H ∈ (0.5, 1). LRD manifests itself in the slow

decay of the correlations such that they are not summable ∑τ cY(τ) = ∞ [[8] p. 52].

This stands in contrast to the independence assumption of Poisson traffic and the

exponential decay of the correlations of Markov and autoregressive moving average

(ARMA) models, respectively [8, 97].

The emergence of LRD and statistical self-similarity in network traffic is mathe-

matically explained in [124] by the aggregation of many on-off sources that exhibit

heavy tailed on and off periods, which corresponds to file size distributions ob-

served on storage systems [32, 128]. A recent large-scale experimental study on this

relation recovered the properties of self-similarity and LRD in a controlled environ-

ment using open- and closed-loop traffic [82]. Despite the continuous change in the

traffic mix carried through the Internet due to perpetual emerging applications and

protocols [7, 9, 51], recent measurements in [54] show that self-similarity and LRD

still hold.

A widely adopted model for aggregate Internet traffic exhibiting self-similarity

and LRD [44, 72, 95, 96] is fractional Brownian motion (fBm). FBm was introduced to

1 We use the definition from [97] for the autocovariance of the process Y(t) at lag τ:
cY(τ) := E[Y(t)Y(t + τ)]− E[Y(t)]E[Y(t + τ)].
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stochastic modeling by B. B. Mandelbrot in [86]. Depending on the Hurst parameter

an fBm stochastic process denoted V(t) may be long- or short-range dependent

(SRD), i.e., for H ∈ ( 1
2 , 1) or H ∈ (0, 1

2 ). SRD stochastic processes have a summable

autocovariance ∑τ cY(τ) < ∞. For H = 0.5 the process degenerates to standard

Brownian motion (Bm) with independent increments. FBm possesses a stationary

increment process Y(t) denoted fractional Gaussian noise (fGn) [38]. Although

the Gaussian increment distribution may in some cases be physically difficult to

interpret, it simplifies calculations and makes the traffic model parsimonious [66,

72]. The established model for aggregate Internet traffic which is known from

literature [44, 72, 95, 96] describes cumulative data traffic using the sum of a linear

mean rate process and a zero-mean fBm process V(t). The fBm process V(t) features

the following basic properties: V(0) = 0, E[V(t)] = 0, and E[V(t)2] = σ2t2H for

all t ≥ 0 where σ2 > 0 is its variance at t = 1 and denoted in the sequel variance

parameter.

There exist numerous statistical tools to test time series for self-similarity and

LRD and to estimate the related Hurst parameter. The estimators are based on

the distributional, time and frequency domain characteristics of self-similar LRD

series. The metrics and methods used for the estimation include: rescaled range,

aggregate variance, periodogram, maximum likelihood and wavelets. See [8, 123,

126] and references therein for a detailed performance and robustness review of

the aforementioned estimators. These statistical estimators have been deployed to

provide evidence for self-similarity and LRD in Internet traffic traces and to estimate

the related Hurst parameters in [32, 54, 72, 126, 128].

Next, we will review prominent performance evaluation techniques for single

queueing systems with self-similar LRD traffic input as known from literature.

1.2 approaches to performance analysis with lrd traffic

Classical queueing theory was deployed as conclusive methodology to analyze

packet data networks since its emergence in the 1960s [67]. It features fundamental

results on scheduling and multiplexing as well as explicit closed-form performance
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measures such as the exact distributions of backlog and delay for single queues as

well as networks of queues given Poisson traffic. Queueing theory provides results

on product form queueing networks that enable the analysis of tandem queues as if

in isolation [10, 60].

The discovery of self-similarity and LRD in aggregate Internet traffic inspired

many researchers to investigate the impact of these statistical properties on network

performance [24, 40, 44, 57, 66, 74, 88, 90, 94, 96, 106]. Experimental investigations

in [44] using self-similar LRD traffic traces show a strong degradation in queueing

performance, e.g., in the distribution of the buffer occupancy. Studies as [44] showed

practical evidence that networks carrying LRD traffic show fundamentally different

performance in comparison to networks with memoryless or Markovian traffic.

Theories such as large deviations and effective bandwidths [40, 66, 90, 96] indicate

that the tail decay of the buffer occupancy in the presence of LRD is slower than

exponential. In comparison, memoryless or Markovian traffic are known for expo-

nential queueing behavior. Next, we review a prominent result on the probability

that the buffer occupancy B exceeds a given threshold b for systems fed with LRD

traffic. The buffer overflow probability P[B > b] at a constant rate server with

capacity C with incoming fBm traffic with mean rate λ, variance parameter σ2 and

Hurst parameter H ∈ (0.5, 1) is given as

P[B > b] ≈ exp

(
− 1

2σ2

(
C− λ

H

)2H( b
1− H

)2−2H
)

:= εa. (1.2)

The result (1.2) is derived as approximation in [95, 96] and as asymptotic bound

for b → ∞ in [40]. Thus, we use the subscript in εa to denote the approximation,

respectively, asymptote in (1.2). Observe that the buffer overflow probability has

a Weibull tail for H ∈ (0.5, 1) and reduces to an exponential decay for the Bm

case of H = 0.5. The result (1.2) is derived using the Gaussian distribution of the

fBm increments and the largest term approximation in [95, 96]. The largest term

approximation, that considers only the most probable time scale for buffer overflow,

provides, strictly speaking, a lower bound on the buffer overflow probability. We

will investigate the largest term approximation in more detail in Section 2.2.
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The result (1.2) is deduced in [40] using large deviations theory in conjunction with

the largest term approximation as P[B > b] ≈ εa for b→ ∞. Large deviations theory

focuses on finding tail asymptotics for distributions of steady-state performance

measures such as queue length or delay [23, 40, 52, 99]. The asymptotic behavior

given above is refined in [24, 49, 57, 88, 90, 94, 106] without altering the Weibull tail.

Large deviation theory is directly related to the theory of effective bandwidths [40,

127]. The notion of effective bandwidths arose in the context of resource allocation

problems such as admission control of traffic flows [22, 41, 50, 65, 92]. Statistical

multiplexing phenomena can be elegantly expressed using effective bandwidths.

The effective bandwidth of the sum of independent flows is given by the sum of

the effective bandwidths of the individual flows, see [23, 66]. Consider a traffic flow

A that is described by the cumulative data arrivals between two time points, e.g.,

between times 0 and t by A(0, t) or in shorthand A(t). The effective bandwidth

for some traffic flow A(t) with stationary increments is defined in [66] as α(θ, t) =

1
θt logE

[
eθA(τ,τ+t)

]
and varies between the mean and peak rate depending on the

free parameter θ > 0. It provides a measure for the resource requirements of

traffic flows at various time scales. The effective bandwidth is related to the moment

generating function (MGF) that is defined as MN(θ) := E
[
eθN] with parameter θ ∈ R

for a random variable N [[53] p.181]. It is derived in [66] for fBm that is characterized

through the tuple {λ, σ2, H} as

MA(θ, t) = eλθt+ θ2σ2
2 t2H

, (1.3)

such that the effective bandwidth for fBm is given by α(θ, t) = λ + θσ2

2 t2H−1 [66].

Note the continuous growth of α(θ, t) in t for LRD.

Large deviations theory and effective bandwidths provide the approximate, re-

spectively, asymptotic result (1.2). We find that using the theory of network calculus

it is possible to introduce the outstanding concepts of queueing theory on scheduling

and multi-node performance measures to fBm. Network calculus with its deter-

ministic [12, 23, 33] and stochastic [21, 23, 47, 64, 71, 89] branches uses the notion

of envelopes to characterize traffic [11, 33, 69, 74, 92, 121, 130, 131] and the notion

of service curves to characterize queueing systems while taking scheduling into
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account [11, 18, 34, 47, 98, 118]. A set of powerful results [12, 18, 19, 23, 28, 34, 35,

70, 75, 119, 120, 131] enables the derivation of non-asymptotic bounds on queueing

performance measures in single as well as multi-node scenarios. In this thesis we

provide a non-asymptotic performance evaluation for networks with LRD traffic.

In the next section we will provide a detailed description of the contributions of

this thesis.

1.3 thesis contributions

In this thesis we provide a non-asymptotic performance evaluation of commu-

nication networks carrying long memory traffic, e.g., the Internet [72, 95, 96], as

well as a lightweight traffic parameter estimation method without administrative

network support. The contributions of this thesis have theoretical as well as practical

implications.

First, we demonstrate a lightweight and practical method to extract long memory

traffic parameters from random traffic samples. We specify the influence of the

chosen statistical sampling process on the observations and determine the impact

of sampling parameters on the accuracy of the estimates. We find that the relative

error in the traffic autocovariance estimates increases with lag τ as τ2−2H with Hurst

parameter H ∈ (0.5, 1). We provide a method for acquiring the relevant samples

without administrative support through actively injecting packet probes into the

network. Complementary to trace driven analysis, which is based on a single vantage

point, we deploy our approach to characterize entire end-to-end paths. Finally, we

provide testbed and Internet measurement campaign results for synthetic as well as

real world network traffic.

Second, we propose a novel traffic envelope formulation in the context of stochas-

tic network calculus that enables deriving non-asymptotic performance bounds for

long memory traffic. Our result shows that queueing systems with long memory

traffic exhibit a fundamentally different behavior than the well understood expo-

nentially bounded burstiness (EBB) traffic analyzed in [28, 130]. Using the concept

of leftover service curves [28, 74, 103] we specify the impact of long memory on the
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service provided to concurrent traffic under scheduling constraints. We analyze the

asymptotic behavior of our rigorous performance bounds proving that it retains a

Weibull tail.

Third, we capitalize on the derived single node performance bounds to infer

end-to-end performance bounds for networks carrying long memory traffic. We

consider a general class of communication networks that are established in [28] and

coined as convolution-form networks in [29] to derive a corresponding network

service curve to describe entire paths under long memory traffic. Further, we

complement related work of queueing theory and network calculus on the scaling

of performance measures in communication networks. Queueing theory provides

the exact distribution of the steady-state end-to-end delays based on statistical

independence assumptions of arrival and service times [68]. This exact result can be

transformed into a growth of end-to-end delays in the number of traversed nodes n

of Θ(n) [26]. For EBB traffic, i.e., with queueing performance decaying exponentially,

a fundamental result [19, 28] proves a scaling of Θ(n log n) without assumptions

on statistical independence. We show that for networks under long memory traffic

with H ∈ (0.5, 1) end-to-end performance bounds grow as O(n(log n)
1

2−2H ) in the

number of traversed nodes n. This reveals the impact of LRD on the performance of

entire network paths. Our scaling result recovers the O(n log n) result for the EBB

case of H = 0.5. We complement the scaling of O(n(log n)
1

2−2H ) by a large buffer

asymptotic scaling result for multi-node scenarios. An elementary finding of our

work is that over-provisioning is essential for reliable network performance in the

presence of LRD.

1.4 thesis outline

In Chapter 2 we review related work on the performance evaluation of communi-

cation networks using the network calculus framework. We present the network

scenarios analyzed throughout this work and give a mathematical description of

the arrival traffic and the service provided by the network nodes. We review ex-

isting definitions and results known from deterministic network calculus before
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motivating its stochastic extension. Further, we recapitulate statistical models for

arrivals and service curves and derive single node performance bounds before

showing state-of-the-art results on the construction of network service curves and

the derivation of end-to-end performance bounds.

In Chapter 3 we formulate the research problems addressed in this thesis. After

introducing the individual research questions we show the significance of the

corresponding contributions.

In Chapter 4 we motivate the problem of inferring traffic characteristics in com-

munication networks from sampling observations with or without administrative

support. We derive a framework for sampling LRD traffic and show the reversibility

of the observations for different statistical sampling processes. Further, we assess

the impact of the sampling parameters on the estimates and show trade-offs that

impact the design of measurement campaigns. Finally, we show real world results

that shed light on the properties of Internet traffic on end-to-end paths.

In Chapter 5 we derive a sample path envelope for LRD fBm traffic and provide

non-asymptotic upper bounds on backlog and delay for servers fed with LRD traffic.

We compare the overflow probabilities for single node performance bounds with

LRD traffic to EBB class results known from literature to show that LRD traffic has

a fundamentally different queueing behavior. Further, we derive a leftover service

curve under fBm cross traffic, which is elementary to the subsequent end-to-end

performance evaluation results.

In Chapter 6 we present a network service curve based on the single node results

from Chapter 5. Subsequently, we provide non-asymptotic statistical end-to-end

performance bounds for networks under fBm cross traffic. We show that for theses

networks, performance bounds scale in O(n(log n)
1

2−2H ) in the number of traversed

nodes n. The application of the derived results within network dimensioning shows

the significance of spare capacity and over-provisioning in communication networks.

Chapter 7 contains the conclusions and an outlook on future work.



2F L O W L E V E L P E R F O R M A N C E E VA L U AT I O N I N
C O M M U N I C AT I O N N E T W O R K S

In this chapter we review the state-of-the-art flow level performance analysis in

communication networks using the network calculus theory. The framework of

network calculus builds on a system theoretic description of network elements.

Figure 1.1 depicts an abstraction of a communication network, where the individual

network elements, e.g., routers are modeled as queueing systems that consist of

a queue and a server. Data traffic traversing the network goes through tandem

queueing systems, where it may share resources with other traffic or it may be

shaped or policed [12].

In the following, we discuss established metrics for flow level performance anal-

ysis and review relevant analytical results. The exposition is based on data traffic

volumes that are measured in bits and timing information given in seconds.

The network calculus framework relates the cumulative traffic arrivals of a consid-

ered data traffic flow at a given node, or multiple tandem nodes, to the cumulative

traffic departures as exemplified in Figures 2.1 and 2.2. We denote the incom-

ing cumulative arrivals in the time interval [s, t) as A(s, t), i.e., A(0, t) − A(0, s).

Similarly, D(s, t) denotes the cumulative departures of the system in the time in-

terval [s, t), i.e., D(0, t)− D(0, s). We denote A(0, t) as A(t) and D(0, t) as D(t) for

convenience. We assume lossless systems and unless stated otherwise use a continu-

ous time fluid traffic model implying infinitely divisible data. Functions of time are

assumed non-negative, non-decreasing, left continuous and pass through the origin,

e.g., 0 ≤ A(s) ≤ A(t), ∀s ≤ t and A(0) = 0. From causality we have D(t) ≤ A(t) for

all t. An arrival traffic flow A(t) may be an aggregate of multiple flows as addressed

later on in this chapter.

Unless stated otherwise we assume nodes are work conserving constant rate

servers with capacity C, i.e., not idling when work is present. We assume stability at

each node such that the mean arrival rate is strictly smaller than the node capacity.

A considered flow may share resources with cross traffic at a single node as depicted

11
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A(t) S(t) D(t)

time

data

time

data

Figure 2.1: A queueing system with cumulative arrivals A(t) and departures D(t). The
departures are related to the arrivals through the service curve S(t). The graph
shows sample path examples for cumulative arrivals and departures.

in Figure 2.3, or at the different nodes along a given path as shown in Figure 2.4. We

restrict the composition to feed forward topologies, i.e., without cyclic dependencies.

Note that arbitrary feed-forward topologies can be transformed into line topologies

such as in Figure 2.4, see [47] for further details and a discussion.

2.1 background on deterministic network calculus

The seminal work by Cruz [33] laid the foundation for network performance evalua-

tion in a simple and mathematically elegant framework. Next, we briefly recapitulate

relevant mathematical definitions and techniques that provide the basis for this

thesis. A thorough treatment of the following concepts can be found in [12, 23, 33].

Deterministic Service Curves and Traffic Envelopes

Deterministic network calculus provides a general representation for service pro-

vided by a network node as in Figure 2.1. We build on the characterization for

arrivals and departures specified at the beginning of this chapter. The concept of

service curves was introduced in [98] and formalized in [34, 36, 118] as follows:

Definition 2.1 (Deterministic Service Curve) A system offers a lower service curve S(t)

to an arrival process A(t) if it holds for the corresponding departures D(t) that for

all t ≥ 0

D(t) ≥ inf
s∈[0,t]

{A(s) + S(t− s)} =: (A⊗ S)(t). (2.1)
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A DSS S ...
1 1 2 n n

D =A
1 2

Figure 2.2: A flow traversing a network of tandem nodes with service curves Si(t) for i ∈
[1, n]. Traffic arrivals to the network are denoted A1(t), while network departures
are given by Dn(t).

The operation ⊗ is known as min-plus convolution [[12] p. 111]. For convenience,

we will leave out the brackets around the operation ⊗ when possible. The lower

service curve is a lower bound on the amount of service the arrivals A(t) receive.

If for a given system the lower bound on the departures D(t) is also an upper

bound, (2.1) holds with equality and the service curve is called exact, i.e.,

D(t) = inf
s∈[0,t]

{A(s) + S(t− s)}. (2.2)

Constant rate servers with capacity C have an exact service curve S(t) = Ct [23, 70].

Similar to the input-output relation of queueing systems given in (2.2), classical

system theory relates the output l(t) of a linear time-invariant system to the in-

put k(t) through classical convolution with the system impulse response h(t) [[97]

p. 398]. Accordingly, the system output is described as

l(t) =
∫ ∞

−∞
k(s)h(t− s)ds := (k ∗ h)(t). (2.3)

Comparing (2.3) to (2.2) reveals a noticeable similarity in the sense that summation

and multiplication in the classical convolution are replaced in (2.2) by the infimum

operation and summation, respectively. A thorough treatment of the mathematical

framework, the so-called (min,+) algebra, that is deployed in network calculus is

given in [4, 12, 23].

Traffic envelopes can be regarded as counterpart to the notion of service curves.

Traffic envelopes and service curves are the main ingredients for the derivation of

performance bounds for queueing systems as will be shown later on in this chapter.

A deterministic envelope function E(t) is an upper bound on the traffic arrivals A(t)

in the sense that for all 0 ≤ s ≤ t it holds that

A(t)− A(s) ≤ E(t− s). (2.4)
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Ath

Acr

Figure 2.3: A through flow Ath(t) sharing resources with a cross flow Acr(t).
A through flow Ath(t) sharing resources with a cross flow Acr(t). Both flows are

scheduled on the same output port.

1 2 n

...Ath

Acr Acr
2 nAcr

1

Figure 2.4: A through flow Ath(t) traversing a network of tandem nodes with single node
persistent cross traffic Acr

i (t) for i ∈ [1, n].

This condition translates into that the envelope E(t) is a deterministic upper bound

for the arrivals on all time intervals. This can be rewritten as A(t) ≤ A ⊗ E(t).

Traffic envelopes may be enforced by traffic shapers, e.g., a leaky bucket shaper that

takes unknown arrivals and delays traffic that violates the envelope only as much as

required for the output of the shaper to conform with E(t). The leaky bucket shaper

has the envelope E(t) = q + ρt, where q is the maximum instantaneous burst of

arrivals permitted and ρ is the envelope rate, i.e., an upper bound on the mean rate

of arrivals.

A remarkable feature of the network calculus framework is its ability to capture

multiplexing and scheduling of traffic flows using traffic envelopes and service

curves, respectively. Multiplexing m flows Ai(t) each with envelope Ei(t) for i ∈

[1, m] results into an aggregate A(t) = ∑i Ai(t) that possesses an envelope E(t) =

∑i Ei(t). The concept of service curves allows the characterization of different

scheduling algorithms including static priority scheduling (SP) [12, 23], first-in

first-out (FIFO) [12, 35], earliest deadline first (EDF) [75] and generalized processor

sharing (GPS) [23, 70]. Consider multiple traffic flows as in Figure 2.3 sharing the

provided resources on the output link of some node. We denote the arrivals of

a considered flow by Ath(t), i.e., through traffic flow and denote the remaining

traffic arrivals by Acr(t), i.e., cross traffic. The characterizations of the service curves

for Ath(t) and Acr(t) depend on the scheduling discipline.



2.1 background on deterministic network calculus 15

In the sequel, we describe the service provided to the through traffic with no

assumptions on the scheduling algorithm. This model is denoted by blind multi-

plexing in [[12] p. 176] and is used to model SP scheduling. Consider the node in

Figure 2.3 and assume that Ath(t) receives the lowest priority. The service provided

to the through traffic is captured by the so-called leftover service curve. The node in

Figure 2.3 is assumed to maintain the order of bits within each traffic flow, which is

referred to as locally-FIFO. Further, we regard a particular type of service curves

the so-called strict service curve [2, 12], which is a function S(t) for which it holds

D(t)− D(s) ≥ S(t− s), (2.5)

for all 0 ≤ s ≤ t falling into the same backlog period, i.e., the server does not

idle in-between. The strict service curve S(t) guarantees a minimum service over

the backlogged period. It is obvious that (2.1) follows from (2.5) but not vice

versa [[12] p. 177].

Based on the strict service curve characterization (2.5) and assuming an empty

system at s = 0, we can find the following service curve formulation for the through

traffic [[12] p. 176]

Slo(t) = [S(t)− Ecr(t)]+, (2.6)

with envelope Ecr(t) for the cross traffic Acr(t) satisfying (2.4). The service curve

formulation (2.6) reflects the service leftover by the higher priority cross traffic, hence,

the superscript lo. The constraint [x]+ denotes the positive part of x, i.e., max{0, x}.

Now, we are able to replace the system in Figure 2.3 with an equivalent system as

the one depicted in Figure 2.1 providing Slo(t) from (2.6) as a service curve to the

arrivals Ath(t).

If the deployed scheduling algorithm is known, the service curve representation

can be improved with respect to the blind multiplexing model (2.6), for example,

for FIFO and GPS scheduling the particular service curves can be found in [12, 35]

and in [23, 70], respectively.
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Deterministic Performance Bounds and Concatenation Results

Deterministic network calculus provides simple formulations for worst case bounds

on performance metrics of queueing systems. Next, we review results on two

performance metrics, namely backlog and delay. The backlog B(t) describes the

number of bits "in flight" at t, which is the amount of data that entered the system

and still has not left the system yet. Thus, it is defined in [[12] p. 5] as

B(t) = A(t)− D(t), (2.7)

which can be visualized as vertical deviation of A(t) and D(t). The definition (2.7)

allows the backlog to increase infinitely large or for a non-busy system to become

zero. For constant rate servers of capacity C we can insert (2.2) with S(t) = Ct

into (2.7) to relate the backlog B(t) to the arrivals A(t) and the server capacity C as

B(t) = sup
0≤s≤t

{A(s, t)− C(t− s)}. (2.8)

The expression (2.8) is obtained using Reich’s equation in [[70] p. 127] and using

Lindley’s recursion in [[23] p. 7].

Similarly, the (virtual) delay is defined for locally-FIFO systems in [[12] p. 5] as

W(t) = inf{s ≥ 0 : A(t) ≤ D(t + s)}. (2.9)

The delay in (2.9) can be visualized as horizontal deviation of A(t) and D(t). Note

that the virtual delay in (2.9) may become zero, whereas a data packet always sees a

positive delay. However, it was shown in [[26] p. 110] that for numerical purposes

the difference between these two measures is negligible.

The following definition from [[12] p. 122] helps phrasing the desired performance

bounds on the backlog and delay metrics (2.8) and (2.9).
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Definition 2.2 (Min-Plus Deconvolution) Given two functions k(t) and l(t), that

both are assumed non-decreasing and pass through the origin. The min-plus decon-

volution of k(t) and l(t) is defined as

sup
0≤s
{k(t + s)− l(s)} := (k� l)(t). (2.10)

Next, we review backlog and delay bounds from [[12] p. 22] derived for a single node

scenario as depicted in Figure 2.1. Consider arrivals that possess an envelope E(t)

according to (2.4) at a system that offers a service curve S(t) according to (2.1). The

backlog B(t) is then upper bounded for all t ≥ 0 as

B(t) = A(t)− D(t)

≤ A(t)− inf
0≤s≤t

{A(s) + S(t− s)}

= sup
0≤s≤t

{A(t)− A(s)− S(t− s)}

≤ sup
0≤s≤t

{E(t− s)− S(t− s)}

≤ sup
0≤u
{E(u)− S(u)} := E� S(0). (2.11)

The derivation is based on inserting first the service curve definition (2.1), then

the envelope definition (2.4) and lastly the definition of the min-plus deconvolu-

tion (2.10).

Similarly, a bound on the delay W(t) can be found as the maximum horizontal

deviation between the envelope E(t) and the service curve S(t). Thus, the upper

bound on the delay W(t) for all t ≥ 0 can be written for s ≥ 0 as

W(t) ≤ inf{s : sup
0≤u
{E(u)− S(u + s)} ≤ 0}

= inf{s : E� S(−s) ≤ 0}. (2.12)

A further strong feature of the network calculus framework is the derivation of

end-to-end performance bounds for entire network paths as depicted in Figure 2.2

through composition. Similar to classical systems theory, concatenated systems as

in Figure 2.2 can be consolidated into a single equivalent system enabling the use of
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single node performance bounds as in (2.11) and (2.12). We note that the alternative

of summing up per node bounds delivers much looser bounds as shown in [12, 26].

Regard the network depicted in Figure 2.2. The departures of the last node can

be expressed using (2.1) as Dn(t) ≥ An ⊗ Sn(t), where the subscript denotes the

node index. Using the fact that the arrivals at each of the last n− 1 nodes equal the

departures of the respectively preceding node, we can utilize the following recursive

insertion An−i+1(t) = Dn−i(t) ≥ An−i ⊗ Sn−i(t), for i ∈ [1, n − 1]. By recursive

insertion in conjunction with the associativity property of the min-plus convolution

from [[12] p. 111], we can write

Dn(t) ≥ (A1 ⊗ S1)⊗ S2)⊗ . . . )⊗ Sn

= A1 ⊗ (S1 ⊗ S2 ⊗ · · · ⊗ Sn︸ ︷︷ ︸
:=Snet

)(t). (2.13)

The service provided by the path is characterized by the network service curve Snet(t)

given by the min-plus convolution of the single node service curves Si(t) for i ∈

[1, n]. As depicted in Figure 2.2 the arrivals to the network are A1(t) whereas the

departures of the network are given by Dn(t). Collapsing the nodes of the given

network path into a single equivalent system described by Snet(t) enables finding

end-to-end performance bounds by substituting Snet(t) for S(t) in (2.11) and (2.12).

For through traffic on network paths with cross traffic as depicted in Figure 2.4

the scenario is transformed first into the equivalent configuration depicted in

Figure 2.2 using the leftover service curve formulation Slo
i (t) from (2.6) for i ∈ [1, n].

Next, Snet(t) is found in (2.13) by convolution, that is through substituting for Si(t)

by the respective leftover service curves Slo
i (t) from (2.6). Finally, applying (2.11)

and (2.12) yields single node performance bounds. It was shown in [26] that delay

bounds derived through the network service curve scale in the number of traversed

nodes n as O(n) in comparison to adding per node delay bounds which scales

in O(n2).
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2.2 related work on stochastic network calculus

The deterministic network calculus framework presented above is useful for ap-

plications with stringent performance guarantees as it builds on worst case char-

acterizations of traffic and service in communication networks as given in (2.4)

and (2.1). The deterministic framework provides elegant formulations for perfor-

mance bounds such as (2.11) and (2.12) and an outstanding composition result (2.13)

enabling end-to-end network analysis. However, worst case performance analysis

may be, in general, too pessimistic for most of the real world applications, as it fails

to capture the natural statistical properties of arrivals and service. We highlight this

property using the following example.

Consider a simple application generating traffic with independent random packet

lengths at discrete time slots. At each time slot one packet arrives with a length

drawn from a discrete uniform distribution between 1 and a maximum packet

length L > 1, L ∈ N. The smallest envelope for the arrivals that satisfies (2.4)

is E(t) = Lt. However, this envelope is too pessimistic as it considers the worst

case arrivals, i.e., packets of size L at every time slot. Note that the probability of M

consecutive packet arrivals each of maximum length L decreases exponentially

in M, i.e., 1
LM . Surely, the independent packet size assumption behind this simplistic

example is unrealistic as real world protocols and applications exhibit memory,

see, for example, the coding dependency in the MPEG-1 video element denoted

"group of pictures" [59]. However, this simple example shows the high potential for

resource saving and performance metric improvement if the worst case is excluded.

Furthermore, the formulation (2.4) does not permit taking advantage of statistical

multiplexing. In the previous section we calculated the deterministic envelope

for the sum of m arrival flows as the sum of the individual envelopes. However,

this envelope is highly inefficient as it does not exploit temporal fluctuations of

independent multiplexed flows. In the context of the previous example consider

the aggregate of m independent sources with independent uniformly distributed

packet sizes between 1 and L. A deterministic envelope for the aggregate is given

by E(t) = mLt. However, for one time slot the probability that all sources transmit
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Figure 2.5: Comparison of deterministic and stochastic traffic envelopes with violation
probability ε. Traffic comprises independent increments drawn from a uniform
distribution between 1 and L = 10.

a packet of maximum size L is 1
Lm . Intuitively, statistical multiplexing profits from

the temporal fluctuations of the individual sources. Hence, the aggregation of

independent sources gives rise to central limit theorem (CLT) results.

The aforementioned example displays the limitations of the deterministic network

calculus framework and motivates its stochastic extension, which has its roots in [21,

71]. Stochastic network calculus is a performance analysis framework that delivers

results excluding the worst case and incorporating many practical traffic, scheduling

and service models, see [11, 12, 18, 19, 23, 26, 27, 28, 29, 33, 34, 47, 64, 69, 74, 89,

120, 121, 130, 131] and references therein. Two fundamental concepts contribute

to the applicability of the stochastic network calculus, namely (i) multiplexing

and scheduling results, and (ii) convolution form networks, i.e., results on end-to-

end performance measures where tandem queues can be collapsed into a single

equivalent system. This compares to results from queueing theory on product form

networks [10, 60].
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In stochastic network calculus the objective of the analysis is finding, or bounding,

the probability that a certain performance measure exceeds a given threshold. A

bound on the steady-state1 virtual backlog B defined in (2.7) that is formulated as

P [B > b] ≤ ε, (2.14)

approximates the buffer overflow probability [26]. Similarly, a bound on the steady-

state virtual delay W defined in (2.9) approximates the outage probability for the

steady-state packet delay. Typically, ε is chosen to be small, e.g., 10−6.

We apply this concept to the introducing example at the beginning of this section.

For traffic with uniformly distributed independent increments we find that this small

violation probability allows remarkable bound improvements. We derive an enve-

lope function E(t) < Lt that is violated at most by a small probability ε. We visualize

the significant improvement in Figure 2.5 by plotting the single source deterministic

envelope function Lt together with an envelope that is at most violated by ε = 10−6.

Note that the long term rate of the statistical envelope equals lim supt→∞ E(t)/t < L.

The construction of such statistical envelopes will be discussed in the following

sections. The deterministic restriction can be recovered by setting ε = 0. Contrary to

its deterministic counterpart, the stochastic framework enables taking advantage of

statistical multiplexing effects that improve performance bounds. Next, we review

basic results on the construction of stochastic traffic envelopes and service curves.

Stochastic Traffic Envelopes and Service Curves

Stochastic envelopes are statistical bounds on arriving traffic volumes over time

periods [11, 22, 69, 121, 130]. We assume discrete time stationary arrivals such

that P[A(0, t) > x] = P[A(s, s + t) > x] holds for all time indexes s, t, for x ≥ 0,

1 We seek a time independent bound for B(t), thus, it also holds for some steady-state to which the
backlog distribution converges as limt→∞ B(t).
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and s, t ∈N0. A widely adopted formulation for stochastic traffic envelopes [26, 64]

is given as

P [A(s, t) > E(t− s) + b] ≤ εp(b), (2.15)

with the so-called overflow profile εp(b). The subscript p denotes that the envelope

in (2.15) can be violated with point-wise probability εp(b) by any arrival realization

at one time point. Setting b = 0 in (2.15) yields an expression which is an immediate

stochastic extension of (2.4), however, the parameter b is important to the derivation

of performance bounds as will be shown later on in this chapter.

Two important traffic envelope models exist in the literature: exponentially

bounded burstiness (EBB) [130] and stochastically bounded burstiness (SBB) [121]

models. In the context of (2.15), the EBB model follows for E(t) = ρt and εp(b) =

φe−θb with linear rate ρ and positive φ and θ. Here, the overflow profile εp(b) de-

cays exponentially in b. Closely related is the (σ(θ), ρ(θ)) model from [[23] p. 241]

that builds on traffic characterized by an MGF satisfying MA(θ, t) ≤ eθ(σ(θ)+ρ(θ)t)

for θ, t ≥ 0. The (σ(θ), ρ(θ)) model is linked to the EBB model through the appli-

cation of Chernoff’s theorem.2 The EBB class comprises Poisson traffic in addition

to traffic from Markov modulated sources. The more general SBB traffic model

implies E(t) = ρt and that εp(b) is n-times integrable. The SBB model includes

fBm traffic with Hurst parameter H ∈ (0.5, 1) [121]. A thorough overview of traffic

envelopes can be found in [89] and references therein.

We review the derivation of statistical envelopes for stationary traffic with known

MGF [74]. Fix b in (2.15) to zero and apply Chernoff’s theorem as P[A(s, s + t) ≥

E(t)] ≤ e−θE(t)MA(θ, t), where θ is a free parameter. Fix the right hand side to εp

and solve for E(t) to find

E(t) = inf
θ≥0

{
1
θ

log
(
MA(θ, t)

εp

)}
. (2.16)

This result is named as effective envelope in [74]. The literature comprises analytical

expressions of the MGF MA(θ, t) for various traffic sources including Poisson,

2 Chernoff’s theorem states that for a stationary random process A(s, s + t) it holds
P[A(s, s + t) ≥ x] ≤ e−θxMA(θ, t) [114].



2.2 related work on stochastic network calculus 23

Markov, regulated and fBm traffic sources [66]. Note that it is not always possible to

analytically optimize the free parameter θ in (2.16).

We recall that the objective of the performance analysis in stochastic network

calculus is bounding the probability that a regarded performance measure such as

the backlog exceeds a given threshold. We consider arrivals that can be described by

a statistical envelope as reviewed above at the ingress of a work-conserving constant

rate server with capacity C. A probabilistic extension of (2.8) is given as the left

hand side of (2.14) and can be rewritten as

P[B > b] = P

[
sup

s∈[0,t]
{A(s, t)− C(t− s)} > b

]
. (2.17)

The difficulty in the derivation of a time independent bound in (2.17) lies in

finding the argument ŝ that attains the supremum, since ŝ is a random variable. For

an elaboration on "what makes performance evaluation using statistical network

calculus hard" see [74]. There exist approximations and asymptotes for the queue

length tail behavior that use the principle of the largest term, i.e.,

P[B > b] ≈ sup
s∈[0,t]

{
P [A(s, t)− C(t− s) > b]

}
. (2.18)

It is obvious that the right hand side of (2.18) is in fact a lower bound to the buffer

overflow probability. In Chapter 1.2 we reviewed a prominent result (1.2) that is

derived through the approximation by the largest term for LRD fBm traffic.

An approach to upper bound (2.17) is based on an envelope E(t) ≤ b + Ct for all

t such as we can write

P

[
sup

s∈[0,t]
{A(s, t)− C(t− s)} > b

]
≤ P

[
sup

s∈[0,t]
{A(s, t)− E(t− s)} > 0

]
. (2.19)

Clearly, the envelope in (2.19) is directly related to the derivation of performance

bounds. Finding an upper bound on the right hand side of (2.19) yields directly a

stochastic backlog bound. Note that the right hand side of (2.19) demands a bound

for A(s, t) for all s ∈ [0, t], a so-called sample path bound. This so-called sample
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path effective envelope given above relates to the effective envelope given in (2.16)

and leads to a desired sample path bound in the form of

P

[
sup

s∈[0,t]
{A(s, t)− E(t− s)} > 0

]
≤ εs. (2.20)

Note the subscript (·)s denoting the sample path violation probability, that is at any

point in time along the sample path. It is important that the sample path envelope

in (2.20) holds for t→ ∞, i.e., dispensing with assumptions on critical time scales

and time scale bounds [74].

A generalization of (2.20) that provides a sample path envelope with overflow

profile εs(b) is given in [28] and likewise in [34] as

P

[
sup

s∈[0,t]
{A(s, t)− E(t− s)} > b

]
≤ εs(b). (2.21)

The so-called generalized Stochastically Bounded Burstiness (gSBB) model pro-

vides a sample path bound satisfying (2.21) with affine sample path envelopes, i.e.,

substituting E(t) = rt in (2.21). Hence, a valid statistical backlog bound implies a

gSBB traffic characterization [63, 131]. Given a backlog bound P[B > b] ≤ ε(b) the

arrivals are gSBB satisfying (2.21) with E(t) = Ct and overflow profile ε(b) [63].

The authors of [28, 34, 131] present solutions to the research problem of sample

path envelope construction. First, we sketch the basic steps behind the envelope

construction before providing an example calculation for EBB traffic. In essence,

consider (2.15) with integrable overflow profile εp(b), i.e.,
∫ ∞

0 εp(b)db < ∞. A

slack rate $ > 0 is substituted into b in (2.15) as b = b′ + $u where we use u to

substitute for the time span t− s in (2.15). In this case the envelope is relaxed by

the slack rate $ and the corresponding point-wise violation probability εp decays

with increasing u. An upper bound on the overflow probability for the sample

path envelope formulation in (2.21) is found by invoking Boole’s inequality3 over

all u > 0. For each summand in the sum returned by Boole’s inequality we can

invoke (2.15) with violation probability εp(b′ + $u). The decreasing nature of εp(b)

in b enables upper bounding the sum returned by Boole’s inequality ∑∞
u=1 εp(b′+ $u)

3 Boole’s inequality states that for any countable set of events xi for i ∈N it holds that
P [
⋃∞

i=1 xi] ≤ ∑∞
i=1 P [xi] [53].
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by the integral 1
$

∫ ∞
b′ εp(k)dk [28]. The result from evaluating the integral is a valid

upper bound εs(b) on the sample path violation probability in (2.21).

Next, we review an example for stochastic performance bounds derived for EBB

class traffic. In the following chapters we will often refer to the EBB traffic model

for comparison. EBB traffic is defined in [130] through a linear rate envelope and

exponentially decaying overflow profile as εp(b) in (2.15). Consider an EBB traffic

source that is described by a discrete time Markov model. The Markov model

possesses two states, namely the off state (state 1), where no traffic is generated,

and the on state (state 2), where traffic is generated with peak rate G. The state

transition probabilities are denoted pij resembling the transition from state i to

state j for i, j ∈ {1, 2}. Thus, the steady-state probability of the on state is pon =

p12/(p12 + p21). The source produces traffic with a mean rate g = ponG. The source

burstiness can be characterized by the average time to change states twice [28],

i.e., U = 1/p12 + 1/p21. A Markov source possesses an envelope E(t) = ρ(θ)t that

satisfies (2.15) with overflow profile εp(b) = e−θb [28]. The linear envelope rate ρ(θ)

is given in [[23] p. 246] by

ρ(θ) =
1
θ

log

(
1
2

(
p11+p22eθG+

√
(p11+p22eθG)2−4(p11+p22−1)eθG

))
(2.22)

for θ > 0. Note that g ≤ ρ(θ) ≤ G.

For m multiplexed sources the arrivals are expressed as A(t) = ∑m
i=1 Ai(t). Multi-

plexing m statistically independent sources results in the addition of their respective

effective bandwidths [66]. This is due to the fact that the MGF of the sum of

independent random variables is given by the multiplication of the individual

MGFs [[53] p. 182]. For m statistically independent Markov sources it can be shown

using Chernoff’s theorem that a stochastic envelope E(t) = mρ(θ)t satisfies (2.15)

with overflow profile εp(b) = e−θb [28].

A backlog bound for the arrivals of m EBB traffic sources at a constant rate server

with capacity C is found in [26, 130] by invoking Boole’s inequality, Chernoff’s

theorem and using a slack rate C − mρ(θ) > 0. We show the derivation of the
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backlog bound using a sample path bound for gSBB traffic characterization with

linear envelope E(t) as follows

P[B > b] ≤ P

[
sup

s∈[0,t]
{A(s, t)− E(t− s)} > b

]

≤
t−1

∑
s=0

P [A(s, t)− E(t− s) > b]

=
t−1

∑
s=0

P [A(s, t)−mρ(θ)(t− s)− (E(t− s)−mρ(θ)(t− s)) > b]

≤
∞

∑
u=1

e−θ(b+(E−mρ(θ))u)

≤
∫ ∞

0
e−θ(b+(E−mρ(θ))u)du

=
e−θb

θ(E−mρ(θ))
= εs(b). (2.23)

for any θ > 0 subject to the slack rate difference E(t− s) > mρ(θ)(t− s). Substituting

E(t) = Ct yields the following backlog bound directly

P[B > b] ≤ e−θb

θ(C−mρ(θ))
. (2.24)

In (2.23) we employed in the first line the sample path envelope with linear rate

known from the gSBB model. In the second step we invoked Boole’s inequality.

In the third line we reformulated the expression to apply the statistical envelope

formulation (2.15). From Chernoff’s theorem we know that the envelope mρ(θ)t

satisfies (2.15) with overflow profile εp(b) = e−θb [28]. We employ a change of

variables to adapt the point-wise violation probability as εp(b) = e−θ(b+(E−mρ(θ))u)

and find that the sum can be upper bounded by an integral due to the decreasing

nature of the exponential function. We solve the integral to find a valid violation

probability for the sample path envelope. Substituting E(t) = Ct directly yields

a valid backlog bound in (2.24). This result is also a locally-FIFO delay bound

with P[W > b/C] ≤ εs(b) . Stochastic performance bounds that are based on

integrability conditions for decaying point-wise envelope violation probabilities

appeared in [22, 46, 121, 130].

The demonstrated performance bounds can be improved under additional as-

sumptions such as independent traffic increments. Refined performance bounds can
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then be attained by invoking Doob’s maximal inequality following the construction

of supermartingales [25, 26].

Counterparts to stochastic traffic envelopes are stochastic service curves. Both are

fundamental to the derivation of stochastic performance bounds as will be shown

in the sequel. Stochastic service curves describe service guarantees provided by

queueing systems that are, however, violated at most with a given probability ε. A

central definition of stochastic service curves is given in [28] and also in [34] as

P

[
D(t) < inf

s∈[0,t]
{A(s) + [S(t− s)− b]+}

]
≤ ε(b). (2.25)

The deficit profile ε(b) is a non-increasing function in b. Setting ε(b) = 0 for all b ≥ 0

reduces the definition (2.25) to the deterministic case (2.1).

In order to describe traffic scheduling in queueing systems that comprise through

as well as cross traffic as in Figure 2.3, we review so-called stochastic leftover service

curves [28, 47, 74, 76, 103]. We restrict the exposition to the blind multiplexing model,

i.e., with no assumptions on the scheduling algorithm. Further results on scheduling

algorithms such as GPS and EDF can be found, for example, in [74, 103]. Note

that the authors in [74] show that the gain of accurately characterizing scheduling

algorithms instead of using blind multiplexing is modest compared to the leap from

deterministic to stochastic service curves.

Consider the single node in Figure 2.3 with fixed capacity C, and incoming

through traffic Ath(t) and cross traffic Acr(t). Assume the cross traffic possesses

an envelope Ecr(t) satisfying (2.21) with sample path violation probability εs(b).

The through traffic Ath(t) is, thus, provided with a leftover service curve Slo(t) =

[Ct− Ecr(t)]+ with lim supt→∞ Ecr(t)/t < C to avoid triviality [28]. The leftover

service curve Slo(t) satisfies (2.25) with deficit profile εs(b).

Stochastic Performance Bounds and Concatenation Results

The stochastic network calculus framework enables the derivation of performance

bounds based on the notion of stochastic service curves and sample path arrival

envelopes. Stochastic backlog and delay bounds can be illustrated as vertical and
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horizontal deviations of the service curve and the sample path arrival envelope

that are subject to deficit and overflow profiles, respectively. Consider arrivals with

envelope E(t) according to (2.21) with overflow profile εth(b) at the ingress of a

system offering service curve S(t) according to (2.25) with deficit profile εcr(b). A

backlog bound is found in [28, 34] as

P

[
B > sup

s≥0
{E(s)− S(s)}+ b

]
≤ ε(b), (2.26)

where ε(b) = εth ⊗ εcr(b). For the scenario depicted in Figure 2.3 the term εth(b)

denotes the overflow profile for the through traffic. Further, the deficit profile of

the service curve, i.e., εcr(b) corresponds to the overflow profile of the cross traffic

according to (2.21). Similarly, a locally-FIFO bound on the delay W is found as

P[W > w] ≤ ε(b) = εth ⊗ εcr(b),

with w = inf{s ≥ 0 : S(t + s) ≥ E(t) + b ∀t ≥ 0}. (2.27)

The derivation of single node performance bounds builds on the stochastic ser-

vice curve definition (2.25), which has the following property: it uses a sample

path formulation of the arrivals and makes a point-wise argument on the depar-

tures. Concatenation results in stochastic network calculus cannot be derived by

straightforward recursion as in the deterministic case (2.13) [74]. The authors of [74]

note the hard problem of constructing a stochastic network service curve that is

expressed by the convolution of single node stochastic service curves. A successful

approach to this problem was found in [26, 28] using an extended definition of a

sample path service curve that permits the derivation of a stochastic network service

curve [26, 28]. We recapitulate the definition from [28] with a minimal modification

to discrete time, as we will rely on this formulation in the following chapters. A

sample path service curve is given by

P

[
sup

t∈[0,u]

{
inf

s∈[0,t]

{
A(s) + [S(t− s)− $(u− t)− b]+

}
− D(t)

}
>0

]
≤ ε$(b). (2.28)
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with deficit profile

ε$(b) =
1
$

∫ ∞

b
ε(x)dx, (2.29)

where 0 ≤ s ≤ t ≤ u and ε(x) corresponds to the deficit profile in (2.25). The

deficit profile ε$(b) for the sample path service curve is derived in [26, 28] by the

application of Boole’s inequality given the relaxation of the service curve by a slack

rate parameter $ > 0 in (2.28). Equipped with (2.28) a stochastic network service

curve is derived in [26, 28]. Thus, consider a tandem of n nodes as in Figure 2.2.

Each node i ∈ [1, n] provides a service curve Si(t) in the sense of (2.25) with

deficit profile ε i(b). Using the notion S−$(t) = S(t)− $t a network service curve

satisfying (2.25) is given in [26, 28] as

Snet(t) = S1 ⊗ S−$
2 ⊗ · · · ⊗ S−(n−1)$

n (t) (2.30)

with deficit profile

εnet(b) = ε
$
1 ⊗ ε

$
2 ⊗ · · · ε

$
n−1 ⊗ εn(b). (2.31)

For the scenario in Figure 2.2 the formulation (2.25) holds with network arrivals A1(t),

departures Dn(t) and service curve Snet(t) with deficit profile εnet(b).

We note that the derivation using (2.31) does not assume statistical independence

of the cross traffic at the different nodes. End-to-end performance bounds that

account for statistical independence of the individual service curves have been

derived using an MGF based network calculus framework in [46]. Approaches

to account for statistical independence in the formulation (2.30) can be found

in [64, 111].

Next, we consider the scenario in Figure 2.4 comprising a network path of n nodes

with single node persistent EBB cross traffic. We sketch the derivation of end-to-end

performance bounds for the considered scenario [26]. First, derive leftover service

curves Slo
i (t) for the individual nodes i ∈ [1, n]. Next, consolidate the network

path into an equivalent system as in Figure 2.1 using the network service curve

formulation (2.30). Finally, apply single node performance bounds formulated in
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(2.26) and (2.27). End-to-end performance bounds for EBB cross traffic derived

in [26, 28] from (2.30) are shown to scale in the number of traversed nodes n

as Θ(n log n) [19, 28]. This compares to the Θ(n) exact delay scaling known from

queueing theory [68] and O(n) scaling for MGF based network calculus from [46],

both derived under statistical independence conditions.



3P R O B L E M S TAT E M E N T

In the previous chapters we reviewed the related work on features and modeling

of Internet traffic and introduced the state-of-the-art in flow level performance

evaluation of communication networks using the theory of network calculus. In the

following sections we describe and summarize the research problems tackled in this

thesis.

network monitoring and lrd traffic parameter estimation

In the light of the analytical approaches to performance analysis that are discussed

in Chapter 1 we note that it is important for the application of traffic engineering

and QoS provisioning to understand the characteristics of the carried traffic and

of the network. This encouraged researchers to investigate methods for inferring

network and traffic properties [8, 39, 61, 62, 80, 81, 105, 122, 122, 123, 126]. These

methods can be passive, i.e., based on non-intrusive monitoring, or active, i.e., based

on injecting test traffic into the network.1 Passive methods require direct access to

the point of interest, e.g., a router. Active methods include injecting test packets

(probes) into the network and measuring metrics related to packet interactions, e.g.,

send and receive timing information. One main difficulty of active methods is to

design the test packets such that they reveal the desired metric. In some cases this

has proven impossible [84]. Further, in practice it is not always possible to access the

desired metric at all times, hence it may be accessed according to some sampling

strategy [6, 84, 93, 115, 125, 129].

The approximate result in (1.2) indicates that long memory has a considerable im-

pact on the queueing performance. Network performance monitoring applications

require estimates of the relevant traffic properties. These estimates serve together

with performance models to assess the provided QoS in operating networks. How-

1 In another definition passive methods use production traffic such as the self-clocking mechanism in
TCP, opposed to injecting test traffic in active methods.

31
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ever, we note that obtaining such traffic properties for monitoring purposes using

traditional trace collection is challenging due to confidentiality issues and technical

constraints on capture and storage speeds. In addition, standard traffic traces reflect

statistics only at one vantage point. In contrast, in the following work we target

a lightweight characterization of end-to-end connections without administrative

support. In Chapter 4 we provide a sampling-based probing method for inferring

LRD traffic characteristics in single and multi-node scenarios.

non-asymptotic performance evaluation with lrd traffic

An established model for LRD traffic in the literature [44, 66, 72, 95, 96] is a su-

perposition of a linear process with a mean rate that we denote as λ, and an fBm

process we denote as V(t), i.e., the traffic arrivals are given by A(t) = λt + V(t). In

Chapter 1 we reviewed the properties of the process V(t), which is characterized

by the variance parameter σ2 and Hurst parameter H ∈ (0.5, 1). One (unfriendly)

property of the LRD process V(t) is that it is heavily bursty with burst periods more

likely to remain for long times. This property is based on the variance of V(t) which

grows super-linearly in time, i.e., σ2t2H.

An envelope in the sense of (2.16) for fBm arrivals with mean rate λ, variance

parameter σ2 and LRD Hurst parameter H ∈ (0.5, 1) is derived in [48, 74, 91] as

E(t) = λt +
√
−2 log εpσtH, (3.1)

using the MGF for fBm traffic (1.3) and optimizing over θ to obtain the minimum

in (2.16) at θ = 1
σ

√
−2 log εpt−H. Analyzing the expression in (3.1) it becomes ap-

parent that for fBm with H ∈ (0.5, 1) it is not possible to employ the sample path

construction technique reviewed in Section 2.2. Recall that this technique is based on

relaxing the statistical envelope E(t) that satisfies (2.15) using a slack rate $. Through

the substitution of b = b′ + $t in (2.15) it is achieved that the point-wise violation

probability εp decays with t as e−θ$t. This can be directly verified through the appli-

cation of Chernoff’s theorem. In Chapter 2 we showed that this technique permits

the derivation of a statistical backlog bound for EBB traffic. However, inserting the
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point-wise violation probability e−θ$t for εp in (3.1) we find that the designated

envelope expression for fBm traffic grows faster than linearly with t due to t
1
2+H

with H ∈ (0.5, 1). This violates the condition for finding a nontrivial statistical

backlog bound at a constant rate server with capacity C that poses an upper bound

on the growth of the envelope E(t) such as lim supt→∞ E(t)/t < C. Inserting E(t)

from (3.1) into the above inequality we find that the overflow probability εp decays

with t at most with e−t2−2H
.

A gSBB envelope for fBm traffic is proposed in [131] following the expression

in (1.2). However, the formulation (1.2) does not provide a rigorous upper bound

as in (2.21) but rather a lower bound through the approximation by the largest

term. Based on the approximation (1.2) the authors of [132] analyze the behavior of

LRD traffic under GPS scheduling. For an envelope rate r > λ the corresponding

approximate overflow profile is given by

ε̃a = exp

(
− 1

2σ2

(
r− λ

H

)2H( b
1− H

)2−2H
)

. (3.2)

The calculation of non-asymptotic upper performance bounds for LRD fBm traffic

for single as well as multi-node scenarios has been an open problem in the field of

stochastic network calculus for some time. In Chapters 5 and 6 we provide a novel

approach to tackle the problem of finding backlog and delay bounds for queueing

systems fed with LRD fBm traffic as well as for entire network paths with LRD fBm

cross traffic. This is a central contribution of this thesis.

main research questions

In the following, we summarize the main research questions that arise based on the

literature review in Chapters 1 and 2. These questions identify the main research

directions to which we contribute to with this thesis. We show the impact of

answering the specified research questions on practical applications of quality of

service monitoring and provisioning.

In this thesis we aim at a lightweight estimation method for LRD traffic parameters

and at a non-asymptotic performance evaluation of networks carrying LRD traffic.
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First, we seek to answer the following questions:

• Can LRD traffic properties be reliably estimated from sampled traffic subsets?

• Which sampling parameters govern the accuracy of the estimates?

• How can LRD traffic properties be estimated without administrative access?

Answering the research questions stated above enables efficient and online moni-

toring of LRD parameters from traffic samples without necessarily collecting entire

traces. Further, optimizing the sampling parameters permits assessing and adjusting

the measurement accuracy. Moreover, a traffic parameter estimator based on the

interaction of packet probes and LRD traffic dispenses with administrative network

support and paves the way for end-to-end traffic parameter estimation.

Estimating the parameters of LRD network traffic is the first step to analyze the

provided QoS. It is of significant importance to deploy an analysis based on rigorous

mathematical models as described in Chapter 2. Hence, the following research

questions arise:

• Is it possible to derive non-asymptotic upper performance bounds for systems

fed with LRD traffic?

• How do rigorous performance bounds derived using network calculus com-

pare to state-of-the-art asymptotes?

• How does LRD traffic impact the service received by concurrent flows in

resource sharing scenarios?

The answers to the questions above contribute a novel non-asymptotic analysis

of queueing performance in the presence of LRD traffic. The QoS analysis of

general scheduling models with LRD traffic lays the foundation for end-to-end

performance evaluation under scheduling constraints. This leads to the following

research questions:

• What is the impact of LRD traffic on the end-to-end network performance?

• Given a network path, how do performance bounds scale with the number of

traversed nodes exhibiting LRD traffic?
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• What are the implications of LRD on network dimensioning?

Answering these questions helps to understand the role of LRD traffic in data

networks and its impact on the service provided for end-to-end connections. The

corresponding results would carry the fundamental properties of the network

calculus framework, i.e., scheduling formulations and end-to-end performance

analysis, forward to the analysis of networks with LRD traffic such as the Internet.
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The inference of communication network characteristics, especially traffic properties,

has been of great interest to communications engineers since the dawn of telephone

networks. For example, using measurements of carried traffic load together with

the queueing models developed by A. K. Erlang, it was possible to assess the

performance of operating telephone networks. Today, in packet data networks the

inference concept remains unchanged. Inferred metric estimates of, e.g., link capac-

ity [39, 61], available bandwidth [62, 105, 122], service curves [78, 83], and traffic

Hurst parameter [8, 123, 126] describe different characteristics of communication

networks and carried traffic. These metrics serve together with mathematical mod-

els for performance evaluation to assess and design existing and future networks,

respectively.

Commonly used metrics in modern data networks for inferring traffic and network

properties are data volumes and packet timing information. Both metrics can be

obtained from non-intrusive monitoring as well as dedicated active measurements.

For example, a popular estimator of the average available bandwidth relies on the

time dispersion of back-to-back packet pairs [39, 80, 81, 122]. Relevant for this thesis

are procedures that acquire packet volume and timing information. This can be

obtained on the one hand, through sampling the traffic. On the other hand, this

information can be inferred by injecting packet probes of predefined pattern into

the network and interpreting their interactions.

Sampling is typically deployed when continuous system monitoring is impractical

either due to access restrictions or to significantly reduce processed data amounts.

In the context of traffic monitoring it becomes clear that capturing traffic on links

with speeds of 10 Gbps and more is challenging. Not only that the standard hard

disk writing speeds are not sufficient but also the increasing storage space is costly.

This establishes the need for methods that extract the desired metrics from data

samples without bias, optimally, in an online manner without post-processing.

36
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A fundamental result often employed in the sampling context is known as PASTA,

Poisson Arrivals see Time Averages [129]. PASTA states that the portion of Poisson

arrivals that see a system in a certain state corresponds, on average, to the portion of

time the system spends in that state. This translates into the fact that packets arriving

at a router as a Poisson process see on average the true mean queue length [129].

Similarly, monitoring the queue length at times according to a Poisson process

reveals the true mean queue length [6].

PASTA has been generalized in [93] to find bias free estimates that are not limited

to Poisson sampling. A recent powerful generalization of PASTA is provided in [6]

and denoted as NIMASTA, i.e., Non-intrusive Mixing Arrivals See Time Averages.

The NIMASTA theorem from [6] provides the basis for bias free estimates through

an almost sure convergence of

lim
R→∞

1
R

R

∑
i=1

ϕ(Y(ζi)) = E [ϕ(Y(0))] , (4.1)

where Y(ζi) is a sample of the process Y(t) at time ζi and ϕ is a general positive

function of Y. The sampling times ζi for i ∈ N are provided by a stochastic

sampling process. The positive function ϕ enables adjusting the formulation to

different metrics, e.g., different moments. The formulation (4.1) is proved in [6] for

ergodic Y(t) combined with stochastically mixing sampling processes. Note that

the fGn process reviewed in Section 1.1 for modeling LRD traffic increments is

proved to be ergodic in [30, 117]. The formulation (4.1) provides bias free estimates

of certain traffic parameters, such as mean rate and variance.

Comparisons of different sampling processes are given, e.g., in [6, 102, 115, 125].

In [115] the authors compare Poisson and periodic sampling processes with respect

to the variance of the sample mean. They show that Poisson or periodic sampling can

be superior depending on the autocovariance of the sampled process. The authors

of [6] present examples of zero bias sampling processes that possess different sample

mean variances.

Investigations on LRD traffic parameter estimation that are related to this work

were reported in [55, 102, 104]. For correlation lags tending to infinity, random

sampling observations are shown in [102] to possess the long memory of the sampled
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processes, as long as the distribution of the time between samples has a finite mean.

The simulation studies [55, 104] investigated active probing techniques that could

lead to LRD traffic estimates. The authors of [55] use numerical simulations to

show the possibility of interpolating LRD traffic from probes that are based on

back-to-back packet pairs described in [81, 122]. In [104] the authors build on a

multi-fractal wavelet traffic model to derive a deterministic probing scheme that

captures the multi-fractal wavelet coefficients of the traffic and show corresponding

simulation results. Essential to the estimation in [104] is the assumption that the

queue does not empty between the individual packets of a packet probing train.

The contribution of this chapter lies in the reliable estimation of LRD traffic

correlations and Hurst parameter H, from random sampling observations. Our work

differs substantially from [55, 102, 104] as we, for instance do not only regard the

asymptotic regime, we do not rely on back-to-back packet probing and do not

apply interpolation. We use diverse sampling processes and provide a general

framework for reversing the impact of random sampling on the traffic correlations.

This is illustrated in Section 4.1. Further, we examine in Section 4.2 the impact

of limited sample sizes on the accuracy of the estimated traffic parameters. We

formulate an asymptotically unbiased estimator based on the samples. Contrary to

traditional trace-driven approaches that reflect the traffic statistics at one network

node, we design in Section 4.3 a probing scheme that enables the estimation of

the dominant traffic correlations over entire network paths. Finally, we present

experimental evaluation results obtained from lab measurements as well as results

from an extensive Internet measurement campaign. Results presented in this chapter

are joint work with Z. Bozakov and M. Fidler [112].

4.1 traffic sampling and lrd traffic parameter estimation

In this section we present a model for sampling long memory traffic. Our goal is to

extract the LRD characteristics from observed samples. The main findings in this

section are that the sampling process impacts the observations, and that this impact
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can be reversed under certain conditions to estimate the autocovariance of the long

memory traffic.

We define a sampling model on the basis of three stationary discrete time pro-

cesses, i.e., for t ∈ N0. First, we consider the LRD traffic increment process Y(t) that

is characterized by a Hurst parameter H and slowly decaying autocovariance given

in (1.1). The increment process is related to the LRD cumulative arrival process A(t)

through Y(t) = A(t + 1)− A(t). Second, we consider the sampling process X(t)

and the observed process Z(t), which stems from the interaction of X(t) and Y(t).

We define X(t) as a point process that takes the value of one when a sample is

taken and zero otherwise. Formally, X(t) is a train of Kronecker deltas, where a

Kronecker delta is defined in [[97] p. 420] as

δ(t) =

 1 for t = 0

0 otherwise

The times between two consecutive Kronecker deltas, i.e., the inter-sample time,

are independent and identically distributed (iid) random variables with a given

probability distribution that characterizes the sampling process X(t). We define the

sampling intensity µX as E [X(t)] with 0 ≤ µX ≤ 1.1

We consider the observed stochastic process Z(t) that is generated by random

samples X(t) of the increment process Y(t) and is given by

Z(t) = X(t)Y(t). (4.2)

Our goal is to infer the LRD characteristics of the traffic increment process Y(t)

given the observed process Z(t). The long memory of Y(t) is resembled in the slow

decay of its autocovariance cY(τ) given in (1.1). The following lemma relates the

autocovariance of the observed process Z(t) to the autocovariance of Y(t).

1 Throughout this chapter we use µ(·) to denote the expected value E [(·)].
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Lemma 4.1 Given stationary and independent stochastic processes X(t) and Y(t) and

let Z(t) = X(t)Y(t). The autocovariance of Z(t) can be decomposed into

cZ(τ) =
(
cX(τ) + µ2

X
)

cY(τ) + cX(τ)µ
2
Y.

Proof of Lemma 4.1. For independent and stationary processes X(t) and Y(t) and

for Z(t) given by (4.2), it follows from the definition of the autocovariance function

in Chapter 1 that

cZ(τ) = E [Z(t)Z(t + τ)]− µ2
Z

= E [X(t)Y(t)X(t + τ)Y(t + τ)]− µ2
Xµ2

Y

= E [X(t)X(t + τ)]E [Y(t)Y(t + τ)]− µ2
Xµ2

Y

=
(
cX(τ) + µ2

X
) (

cY(τ) + µ2
Y
)
− µ2

Xµ2
Y

=
(
cX(τ) + µ2

X
)

cY(τ) + cX(τ)µ
2
Y

where c(·)(τ) denotes the autocovariance of process (·) at lag τ.

Lemma 4.1 demonstrates the impact of the chosen sampling distribution on the

observed autocovariance. The observed statistics are determined by the properties

of the sampling process X(t), specifically, its sampling intensity µX and autocovari-

ance cX(τ). For sampling processes with autocovariances that decay fast enough

in τ, the observed cZ(τ) has the same asymptotic tail decay as cY(τ) for τ → ∞.

Specifically, for limτ→∞
cX(τ)
cY(τ)

= 0 we compute from Lemma 4.1

lim
τ→∞

cZ(τ)

cY(τ)
= lim

τ→∞

(
cX(τ) + µ2

X
)
+

cX(τ)

cY(τ)
µ2

Y = µ2
X, (4.3)

i.e., the asymptotic tail decay of the observed autocovariance cZ(τ) is the same as

for cY(τ) except for a rescaling factor µ2
X. The condition above holds, for example, for

SRD sampling processes and for Markovian sampling processes with exponentially

decaying cX(τ). On a log-log scale cZ(τ) decays linearly with slope 2H − 2 for

τ → ∞. This observation matches the asymptotic result from [102].

Next, we investigate the structure of the observed cZ(τ) at some positive finite τ

for four different sampling processes defined by corresponding inter-sample distri-
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butions. We consider the inter-sample distributions: geometric, periodic, Gamma,

and uniform given in Table 4.1. The first two distributions are characterized by

probability mass functions (pmf), while the second pair is characterized by prob-

ability density functions (pdf). In the following, we use f (τ) for pdf and pmf for

notational simplicity, yet we precisely make clear in the description of the derived

formulae, whether pmf or pdf is considered. Next, we derive analytical expressions

for the autocovariance function cX(τ) and for µX to assess the impact of the different

sampling processes X(t) on the observed autocovariance cZ(τ) through Lemma 4.1.

To this end, we rephrase a standard result from the framework of [31], in particular,

its equation Eq. (4.6.1).

From [31] we derive the autocorrelation density

E [X(t)X(t + τ)] = µX

∞

∑
k=1

f (∗k)(τ), (4.4)

where f (∗k)(τ) is the k-fold self-convolution of the probability density function of

the inter-sample times f (τ). The intuition behind this formula is that starting from

one Kronecker delta at X(t), another Kronecker delta at X(t + τ) can be the first,

the second, the third, etc. Kronecker delta to come after the one at X(t). The k-fold

self-convolution of f (τ) expresses the density function for the sum of k independent

random variables each described by f (τ). The derivation in [31] uses a small time

interval of length ∆t→ 0, such that µX∆t is the probability that a Kronecker delta

occurred in [t, t + ∆t), see Eq. (4.5.9) in [31]. To calculate the correlations of X(t)

at lag τ the author of [31] deduces the conditional probability that a Kronecker

delta occurred at [t + τ, t + τ + ∆t) given a Kronecker delta at [t, t + ∆t). This is

given by ∑∞
k=1 f (∗k)(τ)∆t in Eq. (4.5.11) in [31]. It follows that (∆t)2µX ∑∞

k=1 f (∗k)(τ)

is the autocorrelation of Kronecker deltas, that are τ apart, observed in time slots of

length ∆t. We exploit the property that f (∗k) can be formulated as a power series for

the considered distributions and that its sum in (4.4) converges.

A discrete-time extension of the correlation calculation from [31] with probability

mass functions is straightforward. To this end we replace the probability density

functions with probability mass functions and consider a time slot ∆t = 1 such

that we obtain correlation functions instead of densities. For the continuous time
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distributions considered we regard the correlations on a fixed time slot basis. We

use a discretization with a time slot of unit size.

geometric sampling. First, we consider inter-sample times drawn from a

geometric distribution with pmf f (τ) = p(1− p)τ−1 for τ ∈N, i.e., the geometric

sampling process is a Bernoulli process with parameter p. Hence, the probability of

drawing a sample at one time slot is p and the sampling intensity is µX = p. We

calculate the autocovariance for τ > 0 of the geometric sampling process as

cX(τ) = 0. (4.5)

Proof The k-fold self-convolution of f (τ) is the probability mass function (pmf)

of the sum of k geometrically distributed random variables, i.e., negative binomial

distributed with parameters p and k [[53] p. 61]. We insert the negative binomial

pmf for f (∗k)(τ) into (4.4) to find

E [X(t)X(t + τ)] = µX

τ

∑
k=1

(
τ − 1
k− 1

)
pk(1− p)τ−k

= µX

l

∑
s=0

(
l
s

)
ps(1− p)l−s p

= µX p

= µ2
X.

In the first line we used the support of the pmf f (∗k)(τ) to bound 1 ≤ k ≤ τ. In

the second line we substituted τ = l + 1 and k = s + 1 and rearranged the sum.

In the third line we used the binomial identity ∑l
s=0 (

l
s)xsyl−s = (x + y)l . Finally,

we inserted µX = p. The autocovariance is given by cX(τ) = E [A(t)A(t + τ)]− µ2
X

which completes the proof.

In fact, the independence of the increments of the geometric sampling process

implies that cX(τ) = 0. Plugging (4.5) into Lemma 4.1 yields for the observations

cZ(τ) = cY(τ)µ
2
X. (4.6)
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Figure 4.1: Autocovariances of LRD traffic processes and its geometric sampled counter-
parts. The observed autocovariance "cZ observed" maintains the autocovariance
structure of the traffic process autocovariance. The reconstructed "cY estimate"
precisely covers the autocovariance of the traffic process "cY traffic".

Geometric sampling or, generally, sampling processes with uncorrelated incre-

ments, only rescale the autocovariance of the sampled process Y(t) by µ2
X as shown

in (4.6). The structure of the traffic autocovariance cY(τ), i.e., the linear decay

on a log-log scale, remains unchanged after sampling. Figure 4.1 depicts auto-

covariance estimates from observations Z(t) denoted "cZ observed". These are

obtained by applying geometric sampling to LRD traffic processes with Hurst

parameters H ∈ {0.6, 0.7, 0.8, 0.9}.2 Complying with (4.6) Figure 4.1 shows that

the observations from geometric sampling exhibit the linear autocovariance decay

of cY(τ) with slope 2H − 2. Geometric sampling enables the reconstruction of the

traffic autocovariance by solving for cY(τ) = cZ(τ)/µ2
X. Additional traffic param-

eters need not to be estimated for reconstructing cY(τ). We reconstruct the traffic

autocovariance to find that the reconstructed autocovariance denoted "cY estimate"

exactly covers the traffic autocovariance "cY traffic" in Figure 4.1.

2 We used synthetic LRD traffic traces of length 2.5× 108 time slots for the simulations. For each
considered H the simulation was repeated 25 times. We fixed these parameters for all considered
sampling processes in the sequel.
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periodic sampling. Periodic sampling is practical because of its simplic-

ity. The sampling process X(t) is given by a comb of Kronecker deltas with pe-

riod ω. Thus, the inter-sample times are drawn from a degenerate distribution with

pmf f (τ) = δ(τ −ω). The intensity of the periodic sampling process X(t) is given

as µX = 1/ω. A moment’s consideration reveals that the autocorrelation of X(t) is

found as E [X(t)X(t + τ)] = 1/ω for τ = iω, i ∈ N and zero otherwise. Given µX

we calculate the autocovariance of X(t) for τ > 0 as

cX(τ) =

 1/ω− 1/ω2 for τ = iω, i ∈N

−1/ω2 otherwise
(4.7)

Combining (4.7) and Lemma 4.1 we find the observed autocovariance

cZ(τ) = µX
(
cY(τ) + µ2

Y(1− µX)
)

(4.8)

at the sampling times τ = iω, i ∈ N. In contrast to geometric sampling, periodic

sampling observations do not converge to a rescaled version of the traffic auto-

covariance cY(τ) for τ → ∞. Instead, cZ(τ) converges to cZ(τ) = µXµ2
Y(1− µX)

for τ → ∞. This distortion can be observed in Figure 4.2a.

The reconstruction of the traffic autocovariance from the observed cZ(τ) is possible

at τ = iω, i ∈ N by solving (4.8) for cY(τ). However, this requires the knowledge

of the traffic mean rate µY. Note that (4.1) does not hold for the periodic sampling

process as it is not mixing. The traffic mean rate estimator µZ/µX is not an unbiased

estimator in case of periodic sampling [6]. In general, the fixed structure of the

sampling process may lead to a sampling period that coincides with periodicities in

the sampled process, thus distorting the result.

For known µY, Figure 4.2a shows the successful reconstruction of the traffic

autocovariance cY(τ) at τ = iω, i ∈ N. Note that "cY estimate" exactly covers the

original traffic autocovariance "cY traffic".

Next, we analyze Gamma and uniform sampling processes. For mathematical

tractability, we use continuous time for the derivation of the autocorrelation of the

following sampling process X(t). For discretization we use a time slot of unit size.
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Note that the discretization error diminishes for autocorrelation lags much larger

than the discretization time slot.

gamma sampling . The inter-sample times of a Gamma sampling process X(t)

are drawn from a Gamma distribution with probability density function

fυ,ι(τ) =
ιυ

Γ(υ)
τυ−1e−ιτ (4.9)

with parameters υ > 0, ι > 0 and support τ > 0. The sampling intensity is given

by µX = ι/υ. The choice of the parameter υ gives the Gamma distribution a

great flexibility. The Gamma sampling process degenerates to periodic sampling

for υ → ∞ subject to constant intensity µX [5]. Moreover, it is generally known

that for υ = 1 the Gamma distribution degenerates to the exponential distribution,

i.e., the continuous time memoryless equivalent of the aforementioned geometric

distribution. In this case the sampling process is a Poisson process with intensity ι.

Thus, for υ = 1 we recover the results for the geometric sampling process.

Next, we show Gamma sampling results for selected values for υ. We calculate

the autocovariance of the Gamma sampling process for υ = 2 as

cX(τ) = −µ2
Xe4µXτ, (4.10)

and for υ = 4 as

cX(τ) = −µ2
Xe8µXτ − 2µ2

X sin (4µXτ) e−4µXτ. (4.11)

Proof Given the time between two Kronecker deltas is Gamma distributed as (4.9)

with parameters υ, ι. The sum in (4.4) reduces to the following expression

∞

∑
k=1

f (∗k)(τ) =
e−ιτ

τ

∞

∑
k=1

(ιτ)kυ

Γ(kυ)
. (4.12)
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We substitute υ = 2 into (4.12), use that Γ(kυ) = (kυ− 1)!, and evaluate the sum

in (4.12) as

∞

∑
k=1

(ιτ)2k

(2k− 1)!
= ιτ sinh(ιτ),

using the series expansion for sinh(x) function from [1] Eq. (4.5.62). We then exploit

the identity sinh(x) = (ex − e−x)/2 and substitute ι = 2µX to evaluate (4.4) as

function of µX and τ as

E [X(t)X(t + τ)] = µ2
X

(
1− e−4µXτ

)
.

For υ = 4 we evaluate the sum in (4.12) as

∞

∑
k=1

(ιτ)4k

(4k− 1)!
= ιτ

(
sinh (ιτ)− sin (ιτ)

2

)
, (4.13)

using the series expansion for sinh(x) and sin(x) functions from [1] in Eq. (4.5.62)

and Eq. (4.3.65), respectively. We insert (4.13) into (4.12) and finally into (4.4) substi-

tuting the identity sinh(x) = (ex − e−x)/2 and ι = 4µX to find

E [X(t)X(t + τ)] = µ2
X

(
1− e−8µXτ − 2 sin (4µXτ) e−4µXτ

)
.

In the last step, the autocovariance of the sampling process X(t) is found as cX(τ)=

E [X(t)X(t + τ)]−µ2
X.

Combining (4.10) with Lemma 4.1 yields the following expression for the observed

autocovariance after Gamma sampling with υ = 2,

cZ(τ) = µ2
X

(
1− e−4µXτ

)
cY(τ)− µ2

Xµ2
Ye−4µXτ. (4.14)

Similarly, the observed autocovariance for υ = 4 can be deduced by combining (4.11)

with Lemma 4.1 as

cZ(τ) = µ2
X

(
1− e−8µXτ − 2 sin (4µXτ) e−4µXτ

)
cY(τ)

− µ2
Xµ2

Y

(
e−8µXτ + 2 sin (4µXτ) e−4µXτ

)
. (4.15)



4.1 traffic sampling and lrd traffic parameter estimation 47

0 0.5 1 1.5 2 2.5 3
−16

−15

−14

−13

−12

−11

log
10

(τ)

lo
g 10

(a
ut

oc
ov

ar
ia

nc
e)

 

 

c
Y

 traffic (covered)

95% confidence intervals
c

Z
 observed

c
Y

 estimate

(a) Periodic sampling
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(b) Gamma sampling
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(c) Uniform sampling

Figure 4.2: Autocovariance of LRD processes for different stochastic sampling processes.
Note that "cZ observed" is obviously distorted and that "cY traffic" is covered by
the reconstructed "cY estimate".

From (4.14) and (4.15) it is obvious that we are able to extract cY(τ) from the

observed autocovariance cZ(τ). However, this requires an estimate of the traffic

intensity µY that can be obtained, owing to the NIMASTA theorem by insertion of the

identity function ϕ into (4.1) as exemplified in [6]. Further, the formulations (4.14)

and (4.15) satisfy (4.3) such that for τ → ∞ the observed autocovariance cZ(τ)

converges to a rescaled version of the traffic covariance, i.e., µ2
XcY(τ).

The ability to estimate cY(τ) is not limited to the considered cases of υ ∈ {2, 4}.

Lemma 4.1 can be used to estimate cY(τ) for Gamma sampling processes with

arbitrary parameters as long as the autocovariance cX(τ) is computable.

Figure 4.2b shows an example of the reconstruction of the traffic autocovari-

ance cY(τ) from observed autocovariances using Gamma sampling with υ = 2. The

observed autocovariance denoted "cZ observed" are obviously distorted. Note that
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the reconstructed autocovariance "cY estimate" exactly covers the original traffic

autocovariance "cY traffic".

uniform sampling. Uniform sampling is especially attractive owing to the

finite support of f (τ), which is convenient for practical measurements. In contrast

to geometric or Gamma sampling the inter-sample times cannot become arbitrarily

large. Consider inter-sample times drawn from a uniform distribution with the

density function f (τ) = 1/v for τ ∈ [0, v]. The sampling intensity of the uniform

sampling process X(t) is given by µX = 2/v. We calculate the autocovariance of the

uniform sampling process X(t) for τ ∈ [0, v] as

cX(τ) = µ2
X

(
1
2

e
1
2 µXτ − 1

)
. (4.16)

Proof Given the time between two Kronecker deltas is uniformly distributed

with f (τ) = 1/v for τ ∈ [0, v] and zero otherwise. First, consider the sum in (4.4)

for τ ∈ [0, v]. The sum ∑∞
k=1 f (∗k)(τ) from (4.4) can be expanded as

∞

∑
k=1

f (∗k)(τ) = f (τ) +
∫ τ

0
f (x1) f (τ − x1)dx1

+
∫ τ

0

∫ x1

0
f (τ−x1) f (x1−x2) f (x2)dx2dx1

+
∫ τ

0

∫ x1

0

∫ x2

0
f (τ−x1) f (x1−x2) f (x2−x3) f (x3)dx3dx2dx1

+ · · · , (4.17)

where the kth summand contains the pdf of the sum of k independent uniform

random variables expressed through the convolution of pdfs. All arguments of

the pdfs in (4.17) are in the range [0, τ] such that we can replace the pdfs in (4.17)
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with 1/v. Equation (4.17) evaluates then to the series expansion of the exponential

function, i.e.,

∞

∑
k=1

f (∗k)(τ) =
1
v
+

τ

v2 +
τ2

2!v3 +
τ3

3!v4 + · · ·

=
1
v

∞

∑
k=0

(τ/v)k

k!

=
1
v

eτ/v. (4.18)

Finally, we use (4.18) in conjunction with (4.4), and v = 2/µX to derive

E [X(t)X(t + τ)] =
1
2

µ2
XeµXτ/2,

for τ ∈ [0, v]. The autocovariance of the process X(t) is found as

cX(τ) = E [X(t)X(t + τ)]− µ2
X, which completes the proof

With (4.16) and Lemma 4.1 the observed autocovariance is expressed as

cZ(τ) = µ2
X

1
2

e
1
2 µXτcY(τ) + µ2

Yµ2
X

(
1
2

e
1
2 µXτ − 1

)
(4.19)

for τ ∈ [0, v]. Since the uniform sampling process X(t) is mixing [6], we conclude

for τ > v that the autocorrelation E [A(t)A(t + τ)] converges to µ2
X [37, 117]. Thus,

the observed autocovariance cZ(τ) is given as µ2
XcY(τ) for τ → ∞.

The formulation (4.19) enables the extraction of the traffic autocovariance cY(τ)

from the observed counterpart cZ(τ) using an estimate for µY, that can be obtained

from (4.1) based on the NIMASTA property [6].

Figure 4.2c shows that the observed autocovariance cZ(τ) is significantly distorted

for τ ∈ [1, v]. Note that lower sampling intensities µX imply larger v, i.e., a larger

span with obvious distortion in cZ(τ). Figure 4.2c also presents the reconstruction

of the traffic autocovariance cY(τ) from the observed autocovariance for uniform

sampling. Note that the reconstructed autocovariance "cY estimate" exactly covers

the original traffic autocovariance.

We summarize the results for the discussed sampling processes and the corre-

sponding parameterizations in Table 4.1. It provides expressions for reconstructing
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the traffic autocovariance cY(τ) after geometric, periodic, Gamma and uniform

sampling with intensity µX. The sampling intensity µX is directly related to the

respective distribution parameters. The reconstruction of the traffic autocovari-

ance cY(τ) from periodic, Gamma and uniform sampling requires knowledge of the

mean traffic rate µY.

In the following, we assess the advantages and disadvantages of the presented

sampling distributions. Periodic and uniform sampling are practically appealing

due to the finite support of the inter-sample distribution. Note that, generally,

periodic sampling may yield misleading results if the sampling period coincides

with periodicities in the target process. In general, we showed that it is possible

to extract the traffic autocovariance cY(τ) from sampling observations. However,

periodic, Gamma and uniform sampling require knowledge of the mean traffic

intensity µY for the inference. Otherwise the observed autocovariance cZ(τ) is

strongly distorted as depicted in Figure 4.2.

We find that a major advantage of geometric sampling, i.e., memoryless, is that the

autocovariance structure of cY(τ) is preserved in the observations as given in (4.6).

This result holds generally for sampling processes with uncorrelated increments.

This stands in contrast to the distortion observed for periodic, Gamma and uniform

sampling. For example, we can infer the Hurst parameter H directly from the

slope of cZ(τ). Further, a reconstruction of cY(τ) is easily done as only the known

sampling intensity µX is required. Note that the Internet Engineering Task Force

(IETF) proposes memoryless sampling for network probing purposes [101]. As a

result of this discussion, we focus in the following analysis on geometric sampling.
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4.2 accuracy and bias under finite sampling

In the sequel, we analyze the impact of finite sample sizes and sampling parameters

on the observed autocovariance. We focus on geometric sampling because of its

major advantages, as discussed at the end of Section 4.1. We show the impact of

finite sample sizes on the accuracy of the used statistical estimators. The main

findings in this section are that the estimation error increases with autocovariance

lag τ as τ2−2H with traffic Hurst parameter H and that there is a nonlinear trade-

off between the sampling intensity µX and the sample size T with respect to the

accuracy.

In the sequel we denote the sample autocovariance of a given process (·) by c̃(·)(τ)

at lag τ, which is an estimator of the population autocovariance c(·)(τ). Similarly,

we consider the sample mean µ̃(·) to estimate the population mean µ(·).

We analyze different aspects of the impact of finite sample sizes on the observa-

tions. First, we analyze a measure we denote observation range. Here, we focus

on the observability of the autocovariance of sampled traffic. This implies that the

variability that is introduced by the limited sample size should not conceal the target

autocovariance. Second, we analyze the estimation accuracy. Hence, we analyze the

impact of the finite sample size on the autocovariance of the geometric sampling

process and consequently on the observed autocovariance. We construct a metric

that captures the relative estimation error and show the impact of sampling parame-

ters on this metric. Third, we analyze the bias of the used statistical autocovariance

estimator when fed with finite sample sizes. We show that the deployed estimator

is asymptotically unbiased and that the absolute bias depends on H.

observation range . In a first consideration, we assume no deviations of the

sample statistics from the population statistics. This assumption will be relaxed in

the following considerations. First, we characterize the impact of the variability that

is introduced through the finite sample size. It is known that finite length realizations

of iid sequences yield non-zero autocovariance values for lags τ > 0 [13]. Remember

that theoretically (for infinite sequences) the autocovariance of iid sequences equals
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Figure 4.3: Distorted observations due to finite sampling.

zero for positive lags. The autocovariance values obtained for finite sample sizes

possess a Gaussian distribution around the expected value of the autocovariance [13].

To characterize the impact of the finite sample size we calculate a range of lags where

the autocovariance of the finitely observed LRD process is significantly different

from the autocovariance observed for finite sampled iid sequences. Beyond this

range of lags we consider the observed autocovariance to be strongly distorted by

the variability introduced through the finite sample size. For this comparison we

use a standard technique from [8, 13].

From (1.1) and (4.6) it is obvious that the autocovariance cZ(τ) of the geometrically

sampled LRD traffic process is a slowly decaying function of the lag τ. We determine

a range of lags τ ∈ [0, τ∗] denoted observation range where c̃Z(τ) is not significantly

distorted. We define τ∗ as the intersection of cZ(τ) from (4.6) and the 0.95 confidence

interval for geometrically sampled iid sequences of finite size T with mean µY and

variance σ2
Y. Prior to τ∗ we reject the hypothesis that there is no correlation at the

significance level 0.95. In other words, the observed autocovariance is significantly

different from the autocovariance of sampled iid sequences. This range ensures

that the variability due to the finite sample size does not conceal the target traffic

autocovariance.

In Figure 4.3a we exemplarily depict a sample autocovariance of the traffic

process c̃Y(τ) and the corresponding autocovariance c̃Z(τ) of the geometrically

sampled observations. It is obvious that c̃Z(τ) is distorted for increasing lags τ.
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Figure 4.3b schematically depicts the previously explained observation range τ∗

as intersection of cZ(τ) and the 0.95 confidence interval for geometrically sampled

finite Gaussian iid sequences (shaded), that is calculated in the sequel. Remember

that we are interested in the correlations prior to τ∗.

We consider a sample path z(t) of the observation process Z(t) from geometrically

sampling a Gaussian iid sequence Y(t) as described by (4.2). The mean and variance

of Y(t) are given by µY and σ2
Y. The sample size is T such that t ∈ [1, T]. The mean

of the observations is given by µZ = µXµY with sampling intensity µX. The variance

of the observations is given by the independence of X(t) and Y(t) as

σ2
Z = σ2

Xµ2
Y + σ2

Yµ2
X + σ2

Xσ2
Y, (4.20)

and for geometric sampling as

σ2
Z = σ2

Xµ2
Y + σ2

YµX. (4.21)

since for geometric sampling it holds σ2
X + µ2

X = µX . We consider the following

unbiased estimator of the observed autocovariance c̃Z(τ)

c̃Z(τ) =
1

T − τ

T−τ

∑
t=1

(z(t)− µZ) (z(t + τ)− µZ) . (4.22)

We expand the product as z(t)z(t + τ)− z(t)µZ − z(t + τ)µZ + µ2
Z and apply the

central limit theorem to approximate the distribution of the individual terms for

large T − τ. We sketch the derivation for the first term only as the rest follows

straightforwardly. Since z(t) and z(t + τ) are independent we calculate the expected

value of the product as µ2
Z and the variance of the product as σ4

Z + 2µ2
Zσ2

Z. Applying

the CLT to the sum 1
T−τ ∑T−τ

t=1 z(t)z(t + τ) we find that it is approximately normal

distributed with mean µ2
Z and variance σ4

Z+2µ2
Zσ2

Z
T−τ . We apply the CLT to the remaining

terms to find

c̃Z(τ) ≈ N
(

µ2
Z, σ4

Z+2µ2
Zσ2

Z
T−τ

)
−N

(
2µ2

Z, 2µ2
Zσ2

Z
T−τ

)
+ µ2

Z

= N
(

0, σ4
Z+4µ2

Zσ2
Z

T−τ

)
, (4.23)
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where we use the notion N
(
µ, σ2) for normal random variables with mean µ and

variance σ2. The 0.95 confidence interval for c̃Z(τ) is approximated by

±2σZ

√
σ2

Z + 4µ2
Z/
√
(T − τ).3 Plugging (4.20) into (4.23) we obtain a general expres-

sion for the 0.95 confidence interval of c̃Z(τ). For geometric sampling processes

we substitute (4.21) into (4.23) and assume T � τ to find the confidence inter-

val ±2
√
(µX(µ2

Y+σ2
Y)−µ2

Xµ2
Y)

2 + 4µ2
Xµ2

Y(µX(µ2
Y+σ2

Y)−µ2
Xµ2

Y)/
√

T, where we sub-

stituted σ2
X = µX − µ2

X. Recall that only the observed autocovariance that is larger

than the given confidence interval is significant.

We calculate the observation range τ∗ for LRD traffic with covariance cY(τ) =

Kσ2
Yτ2H−2, with some positive constant K, as the intersection of cZ(τ) = cY(τ)µ

2
X

and the positive border of the confidence interval given above. We find that

Kσ2
Yτ2H−2µ2

X = 2
√
(µX(µ2

Y+σ2
Y)−µ2

Xµ2
Y)

2 + 4µ2
Xµ2

Y(µX(µ2
Y+σ2

Y)−µ2
Xµ2

Y)/
√

T

⇓

τ∗ =

 Kσ2
Yµ2

X

√
T

2
√
(µX(µ2

Y+σ2
Y)−µ2

Xµ2
Y)

2 + 4µ2
Xµ2

Y(µX(µ2
Y+σ2

Y)−µ2
Xµ2

Y)

 1
2−2H

. (4.24)

The metric τ∗ expresses the impact of the sampling parameters on the observabil-

ity of the traffic autocovariance after sampling. From τ∗ we can infer that higher H,

i.e., stronger LRD, delivers a higher observation range. The observation range goes

to infinity τ∗ → ∞ for an infinite sample size T → ∞.

estimation accuracy. Next, we evaluate the impact of limited sample sizes

on the estimation accuracy. First, we investigate the sample autocovariance c̃X(τ) for

limited sample sizes before analyzing the impact of the limited sample size on c̃Z(τ)

of the observations. Finally, we evaluate the impact of the finite sample size on the

estimates of the traffic autocovariance obtained from c̃Z(τ). In the sequel we restrict

the deviation of sample statistics from population statistics to the deviation in c̃X(τ)

from cX(τ), i.e., we assume c̃Y(τ) = cY(τ), µ̃X = µX and µ̃Y = µY.

We derive an approximation of the distribution of the sample autocovariance c̃X(τ)

using the CLT for large T− τ. Consider a sample path x(t) of the geometric sampling

3 For ease of notation we use 2 times the standard deviation instead of the known rule 1.967 times the
standard deviation [97].
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process X(t) with known intensity µX. Next, we employ the following unbiased

estimator to obtain the autocovariance c̃X(τ)

c̃X(τ) =
1

T − τ

T−τ

∑
t=1

(x(t)− µX) (x(t + τ)− µX) . (4.25)

We apply the same steps used for the derivation of (4.23). After expanding the

product in (4.25) we apply the CLT for large T − τ to approximate the distribution

of the individual terms such that

c̃X(τ) ≈ N
(

µ2
X, σ4

X+2µ2
Xσ2

X
T−τ

)
−N

(
2µ2

X, 2µ2
Xσ2

X
T−τ

)
+ µ2

X

= N
(

0, σ4
X+4µ2

Xσ2
X

T−τ

)
.

We use this result to calculate the 0.95 confidence interval for the distribution of the

sample autocovariance c̃X(τ), that is denoted c.95
X , as ±2µX

√
1 + 2µX − 3µ2

X/
√

T

with σ2
X = µX − µ2

X and T � τ.

Next, we use c.95
X to investigate the impact of the limited sample size T on the

observed autocovariance c̃Z(τ). Remember that we consider only the variability

that stems from the finite length sampling process X(t) and assume c̃Y(τ) = cY(τ),

µ̃X = µX and µ̃Y = µY. Given these assumptions and the formulation in Lemma 4.1

we calculate the confidence interval for c̃Z(τ) as c.95
Z (τ) = c.95

X (cY(τ) + µ2
Y).

We consider c̃Z(τ)/µ2
X as estimator for cY(τ) and deduce the confidence inter-

val c.95
Y (τ) for this estimator as c.95

Y (τ) = c.95
X (cY(τ) + µ2

Y)/µ2
X. To assess the impact

of the variability due to the limited size of the sampling process X(t) on the traffic

autocovariance estimator we define the relative estimation error εrel
Y (τ) =

|c.95
Y (τ)|
cY(τ)

.

We calculate εrel
Y (τ) as

εrel
Y (τ) =

|c.95
Y (τ)|
cY(τ)

=
|c.95

X |
µ2

X
(1 +

µ2
Y

cY(τ)
)

≈
2
√

1 + 2µX − 3µ2
X√

TµX

(
1 +

µ2
Y

cY(τ)

)
. (4.26)

The prefactor in (4.26) is only dependent on the sampling parameters, i.e., the

sampling intensity µX and the sample size T. Optimizing the sampling parameters
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Figure 4.4: Estimation error under finite sampling depends on H.

aims at reducing the prefactor of the relative estimation error. The second term

depends solely on the traffic properties, i.e., its intensity µY and its autocovariance

cY(τ). Given that the traffic autocovariance cY(τ) decreases naturally with lag τ the

relative estimation error increases with τ. From (4.26) we observe that the relative

estimation error introduced through c̃X(τ) decays with increasing sample size T or

with increasing sampling intensity µX. For fixed τ and practical sampling intensities,

i.e., µX ≤ 0.1, we find a nonlinear trade-off between sampling intensity µX and

sampling size T. The prefactor in (4.26) behaves as 2/
√

TµX. From this result we

conclude that given finite sample sizes, sampling intensity has a stronger impact on

accuracy than sample size.

Next, we investigate the impact of the Hurst parameter H ∈ (0.5, 1) on the

relative estimation error εrel
Y (τ). To this end, we consider (4.26) for increasing lags τ.

As τ increases cY(τ) decays leading to µ2
Y/cY(τ) � 1 in (4.26). Then, the relative

estimation error εrel
Y (τ) becomes

εrel
Y (τ) ≈

2
√

1 + 2µX − 3µ2
X√

TµX

(
µ2

Y
cY(τ)

)

≈
2
√

1 + 2µX − 3µ2
Xµ2

Y√
TµXσ2

Y

τ2−2H, (4.27)

where we substituted σ2
Yτ2H−2 for cY(τ). From (4.27) it is obvious that the rela-

tive estimation error increases with the considered lag τ. For LRD traffic with

high H, εrel
Y (τ) increases slower with τ compared to traffic with low H.
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Figure 4.4 depicts the increase of εrel
Y (τ) with τ for two different H values.4 The

figure includes auxiliary lines with slope 2− 2H to show that the estimation error

closely matches the behavior described by (4.27).

Finally, we deduce a sampling dimensioning rule using (4.27) to infer the needed

sample size T in order to retain fixed estimation error εrel
Y (τ). We find from (4.27)

that the sample size has to increase by T ' max{τ4−4H, τ} to achieve constant εrel
Y (τ)

for increasing τ. The term τ in the maximum stems from the need to increase T at

least by τ to retain the same number of points in the autocovariance calculation.

Note that for H ∈ (0.5, 0.75) the sample size T must increase faster than linearly

with τ to achieve constant εrel
Y (τ).

bias of autocovariance estimator. Next, we investigate the impact of

finite sample sizes on the bias of the deployed statistical autocovariance estimators.

We consider the cases of directly observing the entire traffic process Y(t) as well as

after sampling. We show that the deployed estimator is asymptotically unbiased

as the sample size T tends to infinity. First, we consider the direct observation

of a sample path y(t) of the traffic process of finite length T. We consider the

autocovariance estimator

c̃Y(τ) =
1

T − τ

T−τ

∑
t=1

(y(t)− µ̃Y0) (y(t + τ)− µ̃Yτ ) (4.28)

with means µ̃Y0 = 1
(T−τ) ∑T−τ

t=1 y(t) and µ̃Yτ
= 1

(T−τ) ∑T−τ
t=1 y(t + τ). The means µ̃Y0

and µ̃Yτ
are sample means over the first and last T − τ points of the sample, respec-

tively. Any autocovariance estimator (4.28) is unbiased iff E [c̃Y(τ)] = cY(τ) [[97] p.

327].

Theorem 4.1 (Bias of the Autocovariance Estimator for the Traffic Process Y(t))

Given a sample path y(t) of length T of the LRD traffic increment process Y(t) characterized

by σ2
Y and H ∈ (0.5, 1). The expected value of the autocovariance estimator (4.28) is

approximated by

E [c̃Y(τ)] ≈ cY(τ)−
σ2

Y
(T − τ)2−2H .

4 We used 100 synthetic LRD traffic traces each of length T = 2× 108 time slots for the simulations.
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From Theorem 4.1 we conclude that the autocovariance estimator (4.28) is asymp-

totically unbiased for T → ∞ and T � τ. The impact of H is apparent as higher H

requires larger sample sizes T to achieve negligible bias.

Proof of Theorem 4.1. Given a sample path y(t) with sample means µ̃Y0 =

1
(T−τ) ∑T−τ

t=1 y(t) and µ̃Yτ
= 1

(T−τ) ∑T−τ
t=1 y(t + τ). Fix σ2

Y, H ∈ (0.5, 1) and T. Con-

sider the autocovariance estimator (4.28) and expand the product as y(t)y(t + τ)−

y(t)µ̃Yτ
− y(t + τ)µ̃Y0 + µ̃Y0 µ̃Yτ

. We compute the expected values for the individual

terms as follows

E

[
1

T − τ

T−τ

∑
t=1

y(t)y(t + τ)

]
= cY(τ) + µ2

Y,

where cY(τ) and µY are the population parameters. Exchanging the expected value

and the sum above directly yields the result. We also calculate

E

[
1

T − τ

T−τ

∑
t=1

y(t)µ̃Yτ

]
= E[µ̃Y0 µ̃Yτ

],

where we used that 1
T−τ ∑T−τ

t=1 y(t) = µ̃Y0 . The same argument applies for the

product y(t + τ)µ̃Y0 . We rephrase and estimate the last term as

E [µ̃Y0 µ̃Yτ ] = Cov [µ̃Y0 , µ̃Yτ ] + E [µ̃Y0 ]E [µ̃Yτ ]

≤ Var [µ̃Y0 ] + µ2
Y, (4.29)

where we use Cov
[
(·)i, (·)j

]
to denote the covariance of the random variables (·)i

and (·)j. Note that E [µ̃Y0 ] = µY and E [µ̃Yτ ] = µY, as these are unbiased estimators of

the population mean. Observe that the sample ranges for µ̃Y0 and µ̃Yτ
, i.e., [1, T − τ]

and [τ + 1, T] overlap by T − 2τ. For T � τ we have Cov [µ̃Y0 , µ̃Yτ ] ≈ Var [µ̃Y0 ], i.e.,

the bound in (4.29) is good. Finally, we use from [[8] p. 54] that the variance of the

mean of T − τ samples of an LRD process decays as σ2
Y/(T − τ)2−2H to derive

E [µ̃Y0 µ̃Yτ ] ≈
σ2

Y
(T − τ)2−2H + µ2

Y.
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Putting all the pieces together we obtain

E [c̃Y(τ)] = cY(τ)−Cov[µ̃Y0 , µ̃Yτ
] (4.30)

≈ cY(τ)−
σ2

Y
(T − τ)2−2H ,

i.e., the estimator c̃Y(τ) underestimates the covariance, where the bias diminishes

with increasing T − τ.

The derivation above shows that for a traffic process y(t) that is directly accessible

the autocovariance estimator is asymptotically unbiased. The bias in (4.30) originates

from the fact that we do not know the true traffic intensity µY. We resort to the

unbiased estimators µ̃Y0 and µ̃Yτ
that have a variance that depends on H and decays

with the sample size T. Thus, the bias diminishes with increasing sample size with

a convergence speed that depends on H.

Next we consider the bias of the presented autocovariance estimator when applied

to a sample path z(t) of the observed process Z(t) with finite size T such as

c̃Z(τ) =
1

T − τ

T−τ

∑
t=1

(z(t)− µ̃Z0) (z(t + τ)− µ̃Zτ ) . (4.31)

The sample means µ̃Z0 and µ̃Zτ are given by µ̃Z0 = 1
(T−τ) ∑T−τ

t=1 z(t) and µ̃Zτ =

1
(T−τ) ∑T−τ

t=1 z(t + τ).

Theorem 4.2 (Bias of the Autocovariance Estimator for the Observed Process Z(t))

Given a sample path z(t) of length T of the observed process Z(t). The expected value of the

autocovariance estimator (4.31) is approximated by

E[c̃Z(τ)] ≈ cZ(τ)−
cZ(0)
T − τ

− 2
(T − τ)2

T−τ−1

∑
t=1

(T − τ − t)cZ(t).

From Theorem 4.2 we conclude that the autocovariance estimator (4.31) is asymptot-

ically unbiased for T → ∞ and T � τ.

Proof of Theorem 4.2. The proof is structured similarly to the proof of Theorem 4.1.

Given a sample path z(t) with sample means µ̃Z0 and µ̃Zτ . We calculate the expected

value E[c̃Z(τ)] by expanding the product in (4.31) and computing the expected
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values of the individual terms, i.e., z(t)z(t + τ)−z(t)µ̃Zτ − z(t + τ)µ̃Z0 + µ̃Z0 µ̃Zτ .

We find

E

[
1

T − τ

T−τ

∑
t=1

z(t)z(t + τ)

]
= cZ(τ) + µ2

Z,

where cZ(τ) and µZ are the population parameters and

E

[
1

T − τ

T−τ

∑
t=1

z(t)µ̃Zτ

]
= E[µ̃Z0 µ̃Zτ ].

The same argument of the second term applies for the product z(t + τ)µ̃Z0 . The last

term is approximated as

E [µ̃Z0 µ̃Zτ ] = Cov [µ̃Z0 , µ̃Zτ ] + E [µ̃Z0 ]E [µ̃Zτ ]

≤ Var [µ̃Z0 ] + µ2
Z.

We obtain the expected value of the covariance estimator as

E [c̃Z(τ)] = cZ(τ)−Cov[µ̃Z0 , µ̃Zτ ],

where cZ(τ) is the population parameter. The sample ranges for µ̃Z0 and µ̃Zτ ,

i.e., [1, T − τ] and [τ + 1, T] respectively, overlap by T − 2τ. For T � τ we esti-

mate Cov[µ̃Z0 , µ̃Zτ ] ≈ Var[µ̃Z0 ]. We invoke the identity from [[113] p. 54] that

Var

[
k

∑
i=1

Ni

]
=

k

∑
i=1

k

∑
j=1

Cov
[
Ni, Nj

]
,

where Cov
[
Ni, Nj

]
denotes the covariance of the random variables Ni and Nj

for i, j ∈ [1, k]. We rearrange Var [µ̃Z0 ] as follows

Var [µ̃Z0 ] = Var

[
1

(T−τ)

T−τ

∑
t=1

z(t)

]

=
1

(T − τ)2

T−τ

∑
i=1

T−τ

∑
j=1

Cov[z(i), z(j)]

=
cZ(0)
T − τ

+
2

(T − τ)2

T−τ−1

∑
t=1

(T − τ − t)cZ(t).
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In the last line we rearranged the double sum and used the notion Cov[z(t), z(t +

τ)] = cZ(τ). The expected value of the sample covariance follows as

E[c̃Z(τ)] ≈ cZ(τ)−
cZ(0)
T − τ

− 2
(T − τ)2

T−τ−1

∑
t=1

(T − τ − t)cZ(t).

Under geometric sampling described by (4.6), the estimator c̃Z(τ) is asymptoti-

cally unbiased since for T � τ the following limits exist

lim
T→∞

cZ(0)
T − τ

= 0,

lim
T→∞

2
(T − τ)2

T−τ−1

∑
t=1

(T − τ − t)cZ(t) = 0. (4.32)

To obtain the second limit we use (4.6) to substitute for cZ(τ) in (4.32). We upper

bound the term on the left hand side of (4.32) using

2σ2
Yµ2

X
(T − τ)

T−τ−1

∑
t=1

t2H−2,

where we omitted the subtraction of t in the brackets in (4.32) and inserted σ2
Yt2H−2

for cY(t). As t2H−2 is a decreasing function in t, with H ∈ (0.5, 1), we upper bound

the sum ∑T−τ−1
t=1 t2H−2 by the integral

∫ T−τ−1
t=0 t2H−2dt = (T−τ−1)2H−1

2H−1 . Thus, we find

the limit

lim
T→∞

2σ2
Yµ2

X(T − τ − 1)2H−1

(2H − 1)(T − τ)
= 0, (4.33)

yielding that the bias goes to zero for T → ∞.

In general we find from inserting Lemma 4.1 into (4.32) that sampling processes

with autocovariances that decay to zero, i.e., satisfying a weakly-mixing condi-

tion as defined in [30, 117], deliver asymptotically unbiased estimates using the

autocovariance estimator (4.31).

Examples for sampling processes that yield asymptotically unbiased results are

geometric, Gamma and uniform sampling. For periodic sampling, inserting cZ(τ)
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from (4.8) into Theorem 4.2 yields that the autocovariance estimator (4.31) is biased

for T → ∞. It is obvious that periodic sampling clearly violates the mixing condition.

In this section we showed the impact of finite sample sizes and sampling pa-

rameters on the accuracy of the estimated traffic autocovariance. We capitalized on

geometric sampling due to its advantages that are explored in Section 4.1. First, we

analyzed the observability of the autocovariance of sampled traffic to find a range

of lags where the variability which is introduced through the limited sample size

does not conceal the target autocovariance. Second, we quantified the impact of

the finite sample size on the autocovariance of the geometric sampling process and

constructed a metric that describes the arising relative estimation error of the traffic

autocovariance. One main finding at this point is that the estimation error increases

with autocovariance lag τ as τ2−2H . Concerning the impact of the sampling parame-

ters on the relative estimation error we discovered a nonlinear trade-off between

the sampling intensity µX and the sample size T. Lastly, we analyzed the impact of

the finite sample size on the deployed statistical autocovariance estimators which

are shown to be asymptotically unbiased with an absolute bias that depends on the

traffic Hurst parameter H.

4.3 probing methodology and internet measurement campaign

In Sections 4.1 and 4.2 we inferred characteristics of LRD traffic from observed

samples and investigated the accuracy of the deployed statistical estimators under

finite sample sizes. Results from Sections 4.1 and 4.2 can be directly applied in mon-

itoring scenarios, i.e., if traffic is directly accessible. In the sequel we investigate the

problem of inferring LRD traffic characteristics without direct monitoring capability.

Equipped with the derivations from the previous sections we present a method for

inferring LRD traffic characteristics from the interaction of injected packet probes

with the traffic. We presented our method in [112]. In contrast to traffic traces that

reflect the characteristics at a single observation point, i.e., a single node, we extend

the view to infer dominant characteristics over entire paths.
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Network Probing Methodology for Inferring LRD Traffic Characteristics

We consider a single node scenario with a basic queueing model as shown in

Figure 2.3. The cross traffic is LRD whereas the through traffic is the probing traffic

flow. The proposed probing technique uses the delays of single packet probes

to detect the busy periods at the router output link. Assuming non-preemptive

FIFO packet scheduling, a packet probe would experience the minimum one way

delay dmin only if the router is idle. If the router is busy with transmitting cross

traffic, the probing packet will have to wait for its turn. Hence, if there is concurrent

cross traffic the delay dp experienced by a probe packet would be larger than dmin.

The measured one way delay is given by dp = tr − ts, where tr and ts denote the

receive and send times respectively. Each probe yields a sample of the egress link

state, that is either busy or not. We denote the process that describes the egress link

state as Y(t). The values of Y(t) ∈ {0, 1} denote the states (i) outgoing link not busy,

i.e., Y(t) = 0 and (ii) busy, i.e., Y(t) = 1, respectively, at time t. The process Y(t)

captures the utilization of the node egress. The observed process Z(t) arises by

sampling of the egress link state process Y(t) using the sampling process X(t).

The sampling process X(t) ∈ {0, 1} takes the value one when a probe is sent, i.e.,

a sample is taken, and zero otherwise. The time between two probes follows a

distribution as discussed in Section 4.1, e.g., X(t) is a geometric sampling process.

If a probe encounters a busy outgoing link, i.e., dp > dmin, we set the observed

process Z(t) to one, otherwise Z(t) is set to zero. We construct the observed process

according to (4.2) as follows

Z(t) =

 1 if dp > dmin and X(t) = 1

0 otherwise.
(4.34)

From [44, 49] it is known that the autocovariance decay of LRD traffic is preserved

at the output of a queue or traffic shaper, i.e., the process Y(t) has the same

autocovariance decay from (1.1) as the LRD traffic input. From (4.6) we deduce

that for the geometric sampling process X(t) the observed process Z(t) has the



4.3 probing methodology and internet measurement campaign 65

1 2 n
probing

traffic

cross

traffic

...

probing

source

probing

destination

Figure 4.5: n node topology with probing traffic and LRD cross traffic at nodes i ∈ [1, n].

same autocovariance as Y(t) except for a multiplicative rescaling factor. Thus, the

observed process has the same autocovariance decay as the LRD traffic input.

Next, we extend the previous probing method to cover an end-to-end path with n

nodes each having fresh multiplexed/demultiplexed LRD traffic as depicted in

Figure 4.5. We consider the observations at the egress of the path and show that

these observations also exhibit LRD. In particular, if different cross traffic flows at

nodes i ∈ [1, n] possess different Hurst parameter values Hi ∈ (0.5, 1), we show

that the largest Hi dominates the path observations. This complements a result on

end-to-end performance domination by the maximum Hurst parameter value along

a path that is presented in Chapter 6. A similar result on maximum Hurst parameter

domination in multiplexing scenarios is derived in [49].

Consider the n node path depicted in Figure 4.5 with independent LRD cross

traffic at each node. The busy state process Yi(t) ∈ {0, 1} at the egress of node i

has the autocovariance given by (1.1) with Hurst parameter value Hi. Consider

the end-to-end delay of a probe sent over the n node path after subtracting the

minimum delay. The (excess) delay will only be positive if any of the routers on the

path was busy when the probe arrives at its ingress, else the excess delay equals

zero. This relation can be expressed as logical OR operation of the processes Yi(t)

characterizing the busy states at the egress of the routers i ∈ [1, n]. For a transmitted

probe at time t, i.e., X(t) = 1, we can formulate the OR operation using Yi(t) ∈ {0, 1}

to find Zi(t) at the egress of node i as

Zi(t) =

 Y1(t) for i = 1

Zi−1(t) + Yi(t)− Zi−1(t)Yi(t) for i ∈ [2, n].
(4.35)

For ease of exposition we assume in (4.35) that an idle node forwards probe packets

instantaneously to the next node. Hence, a probe packet at time t observes Yi(t) for
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all i ∈ [1, n]. We may relax this assumption at the cost of extra notation. We then

formulate (4.35) for probes that observe Yi(t) at time ti ≥ ti−1 for i ∈ [2, n].

Next, we use a two node example calculation to motivate the derivation of (4.35).

The egress of nodes 1 and 2 is characterized by Y1(t) and Y2(t), respectively. A

packet probe at time t, i.e., X(t) = 1, that observes a busy path with dp(t) > dmin,

hence Z2(t) = 1, implies that Y1(t) = 1 (logically) OR Y2(t) = 1. This translates to

the consideration that the excess delay comes from the first OR (logically) from the

second node. Otherwise, no excess delay is measured and Z2(t) = 0. Since Y1(t)

and Y2(t) ∈ {0, 1} we can simply formulate the OR operation as

Z2(t) = Y1(t) + Y2(t)−Y1(t)Y2(t). (4.36)

Recall that for the single node case we find that for a transmitted probe at time t,

i.e., X(t) = 1 it holds that Z1(t) = Y1(t).

Next, we derive the autocovariance cZ2(τ) as a function of cYi(τ) and µYi for i ∈ {1, 2}.

First, we express the autocovariance cZ2(τ) as

cZ2(τ) = E [Z2(t)Z2(t + τ)]− µ2
Z2

. (4.37)

Then, we calculate the expected value of Z2 from (4.36) using the independence

of Y1(t) and Y2(t) as µZ2 = µY1 + µY2 − µY1 µY2 where µYi = E [Yi] for i ∈ [1, 2]. We

insert (4.36) into the autocorrelation expression E [Z2(t)Z2(t + τ)] to find

E [Z2(t)Z2(t + τ)] = cY1(τ) + µ2
Y1
+ cY2(τ) + µ2

Y2
+ 2µY1 µY2

− 2
(
µY2

(
cY1(τ) + µ2

Y1

))
− 2

(
µY1

(
cY2(τ) + µ2

Y2

))
+
(
cY1(τ) + µ2

Y1

) (
cY2(τ) + µ2

Y2

)
, (4.38)

where we first expanded the terms, then applied the linearity of the expectation

operator, and used the independence of Y1(t) and Y2(t). We insert (4.38) and µZ2

from above into (4.37) to find

cZ2(τ) = cY1(τ) (1− µY2)
2 + cY2(τ) (1− µY1)

2 + cY1(τ)cY2(τ). (4.39)
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From the autocovariance decay described by (1.1) with different Hi ∈ (0.5, 1)

for i ∈ [1, 2] we can directly show that the autocovariance at the egress of the second

node cZ2(τ) is governed by the slower decaying autocovariance cYi(τ), i.e., the larger

Hurst parameter Hi for i ∈ [1, 2].

The two node example described in (4.36) is readily extended to cover n tandem

nodes as in Figure 4.5 using the formulation of Zn(t) as the result of the OR

operation of Yi(t) for i ∈ [1, n]. For example, for n = 3 we find Z3(t) as the result

of the OR operation of Y1(t), Y2(t) and Y3(t). Equivalently, Z3(t) is the result of

the OR operation of Z2(t) and Y3(t). Thus, we can iteratively formulate Zi(t) for

node i ∈ [2, n] as the result of the OR operation of the busy state process Yi(t)

at node i and Zi−1(t), i.e., the outcome of the OR operations up to the previous

node i− 1 as given in (4.35).

Repeating the steps (4.36) to (4.39) for the recursive formulation in (4.35) yields

cZi(τ)= cZi−1(τ)cYi(τ) + cZi−1(τ)(1− µYi)
2 + cYi(τ)(1− µZi−1)

2. (4.40)

Through recursive insertion and reordering we reformulate (4.40) for an n node

path as

cZn(τ)=
n

∑
i=1

cYi(τ)Ki +O
((

τ2 maxi{Hi}−2
)2
)

, (4.41)

with constants Ki for i ∈ [1, n]. For the n-th node we find that the second term in

(4.40) keeps the sum of autocovariances of the past n− 1 iterations as ∑n−1
i KicYi(τ)

with different prefactors Ki, while the last term adds the current autocovariance

KncYn(τ) with the prefactor Kn. We find that the first term of (4.40) is of higher

order, i.e., it involves the multiplication of at least two autocovariance functions

cYi(τ)cYj(τ) for i, j ∈ [1, n] which leads to a faster decay in τ. This is captured by

the last term in (4.41). Next, we show an example calculation for (4.41) for n = 3.
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We insert (4.39) into (4.40) to find the following autocovariance at the egress of the

third node

cZ3(τ) = k1cY1(τ) + k2cY2(τ) + k3cY3(τ)

+ k4cY1(τ)cY3(τ) + k5cY1(τ)cY2(τ) + k6cY2(τ)cY3(τ)

+ k7cY1(τ)cY2(τ)cY3(τ), (4.42)

using the constants ki for i ∈ [1, 7].

The expressions (4.41) and (4.40) reveal that for a given n node path the autoco-

variance of the end-to-end observations is governed by the strongest LRD on the

path. In Chapter 6 we show that traffic with the highest H along a network path

has the strongest impact on the derived non-asymptotic end-to-end performance

bounds.

Experimental Testbed Evaluation

We validate the introduced probing methodology in a controlled Emulab-based

testbed environment called FILab.5 The testbed environment allows reconfigurable

topologies with exclusive node use. Our testbed topology depicted in Figure 4.6

shows probe as well as cross traffic senders. The cross traffic senders S1 and S2

transmit synthesized LRD traffic traces with given Hurst parameter H to the receiver

nodes R1 and R2. The traffic traces were created by superpositioning 105 heavy

tailed on-off traffic sources. The relation between the tail index ξ of the on-off

sources and the resulting Hurst parameter H is given by H = (3− ξ)/2 [128]. Each

sender transmits traffic with a mean rate of 50 Mbps and a constant packet size

of 1500 Bytes. We set the capacity of all links to C = 1 Gbps.

The probe sender Sp transmits Internet Control Massage Protocol (ICMP) echo

request probes to the receiver Rp and measures the round trip time (RTT) using

libpcap. We choose round trip times for reasons of practical deployment, i.e., to

circumvent clock synchronization problems at probe sender and receiver. We sub-

5 Within the framework of FILab [58] we deploy nodes with Supermicro X8DTU server mainboards
with 2.2 GHz Intel E5520 Xeon processors, quad port Intel 82576EB Gigabit Ethernet Controllers, and
Ubuntu 10.04 LTS with kernel 2.6.32-24, FIFO scheduling and buffers for 5000 packets.
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Figure 4.6: Testbed for empirical evaluation of the LRD probing methodology

Table 4.2: Probing Traffic Parameters.

distribution parameter p discretization slot # of probes mean rate
geometric 0.1 1 ms 106 70 kbps

stantiated first results by measuring one way delays (not shown here) using Endace

DAG packet capture cards and network taps at Sp and Rp. Note that measuring

RTTs corresponds to characterizing the round trip path such that the probing source

and destination in Figure 4.5 are in fact located on the same physical machine. The

developed probing software H-probe is available at [14].

We assume that dropped probes are due to a busy router, hence we set Z(t) = 1

for dropped samples. Further, we assume negligible perturbation due to probing

as we choose the smallest probe size possible and a probing rate of less than 0.01

per mill compared to the capacity. To reduce the impact of non-queueing jitter in

routers we employ a heuristic that substitutes dmin in (4.34) by the average E[d]. This

heuristic masks small bursts but it does not alter the long tail of the burst length

distribution, which is fundamental for LRD as described in [128].

In the first experiment we consider only the single node case, i.e., S1 transmits

LRD traffic with Hurst parameter H ∈ {0.6, 0.7, 0.8, 0.9} to R1 on link 1, while S2

idles. We repeat each experiment 25 times. We estimate the autocovariances for

the traffic traces using (4.28) and for the sampling as well as probing observations

using (4.31). We use an observation lag range of τ ∈ [1, 103] and measurement

parameters that are given in Table 4.2.

Figure 4.7 presents inferred Hurst parameter estimates. Here, we distinguish

between the following cases: (i) accessing entire traffic traces, (ii) samples from

traffic traces, and (iii) probing results. The sampling results are from random
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Figure 4.7: Hurst parameter estimates from direct and indirect access, i.e., (a) trace analysis,
(b) trace sampling, and (c) probing in the FILab testbed.

samples as described in Section 4.1 with parameters from Table 4.2. The probing

results stem from observations that are based on the interaction of probes with

replayed LRD traffic traces at shared testbed nodes (router A) as described at the

beginning of this section. The boxplots in Figure 4.7 show successful estimation of H

with reliable accuracy using packet probes without administrative access to network

internal nodes. We show corresponding autocovariance estimates in Figure 4.8.

In a second experiment we investigate the end-to-end measurement scenario. We

inject LRD traffic on both links as depicted in Figure 4.6. First, we deploy LRD

traffic of clearly distinguishable Hi ∈ {0.6, 0.9}, i.e., {H1 = 0.6, H2 = 0.9} and

vice versa, on the respective links i ∈ {1, 2}. As predicted by (4.39) end-to-end

measurements given in Table 4.3 reflect the autocovariance decay with the highest Hi

on the path. Note that we know from (4.41) that the order is not important such that

the constellations {H1 = 0.6, H2 = 0.9} and {H1 = 0.9, H2 = 0.6} show the same

end-to-end behavior, i.e., an end-to-end estimate of H = 0.9. For comparison we
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Table 4.3: End-to-end Hurst parameter estimates in a 2 node scenario. The highest H along a
path prevails.

estimated H on run #
1 2 3 4 5

{H1 = 0.6, H2 = 0.9} 0.87 0.89 0.89 0.90 0.90

{H1 = 0.9, H2 = 0.6} 0.87 0.88 0.88 0.90 0.90

{H1 = 0.6, H2 = 0.6} 0.59 0.62 0.64 0.63 0.63

{H1 = 0.9, H2 = 0.9} 0.92 0.92 0.89 0.92 0.89

show in Table 4.3 end-to-end measurement results for paths with homogeneous

LRD traffic (H1 = H2) that show congruent estimates.

Internet Measurement Campaign

We deploy the developed LRD probing software [14] in an extensive Internet

measurement study. The probes are transmitted from a university lab server in

Germany [58] targeting different Internet destinations across the world. We maintain

the probing parameters from Table 4.2. We set the measurement duration to 3

hours, which is a duration up to which piecewise stationarity has been monitored

in [54, 116]. In addition, we deploy the Leybourne-McCabe stationarity test to filter

out measured non-stationary time series [73].

In Figure 4.9 we show a snapshot of the autocovariance estimation results for

PlanetLab targets that are located at different universities, specifically the universities

of Pennsylvania, Virginia and Massachusetts. We observe that paths to the targets are

fixed using Traceroute. We recognize that the autocovariance varies across different

Internet paths and at different times of day. We observe typical LRD decay of the

autocovariance in Figures 4.9a and 4.9b. For some target paths, e.g., Figure 4.9c,

we observe periodicities on various time scales. This phenomenon was reported

in offline traces in [16] and can be partially traced back to protocol specifications.

We also note that the estimated Hurst parameter varies significantly with time. In

Figure 4.10 we depict H estimates from continued measurements over an excerpt

of 1 month. The estimated autocovariances show strong correlation, thus the Hurst
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parameter estimates mostly lie in the range [0.8, 0.9]. We show extended results

from our Internet measurement study in Appendix A.

In this chapter we provided a lightweight method for inferring the characteristics

of LRD traffic from random samples. We recovered LRD traffic properties from

observations made by different stochastic sampling processes and quantified the

impact of finite sample sizes. We provided expressions for the accuracy of the

estimates as a function of the sampling parameters. Our method lends itself to

network performance monitoring scenarios. To this end, we provide a practical

tool to explore the structure of traffic correlations along connection paths without

administrative network support. In the next chapter we derive upper performance

bounds for queueing systems fed with LRD traffic. The provided estimation method

for LRD traffic parameters enables together with a rigorous mathematical analysis

the assessment of the performance of operating networks as well as a better design

and control for future networks.
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Figure 4.9: Autocovariance estimates for end-to-end Internet paths obtained through mea-
surements from FILab [58] to the specified targets. Each measurement is 3 hours
long. For different paths and across different times of day we obtain varying auto-
covariance structures. For certain targets as (c) we observe obvious periodicities
on different time scales.
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Figure 4.10: Hurst parameter estimates from continued measurements over one month
(1.9.2012-30.9.2012). Target is planetlab1.cis.upenn.edu. One data point equals a
measurement over three hours.
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T R A F F I C

In this chapter we derive upper performance bounds for long memory traffic

arrivals at a single queueing system. The long memory arrivals are modeled by

an fBm process with Hurst parameter H ∈ (0.5, 1) as described in Chapter 1.

We use a non-asymptotic analysis to show that long memory has a significant

impact on the queueing performance. Compared to the approximate, respectively,

asymptotic results reviewed in Chapter 1, the derived results are non-asymptotic

upper bounds. The performance bounds are based on an original sample path

envelope for long memory traffic. We show that systems fed with long memory

traffic behave fundamentally different than systems exhibiting light tailed EBB

traffic. Performance bounds for EBB traffic known from the literature are reviewed

in Chapter 2.

In addition, we consider in this chapter resource sharing scenarios as depicted

in Fig. 2.3 with through and cross traffic. Approaches that belong to effective

bandwidths or to large deviations theory that are reviewed in Chapter 1 do not

lend themselves easily to the analysis of scheduling. In this chapter we analyze the

service received by a through traffic flow after scheduling long memory cross traffic.

To this end, we utilize the concept of leftover service curves from the stochastic

network calculus framework reviewed in Chapter 2. We show the impact of long

memory cross traffic on the queueing performance of through traffic. The results

in this chapter support earlier conclusions on the efficiency of buffering long

memory traffic [96] as well as general conclusions on buffer sizing in modern data

networks [3]. Results presented in this chapter were developed in a joint work with

M. Fidler [109, 110].

Unless stated otherwise, the definitions and properties reviewed in Chapter 2

apply to the functions utilized in the sequel. This chapter provides the foundation

for Chapter 6, where we derive scaling properties of end-to-end delay bounds in

multi-node networks with long memory traffic.
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This chapter is structured as follows. We first derive a sample path envelope for

fBm traffic and deduce backlog and delay bounds for a server with fBm input. We

then inspect the asymptotic properties of the derived performance bounds revealing

the tail behavior of the related overflow probabilities. After a comparison with

performance bounds for EBB traffic, that show fundamentally different queueing

behavior, we finally present a leftover service curve formulation under fBm cross

traffic.

5.1 sample path analysis

Consider fBm traffic that is characterized by the following parameters: mean

rate λ > 0, variance parameter σ2 > 0 and Hurst parameter H ∈ (0.5, 1). We

use a discrete time model, where time is divided into slots of fixed size, thus time is

a dimensionless counter of slots and the mean rate λ is given in bits per time slot.

The target of this section is to derive a sample path envelope for fBm traffic that

satisfies (2.20). To this end, we consider the point-wise envelope (3.1) with time

dependent overflow probability εp(t). The point-wise envelope is then given as

E(t) = λt +
√
−2 log εp(t)σtH. (5.1)

We introduce the free parameters β ∈ (0, 1− H) and η ∈ (0, 1) to express the

point-wise violation probability as εp(t) = ηt2β
. The following theorem provides the

construction of fBm sample path envelopes.

Theorem 5.1 (FBM Sample Path Envelope) Given fBm traffic with mean rate λ, vari-

ance parameter σ2, and LRD Hurst parameter H ∈ (0.5, 1). A sample path envelope

satisfying (2.20) is given by

E(t) = λt +
√
−2 log ησtH+β
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with overflow probability

εs =
Γ( 1

2β )

2β(− log η)
1

2β

where β ∈ (0, 1− H) and η ∈ (0, 1) are free parameters.

The proof of Theorem 5.1 uses the following result on the Gamma function.

Lemma 5.1 (Gamma Function) For x ∈ (0, 1) and ν > 0 it holds that

∫ ∞

0
xtν

dt =
Γ
( 1

ν

)
ν(− ln x)

1
ν

.

Proof of Lemma 5.1. The definition of the Gamma function by Euler states that for

all y > 0

Γ(y) =
∫ 1

0
(− ln t)y−1dt.

We substitute t = e−zkν
where z > 0 and ν > 0. It follows that dt = −zνe−zkν

kν−1dk

and

Γ(y) = zyν
∫ ∞

0
kνy−1e−zkν

dk.

Assuming ν > 0 and letting y = 1/ν yields

Γ
(

1
ν

)
= z

1
ν ν
∫ ∞

0
e−zkν

dk.

Finally, we substitute z = − ln x where x ∈ (0, 1).

Proof of Theorem 5.1. Given the free parameters η ∈ (0, 1), β ∈ (0, 1− H). We

use s, t as time indexes and rephrase the definition of sample path envelopes

from (2.20) as

P

[
sup

s∈[0,t]
{A(t− s, t)− E(s)} > 0

]
≤ εs, ∀t ≥ 0. (5.2)
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We follow the steps reviewed in Section 2.2 for finding a rigorous upper bound on

the overflow probability by applying Boole’s inequality, such that we can write

P

[
sup

s∈[0,t]
{A(t− s, t)− E(s)} > 0

]
= P

[ t⋃
s=0

{A(t− s, t)− E(s) > 0}
]

≤
t

∑
s=1

P[A(t− s, t) > E(s)]. (5.3)

Above we used the fact that the overflow probability at s = 0 is trivially zero since

by definition A(t, t) = E(0) = 0.

We apply Chernoff’s theorem to evaluate the expression

P[A(t− s, t)>E(s)] ≤ e−θE(s)E
[
eθA(t−s,t)]

= e−θE(s)eθλs+ θ2σ2
2 s2H

, (5.4)

for any θ > 0, where we used the moment generating function (1.3) and the

stationarity of the arrival increments in the second step.

We insert the envelope E(s) = λs +
√
−2 log ησsH+β into (5.4) and minimize the

right hand side over θ > 0 to attain the minimum at θ = 1
σ

√
−2 log ηsβ−H such

that (5.4) becomes

P[A(t− s, t) > E(s)] ≤ ηs2β
.

Equipped with the fact that ηs2β
decreases monotonically with increasing s, due

to η ∈ (0, 1), we upper bound the sum on the right hand side of (5.3) by upper

bounding each summand with index s by an integral over (s − 1, s] and finally

let t→ ∞ to find

∞

∑
s=1

ηs2β ≤
∫ ∞

0
ηs2β

ds =
Γ( 1

2β )

2β(− log η)
1

2β

,

where we applied Lemma 5.1 in the last step to solve the integral.

The slack parameter β > 0 relaxes the envelope in Theorem 5.1 compared to the

formulation (5.1) as shown in Figure 5.1a for different β values. Note that the long

term envelope rate is limt→∞ E(t)/t = λ. For the special case β = 0 the envelope
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(b) For β ∈ (0, 1 − H) the point-wise overflow probabil-
ity εp(t) = ηt2β

decays with t, however, slower than ex-
ponentially. For β = 0 the point-wise overflow probabil-
ity εp(t) remains constant.

Figure 5.1: Envelope relaxation with β ∈ (0, 1− H) produces decaying point-wise overflow
probabilities εp(t) = ηt2β

.

in Theorem 5.1 reduces to the formulation in (5.1) and εp(t) remains constant, thus

the sample path probability would stay unbounded. For β > 0 the point-wise

overflow probability εp(t) decays slower than exponentially due to β ∈ (0, 1−H)

and H ∈ (0.5, 1). For Figure 5.1a, as well as the following figures, we consider a link

with capacity C = 1 Gbps and use a time slot of 10 µs which is the transmission

time of a 10 kb packet. We set the traffic parameters for the numerical example

in Figure 5.1a as measured in Internet traces in [45, 72, 100, 128] scaled to the

considered link capacity. This results for λ and σ to amount to 5 kb per time

slot, which translates physically to a utilization of 0.5. We set the Hurst parameter

to H = 0.7.

In Figure 5.2 we examine the main ingredients of Theorem 5.1, i.e., Chernoff’s

theorem and Boole’s inequality. In Figure 5.2a we compare the point-wise overflow
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Figure 5.2: Overflow probabilities for envelopes from Theorem. 5.1 with β=0.04.

probability εp(t) with simulation results for 109 fBm sample paths generated in

Matlab. The results are conservative due to Chernoff’s theorem. In Figure 5.2b we

depict overflow probabilities for sample paths of length t. Thus, we mark the sample

paths that violate the envelope at least one time in [0, t] in the simulation and

denote the corresponding curve "simulation" in Figure 5.2b. We plot the analytical

counterpart denoted "Boole’s inequality" as the cumulative sum of the point-wise

violation probability up to t. This sum is upper bounded by the sample path

probability from Theorem 5.1 which is depicted in Figure 5.2b as a horizontal line.

The results are conservative upper bounds due to Boole’s inequality.

5.2 backlog and delay bounds

In the sequel we deduce performance bounds on backlog and delay at a single

server with fBm input. We utilize the sample path envelope given in Theorem 5.1.

Theorem 5.2 (Backlog and Delay Bound) Consider fBm arrivals characterized by λ, σ2

and H ∈ (0.5, 1) at the ingress of a constant rate lossless work-conserving server with

capacity C. For C > λ the steady-state backlog B is upper bounded by b subject to the

overflow probability εs such that

P[B > b] ≤ εs =
Γ( 1

2β )

2β(− log η)
1

2β

,
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where β ∈ (0, 1− H) is a free parameter and

η = exp

(
− 1

2σ2

(
C− λ

H + β

)2(H+β)( b
1− (H + β)

)2−2(H+β)
)

.

Under FIFO scheduling the steady-state delay W is upper bounded by P[W > b/C] ≤ εs.

Proof of Theorem 5.2. We use s, t as time indexes and rephrase the steady-state

backlog from (2.17) as

P[B > b] = P

[
sup

s∈[0,t]
{A(t− s, t)− Cs} > b

]
,

to directly find that it is a special case of the sample path envelope (5.2), where the

envelope is substituted by b + Cs.

Consider E(t) as given in Theorem 5.1. If E(t) ≤ b + Ct for all t ≥ 0 it follows for

the steady-state backlog that

P[B > b] ≤
Γ( 1

2β )

2β(− log η)
1

2β

.

Fix b and C. We seek the largest envelope E(t) ≤ b + Ct for all t ≥ 0. The

envelope E(t) given in Theorem 5.1 is a concave function in t since the first deriva-

tive ∂E(t)/∂t is monotonically decreasing and the second derivative ∂2E(t)/∂t2 is

negative. To fit E(t) under the affine curve b + Ct we seek the point t∗ where E(t)

and b+Ct are tangent, that is where t∗ minimizes the vertical deviation between E(t)

and b + Ct. We find t∗ as solution for ∂E(t)/∂t = C as

λ + (H + β)
√
−2 log ησtH+β−1 = C

⇒ t =

(√
−2 log ησ(H + β)

C− λ

) 1
1−(H+β)

:= t∗. (5.5)
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Inserting t∗ into E(t∗) = b + Ct∗ and solving for η yields

E(t∗) = b + Ct∗

⇔ (λ− C)

(
C− λ√

2σ(H + β)

) 1
H+β−1

(
√
− log η)−

1
H+β−1

+
√

2σ(
√
− log η)1− H+β

H+β−1

(
C− λ√

2σ(H + β)

) H+β
H+β−1

= b

⇔ (
√
− log η)

1
H+β−1 = b−1

√2σ

(
C− λ√

2σ(H + β)

) H+β
H+β−1

(1− (H + β))


⇔

√
− log η =

(
C− λ√

2σ(H + β)

)H+β(
b√

2σ(1− (H + β))

)1−(H+β)

⇔ η = exp

(
− 1

2σ2

(
C− λ

H + β

)2(H+β)( b
1− (H + β)

)2−2(H+β)
)

The delay bound is deduced as the maximum horizontal distance of E(t) and Ct. It

can be inferred from the backlog bound at a constant rate server with capacity C as

P[W > b/C] ≤ εs.

In Figure 5.3 we plot backlog bounds obtained from Theorem 5.2 as well as the

approximate result from (1.2). The backlog bounds are calculated for the following

scenario. A constant rate server with capacity C = 1 Gbps is fed with fBm input with

parameters λ = 0.5 Gbps, σ = 0.25 Gbps, and H = 0.75. Both overflow probabilities,

from Theorem 5.2 and from (1.2), decay slower than exponentially due to LRD.

The relative difference of the two backlog bounds decreases for smaller violation

probabilities ε. In Figure 5.4 we show the impact of the traffic parameters on the

backlog bounds from Theorem 5.2. For a fixed capacity C, increasing λ, σ, or H

leads to an increase in the backlog bound. Note the strong impact of H, hence

Figure 5.4d is on log scale.

Note that for the case β = 0 the parameter η from Theorem 5.2 reduces to the

overflow probability εa of the approximation (1.2). Inserting η from Theorem 5.2

with β = 0 into (5.5) we find

t∗ =
(

b
C− λ

)(
H

1− H

)
,
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Figure 5.3: Backlog bound from Theorem 5.2 compared to the approximation from (1.2) for
fBm arrival traffic with parameters λ = 0.5 Gbps, σ = 0.25 Gbps, and H = 0.75
at a server with capacity C = 1 Gbps. Observe the slower than exponential decay
for both bounds.
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Figure 5.4: Backlog bounds from Theorem 5.2 and from the approximation (1.2) for different
traffic parameters subject to ε = 10−9. The Hurst parameter has an immense
impact, thus Figure 5.4d is on log scale.
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recovering the critical overflow time scale from [95]. Observe the strong impact of

LRD, that is expressed by H ∈ (0.5, 1), on the critical time scale.

Next, we describe the construction of affine fBm sample path envelopes. We will

resort to the affine fBm envelope in Section 5.4 to characterize the service leftover to

concurrent traffic by fBm cross traffic in resource sharing scenarios. The following

corollary builds on the gSBB characterization reviewed in Section 2.2.

Corollary 5.1 (Affine FBm Envelopes) Given fBm traffic characterized by mean rate λ,

variance parameter σ2 and H ∈ (0.5, 1). The envelope function E(t) = rt is a sample path

envelope satisfying (2.21) for r > λ subject to the overflow profile

εs(b) =
Γ( 1

2β )

2βϑ
1

2β

b−
1−(H+β)

β ,

where β ∈ (0, 1− H) is a free parameter and

ϑ =
1

2σ2

(
r− λ

H + β

)2(H+β)( 1
1− (H + β)

)2−2(H+β)

.

We use the backlog bound from Theorem 5.2 to derive the affine sample path

envelope in Corollary 5.1. The affine fBm sample path envelope E(t) = rt is equal or

greater than the envelope in Theorem 5.1 for all t. The derivation steps are identical

to the proof of Theorem 5.2.

5.3 large buffer asymptote

In the following, we minimize the sample path violation probability εs from Theo-

rem 5.2 over β analytically, which enables drawing conclusions on the large buffer

asymptotic behavior of systems fed with long memory traffic. Note that we opti-

mized the free parameter β numerically in Figures 5.3 and 5.4. While Theorem 5.2

provides rigorous non-asymptotic bounds that hold for every positive b, the follow-

ing theorem concerns the tail of the overflow probabilities.
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Theorem 5.3 (Weibull Tail of Overflow Probabilities) The sample path bound in The-

orem 5.2 exhibits a Weibull tail decay. The log-asymptotic decay of εs in b is given by

log εs ' log εa ' −Kb2−2H,

where εa is given by the largest term approximation (1.2) and K is a positive constant.

Proof of Theorem 5.3. To obtain the log-asymptotic decay in Theorem 5.3 we

minimize εs from Theorems 5.1 and 5.2 over β. To this end, we use Stirling’s

formula Γ(x) '
√

2π/x (x/e)x for x � 1, which is given in [[1] p. 257], to approxi-

mate εs from Theorems 5.1 and 5.2 by

ε̃s =

√
π√

β(2eβ(− log η))
1

2β

for β� 1. (5.6)

The approximation using Stirling’s formula is exact in the limit β→ 0.

We simplify (5.6) for small β to derive a near optimal solution β∗. We assume β�

(1− H) and approximate (1− H − β) by (1− H) to compute the derivative ∂ε̃s/∂β

of (5.6). We solve ∂ε̃s/∂β = 0 for β and find that the minimum of (5.6) is attained

at β = −W(1/(2 log εa)) with the shorthand notation εa from (1.2).W(z) denotes

Lambert’s W function that is the inverse of z = xex. For εa < e−e/2 it is real-valued.

Since β is assumed to be small we find a good approximation of the optimal solution

as

β∗ =
1

2(− log εa)
,

where we used a linear segment to estimate Lambert’s W function. Note that β∗

decreases in b as − log εa increases with b, which improves the estimate accuracy

at the tail. Remember that Theorem 5.1 and 5.2 hold for any β ∈ (0, 1− H). Hence,

inserting β∗ into the previous theorems yields a rigorous upper bound that is near

to the minimal solution.

In the sequel we use the definition

χ :=
(

HH(1− H)1−H

(H + β)H+β(1− (H + β))1−(H+β)

)2

, (5.7)
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that is in ( 1
4 , 1) for H ∈ (0.5, 1) and β ∈ (0, 1−H) and approaches 1 for decreasing β.

We insert β∗ into (5.6) to simplify the terms algebraically yielding

ε̃s =
√

πεa

[
log η

log εa

]log εa √
−2 log εa.

Next, we substitute η from Theorem 5.2 and use χ from (5.7) to collect terms. We

find the closed-form

ε̃s =
√

πεa
b

C− λ
χlog εa

√
−2 log εa

=
b

C− λ
ε

1+log χ
a

√
2π(− log εa) (5.8)

as a near optimal solution of Theorem 5.2 where we used χlog εa = ε
log χ
a with

εa, χ > 0. For b → ∞ it follows that β∗ → 0, log χ → 0, and (5.8) becomes exact

from Stirling’s formula. Finally, we evaluate the limit

lim
b→∞

log ε̃s

log εa
= 1,

which completes the proof.

Theorem 5.3 shows that both εs and εa have the same log-asymptotic behavior in b,

precisely, a Weibull tail. The formulation (5.8) enables drawing conclusions on buffer

dimensioning based on the rigorous sample path analysis from Theorem 5.1. This

strengthens previous conclusions from [96] that are based on the approximation

given in (1.2). Examining εa reveals that the impact of spare capacity C − λ and

the buffer size b on the overflow probability is mainly determined by the Hurst

parameter H. For H = 0.5 the arrivals degenerate to EBB standard Brownian motion.

Here, the impact of C − λ and b on εa is equal such that, e.g., halving the spare

capacity is compensated by doubling the buffer size. This trade-off deteriorates

for increasing H ∈ (0.5, 1). Equation (5.8) confirms this behavior using sample

path analysis. This result underlines the importance of spare capacity in systems

with LRD traffic and simultaneously supports modern arguments on buffer size

reduction [3].



5.3 large buffer asymptote 87

Table 5.1: Traffic parameters used for Figure 5.5.

Flow type # of sources mean rate variability burstiness/LRD

EBB m = 100 λ = 5 Mbps P = 5λ U
fBm m = 1 λ = 500 Mbps σ = λ/2 H
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Figure 5.5: Inefficiency of buffering LRD traffic: Weibullian decay of the overflow prob-
ability for fBm traffic where log ε ' −K1b2−2H compared to the exponential
decay log ε ' −K2b for EBB traffic with some positive constants K1, K2.

Figure 5.5 compares the tail behavior of the buffer overflow probabilities for

fBm and EBB traffic input to a server with capacity C = 1 Gbps. The EBB traffic

is generated by Markov on-off sources described in Section 2.2. The overflow

probability of the backlog bound for EBB traffic is shown in (2.24). EBB and fBm

traffic parameters are given in Table 5.1. The EBB traffic consists of an aggregate

of 100 flows. FBm is typically employed to model aggregate traffic [44, 72, 95, 96].

Hence, we plot results for a single flow using (5.8). Note that (5.8) perfectly matches

the numerically optimized results from Theorem 5.2 depicted in Figures 5.3 and 5.4.

Figure 5.5 shows the decay of the buffer overflow probability for fBm traffic for

different Hurst parameter values. The slower than exponential (Weibull) decay is

strongly affected by the Hurst parameter H. In case of EBB traffic the burstiness

parameter U affects the slope of the decay. The efficiency of buffering in case

of exponential decay is obvious as it may achieve very small εs through slight
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buffer increase. Note that the key to evaluating buffering efficiency is the form

of the depicted tail decay function. From Figure 5.5 it is clear that the queueing

behavior with LRD traffic is fundamentally different from that with EBB traffic. For

strong LRD, e.g., H = 0.8 very large buffer fillings could occur with non-negligible

probability. From the formulation (5.8) we conclude that buffering is inefficient for

LRD traffic due to the over-proportional price paid to reduce the buffer overflow

probability.

5.4 leftover service under fbm cross traffic

We regard a system such as in Figure 2.3 where resources on the egress link are

shared between through and cross traffic. Given the affine sample path envelope

from Corollary 5.1 we are able to derive a leftover service curve in accordance

to Section 2.2. The leftover service curve presented in the following corollary

characterizes the service remaining for a through flow after scheduling fBm cross

traffic at a server with capacity C.

Corollary 5.2 (FBm Leftover Service Curve) Given a constant rate server with capac-

ity C serving through traffic and fBm cross traffic with envelope E(t) = rt that satisfies

Corollary 5.1. The function S(t) = (C− r)t is a valid service curve satisfying (2.25) that is

offered to the through traffic subject to a deficit profile ε(b). The deficit profile ε(b) equals

the overflow profile εs(b) of the affine fBm envelope from Corollary 5.1.

The proof of Corollary 5.2 follows directly from (2.25), (2.21) and Corollary 5.1.

Equipped with the leftover service curve formulation from Corollary 5.2 and

sample path arrival envelopes for different types of through traffic, we derive

performance bounds for the configuration in Figure 2.3 using (2.26) and (2.27). We

consider fBm cross traffic and three basically different types of through traffic,

namely constant bit rate (CBR), EBB, and fBm. We fix the through traffic mean rate

to mλ, with m denoting the number of flows each possessing mean rate λ. For the

calculations we use affine sample path envelopes satisfying (2.21). The first scenario

with CBR traffic is a degenerate case since it is deterministic traffic. Hence, the

envelope for CBR traffic is simply given by E(t) = rt with r = mλ and overflow
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Figure 5.6: Violation probability of a delay bound of 1 ms for (a) FBm and (b) EBB through
traffic at a constant rate server with fBm cross traffic. We compare the two
scenarios of fBm and EBB traffic to the deterministic CBR traffic case, respec-
tively. Observe that the increasing Hurst parameter of the cross traffic Hcr has
considerable impact on the performance of the through traffic regardless of the
through traffic correlations.

profile εs(b) = 0 for all b ≥ 0. For EBB traffic we use the Markov on-off model

reviewed in Section 2.2. We use a sample path envelope E(t) = rt obtained from

the backlog bound (2.24) as gSBB traffic characterization as discussed in Section 2.2.

The corresponding overflow profile is given by εs(b) = e−θb/(θ(r − mρ(θ))) for

any θ > 0 satisfying mρ(θ) < r with ρ(θ) from (2.22). Since fBm is a model for

aggregate traffic we set m = 1 for fBm through traffic. The affine envelope for the

fBm through traffic is constructed as described by Corollary 5.1.

Next, we derive a delay bound for through traffic as a function of through and

cross traffic parameters denoted by the superscripts th and cr respectively. Through

traffic is characterized by the envelope rate rth and respective overflow profile εth(bth).

The leftover service curve is determined by the cross traffic envelope with respective

parameters rcr and εcr(bcr). A delay bound for the through traffic follows from (2.27)

as

P

[
W >

bth + bcr

C− rcr

]
≤ εth(bth) + εcr(bcr),

subject to rth + rcr ≤ C. We numerically optimize over the free parameters of the

envelopes, i.e., bth, rth and bcr, rcr and over β for fBm traffic and θ for EBB traffic.

We consider a server with capacity C = 1 Gbps and present in Figure 5.6 the

violation probability of a delay bound of 1 ms for fBm and EBB through traffic under
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Table 5.2: Traffic parameters used for Figure 5.6.

traffic type # sources mean rate variability correlation

through
CBR m = 100 λ = 2.5 Mb/s – –
EBB m = 100 λ = 2.5 Mb/s P = 5λ Uth

fBm m = 1 λ = 250 Mb/s σ = λ/2 Hth

cross fBm m = 1 λ = 250 Mb/s σ = λ/2 Hcr

fBm cross traffic. Each case is compared to the baseline scenario of deterministic

CBR through traffic. The traffic parameters are summarized in Table 5.2. Figure 5.6

clearly shows the impact of the Hurst parameter Hcr of the cross traffic on the

performance of through flows. The case in Figure 5.6a shows that the influence

of Hth becomes much less pronounced for increasing cross traffic Hcr, i.e., cross

traffic LRD becomes the dominating effect.

In this chapter we derived a sample path envelope for fBm traffic that enabled

us to infer rigorous upper performance bounds for single nodes fed with LRD

traffic. We investigated the respective queueing behavior to show the inefficiency of

buffering in the presence of LRD. After inspecting the asymptotic tail behavior of

the derived performance bounds we presented a leftover service curve that describes

the service provided to concurrent flows after scheduling LRD traffic. Based on the

leftover service curve formulation derived above we extend the analysis in Chapter 6

to cover entire network paths with LRD cross traffic.
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In this chapter, we derive upper performance bounds for networks with long

memory traffic. To this end, we deduce a network service curve in the sense

of (2.30) for end-to-end paths as depicted in Figure 2.4. The network service curve is

composed of the convolution of tandem node service curves that exhibit each long

memory cross traffic. We capitalize on single node results, especially the leftover

service curve, derived in Chapter 5 to express the service provided by the tandem

nodes. The derivation of a network service curve allows the calculation of rigorous

end-to-end performance bounds under long memory traffic. The results derived

in this chapter were developed in a joint work with M. Fidler [107, 108, 110]. The

scaling result presented in this chapter appeared first in [107]. Since the discovery

of self-similarity and LRD in Internet traffic the evaluation of end-to-end network

performance under long memory traffic has been an open problem. The scaling

result presented in this chapter was recovered independently in the context of

performance evaluation with heavy tailed traffic in [77, 79].

Considerable research has been dedicated to the growth of performance bounds

in the number of traversed path nodes n subject to fixed violation probabilities. For

EBB traffic a scaling result of Θ(n log n) was proven in [19, 28]. This compares to a

scaling result of O(n3) that is shown in [26] to arise from adding per node bounds

as suggested by [130]. The root of this improvement lies in the network service

curve formulation [28]. For (σ(θ), ρ(θ)) cross traffic an end-to-end scaling result

of O(n) is derived in [46] under statistical independence of the cross traffic. From

queueing theory it is known for queueing networks with tandem M|M|1 queues

that end-to-end delays scale in Θ(n) [68].

The contributions of this chapter are end-to-end performance bounds for net-

works with LRD traffic. We first present a formulation for sample path leftover

service under fBm cross traffic that is essential to the evaluation of the end-to-end

network performance. Equipped with this result we infer the end-to-end service

of a network path under fBm cross traffic and derive corresponding performance

91
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bounds. We show that end-to-end delays scale with O
(
n(log n)

1
2−2H

)
for network

paths of length n under LRD cross traffic with Hurst parameter H ∈ (0.5, 1). This

result makes the substantial impact of LRD on the network performance explicit

and enables drawing conclusions on designing and dimensioning networks. Our

scaling recovers the EBB result of O(n log n) from [28] for the EBB standard Brow-

nian motion case of H = 0.5. Further, we establish a relation in the asymptotic

regime between end-to-end and single node performance bounds as a function of

the network path length n. Finally, we make a case for spare capacity as we show its

considerable impact on the network performance in the presence of LRD traffic.

6.1 network performance analysis

In Chapter 5, we derived a service curve representation for single nodes with fBm

cross traffic. Stochastic network calculus enables the derivation of network service

curves that describe end-to-end paths by composition of the service curves of the

individual tandem nodes. A general construction method of network service curves

has been reviewed in Section 2.2. Network service curves permit the derivation

of end-to-end performance bounds by collapsing a network path into a single

equivalent system and substituting in single node expressions for backlog or delay

such as (2.26), respectively, (2.27).

Consider a network path as depicted in Figure 2.4, where fBm cross traffic is

multiplexed and de-multiplexed at each tandem node. In the first step, we derive a

leftover service curve that satisfies (2.28) with a deficit profile that follows from (2.29).

Consequently, we combine the leftover service curves of the individual nodes as

in (2.30) to obtain a network service curve Snet(t). The deficit profile for the network

service curve follows from (2.31). The following corollary provides a sample path

leftover service curve under fBm cross traffic.

Corollary 6.1 (Sample Path fBm Leftover Service Curve) Consider through traffic un-

der blind multiplexing with fBm cross traffic that is characterized by λ, σ2 and H ∈ (0.5, 1)

at a constant rate server with capacity C. Assume the fBm cross traffic possesses an affine
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envelope E(t) = rt according to Corollary 5.1. The through traffic is offered a service

curve S(t) = (C− r)t defined by (2.28) with a deficit profile

ε$(b) =
Γ( 1

2β )

2$ϑ
1

2β (1−(H+2β))
b−

1−(H+2β)
β

according to (2.29), where $ ∈ (0, C− r) and β ∈
(
0, 1−H

2

)
are free parameters and ϑ is

defined in Corollary 5.1.

The sample path deficit profile in Corollary 6.1 is obtained by plugging the deficit

profile from Corollary 5.1 into (2.29) as

ε$(b) =
Γ( 1

2β )

2β$ϑ
1

2β

∫ ∞

b
x−

1−(H+β)
β dx,

that has the finite solution given in Corollary 6.1 for β < 1−H
2 .

Using Corollary 6.1 we are able to derive an end-to-end service curve that satis-

fies (2.30) with a deficit profile as given in (2.31). We consider through traffic with

affine envelope rate rth that traverses a network path of n nodes as depicted in

Figure 2.4 with fBm cross traffic. For ease of notation we assume n homogeneous

nodes, each with capacity C and fBm cross traffic possessing identical parame-

ters λ, σ2, and Hcr ∈ (0.5, 1). We adopt the convention of the superscripts th and cr

for through and cross traffic respectively from Section 5.4. At each node i ∈ [1, n]

we obtain a leftover service curve Si(t) = (C − rcr)t, where we use rcr to denote

the envelope rate for the fBm cross traffic. Plugging Si(t) into the min-plus con-

volution in (2.30) yields an end-to-end service curve Snet(t) = (C− rcr − ∆)t with

constant ∆ := (n− 1)$ and ∆ ∈ (0, C − rcr) for stability. We calculate the deficit

profile for the network service curve Snet(t) by inserting ε$(b) from Corollary 6.1

for nodes i ∈ [1, n− 1] and ε(b) from Corollary 5.2 for node n into the min-plus

convolution (2.31). After algebraic simplification we obtain the following deficit

profile for the network service curve

εnet(b)=
Γ( 1

2β )

2ϑ
1

2β

inf
x

{
(n−1)2( b−x

n−1 )
− 1−(H+2β)

β

∆(1− (H + 2β))
+

x−
1−(H+β)

β

β

}
, (6.1)

where x ∈ (0, b) and β ∈
(
0, 1−H

2

)
.
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Table 6.1: Traffic parameters used for Figures 6.1, 6.2, 6.3, and 6.4.

traffic type # sources mean rate variability burstiness/LRD

through CBR m = 100 λ = 2.5 Mb/s – –

cross
EBB m = 100 λ = 2.5 Mb/s P = 5λ Ucr

fBm m = 1 λ = 250 Mb/s σ = λ/2 Hcr
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Figure 6.1: End-to-end delay bounds for through traffic at a tandem of n constant rate nodes
with LRD cross traffic subject to fixed violation probability ε = 10−12. The delay
bounds that are shown for different cross traffic Hurst parameter values Hcr,
grow super-linearly in n.

Using (6.1) we are able to derive end-to-end performance bounds by insertion

into expressions for single node performance bounds such as (2.26) and (2.27). For

example, an end-to-end delay bound for CBR through traffic with rate rth can be

computed using (2.27) as

P

[
W >

b
(C− rcr − ∆)

]
≤ εnet(b), (6.2)

with stability condition rth + rcr + ∆ ≤ C. A straightforward extension for through

traffic with overflow profile εth implies a delay bound P[W > b/(C− rcr − ∆)] ≤

εnet ⊗ εth(b). We depict the end-to-end delay bounds for a fixed violation probability

and CBR through traffic in Figure 6.1 as a function of the number of traversed

nodes n. Traffic parameters are given in Table 6.1 where each node possess a

capacity of C = 1 Gbps. We numerically optimize the free parameters of the
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envelopes. Figure 6.1 shows the impact of LRD cross traffic on end-to-end network

performance. Observe that the end-to-end delay bounds for through traffic grow

super-linearly with the number of traversed nodes n.

Next, we briefly examine the scenario of inhomogeneous LRD cross traffic, i.e.,

the individual cross traffic flows at nodes i ∈ [1, n] are characterized by different

Hurst parameter values Hi. From the min-plus convolution in (2.31) and the Weibull

tail decay shown in (5.8), it is obvious that the cross traffic with the highest Hi, that

leads to the slowest decay of ε
$
i (b) in (2.31), has the strongest impact on the deficit

profile of the network service curve εnet(b).

In the following section, we analytically inspect the scaling of end-to-end perfor-

mance bounds for networks with homogeneous LRD traffic.

6.2 scaling of end-to-end bounds in the number of tandem nodes

Next, we inspect the growth of end-to-end performance bounds with the number

of traversed nodes n under LRD cross traffic. This scaling expresses the additional

delay arising on longer network paths, subject to unchanged violation probability.

Theorem 6.1 (Scaling Analysis in the Number of Traversed Nodes) Given n homo-

geneous tandem nodes, each exhibiting fBm cross traffic with Hurst parameter H ∈ (0.5, 1).

End-to-end backlog and delay bounds for through traffic scale in the number of nodes n as

O
(

n (log n)
1

2−2H

)

subject to a fixed violation probability.

Proof of Theorem 6.1. The proof is similar to the proof of Theorem 5.3 and uses

some of its basic steps. First, we neglect the irregularity in (2.31) that is due to the

last hop and upper bound εn by ε
$
n to obtain the simplified deficit profile from (6.1)

εnet(b) =
Γ( 1

2β )n(n− 1)( b
n )
− 1−(H+2β)

β

2ϑ
1

2β ∆(1− (H + 2β))
.
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We assume small β� (1− H)/2 and use Stirling’s formula Γ(x) '
√

2π/x (x/e)x

for x � 1 from in [1] to find

ε̃net(b) =

√
πβn(n− 1)( b

n )
− 1−(H+2β)

β

(2eβϑ)
1

2β ∆(1− (H + 2β))
. (6.3)

Next, we optimize (6.3) over β and attain the minimum at β =W
(
n2−2H/2(− log ε̃a)

)
,

where we used the shorthand notation ε̃a that is defined in (3.2).W denotes Lam-

bert’s W function deployed in the proof of Theorem 5.3. Since β is assumed to be

small, a good approximation of the optimal solution, respectively, of Lambert’s W

function is given by a linear segment such as

β∗ =
n2−2H

2(− log ε̃a)
. (6.4)

We define ψ = (1− H)/(1− (H + 2β)) and use the definition of χ from (5.7), which

is in
[

4
3
√

3
, 1
]

for H ∈ (0.5, 1) and β ∈ (0, 1−H
2 ). We insert β∗ into (6.3) and obtain

after some algebraic manipulations

ε̃net(b) =
n− 1

nH

(
H

1− H

)H √πψσb1+H

∆(rcr − λ)1+H ε̃
(1+log χ)n2H−2

a . (6.5)

Note that for β → 0 both χ and ψ tend to 1. Assuming β∗ � (1− H)/2 we can

generally bound χ and ψ from below, respectively, from above using constants. Next,

we expand the shorthand notation ε̃a given by (3.2) and use positive constants ki

with i ∈ {0, 1, 2} to collect terms that do not depend on n, b, and H to obtain

ε̃net(b) ≤ n1−H k1b1+He−k2b2−2Hn2H−2
.

We aim at expressing b as a function of n subject to the violation probability ε̃net

that is bounded from above by a constant for all n. We choose

b = n(k0 log n)
1

2−2H , (6.6)
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for n ≥ 2 and obtain by insertion

ε̃net ≤ (k0 log n)
1+H

2−2H k1n2−k0k2 .

Generally, there exists k0 > 2/k2 such that ε̃net is upper bounded by a constant for

all n. This is due to the fast decay of the second factor k1n2−k0k2 that eliminates the

growth of the first factor (k0 log n)
1+H
2−2H . Note that (6.6) is the function of the smallest

order that satisfies this constraint. For fixed ε̃net the formulation in (6.6) provides

the scaling stated in Theorem 6.1. This scaling holds for the backlog as well as for

the delay bound that is given in (6.2).

Finally, through inserting (6.6) into (6.4) we verify that β∗ decreases with n where

the decay is proportional to 1/ log(n). This confirms the assumption that starting

from a small β∗ it remains small and decreases for increasing n. Recall that Stirling’s

approximation is exact in the limit for β→ 0.

Theorem 6.1 characterizes the impact of LRD cross traffic on end-to-end perfor-

mance bounds. For a given violation probability end-to-end performance bounds

grow super-linearly in the number of traversed nodes n. The growth is determined

by the tail decay of the overflow profile from Corollary 6.1 that is invoked in

the min-plus convolution (2.31). In essence, the Hurst parameter H impacts the

poly-logarithmic scaling component in Theorem 6.1. The impact of LRD on the

scaling of end-to-end delay bounds is deemed moderate due to the poly-logarithmic

component in Theorem 6.1. The provided scaling specifies the additional cost in

terms of delay for using longer network paths while retaining a given violation

probability.

Next, we compare the scaling of the end-to-end delay bounds from Theorem 6.1

to a corresponding scaling for light tailed EBB cross traffic from [28]. To this end, we

consider the scenario in Figure 2.4 with CBR through traffic and homogeneous EBB

cross traffic that is given by aggregation of m on-off sources. We use the EBB sample

path envelope from Section 5.4 to derive a leftover service curve Si(t) = (C− rcr)t

with deficit profile ε(b) = e−θb/(θ(rcr −mρ(θ))) for nodes i ∈ [1, n]. A sample path

deficit profile follows from (2.29) after relaxing the service curve by a slack rate $ > 0

according to (2.28). By insertion of Si(t) into (2.30) we derive an end-to-end service
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Figure 6.2: Normalized end-to-end delay bounds w/n for a path of n nodes with CBR
through traffic and fBm or EBB cross traffic, respectively. Observe the poly-
logarithmic growth for LRD traffic in comparison to the logarithmic growth
with n for EBB traffic.

curve Snet(t) = (C − rcr − ∆)t with ∆ = (n− 1)$ and a deficit profile according

to (2.31) as

εnet(b) =
1

rcr−mρ(θ)
inf

x

{
(n− 1)2e−θ b−x

n−1

∆θ2 +
e−θx

θ

}
, (6.7)

where x ∈ (0, b) and θ > 0 is given such that mρ(θ) < rcr. Solving εnet(b) for b yields

that end-to-end performance bounds under EBB cross traffic scale in O(n log n) [28].

Theorem 6.1 recovers the scaling of O(n log n) for H = 0.5 which implies EBB class

standard Brownian motion.

Figure 6.2 depicts end-to-end delay bounds for CBR through traffic and EBB

or LRD cross traffic, respectively. We depict delay bounds normalized to the path

length, i.e., w/n versus the number of nodes n. Traffic parameters are given in

Table 6.1 where the capacity at each node amounts to C = 1 Gbps. We optimize the

parameters of the traffic envelopes numerically. Figure 6.2 shows the logarithmic

and poly-logarithmic scaling of the normalized delay bounds under EBB and LRD

cross traffic, respectively. In the case of EBB, increasing the burstiness of the cross

traffic using the parameter Ucr reproduces tiered versions of w/n. However, for the
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Figure 6.3: Scaling of the deficit profile εnet of the network service curve (6.5). In the hori-
zontal direction we depict the scaling from Theorem 6.1, while in the vertical
direction we illustrate the scaling of (6.8). Traffic parameters are taken from
Table 6.1, with fixed H = 0.75.

LRD case, increasing the Hurst parameter Hcr impacts the poly-logarithmic scaling

component, thus it changes the shape of w/n.

6.3 asymptotic behavior of end-to-end performance bounds

We examine the asymptotic behavior of end-to-end multi-node performance bounds

in comparison to single node performance bounds. We consider CBR through traffic

and fBm cross traffic and compare the corresponding deficit profiles of the network

service curve from (6.5) to the single node formulation from (5.8). In the large buffer

asymptotic regime we find the following behavior

lim
b→∞

log ε̃net(b)
log ε̃s(b)

= n2H−2. (6.8)

The end-to-end deficit profile ε̃net possesses the same log-asymptotic decay in b

as the single node expression ε̃s from (5.8) except for a factor that depends on the

network path length n and the Hurst parameter H. For H = 0.5 the formulation

in (6.8) recovers the ratio n−1 that is straightforwardly derived from (2.24) and (6.7),

respectively from the original EBB results in [26].
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Figure 6.4: End-to-end delay bounds for a network path of n = 10 nodes, cross traffic
with Hurst parameter Hcr and varying mean spare capacity. For uncorrelated
cross traffic, i.e., Hcr = 0.5, cutting the spare capacity by half doubles the delay
bound w. For LRD cross traffic spare capacity becomes essential owing to a
stronger impact on w. For example, halving the spare capacity leads to a tenfold
increase of the delay bound for Hcr = 0.75.

Figure 6.3 shows the tail decay of εnet(b) for network paths of length n. All nodes

have capacity C = 1 Gbps while the traffic possesses the parameters in Table 6.1.

We illustrate the scalings from Theorem 6.1 and expression (6.8) using a logarithmic

scale for εnet(b) as well as for b. We fix H = 0.75 such that the scaling in vertical

direction reduces to 1/
√

n on the depicted logarithmic scale. From Theorem 6.1 we

find that the scaling in n , i.e., in the horizontal direction, is given by n(log n)2 on a

linear scale.

6.4 network dimensioning: the need for spare capacity

In this section we illustrate the impact of the average spare capacity provided by

the network on the derived end-to-end performance bounds. This is similar to

investigations known from queueing theory on the impact of the utilization on

single node queueing measures such as the average waiting time [10].

We consider a homogeneous network as depicted in Figure 2.4 and define the

average spare capacity as the residual capacity after subtracting the mean rates of
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both through and cross traffic from the node capacity C. We regard the average

spare capacity similar to single node utilization as a network operating point. From

the view of network operators a low spare capacity is cost efficient. In the sequel,

we present an argument relating end-to-end performance bounds to the average

spare capacity, hence, to the corresponding network operating points.

We build on the single node argument on buffering efficiency in the presence of

LRD from Section 5.3 and from the approximation (1.2), respectively. We regard

the end-to-end deficit profile ε̃net in (6.5) that is formulated as multiple of the

shorthand notation ε̃a that is given in (3.2). The expression for ε̃a describes how the

Hurst parameter H governs the relationship of r− λ to b. Note that r− λ in (3.2)

is the difference between the affine envelope rate and the mean rate of the fBm

traffic. To achieve a fixed violation probability ε̃a, halving r− λ requires doubling b

for H = 0.5. However, this relationship deteriorates for increasing H and becomes,

e.g., an eightfold increase of b in case of H = 0.75.

Next, we consider an example of a network path with n = 10 tandem nodes, CBR

through traffic and fBm cross traffic parameterized as in Table 6.1. In Figure 6.4

we illustrate end-to-end delay bounds from (6.5) for varying mean spare capacity

subject to a fixed violation probability ε = 10−12. We optimize all free parameters

numerically. Halving the spare capacity leads to doubling the delay bound for Hcr =

0.5 as indicated by the markers. For Hcr = 0.75 the delay bound increases more

than eightfold. Figure 6.4 shows the fundamental need for spare capacity to obtain

good performance in the presence of LRD network traffic. In the context of network

dimensioning this result evidently demonstrates the importance of over-provisioning.

Moreover, in the light of congestion control this result implies that source rate

throttling can effectively improve network performance. The improvement depends,

however, on the network load as indicated by the logarithmic axis scale in Figure 6.4.

The impact on heavily loaded networks is stronger than on lightly loaded ones, as

in the first case slight changes to the mean traffic rates have a high relative impact

on the spare capacity compared to lightly loaded networks.

In this chapter we derived upper end-to-end performance bounds for networks

carrying LRD traffic. First, we deduced a sample path leftover service curve to

describe individual nodes each exhibiting LRD cross traffic. Equipped with this
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result we derived a network service curve that captures the service provided by

a tandem of such nodes. The network service curve allowed us to deduce end-to-

end performance bounds for network paths with LRD cross traffic. We found that

end-to-end delays scale as O
(
n(log n)

1
2−2H

)
in the number of traversed node n. This

result reveals the impact of LRD on the network performance. Finally, we showed

how the derived results establish the significance of spare capacity in networks

carrying LRD traffic.



7C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis we contributed a non-asymptotic end-to-end performance evaluation

of communication networks carrying long memory traffic. Further, we provided

a lightweight sampling framework to estimate the statistical properties of long

memory traffic in single and multi-node scenarios. In the following, we summarize

the conclusions of our work and provide pointers for possible future investigations

with corresponding applications.

We presented a lightweight method to extract long memory traffic properties from

random traffic samples. After proving the applicability of our approach to estimate

the traffic autocovariance for different stochastic sampling processes we identified

the limitations of using rigid periodic sampling. To enable practical deployment,

we quantified the impact of limited sample sizes on the accuracy of the estimates

and provided asymptotically unbiased estimators. Complementary to trace driven

approaches that analyze traffic properties at a single point of interest, we provide a

network probing framework that reflects the dominant characteristics on end-to-end

network paths without administrative support.

We derived a formulation for sample path envelopes for long memory traffic with

corresponding violation probabilities. Equipped with this result we obtained upper

performance bounds for single nodes fed with long memory traffic. We find that the

rigorous performance bounds possess a Weibullian tail decay. Our bound recovers an

approximate result known from literature at the most probable time scale for buffer

overflow. For long memory traffic we observed a fundamentally different queueing

behavior compared to light tailed EBB traffic. For resource sharing scenarios we used

an affine sample path envelope to deduce a formulation for the service leftover for

concurrent through traffic by long memory cross traffic. This formulation allows an

end-to-end performance evaluation with long memory traffic using the framework

of stochastic network calculus.

We capitalized on expressions for convolution form networks known from stochas-

tic network calculus to derive non-asymptotic end-to-end performance bounds un-

103
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der long memory cross traffic. We first deduced an equivalent system formulation to

the investigated network path by deriving a network service curve through compo-

sition of tandem node service curves each under long memory traffic. Consequently,

by applying single node techniques to the equivalent system we find end-to-end

performance bounds for through traffic traversing networks with long memory cross

traffic. Our results culminated in a scaling for end-to-end performance bounds in

the number of traversed nodes n that is given as O
(
n(log n)

1
2−2H

)
with long memory

Hurst parameter H ∈ (0.5, 1). This scaling characterizes the impact of long memory

on end-to-end performance bounds in communication networks. Our scaling result

recovers a prominent finding for EBB traffic for the case of H = 0.5. A fundamental

implication of our end-to-end performance results is that spare capacity, hence

over-provisioning, is decisive for reliable network performance in the presence of

long memory traffic.

The results presented in this thesis lead to some open research questions and

possible future work directions. We sketch some of the remaining open questions

and point out adequate approaches. One potential research direction builds on

the presented end-to-end probing framework. A possible extension relates the

presented end-to-end autocovariance inference problem to the broad class of network

tomography problems. One approach to this challenge is based on multicast trees

that are investigated in [17] in the context of loss rate identification on inner network

links.

Another potential research direction comprises the investigation of the impact

of statistical independence on the end-to-end performance bounds under long

memory cross traffic. A possible approach to this problem builds on the statistical

independence considerations that are presented in different calculation domains

within the stochastic network calculus framework such as in [46] or in [64].



Part II

A P P E N D I X



AD ATA E X C E R P T F R O M T H E I N T E R N E T M E A S U R E M E N T
C A M PA I G N

We performed measurements for multiple months using the probing software

H-probe [14] starting from our lab in Germany and targeting a number of PlanetLab

nodes around the world. Next, we briefly describe the measurement setup:

• Discretization slot length δ = 1 ms.

• Geometrically distributed inter-sample times with parameter p = 0.1.

• Number of probes collected 106 (approx. 3 hours)

• ICMP probing packets of size 64 Bytes

• Probing rate 100 pkt/s approx. 70 kbps

In the following, we present a representative set of the measurement results,

where the target is planetlab1.cis.upenn.edu. We show end-to-end autocovariance

estimates from continued measurements at two different days. In addition, we show

estimates from daily measurements starting at a fixed time, that is 10:45 UTC for

the time span of 17-24.7.2012.

We deduce Hurst parameter estimates from the slope of the autocovariance func-

tion that is theoretically given by 2H − 2. Slope estimates are obtained through

least square regression. The H estimates from Internet measurements have a mod-

erately higher variance compared to active probing results from Figure 4.7. The

autocovariance decay functions exhibit a complex structure including LRD decay

and periodicities.

106
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