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Abstract The World Wide Web (the Web) has grown into a wide-spread everyday application.
Since its invention in 1989, it experienced an inconceivable growth with fundamental impact on
society and economy. With approximately two billion connected users and a trillion unique
Web resources, the Web comprises the largest repository of general and expert knowledge. It
is indisputably the largest publicly available source of human knowledge; notwithstanding the
wide spectrum of quality, a remarkable achievement.

While the amount of information available on the Web reached an extent that renders it im-
possible for humans to process it in its entirety, the Web is still designed to be read and used
by humans only. In contrast, computer systems with their enormous memory and processing
capacities are still limited to only find Web content and provide humans access to it. The actual
meaning of that content is still hidden from such systems.

As an extension to the Web, the Semantic Web provides technologies that allow enriching
textual information and multimedia content with its actual meaning in an explicit encoding that
is processable by machines. Then, computer systems can more effectively process Web content,
combine pieces of information that are distributed among different Web sites into new knowl-
edge, and provide intelligent services to humans or even solve tasks on behalf of them.

The Semantic Desktop utilizes such Semantic Web technologies on the Personal Computer
Desktop. This allows users to explicitly articulate and access knowledge and the structure of
information that they use in there everyday work and life. In this context, the dominant way of
relocating and accessing data on the Desktop is search. In conjunction with Semantic Web tech-
nologies, classical Desktop Search reaches its limitations and consequently has to be extended to
Semantic Desktop Search. However, this transition still poses challenges.

In this thesis, I contribute a Semantic Desktop search infrastructure that allows for easy in-
tegration of new semantic services. Further, this work identifies the inadequate performance
of state-of-the-art components for this particular task. Based on these experiences, a number
of improvements that target at different layers of semantic search are developed and evaluated
throughout this thesis. In particular, this work provides contributions to the fields of Semantic
Desktop search infrastructure, to the articulation, the evaluation, and the performance bench-
marking of semantic queries, as well as result diversification that is applicable for Semantic
Search.

Keywords Semantic Desktop, Semantic Search, Diversification
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Zusammenfassung Das World Wide Web (das Web oder das Netz) hat sich zu einer weit
verbreiteten alltäglichen Anwendung entwickelt. Seit seiner Erfindung im Jahre 1989 hat es ein
unvorstellbares Wachstum erlebt und einen tief greifenden Einfluss auf die Gesellschaft und Wirt-
schaft entwickelt. Mit annähernd zwei Milliarden angeschlossenen Nutzern und einer Billion ein-
zelner Web-Ressourcen stellt das Web die größte Ansammlung an Allgemein- und Spezialwissen
dar. Es ist ohne Zweifel die größte öffentlich verfügbare Quelle an Wissen der Menschheit —
trotz des großen Qualitätsspektrums eine bemerkenswerte Errungenschaft.

Obwohl die Menge an verfügbaren Informationen im Netz eine Größe erreicht hat, die es un-
möglich macht, dass ein Mensch sie in seiner Gesamtheit liest, ist das Netz noch immer nur für
das Lesen durch Menschen konstruiert. Ungeachtet der enormen Speicher- und Verarbeitungs-
möglichkeiten von Computern wird ihr Einsatz immer noch darauf beschränkt, Menschen das
Auffinden und den Zugang zu Informationen zu ermöglichen. Damit ist die eigentliche Bedeu-
tung von Web-Inhalten solchen Systemen weiterhin versperrt.

Als eine Erweiterung des Webs bietet das Semantic Web (Semantische Web) Technologien zur
Ergänzung von textuellen Informationen und multimedialen Inhalten um ihre eigentliche Bedeu-
tung in der Art, dass diese Bedeutung von Maschinen verarbeitet werden kann. Dies ermöglicht
es Computersystemen, Web Inhalte effektiver verarbeiten zu können, Informationsstücke, die
über das Netz verteilt sind, zu neuem Wissen zusammenzusetzen, intelligente Dienste anzubie-
ten oder sogar Aufgaben im Auftrag von Menschen zu erledigen.

Der Semantic Desktop (Semantische Desktop) verwendet ebensolche Semantic Web Techno-
logien auf dem persönlichen Arbeitsplatzrechner (Desktop). Dies ermöglicht es den Nutzern,
Wissen und strukturierte Informationen, die sie alltäglich im Beruf und Privatleben verwenden,
explizit zu formulieren und wieder zu verwenden. Die dominierende Methode, um Daten wieder
aufzufinden und darauf zuzugreifen, ist hierbei die Desktopsuche. In Verbindung mit Semantic
Web Technologien stößt die klassische Desktopsuche allerdings an ihre Grenzen und muss kon-
sequenterweise zur Semantischen Desktopsuche erweitert werden, was jedoch noch immer mit
Herausforderungen verbunden ist.

In dieser Dissertation entwickle ich die Infrastruktur einer Semantischen Desktop Suchma-
schine, die eine einfache Integration neuer semantischer Dienste ermöglicht. Darüber hinaus
identifiziert diese Arbeit die unzureichende Leistungsfähigkeit modernster hierzu notwendiger
Komponenten. Basierend auf diesen Erfahrungen entwickle und evaluiere ich Verbesserungen
die auf verschiedene Ebenen der Semantischen Suche abzielen. In Speziellen leistet diese Ar-
beit einen Beitrag in den Bereichen Semantischer Desktopsuch-Infrastrukur, der Formulierung,
Ausführung und Performanz Semantischer Suchanfragen, sowie der Diversifizierung von Such-
ergebnissen, wie sie auch in der Semantischen Suche anwendbar ist.

Schlüsselwörter Semantischer Desktop, Semantische Suche, Diversifizierung
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“Some of our ideas have a natural correspondence
and connection with one another . . . ”

— John Locke in Of the Association of Ideas, 1700.

“(The human brain) operates by association. With one item in its grasp, it snaps
instantly to the next that is suggested by the association of thoughts, in accordance
with some intricate web of trails carried by the cells of the brain.”

— Vannevar Bush in As We May Think, The Atlantic Monthly, 1945.

“If HTML and the Web made all the online documents look like one huge book, RDF,
schema, and inference languages will make all the data in the world look like one
huge database.” — Tim Berners-Lee in Weaving the Web, 1999.

“And by design, anything we can talk about can be assigned a URI”
— T. Segaran, C. Evans, J. Taylor in Programming the Semantic Web, 2009.

“Where can I find more about that idea? Does it have a Wiki page?
An idea has to have a URI!” — Leo Sauermann via Skype, 2007.

“Nothing shocks me. I’m a scientist”
— Harrison Ford in Indiana Jones.
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1Chapter

Introduction

Over the last decade, the growing amount of information available on the World Wide Web
(called the Web) [24, 25] fueled the success of Web search engines [12, Ch. 13]. For the first
time, users were enabled to locate Web pages via search that they would not have been able to
find by navigation. Such pages became accessible by simple articulation of information needs:
keyword queries. Due to the simplicity, this textual representation is inherently ambiguous.
Consequently, these search engines still ignore the actual meaning of queries and Web pages.

A large proportion of the information provided by the Web is stored in databases in a structured
way. When it is rendered into a visual presentation (this part of the Web is called the Deep
Web [22]), this structure that complements the information with explicit meaning gets lost or at
best becomes implicit in the rendering process. The remaining part of the Web is composed of
textual or multimedia content that is inherently unstructured. Both, the unstructured information
and the implicit structure are not easily processable by a machine. Apparently, the Web was built
for human readers only.

In fact, the Web was envisioned to be machine processable [23, 26]. This allows computer
systems not only to support humans in accessing pieces of information, but also in processing
them. For this, such systems require means to access and exploit the meaning of information:
the semantics. Such a Web where information contained in a Web page can be interpreted by a
machine without any human ado is called the Semantic Web. With this, information from two
different pages can be combined to deduce new knowledge. The goal of the Semantic Web is to
overcome the isolated information silos that are created by those Deep Web databases [29]. If
their structured information can easily be accessed and combined with other sources, the whole
Web will become a machine-processable large knowledge base [23, p. 186].

Unfortunately, the lack of existing semantic information on the Web prevents the emergence
of semantic applications. This in return causes a vicious circle since semantic applications are
needed to motivate the publication of semantic information. Economically spoken, there is no
benefit for one website to provide all its knowledge to be accessible, while all other websites that
do not publish knowledge could already monetize this circumstance. Consequently, applications
will hardly emerge if there is no critical mass of accessible information available. Further, users
may have difficulties in understanding the benefits of Semantic Web technologies and how to use
them if there are no semantic applications.

We can learn a possible solution to this dilemma from the Social Web (Web 2.0) [71, Sec. 1.3.2].
In the beginning of the Web, information only propagated from few producers to many con-
sumers. Today with Web 2.0, however, Web users generate content themselves and consume
content generated by others. When this user generated content employs Semantic Web tech-
nologies to explicitly encode their content’s meaning, we will experience the bootstrap of the

13



CHAPTER 1. INTRODUCTION

Semantic Web. Since that content is usually generated on Personal Computers (PCs, Desktop
Computers or Desktops), these should be semantified first so that the Semantic Web can emerge
from that perimeter of semantic devices.

This idea motivates the Semantic Desktop [162, 163], where users can explicitly express and
easier access their knowledge on their PCs. They can further publish this knowledge on the
Semantic Web, interconnect their Semantic Desktops [62], and in return integrate knowledge
from the Semantic Web with their Semantic Desktop. The successful creation of this Web of
Semantic Desktops will foster the emergence of the Semantic Web.

Today, people use computers for their work and leisure activities, or to communicate with their
social environment [31]. Desktop computers can store a lifetime of information [77], so users
have to manage large volumes of heterogeneous data. Documents, images, or e-mails needed for
a particular task are usually accessed via navigation or search. Where the former requires sig-
nificant cognitive load for orienteering and remembering [181], search quickly provides the user
with relevant results. Semantic information about the Desktop content can further improve Desk-
top search [122], while its realization however still poses challenges that prevent wide adaptation
of this technology.

This thesis addresses some of these challenges, in particular those concerning efficiency and
usability of such systems, with a focus on practical solutions and prototypical implementations.
To deliver a convenient and efficient Semantic Desktop search experience, improvements at each
layer of Semantic Desktop Search are investigated and presented in this work. This comprises:

1. A flexible Semantic Desktop search engine infrastructure that uses Semantic Web tech-
nologies and allows for easy integration of new semantic services for semantic informa-
tion extraction, enrichment, and search. Further, a user study investigates the impact of the
semantification of search on user satisfaction and search quality.

2. A simple yet powerful way to articulate structured keyword queries that allows users to
fully exploit the semantics of their Desktop data without the need to know any query lan-
guage or data ontology.

3. An approach that combines full-text search with structured search, as well as four particular
in-depth performance improvements for the structural part of such a query evaluation.

4. The first full-text search benchmark for the Semantic Web. It comprises a synthetic data
generator and a workload of 21 hybrid queries that allow to investigate the feature richness
and evaluation performance of semantic stores.

5. A search result diversification approach that efficiently works for very large sets and natu-
rally fits the task of diversifying streams of results as they exist in continuous query systems
such as news, blogs or tweet retrieval.

These advances in Semantic Desktop Search allow for stronger adoption of the Semantic Desk-
top by users. With the help of the Semantic Desktop, we will see the Semantic Web emerge, and
from Semantic Desktop search we will learn how Semantic Web search engines will provide
access to this new Semantic World Wide Web — the Web 3.0.

14



Thesis Structure

In this Ph.D. thesis, I1 study how Semantic Web technologies can be employed on the Desktop for
the user task of searching personal data and knowledge. For this purposes, I develop a Semantic
Desktop search infrastructure that bases on an open source Desktop search engine.

Semantic Query
Construction

Semantic Desktop Search

Hybrid Query
Evaluation

Benchmarking
Hybrid Queries

Diversifying
Search Result

Figure 1.1: Structure of this Ph.D. thesis.

The development and usage of this Semantic Desktop search engine reveals the need for im-
provements of particular components of Semantic Search. This comprises the construction of
semantic queries and their efficient evaluation. The performance of semantic search can only
be measured and compared among different systems with the help of an appropriate benchmark.
The user satisfaction regarding final search results can be improved with search result diversifi-
cation, for which I propose a new scalable and efficient method. These fields of research relate
to each other as depicted in above Figure 1.1.

This work comprises contributions of the following of my publications2, organized into those
five fields of research depicted in the figure above. Publications are given for each field in reverse
chronological order and each of the subsequent chapters is dedicated to one of these fields.

1The usage of plural personal pronouns in scientific writing is common style. However, throughout this thesis I
will use singular to stress my individual contribution. I may further stick to singular also in case of collaboration,
where I then refer to significant contribution made to the collaborative work.

2One publication is listed twice as it contributes to two fields of research.
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CHAPTER 1. INTRODUCTION

Semantic Desktop Search (Chapter 3 on page 29) The Semantic Desktop comprises
more than semantic applications that run on a classical Desktop system. It requires a holistic
integration of user data across application borders, though data are still to be created and managed
with different applications [105, p. 52]. A Desktop-wide semantic infrastructure should be easily
accessible for semantic applications, integrate data via common and extensible ontologies, and
allow for free choice of programming languages.

A Semantic Desktop search engine, as an instance of semantic applications, manages a large
volume of semantic data in order to provide access to these data via search. Such a system is an
ideal platform for semantic services that process semantic user information in order to provide
intelligent operations and create more knowledge. A Semantic Desktop search engine should be
extensible by new semantic services to allow for quick integration and use. Existing systems are
in fact difficult to extend or reuse.

Used as the basis for this thesis, with my contribution to the development of the semantic
infrastructure project NEPOMUK3 [131], developers are enabled to avoid application-specific
information silos. Data are extracted from vendor-specific file formats and integrated in a central
semantic store with well documented extensible ontologies and programming language indepen-
dent access via standardized inter-process communication mechanisms [123].

We further employ this infrastructure for our extensible Semantic Desktop Search application
that is successfully used as a platform for a number of research activities at the L3S research
center [47–49,64,177,178]. With this prototype, we demonstrate that exploiting explicit structure
of users’ data for search improves search result quality and user satisfaction. This Semantic
Desktop search engine is freely available as open source4.

1. E. Minack, R. Paiu, S. Costache, G. Demartini, J. Gaugaz, E. Ioannou, P.-A. Chirita, and
W. Nejdl. Leveraging Personal Metadata for Desktop Search: The Beagle++ System.
Journal of Web Semantics, 8(1):37–54, 2010.

2. S. Chernov, E. Minack, and P. Serdyukov. Converting Desktop into a Personal Activity
Dataset. In Proceedings of 8th Nationational Russian Conference on Digital Libraries
(RCDL’07), Pereslavl, Russia, Oct. 15–18, 2007.

3. S. Handschuh, T. Groza, K. Möller, G. Grimnes, L. Sauermann, M. Jazayeri, C. Mesnage,
E. Minack, G. Reif, and R. Guðjónsdóttir. The NEPOMUK Project — On the way to the
Social Semantic Desktop. In Proceedings of iSemantics 2007, Graz, Austria, Sep. 2007.

4. I. Brunkhorst, P.-A. Chirita, S. Costache, J. Gaugaz, E. Ioannou, T. Iofciu, E. Minack,
W. Nejdl, and R. Paiu. The Beagle++ Toolbox: Towards an Extendable Desktop Search
Architecture. In Proceedings of the Semantic Desktop and Social Semantic Collabora-
tion Workshop (SemDesk’06) at the 5th International Semantic Web Conference (ISWC),
Athens, GA, USA, Nov. 6 2006.

3NEPOMUK — The Social Semantic Desktop: http://nepomuk.semanticdesktop.org.
4L3S Beagle++ — Semantic Desktop Search: http://beagle.l3s.de/.
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Semantic Query Construction (Chapter 4 on page 59) A Semantic Desktop Search ap-
plication allows to exploit rich semantics for search. The user can implicitly or explicitly express
structural properties of her information need in four different ways: Keyword queries with struc-
tural annotation only allow for simple structure, though can quickly become cryptic to read.
Natural language is expressive and can encode the full range of knowledge structure, but such
queries can be ambiguous and challenges a system to processes them. With controlled lan-
guages, expressive, generally valid and easily processable queries can be articulated. Structural
query languages, finally, are primarily designed for application developers for comprehensive
data access purposes and therefore, comprise complex syntax, are error-prone, and typify the
complement to natural languages.

Due to simplicity in usage and implementation, among 32 Semantic Search applications sur-
veyed in [94] the majority provides keyword search facilities. In contrast, there is no system that
allows for easy articulation of explicit and expressive structure. Systems that provide this type of
query articulation [8,32,61,90] require the user to be knowledgeable about structured query lan-
guages or data ontology. Obviously, there is a lack of explicit structured query articulation that
requires only minimum knowledge and is as intuitive as keyword queries. I consider graphical
query construction interfaces with controlled language the best compromise between expressive-
ness and simplicity of usage. Therefore, I investigate the design of graphical structured query
articulation where the user is guided to express ontology-compliant relations among keywords.

The main contribution of this chapter is a formal incremental structured query construction
model that is then implemented as the core of a graphical user interface. The architecture allows
to plug in different recommender algorithms that provide the user with useful query construction
steps at any time. This interface is freely available5 as part of the open source Social Semantic
Desktop NEPOMUK [131] [166, Sec. 2.10.2].

1. G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl. From keywords to semantic
queries — Incremental query construction on the semantic web. Journal of Web Semantics
7(3):166–176, 2009.

2. R. Kawase, E. Minack, W. Nejdl, S. Araújo, and D. Schwabe. Incremental End-user
Query Construction for the Semantic Desktop. In Proceedings of the 5th International
Conference on Web Information Systems and Technologies (WEBIST’09), pages 270–275,
Lisbon, Portugal, March 23–26 2009, INSTICC Press.

3. E. Minack, W. Siberski, G. Zenz, and X. Zhou. SUITS4RDF: Incremental Query Con-
struction for the Semantic Web. In Proceedings of the 7th International Semantic Web
Conference — Posters & Demos (ISWC’08), Karlsruhe, Germany, Oct. 26–30.

5NEPOMUK Eclipse: http://nepomuk-eclipse.semanticdesktop.org/.
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CHAPTER 1. INTRODUCTION

Hybrid Query Evaluation (Chapter 5 on page 69) Once a user can articulate hybrid
queries, they are to be evaluated against the semantic data store (RDF Store). Existing full-
text search capable RDF stores do either not make use of the full potential of full-text search [37,
88, 89, 91, 149, 188], use non-standard query languages [89, 91, 149, 188], or have inconsistent
semantics [37, 188]. Furthermore, existing implementations lack efficiency when supporting
such queries, in particular for complex queries [125]. Therefore, high-performance full-featured
full-text search for RDF that integrates with standard query languages is still needed.

As the next contribution of my thesis, I combine a widely used and well developed semantic
store with an equally sophisticated keyword search engine, which allows for high-performance
full-featured structured keyword query evaluation. A major part of this chapter presents in-depth
store-specific enhancements made at different layers of the semantic store architecture. Finally,
various performance evaluations verify the efficiency of this solution.

1. G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl. From keywords to semantic
queries — Incremental query construction on the semantic web. Journal of Web Semantics
7(3):166–176, 2009.

2. E. Minack, L. Sauermann, G. Grimnes, C. Fluit, and J. Broekstra. The Sesame LuceneSail:
RDF Queries with Full-text Search. NEPOMUK Technical Report 2008-1, Feb. 2008.

Benchmarking Hybrid Queries (Chapter 6 on page 103) Developers of semantic appli-
cations have the growing need for semantic stores that provide full-text search capabilities [94].
With a number of stores that provide this functionality, developers are obligated to pick the store
that best fits their needs. However, to be able to compare the performance of full-text capabilities
of RDF stores, these need to be measured in a repeatable and comparable way, which can only
be done with a publicly available benchmark.

Since at the time of this work, no benchmark for semantic keyword query evaluation exist, I
further conduct a performance study of RDF Store keyword search capabilities. For this, I de-
velop a benchmark that comprises a synthetic scalable RDF data generator with text data that
exhibit realistic word distributions. Additionally, queries that target at particular hybrid query
evaluation challenges are created. On the whole, four RDF stores are evaluated, revealing indi-
vidual characteristics.

1. E. Minack, W. Siberski, and W. Nejdl. Benchmarking Fulltext Search Performance of
RDF Stores. In Proceedings of the 6th European Semantic Web Conference (ESWC’09),
pages 81–95, Heraklion, Crete, Greece, May 31–June 4, 2009.
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Diversifying Search Results (Chapter 7 on page 117) In case a query produces a long
list of relevant results, users are confronted with a situation called information overload [7, 99].
In order to increase user satisfaction and decrease user’s cognitive load, result diversification is
employed. This technique aims at providing the user with a short list of relevant but also diverse
results that best represent the entire list of results.

For structured and unstructured data in general, diversification of search results for large result
sets or streams of results is expensive by means of computation or consumed memory. A memory
efficient diversification of large sets and a computationally efficient algorithm for diversification
of result streams is still missing.

As a last contribution of my work, I present our new approach of efficient and effective result
diversification. The input set of results is processed in a streaming-fashion, which allows for
diversification of large sets and streams. An extensive evaluation on three real-world data sets
shows that this approach does not suffer from diversification quality while exposing significant
improvements on memory consumption and computational complexity.

1. E. Minack, W. Siberski, and W. Nejdl. Incremental Diversification for Very Large Sets: a
Streaming-based Approach. In Proceedings of the 34th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’11), July 24–
28 2011, Beijing, China.

2. D. Skoutas, E. Minack, and W. Nejdl. Dealing with Diversity in Web Search Results.
In Proceedings of the 2nd ACM International Conference on Web Science (WebSci’10),
Raleigh, NC, USA, April 26–27 2010.

3. E. Minack, G. Demartini, and W. Nejdl. Current Approaches to Search Result Diversifi-
cation. In Proceedings of The 1st International Workshop on Living Web at the 8th Inter-
national Semantic Web Conference (ISWC’09), Chantilly, VA, USA, Oct. 25–29 2009.

Furthermore, the following publications have been published throughout my work as a Ph.D.
student at the L3S Research Center, but do not further contribute to this thesis:

1. S. Siersdorfer, J. Hare, E. Minack, and F. Deng. Analyzing and Predicting Sentiment of
Images on the Social Web. In Proceedings of the 18th ACM International Conference on
Multimedia (Multimedia’10), Oct. 25–29th, 2010, Firenze, Italy.

2. P. Zontone, G. Boato, J. Hare, P. Lewis, S. Siersdorfer, and E. Minack. Image and Collat-
eral Text in Support of Auto-annotation and Sentiment Analysis. In Proceedings of the 5th
TextGraphs Workshop at the 48th Annual Meeting of the Association for Computational
Linguistics, July 16 2010, Uppsala, Sweden.
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2Chapter

The Semantic Web on User Desktops

It has been a long scientific endeavor to create the World Wide Web (the Web) and the Semantic
Web. An integral property of the Web can already be found in a seminal article from 1883 [58].
Charles A. Cutter describes a future library where people can request a particular book elec-
tronically via a telephone network while the physical delivery is done fully automatically to the
person’s desk. Such an electronic request of documents is very similar to the way Web pages are
accessed today. Half a century later, Vannevar Bush introduces the notion of linking pieces of in-
formation on his MEMEX desk, an early Hypertext System [33,55] and Semantic Desktop [35].
These links represent associations, the fundamental principle of how the human mind manages
knowledge [187, 190]. Such associations among things can be considered as what is 50 years
later called relations among entities or resources [26] [171, p. 65] in the context of the Semantic
Web. With the advent of computer networks in the 70s and 80s of the past century, inter-linked
electronic documents could be requested and delivered from distributed locations [23, 137, 138].
These hypertext systems allowed for editing and publishing electronic documents, connecting
pieces of information with typed or untyped, uni- or bi-directed links.

Though a number of different hypertext systems had been developed by that time [33, 55],
only the Web has grown into a wide-spread everyday application. Since its invention in 1989,
it experienced 20 years of inconceivable growth with fundamental impact on society [39] and
economy [96]. This success originates from three fundamental design principles [23, Ch. 4] [24]:

Universality The Web works for any kind of computer system, display and processing capa-
bilities, over any kind of computer network, for any kind of data and for everybody.

Neutrality The neutrality principle refers to the communication technology underlying the
Web, the Internet. It should not behave differently w. r. t. the requested services, the in-
formation accessed, or the individual users.

Decentrality Based on three open WWW standards, everyone can participate and contribute
to the Web without asking a central authority for permission. These standards are royalty-
free, transparently reviewed and accepted by experts, and constantly extended to evolving
needs of the users of these standards.

The three open WWW standard protocols are the Hypertext Markup Language1 (HTML) used
for Web content layout annotation and linkage, the Uniform Resource Identifier2 (URI) used for
unique identification of Web content, and the Hypertext Transfer Protocol3 (HTTP) that is used
for Web content retrieval.

1RFC 1866 – HTML: http://www.ietf.org/rfc/rfc1866.txt.
2RFC 2396 – URI: http://www.ietf.org/rfc/rfc2396.txt.
3RFC 2616 – HTTP/1.1: http://www.ietf.org/rfc/rfc2616.txt.
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CHAPTER 2. THE SEMANTIC WEB ON USER DESKTOPS

2.1 The Semantic Web

The invention of the Web by Tim Berners-Lee is considered as much a media revolution as the
invention of modern book print by Johannes Gutenberg in the 15th century4. The amount of
information available on the Web is hard to measure and, due to the dynamic nature of the Web,
inherently outdated. Estimates vary from several billions of Web pages [85] to one trillion URIs
known to exist on the Web5. As of June 30, 2010, almost 2 billion people use the Internet and
Web today6. Indisputable, the Web comprises the largest repository of general purpose, as well
as specific expert information. It is the largest publicly available source of human knowledge.

This huge and ever growing amount of information is primarily consumed by humans. Com-
puter systems are only used to provide access to information, and to support users in finding,
processing, and managing large volumes of information. What computers cannot sufficiently
do today is to consume Web content autonomously in order to perform intelligent tasks for hu-
mans or to provide intelligent services. Computers cannot, for instance, combine information
from different sources in order to create new knowledge. Certainly, automatic tools exist that
can extract knowledge and could feed such a system [129, 130, 145], however, such solutions
are noisy, domain-dependent, require domain experts, and are computationally intensive. In that
sense, humans still have to read and understand Web content themselves.

This challenge was early identified and addressed by Tim Berners-Lee and his idea of the
Semantic Web [26]. With Semantic Web technologies, information published on the Web can be
semantically annotated in a machine-processable way. There are five fundamental Semantic Web
technologies envisioned for this extension. We recommend [6, 59, 171] as a complete reference.

Metadata Semantics of information can be explicitly articulated and encoded as metadata,
i. e., data about data. This allows to enrich textual representations of information and knowledge
by explicit structures. For instance, the textual information "John Smith" can be extended to

<Person>
<firstname>John</firstname> <lastname>Smith</lastname>

</Person>
Here7, the textual labels in angle brackets (e. g., <firstname>) denote semantic annotations
called tags, whereas a pair of tags (<...> and </...>) encloses other tags or textual values
(e. g., John). The example metadata state that there is a Person with firstname "John"
and lastname "Smith". In contrast to

<Company><name>John Smith and Sons</name></Company>
a computer system immediately knows the difference between both pieces of information more
easily than without semantic annotations. A framework that allows to express such semantics is
the Resource Description Framework (RDF) [83]. The cornerstones of RDF are resources and

4The TIME Magazine: Tim Berners-Lee: The Man Who Invented The Web: http://www.time.com/time/
magazine/article/0,9171,986354,00.html.

5Official Google Blog: We knew the web was big...: http://googleblog.blogspot.com/2008/07/
we-knew-web-was-big.html.

6Internet World Stats: http://www.internetworldstats.com/stats.htm.
7This is an example notation for semantic information based on XML notation.
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2.1. THE SEMANTIC WEB

relations among resources, both uniquely identified by URIs, and values called literals. Such
literals can denote to any type of value that has a textual representation (e. g., texts, numbers,
dates). RDF metadata are composed of statements. An RDF statement consists of subject, pred-
icate, object, and an optional context. The subject is always a resources, a predicate is a relation,
the object can be a resource or a literal, and the context is a resource. The above example in RDF
statements (without a context) looks like

ex:johnsmith rdf:type ex:Person .
ex:johnsmith ex:firstname "John" .
ex:johnsmith ex:lastname "Smith" .

where ex:johnsmith refers to a particular resource and rdf:type denotes that this is a
(is an instance of class) ex:Person. URIs in this example are given in abbreviated nota-
tion. The prefixes ex: and rdf: refer to namespaces http://example.com/ and http:
//www.w3.org/1999/02/22-rdf-syntax-ns#. Therefore, the predicate of the first
statement resolves to <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
while subject ex:johnsmith resolves to <http://example.com/johnsmith>. An
in-depth introduction of RDF framework can be found in [6, Ch. 3], [59, Ch. 5], and [171, Ch. 4].

Ontology An ontology defines a vocabulary of such tags, for instance, <firstname> or
<http://example.com/Person>. Ontologies can be defined using ontology languages
such as RDF Schema (RDFS) [82], DAML+OIL Web Ontology Language (DAML+OIL) [56],
or the Web Ontology Language (OWL) [81]. All these ontology languages allow for class (e. g.,
a person), relation (e. g., the first name of a person), sub-class, and sub-relation definitions. A
relation is defined by a URI, a domain, and a range. The latter two restrict resources to be
of particular types in order to be used as subject (domain) or object (range) of a statement. The
ex:firstname, for instance, can only be used for a person as domain and a literal as the range.
Sub-class and sub-relation definitions form a hierarchy of generalization and specialization of
classes and relations.

DAML+OIL and OWL languages add richer modeling primitives to RDFS, which allow for
more powerful ontologies that on the other hand can be computationally more expensive. For
further details on these ontology languages, please see [6, Ch. 4], [59, Ch. 8], and [171, Ch. 6].

Logic With the help of formal semantics (i. e., logic) defined by the employed ontology lan-
guage8,9,10, implicit knowledge of that ontology, as well as knowledge encoded with this ontol-
ogy, can be made explicit by inference (also called reasoning). For example, a <friend-of>
relation can be defined to relate two people to each other (ontology level). Given that A is a friend
of B (metadata level) a computer system can deduce from domain and range of the relation that
A and B are people (schema level). A common task for reasoning is to compute the complete
sub-class and sub-relation hierarchy and all rdf:type information induced by these. This is
called the full transitive closure. Please further see [6, Ch. 5], and [59, pp. 226–229].

8RDF Semantics: http://www.w3.org/TR/rdf-mt/.
9OWL2 — Direct Semantics: http://www.w3.org/TR/owl2-direct-semantics/.

10A Model-Theoretic Semantics for DAML+OIL: http://www.w3.org/TR/daml+oil-model.
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CHAPTER 2. THE SEMANTIC WEB ON USER DESKTOPS

Query Languages We have seen means to encode semantic information in the standardized
data model RDF, to articulate it in well-defined RDFS ontologies, and to entail it based on logic
and inference, but means of data retrieval are still missing. With structured query languages
such as RDQL [170] or SPARQL [146], structural properties of the data to be retrieved can
be specified in the same way as RDF models the data itself, that is as statement. The subject,
predicate, object, or context of a statement can arbitrarily be left unspecified by a wildcard, and
actual values of instantiations of such statement patters can be retrieved via variables.

Following our example from above, the given RDF data can be queried for all people’s first
and last names using this SPARQL query:

SELECT
?s, ?fn, ?ln

WHERE {
?s rdf:type ex:Person .
?s ex:firstname ?fn .
?s ex:lastname ?ln .

}
This retrieves the URIs, first and last names of all people, whereas, e. g., no company names will
be retrieved. The variable bindings of this query evaluated against the three statements above can
be organized in a table as:

?s ?fn ?ln
ex:johnsmith "John" "Smith"

Query results can also be retrieved in form of an RDF graph, where the above variable bindings
represent an intermediate result used to instantiate graph construction statement patterns. The
result of such a COSTRUCT query

CONSTRUCT {
?s rdf:type ex2:Person .
?s ex2:givenname ?fn .
?s ex2:surname ?ln .

} WHERE {
?s rdf:type ex:Person .
?s ex:firstname ?fn .
?s ex:lastname ?ln .

}
is a sequence of RDF statements:

ex:johnsmith rdf:type ex2:Person .
ex:johnsmith ex2:givenname "John" .
ex:johnsmith ex2:surname "Smith" .

With such a query, the sub-graphs that match the statement patterns of the WHERE clause can
easily be transformed into a different graph (e. g., with a different ontology or structure) defined
by the CONSTRUCT clause.

For more practical details on the SPARQL query language, we recommend [171, pp. 86–96].
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Agents Having metadata, ontologies, logic, and query languages at hand, autonomous soft-
ware systems called agents can intelligently perform tasks on behalf of humans [26, 93] [59,
p. 245]. When information is published on the Web and encoded in ontologies known to the
agents, such agents can access and process such information easily. An example of such tasks is
answering questions such as:
"Which German cities have more than one million inhabitants?".

The agent can use Semantic Web search engines [66,95] or Semantic Web service registries [59,
p. 245] to find Semantic Web content and services that provide relevant fragments of information
(cities in Germany, the number of inhabitants of cities), query these documents and integrate par-
tial answers into the final list of results. Alternatively, all relevant documents can be downloaded
and integrated in one local semantic data store and that is then queried with the user query.

Fortunately, a large portion of Web content is already structured and stored in databases. These
data are rendered into Web pages as textual representation. Examples are product catalogs or user
profiles. Currently, during this step, existing structure of the data gets lost or at least becomes
implicit. With Semantic Web technologies, this structure can be preserved, put online in an
explicit format, and made available to semantic agents.

Though necessary technologies are available, their general adoption by the public (private
and corporate entities) is still missing. Companies and commercial website operators require
economic benefits to invest into such technologies in order to get them publish their currently
hidden knowledge. Unfortunately, as long as no one provides semantic information, semantic
applications cannot emerge or develop their full potential.

The other portion of Web content can be characterized as pure textual or multimedia content.
Most of this content resided, before being published on the Web, on a desktop computer [162,
p. 6]. Such devices can be seen as the outer perimeter of the curremt Web. From there, a large
fraction of content migrates into the Web.

This perimeter is the point where the Semantic Web and its emergence starts [163]. With the
semantification of such devices, semantic information can start to propagate into the Web and
semantic applications can emerge upon them. These devices are usual desktop PCs, whereas
their semantified variants are called Semantic Desktops [163].

2.2 The Semantic Desktop

Apart from that potential to bootstrap the Semantic Web, the Semantic Desktop [163] is mo-
tivated by the observation that an increasing amount of information is handled and tasks are
performed with computers. With the growing capacity of hard disks, data do not have to be
erased anymore. A lifetime of data can be stored forever [77].

Consequently, over the last one or two decades, a significant part of information relevant for
people’s work11 and life happened to be stored on Computer Desktops [31]. As in Vannevar
Bush’s 1945 vision of the MEMEX [35], the Computer today helps to store, locate, consume,

11Here we refer to so called knowledge workers. These are people that consume and aggregate information and
knowledge to create new knowledge. Examples are, among many others, scientists, engineers, or managers.
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and manage tremendous amounts of data, such as correspondence (e-mail, instant massaging,
written letters), information (web pages, manuals, articles) as well as non-textual media such as
images, videos or music [77].

The management of these data is called Personal Information Management (PIM). This com-
prises the acquisition, organization, maintenance, and retrieval of digital information (e. g., e-
mail, files, contacts) by an individual in a personal (work and home) computing environment [31].
The difference between acquisition and retrieval of information is that whereas the former refers
to finding new information, the latter denotes the action of re-finding previously seen information
that was stored within the PIM system. In this thesis, I focus on the retrieval task of Personal
Information Management.

Data used with different applications are stored in application-specific information silos, sepa-
rated from other applications and each potentially providing its own organizational scheme. The
file system, for instance, stores all kinds of files in a hierarchical manner. The path to a file can
be used to categorize the content of a file. While, the content of a file can be categorized along
different orthogonal dimensions, the file itself can only be put under a single path. The same
holds for e-mail clients or bookmarks. Though all employ the same organizational model (here a
tree-like hierarchy), data items as files, e-mails and bookmarks are all isolated and cannot be put
into a comprehensive context. In other words, the user cannot have e-mails along with relevant
files or bookmarks in the same folder, though they would greatly benefit if this would be the
case [105, p. 52].

Even more interestingly, the user of all these data items has a large amount of knowledge about
them: who is depicted on a photo, where and when was it taken, how strong is the relationship
with a person, where did the user meet somebody, e. g., the sender of an e-mail. Thus, the
knowledge of the user about the data stored on the Desktop extends his personal information and
is currently not explicitly stored on the computer, but in the user’s mind, and can therefore not
be used by the computer system to support the user. Therefore, the knowledge has to manifest
on the Desktop, the Semantic Desktop.

However, as data items are isolated by application borders, also the knowledge about them
would then be separated. A holistic retrieval and integration of data from multiple isolated stores
require in worst case a Many-to-Many integration and at least a Many-to-One solution [162, p. 7].
There are a couple of strategies to overcome this burden:

Monolithic Replacement A monolithic application that replaces all existing applications can
integrate information of all these applications [147]. It certainly needs to provide access
to the information, otherwise multiple small isolated silos are replaced with one large silo.
However, users would be required to migrate to a new application which the majority of
users might not be willing to do.

Semantic Infrastructure With the existence of a semantic infrastructure, application devel-
opers can store information in a central repository and provide access in a unified way.
The application has full control to which extend information is published while no repli-
cation happens. Standardized ontologies provide a vocabulary shared among applications
that allows for integration of these data so that all applications can make use of them. The
NEPOMUK project implemented such an infrastructure [131].
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Semantic Access Alternatively, applications could provide standardized interfaces that allow
for identifying, representing, and retrieving data in these silos in a distributed fashion as
done on the Semantic Web [29]. This strategy requires all applications to be modified,
as well as establishing a distributed system of semantic stores on a single computer with
means for discovery, access, and search. The primary advantage is that no replication of
data happens while applications keep full control over their data.

Semantic Extraction The extension of existing applications can be laborious or even impos-
sible for closed source software. This extension can be avoided when data containers of
particular applications (e-mail client in-box files, the Web browser cache directory, files of
various types) are accessed directly. Then, semantic information is extracted and integrated
into a central semantic store. Since such data containers are encoded in application-specific
ways, this method constitutes a Many-to-One approach. Further, data have to be replicated
but on the other hand full access is gained over the data [122,164,189]. Since this approach
allows accessing a large amount of data with no modification of the respective applications,
I focus on this strategy in my thesis (see the next chapter).

Whichever strategy is chosen, once user knowledge is explicitly articulated and stored, the
following advantages render possible:

Re-finding and navigating past knowledge: The human brain developed a strategy of fil-
tering irrelevant or infrequently used information. In some cases, information gains rele-
vance over time so it is forgotten when it is needed at a later point in time. In other cases,
information may be irrelevant for the human to survive, but relevant for human to live.
Due to evolution, the brain favors the former type of information and sometimes struggles
to deem information of the latter to really be important enough to memorize.

Information has to be used or recognized repeatedly in order to convince the brain of its
importance [187, p. 37]. Articulating information, knowledge, and experiences makes the
human reflect on them, which improves information quality and provides the human brain
with evidence of importance. In any case, with the help of the computer, the articulated
and stored knowledge will never fade and can be re-found and navigated any time later on.

Sharing and reuse of knowledge: In a group of people like an online community or a cor-
porate environment, the knowledge of one person is of high value for others. Everybody
gains experience and acquires knowledge, every day. In order to avoid everyone repeat-
ing the same time-intensive learning processes, people make use of others’ knowledge.
For this, they have to find those people that have relevant knowledge. Making knowledge
explicit for computer systems allows for reuse, search and shared access [18].

Furthermore, when people leave a company, they take all their implicit knowledge with
them, moving it out of the scope of the company. Having such knowledge explicitly stored
on computers, it can further be of use for the company.
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Enrichment of Desktop information: The knowledge being articulated usually refers to in-
formation items stored on the Desktop, such as e-mails, person contacts, web pages, docu-
ments, etc.. These references between Desktop items create a network that can be used for
navigation and ranking search results [50, 122, 134, 135].

In the NEPOMUK project12 [131], we followed a hybrid strategy where we created a semantic
infrastructure and bootstrapped the population of a central semantic store by the semantic extrac-
tion strategy. My work contributes to the extraction part of that hybrid strategy, complemented
by means to search such data [76, 123], as reported in the next chapter.

12NEPOMUK — The Social Semantic Desktop: http://nepomuk.semanticdesktop.org.

28

http://nepomuk.semanticdesktop.org


3Chapter

Semantic Desktop Search

We have learned from the previous chapter that once knowledge can be stored and articu-
lated explicitly, new means of retrieving it can arise. As we will see, Semantic Desktop Search
requires an enhanced infrastructure compared to classical Desktop Search. However, such an
infrastructure still contains main building blocks of a classical Desktop Search system, and thus
can benefit from this fact by reusing common parts that are established and well understood.

In this chapter, I elaborate on important components of such a Semantic Desktop Search in-
frastructure which I implemented for the L3S Beagle++ prototype [122] — the semantification
of the open source Gnome Beagle Desktop Search engine — and integrated into the NEPOMUK
Social Semantic Desktop [76, 123, 131].

With this work, I make the following contributions:

1. I design an extensible and flexible architecture for a Semantic Desktop search engine in
which components written in different programming languages and frameworks nicely
integrate into our search engine. This engine bases on an existing classical Desktop Search
engine and therefore reuses mature and established components and provides a blueprint
how to semantify a classical Desktop search engine.

2. Our evaluation of the base system Beagle and its semantified version Beagle++ allows to
directly measure the impact of semantification on search result quality and user satisfac-
tion. Results show that Semantic Search finds more relevant results. For example, preci-
sion among the top four results increases from 66 % to 89 % for clear queries. Structured
queries even exhibit a precision of up to 92 % in our user study.

This work lays the foundation for numerous researchers at L3S to implement, integrate and
evaluate their particular research work in a Semantic Desktop Search environment. The Beagle++

search engine was further employed to feed other research projects with Semantic Desktop
data [47–49, 64, 177, 178].

After a short introduction into the characteristics of Semantic Search in the next section, I
review existing approaches in the area of Semantic Desktop Search in Section 3.2. Section 3.3
presents the flexible architecture of our search engine. The three building blocks metadata gen-
eration and storage (Section 3.4), metadata enrichment (Section 3.5) and metadata search (Sec-
tion 3.6) constitute the Semantic Desktop search engine. The quality of search results is evaluated
in Section 3.7 with a user study. I deliberate on lessons learned and consider the public percep-
tion of this work in Section 3.8. The work presented in this chapter can be seen as the seed and
motivation for the work presented in the remainder of this thesis. As a conclusion of this work,
I list a number of challenges identified during the implementation and usage of the Beagle++

search engine in Section 3.9.
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3.1 Introduction

Once the user has stored her data and knowledge on computer systems, she needs quick access to
relevant information to be able to perform a particular task. People usually perform this Personal
Information Management (PIM) task called retrieval of digital information [31] using one of the
following main strategies [181]:

Navigation: Structures like directory hierarchies (file system, e-mail folders) or navigational
links (web pages) are used to classify information. Navigation becomes problematic when
multiple locations within this classification are valid, but the information can only be put
at one. This is usually the case for hierarchical structures like the file system or e-mail
folders. Then, the information has either to be duplicated, which introduces redundancy
and therefore the possibility of inconsistency, or it is only put at one of these locations.
In that case, the user has to investigate all possible locations in order to re-find the infor-
mation. Though a hierarchical structure is not necessarily the best structure to organize
information, it is certainly a good organization structure in most cases [105, p. 21–24].

Search: Many people prefer search over navigation, because the cognitive effort of search is
much lower. And those users that first try navigation usually fall back to search, either
because no starting point for navigation comes to their mind or navigation simply does not
provide satisfying results [105, p. 85].

For search, users only need to describe the required piece of information with a very short
query and retrieve a list of relevant resources. Keyword queries are usually employed as the
simplest way of searching because they are very easy to articulate. However, keywords are
ambiguous and less expressive than those queries that also consider structural properties
of target resources [12, Sec. 2.9].

Semantic Desktop Search bases on two areas of research that evolved separately over decades:
Information Retrieval (IR) deals with unstructured data and the Database community addressing
structured or semi-structured data. These two disciplines tend to more and more merge into one
holistic theory of searching information [5, 10, 16].

The demand of integrated means to search structured and unstructured data is articulated by
the large number of semantic applications that provide access to RDF data (structured data) via
keyword searching capabilities (unstructured search). This was confirmed in the Semantic Web
Survey [94], where the majority of 35 studied semantic applications provide full-text search.
Where pure full-text search ignores the semantics of Desktop items and the relations among
them, Semantic Search exploits both kinds of information: textual and structural.

Semantic Search In contrast to navigation that uses structure, and keyword search that targets
at textual content, Semantic Search exploits structure to improve keyword search quality.
With structural properties, queries become more expressive and produce smaller result sets
in which results are generally more relevant [12, Sec. 4.4]. It is a hybrid of both strategies:
searching with keywords while using short-range navigational constraints.
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3.2 Related Work

The Semantic Desktop has grown into a vivid field of research over the last decade so that a
number of semantic applications and Semantic Desktop projects predate this Ph.D. thesis [105]:

The Semantic Desktop The Fenfire project [74] proposes a solution to interlink any kind of
information on one’s Desktop. That might be the birthday with the person’s name and an article
she wrote. The idea is to make the translation from the current file structure to a structure that
allows people to organize their data in a more flexible way that is similar to reality and to their
personal needs. Unfortunately, this project is not based on WWW standards.

Haystack [147] is in some sense similar to Fenfire. This project emphasizes the relationship
between an individual person and her corpus. It learns from user interaction with information
which documents are relevant, collects metadata about them, and allows for manual annotation.
Further, it establishes connections between documents that are similar in their content and then
exploits all these pieces of information for browsing, searching, and accessing information. Un-
like our work that focuses on searching data, their work primarily organizes such data.

A third project that builds an information management environment for the Desktop is Gnow-
sis [161]. This project envisions the possibility to make any kind of resource addressable on
the Desktop and to link any two such resources with a semantic connection. The primary bur-
den here is that such pieces of information are stored and managed by different applications in
application-specific manners (see information silos in Section 2.2). Relevant bits of information
become connected and accessible when they are required for a specific user task. In 2003, this
project started with a prototype developed during a diploma thesis that consistently applied Se-
mantic Web technologies on the user Desktop. Gnowsis matured during the Ph.D. thesis [162] of
the same author to a full-featured Microsoft R© Windows R©-based Semantic Desktop infrastructure
that integrates numerous office applications. While Gnowsis focuses on turning the Desktop into
a Semantic Desktop, we focus on the Semantic Desktop Search functionality for such a Semantic
Desktop in particular. As Gnowsis, we base our semantic application onto the same generic open
semantic desktop architecture [123].

The authors of “The Social Semantic Desktop” [62] introduce the social entailment of the
Semantic Desktop. They envision a collaborative application that combines Semantic Desktops
and their Semantic Web technologies [161] with social networking infrastructures [104] and Se-
mantic P2P technologies [136] in order to interconnect individual Semantic Desktops via the
social network of their users. The purpose of this joint effort is to share and interconnect data
and metadata, as well as to reuse classification and categorization efforts at a global scope. The
Gnowsis project and this seminal paper constituted the seed for the European Project “NEPO-
MUK: The Social Semantic Desktop”. Major parts of our work was created within that project,
and NEPOMUK contributions were reused in this work in return.

Compared to those existing approaches, we share the same goals of connecting Desktop re-
sources. But we additionally utilize these links in order to build a better search engine on the
Desktop that combines traditional IR methods with the Structured Search, also allowing the user
to experience and explore her metadata network.
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Semantic Desktop Search Desktop Search is not a new technology, but the interest in it has
been increasing over the last decade. As a result of the growing volume of data users store and
use on their Personal Computer, all major Web search engines intensified their search services
on desktop PCs. They have released several free Desktop search engines, e. g., Google Desktop
Search1, Microsoft R© BingTM Bar2, and Yahoo! Desktop Search3. Some providers even integrated
Desktop search into their operating system4. The open source community also provides Desktop
Search projects such as Beagle5 for Gnome and Strigi6 for KDE.

All these Desktop Search engines support a very exhaustive list of file types and consider ex-
plicit metadata contained in files. However, they model metadata as textual data — speaking in
the notion of RDF: as literals. No entities such as people or locations are extracted and mani-
fested as independent resources. Therefore, files are not connected to other files that share the
same metadata or reference the same resources. These classical Desktop Search systems miss
the opportunity to improve user experience by exploiting the rich context Desktop items pro-
vide [50, 134, 135]. This context is of value for users to relocate information as studies have
shown [181]. With our semantified Desktop search engine, we present how this can be achieved
and we evaluate the improvement in user satisfaction [122].

Several academic search and retrieval systems make extensive use of semantic relationships
that can be inferred on the Desktop. For instance, in Stuff I’ve Seen [70], contextual cues like
last file access time or author information are used to enrich search results. Swoogle [66] offers
information retrieval capabilities for semantic documents that reside on the Web. It provides a
ranking for RDF documents that employs different weights for individual types of semantic links
to reflect the probability that users explore them. It integrates all ontologies that exist on the Web
into their ranking scheme.

Another interesting semantic search tool is the TAP project [84]. It uses metadata extracted
from information silos such as database-backed Web pages to enrich search results. Their se-
mantic search results are independent of the traditional keyword search results and aim to aug-
ment them. Another semantic search method is proposed in [151]. It first performs a classical
text-based search on metadata, whose output is then extended using the RDF network between
semantic concepts. Finally it is reordered with techniques adapted from IR. In contrast to these
systems, our work integrates the classical IR search with Semantic Search in one holistic step.

Structured Queries In the context of semantic querying, several languages to interact with
a semantic database have been proposed. The most common language to query RDF is the W3C
recommendation SPARQL [146]. Its main characteristic is that it allows to obtain an RDF graph
as a query result encoded in two ways: 1) a table of variable bindings (with rows of variable
values) for each existing instantiation of the structural pattern that is used in the query and 2) an
RDF graphs constructed by the query based on those bindings.

1Google Desktop: http://desktop.google.com/.
2Bing

TM
Bar: http://toolbar.msn.com/.

3Yahoo! Desktop Search: http://desktop.yahoo.com/.
4Apple – Spotlight: http://www.apple.com/macosx/what-is-macosx/spotlight.html.
5Gnome Beagle: http://www.gnome.org/projects/beagle/.
6Strigi: http://strigi.sourceforge.net/.
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The disadvantage of this language is that a user has to learn a complex query language that
is error-prone. Therefore, in our work, we did not directly base the query interface on such
a language. With our system, the user either types keywords in order to search for content,
types queries annotated with simple structure, or constructs complex structured queries with a
graphical user interface (presented in the next chapter). The system then translates the user query
into the equivalent valid SPARQL query.

Another drawback of this language is that it does not support keyword search but only full
string matching or regular expression filters, which are inherently inefficient. Our Semantic
Desktop Search bases on a standard compliant full-text search extension of the SPARQL lan-
guage. Chapter 5 on page 69 is dedicated to this particular challenge of combining full-text
search with Semantic Search.

3.3 Semantic Desktop Search Infrastructure

In this section, I present the architecture of the Beagle++ prototype. It defines the frame for the
subsequent sections that describe the components of our Semantic Desktop Search prototype.

We build our Semantic Desktop Search application on an existing classical Desktop Search
engine mainly because of two reasons. Firstly, both search engines have a lot of tasks in com-
mon. To list only a few, both need to monitor data containers for changed data items, schedule
the extraction of full-text content stored in application-specific data formats, provide storage and
query facilities, user interfaces for search and configuration, etc.. We did not aim at re-inventing
the wheel in areas that are sophistically covered by open source software projects and can there-
fore easily be reused. Secondly, this strategy allows to us evaluate the impact of semantifying
Desktop Search on search result quality and user satisfaction. For this, a competitive system for
comparison is needed. The best comparable system is the one that itself gets semantified.

In the following, I give an overview of the semantic infrastructure that is used to semantify the
base system, as described throughout this chapter.

3.3.1 Open Infrastructure for Semantic Applications
Within the NEPOMUK project [131, 150], we developed an infrastructure for semantic applica-
tions that brings Semantic Web technologies to the Desktop. It is based on Semantic Web Ser-
vices that run on the Desktop to provide applications with semantic services. The infrastructure
is designed in three layers as depicted in Figure 3.1. Semantic applications that deploy the infras-
tructure constitute the upper layer. These applications gain access to Semantic Web Services that
run in the inner Semantic Middleware layer by open communication standards such as HTTP7,
OSGi8, and D-Bus9. These technologies make this architecture independent of the employed
hardware and programming languages. The lower layer contains functionality that interconnects
Semantic Desktops; the essence that makes the Semantic Desktop the Social Semantic Desktop.

7RFC 1866 – HTML: http://www.ietf.org/rfc/rfc1866.txt.
8OSGi Alliance: http://www.osgi.org/.
9D-Bus: http://www.freedesktop.org/wiki/Software/dbus.
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Figure 3.1: Three-layered architecture of the NEPOMUK semantic infrastructure.

Central services of the Semantic Middleware are giving structure to Desktop knowledge en-
coded in ontologies, ontology mapping and knowledge alignment techniques that integrate se-
mantic data from different sources, as well as storage and search of semantic data. Within this
middleware, our Semantic Desktop search engine contributes to these services:

Knowledge Structure Ontologies that are especially valuable for knowledge workers in the
scientific domain are available (see Section 3.4.3).

Wrapping Pieces of semantic information, for instance, stored in files, e-mails, or on Web
pages, are made accessible (extracted) to the Semantic Desktop (see Section 3.4.4).

Metadata Storage Extracted semantic data are centrally stored and integrated into one large
semantic graph. Efficient search and browse facilities are provided to middleware services
and semantic applications (see Section 3.4.5).

Mapping & Alignment Extracted semantic data are enriched and aligned to improve their
quality and the benefit of the system (see Section 3.5).

Before I present our Semantic Desktop search engine in detail, I briefly describe the architec-
ture of its base system, the Beagle Desktop search engine.
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3.3.2 The Beagle Desktop Search Engine

Our Semantic Desktop Search engine is based on Gnome Beagle10. It was initiated in 2004 as
an open source software project for Linux. It is designed to index and search over 250 different
content types and supports a variety of data containers like the file system, e-mail and instant
messaging applications, web browsers and address books. Data items such as files are indexed
immediately upon creation or modification, e-mails and instant messages upon arrival, and web
pages as they are browsed. Indexing is performed as a background service in an unobtrusive man-
ner. Beagle uses the C# port of the Apache Lucene IR engine11. The Beagle core implementation
is licensed under the MIT license12.

At that time, Beagle experienced a lot of attention from various Linux Desktop systems.
Though developed under the Gnome project, it is desktop-independent and was used by Gnome,
KDE, and SUSE Linux Enterprise Desktop. It provides a graphical, a web-based, a command
line, a programmatic library-based, and a network-based search interface to also query other
Beagle instances over the network.

Figure 3.2: Architecture of the Gnome Beagle Desktop Search engine.

Figure 3.2 provides an overview of Beagle’s infrastructure. The Beagle server constitutes the
core of the system. It initiates extractor backends, each responsible for a particular data container
(e. g., the file system or an e-mail application). The extractors pick Content Filters from a central
pool to extract full-text and simple metadata. Each filter handles a particular set of content types.
The extracted data are indexed in a Lucene index, one maintained by each extractor.

The Beagle search client is a stand-alone application providing a graphical search interface to
the user. It connects to the Beagle server, sends a textual query entered by the user to the server

10Gnome Beagle: http://beagle-project.org/.
11Lucene.Net: http://lucene.apache.org/lucene.net/.
12OSI - The MIT License: http://www.opensource.org/licenses/mit-license.php.
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and retrieves a list of results. The Beagle server parses the query, constructs a query model, and
sends it to all extractors. They evaluate the query on their Lucene index in parallel and stream
the results back to the server. The server merges the streams of results and forwards them to the
querying client. As soon as the first results are retrieved, the client visualizes them.

The primary reason for choosing Beagle as our base system was, besides its open source li-
cense, the fact that it has a well designed modular architecture that allows for an easy integration
of our extension. Further, the search functionality is accessible via command line which pro-
grammatically simplifies the automatic evaluation of such a system.

3.3.3 The Semantification of Beagle: Beagle++

Figure 3.3: Architecture of the L3S Beagle++ Semantic Desktop Search engine. The light-
colored components refer to original Beagle components as shown in Figure 3.2.

Starting from the original architecture shown in Figure 3.2, I extended Beagle towards our
Semantic Desktop Search engine Beagle++ depicted in Figure 3.3 by four major components.
The indices of all extractor backends were integrated into one central RDF repository. These
backends were further given access to a new pool of metadata filters that extract RDF fragments
from data items such as files or e-mails. A number of metadata enrichment processes directly
work on the RDF repository and create new knowledge. The search process was finally enhanced
with a visualization tool for RDF data.

Modifications to the existing code were kept to a minimum in order to benefit from the high
maturity of existing tested code, and to be able to also benefit from future bug-fixes of the original
code. In the following, the four major components are described in further detail.
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Metadata Filters: In extension to the existing
Content Filters, our Metadata Filters extract com-
plex semantic information from data items. These
may include resources other than the processed data
item, such as contained people or locations. Since
these filters can create any kind of RDF metadata,
they allow for generation of a rich network of knowl-
edge. The architectural extension of Beagle in-
cludes a generic coupling of Metadata Filters with
the Beagle++ system. All our Metadata Filters are written in Java, whereas any programming
language can potentially be used. The extracted metadata are passed to the Beagle++ system by
the use of standard formats and Inter Process Communication (IPC) mechanisms.

RDF Repository: The most visible modification
done to the Beagle system was the integration of
individual indices of the extractor backends into a
central RDF repository. With this semantic store,
all RDF data get integrated and accessible in a cen-
tral location rather than being stored in application-
specific silos and formats. The data can easily be
accessed from external applications. This central
store allows for semantification of applications and
to make metadata available across application boundaries, thus opening information silos.

The primary design principle was to make this modification happen transparently to the ex-
tractor backends. For them, the central repository behaves as the individual indices did. For our
system, in this repository all metadata integrates into one huge interconnected web of metadata.
The two components Metadata Filters and the RDF Repository are discussed jointly under the
topic of metadata generation and storage in the next section.

Metadata Enrichment: The central RDF repos-
itory allows additional applications to work directly
on the extracted metadata. The Metadata Enrichment
component allows for easy implementation of appli-
cations that consume metadata from the central RDF
repository and create new knowledge. The coupling
of this component is again done with open communi-
cation protocols and data formats. As for the Meta-
data Filters, this architecture allowed several mem-
bers of L3S to implement and easily integrate their algorithms and applications into the Beagle++

system to fill it with rich metadata extraction and intelligent services. In Section 3.5, I further
describe these services.
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RDF Visualizer: Another application that makes
use of the direct access to the RDF repository is
the RDF Visualizer. It is employed by the Bea-
gle search interface to provide access to metadata of
search results and to navigate from these through the
entire metadata graph. This tool allows the user to
learn and remember the context of search results and
knowledge stored on her Desktop. Section 3.6 is par-
ticularly devoted to this subject.

The architecture presented in this chapter allows application developers to reuse our Beagle++

system as a Semantic Infrastructure, i. e., storage, integration, and search of RDF data. Therefore,
extracted metadata no longer have to be isolated from other applications.

I will now go into detail on these four extension components throughout the following sections.

3.4 Metadata Generation and Storage —
Implicit Knowledge Made Explicit

In order to have a system provide fast and efficient search capabilities to the user, it first has to
process available user data. From all existing storage facilities like file systems, e-mail folders,
address books, etc., textual data (the full-text) and structural data (things and relations among
them) are to be extracted. After extracting structural data, it is necessary to find means of ar-
ticulating them in a machine processable way in order to store them persistently. Here, the first
problem to tackle is the unique identification of things. Identical things observed at different
locations should be referenced by the same identifier, in order to allow for instant integration of
metadata. Further, the metadata13 about a particular thing needs to be encoded using a certain vo-
cabulary. Finally, the extracted and articulated textual and structural data are stored and indexed
for quick search later on. I now elaborate on all of these issues in more detail.

3.4.1 Metadata Generation

The generation of structural data from the user Desktop can be achieved in two ways:

Explicit articulation by the user The user articulates each piece of information explicitly,
e. g., create a person, link e-mails to that person, maintain contact information, attach
projects and tasks to them. This requires significant effort, but guarantees high quality
knowledge. Further, the user develops her own schema of the data — a schema the user
is an expert in. By this she will easier remember how knowledge is organized on her Se-
mantic Desktop. The drawback is that such a personal schema requires ontology mapping
techniques [178] when personal knowledge is to be published on the Web or exchanged
within the social network of the user.

13We use structural / structured data and metadata synonymously.
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Extraction of implicit structure The system identifies occurrences of entities and maintains
the extracted metadata about them, e. g., people are extracted from the address book, e-
mails are linked to them based on the TO: and CC: header of the e-mail. This requires
minimal effort for the user. It scales much better than the explicit strategy but results in a
lower quality of extracted knowledge. Further, the system uses its own schema for orga-
nizing the knowledge, which might be different to individual users’ way of organization.
Therefore, the user first has to learn the system schema and adapt to it.

In our prototypical study, we focused on the automatic extraction of implicit structure to al-
low for a low burden for the user to start using our system. However, within the context of
the NEPOMUK project, we also had the opportunity to study explicit knowledge articulation
methods [114, p. 17–23] and test our further achievements on higher quality knowledge having
a higher diversity of schemata (see Section 3.6 and Chapter 4).

3.4.2 Unique Resource Identification

The automatic extraction of implicit knowledge requires a way to globally uniquely identify enti-
ties. This ensures that two metadata fragments about different things generated at different points
in time do not unintentionally integrate into one metadata graph. For this, a unique identifier (uid)
of one distinct entity must not be used for any other entity.

An optimal solution would pick the same id for the identical entity at different occurrences.
E-mails, for instance, provide a globally unique identifier in the Message-id header attribute.
Whenever this e-mail occurs in the header of another e-mail, this uid can be reused. Then, all
metadata about this e-mail (including all referring e-mails) integrate into one connected graph.
E-mail addresses or Web page URLs are other such examples.

If available information for an occurring entity is insufficient for unique identification (for
instance people extracted from texts where only names occur), an identifier has to be used that
cannot be generated for any other occurrence of any entity. To stay with the example, an identifier
composed of the uid of the text document and the person name could be used. Then, at a later
step, identifiers that actually refer to the same entity have to be identified in the global graph and
connected or merged. We elaborate on this second phase of metadata generation in Section 3.5.

3.4.3 PIM Ontologies

A modular metadata extraction architecture has to use a common ontology. Otherwise, extracted
metadata fragments cannot integrate into one large connected metadata graph. Then, mappings
between the different ontologies are needed, which requires a significant computational effort.

On the Desktop, some file types like JPEG images contain explicit metadata for which con-
sequently type-specific ontologies exist (e. g., EXIF metadata14). Additionally, Desktop applica-
tions have their own domain and application-specific requirements on metadata. An ontological

14EXIF: http://www.exif.org/specifications.html.
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Figure 3.4: Example of recursive Data Object and Information Element relationship.

solution should address both, resource-specific and application-specific requirements. Such a
solution is provided by the NEPOMUK ontologies15 [150, Ch. 5] comprising these main parts:

NEPOMUK Representational Language (NRL): NRL [173] bases on RDFS, whereas all
RDFS schemata are legal NRL, but only those schemata that follow NRL usage recommen-
dations are valid NRL. NRL add the notion of named graphs to RDFS, as well as graph
views. This allows for making RDF statements about RDF statements, without introducing
the problems of reification (RDF:Statement).

NEPOMUK Information Elements framework (NIE): The NIE ontology makes the par-
ticular distinction between Information Elements (IE) like e-mails or a file, and the actual
Data Object (DO) encoding it. A Data Object is interpreted as an IE, whereas an IE can in
turn contain another Data Object. Figure 3.4 depicts an example of this recursive relation
between Data Objects and Information Elements. There, a hard disk partition (DO) can
be interpreted as a file system (IE), whereas a file system contains file Data Objects (DO),
which in return can be interpreted as folders (IE) containing other file Data Objects, being
interpreted as an e-mail mail box or files, and so on. The distinction between Data Objects
and Information Elements allows the latter to be stored in different Data Objects, e. g., as
caused by saving e-mail attachments to disk.

The NEPOMUK Ontologies provides us with a vocabulary for a broad range of Personal
Information Management (PIM) applications. Further, it is designed to be extended to fit a spe-
cific domain, while staying compatible with other applications that use NEPOMUK Ontologies.
Therefore, it perfectly fits the needs of a Semantic Desktop Search application. We use the
NEPOMUK Ontologies to design two domain-specific ontologies on top of it. The Publications

15NEPOMUK Ontologies: http://nepomuk.semanticdesktop.org/ontologies/.
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Ontology models scientific publications16, which is primarily used by our Scientific Publications
extraction module. The second ontology contains a vocabulary that is specific to our prototype
implementation17 and is primarily used internally.

3.4.4 Metadata Extraction Process

On Desktop PCs, content and metadata are stored in
a multitude of files and other data containers, using
a particular content type18. Each of these content
types has to be processed in a specific way to ac-
cess content and metadata. The same content type
can be reused in different locations, for instance, the
text/plain content type can be found in simple
.txt files, in e-mail messages or attachments. The
image/jpeg content type can be found in .jpg and
.jpeg files, as well as in e-mail attachments. Therefore, the extraction process can reuse content
type specific implementations for different containers (files, e-mail, zipped archives).

Existing Desktop Search tools (see Section 3.2) extract flat metadata as attribute-value pairs
for files, e-mails and other Desktop containers. Such attribute-value pairs provide, for instance,
the name or size of a file, the author or title of a document or e-mail, and so on. These can
easily be transformed into structural data, where the entity these tuples refer to is the subject, the
attributes are properties, and values are literals. These metadata are here called flat, since they do
not link to other resources. A Semantic Desktop Search tool in addition extracts relations among
entities, i. e., file-folder structure, e-mail attachment-store-as-file links, e-mail reply-to relations
as well as authorship links to the actual person entities (and not only persons’ names).

A primary design principle of the metadata extraction phase is, in contrast to the metadata en-
richment phase described later on, that for extraction only the data item being currently processed
is used in order to generate metadata. In this phase, there is no read access to the RDF metadata
that was previously generated and is now stored in the repository. Any metadata generation that
requires existing knowledge from the repository is postponed to the metadata enrichment phase.
This decision improves performance, which is important at this phase, and simplifies the archi-
tecture. The Metadata Filters are light-weight applications that are given the data item to process.
They do not need to implement means to access the repository, but simply stream their metadata
to the Beagle++ system via IPC methods.

For our particular Semantic Desktop Search prototype implementation, we created the follow-
ing metadata extraction modules. These extract complex metadata as soon as the Content Filters
have finished. This allows to integrate the output of both types of filters, and to nicely reuse the
large number of existing Content Filters.

16Publications Ontology: http://beagle2.kbs.uni-hannover.de/ontology/publications.
17L3S Ontology: http://beagle2.kbs.uni-hannover.de/ontology/l3s.
18The Internet Assigned Numbers Authority (IANA) lists around 1,200 distinct content types under http://

www.iana.org/assignments/media-types/ (15.07.2010)
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Web Cache. The cache of Web browsers store web pages visited by the user. Extracting
the link structure of these pages allows for better ranking of web pages after keyword search,
as the well-known PageRank algorithm has shown [141]. Further, visited links are especially
highlighted in the Web browser so that the user easily remembers past trails of recent navigation.

File Paths. Users invest a significant amount
of cognitive effort in organizing files into a hi-
erarchical classification. However, current Desk-
top Search systems hardly take this structure into
account. This classification, however, has some
drawbacks. The user has to classify files when
she stores them, anticipating the situations when
they might to be remembered [105, p. 24]. For ex-
ample, pictures taken in Hannover might arguably
be stored in a folder called “Hannover” or “Ger-
many”. However, later, the user might only re-
member one of the two keywords, depending on
her context, which would render the query to fail
finding the images if the wrong keyword is used,
though both have a clear semantic relation.

The PathAnnotator extractor annotates files with terms occurring in their file path. Therefore,
an image stored in the folder “Hannover” can be found with that keyword, though it does not
appear in the image file name itself. Further, each such term is expanded by semantically relevant
terms like synonyms, hyponyms or hypernyms, as provided by WordNet [119]. This allows for
finding images stored in the “Hannover” folder by the keyword “Germany”, simply because
Hannover is located in Germany.

E-mails. E-mails provide a lot of structured in-
formation about people, their e-mail addresses,
and their communication with other people. An e-
mail sent as a reply to another e-mail refers to that
other e-mail. With such structured data at hand,
queries can be articulated that restrict keywords
to appear in e-mails that were sent (maybe as a re-
ply) to a particular person. The person herself can
be defined by keywords or even structural infor-
mation like affiliation. As e-mails are processed
by our extractor, a network of people, their e-mail
addresses, e-mails sent, received and replied to, as well as corresponding attachments is created.
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Scientific Publications. In the research community,
publications such as conference or journal articles rep-
resent the main information source. These publications
form a network of authors, conferences and related work
via co-authorship, published-at, and citation relations, re-
spectively. Today, such publications can most easily and
quickly be found on and retrieved from the Web.

During the process of developing a Ph.D. thesis, one
downloads and successively skims, reads or thoroughly
studies thousands of such publications. Remembering
that something relevant was read before is easier than re-
finding the actual publication. Using the network between publications matching a query, sim-
ilarly to the PageRank algorithm [141], relevant publications, authors, or conferences can be
found by the system. Further, assuming only publications relevant to the user are downloaded,
conferences and authors that those publications frequently link to are more relevant than others.

The Scientific Publications module extracts the above mentioned metadata from publications,
which integrate into a large network. This module uses data from the DBLP database on Com-
puter Science publications19, hosted and enhanced at our institute towards Faceted DBLP20.

3.4.5 Metadata Storage and Indexing

Metadata generated in the previous phase are imme-
diately stored in the central RDF repository. Due
to the use of ontologies and the resource identifi-
cation strategy discussed in Section 3.4, the graph
fragments of each filter integrate into one large in-
terconnected graph. For the full integrated metadata
graph see Figure 3.6 on page 48. There, the example
metadata fragments shown in Sections 3.4.4 and 3.5
are shown in one figure. Each resource that is part of
multiple metadata fragments integrates these fragments into one RDF graph.

In Beagle’s infrastructure, all extractors store their extracted metadata in individual indices.
This architecture clearly follows the information silo paradigm introduced in Section 2.2, which
we aim to overcome while keeping as much original code untouched as possible. Our sys-
tem firstly transforms the extracted metadata originally encoded in Lucene documents into RDF
graphs to be stored in the central repository. This transformation reuses the unique identifier of
the resource the metadata are extracted from as the subject URI of all generated RDF state-
ments. For each <attribute,value> pair of the metadata, a statement is created where the
predicate reflects the attribute, and object the value. This transparent transformation is
depicted in Figure 3.5.

19The DBLP citation database: http://dblp.uni-trier.de/
20Faceted DBLP: http://dblp.l3s.de/.
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Figure 3.5: Transparent mapping between an IR (Lucene) and RDF model (graphs).

The centralized store is transparently integrated into Beagle’s infrastructure, i. e., the store
mimics the individual indices of the extractors. With this approach, we can reuse the extractors
without any modification. Since the extractors perform particular actions during search, we can
also reuse those implemented actions. The file system extractor, for instance, transforms an
extractor-specific id of files into actual paths. Such activities require significant integration effort
when migrated into a single search component. In our approach, this tested code can be reused.

However, from an architectural point of view, a single search component working on the cen-
tral repository would certainly be a better solution. We therefore see such a central search com-
ponent as a potential performance improvement and our system’s performance as an upper bound
for achievable performance, which is an acceptable property of a prototypical implementation.

Finally, existing extractors can only find resources that Content Filters extracted. These are,
for example, files for the file system extractor or e-mails in case of the e-mail extractor. Even
though they also employ Metadata Filters to extract complex RDF graphs, they are not aware of
these metadata. Examples of such RDF graphs are resources as people or conferences extracted
from files or e-mail attachments. Again, significant modification of the original extractors would
have been necessary. Instead, for all those new resources we further added an extractor module
that provides the search client with all those new resources matching the user’s query.

As our central data store, we use the NEPOMUK RDF Repository21 [123, Sec. 5.1] that I
developed in cooperation with other partners within the NEPOMUK project [131]. It is a Java-
based, stand-alone server accessible via the OSGi22 and SOAP23. Once the RDF data are added to
the central store, it provides means for quick access to the data using standard query languages.
For further details on the used implementation, please refer to Chapter 5 on page 69.

21The RDF Repository of the NEPOMUK project: http://dev.nepomuk.semanticdesktop.org/
wiki/RdfRepository.

22OSGi Alliance: http://www.osgi.org/.
23SOAP Specification: http://www.w3.org/TR/soap/.
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3.5 Metadata Enrichment — Creating New Knowledge

As we saw, during the metadata generation phase,
small fragments of metadata are extracted from data
containers. At that stage, only knowledge that is lo-
cally available in the isolated context of the particular
container is used for performance reasons. Any ac-
tivity that requires knowledge beyond that scope is
postponed to the subsequent phase of metadata en-
richment.

Now at this phase, having the global knowledge at
hand, more knowledge can be derived from the composition of the single fragments. During the
previous section, we already mentioned some possible sources of additional knowledge. We cre-
ated four metadata enrichment modules: Firstly, we use the ontologies defined earlier to entail
new metadata that is implied by the existing knowledge. Secondly, we apply domain-specific
heuristics to reconstruct saved-to links from e-mail attachments to files. Thirdly, we aim at iden-
tifying resources that have distinct ids that actually refer to the same entity. Finally, resources are
scored with a rank representing their global importance within the network. These precomputed
global scores are later used to improve ranking during search.

All these enrichment modules are executed asynchronously from the extraction module. Its
execution can be triggered following two strategies. Firstly, it can be run in a periodic manner.
Alternatively, it can be executed when significant changes are done to the data store. Since
the latter requires a notification mechanism that is not available in mature data stores, and the
implementation of that feature is out of scope of our work, we opt for the former approach.

Reasoning for new Knowledge Semantic data stores allow for reasoning new knowledge
from existing one. Fundamental logic rules, the axioms, are used to make logically valid knowl-
edge explicit that is implicitly given by the data. Such axioms exist in RDFS and OWL. The
former allows for sub-class and sub-properties relations only, where reasoning provides the tran-
sitive closure of these hierarchies. The latter allows, among others, for defining relations of your
own ontology being transitive, (a-)symmetric, (ir-)reflexive, and (inverse-) functional (see Sec-
tion 2.1 and [133, Sec. 2.3.2]). The more inferencing capabilities of OWL come with higher
computational effort which are sometimes not guaranteed to come to conclusions [132, Sec. 5].

The reasoning process can be performed in two different phases in the data store. It is either
performed while adding new data to the store, which are then entailed so that the store contains
the explicit and implicit knowledge. Alternatively, the inferencing is performed while querying
the explicit knowledge only. The former reduces the indexing performance measured in indexed
statements per second, but increases the storage requirements. The latter omits indexing overhead
and preserves storage capacity but reduces performance of query evaluation.

In the work done within the scope of this thesis, we focused on RDFS inferencing at indexing
time, providing us a limited amount of reasoning, but with acceptable computational overhead.
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Attachment Linking With the act of storing an e-mail attachment
to disk as a file, its rich context — the sender, the e-mail message that
refers to the attachment, the prior e-mail asking for that file — is lost.
These semantic links are of value for the user [181], but she has to
make herself aware of them later on.

Our attachment linking module reconnects the e-mail attachment
with the file on the disk, to allow for exploiting these semantics for
searching and browsing. For this, the module searches the data store
for files and e-mail attachments that have the same file size and file
extension, with the file’s date of creation being after the arrival time of
the e-mail. The file names of the file and the attachment are compared for string similarity24.
This is based on the usual behavior to change the file name only slightly when stored to disk.

A more reliable solution would certainly be an extension of the e-mail application to explicitly
create that semantic link when the user performs the action of storing an attachment as a file. For
the sake of compatibility with different e-mail clients, we decided for the presented heuristics.
However, as we discussed in the Chapter 2, it is desired to open up the information silos of
classical monolithic applications to participate in a Desktop wide semantic infrastructure, since
this would much more easily create high quality semantic data.

Entity Reconciliation Our e-mail and
publication filters generate entities referring
to people. The former uses the label of the
e-mail address, the latter uses authorship in-
formation of publications. Due to multiple
e-mail addresses used by the same person,
or different ways of writing a person’s name (including typing errors), we end up to have multi-
ple entities in the data store that actually refer to the same person.

To exemplify such a situation, lets assume a user stores two publications from "Moore" et al.
and "Moor" et al., whereas the first author is actually the same one that is once mis-spelled.
The co-authorship and reference network of the publications may provide sufficient evidence to
conclude that those two instances actually refer to the very same person.

The task of Entity Reconciliation (also called Reference Reconciliation [189]) is to identify
those resources that are very likely to be identical. The decision of a resource to be identical to
another is based on the similarity of the literals of both resources, and the similarity of referenced
resources. This hypothesis is tested using a Bayesian Network of beliefs [101].

Global ObjectRank Web search engines have proven that the query relevance of documents
yields better ranking when combined with structural properties of the documents [12, Sec 13.4.4].
In order to have our Semantic Desktop Search system to provide a better ranking, we employ
a similar technique to encode connectivity of resources in a score and combine this with the
traditional ranking of full-text search, as we show in the following.

24The SecondString library: http://secondstring.sourceforge.net/
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On the Web, the link structure between documents is used as a voting system [111, 141]. A
Web page which many pages link to has a large sum of votes. The weight of each page’s vote is
reciprocal to the number of its outgoing links, and is proportional to the sum of votes it has itself.

A similar but in a sense two-phased voting system is the HITS approach [108,111]. Here, two
weights are computed that mutually reinforce. One is the authority weight of a page that is the
sum of the hub weights of all pages that point to it. The hub weight is in return the sum of the
authority weights of the pages pointed to. An authority Web page for a specific query is very
likely to provide relevant information w. r. t. the query, whereas a hub Web page provides links
to good authorities. A fundamental property of HITS is that it is not computed on the entire Web
graph but only on a sub-graph surrounding the result of a user query. These pages are relevant for
the topic of the query. HITS then finds hub and authority pages in that sub-graph. We integrate
a similar PageRank-based approach into Desktop Search in Section 3.6.1.

A different interpretation of the PageRank scheme is the Random Surfer Model [141], which
bases on a simplistic model of a Web surfer visiting Web pages. This model assumes that a Web
surfer follows links of a Web page with even probability or performs a random jump (telepor-
tation) to any other Web page on the Web. In this Markov chain [111], the probability that a
random surfer is located at a given page at any time is proportional to the probabilities that the
surfer was located at pages linking to this page in the previous step. In other words, the score of
a page is proportional to the sum of the score of all pages linking to it.

This method provides an importance score for each Web page based on its connectivity. Simi-
larly, ObjectRank [13] provides an importance score for relational data. In contrast to Web pages,
relational data have typed links where different types may transfer votes with different weight,
here called authority. ObjectRank defines an Authority Transfer Schema Graph that extends the
schema by link type weights to control how importance propagates along the structure.

A connectivity matrix A = (aj,i) is a column-stochastic matrix generated from the actual data
where each entry aj,i holds the weights of the links from resource i to j. Then, the PageRank
formula is applied where authority ri of resource i is computed as the sum of all resources’
authority that are connected to it, weighted by the connection weight aj,i. Having r being the
vector of resources and A the adjacency matrix, this recursive relationship is the solution of the
linear system of equations

r = d ·A · r + (1− d) · e (3.1)

The solution r is computed using the power method [111, Sec. 5.1]: r0 is set to I = (1, . . . , 1)T ,
and rk+1 : k ∈ N is computed iteratively with

rk+1 = d ·A · rk + (1− d) · e (3.2)

where usually d = 0.85 [111], until rk and rk+1 converge, i. e., |rk+1 − rk| < ε.
To apply this method to our system, we annotated our ontology with an authority transfer

schema. Then, a structural importance score is available for each resource, which we use to im-
prove relevance score during search. The ObjectRank only needs to be computed on significant
metadata changes, which usually happen less frequent than search is performed.
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3.6 Metadata Search

Now that we have set up a semantic infrastructure that extracts and indexes user’s data in a
structured way, we can provide the user with search that exploits this structure. The user can
express the structure or semantics of her information need in two principle ways:

Implicit Semantics. The user expresses search criteria implicitly, using keywords or natural
language. The search system interprets this unstructured query and identifies the intended
meaning. Usually, all possible structured interpretations constitute to the query result.

Explicit Semantics. The user explicitly states the semantics of her query, thus reduces the
ambiguity of the query and increases the relevance of matching results w. r. t. her intent.

To study the benefits of Semantic Desktop Search, we opt for explicit semantics to give a user
full control over her query’s meaning, while enabling us to measure benefits introduced solely
by semantics. Therefore, we extended the keyword search by explicit semantics. Keywords can
be bound to particular properties like the publication title or e-mail body. By doing this, the
type of resources the user is searching for also gets restricted. To reduce the burden of typing
lengthy predicates to link keywords to, we employ mappings from special terms to their URI
representations. For instance, the term "author" maps to the authorship property of a publi-
cation desktop:desktop_document_author25, and "name" maps to name property of
a person desktop:person_name. Furthermore, properties can be aligned to paths, such that
keywords can match in a defined distance from the actual resource being searched for. As an
example, the keyword "author:name:john" only matches publications that have an author
whose name matches "john".

Such a query can easily be translated into a structured query in SPARQL. Please refer to Chap-
ter 5 on page 69 for details on notation of keyword search in SPARQL and its efficient evaluation.
In Chapter 6 on page 103, I investigate the performance of keyword search of competitive se-
mantic data stores. In a next step, retrieved results are processed to improve their rankings and
include results that are similar to the matching ones. Finally, results are visualized to the user.

3.6.1 Incorporating ObjectRank into Ranking
Results matching a keyword query get a textual result-to-query similarity-based score. In our
case, this is the TF×IDF score provided by Lucene. However, this does not take into account the
connectivity of the results within the whole metadata graph. This context is of particular value
to the user, as it has been shown in [181]. The context where certain things occur helps users to
remember and find them. For this, we combine the TF×IDF value with the ObjectRank R:

R′(r) = R(r) · TFxIDF(r), (3.3)

where r is the respective result. Then, only those results with a high relevance to the user query
(high TF×IDF value) and high connectivity in the metadata graph get a high overall score.
25Prefix desktop: refers to http://beagle2.kbs.uni-hannover.de/ontology/desktop#.
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Local ObjectRank

The ObjectRank computation given in Equation 3.1 further allows for query-dependent scores.
The e vector models the probability of the random surfer to teleport to specific resources. When
only one resource is given, the result ObjectRank score reflects how authority propagates from
the resource through the network, or in other words, how important it is to all other resources.

Given a set of resources to teleport to, the resulting scores are the linear combination of im-
portance scores of all resources in that set [92]. We use the full-text search scores of matching
resources as the e vector to compute a local, query-dependent ObjectRank. Similar to the Ran-
dom Surfer Model, this models the probability that the user visits a particular resource not only
by search but also by navigation from any existing resource. Nodes (e. g., a conference or an
author) that are connected to multiple search results (e. g., publications) may gain a larger score
than the respective search results as they accumulate propagated authority from multiple results.
This behavior allows to identify resources that are relevant for certain search results but are not
part of the search result set themselves.

3.6.2 Extension by Similar Results

In order to also provide results that actually did not match the query, but are very similar to
matching results, we incorporate the similarity information derived by our entity reconciliation
module. This, for instance, provides results that contain a misspelled name, where the correct
name was used as a keyword. For this, the semantic store is queried for all similar results of the
original result set. The score of those similar entities r(s) is computed based on the score of the
respective matching result r(m) and the similarity sim(m, s) between the matching resultm and
the similar result s:

r(s) = r(m) · sim(m, s) (3.4)

3.6.3 Visualization of Search Results

The main challenge in visualizing search results is to
present a large number of results in a clear and well-
arranged way. The user must not be overwhelmed with
the full amount of available information. The purpose of
search result visualization is to provide the user with an
overview of results that allows for a quick grasp. There-
fore, only a very limited amount of information can be
presented for each result (see Figure 3.7). Usually, these
comprise an icon or preview image, a very short textual value uniquely identifying the result,
and a longer more descriptive textual value.

Numerous systems and interfaces that deal with finding and displaying Desktop resources
exist. Their approaches can be categorized along two orthogonal dimensions: static vs. inter-
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Figure 3.7: Search result visualization by Google Desktop Search
TM and Gnome Beagle .

active26 [144] and graph-centric27 [4] vs. node-centric28,29. The first classification refers to the
output of the visualization tool; whether it is fixed or can be manipulated by the user. The latter
refers to the proportion of the displayed graph; whether it is the entire graph or only a fragment.

HP Labs developed An Experimental RDF Graph Visualizer which shows the surrounding
sub-graph of a resource in a static node-centric way, but provides browsing and full-text search.
The visualizer is running as a servlet using Scalable Vector Graphics (SVG) and is therefore plat-
form independent and easy to integrate into other applications. However, on startup, it first has to
read the entire graph into the main memory which prevents it from being used for large graphs.
Beagle++, which uses an enhanced version of this tool integrated into the Beagle Search inter-
face, does not face this problem, since we always visualize smaller metadata sub-graphs. Other
systems like OntoRama [72], RDFSViz30, OntoViz31 are specifically designed for visualization
of ontologies, which is too restricted compared to our purposes.

Depending on the type of result, different pieces of information are to be used for visualization.
For an e-mail, for example, the subject, the sender, and reception date are candidates, whereas a
PDF or word processor file provides title, last modification date, and preview thumbnail.

The visualization of Semantic Desktop Search results in contrast turns out to be more difficult.
The generic nature of the RDF framework allows for an arbitrary number of different result
types. From an implementation point of view, this cannot be handled in a hard-coded fashion
anymore, i. e., by defining the visualization for each result type. The visualization rather has to
be as generic as its data. We therefore decided for a solution where the search results themselves
define how they are to be visualized best.

26RDF Gravity: http://semweb.salzburgresearch.at/apps/rdf-gravity/.
27SIMILIE Welkin: http://simile.mit.edu/welkin/.
28Fenfire: http://fenfire.org/.
29Fentwine — A navigational RDF browser and editor: http://www.w3.org/2001/sw/Europe/

events/foaf-galway/papers/pp/fentwine/.
30RDFSViz: http://www.dfki.uni-kl.de/frodo/RDFSViz.
31OntoViz: http://protege.cim3.net/cgi-bin/wiki.pl?OntoViz.
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The extraction modules are responsible for annotating those metadata of extracted resources
that are useful for visualization. For this we use the rdfs:label and rdfs:comment prop-
erties as the only textual metadata for visualization. Either, these properties are directly generated
by the extraction modules, or the ontology used by the modules defines which properties are to
be interpreted as rdfs:label and rdfs:comment via the sub-property annotation. Then,
the inference step generates the required properties used for visualization.

Further, generic visualization information like a type-specific icon can directly be defined in
the ontology which renders an annotation of each individual result unnecessary. The Fresnel
vocabulary32 allows for more complex visualization annotations than our prototype requires.

All classical Desktop Search systems provide the “open the result“ methodology. With this,
a particular search result can be opened with the appropriate application to further inspect or
use the result. In contrast, the Semantic Desktop provides new kinds of entities that cannot be
accessed or “opened” in the same sense. For instance, a scientific conference could be found by
the search application, which occurs in multiple publications stored on the Desktop of the user.
These rich metadata have to be made available to the user. Providing the user with an equivalent
action would make such new resources accessible and more tangible to the user.

Figure 3.8: RDF Metadata visualization of search results.

We faced this challenge with an RDF graph visualization tool which is used to “open” any RDF
resource. It bases on the HP Experimental RDF Graph Visualizer [167], extended by features
and significant performance improvements. It visualizes the surrounding RDF metadata graph
and allows for arbitrary browsing. With that at hand, the user can explore the meaning of results
within the large network of metadata. Figure 3.8 depicts such a metadata graph visualization.
Circles denote resources. The left-most resource is the one being “opened”. It is connected to
other resources and textual values, illustrated by lines. By clicking on another resource, that one
becomes the left-most node, so that its surrounding network of metadata is shown.

32Fresnel Vocabulary: http://simile.mit.edu/wiki/Fresnel.
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3.7 Experiments

For the evaluation of our Semantic Desktop Search engine Beagle++, we compare its search
results to those of its baseline system, the Gnome Beagle Desktop Search engine. With this
comparison we directly see the enhancements introduced by semantifying an existing Desktop
Search infrastructure.

We employ a user study where human judges rate the relevance of results provided by the eval-
uated systems. In a second experiment, we measure the performance of indexing and querying
user data.

3.7.1 Data Set Description
For such an evaluation, a data set is required that exposes realistic characteristics of user Desktop
data. Such data are highly personal, which poses two challenges:

Privacy. The data stored on a user’s Desktop underlie certain privacy concerns. These concerns
do not only regard the user herself, but also everyone else who contributed to the user’s
Desktop data like colleagues sending e-mails and documents to the user. Usually, users
hesitate to publish such private data.

Personalization. User’s data are highly personalized. It comprises a dense collection of data
highly relevant to the interests and expertise of the user. A different user might comprise
completely orthogonal data. Targeting at the user task of searching Desktop data, only the
user who owns the data can query them with meaningful and realistic queries.

Primarily, due to the privacy issue, a publicly available Desktop data collection is not available
and difficult to create and publish. Alternatively, a synthetic data set and queries could be gen-
erated. However, such an artificial setup would introduce additional implications on the quality
performance of our evaluation setup, which we want to avoid.

We opt for the following strategy. Colleagues kindly devote themselves as volunteers and
contribute Desktop data, as well as queries that reflect their everyday search, which therefore
match their personal data. The users are allowed to pick the level of privacy of their data that

User E-mails Publications Contacts User E-mails Publications Contacts
#1 30,627 0 0 #7 218 95 0
#2 4,423 869 0 #8 0 236 31
#3 833 236 0 #9 1,034 31 52
#4 3,820 266 10 #10 1,068 157 82
#5 2,012 112 0 #11 1,167 426 0
#6 217 28 0 #12 48 452 0

Table 3.1: Resources as contributed by users to the L3S Desktop Data Collection. In total, there
are 45,467 e-mails, 2,908 publications and 175 contact information.
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they were willing to contribute. All participants sign an agreement that only the participants get
access to the data, so that they have a particular advantage in participating in this data set. Further,
no data is allowed to be read by humans, except for debugging purposes. Therefore, major parts
of the collection are only processed in an automatic way, as, for instance, done by our evaluation.
Based on this agreement, twelve colleagues contribute personal Desktop data, as summarized in
Table 3.1. The data collection comprises 48,550 items, consuming 8.1 GB of data [47, 48]. In
addition to the data set, users further provide appropriate queries. We specifically ask for two
queries for each of these types:

Clear Queries. Pure keyword queries that have a clear meaning, e. g., "desktop search".

Ambiguous Queries. Pure keyword queries that have multiple meanings, e. g., "beagle".

Structural Queries. Pure structural queries, e. g., e-mails sent by <minack@L3S.de>.

Hybrid Queries Queries containing keywords and structure, e. g., e-mails sent by minack@L3S.de
containing "desktop search" in the e-mail body.

3.7.2 System Quality and Performance Evaluation
In our experiment, we evaluate three systems with these 96 queries: Beagle , Beagle++ , and
Beagle++ with ObjectRank. The difference between the latter two is that one does not employ
the ObjectRank scheme whereas the other uses ObjectRank scores to re-rank search results. The
users are asked to distinguish the top five results of their personal queries as being relevant or
irrelevant. In Table 3.2 and Table 3.3, average values for precision at top-k (P@k) are given, i. e.,
the precision among the top-k results. This is the number of relevant results in top-k divided by
k. We measured k = [1 . . . 5]. Note that one outlier is removed from the analysis of the results,
because the subject deviates by more than 70% from the average. Post-experiment investigations
showed that the user rated the relevance of some results incorrectly.

In the second phase of our experiment, we target at the indexing and querying performance
of Beagle++ and compare it to Beagle. Here, we measure the time that the system requires to
index the data set of a user. Further, we consider the querying performance to be the time from
submitting a query to the system until the last result is retrieved.

3.7.3 Results and Analysis
Our user evaluation show that Beagle++ outperforms the original Beagle system in all cases.
This can be explained twofold. Firstly, metadata are primarily extracted from files that are highly
important to the user, for instance, PDF files, e-mails, or word processor files. For other files
like system help documents or library files, only a minimum of metadata is extracted. Clearly,
those files that have metadata available can much easier be found than other resources. Secondly,
Beagle++ produces longer result lists, because more resources like people, publications or con-
ferences are extracted that now can also be found. Comparing ambiguous to clear queries, the
performance of Beagle++ degrades a little bit. However, it is still better than Beagle.
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Our enhanced ranking using ObjectRank further improves the quality of ambiguous and pure
metadata queries. In these cases, contextual information seems to be of importance to identify
highly relevant results. The context of search results seems to add noise for clear queries which
degrades the quality. However, for large values of k, our Beagle++ system with ObjectRank still
outperforms its baseline system Beagle.

The poor performance regarding hybrid queries can be explained that the high expressiveness
of these queries restricts the focus of results to such an extent that if no perfect results exist, fewer
similar results are retrieved so that only smaller precision scores can be achieved.

Query type P@1 P@2 P@3 P@4 P@5
B B++ B B++ B B++ B B++ B B++

Clear 0.85 0.91 0.73 0.89 0.68 0.89 0.66 0.89 0.67 0.87
Ambiguous 0.78 0.82 0.72 0.84 0.74 0.83 0.69 0.84 0.69 0.83

Table 3.2: Precision at top one to five for Beagle (B) and Beagle++ (B++).

Query type P@1 P@2 P@3 P@4 P@5
B++ B++

OR B++ B++
OR B++ B++

OR B++ B++
OR B++ B++

OR

Clear 0.91 0.72 0.89 0.77 0.89 0.79 0.89 0.79 0.87 0.78
Ambiguous 0.82 0.82 0.84 0.86 0.83 0.88 0.84 0.86 0.83 0.83
Structured 0.92 0.92 0.85 0.88 0.83 0.89 0.83 0.88 0.83 0.87
Hybrid 0.68 0.77 0.73 0.73 0.74 0.70 0.72 0.65 0.67 0.63

Table 3.3: Precision at top one to five for Beagle++ (B++) and Beagle++ with ObjectRank (B++
OR).

Our performance evaluation results in Table 3.4 shows that our extension adds significant effort
to the indexing and querying phase. However, indexing is performed only once; more precisely,
when the user starts the Desktop Search engine the first time. Afterwards, files are indexed
incrementally, whenever a file is modified, deleted, or created. Further, the indexing happens in
the background with minimal priority on I/O operations. This minimally obstructs the user in
using the Desktop computer. Therefore, the increase of indexing time is of low significance.

In contrast, the performance of the query phase is of high importance. After submitting the
query to the system, the user waits for results. Here, the average response time of 2.2 seconds
is still at a reasonable level. A significant proportion of the delay is caused by the coupling of
Beagle++ and the semantic store provided by NEPOMUK, and not by the search itself. A tighter
integration of both parts would take advantage of existing performance improvement potential.

System Indexing Querying avg. results
Beagle 39.21 m 0.348 s 5.714
Beagle++ 149.24 m 2.192 s 18.156

Table 3.4: Average indexing and querying time for Beagle and Beagle++.
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3.8 Lessons Learned and Public Perception

In the following we recapitulate the lessons we have learned, the open challenges that our proto-
type revealed, as well as the perception of our project in the Open Source community:

• By extracting complex metadata from Desktop data, we can improve Desktop Search in
quality while adding a reasonable amount of effort to the indexing and querying phase. We
can improve the user satisfaction for the task of Desktop Search compared to a baseline
Desktop Search engine.

• We can further see that with a proper unique identification strategy and shared ontologies,
a modular metadata extraction framework can provide fragments of complex metadata that
nicely integrate into a central Semantic data store.

• We learn that with the addition of expressiveness — as hybrid queries provide it — the user
has to cope with a more complex query articulation process. Here, the user has to be
supported in order to construct valid and sensible queries. The articulation of a structured
query using a text field is very limited and recognized as cryptic.

• With the construction of more complex hybrid queries, the evaluation of these queries
expose performance problems of state-of-the-art semantic data stores. Firstly, further im-
provements of the performance into this direction are needed. Secondly, developers that
aim at creating semantic applications need to identify the semantic data store that best
fits the prospective work load induced by the user and applications. For this, means are
required to make semantic stores comparable.

• In situations where the number of results for a query exceeds the cognitive capacity of the
user, possibly important results do not come to the user’s mind if they are too far down
the result list and results recognized by the user are quite similar. Then, the user does not
expect other results to come, loses interest and abandons the results list too early. Search
result diversification is an effective means to avoid this risk of query abandonment, which
should also be incorporated into semantic search.

We have been supported in our opinion that semantification of Desktop Search improves user
satisfaction and attracts user interest at several occasions.

The Gnome Beagle project. We based our Semantic Desktop search infrastructure on the
Gnome Beagle project. As we successfully proceeded with our implementation, the devel-
opers of this open source project approached us to integrate some of our achievements back
into their project. We could extend Beagle to provide a semantic query end-point so that it
can be queried as if it was an RDF store. For this, we developed a transparent translation
between the Lucene documents and RDF resources serialized into RDF statements.

Tracker The Semantic Desktop search and storage project MetaTracker (also known as Tracker)
is based on Semantic Web technologies as it uses RDF and NEPOMUK ontologies. Our
Beagle++ predates this open source community effort.
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KDE A part of the NEPOMUK project was the active deployment of Semantic Web technolo-
gies into the KDE open source community33. Two years after the successful end of NEPO-
MUK, the KDE project continues to use NEPOMUK technologies and software. A se-
mantic infrastructure is installed on every KDE Desktop today. Evidently, the open source
community continues the semantification efforts stimulated by our activities in the NEPO-
MUK project and by developing the Beagle++ prototype.

Further information on the Beagle++ Semantic Desktop search infrastructure can be found at
the Beagle++ website34. Our website has been visited by 1,500 distinct IP addresses over the last
year (as of December 1st, 2010), excluding web search engine crawlers. Our Beagle++ system
has been downloaded in that period of time almost 125 times. Thus, the interest in our system
is still at a significant level, though the last version was released almost three years ago. A live-
captured demo was uploaded to YouTube35, which has been watched over six thousand times.

3.9 Conclusion and Outlook

I proposed a flexible architecture for a Semantic Desktop Search engine and presented its imple-
mentation in the Beagle++ system. This architecture allowed several L3S members to implement
and easily integrate their algorithms and semantic applications into this semantic infrastructure
to successfully develop a prototype implementation of their research work. Further, a number of
other research projects could be provided with Semantic Desktop data [47–49, 64, 177, 178].

Our Semantic Desktop Search implementation builds upon the open source Beagle system. I
provided details about the new components: the Metadata Filters, the central RDF Repository,
the Metadata Enrichment Components, its pool of enrichment applications (Entity Identification,
ObjectRank and Attachment-File Linker), as well as the RDF Visualizer.

Finally, we have achieved a significant impact on the open source Desktop Search community
regarding the introduction of Semantic Web Technologies. Besides the Gnome Beagle project
that Beagle++ bases on and the KDE Desktop, another Desktop Search project Tracker was initi-
ated that builds on NEPOMUK ontologies and Semantic Technologies. Additionally, our demo
video and the Beagle++ website still experiences vivid attention.

Open Challenges The introduced Semantic Search engine is a semantic application that
uses semantic technologies and imposes particular requirements on these technologies. From the
implementation and usage of this prototype, I identified the following challenges that Semantic
Search poses to state-of-the-art technologies used in the prototype. In the subsequent chapters of
my thesis, I face these challenges by improving several fields of Semantic Search, in particular
the following:

33KDE 4.0 Semantic Desktop Search and Tagging: http://www.w3.org/2001/sw/sweo/public/
UseCases/Nepomuk/.

34Beagle++: http://beagle.l3s.de/.
35YouTube – Beagle++: http://www.youtube.com/watch?v=Ui4GDkcR7-U.
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Structured query construction: The articulation of structured queries proved to be difficult
for users in order to search their personal structured data (knowledge) in a structured way.
Chapter 4 elaborates on a graphical structured query articulation approach that enables
users to easily construct structured queries combined with keywords (hybrid queries).

Evaluation of complex hybrid queries: Once being articulated, the system has to evaluate
hybrid queries against the stored structured data. In case of a particular class of hybrid
queries, current stores have difficulties to efficiently evaluate them. In Chapter 5, I present
improvements in the area of hybrid query evaluation.

Benchmarking hybrid queries: Though a number of semantic stores exists that support
evaluation of hybrid queries, their performance with respect to particular types of struc-
tured queries usually varies. I present the first full-text search benchmark for semantic
stores, which allows for extensive testing and comparison of semantic stores, as I will
report in Chapter 6.

Diversification of Search Results: A last improvement in the area of Semantic Search in
particular and search in general is presented in Chapter 7. The diversification of search re-
sults is known to improve user satisfaction by providing a short list of relevant and diverse
results, rather than having users to scroll through long lists of only relevant but usually
very similar results. Here, the diversification of a large number of results can be achieved
in a streaming-based approach, the first one reported to this extent in the area of result
diversification.

58



4Chapter

Semantic Query Construction

During development, experiments and usage of our Semantic Desktop search engine Beagle++,
we have observed how challenging a textual interface for semantic queries is both for query in-
terface developers and Desktop users. Consequently, we further studied means to allow users
to articulate semantic keyword queries more easily. One approach proposes possible semantic
meanings for a keyword query given by the user [127, 192]. Based on the ontology and oc-
currences of keywords, it constructs and ranks valid semantic queries. In contrast to this, we
additionally developed a graphical interface that allows users to explicitly articulate structured
queries for semantic search [107], which I describe in detail in this chapter.

We designed our graphical interface to achieve the following objectives. While constructing
queries, the user learns about the structure of the Desktop data. This is important and necessary,
since we decided for implicit metadata extraction (see Section 3.4 on page 38) where predefined
ontologies are used and the user initially does not know the structure of the Desktop data. Even
in case the user explicitly articulates knowledge — she creates her personal data model and there-
fore knows it best — our interface reminds the user of the actual structure. The main objective,
however, is to keep the query articulation free from any kind of syntax, which otherwise would
allow for a multitude of possible syntax errors in the query articulation process.

Finally, the user should not be able to construct structured queries that do not make sense
(from the ontology’s point of view). For instance, an e-mail will never have a birthplace, whereas
a person does. And a person does not have a subject, but e-mails do. Such queries would not
provide any results, as they do not comply with the ontology and data. Therefore, evaluating
them is of low value for the user. In particular, this chapter makes the following contributions:

1. I propose a formal incremental structured query construction model. This model is imple-
mentation-independent and constitutes the basis for our graphical interface.

2. Further, I present a joint work graphical user interface that implements our query con-
struction model. The interface implementation is integrated into the NEPOMUK Social
Semantic Desktop [131] [166, Sec. 2.10.2], which is available for free download1.

3. The architecture of this graphical interface allows to plug in different recommender algo-
rithms that provide the user with useful query construction steps to reduce user effort.

The remainder of this chapter is organized as follows. After a literature review of existing
visual query systems, I present a formal definition of our query construction model. The second
part of this work comprises the implementation of our graphical user interface that uses this
model. I complete this chapter with conclusions and outlook.

1NEPOMUK Eclipse: http://nepomuk-eclipse.semanticdesktop.org/.
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4.1 Related Work

A number of user interfaces for semantic query construction have been proposed in recent years.
These can generally be categorized into graphical [32, 41, 90, 155], keyword-based [3, 113, 180,
185, 196], and natural language interfaces [27, 106, 115]. While the latter are deemed to be most
convenient for users [106], these either can misinterpret queries or still require the use of proper
terminology and are thus rather controlled language interfaces. Keyword-based interfaces for the
Semantic Web [113, 185, 196] and databases [3, 180] construct possible interpretations and find
the most probable one via ranking. While this interpretation takes cognitive load off the user, it
also takes away a significant proportion of control. We, in contrast, aim at allowing people to
explicitly articulate the semantics of their information need.

Several graphical query systems exist. The first one was Query-By-Example (QBE) [198], de-
veloped in the late 1970s. Below, we discuss some significant works in this area, mainly diagram-
based systems [40] that use the same approach as we do. A remarkable early visualization ap-
proach of RDF queries was done by Harth et al. [90]. The authors sketch the piece-by-piece
construction of a SPARQL query and the possible visualization of these pieces. However, this
is rather a graphical notation than a query construction system. Due to the piece-wise graphical
translation, this notation contains the same technical complexity and terminology as SPARQL,
which we want to hide from the user in our system.

iSPARQL2 is a powerful tool to specify all kinds of SPARQL queries. However, to formulate
even a simple query, the user must know technical concepts such as variable and data type prop-
erties. NITELIGHT [156] is similar to iSPARQL. The main difference between them lies in the
visual notations adopted by each of them. Regardless of all the expressiveness of these tools,
their visual notations are not suitable for the profile of Semantic Desktop end-users.

SEWASIE [41] uses an interface closer to the mental model of users allowing them to make a
limited set of queries. Further, during the query formulation, the user is guided by a recommen-
dation system based on the ontology of the data domain. Conceptually, this work is very similar
to what we do but little conclusive due to limited information contained in the paper.

Yet SPARQLViz [32] uses a completely different approach from ours, in which the user draws
up a query through a sequence of forms. Despite the lack of empirical studies between the two
approaches (diagram-based vs. form-based query), the model adopted by SPARQLViz requires
the user to have an advanced technical knowledge because it is more focused on making complex
queries rather than providing a simple interface to do the same.

It has been identified in previous works [17, 20, 181] that a progressive modeling search ac-
tivity can provide better results than a single, static search. Yet, strong methods and interaction
mechanisms are still missing for searching the Semantic Desktop. In this work, we fill this gap
by presenting a methodologically designed interface for Semantic Desktop Search that combines
and exploits current interaction mechanisms. Our approach takes into account what the user
knows (the vocabulary and the mental model), while it respects what the user does not know (the
data structure and query languages), to finally give her what she requests.

2OpenLink iSPARQL: http://demo.openlinksw.com/isparql/.
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4.2 The Query Construction Model

The core of our graphical query interface is our query construction model. It defines what con-
stitutes a query and which constructive operations can be performed on it. We design an iterative
construction process in which each possible transition from the current query to a more complex
query can be achieved by a small set of operations.

The Query Construction Model Our query construction modelM = (Ω,Q,O) consists of
the ontology Ω, the space of all possible queries Q that comply with the ontology, and operations
O that can be performed on the queries q ∈ Q.

The Ontology An ontology Ω = (T,P, sT, sP) contains types (classes) t ∈ T, properties
(relations) p ∈ P, as well as sub-type sT and sub-property sP functions that relate types and
properties as generalization or specialization to each other. Properties connect a pair of types and
are defined as P ⊆ T×T where the property connects the first type to the second type. The sub-
type and sub-property functions are defined as sT : T → T and sP : P → P. These functions
provide a mapping from types to types sT ⊆ T×T and from properties to properties sP ⊆ P×P.
They are represented as tuples (t1, t2) ∈ sT and (p1, p2) ∈ sP. These mappings model that
t1 is a sub-type of t2 and p1 is a sub-property of p2, respectively. They can be visualized as
a directed edge from a vertex t1 to vertex t2, where all these edges form an acyclic, directed
graph. These functions are considered to contain the full transitive closure (see Section 2.1), i. e.,
(x, y) ∈ sT ∧ (y, z) ∈ sT ⇒ (x, z) ∈ sT (the same holds for sP). In summary, an ontology
Ω defines types and properties that connect these, while types and properties can relate to each
other as specification or generalization.

The Query A query q ∈ Q with q = (N,K,R, tN, tR) consists of a number of nodes N,
keywords K, relations R ⊆ N× (N ∪K), as well as functions tN : N → T and tR : R →
P. These functions provide links from nodes (tN) and relations (tR) to the ontology. Since a
query has to comply with the ontology, the possible types of nodes that are part of a relation are
restricted by the ontology, namely, the types that constitute that property. Formally, for nodes n1

and n2 of relation r = (n1, n2) the following must hold:

(r, pr) ∈ tR ∧ pr = (tn1 , tn2) ∧
(n1, tn1) ∈ tN ∧ (n2, tn2) ∈ tN

(4.1)

Under consideration of the sub-type and sub-property relations, this extends to

(r, pr) ∈ tR ∧ (pr, (tp,1, tp,2)) ∈ sP ∧
(n1, tn1) ∈ tN ∧ (n2, tn2) ∈ tN ∧
(tn1 , tp,1) ∈ sT ∧ (tn2 , tp,2) ∈ sT

(4.2)

In our query model, nodes and relations can also be un-typed. In this case, the nodes or relations
always satisfy Equation 4.2.
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Figure 4.1: The incremental creation of the query all E-Mails from a Person called „John“:
1) a single un-typed node, 2) the node is typed as an e-mail, 3) the e-mail is connected
to a person via from, 4) the person is connected via name to a keyword.

The Operations Each operation o ∈ O produces a new query out of the argument query, that
is again element of the query space: o : Q → Q. In the following, we define the operations of
our incremental query construction model, where the initial query is q0 = ({n0}, ∅, ∅, ∅, ∅).

Typing a node: otn : Q
n,tn→ Q The type of a node can be set by this operation, or, if already

set, can be changed. This operation is only valid for types that produce queries that still
comply with the ontology (see Equation 4.2).

Input: q = (N,R,K, tN, tR) : n ∈ N, tn ∈ T.
Result: q′ = (N,R,K, tN \ {(n, ·)} ∪ {(n, tn)}, tR).

Typing a relation: otr : Q
r,pr→ Q The type of a relation can be set or changed by this opera-

tion. However, it is only valid for relation types that produce queries that still comply with
the ontology (see Equation 4.2).

Input: q = (N,R,K, tN, tR) : r ∈ R, pr ∈ P.
Result: q′ = (N,R,K, tN, tR \ {(r, ·)} ∪ {(r, pr)}).

Adding a relation to another node: oan : Q
n1,n2,p→ Q This operation adds a new relation

r = (n1, n2) of type p to the query. It connects the two nodes n1, n2, where at least
one of them already has to be in N: n1 ∈ N ∨ n2 ∈ N. It is easy to show that if exactly
one node has to be in N, then this would restrict Q to contain acyclic queries only. Again,
p and the types of n1, n2 have to comply with the ontology.

Input: q = (N,R,K, tN, tR) : n1 ∈ N ∨ n2 ∈ N, p = (tn1 , tn2) ∈ P.
Result: q′ = (N ∪ {n1, n2},R ∪ {r},K, tN ∪ {(n1, tn1), (n2, tn2)}, tR ∪ {(r, p)}).

Adding a relation to a keyword: oak : Q
n,k,p→ Q This operation adds a new relation r =

(n, k) of type p to the query that connects node n with keyword k, with n ∈ N.

Input: q = (N,R,K, tN, tR) : n ∈ N, p ∈ P, k.
Result: q′ = (N,R ∪ {r},K ∪ {k}, tN, tR ∪ {(r, p)}).
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Arguably, a possible fifth operation is the removal of a relation. While the other four operations
construct queries that comprise one single connected graph, such a removal operator could create
a query with multiple connected components. Though such a query is valid, its usefulness for
users is low. Its result set can potentially explode in size since it is the permutation over the result
sets of the connected components. Such kind of a query can also be constructed by oan if none
of the nodes need to be in N already. We explicitly exclude such kind of queries.

We designed deletion as a temporal phenomenon where undoing the addition of relations suf-
ficiently allows for deletion. This is therefore a usability feature and consequently provided by
the graphical user interface (GUI) implementation.

These four operations allow for the creation of any directed labeled graph-like query, i. e.,
any possible conjunctive query, and is thus not restricted to acyclic graphs. However, our GUI
implementation will, for the sake of simpler visualization, only allow for the creation of acyclic
queries. See Figure 4.1 for an example query transition following the above described model.

4.3 User Interface

Our graphical user interface (GUI) provides the user with a visualization of the current query,
means to perform operations that extend this query, as well as an undo function. Recommenda-
tions provide possible semantic terms to extend the query that comply with the ontology. Key-
word filters allow to quickly find semantic terms in case the list of options is rather long.

We restricted the addition operation in our implementation to only connect an existing node
with a new one. Therefore, loops cannot be created, only tree-like queries can be constructed.
This simplification of the user interface should be sufficient in most cases. However, in cases
where such cycles are required, it is only a matter of extending the interface since the query
construction model natively supports loops.

The interface contains three main canvases: a construction area showing the current query, a
node/relation type list, and a relations list. The graphical representation of nodes and relations is
straightforward and similar to the modeling language. We use a box representation for the node
containing its type, whereas incoming and outgoing relations are represented by oriented arrows.
Note that un-typed nodes and relations are represented without a label. Keywords are shown as
a text field in which the user can enter the actual keyword query.

The tree-like query is represented horizontally. The initial node is the left-most root of the tree.
All paths are drawn in a depth-first manner from left to right, branching in chronological order
of their creation from top to bottom. One node or relation is always selected. Two lists provide
options for semantic extension of node types or relations, depending on the actual selection. For
node and relation selections, all allowed types are listed. For nodes only, all relations allowed
for addition are given. When the user selects a type, the selected node or relation is typed
accordingly. When a relation is clicked on, it is added to the selected node and a new node is
created.

The graphical user interface is implemented using HTML, JavaScript and Cascading Style
Sheets (CSS). These lightweight implementation technologies bring the benefit of modularity
and allow for easy design tailoring.
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Figure 4.2: The graphical user interface (GUI) for our query construction model.

Implementation

In the following, I focus on the architecture of our implementation and interesting details. We
decided for a two layer architecture which separates the presentation layer from the query con-
struction model layer. The latter layer wraps the data and its ontology, and implements the
iterative query construction. The presentation layer uses operations of the query construction
model layer to provide query construction actions to the user. It collects and forwards feedback
to the query construction layer in order to proceed to the next construction step.

This separation allows for easy plug in of different presentation layer implementations (i. e.,
Graphical User Interfaces) on top of the query construction layer. Further, the GUI does not re-
quire any knowledge about the data itself, it only knows the graphical query construction process.
The construction model in return does not care about presentation of operations, recommenda-
tions and graphical queries.
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Presentation Layer — The GUI For the implementation of the proposed interface we fol-
lowed the approach to add semantic annotations to the HTML3 code to define the behavior of
the interface widgets. Each behavior is dynamically added depending on the current state of
the query construction process. We used the Prototype4 library which allows to easily navigate
the HTML Document Object Model (DOM)5 tree, select elements by their class attribute values
and link operations to interface events like onClick or onMouseOver. This technique en-
ables us to create a very dynamic query construction interface with continuous representation,
incremental actions and feedback.

Figure 4.3: The layered architecture of our incremental query construction user interface.

Query Construction Model Layer The query construction model layer provides two ser-
vices to the presentation layer. Firstly, it recommends types and relations, secondly, it modifies
the current structured query based on the user’s action, as described earlier.

After each of these actions, the current structured query object is updated and provided to the
presentation layer, which in return updates the visualization of the query, retrieves new recom-
mendations and updates the option lists. This cleanly separates visualization and user actions
from the query construction model and the underlying ontology. The final query represents a
syntactically correct and ontologically valid SPARQL query which can then be evaluated against
the stored data.

3W3C XHTML2: http://www.w3.org/MarkUp/.
4Prototype JavaScript Framework: http://www.prototypejs.org/.
5W3C Document Object Model: http://www.w3.org/DOM/.
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Type and Relation Recommendations
The recommendation of valid types and relations is crucial for the interface to be beneficial
to the user. To control the amount of information and options presented to the user in every
construction step, good recommendations are essential. If the underlying ontology is sufficiently
large, recommendations can contain hundreds of (sub- or super-) types or relations. Scrolling
through such a long list is obviously not desired by the user.

The proposed keyword filter is a first helpful feature to handle such large collections of options.
However, reducing the number of options per step to a handy list, even if then the number of steps
for the complete query construction increases, is a desirable goal. The complete list of options for
a type (or relation recommendation) contains all super- and sub-types (super- and sub-relations).
This occasionally large list can be reduced to:

1. direct super- / sub-types

2. only types that actually occur in the data

3. closest super- / sub-types that have instances

4. only meaningful types

The sub-types and sub-relations hierarchies can be exploited to reduce the number of choices
per step. While (1) decomposes any step from one type to any of its super- or sub-types into as
many steps as there are intermediate types, (2) and (3) reduce this number to useful target types.
However, if all types have instances, this degrades to showing all super- and sub-types.

Type hierarchies sometimes contain “engineering” types that serve technical purposes, rather
than representing any meaningful concept. For instance, the PIMO ontology used for our pro-
totype (see Section 3.4.3) has a pimo:Thing type as the root of any meaningful type. It has
the super-type pimo:ClassOrThing to allow for adding the same relation to PIMO classes
and PIMO things. This technical type is clearly meaningless for the user. In generally, one can
say that the closer a type is to the root of the type hierarchy, the more likely it is to be of such
a general nature. Those types should be hidden from the user (4). However, it is not a trivial
task to detect at which level of the hierarchy the meaning degrades. For a given ontology, this
selection can be done by an ontology expert.

On top of this filtering, the order can push more relevant types to the top of the list and thus
push them faster into the awareness of the user. Such an ordering could be based on:

1. the number of existing instances per type

2. a utility estimation metric

3. the usage frequency during previous queries

The described recommendation strategies provide further room for improvement as do not
we make use of any ranking or elaborate on its potential to improve the user’s performance of
solving the task of query construction.
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4.4 Conclusion and Outlook

I presented our simple and powerful graphical user interface that allows to visually construct
structured SELECT SPARQL queries through direct manipulation. In this work, functionality
and simplicity is balanced in a way to provide the common user means to interact with the
ontology without the usual cognition load of a semantic querying tool.

The clean architecture allows for easy employment of additional sophisticated semantic rec-
ommendations to reduce user effort and increase user performance of the task of structured query
construction. A usability test for evaluating the GUI’s efficiency is considered future work.
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5Chapter

Evaluating Hybrid Queries

More and more applications use the RDF framework as their data model and RDF stores to in-
dex and retrieve their data [94]. With the help of appropriate graphical user interfaces (see Chap-
ter 4 on page 59), structural queries combined with full-text search, so called hybrid queries [28],
can be constructed by users. We agree that hybrid queries are unlikely to be articulated by lay
users [95, p. 38], but the same user might want to invest more effort in another information need
that is of more value and thus justifies higher costs. However, existing mature RDF stores expose
performance issues handling complex hybrid queries. With complex, I reference a class of hybrid
queries that contains multiple full-text search operations referring to distinct resources. Further,
such RDF stores provide only a limited set of full-text search features.

In the following, I report on my work that extends an existing RDF store with full-featured
full-text search in a generic way that can be adopted to other RDF systems [124]. Additionally,
I apply store-specific improvements that allow for more efficient evaluation of hybrid queries to
better support semantic applications [192]. My work comprises the following contributions:

1. I present means of adding full-text search semantics to SPARQL queries without modify-
ing the SPARQL syntax. This ensures that the approach uses queries that are compliant
with the W3C recommended SPARQL query language [146].

2. I report on a unified framework combining structured and full-text indexing as well as
searching RDF data, utilizing Semantic Web and Information Retrieval technologies.

3. I outline in-depth store-specific improvements achieved during implementation and usage
of the full-text search enabled RDF store used in multiple research projects [122,131,165].

In particular, these improvements contain:

An accurate cardinality estimation for statement patterns which are evaluated as range
queries over on-disk B-trees [75, Sec. 13.3.4]. The number of results such a range query
spans is estimated based on two look-ups and general statistics only.

A better join order strategy is implemented that uses these cardinality estimations and effi-
ciently approximates the optimal query plan better than the existing query planner.

The optimization of on-disk B-trees to improve performance of the most frequent B-tree
operation: range queries. This operation comprises look-ups and iterations which I opti-
mize by minimizing the number of input-output (I/O) operations and disk seek distances.

A better index selection strategy addresses the dynamic access to B-tree indices imposed
by subsequent range queries of the query plan.
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The effectiveness of these improvements is confirmed with three performance evaluations each
having a specific scope: the pure full-text search performance of the whole framework, the im-
proved on-disk index structure performance that relates to the semantic part of a hybrid query,
as well as the general performance of hybrid query evaluation. Additionally, a more comprehen-
sive comparative evaluation is performed in Chapter 6 on page 103. There, a synthetic bench-
mark specifically designed to study the performance of hybrid queries is presented and evaluated
against three additional well-known full-text search capable RDF stores. Results quantify how
challenging complex hybrid queries are to those competing systems.

The implementation called LuceneSail1 is available as free open source software and can be
used for many existing Sesame RDF storages, e. g., File-, MySQL- and PostgreSQL-based ones.
The principal concept is general enough that it can even be adopted to other existing RDF stor-
ages. LuceneSail was used in the research projects Beagle++ [122], Gnowsis [165], NEPO-
MUK [131], and several research activities [46, 64, 168]. It is further used in the commercial
software Aduna Autofocus and the news domain: ABC News2 uses LuceneSail to power many
features across the site, which as of August 2009 rose with over 200 million page views per
month to the 5th rank in Nielsen rankings of online news sites3.

5.1 Related Work

Structured query languages such as SQL or SPARQL [146] are known to provide high expres-
sivity regarding the structure of data, whereas full-text queries target at the content. Integrat-
ing full-text search (IR) [12, 117] with structured search (DB) [75] is an actively discussed
undertaking [5, 10, 43]. A lot of research has been conducted in DB fields such as relational
databases [63, 97], XML databases [57] and RDF stores [28, 195], to name only a few.

Full-text search clearly adds a large set of rich features to SPARQL, e. g., boolean, phrase,
wildcard, and proximity queries [12, Ch. 4] (see Section 5.2.1). A relevance score and so called
snippets provide that the textual context of the matching keywords can be retrieved.

While SPARQL [146] offers a high expressiveness with respect to structured queries, full-text
related queries are not well supported. There are only two features that target on textual content
of RDF graphs: regular expression and full string matching. Interestingly, none of the widely
used RDF stores support the standardized feature efficiently, i. e., with any kind of fast index
structures [11, 51]. This would allow for an early evaluation of regular expressions that poten-
tially reduce intermediate results. In contrast, this standardized feature is rather implemented
as a filter at a late stage of query evaluation, which is much easier. I believe the reason is that
regular expressions are more expressive than commonly required, thus an exhaustive efficient
implementation does not pay off. It is rather exploited for specific purposes only. In [143], for
instance, regular expressions are used to evaluate arbitrary path expressions between resources.
They are evaluated in an efficient way which, however, is limited to this particular application.

1The Sesame2 LuceneSail: http://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail.
2ABC News: http://abcnews.go.com/.
3According to e-mail conversation with an ABC News software developer on Aug 17, 2009.
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In contrast, many popular RDF stores support efficient keyword search, putting significant
effort in a feature that is not part of the W3C Recommendation. Some RDF indexing systems
even consider the combination of inverted keyword indices and statement indices as fundamental
building blocks for efficient RDF indexing [91]. This investment signifies the high demand of
Semantic Web applications for RDF stores to support full-text search or hybrid queries.

A large spectrum of RDF stores is available today. The most promising and most developed
ones have already been reviewed in several surveys. A first and general survey can be found
in [184], a more relational database-focused survey is [19]. A performance analysis of some file,
MySQL- and in-memory-based RDF stores was done in [112].

The first store employing an inverted index on literals is the RDFStore [149]. Full-text search
is incorporated into RDQL and their RDFStore programming interface. One inverted index is
maintained for all literals, together with basic affix stemming. Predicate specific full-text search
is achieved by joins, which the authors expected to be cheap since they use compressed sparse
bitmaps. There is no ranking provided and only basic keyword queries can be issued.

Yet Another RDF Store (YARS) [89,91] also uses an inverted index for all terms and provides
simple full-text queries but neither stemming nor scoring. Since there is only one index for
all literals, full-text queries specifying a predicate require one additional join operation. Like
our approach, YARS uses virtual properties, but without any feedback from the full-text search.
Furthermore, YARS uses queries in N3 notation [171, p. 72], which is not commonly done.

The University of Southampton developed 3store [88], a MySQL-based RDF store imple-
mented in C. MySQL provides a full-text index for each column, allows simple keyword queries,
boolean operators, phrase queries and some kind of query expansion4, as well as a relevance
measure. Thus, the 3store gains its full-text capabilities from MySQL, which is therefore not
general enough to be applied to other RDF stores.

An RDF storage that incorporates Lucene quite similarly to our work is Kowari [188]. When
the Lucene support is used, all literal values in queries are interpreted as Lucene queries and a
matching score can then be received. In contrast, the semantics of textual data are clearly defined
in LuceneSail due to virtual properties (see Section 5.3). Kowari introduces the Interactive
Tucana Query Language (iTQL) and implements a subset of RDQL only.

With the help of inverted indices for RDF literals, several effective solutions are available [89,
91,149]. However, these still lack lots of features provided by state-of-the-art IR systems. Exist-
ing RDF stores with full-text search capabilities either employ non-standard query languages [89,
91, 149] or the semantic of a query depends on the configuration of the RDF store [37, 188].
Moreover, they do not provide the query expressiveness of state-of-the-art information retrieval
(see Section 5.2.1) and relevance or snippet information for search results [37, 88, 188]. Most
systems employ a full-fledged IR system, but do not exhaustively exploit or expose its capabil-
ities. Our full-text extension demonstrates a combination of an RDF store and an IR system. It
facilitates pure IR queries (full-text) within pure SPARQL queries (structured queries), taking
full advantage of the expressiveness of each of them. This is achieved without any modifications
of existing RDF query language syntax.

4MySQL 5.0 Reference Manual - Full-Text Searches with Query Expansion: http://dev.mysql.com/doc/
refman/5.0/en/fulltext-query-expansion.html.
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5.2 Structured and Full-text Indexing and Search

Today’s RDF query languages and RDF stores lack sophisticated full-text search. This is surpris-
ing since literals give meaning to the Semantic Web: they are connecting humans with the data
they use. The structure that is interconnecting the nodes is useless without the meaning of the
nodes. Searching the Semantic Web greatly benefits from good literal search: it finds the most
relevant resources regarding a desired meaning. Literal search filters out relevant nodes of all
nodes matching specific structure constraints. In return, structure gives more meaning to nodes
when relevant literals are found.

This work combines structured with full-text search, two fields of research that more and more
coalesce into one topic of research [5]. In the following, I elaborate on these two fields and
introduce an implementation library for each of them: Sesame [34] and Lucene5.

5.2.1 Full-text Indexing and Search
In Information Retrieval, the Vector Space Model [12, Sec. 2.5.3] is the most popular retrieval
model. Here, the plain text content of a document d is transformed into a vector of term weights
vd = (w1,d, . . . , wN,d). Each dimension wi,d refers to a unique term occurring in the document
corpus. The notion of terms and term weights can be defined in various ways. Usually, sim-
ple words are used as terms, but named entities, phrases, and sentences are also possible for
particular applications. Different forms of the same word can be mapped to the same term by
stemming techniques (remove affixes to extract the word stem [12, Sec. 7.2.3]) or lemmatization
(provides the word root called the lemma). This generally improves search quantity and quality
as documents are found that do not contain the exact query word but a different word form.

As an example for the term weights wi,d, the TF-iDF scheme (Equation 5.1) is generally
accepted as state-of-the-art [12, Sec. 2.5.3] [117]. Here, the term frequency tf t,d of term t in
document d is multiplied with the inverse (logarithm of the) term Document Frequency idft,
which rewards infrequent terms and penalizes common terms w. r. t. the document corpus.

wt,d = tf t,d · idft , idft = log
|D|

|{d′ ∈ D : t ∈ d}|
(5.1)

Even though this Vector Space Model treats a document as a bag-of-word and ignores the posi-
tion and order of terms, it yields to high quality document-document (similarity) and document-
query (relevance) measures. The most commonly used one is the cosine similarity, which mea-
sures the similarity of two documents as the cosine of the angle between the respective N -
dimensional term weight vectors (Equation 5.2). In case one of the document vectors is a term
weight vector of query terms, it becomes a relevance measure.

cosine similarity(d1,d2) =
d1 · d2

|d1| · |d2|
=

∑N
i=1wi,d1 · wi,d2√∑N

i=1 (wi,d1)
2 ·
√∑N

i=1 (wi,d2)
2

= (5.2)

5Apache Lucene: http://lucene.apache.org/.
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The cosine is defined for the interval [0, 1] where 0 identifies orthogonal vectors (they have no
term in common) and 1 indicates parallel vectors (identical term frequency vectors). In between,
this measure provides continuous degrees of similarity (or relevance), whereas in contrast, DB
queries only provide binary relevance that indicates whether or not results satisfy the query.

To retrieve documents for a given query, an inverted index lists all documents that contain a
single term in descending order of term weight. The top-k most relevant documents can effi-
ciently be retrieved by merging the query terms’ posting lists [12, Ch. 8].

Besides keyword queries, today’s Information Retrieval systems provide a number of different
kinds of queries that can be efficiently evaluated with an inverted index [12, Ch. 4]:

phrase queries where a term consists of more than one word

wildcard * and ? allow arbitrary sub-strings and characters

fuzzy queries finds terms that are similar to the given one

proximity queries terms may appear in a specified distance

range queries all terms that are alphabetically between two given terms

fielded queries a term has to occur in a particular part of the document

All those kinds of queries can be combined to more complex queries with the help of boolean
operators (AND, OR, NOT). Further, terms of a query can be given different weights to reflect
individual importance. Textual queries can contain mandatory, optional and prohibited terms.
Further, with stemming/lemmatization, phrase, wildcard, fuzzy, proximity and range queries,
Information Retrieval textual queries reflect their superiority in contrast to simple exact string
matching as employed in today’s graph query languages.

Fielded queries base on a document representation with multiple term frequency vectors, each
for a different part of the document. The title of a document, for instance, may be separated
from the rest of the document text. Then, one query term can be specified to be part of the title,
whereas the rest of the query may match the body of the document.

Such fields allow to introduce simple semantics into IR search. Particular query terms can be
given a specific meaning (title term, author name). Those semantics are comparable to properties
pointing to literals in RDF. However, it is not possible to semantically interconnect documents.
Since all documents are individually and independently modeled and stored in the IR index, IR
queries can only express characteristics of one document and not of multiple ones. To exemplify
this, the query

Books with "games" in their title,
written by an author who
also wrote books about "computer programming"

cannot be evaluated by an IR system that employs such a document model. Further, the author6

itself cannot be retrieved as the model is centered around documents (books) and not associated
entities (authors).

6A right answer is Donald E. Knuth: http://www-cs-faculty.stanford.edu/~uno/books.html.
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Lucene: a Full-text Search Engine Apache Lucene7 is an open source, pure-Java, high-
performance, full-featured text search engine library with very low resource requirements. It
implements all common IR features described above.

Lucene’s core data structure is a Lucene document, which basically consists of a number of
name-value fields. The documents are indexed by applying different strategies on each single
field, such as tokenization, indexing, or simply storing. Depending on the strategy, Lucene
employs inverted indices on the fields. Each retrieved document provides a score value reflecting
its relevance based on TF-iDF term vectors and cosine similarity. If fields are stored, Lucene can
provide previews — so called snippets — of the matching section. On query-time, the field to be
queried must be specified, so it is not possible to simply query all fields at once. To work around
this problem it is considered best-practice to index all fields’ values in an additional field. This
enables queries over all fields at the cost of increased index space.

5.2.2 Structured Indexing and Search

Search on structured data allows to formulate very specific and complex queries. The corre-
sponding results are always a set of exact matches, rather than a ranked list as in IR. Since RDF
resources typically provide a lot of textual information, IR search functionality clearly provides
a lot of benefits to users. Studies have shown that users most probably start searching by file lo-
cation or classification in an ontology and then use simple keyword searching [15], which gains
importance if the Semantic Web shall get widely used. However, current graph query languages
strongly focus on structural queries and neglect the expressiveness of textual queries. To support
users both in file location (structure) and full-text (textual) search, a combination is needed.

Usual RDF query languages such as SPARQL [146] and RDQL [170] (see Section 2.1 on
page 24) query a graph by means of graph patterns with wildcards and variables. The result set
is either a set of graph fragments that exactly match the patterns, or a set of variable bindings
(values). As usual in the structured data domain, results are always exactly matching the query.

Sesame: an RDF store Sesame [34] is an open-source framework for storage, inference and
querying of RDF data, developed by the software company Aduna. Sesame is very modular and
can be configured to use storage backends such as main memory, a relational database, or a native
RDF storage file. This flexibility is achieved by stacking Storage And Inference Layers (SAIL).
Each layer provides a particular service, e. g., persistent on-disk storage, in-memory storage, or
transparent RDFS inferencing. The combination of SAILs constitutes the actual Sesame store.

The addition and deletion of RDF data (RDF transactions) as well as querying is based on a
JDBC-like8 model where all operations are done through a connection. This connection-centered
approach ensures clean handling of transactions and concurrent access to an RDF store.

In the following, I describe our approach of integrating Lucene queries into graph query lan-
guages in general, and specifically into Sesame, enabling both, complex textual queries and
structural queries on RDF graphs.

7Lucene: http://lucene.apache.org/
8The Java abstraction layer for relational database connections, i. e., Java DataBase Connections.
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Figure 5.1: Sesame RDF store examples: left) memory-based store with RDFS inferencing em-
bedded in an application, right) file-based native store, accessible via HTTP.

5.3 Combining Structured with Full-text Queries

The main objective when integrating full-text search into structured queries was to retain the
query syntax so that existing query language parsers can be reused. The standardized RDF query
language SPARQL is expandable with so called extension functions9 that can have multiple RDF
terms as input parameters and one output value. Unfortunately, such functions cannot be used for
our purposes, because they return only one value. Thus, it cannot provide valuable information
from full-text search such as the rank of documents or snippets.

Query 1 Example hybrid query expressed in SPARQL.
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ls: <http://www.openrdf.org/contrib/lucenesail#>
SELECT * WHERE {
?uri1 rdf:type ?type1 ; rdfs:label ?label1 .
?uri2 rdf:type ?type2 ; rdfs:label ?label2 .
?uri1 rdfs:seeAlso ?uri2 .

?uri1 ls:matches ?q1 .
?q1 ls:query "john" ; ls:predicate rdfs:comment ;

ls:score ?score1 ; ls:snippet ?snippet1 .

?uri2 ls:matches ?q2 .
?q2 ls:query "smith" ; ls:predicate rdfs:comment ;

ls:score ?score2 ; ls:snippet ?snippet2 .
}

Another way to extend the query language is to use virtual properties. These RDF proper-

9SPARQL — Extensible Value Testing: http://www.w3.org/TR/rdf-sparql-query/
#extensionFunctions
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ties form a distinct full-text query resource inside the structured query, which is actually not
materialized in the indexed RDF data. Its purpose is to annotate RDF resources with full-text
queries and to provide means to access various information from the full-text search, as op-
posed to the SPARQL extension functions. Example Query 1 of such a hybrid query is illus-
trated in Figure 5.2. It queries for two resources (?uri1 and ?uri2) that are connected via
the rdfs:seeAlso predicate. One resource matches the keyword "john", while the other
matches "smith". Both full-text queries are restricted to the rdfs:comment predicate of the
matching resource. Lucene score and snippet information are requested for both full-text queries.

Figure 5.2: An example LuceneSail hybrid query.

In the layered architecture shown in Figure 5.3, the virtual properties are extracted and corre-
sponding actions on the full-text index are performed. The non-virtual part of the query is sent
to the underlying layer (the wrapped RDF store) and the results from both parts are joined into
the final result that satisfies the full hybrid query. The main advantage of this two-layer approach
is that existing RDF stores can be used and transparently extended with full-text capabilities.
Further, different query languages and existing parsers can be used without modification.

5.4 Integrating Lucene into Sesame: the LuceneSail

We have chosen to implement our full-text search solution as a Sesame Storage And Inference
Layer (SAIL) because this allows for easy extension of existing SAILs with our full-text search.

This approach has several advantages: Firstly, the LuceneSail is independent of any underlying
RDF storage. It works equally well on top of the Sesame NativeRDF store as on a relational
database. Secondly, our LuceneSail will be query-format agnostic, since we only hook into the
query model provided by Sesame’s query parser. The LuceneSail has two modes of operation
within Sesame: the initial indexing of RDF data and handling virtual properties in queries.
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Figure 5.3: Layered architecture of the full-text extension.

5.4.1 Storing RDF in Lucene Documents
Storing RDF in Lucene documents needs a mapping from the graph-structure of RDF to Lucene
documents. As described above, such a document contains name-value fields. For full-text in-
dexing of RDF data we identified two possible strategies for mapping RDF to Lucene documents:

Statement-based Each RDF statement becomes one Lucene document.

Resource-based Each Lucene document represents one RDF resource and all its predicates.

Both approaches have their advantages and disadvantages. In modern RDF stores, it is com-
mon to extend the RDF data model with context information. This is used to split a large RDF
store into smaller named graphs. In the statement-based approach, this can be achieved by an
context field. For the resource-based approach, one Lucene document can be generated for every
context of the resource. This introduces overhead of processing multiple Lucene documents on
query time, as well as problems computing the relevance score for the merged document.

The second bit of information lost in the resource-based approach is the additional metadata
about RDF literals (language and data-type tags). In the statement-based approach, these can be
added as additional fields. Here, it is also problematic to query for a keyword occurring in any of
the predicates. A joined query over all fields would not scale due to the potentially high number
of RDF predicates (and therefore fields). An additional field that stores the content of all fields
has to be updated whenever new data arrive or get deleted.

However, the representational power of the statement-based approach comes at the cost of
having to index many more Lucene documents. Furthermore, in order to query for statements
that have a specific predicate and literal matching a given keyword, two indices must be queried
and joined. Also, querying for resources that match in multiple specific predicates cannot be
merged by Lucene directly, as it can with the resource-based approach. And finally, since all
literals are indexed in the same inverted index (field “literal”), there is only one global score over
all literals, and not a predicate-based relevance score.
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Join Tree 1 Query plan of the example query as a Join Tree.

SELECT ?uri1, ?score1, ?snippet1, ?uri2, ?score2, ?snippet2,
?label1, ?type1, ?label2, ?type2

JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
?uri1 rdf:type ?type1 (SP1)
?uri1 rdfs:label ?label1 (SP2)

?uri2 rdf:type ?type2 (SP3)
?uri2 rdfs:label ?label2 (SP4)

?uri1 rdfs:seeAlso ?uri2 (SP5)
?uri1 ls:matches ?q1 (SP6)

?q1 ls:query "john" (SP7)
?q1 ls:predicate rdfs:comment (SP8)

?q1 ls:score ?score1 (SP9)
?q1 ls:snippet ?snippet1 (SP10)

?uri2 ls:matches ?q2 (SP11)
?q2 ls:query "smith" (SP12)

?q2 ls:predicate rdfs:comment (SP13)
?q2 ls:score ?score2 (SP14)

?q2 ls:snippet ?snippet2 (SP15)

We decided to use the resource-based approach, despite of the reduced representational power.
We evaluated that the context information is not essential for implementing useful full-text
search. An early version of the LuceneSail has been deployed for the Semantic Desktop search
engine Beagle++ [122], the Semantic Desktop prototype Gnowsis [165], and in the NEPOMUK
Project [131], where this feature was never required. The missing language and data type tags
are hard to support, however, they always can be retrieved from the underlying RDF store.

According to the resource-based approach, LuceneSail generates Lucene documents with one
field that holds the URI (field name uri) of the respective resource, one field with all literals’
content (field name all), and one field for each literal with the predicate as the field name. In
a sense, this Lucene document generation from RDF statements is the inverse function of the
Lucene to RDF translation performed in Section 3.4.5.

Since Lucene has no concept for updates, we implement updates by deleting and adding an
updated version. To allow reconstructing the all field, it has to be stored. Alternatively, the
underlying RDF store could be queried for this information, but this would incur performance
penalty. Another option is to create separate Lucene documents and merge them on query time.
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5.4.2 Querying the LuceneSail

Join Tree 2 Reduced query plan as sent to the underlying SAIL with Lucene result bindings.

SELECT
?uri1, ?score1, ?snippet1,
?uri2, ?score2, ?snippet2,
?label1, ?type1, ?label2, ?type2

JOIN
JOIN
JOIN
JOIN
?uri1 rdfs:seeAlso ?uri2 (SP5)
?uri1 rdf:type ?type1 (SP1)

?uri1 rdfs:label ?label1 (SP2)
?uri2 rdf:type ?type2 (SP3)

?uri2 rdfs:label ?label2 (SP4)
with specific bindings on ?uri1, ?score1, ?snippet1, ?uri2, ?score2, ?snippet2

The LuceneSail processes a hybrid query in four phases. Initially, the query is split into the
full-text and the graph query parts. The full-text query part can contain multiple full-text queries
referring to distinct resources. If there is no full-text query part, the query is completely eval-
uated by the underlying SAIL. Otherwise, the full-text queries are evaluated using the Lucene
index. For each matching resource, the respective variable (?uri1 and ?uri2 in Figure 5.2)
in the graph query part is bound. It is then passed to the underlying SAIL for evaluation. The
LuceneSail also binds the optional score and snippet variables.

In case all variables are bound, the evaluation by the underlying SAIL degrades to an existence
operation: Does this binding exist in the data store? If there are still unbound variables, the graph
query part is a valid query and results from the SAIL are partial results of the hybrid query.

This approach can be seen as a join operation of the Lucene results with the results of the
graph query part. Lucene results are looked up by the underlying SAIL if they exhibit the re-
spective structural properties. When multiple full-text queries exist, they are all joined to get
their Cartesian product and used as detailed above.

This join-by-variable-binding proved to be an effective integration approach since no modifi-
cation of Sesame was necessary. The full-text extension is transparent to the underlying SAIL.
However, this integration only performs optimally when the cardinality of full-text search re-
sult and consequently the Cartesian product of the results are smaller than the cardinality of the
graph query part. For some semantic applications, e. g., Beagle++, multiple full-text queries are
not needed. Then, this lightweight integration is sufficient and efficient. If multiple full-text
queries are required, as for instance to evaluate queries constructed with the NEPOMUK Struc-
tured Query Builder (see Chapter 4) or our QUICK system [192], a tighter integration is needed.

Set-Injection Integration into Sesame For semantic applications that require multiple
full-text queries within one hybrid query, we further developed a tighter integration of LuceneSail
into Sesame. The core idea of our improved LuceneSail integration is to inject a special operation
node into the query evaluation plan (the Join Tree) that represents a whole full-text query part.
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For easy integration of this operation, we introduced the new generic Set node, which is an
abstract operation node that provides a fixed set of result bindings for particular variables. The
LuceneSail then provides its particular LuceneHitsSet implementation, which represents
all matching resources provided as bindings of a particular full-text query. This integration re-
quires some modifications that are not available from the Sesame sources and therefore demand
a patched version of Sesame, which is publicly available10.

Join Tree 3 Reduced query plan of the example query using HitsSet.

SELECT
?uri1, ?score1, ?snippet1,
?uri2, ?score2, ?snippet2,
?label1, ?type1, ?label2, ?type2

JOIN
JOIN
JOIN
JOIN
JOIN
JOIN

HitsSet matches: "john" in rdfs:comment
provides: ?uri1, ?score1, ?snippet1 (HS1)

?uri1 rdfs:seeAlso ?uri2 (SP5)
HitsSet matches: "smith" in rdfs:comment

provides: ?uri2, ?score2, ?snippet2 (HS2)
?uri1 rdf:type ?type1 (SP1)

?uri1 rdfs:label ?label1 (SP2)
?uri2 rdf:type ?type2 (SP3)

?uri2 rdfs:label ?label2 (SP4)

Join Tree 1 depicts the query plan of the example query from Figure 5.2. In the Join Tree 3,
all full-text search relevant statement patterns (SP6-SP10 and SP11-SP15) are replaced by
the HitsSets HS1 and HS2. Each HitsSet provides bindings for the matching resource (?uri1,
?uri2), the Lucene score (?score1, ?score2), and the snippets (?snippet1, ?snippet2).

In RDF stores, the join operator is usually implemented as the Index Nested Loop Join [34,91]).
This join is evaluated by executing its first (the upper in the query plan examples) argument
using the currently existing bindings. Then, each result is appended to the current bindings
and used to evaluate the second (the lower) join argument. In our example Join Tree 3, the
HitsSet HS1 is evaluated first. Each result provides a binding for ?uri1. For each such binding,
the evaluation of the statement pattern SP5 provides bindings for ?uri2. Then, the HS2 is
evaluated with a given binding for ?uri2. This evaluation degrates to a boolean query: Does
resource ?uri2 match the keyword? In order to improve the performance of this look-up, we
pre-fetch all ?uri2 that match the query of HS2 (if the result set is below a certain threshold).
Here, we trade repetitive Lucene look-ups that cause expensive I/O operations for increased
memory consumption.

Finally, our HitsSet provides cardinality information to the query planner. The cardinality
is exactly known due to the pre-fetching described above. When a binding for the resource
variable is provided (?uri1, ?uri2) there can be at most one result. Therefore, the cardinality

10The Sesame2 LuceneSail Hits Set flavor: http://dev.nepomuk.semanticdesktop.org/wiki/
LuceneSailFlavorHitsSet.
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is estimated as one. With this information, the query planner can optimize the query plan by
freely moving nodes up and down in the query plan to minimize the look-up and iteration costs
(see Section 5.5).

Let’s continue our running example. All statement patterns have a very high cardinality, be-
cause they have no bindings for their subjects and objects. The query planner would evaluate the
HitsSet with the lowest cardinality first. Then, statement pattern SP5 has a binding that probably
provides a small cardinality. It will be evaluated next. With the results, HS2’s cardinality drops
to one and will be evaluated next.

Alternatively, if both HitsSet provide only a small number of results, both HitsSet might be
evaluated in the first join operation, providing the Cartesian product of their results. Then, the
statement pattern SP5 has bindings for ?uri1 and ?uri2, which is a simple existence look-
up: Is resource ?uri1 connected to ?uri2? In data sets where the general connectivity of
resources is high, this strategy could be the optimal one. Our query plan optimization algorithm
(see Section 5.5.3) will be able to construct the optimal plan also in such a case.

5.5 Improving Query Performance of Sesame

We have seen that hybrid queries require an efficient query evaluation to guarantee low response
times of semantic applications. Existing stores are particularly challenged by complex hybrid
queries. As a first improvement to tackle this issue, I present a general cardinality estimation
for on-disk B-trees, as they are employed by many RDF stores. With this information, a more
sophisticated join ordering strategy can be applied. I report on a Greedy strategy that searches
the space of possible query plans and is more likely able to construct a more efficient query plan.
Further, the evaluation of RDF queries usually requires a large number of range queries [75,
Sec. 13.3.4] that invoke index look-ups and iterations. I present an on-disk B-tree optimization
that improves performance of these frequent operations. Finally, a short analysis on the impact
of index selection for a particular range query is discussed that emphasizes the need to consider
the dynamics of this task. In short, my improvements target these aspects of query evaluation:

• Better cardinality estimation and statistics

• Join ordering strategy

• Optimization of on-disk B-trees

• A better index selection strategy

In the following, I provide details on these improvements done to Sesame’s query evaluation.
The performance evaluation in Section 5.6 reports on achieved improvements over the original
Sesame implementation. Chapter 6 on page 103 compares the improved Sesame implementation
with the performance of three other mature RDF stores by an in-depth performance analysis.
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5.5.1 Better Cardinality Estimation
In the following, this notation is used to refer to particular kinds of statements:

• p - constants like a URI or a Literal

• ?s - unbound variable

• !o - bound variable

Let (s p o c) be a statement that consists of subject s, predicate p, object o, and context c.
In the following, for the sake of simplicity and without loss of generality, we assume the context
c to be constant and therefore omit its value from our notation.

The NativeRDF SAIL of Sesame, as many other native RDF data stores [37, 89, 91], employs
on-disk B-tree data structures to index statements (s p o). Such an index organizes the state-
ments in a particular order. Each value of s, p, and o is mapped to a unique integer value. The
statement order pos, for instance, sorts all statements based on the integer representation of
property p. Statements with identical predicates are further sorted by their object o, and finally
by the subject s. Under the assumption that the predicate p is always specified in a statement
pattern, we can categorize statement patterns into four types. For each of these types we use a
different method to estimate the cardinality.

(s p ?o) For patterns of this type, where s is specified and ?o is an unbound variable, we can
exploit the spo B-tree index to estimate the cardinality (see below).

(?s p o) The cardinality is estimated similarly to (s p ?o) patterns using the ops index.

(!s p ?o) This type of patterns handles the case when variable ?s is bound by a previously
evaluated operation. The distinction to the (s p ?o) case where s is a specific value
is important since here, !s is a bound variable. The actual value of !s is not known in
the query planning phase, but it is known that it will be given in the evaluation phase.
Therefore, the B-tree index cannot be employed to estimate the cardinality of the unknown
value of !s. Here, statistics on the general cardinality of any s in conjunction with the
specific predicate p are employed. Assuming a uniform distribution of values of ?s among
all statements stmsp ∈ D of the RDF data set D that contain predicate p, the cardinal-
ity of this type of pattern can be estimated as cards,p = |stmsp| /

∣∣subjectsp
∣∣, where

subjectsp are the distinct subjects that occur in these statements.

Let’s consider these examples. The pattern (?uri rdfs:label ?label) has a car-
dinality of one if every resource has assigned exactly one label. In contrast, the pattern
(?uri rdf:type ?type) has a cardinality larger than one in a data set that has a
schema with a large sub-class-hierarchy and full transitive closure (see Section 2.1). Then,
a resource of a particular type is also of all its super classes’ types, which is at least one.
Though these two instances of patterns are of the same type, they expose different cardi-
nalities.

(?s p !o) The same technique as for (!s p ?o) is applied, replacing s by o.
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Figure 5.4: B-tree range query cardinality estimation: Smallest statement #11 (green), largest
statement #18 (red), isolating the result set (#11–#18) of a certain statement pattern.

(!s p !o) Cardinality is estimated as one, since this is an existence look-up and is either
true or false. Considering a setup where statements exist with a number of contexts, the
cardinality of this statement pattern should be the average number of contexts a statement
is valid for.

For statement patterns where a subset of s, p, and o is specified, a B-tree can quickly pro-
vide all statements with the given values via a range query [75, Sec. 13.3.4]. Given a pos
index and a statement pattern (?s rdf:type rdf:Resource), a look-up for the smallest
possible statement with the integer value for s set to 0 returns the smallest matching statement
(minStatement). A look-up for the largest possible statement with s set to the largest integer
value returns maxStatement. Based on the path through the B-tree that is taken to reach those
two statements (minPath and maxPath), it is possible to give a good estimation of the number
of results that are within the range of these two statements.

The minPath and maxPath values for the example shown in Figure 5.4 are

• minPath : ([1, 2], [0, 4], [0, 2])

• maxPath : ([1, 2], [2, 4], [1, 3])

where a path is a sequence of steps denoted as [idx,N ], idx reflects the zero-based index of the
child followed and N refers to the number of children in the current node. The first step refers
to the root node. The last step in the path sequence always refers to the node containing the
statement. There, idx denotes the statement’s index and N refers to the number of statements in
that node.

Let’s see how the number of statements that are contained in the range spanned between
minPath and maxPath can be estimated from these paths. At the root level, both paths follow
the same child (idx = 1), so no cardinality is indicated here. At the second level, the paths split
and have one child node in between (the child node with statements #14 and #15). In order to
avoid examination of the middle child tree, its cardinality is estimated based on its height and
the expected fill rate. In literature, the expected fill rate after random insertion is reported to
be ln 2 ≈ 69.3%11 [110, p. 489]. The current level further adds two statements to the estima-
11Note that with our optimized on-disk B-tree, the fill size is more accurately known (see Section 5.5.4).
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tion (#13 and #16). At the last level, the minPath contributes the statements #11 and #12, the
maxPath contributes the statements #17 and #18. This estimation does not require fetching any
B-tree nodes in addition to the minPath and maxPath look-up.

This example shows that for all nodes on the two paths, the cardinality is accurately given
by the path sequence. For all sub-trees that span to the right of the minPath and to the left
of the maxPath can be estimated based on their height. This shows that the smaller the real
cardinality is, the more accurate our approach is. Recall that the estimated cardinalities are later
on compared, so in the end, the correct order of the statement patterns (ordered by estimated
cardinality) is more important than the accuracy of the estimated values.

The presented B-tree cardinality estimation was integrated into the Sesame sources12.

Complexity

The described cardinality estimation approach requires at most |minPath| + |maxPath| − 1 I/O
operations, where |minPath| and |maxPath| denote the number of steps of the respective se-
quence, which is at most dlogB(N + 1)e − 1, where B refers to the branching factor of the
B-tree and N the number of entries in the tree. Due to caching, all nodes that both paths have in
common might be read only once, which further reduces the number of I/O operations.

5.5.2 Gathering Cardinality Statistics
As discussed before, as soon as variable bindings are available for statement patterns, statistical
information is needed for cardinality estimation. We provide such statistical information about
statement patterns that have a given predicate, which is usually the case.

So we saw that with the number of statements having a certain property p (stmsp), the number
of distinct subjects (subjectsp) and objects (objectsp) among these statements, those statistics
become available. Maintaining a counter and a set of subjects and objects for each property as
new statements are added to the RDF store is trivial. The sets can be handled by a B-tree for
each property. Existing values will be ignored when added to a B-tree. The tree therefore only
contains distinct subjects or objects, and its size provides the exact size of the respective set.

The extraction of those numbers is also possible in an offline fashion and scales with the num-
ber of properties and statements. Given a pos index, one iteration over this index is sufficient
to extract the number of distinct objects for each property, with a constant memory consumption
of two counters, the current statement and the last property and object, as sketched in Algo-
rithm 1. The core idea of that algorithm is to exploit the existing order of the statements. This
order aggregates all statements by the property. When a transition of the property in the stream
of statements from p′ to p occurs, the property p′ will never appear again. Therefore, the exact
cardinality of statements with property p′ is known after such a transition. The same effect can
be exploited to count the distinct objects for a particular property. All objects co-occurring with
a particular property are grouped into one continuous sequence. After a transition from object

12Aduna WebSVN: http://repo.aduna-software.org/svn/org.openrdf/sesame/trunk/
core/sail/nativerdf/. See getValueCountEstimate(byte[], byte[]) method in
org.openrdf.sail.nativerdf.btree.BTree in revision 7601 on August 15, 2008.
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Algorithm 1: Cardinality Statistics Algorithm cardStatistics for pos
Input: iterator it over statements ordered by pos
Output: sequence S of property cardinality cardp and property-object cardinality cardp,o

represented as tuple (p, o, cardp, cardp,o)
// initialize current property and object,
// statements and distinct objects counters
(p′, o′, Ns, No)← (null, null, 0, 0) ;1

S = ∅ ; // reset statistics2

while it has more statements do // iterate over statements3

(s, p, o)← it.next ; // get next statement4

if p 6= p′ then // p is a new property5

if o′ 6= null then6

S← S ∪ {(p′, Ns, No)} ; // store statistics of property p′7

(p′, o′, Ns)← (p, null, 0) ; // reset statistics for new p′8

if o 6= o′ then // o is a new distinct object9

o′ ← o ; // memorize new object o10

No ← No + 1 ; // count new distinct object11

Ns ← Ns + 1 ; // count statement with property p′12

if o′ 6= null then13

S← S ∪ {(p′, Ns, No)} ; // store statistics of property p′14

return S15

o′ to o, while the same property remains, we know an object o was never observed before and is
therefore a distinct object regarding the current property.

Another full iteration over the pso index provides the number of distinct subjects for each
property. Under the assumption that minimal changes of the RDF data do not significantly change
those statistics, it is sufficient to gather these statistics offline on an infrequent basis.

Complexity

Our offline strategy to gather cardinality statistics requires one full iteration of the pos and pso
indices, which is an I/O complexity of O(N) with N being the number of statements. Further,
it requires a constant amount of memory O(1) and a disk storage complexity of O(P ) with P
referring to the number of distinct properties. Access to the statistics can be achieved via in-
memory data structures that yield to O(P ) complexity in size and O(logP ) or even O(1) in time
using binary search or hash maps, respectively.
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5.5.3 Approximation of the optimal Join Tree
Cardinality estimation for unbound and bound patterns allows for a detailed I/O cost estimation
of a given join tree [75, Sec. 16.4]. The following values are of interest for this estimation:

• look-up cost l(sp)— the I/O cost to look up statement pattern sp (retrieve the first result)

• iteration cost it(sp)— the I/O cost to iterate over all results of statement pattern sp

• cost c(sp)— the total cost of evaluating one statement pattern is l(sp) + it(sp)

• cardinality |sp|— the cardinality of the result set of statement pattern sp

When statements are stored in a B-tree, l(sp) is proportional to the height of the B-tree and
iteration cost it(sp) is proportional to the cardinality |sp|13.

A join operation left on right creates the set of those results in the Cartesian product that satisfy
the join constraint. The most important join algorithms are the index nested loop join, the zig-zag
join, and the hash join.

The index nested loop join oninl [75, Sec. 15.6.3] looks up one argument (here the left argument
left), iterates over the result set and looks up its other argument (the right one right) using the
current result of the left argument as variable bindings. Therefore, a nested loop join has the
following properties:

l(left oninl right) = l(left) + |left| · l(right) (5.3)

it(left oninl right) = it(left) + |left| · it(right′) (5.4)

c(left oninl right) = l(left) + it(left) + |left| · (l(right) + it(right′)) (5.5)

0 ≤ |left oninl right| ≤ |left| · |right| (5.6)

Note that the right argument is evaluated using the left argument’s results as variable bindings,
denoted as right′, which usually has a smaller cardinality than without bindings.

The zig-zag join onzz [75, Sec. 15.6.4] has the prerequisite that the result set of its arguments
are ordered. This can be expected in some cases since the spo index, for instance, provides
results for a given subject ordered by predicate, object and context. If this useful order [172] is
not provided, the arguments have to be sorted in-memory or on-disk first. This adds additional
I/O and time to the cost calculation, which can easily be integrated into the join cost calculation.

Given ordered results, a zig-zag join has the following properties:

l(left onzz right) = l(left) + l(right) (5.7)

it(left onzz right) = it(left) + it(right) (5.8)

13In Sesame 2.2, l(sp) = 5 for 1× 109 statements and it(sp) ≈ |sp| × 8
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The hash join onh [75, Sec. 15.5.5] loads the entire result set of its right argument into memory
and then performs the evaluation using the variable bindings from the left argument purely in
memory. It has the same properties as the zig-zag join, except that there is no prerequisite of a
specific order of both arguments’ result sets. Further, it has a much larger memory consumption,
which is proportional to card(right). This shows that memory consumption should also be con-
sidered in the cost estimation in order to avoid selecting this algorithm for joins that have a large
result set on the unbound right argument.

Join Order Optimization: Exploring the Space of Join Trees

Among the set of SPARQL algebra operators (select, join, and statement pattern), in most cases
query execution costs are dominated by the order of join operations. Any permutation of a join
tree’s nodes produces the same result set but at different costs. This makes finding the optimal
join tree crucial for efficient query processing. In this work, we restrict our optimization to
left-deep join trees [75, Sec. 16.6.3] (see Join Tree 1). Every inner node in such a tree is a
join operation where the left child is a left-deep join tree itself providing variable bindings to
be joined with the single right child operation. Such a join tree can be stated as a sequence of
leaf operations in order of their evaluation [140]: (s1, s2, . . . , sn−1, sn) ⇔ ((. . . ((s1 on s2) on
s3) . . . ) on sn−1) on sn

For a query having N statement patterns to be joined, there are N ! possible join trees. Further,
each join operation could be performed by one of the three different join algorithms introduced
above, which further increases the permutation space. An exhaustive generation and test of
all permutations is too expensive even for small N . Approximation algorithms like dynamic
programming are used to identify a near-optimal join order [172].

We start withN join trees, everyone consisting of one of the available statement patterns. Each
join tree furthermore has a list of statement patterns associated that are not yet considered for
exploration (non-joined), initialized with the other N − 1 statement patterns. Each join tree has
its cost computed. As long as the cheapest join tree does not contain all input statement patterns,
a new join tree is generated by joining it with the non-joined statement pattern with smallest
cardinality14. For the originating join tree, the respective statement pattern is then removed from
the list of unexplored statement patterns to prevent the creation of duplicate plans. The new join
tree has all non-joined input statement patterns in its non-joined list, since it constitutes the root
for a new exploration branch. This allows to only continue exploration with the cheapest join
tree in every step and join trees that have exploding costs are stalled.

In contrast to Selinger et al. [172], our planning exploration also considers full Cartesian prod-
ucts which provides better query plans with controlled search complexity [140]. Cases where
Cartesian products have exploding costs are early identified and pruned.

14The statement pattern with the smallest cardinality is taken because it is then likely for the new join tree to have
a small cardinality, too.
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Algorithm 2: Greedy Query Planner
Input: Set of Statement Patterns S
Output: Query Plan (Statement Pattern Sequence) p
if |S| ≤ 1 then // for less than two statement patterns ...1

return S // ... there is a trivial solution2

P = � ; // initialize the plans to be explored ...3

for ∀s ∈ S do4

p = (s) ; // ... with one plan ...5

P← P ∪ {p} ; // ... for each statement pattern6

f(p)← S \ {s} ; // initialize exploration trails for p7

p∗ = argmin
p∈P

c(p) ; // current cheapest (partial) plan
8

while S \ p∗ 6= � do // unless p∗ is a complete plan ...9

s∗ = arg min
s∈f(p∗)

|s| ; // exploration trail for p∗ with min. card.
10

p′ = (s1, . . . , sn, s
∗) with p∗ = (s1, . . . , sn) ; // extend p∗ by s∗ to p′11

P← P ∪ {p′} ; // add p′ to plans P to be explored12

f(p′)← S \ p′ ; // initialize exploration trails for p′13

f(p∗)← f(p∗) \ {s∗} ; // update exploration trails for p∗14

if f(p∗) = � then // exploration of p∗ completed?15

P← P \ {p∗} ; // remove p∗ from plans P to be explored16

p∗ = argmin
p∈P

c(p) ; // update cheapest (partial) plan
17

return p∗18

I integrated this join tree space search in Sesame. Unfortunately, Sesame provides only one
join implementation, namely the Nested Loop Join, and we refrained from extending Sesame’s
architecture to enable multiple join implementations. However, even with this limitation of join
algorithms, our join tree planner achieves significant performance improvements. The addition
of further join algorithms is considered future work.

Complexity

In best case, the query planner exhibits linear runtime w. r. t. the number of joined statement pat-
terns. In contrast, the worst case is still factorial in a situation when each initial one-statement
plan is explored along all exploration trails first, which leads to n(n − 1) two-statement plans.
Continuing this exploration leads to n! plans. However, in practice, this situation should be very
unlikely. From the pseudo-code of Algorithm 2 we can observe that the algorithm terminates as
soon as all partial plans are more expensive than the cheapest full plan. Since the costs of a plan
accumulates with each sequence extension, the cheapest full plan tends to also be cheaper than al-
ternative plans of the same size at intermediate phases. Other dynamic programming approaches
have been shown to generate at most O(N3) plans, thus being polynomial in time [100].
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5.5.4 Optimization of on-disk B-trees

B-trees [54, 110] store key-data tuples in a specific order to allow for very efficient retrieval of
data given a key. Such a tree is the central index structure of many RDF stores, where in this
setting, no external data is associated with keys because the keys are the data, thus statements are
indexed and stored in B-trees. During search operations, the tree is heavily accessed so that an
optimization for frequent query-time operations can significantly improve search performance.
Such frequent operations are the look-up of a single key and the iteration over subsequent keys.

Primary characteristic of a B-tree is its branching factor B which defines that nodes of the tree
have at mostB and at leastBmin = dB

2
e children. An exception is the root node, which may have

non or at least two sub-trees15. All nodes of a B-tree contain one key less then it has children.
All leaf nodes, these are nodes without child trees, reside at the same level. A tree of height h
can accommodate at most Nh = Bh+1 − 1 : h >= 0 keys, whereas a tree of height h = 0 is a
single root node. The minimum number of nodes required to store N keys is dN

B
e.

For branching factorsB ≥ 3, numerous trees with the same cardinalityN exist, denoted as the
forest T BN [154]. In this forest, we want to find or rather construct a tree that meets the following
criteria. See Figure 5.5 for an example of such an optimal B-tree.

1. The tree has the minimal number of nodes that is required to hold N keys.

2. Nodes are stored on disk in the order of the fetching sequence for a full iteration.

In extension to [154], we specifically consider on-disk B-trees, which also comprises the actual
location of pages allocated on the disk. For a fixed B-tree structure, any permutation of allocated
disk pages reflects an individual on-disk B-tree in that sense.

In the following, I present a strategy that constructs from a given B-tree a space-optimal B-
tree, i. e., a B-tree with minimal number of nodes, a so called compact B-tree [120, 152–154].
Further, the constructed tree allocates disk pages in the order of a full iteration which minimizes
seek distances for any iteration over the tree’s keys. An input B-tree is used to provide the keys
in the desired order of the output B-tree.

In contrast to B+-trees for which such a construction is easily done by creating full nodes
and building a minimal tree structure in a bottom-up fashion [21, Sec. 2.3], the construction of
a compact B-tree is a non-trivial operation. Simply inserting ordered keys into a B-tree leads
to minimum storage utilization [42, 154]. Even with a sequence of keys that results in an op-
timal tree, the reorganization operations that are required during key addition to properly split
nodes [110, Sec. 6.2.4] cause a computational overhead which renders this strategy inefficient.

Efficiency can be achieved by considering the construction of a compact B-tree as a single
operation that directly creates the optimal nodes in a holistic process. Such an operation is
generally called a bulk load [42], which can be classified into sorting, buffer- and sampling-
based bulk load approaches [21]. In this classification, our approach is most similar to sort-based
approaches which requires on the keys to be properly sorted.

15I use child and sub-tree synonymously when a distinction between the whole sub-tree and the sub-tree’s root node
does not change the respective statement, but use child when I specifically refer to the root of a sub-tree.
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Existing algorithms for bulk loading B-trees do not consider the order of allocated disk pages.
The algorithm in [42] requires a “frontier arrangement” phase since it does not use the number
of keys to be loaded as an input. In our settings, this information is always present.

Rosenberg et al. provide an algorithm that constructs a compact B-tree out of an ordered se-
quence of keys. It requires to construct the detailed profile of the prospect tree in a first phase.
Such a profile contains a histogram of the nodes’ cardinality for each non-leaf level, i. e., the
number of children they link to (see Figure 5.8 on page 98 for examples of such detailed pro-
files). In contrast, our algorithm computes the minimal number of child trees for each node and
distributes the keys that do not fit into the root node among the sub-trees. This distribution again
leads to optimal sub-trees. Then, depth-first recursion constructs the entire tree and creates new
nodes on disk in the desired sequence. Therefore, our algorithm combines the profile generation
and node creation phase in one phase. At any point in time it holds at most logBN incomplete
nodes in memory and it creates new nodes in the order of a full B-tree iteration, which is not
considered by the authors. Further, we claim that our algorithm is simpler and more intuitive.

Certainly, such a reconstruction is a costly operation that cannot be performed after each B-tree
modification. Rosenberg and Snyder argue that for a moderate number of augmented inserts, the
advantages of a compact B-tree “can still be felt”. In response to their 1981 publication, Jürgen
Klonk disagrees with this feeling and notes that in practice, space-optimality is extremely volatile
and maintaining costs are very high [109]. However, as Rosenberg and Snyder, we consider
scenarios in which insert operations occur very infrequent or as a batch operation, while reading
access represents the majority type of B-tree operations. Then, such a reorganization can be done
at the same time as regular backups may be performed and does not cause significant overhead
in practical situations.

Compact on-disk B-trees: We name our optimal B-tree a compact on-disk B-tree, as it
is an extension of a compact B-tree [154] in such a way that nodes are stored on disk in the
order of a full iteration over the keys. This particular property provides useful characteristics
such as minimized I/O seek operations for iteration operations, as we will see later. Figure 5.5
exemplifies a compact on-disk B-tree with branching factor B = 4 and cardinality N = 32 keys
and Figure 5.6 illustrates compact on-disk B-trees of increasing cardinality (N = 24, 25, 26).
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Figure 5.5: A compact on-disk B-tree for branching factor B = 4 and N = 32 keys. The left-
most number in a node denotes the on-disk position of the page that stores the node,
while the other numbers depict the keys.
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The following properties of compact on-disk B-trees follow from the two objectives:

The tree is minimal in height: With a minimum number of nodes, the B-tree is minimal in
height. In other words, the smallest tree in terms of keys for a given height cannot be made
smaller in height with more nodes because this would violate the lower bound of children
per node Bmin. With minimal height, also the path length to the leaf nodes is minimal.

The number of sub-trees of each node is minimized: Starting from the B-tree with min-
imum number of sub-trees, each additional sub-tree would add nodes to the tree, violating
the minimal number of nodes property.

The average keys per node is maximized: B-tree nodes have a fixed size on disk with a
fixed number of maximal keys per node16. Minimizing the number of nodes when the
number of keys contained in the whole B-tree is fixed maximizes the average number of
keys per node. Therefore, a compact B-tree provides more keys per fetched and cached
node and thus increases fetching efficiency and cache hit probability.

The look-up costs are virtually minimal: It is known that space-optimal B-trees virtually
have the same node-visit costs (i. e., the expected number of visited nodes to look up any
key) as the visit-optimal tree [154, p. 185]. Thus, key look-up is practically optimal.

The sum of absolute I/O seek distances are minimized for iteration: Assume that all
h nodes that are to be fetched to find a key in a leaf node are hold in memory [110,
Sec. 6.2.4]. Then, for an iteration operation as a range query, the distances from any
currently visited node to the next un-cached node is always one node size. Looking at the
example depicted in Figure 5.5, an iteration from key 15 to key 26 causes six seek opera-
tions all with distance of one node size: from node 6 containing key 15 via node 7, 8, 9, 10
and 11 to node 12. Node 1 and 2 are hold in memory since they are on the path to key 15.

Here, the sum distance is the number of fetched nodes times the node size and therefore
minimal. Further performance improvements are caused by the fact that subsequent nodes
are very likely to be pre-fetched by hard disk or operating system caches.

An optimal B-tree degrades insert operation performance: A compact B-tree has im-
proved performance of read operations, but degrades write operations. Inserting new RDF
statements is slower since the creation of new nodes is very likely. In that case, the B-tree is
not optimal anymore. Therefore, an optimization is only useful in a scenario where a large
batch of RDF statements is indexed and only few write accesses are performed afterwards.

For the construction of such a compact on-disk B-tree we firstly define two trivial cases which
frequently occur and which allow us to elegantly define such a tree recursively:

A full tree of height h is a tree that exclusively contains full nodes, i. e., nodes with B−1 keys.
Such a tree has Nh = Bh+1 − 1 : h >= 0 keys and is optimal.

16I ignore node compression for the sake of simplicity here.
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A minimal full tree is defined as a B-tree with a node of minimal size (Bmin children and
Bmin − 1 keys) as its root with full trees as its sub-trees. Consequently, such a tree has
Nminh

= Bmin − 1 +Bmin ·Nh−1 nodes. Obviously, minimal full trees are optimal, since
there exists no other tree with the same number of keys but fewer nodes: no key can be
moved from any of the full nodes anywhere else without enforcing new nodes.

A compact on-disk B-tree with branching factor B can be recursively constructed by the fol-
lowing strategy. Given the number of keys N to be put into an optimal tree, the minimal height
h of that tree is given by h = dlogB(N + 1)e − 1. A minimal number of root node keys (prop-
erty one) can be constructed for that tree by first dedicating the maximal number of keys to the
left-most child. The remaining keys are distributed among (a minimum number of) additional
sub-trees of maximal size. A sub-tree of the root node is of height h − 1 and therefore stores at
most Nh−1 = Bh−1 keys. For each additional sub-tree, one key has to be added to the root node
as well. Then, the minimal number of root keys is given by Nr =

⌈
N−Nh−1

Nh−1+1

⌉
, where the dividend

represents the keys to be distributed among the B− 1 children and the root node, and the divisor
reflects the number of keys that are consumed by adding one sub-tree. Consequently, the root
node has C = Nr+1 sub-trees, where all sub-trees together contain NC = N−Nr = N−C+1
keys. Constrained by C and NC , we can construct a set of sub-trees that is optimal (minimal) in
the number of its nodes as follows (required by objective two).

A sequence of n full, m minimal full, and one additional sub-tree that accommodates the
remaining keys Ncr with n,m ≥ 0, n +m + 1 = C and n · Nh−1 +m · Nminh−1

+ Ncr = NC

is optimal when the number of full sub-trees n is maximized. This can be proven as follows.
The full sub-trees clearly contain the maximal number of keys they can contain. The same holds
for all sub-trees of the minimal full sub-trees. Adding a key to either of the full and minimal
full sub-trees causes the creation of additional nodes. Thus, all keys in those sub-trees are stored
with a minimal number of nodes. When the remaining keys are also stored in a sub-tree that is
minimal, this whole tree must be optimal. The remaining keys can optimally be arranged using
this strategy recursively. The recursion terminates when all keys fit into one node, a leaf node.

The minimum full trees are motivated by the observation that a root node splits into two nodes
when a key is added to a full tree (see Figure 5.6 for an example). These nodes have

⌊
B
2

⌋
and⌈

B
2

⌉
keys. One key is moved up to the parent of this tree, or if no parent exists, a new root

node with one key is created. In order to still be compact, the first node constitutes the root of
a minimal full sub-tree and the second sub-tree accommodates the remaining keys. That tree is
filled up with new keys until it becomes a full tree. Then, the first sub-tree becomes the one that
grows with new keys. This is the fundamental way how a compact on-disk B-tree grows as an
increasing number of keys is used to create it. The remaining keys are always arranged in an
optimal way. Therefore, this sub-tree grows in the same way.

A compact on-disk B-tree is constructed by Algorithm 3 optBTree following this strategy.
The keys sequence K is consumed in one iteration. In contrast to the algorithm in [154], this
algorithm allocates pages on the disk in the order of a full iteration (optimality criterion two).
Algorithm 4 optChildren finds the optimal sequence of sub-trees (more precisely their sizes)
by maximizing the number of full sub-trees under the constraint of a minimal number of sub-trees
(C) while at most one sub-tree may not be full or minimal full.
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Figure 5.6: A growing optimal B-tree for branching factor B = 4 and N = 24, 25, 26 keys.

Another useful property of this optimal B-tree can be achieved by sorting the sequence of
sub-trees in descending order by their size. Then, the tree becomes left-weighted, i. e., the left
children tend to contain more keys than right children. In other words, the left child trees are more
likely to contain a certain key than the right ones. Since the I/O seek distances from root node
to left sub-trees are smaller then to the right ones, this ordering results in a higher probability for
smaller I/O seek distances. On average, the I/O seek distances are lower with this ordering.

I integrated the B-tree optimizer into the Sesame NativeRDF SAIL. In evaluation Section 5.6,
I provide details on the effectiveness of this optimization and its performance improvements.

Complexity

This optimization requires one full iteration over all keys, holds at most h nodes in main memory,
never reads nodes from the optimal B-tree, and writes nodes in their optimal order to disk. Thus,
this algorithms has a complexity of O(N) regarding nodes read from the original and written to
the optimized B-tree, as well as O(h) = O(logBN) regarding memory consumption.
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Algorithm 3: Optimal B-tree Generation Strategy optBTree
Input: nodes sequence S, number of keys N , ordered keys sequence K = (k1, . . . , kN)
Output: root node of optimal tree, new nodes sequence S
n← new node ; // create root node of this (sub-)tree1

S ← S ∪ {n} ; // and at it to the on-disk order sequence2

h← dlogB(N + 1)e − 1 ; // minimal B-tree height for N keys3

if h = 0 then // all keys fit into one node4

for i← 1 to N do // create this leaf node5

append next key from K to node n ; // append N keys6

return n ; // return created node as (sub-)tree7

C ←
⌈
N−Nh−1

Nh−1+1

⌉
+ 1 ; // minimal number of children of node n8

(Nc1 , . . . , NcC )← optChildren(C,N − C + 1, h− 1) ; // opt. children sizes9

for i← 1 to C − 1 do10

c← optBTree(S,Nci , it) ; // create i-th child with Nci keys11

append child c to node n ; // link from node n to child c12

append next key from K to node n ; // add next key to node n13

c← optBTree(S,NcC , it) ; // create C-th child14

append child c to node n ; // link from node n to child c15

return n ; // return created (sub-)tree16

Algorithm 4: Optimal Sub-Tree Set Generation Strategy optChildren
Input: number of sub-trees C, number of keys for all sub-trees NC , height of sub-trees h
Output: optimal sequence of sub-tree sizes (Nc1 , Nc1 , . . . , NcC )
nmin ← C − 1 ; // start with C-1 min full sub-trees hypothesis1

nfull ← 0 ; // and no full sub-trees2

Ncr ← NC − (nmin ·Nminh
+ nfull ·Nh) ; // compute remaining keys3

while Ncr > Nh and nmin > 0 do4

nfull ← nfull + 1 ; // one more full sub-tree is possible5

nmin ← nmin − 1 ; // remove one min full sub-tree6

Ncr ← NC − (nmin ·Nminh
+ nfull ·Nh) ; // update remaining keys7

return (

nfull︷ ︸︸ ︷
Nh, . . . , Nh,

nmin︷ ︸︸ ︷
Nminh

, . . . , Nminh
, Ncr) ; // with Nh−1 + 1 ≤ Ncr ≤ Nh8

5.5.5 A Better Index Selection Strategy

During the evaluation of a query plan, the index structures storing the statements are accessed
with varying statement patterns based on the actual bindings known at evaluation time. As an
example, let’s reuse Join Tree 1 on page 78. Since no bindings are available for SP1, the state-
ment pattern is resolved to (? p ?). Its evaluation on the statement index produces bindings for
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?uri1 and ?type1. Then, SP2 and SP5 are both resolved to (s p ?).
For each such statement pattern, multiple B-tree statement indices can be used for evaluation.

For a statement pattern (s p ?), a B-tree with the statement order spo and pso can be used.
Considering statement patterns with context c, there are 16 possible statement patterns. The
authors of [89] argue that six different statement orders suffice to cover all statement patterns.
However, this analysis does not consider the dynamics of index employment caused by the se-
quence of evaluated statement patterns. The value of subject variable ?uri1 in the above exam-
ple changes with each binding provided by SP1. With that, SP2 resolves to (s1 rdfs:label
?), (s2 rdfs:label ?), . . . . Now, different B-tree orders provide different evaluation per-
formances for this dynamic. The pos index uses the property to identify the region of the index
that contains statements with property rdfs:label. The subsequent evaluation of SP2 with
varying bindings for s2 can benefit from caching, whereas the spo index looks up the subject
for SP2 and fetches the region that contains all subjects and property rdfs:label, which is a
much larger region than in the former case which significantly reduces cache hit probability.

I implemented a better index selection based on the variable binding order during join tree
evaluation. Variables that are bound early are also used earlier in the B-tree order. As an example,
when variable ?a is bound before ?b, ?a’s values change with lower frequency in subsequent
statement patterns than ?b. For a statement pattern (?a p ?b), the order pso is used, rather
than pos. The advantage of the better index selection strategy is that the selected index will
never perform worse than the static variant. However, it requires more than only six indices to
cover all possible statement patterns.

Complexity

The better index selection strategy has constant complexity. Instead of only considering which
fields of a statement pattern are bound, it also considers the timely order of the field’s bindings.

5.6 Performance Evaluation of the LuceneSail

In the following, I report on a series of performance evaluations that measure the efficiency of the
LuceneSail full-text search extension, as well as the impact of the general Sesame improvements.

A general problem in benchmarking hybrid queries performance is the lack of a publicly avail-
able full-text RDF data and query set. In literature, RDF full-text search is usually evaluated
against individual data sets and queries, which are superficially described and never publicly
available, which renders the comparison of results very difficult. For this reason, we published
a full-text RDF benchmark described in Chapter 6. There, the LuceneSail is put into competi-
tion with other well-known and established RDF stores that provide full-text search capabilities.
For now, I investigate particular pieces of our work and perform implementation-specific exper-
iments. Firstly, I investigate the pure full-text search performance of the LuceneSail. Then, the
effectiveness of our B-tree optimization is examined. Finally, I evaluate the complete system with
a heavy load of complex hybrid queries to measure efficiency and performance improvements.
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Full-text Search Performance A generally known and accepted benchmark allows for
comparable and repeatable results [80, 103]. In the area of RDF indexing and querying, the
Lehigh University Benchmark (LUBM) [86] is most commonly used. It can be used to generate
arbitrarily large synthetic RDF data. However, it is not designed to be used in conjunction with
complex full-text queries. The main reason for that is that the generated RDF literals are arti-
ficial one-term strings like "Course26" or "Publication3Common". By using such textual data,
keyword search degrades to simple complete string matching.

We basically want to estimate the typical performance of the full-text search capabilities of
LuceneSail. For this, we take a large RDF graph that primarily contains literals: the Wordnet
RDF graph17. This graph represents the relations between English nouns, verbs, adjectives,
and adverbs, and is organized into sets of synonyms, each representing one fundamental lexical
concept. Nodes usually have multiple literals containing one or only a few terms like "cognition"
or "knowledge" and one longer multi-term literal like "the psychological result of perception and
learning and reasoning". Further, this graph contains a large amount of structural information.
Altogether, the Wordnet RDF graph contains over 473,000 statements, including over 273,000
statements with literals. The corresponding NTriples file is 71 MByte in size. After indexing the
RDF graph, the Sesame NativeRDF store occupies 52 MByte, while the corresponding Lucene
index is 47 MByte in size. For our experiments we index and store all predicates.

We then issue 100,000 queries, each containing one, two or three random terms that occur
in the indexed RDF literals. Each query is issued only once to avoid caching effects. As the
query response time we consider the time between issuing the query and fetching all results.
We evaluate pure full-text queries and retrieve the score and URI of the matching resources. In
Figure 5.7 you can see that with increasing result set size the average response time increases
linearly, mainly caused by the linear complexity of fetching the results from disc. However,
the response time is always below 50 ms for less then 1,000 results. The number of terms does
not have a significant influence on the overall response time, so the performed joins must be
negligible in time. The area between the σ- and the 2σ-lines, respectively, illustrate the deviation
of the response time.
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Figure 5.7: Pure full-text search performance of LuceneSail.

17Wordnet RDF: http://www.w3.org/2006/03/wn/wn20/.
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B-tree optimization As the next evaluation, we examine the effectiveness of the B-tree op-
timization and its impact on iteration operations. For this, we index a significant portion of the
DBpedia data set version 3.5.1 comprising ≈ 89million statements and 226 MByte serialized in
RDF/XML. Figure 5.8 and Table 5.1 depict some statistics of the original and optimized B-trees
indexing these statements in the respective statement order. All original B-trees are created by
adding statements in the order given by the RDF/XML serialization. Due to the statement orders
of the trees, the same statement is inserted at different location in the trees. This leads to individ-
ual tree reorganization operations, which causes the variation in file size, number of nodes and
node position within the tree file. All optimized trees have the same structure (number of nodes
and number of keys in individual nodes), because it only depends on N , which is identical for all
six B-trees.

statement size in number statements full iteration
order MByte of nodes per node in seconds
opsc 3.01

1.75

1,577,963

917,422

56.40

97.0

12,690.71 98.98
ospc 2.95 1,545,074 57.60 6,505.49 75.51
posc 3.09 1,621,781 54.87 4,793.23 106.46
psoc 3.45 1,809,510 49.18 7,963.20 81.70
sopc 3.44 1,801,505 49.40 161.03 112.20
spoc 2.57 1,349,718 65.93 672.92 83.10

Table 5.1: Statistics on six original (left value of each column) and optimized (right) B-trees after
indexing ≈ 89million statements from the DBpedia data set.

With one full iteration over the original and optimized B-tree, we measure the impact of the
optimization on iterations. During an iteration over trees, nodes are fetched from disk in depth-
first sequence. The node’s position within the B-tree file, the timestamp when a node is fetched,
together with the node’s position in the iteration sequence are recorded. Figure 5.9(a)–5.9(c)
plot those data for three statement orders. The x-axis depicts the index of a node in the fetch
sequence, whereas the y-axis refers to the node’s position in the B-tree file. Long vertical lines
refer to large I/O seek distances18, which take more time than fetching a node that is located
closely to the previous one. The time that is consumed by a far seek causes a steeper slope of the
time curve, because more time is needed to fetch a node.

In contrast, the optimized B-tree depicted in Figure 5.9(d) has minimal iteration performance
and I/O seek distances. The time for a full iteration is also given in Table 5.1. The variation of
full iteration time can be explained by competing disk operations during the evaluation and file
fragmentation caused by the file system. We can observe that the measured time is significantly
better than for original B-trees, once even two orders of magnitudes. All optimal trees yield
similar iteration performances, where the original trees span almost two orders of magnitude of
variation.

18I assume the B-tree file to be stored into subsequent blocks on the hard disk (i. e., not fragmented). Otherwise,
this would break the correlation between node positions within the B-tree file and on-disk I/O seek distances.
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Figure 5.8: Node size histograms (equiv. to detailed profiles [154]) of three original and one
compact B-trees showing the probability of a node (the root) to have 48–97 (1–97)
statements. The y-axis is logarithmic, probabilities of one level sum up to 1. Note that
the compacted trees of different B-trees of the same size are structurally identical.
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Figure 5.9: A full iteration over three original and one optimized B-trees. A red point denotes an
individual node, the green line plots the time that passes by during the iteration. Note
the different time scale on the y-axis for the optimized index.
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5.6. PERFORMANCE EVALUATION OF THE LUCENESAIL

Hybrid Query Evaluation The last evaluation targets at the performance improvement of
our general Sesame enhancements. To this end, complex hybrid queries are generated using the
QUICK system [192]. For a keyword query given by the user it finds all types and properties of
a given ontology that match single keywords. In a second phase, all possible hybrid queries of a
particular size are generated according to the ontology. This experiment uses the RDF data set
of the Internet Movie Database19 (IMDb). Its ontology contains 5 types and 10 properties. The
data set provides more than 10 million instances and 40 million facts.

To estimate the performance in real-world settings, real user queries are extracted from the
query log of the AOL search engine. Here, approximately 3,000 user keyword queries that
brought the user to the IMDb website can be extracted. Unfortunately, most of these queries are
rather simple: they only contain a single type. Therefore, a manual investigation is necessary to
select those referring to more than two concepts. This yields 100 user queries.

From these, 14 queries are randomly selected and used by the QUICK system to generate the
semantic query space with a maximum size of 7 links. This generates 5,305 hybrid queries each
having more than 100 results. All these queries are evaluated against the original and the im-
proved Sesame RDF store with LuceneSail, to measure the general performance improvement.
The experiments were conducted on a 3.60 GHz Intel R© Xeon R© server. Throughout the evalua-
tion, less than 1 GB memory was occupied.
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Figure 5.10: Histogram of original and improved Sesame query evaluation times

The query time of these queries is depicted as a histogram in Figure 5.10(a) for the original
Sesame, and in Figure 5.10(b) for our improved version. The different colors refer to the partic-
ular user query the queries are generated from. One can see that the average evaluation time of
the queries improve by one order of magnitude, from 22.7 s down to 1.03 s.

This improvement can also be seen in the histogram of improvement factors shown in Fig-
ure 5.11(a). For each query, an improvement factor is computed by diving the original execution
time by the improved one. All queries except those taking less than 100 ms in both cases consti-
tute the histogram. Below 100 ms, the measured execution time is very inaccurate due to the low
time span. The factors of those queries would add significant noise to our subsequent analysis
and are therefore filtered out.
19The Internet Movie Database (IMDb): http://www.imdb.com/.
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The high peak at the factor of 1.0 refers to all queries that do not significantly change in
their execution time. Most queries improved by one order of magnitude, whereas a significant
proportion of queries even improved by factor 100 or even 1,000. However, also a significant
number of queries experience a degraded execution time. These queries suffer from the wrong
query plan generation, due to inaccurate cardinality estimations.
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Figure 5.11: Histogram of performance improvement factors and the correlation between the
original and improved execution time.

To better assess the significance of these low improvement factors, we plot the original execu-
tion time against the improved one in Figure 5.11(b). One point refers to one query. On the left
of the y = x line, all queries are located that experience a worse execution time in our improved
system. One can see that most of these queries originally take less than one second, where a
degradation by factor 10 still yields to an agreeable performance. In contrast, more improved
queries originally take more than ten seconds than those being degraded.

5.7 Conclusion and Outlook

I have presented our LuceneSail, a combination of structured queries (DB) and full-text queries
(IR). The essence of this approach is to embed queries for the full-text of RDF literals into struc-
tured queries using virtual properties. The results of these queries are computed by combining
an RDF store (Sesame) and a highly efficient full-text search engine (Apache Lucene). The score
and text snippet results from the IR query are integrated with results from the structured query,
whereas in related work this information is often omitted. Several optimizations are done to the
hosting RDF store Sesame, to better integrate the evaluation of full-text query parts and improve
general structured query evaluation. With our performance evaluation based on general-purpose
data sets (Wordnet, IMDb, and DBpedia RDF graphs), we demonstrate fast response times of
our system, as well as significant performance improvements.
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5.7. CONCLUSION AND OUTLOOK

This work’s general approach of combining structured with full-text search can be replicated
by others and adopted to other RDF storage systems. We envision that future Desktop and Web
Search Engines will be based on a combination of SPARQL and full-text retrieval, for which this
work is a needed input.

During implementation and evaluation of our full-text extension of Sesame, we identified some
potential performance improvements. The primary improvement can be achieved by a joint URI
handling scheme. Hybrid queries are evaluated against two indices (Sesame and Lucene). In
order to join results, the URI of matching resources have to be compared. Unfortunately, the
URI needs to be read from the actual Lucene documents that match the full-text query part,
which requires I/O operations. The same holds for the URIs of the Sesame store. However,
since not all of these fetched URIs will match both query parts, irrelevant and unnecessary I/O
operations are performed. The Lucene document IDs are in contrast available without additional
effort, so the join could be performed on them. A mapping between Sesame’s internal URIs
representation and these Lucene document IDs would yield a better join performance. However,
such a mapping has to be updated after each Lucene index optimization.

The full-text extension of Sesame is available as free software and was used in the research
projects Beagle++ [122], Gnowsis [165], and NEPOMUK [131], several research activities [46,
64, 168], as well as in the industrial domain by Aduna Autofocus and ABC News20.

20ABC News: http://abcnews.go.com/.
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6Chapter

Benchmarking Hybrid Queries

Developers and researchers evaluate the performance of their systems with the help of bench-
marks. To obtain comparable results, such a benchmark usually comprises a well defined data
set and work load that mimics realistic usage patterns [80, Ch. 1] [103]. For evaluation of RDF
stores, a number of benchmarks have been proposed which measure the performance of struc-
tured queries [30, 86, 169]. None of them, however, addresses full-text search capabilities. I
consider this to be the primary reason for RDF store developers to test their full-text search
implementations with their own ad hoc benchmarks [91, 124, 195]. This circumstance renders
efficiency evaluations difficult to be repeated or compared. To the best of my knowledge, a
commonly available RDF full-text benchmark was missing prior to this work.

In this chapter, I propose a benchmark that measures performance and feature richness of
full-text search facilities of RDF stores. For this, I extend the well-known Lehigh University
Benchmark (LUBM) [86] with full-text content and hybrid queries. With the help of this new
benchmark, I evaluate the established and freely available RDF stores and discuss the results.

In particular, this work makes the following contributions:

1. I identify properties of data sets needed for an RDF full-text benchmark, taking into ac-
count real full-text characteristics such as its term distribution.

2. I extend the LUBM benchmark data set, propose an algorithm for scalable generation of
synthetic full-text content and make the implementation publicly available1.

3. I design RDF full-text queries to investigate different aspects of full-text search on RDF,
and evaluate well-known open source RDF stores with this benchmark (in alphabetical
order): Jena, Sesame2, Virtuoso, and YARS.

The results show insights of RDF stores regarding basic full-text queries (classical IR queries)
as well as hybrid queries (structured and full-text queries). These results are valuable for select-
ing the right RDF store for specific applications. They further reveal the need for performance
improvements for certain kinds of queries.

This work is structured as follows. After discussing the related work of benchmarking in
general and RDF stores in particular in Section 6.1, I define objectives and desired features of an
RDF full-text benchmark, and describe my extension of the LUBM benchmark in Section 6.2.
Section 6.3 presents the evaluation of popular RDF stores against the proposed RDF full-text
benchmark. Finally, I close this chapter with my conclusions in Section 6.4.

1LUBMft: http://www.l3s.de/~minack/rdf-fulltext-benchmark/.
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6.1 Related Work

In the software engineering domain, benchmarks are used to assess the relative performance and
absolute feature-richness of a target system [80]. For this, well designed standard tasks mimic
a particular type of workload [103, Ch. 4]. The Full-Text Document Retrieval Benchmark [80,
Ch. 8] (FTDR) generates workload as a mixture of searching, retrieving documents from the
system, and adding documents. In contrast, our benchmark only investigates search.

In the area of relational databases, the TEXTURE benchmark [73] investigates performance
of relational text processing workload. It randomly generates queries based on certain term
occurrence characteristics. In contrast, our work provides fixed queries that can repeatedly be
evaluated and studied for different RDF stores and hardware configurations. Similarly to our
benchmark, TEXTURE synthetically generates full-text but only maintain one global word dis-
tribution.

In the area of RDF stores, a number of benchmarks are available. The Berlin SPARQL Bench-
mark (BSBM) [30] generates full-text content and person names. The SP2Bench [169] uses a
data set that refers to the structure of the DBLP Computer Science Bibliography2. Both bench-
marks pick terms from dictionaries with uniform distribution, whereas our benchmark employs
a realistic long-tail distribution of terms. Further, the query sets of these benchmarks do not
contain full-text or hybrid queries. Enriching these benchmarks with real world full-text content
and full-text queries in the way our work extends the LUBM benchmark would indeed be pos-
sible. To the best of our knowledge, this full-text extension of the LUBM benchmark is the first
full-text Benchmark for Semantic Web systems.

Due to the lack of RDF full-text benchmarks, in [124] we employ the RDF version of Wordnet3

and query for randomly selected terms. However, this data set does not easily scale up to an
arbitrary size. Similarly to our approach, the authors of [91] generate a data set, where literals are
generated by keywords randomly selected from a dictionary. Unfortunately, the authors neither
sufficiently report on this benchmark in order to reproduce results or reuse the benchmark, nor
do they apply that benchmark on other RDF stores.

6.2 A Full-text Extension for LUBM

This RDF full-text benchmark is based on the Lehigh University Benchmark (LUBM), which I
introduce in the following section. Its value for benchmarking search over RDF data is discussed
and missing features regarding full-text search are outlined. Finally, the requirements on data set
generation, as well as new full-text queries are derived for our RDF full-text benchmark.

2DBLP Computer Science Bibliography: http://dblp.uni-trier.de/
3Wordnet RDF: http://www.semanticweb.org/library/
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6.2. A FULL-TEXT EXTENSION FOR LUBM

6.2.1 LUBM Overview and Discussion

The Lehigh University Benchmark4 (LUBM) [86] is a very frequently used synthetic benchmark
for RDF stores [89, 91, 195]. It provides the Univ-Bench Artificial data generator (UBA) to
generate data sets of arbitrary size, and a set of 14 queries. Its data set complies with the Univ-
Bench ontology5 describing universities. It contains 43 classes, such as ub:University,
ub:Department, ub:Professor, and ub:Publication. It further contains 25 object
properties (pointing to resources), as well as 7 data type properties (pointing to literals), such as
ub:name and ub:publicationAuthor.

Data sets are generated using a scaling factor N which refers to the number of universities
being synthesized and therefore determines the size of the generated data set. In addition, a seed
M for the random number generator can be specified to allow repetitive regeneration of the same
synthetic data set. Generated data sets are referred to as LUBM(N,M). The notation LUBM(N)
indicates that M is set to 0. Similarly, I name this full-text benchmark LUBMft and refer to the
full-text extended data set of size N as LUBMft(N).

Even though the LUBM benchmark was primarily designed to evaluate OWL and DAML+OIL
capabilities of RDF stores (see Section 2.1), it was also very often used to benchmark RDF stores
and RDF related systems without OWL or DAML+OIL support [89, 91, 195]. This may be due
to the very easy generation of arbitrarily sized RDF data sets and the familiar ontology domain.
As LUBM, this benchmark works perfectly on stores without any kind of reasoning.
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Figure 6.1: (Left) Term distribution of the ub:name predicate. (Right) Term distribution of first
names and surnames provided by the 1990 U.S. Census.

4The Lehigh University Benchmark (LUBM): http://swat.cse.lehigh.edu/projects/lubm/.
5Throughout this paper I refer to the Univ-Bench namespace using ub, which resolves to http://www.
lehigh.edu/~zhp2/2004/0401/univ-bench.owl.
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During the generation process, instances and relations are created on the basis of uniform
distributions. For instance, a university contains 15 to 25 departments, each employing 7 to 10
full professors, whereas each authored 15 to 20 publications. This equips the LUBM data sets
with quite a complex structure with well defined connectivity properties. However, the literal
values lack such sophisticated characteristics. The name of a person, for instance, is a one term
literal like "FullProfessor0". Full-text search for this term provides exactly one match for
each university department. Finally, the ub:name property is used for all kinds of resources.

This results in a mixture of uniform distributions of this property’s terms which is highly unre-
alistic. Figure 6.1 shows the distribution of ub:name’s terms (left), and a real world distribution
of first names and surnames (right). One can see that surnames and male first names are even
power law distributions, as many real-world distributions are [139, Fig. 4].

6.2.2 Full-text Content Generation
The proposed full-text extension modifies aspects of the LUBM data set twofold. Firstly, names
are generated in such a way that they follow realistic term distributions. Secondly, to measure
performance on large text literals, full-text content is added to publication instances. To im-
plement this extension, two sources of literals were added to the LUBM data generator, 1) the
Name Generator: adding real person names and 2) the Document Generator: providing pub-
lication content. The enhanced data sets contain the same statements as the original LUBM
data sets, extended by the ub:firstname, ub:surname, ub:fullname, as well as the
ub:publicationText predicate, providing the respective content.

Name Generatator

The first new source of literals is the Name Generator, which produces random names consisting
of a first name and a surname. The generated terms follow a real distribution of names. As input
for the term frequencies we use the data provided by the U.S. Census Bureau from the 1990
census6. This data set provides probabilities for the top ≈ 1,200 male and ≈ 4,300 female first
names. It also contains the top ≈ 89,000 surnames, whereas only the top ≈ 19,000 surnames
have sufficient frequency information.

Document Generator

The second source of literals with realistic term distributions is the Document Generator. Since
LUBM is a synthetic benchmark that produces data of any specified size, the content generation
also needs to scale. Therefore, we cannot directly use a real-world document collection as con-
tent. Instead, we use a Probabilistic Topic Model [179] to learn features that characterize such a
collection. We then generate a synthetic set of documents which exhibits the learned real-world
characteristics. This approach preserves the desired scalability feature of LUBM and at the same
time ensures realistic term frequency distributions of the generated collection.

6Frequently Occurring First Names and Surnames From the 1990 Census: http://www.census.gov/
genealogy/names/.
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To learn a realistic topic distribution of documents, we apply Latent Dirichlet Allocation
(LDA) [179]. With LDA, a document is modeled as a mixture of topics, and a topic is modeled
as a distribution over words. We reuse the Matlab R© implementation of the LDA model provided
by Steyvers and Griffiths [179]. As a training set we employ the NIPS document collection7,
consisting of 1,740 papers written by 2,037 authors with a total of 2,301,375 term occurrences of
13,649 unique terms. From the topic distribution of documents, a topic co-occurrence probabil-
ity is derived: a topic with a high probability regarding a document gains a higher co-occurrence
probability with all other topics of that document than a topic with a low probability would gain.
This allows us to respect the phenomenon that terms tend to co-occur with some terms more
likely than with others [52], whereas drawing terms from a single term distribution would not
consider this phenomenon.

Given the topics and their co-occurrence, we first assign a dedicated topic to each department.
Then, we distribute topics co-occurring with the department topic among the faculty staff of the
department, according to their probabilities. Together with the department topic, the topics of the
authors determine the topic mixture of a publication. This topic assignment clusters publications
around departments by means of used terms: each department and author has its own specific
vocabulary. This better reflects the phenomenon of different vocabularies among universities,
departments, and authors. Table 6.1 gives an overview of the resulting LUBMft data sets.

LUBMft(1) LUBMft(5) LUBMft(10) LUBMft(50) LUBMft(100)
Universities 1 5 10 50 100
Person Names 8,330 51,955 106,409 555,815 1,120,834
Publications 5,999 37,854 76,529 402,142 808,741
Unique Terms 17,611 28,171 32,438 36,456 36,518
Terms 6,032,320 38,061,820 76,954,636 404,365,260 813,224,336
Statements 134 k 840 k 1.7 M 8.96 M 18 M
Size (XML) 56 MB 356 MB 719 MB 3.8 GB 7.6 GB

Table 6.1: Statistics of the LUBMft data sets.

6.2.3 Full-text Test Queries

The generated full-text data set needs to be complemented with related queries to form a com-
plete benchmark. The goal is to design these queries in a way that evaluating them against the
LUBMft data sets provides insights into the strengths and weaknesses of RDF stores regarding
full-text search. We deem query plan optimization an integral part of an efficient query evalu-
ation. Therefore, we follow the same principle as LUBM in which query patterns are stated in
descending order of their cardinality. This gives RDF stores the maximum possible opportunity
to optimize the query plan, and reduces the probability that a store by chance executes a better
query plan than another store.

7Author-Topic Model: NIPS: http://www.datalab.uci.edu/author-topic/NIPs.htm.
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Our benchmark queries are subdivided into three sets, each targeting a different area:

Basic IR performance: These queries are equivalent to classical IR queries, i. e., keyword
queries without any semantic relation.

Semantic IR performance: This set of queries targets at the performance of the combination
of keyword queries and semantic relations — hybrid queries. Furthermore, this investigates
the quality of full-text search integration into the SPARQL evaluation process.

Advanced IR features: Finally, this set of queries explores advanced IR features like boolean,
phrase, or wildcard queries, score or snippet retrieval.

Queries In the following, we present the three query sets, in which the queries get more and
more complex, and where subsequent queries build on the results of previous ones. Note that
some queries have variants, e. g., Query 1 is evaluated with different keywords to investigate the
impact of those different keywords for the same data set size. The two variants are denoted as
Query 1.1 and 1.2.

All queries focus on full-text performance, their combination with structured queries and their
integration into the query evaluation process. We do not investigate the performance of the struc-
tural part of the queries. The performance of structured query parts is sufficiently investigated by
RDF benchmarks discussed in Section 6.1.

Basic IR Performance

The first set of queries that we design will only contain queries that can equivalently be expressed
in pure IR queries. Furthermore, only those IR features are exploited that are expected to be the
minimum set of features all RDF stores with full-text search support, namely keyword and phrase
queries.

Q1: “All resources matching the keyword ki”. ki ∈ {‘engineer’, ‘network’}
Q2: “All resources matching ki in ub:publicationText”. ki ∈ {‘engineer’, ‘network’}
Q3: “All resources matching ‘network’ or ‘engineer’ in ub:publicationText”.
Q4: “All resources matching the phrase ‘network engineer’ in ub:publicationText”.
Q5: “All resources matching keyword ‘smith’ / having literal "Smith" in ub:surname”.

Table 6.2: Basic IR Queries.

Query 1 starts with a simple one-keyword query. Its performance is of interest, since in the
more complex benchmark queries the evaluation of keyword query conditions produces equiva-
lent intermediate result sets with a proportional performance and scalability impact. One infre-
quent term (’engineer’) and one very frequent term (’network’) is used to investigate the influence
on the result set cardinality. For LUBMft(1), the result set cardinality for these terms is 40 and
1,013, respectively.
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In Query 2, the terms are restricted to match in the ub:publicationText predicate. The
result set is the same, so the difference in performance compared to Query 1 is caused by this
additional constraint only. This query is equivalent to fielded keyword search in IR. Result sets
of two keywords have to be looked up and merged to evaluate Query 3, which is the union of
both result sets. To evaluate a phrase query of the two keywords, the position information of
each occurrence of both keywords has to be processed by the full-text search engine for Query 4.
Query 5 finally allows to compare keyword look-up performances with literal look-up, since both
queries are semantically equivalent and have the same result set.

Semantic IR Performance

The following queries contain structural conditions to investigate their impact on the query eval-
uation performance. These queries show the quality of integration of IR features with general
SPARQL query processing.

Q6: “All ub:Publications matching ‘engineer’ in ub:publicationText”.
Q7: “All ub:Publications and their ub:title matching ‘engineer’ in

predicate ub:publicationText”.
Q8: “All ub:Publications, their ub:titles, and

the ub:FullProfessor author’s ub:fullname,
matching ‘engineer’ in ub:publicationText”.

Q9: “All resources matching ‘engineer’ in ub:publicationText and
all resources matching ‘smith’ in ub:fullname, being connected

via the predicate ub:publicationAuthor”.
Q10: “All resources matching ‘network’ in ub:publicationText and all

resources matching ‘engineer’ in ub:publicationText, that are both
connected via ub:publicationAuthor to the same ub:FullProfessor”.

Q11: “All distinct ub:FullProfessors matching ‘smith’ in ub:fullname
that authored both, resources matching ‘network’ and resources

matching ‘engineer’ in the ub:publicationText property”.

Table 6.3: Semantic IR Queries.

From Query 6 to Query 8, we increase the number of structural constraints of the query.
The result set of the keyword condition has to be joined with more and more statement pat-
terns. This allows us to evaluate the impact of structural query parts. The next step is the
extension to two-keyword queries, where each keyword matches a different resource in the
query graph. In Query 9, both matching resources are tested whether they are connected via
a ub:publicationAuthor predicate. Query 10 interconnects both matching resources via
a ub:FullProfessor resource. Finally, this query is extended to three keywords, where the
intermediate full professor additionally has to match the third keyword (Query 11). This requires
three result sets of the full-text search to be joined via structural restrictions.
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Advanced IR Features

The final query set investigates the existence of certain advanced IR features. In contrast to the
features evaluated by Queries 1 to 5, the advanced features are not expected to be supported by
all RDF stores offering full-text search.

Q12: “All resources matching ‘network’ and ‘engineer’ in ub:publicationText”.
Q13: “All resources matching ‘network’, but not ‘engineer’ in ub:publicationText”.
Q14: “All resources matching ‘network’ and ‘engineer’ in ub:publicationText, both

keywords appearing within a distance of at most 10 words of each other”.
Q15: “All resources matching wildcard keyword ‘engineer*’ in ub:publicationText”.
Q16: “All resources matching wildcard keyword ‘engineer?’ in ub:publicationText”.
Q17: “All resources matching fuzzy keyword ‘engineer~0.8’ in ub:publicationText”.
Q18: “All resources and their relevance to the keyword

‘engineer’ in predicate ub:publicationText”.
Q19: “All resources and a snippet matching keyword ‘engineer’

in predicate ub:publicationText”.
Q20: “The top-10 resources with their relevance to the keyword ‘network’

in ub:publicationText”.
Q21: “The resources and their relevance to ‘network’ in predicate

ub:publicationText, that have a relevance of > 0.75”.

Table 6.4: Advanced IR Queries.

There are tests for conjunction (Query 12) and negation (Query 13) of full-text related condi-
tions, for a proximity query (Query 14), where both keywords have to appear in a distance of at
most 10 words, and for wildcard queries (Queries 15 and 16).

Query 17 matches all terms that have a similarity of 0.8 to the given keyword. The similarity
measure is application dependent, so for different implementations, different similarity values
may be used to retrieve a comparable result set size. The relevance score and a snippet is retrieved
by Queries 18 and 19, respectively. Some RDF stores allow to limit the results of a full-text
search to top-k, or to all results that exceed a certain relevance score. These features are tested
by Queries 20 and 21. If these features are not inherently supported, they can be mimicked by
a SPARQL LIMIT or FILTER operation. In that case, a similar performance to Query 2.2 is
expected.

6.3 Evaluation

After having generated the enhanced LUBMft data set and designed 21 queries, a number of
well-known open source RDF stores are evaluated using this RDF full-text benchmark. The
following RDF stores (in alphabetical order) are chosen: Jena [37], Sesame2 [34], Virtuoso8,

8Virtuoso Open-Source Edition: http://virtuoso.openlinksw.com/wiki/main/Main/
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and YARS [89]. Since Jena provides a large number of different backend stores, preliminary
tests identify Jena with TDB to be the fastest configuration.

In detail, the following configurations are used, which will further be referred to using these
abbreviations:

Jena: Jena 2.5.6, ARQ 2.5.0, Lucene 2.3.1, TDB 0.6.0

Sesame2: Sesame 2.2.1, NativeStore, LuceneSail (Hits-Set) 1.3.0, Lucene 2.3.2

Virtuoso: Virtuoso 5.0.9

YARS: YARS post beta 3, Lucene 1.9.1

All Java-based RDF stores employ the Lucene9 full-featured text search engine Java library, the
state-of-the-art Java implementation for Information Retrieval.

6.3.1 Methodology

The evaluation is conducted over LUBMft(N) with N ∈ {1, 5, 10, 50}. The LUBM benchmark
test tool (UBT) version 1.1 is reused to perform the tests. However, its program sequence is
modified towards the following behavior.

The queries are designed in an incremental manner with subsequent queries building on find-
ings of previous queries. This means that the result set of an early query is sometimes the
intermediate result set of a later query. Due to RDF store specific caching mechanisms and
file-system cache managed by the operating system, subsequent executions of the same query,
as well as similar queries, benefit from those “warmed up” caches. In order to suppress these
side-effects, the RDF store caches are cleaned by restarting the store for each query, and clear-
ing the file-system cache. Then each query is evaluated six times, where the first duration is
considered as “un-cached” and the subsequent durations are considered as “cached”. This pro-
vides insights in the performance of each store in case of insufficient and sufficient memory for
caching. Queries that exceed a limit of 1,000 s are excluded from evaluation of larger N . The
duration of a query is defined as the time that passes from parsing the query until no more results
are provided by the RDF store.

For each RDF store and LUBMft data set, all 21 queries are evaluated in this manner. This
whole process is repeated 5 times. In the end there are 5 evaluation times for each query referring
to the “un-cached“ case, as well as 25 times under the presence of ”warmed up“ caches.

For the evaluation I used a GNU/Linux machine with a 2 GHz AMD AthlonTM 64 bit Dual Core
Processor, 3 GByte RAM, and a RAID 5 array. The UBT Tester ran with JavaTM SE Runtime
Environment 1.6.0_10 and 2 GB Memory.

9Apache Lucene: http://lucene.apache.org/
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6.3.2 Results

In the following, I present the results of this benchmark evaluation. For easier comparison,
all figures share the same layout. Each figure depicts one benchmark query and aggregates all
RDF stores. Along the x-axis the different data sets are aligned by increasing scaling factor
N . The logarithmic y-axis depicts the evaluation time of a query in milliseconds. The bars of
the RDF stores are subdivided into two parts: the whole bar represents the evaluation time with
cleared caches, whereas the lower part of the bar illustrates the evaluation performance under the
existence of “warmed up“ caches.

Basic IR Performance
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Fig. 1. (Left) Term distribution of the ub:name predicate of LUBM(1). The curves
of LUBM(1), LUBM(5), and LUBM(10) overlay each other, perfectly. (Right) Term
distribution of first names and surnames provided by the 1990 U.S. Census.

Figure 6.2: Single keyword queries without and with predicate binding.

Figure 6.2 depicts the one-keyword Queries 1.1 and 1.2, which represent the basis of full-text
search. For Query 1.1, Jena is slower than Sesame2, but Jena can better deal with the larger result
set of Query 1.2, and can therefore exhibit a small performance advantage. Virtuoso, which is
very fast for the smallest data set, performs worse than Jena and Sesame2 with increasing data
set size for small result sets (Query 1.1), but performs better for larger result sets (Query 1.2).
For both queries, YARS reveals the worst performance. For all queries, Virtuoso has an unrivaled
performance with ”warmed up“ caches.
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The results of Queries 2.1 and 2.2 exhibit for all stores the same performance as for the
Queries 1.1 and 1.2. Therefore, the restriction imposed by Query 2 does not cause any com-
putational challenge to any of the stores.

With Query 3 the result set size does not significantly increase compared to Queries 1.2 and
2.2, but multiple keywords are used in a boolean OR semantic. As we can see in Figure 6.3, for
Query 3 as for Query 1.2, all three stores that use Lucene exhibit the same scalability, whereas
Virtuoso does not support this query. Compared to Sesame2, Jena also yields a better perfor-
mance for Query 4. Here, Virtuoso is even slower than Sesame, but it shows the lowest response
times in case of ”warmed up“ caches. YARS does not allow for phrase query articulation. Look-
ing at Queries 5.1 and 5.2, all RDF stores have a better performance evaluating the latter one.
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Fig. 1. (Left) Term distribution of the ub:name predicate of LUBM(1). The curves
of LUBM(1), LUBM(5), and LUBM(10) overlay each other, perfectly. (Right) Term
distribution of first names and surnames provided by the 1990 U.S. Census.

Figure 6.3: Multiple-keyword, phrase, and keyword vs. literal queries.

Discussion From Queries 1 and 2 we can see that none of the stores is challenged by missing
or given predicate bindings for the full-text search. All stores are robust against both situations.

Regarding basic IR queries, Jena is slightly faster than Sesame2. Both use Lucene as their full-
text search engine, so the overhead of the integration of the IR engine into the RDF evaluation
is obviously slightly higher in Sesame2. YARS also uses Lucene, but is much slower. This may
be due to the outdated lucene version they use. Virtuoso is for all but one case the slowest RDF
store. Further, it only supports a subset of the basic IR features. Queries 5.1 and 5.2 reveal that
a literal look-up is faster in all stores than an equivalent term look-up in the full-text index. This
indicates potential improvements of the systems regarding their full-text integration.
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Semantic IR Performance
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Fig. 1. (Left) Term distribution of the ub:name predicate of LUBM(1). The curves
of LUBM(1), LUBM(5), and LUBM(10) overlay each other, perfectly. (Right) Term
distribution of first names and surnames provided by the 1990 U.S. Census.

Figure 6.4: Semantic IR queries combining full-text search with structured queries.

With our semantic IR queries depicted in Figure 6.4, we test the performance of full-text search
combined with structural queries. From Queries 6 to 8 an increasing amount of structural infor-
mation connected to the resources that match the full-text search are to be retrieved. For Query 6,
all stores have similar performance and scaling properties, but Jena always performs best. Re-
garding Queries 7 and 8, Virtuoso has significant scaling problems, while the performance results
of all other stores are similar to those of Query 6.

With multiple keywords (Queries 9 to 11), Jena is overloaded. Virtuoso exceeds our query
evaluation limit for the second smallest data set already. Sesame2 scales best with multiple key-
words. Note that YARS is not capable of retrieving the correct results for queries with multiple
full-text queries.

Discussion By evaluating the semantic IR queries, we recognize that Jena and Virtuoso have
scalability problems for hybrid queries in general, and with those containing multiple full-text
queries assigned to different resources in the query in particular. YARS also cannot properly
evaluate these queries. Further investigations on Jena show that this is highly influenced by
the very simple query optimizer provided by TDB. With an optimized query planning, Jena
could potentially outperform Sesame2. This class of queries seems not to be considered by the
evaluated RDF stores (except by Sesame2), however, it is an important class of queries in the
field of semantic keyword queries.
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Advanced IR Features
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Fig. 1. (Left) Term distribution of the ub:name predicate of LUBM(1). The curves
of LUBM(1), LUBM(5), and LUBM(10) overlay each other, perfectly. (Right) Term
distribution of first names and surnames provided by the 1990 U.S. Census.

Figure 6.5: Advanced IR feature queries: boolean, proximity, wildcard, and fuzzy queries, score
and snippet retrieval, result and relevance score limitation queries.

Finally, we test for the advanced IR features. Virtuoso only supports one out of ten queries,
but this one with the smallest response time of all RDF stores. YARS only supports a subset
of five queries. Jena and Sesame2 both have similar performance, but Jena is always faster.
For Query 20 one can see that the response time is quite constant for all data sets, whereas for
Query 21, this holds true only for Jena.

Discussion Looking at advanced IR features, Sesame2 stands out by supporting all features.
For those supported by Jena, its overall performance is better. The result set limitation feature
of Query 20 works perfectly for both. The evaluation time neither grows with the data set size
nor with the correlating complete result set size. Limiting the results yields to an almost con-
stant response time. Due to the fact that Sesame2 does not support the relevance score limitation
feature of Query 21, this feature has to be achieved using a SPARQL FILTER. This first com-
pletely evaluates the query and then filters all results that match the score limit. Jena provides
this feature with its full-text querying facility and therefore performs as expected.
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Summary For basic or advanced IR queries, Jena and Sesame2 are the best choices. Con-
sidering complex semantic IR queries, Sesame2 is the only RDF store sufficiently solving the
tasks of full-text search on RDF data. With ”warmed up“ caches, Virtuoso outperforms all other
stores, but supports only a small subset of queries.

6.4 Conclusion

With our presented work, we addressed the strong need of application and RDF store develop-
ers for an RDF full-text benchmark. With the provided data sets and hybrid queries, full-text
capabilities of any RDF store can be evaluated and compared. Our evaluation shows that on
the one hand basic as well as advanced IR features are already sufficiently supported by today’s
RDF stores. On the other hand, it also uncovered several areas where performance needs to be
improved. This holds primarily for complex hybrid queries that contain more than one full-text
search condition. The evaluation results also show that a good query plan optimization is crucial
for competitive performance, as well as a tight integration of full-text search features into this
planning phase.

We are convinced that the availability of a standard full-text benchmark for RDF data stores
will foster the development of more efficient hybrid query processing algorithms.
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7Chapter

Diversifying Search Results

Result diversification is an effective method to reduce the risk that none of the returned results
satisfies a user’s query intention [186, 194]. It has been shown to substantially decrease query
abandonment [44, 60]. While diversification is an effective means to cater for diverse query
interpretations, it is also computationally expensive. The computation of an optimally diverse
result subset from a relevant input set has been shown to be NP-hard [2, 38, 79]. Therefore,
existing approaches use approximation techniques and heuristics to increase the efficiency of
diversification [65,68,79,183,191,197]. While the computational complexity of state-of-the-art
approximation algorithms is usually linear to the input size, they rely on random access to items
of the input set. To allow for high performance, the entire input set is hold in main memory,
imposing substantial memory requirements on systems processing many user queries in parallel.
Further, these algorithms cannot be applied for diversification of result streams, such as results
for continuous queries in databases [9, 45, 116, 142, 182], publish/subscribe systems [98, 102] or
on Semantic Web data [14]. Diversification of results is impossible for systems that potentially
process thousands of queries in parallel when they use algorithms with super-linear runtime and
linear memory requirements.

To solve this issue, I present our streaming-based approach which processes items incremen-
tally, maintaining a near-optimal diverse set at any point in time [126]. This approach exhibits a
linear computation and constant memory complexity with respect to the size of the input set, and
naturally fits for streaming applications. Further, it can be used to streamline many of the exist-
ing diversification approaches, such as MAXMIN and MAXSUM [1,68,69,79]. Though memory
consumption is reduced without compensation with more computation, an extensive evaluation
on several real-world data sets show that diversification quality does not suffer, while efficiency
is increased by orders of magnitude for very large sets as well as for continuous query scenarios
such as news stream subscriptions. In particular, this work makes the following contributions:

1. It formally defines the task of stream diversification, which elegantly extends the usual set
diversification task.

2. It proposes an incremental diversification framework suitable to diversify sets and streams.

3. Incremental approximation algorithms for the MAXSUM and MAXMIN diversification
problems are provided. With N as input set size and k as output set size, the algorithms
require only O(k2) memory for floating point values, O(k) memory for items, O(Nk)
distance computations, and O(Nk) and O(Nk2) other operations, respectively.

4. While substantially improving diversification efficiency, our algorithms still provide diver-
sified sets comparable to state-of-the-art facility dispersion approximation algorithms [79].
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This chapter is organized as follows. The next section discusses the existing work on set and
stream diversification. Then, the formal foundation of diversification and our main contribution
is presented, the incremental diversification framework and two incremental algorithms based on
this framework. Further, their quality and performance is evaluated and compared to state-of-
the-art diversification algorithms.

7.1 Related Work

Diversification is studied in many different fields such as biology, ecology, psychology, linguis-
tics, and economics [118]. From the latter, it is known that consumer’s satisfaction diverges over
time when consumed things are very similar. Suchlike, Web search engine users get bored when
they click through a list of very similar results, as they lose conviction that dissimilar results may
follow. In 1924, this phenomenon was named “the law of diminishing returns” [176].

In media, diversity manifests itself in a number of dimensions like topics, style of writing, sen-
timent, and ideological perspectives [121]. In the context of Information Retrieval, these aspects
should not be regarded as noise or contradictions, but rather as a rich source of information [78].

In [194], Zhai and Lafferty model the Information Retrieval task as a statistical decision prob-
lem with the aim to minimize the risk of loss. Here, loss describes how much a result fails to
satisfy a user’s information need. Since this loss is always connected to the relevance of the
results, the choice of a specific loss function allows to model different approaches in result set
optimization. Traditional Information Retrieval approaches are modeled by a function in which
the loss is independently estimated for each document. Diversification can be introduced by
choosing a loss function where one document depends on the other documents in the result set.

Several such diversification objectives have been proposed and successfully validated. The use
of Maximum Marginal Relevance (MMR) was proposed by Carbonell and Goldstein [36], and
also used in Zhai et al. [193]. Chen and Karger [44] introduced the metric k-call at n: this metric
is 1 if at least k of the top n documents in a result set are deemed relevant, otherwise 0. The aim
is to achieve a high average k-call over multiple queries. The choice of a small k leads to higher
diversification, a higher k gives relevance more weight.

Gollapudi and Sharma [79] express their diversification objectives in terms of facility dis-
persion optimization problems. In this work, we use their MAXSUMDISPERSION and MAX-
MINDISPERSION algorithms as the baseline for evaluation. In contrast to [79], only the diversi-
fied set is required to be in main memory and the input items are processed incrementally. This
allows to increase the efficiency for large item sets without significant loss of quality, as shown in
Section 7.4. The streaming-based approach of this work is not limited to these two diversification
objectives, though, and is independent of any particular relevance and distance measures.

Document similarity is not the only possible source for a diversification objective. Another
established approach considers each document as covering a subset of all possible aspects of the
query input [38, 53, 159, 193]. The topical similarity based on the distance in taxonomies (cate-
gorical distance) is also used for diversifying product search [79] as well as for book, bookmark,
and movie recommendations [191, 197]. Also Web search engine click rates [175] and query
reformulation [160] have been shown to be very valuable sources for Web search diversification.
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As search engine query logs show, there is a fair number of news-related queries [128], sug-
gesting that blog search users have an interest in the blogosphere response to news stories as
these develop. To the best of our knowledge, in the context of diversification, this need has only
been addressed by Drosou and Pitoura [68]. They propose algorithms that diversify a stream of
results using a jumping window approach. The authors argue that an incremental computation
of a diverse set of a stream is not possible. While this is true for the optimal diverse set, we
show that an incremental heuristic approximation is very well possible. Their SGC algorithm —
a heuristic variant based on a sliding window — is the most similar one in the literature com-
pared to our incremental approach. However, our “window” always starts at the beginning of
the stream, providing a diverse set of the entire history, rather than a fixed number of recent
items. This allows our algorithm to actively withdraw items from the diverse set if this improves
diversity, whereas SGC simply drops diverse items as they leave the window.

Diversification of search results is further considered in the domain of database search. A
clustering and weighted sampling approach is used in [183] to obtain a diverse subset of results.
Greedy algorithms are used in [87] in a similar way as presented here. However, the author
does not focus design and evaluation on the streamline character of diversification, and does not
consider input streams that are not ordered by relevance (e. g., from continuous queries).

7.2 Diversification Problems

In this section, I formally define the problem of diversification and provide the notation for the
rest of this chapter, mostly following [79]. I first define the classical Set Diversification problem
and then extend this notion to the problem of Stream Diversification to cover diversification of
continuous data.

Set Diversification For a given set of results U : |U| = N (e. g., search results, news or blog
articles matching a user query) one aims to find the set Sk ⊆ U : |Sk| = k that is both relevant
and diverse. Relevance of a result measures the probability that the user is actually interested in
that result (w : U→ R+)1, whereas diversity reflects dissimilarity ((1 - similarity), also denoted
distance) of one result to another (d : U×U → R+). To simplify the presentation, I assume in
the following that d is a metric. Usually, relevance and diversity are conflicting objectives: when
the top-k most relevant results do not constitute the maximal diverse set, diversity can only be
increased by replacing a top-k result with a less relevant but more dissimilar one. This obviously
reduces the overall relevance of the set. The trade-off between the two measures is captured in a
diversification objective, a function over a set of items that consolidates the relevance of results
w(·) and the diversity between pairs of results d(·, ·) into a single measure:

f : 2U × w × d→ R (7.1)

where 2U denotes the power set of U.

1While the result set U as well as the relevance function w depend on the user query, the explicit introduction of
the query itself into this diversification model would complicate the notation (cf. [79]).
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Having the diversification objective at hand, the diversification problem can be defined as
finding the k-size random subset Sk ∈ 2U that maximizes the diversification objective:

S∗k = arg max
Sk∈2

U

|Sk|=k

f(Sk, w(·), d(·, ·)) (7.2)

This optimization is known to be NP-hard [2, 79]. As the number of candidate sets |{Sk ∈
2U : |Sk| = k}| is N !

(N−k)! , an exhaustive exploration of all sets to find the optimal solution is
impractical even for small k ≈ 10 as soon as N > 20. Therefore, all proposed diversification
approaches use greedy algorithms and/or heuristics to approximate the optimal solution S∗k by a
near-optimal S+

k .

Instances of Diversification Objectives and Problems Throughout the literature of
diversification, there are two popular diversification objectives: SUM2 and MIN [68, 79]. As the
names imply, they are based on the sum or minimum of the two measures w and d. Formally, the
former is defined as

fSUM = (k − 1)
∑
i∈Sk

w(i) + λ
∑
i,j∈Sk
i 6=j

d(i, j) (7.3)

The first term in Equation 7.3 sums the relevance scores for each result, the second term sums
the distances of all pairs (i, j) ∈ Sk × Sk : i 6= j. Since the first sum runs over k values and the
second over k(k− 1), this imbalance is compensated by multiplying the first term with k− 1. In
case of d(·, ·) being a metric [79, Eq. 1], it suffices to sum over all k(k−1)

2
unique unordered pairs

and multiply the second term by 2.
The parameter λ allows to balance the influence of relevance and diversity on the objective

value. A λ < 1.0 increases the contribution of relevance, whereas a λ > 1.0 favors item dissimi-
larity. In order to consider both cases, λ = 0.5, 1.0, 2.0 is used for the evaluation.

The MIN objective is defined as

fMIN = min
i∈Sk

w(i) + λ min
i,j∈Sk
i 6=j

d(i, j) (7.4)

where only minimum relevance and minimum pairwise distance contribute to the objective.
The diversification problems of maximizing the SUM and MIN objectives are referred to as

MAXSUM and MAXMIN3. These problems can be cast as facility dispersion problems as shown
in [79], for which approximation algorithms exist. These algorithms are briefly summarized in
the following.

2The AVG objective bases on average relevance and average pairwise distance. For a fixed k, it is proportional to
the SUM objective and is therefore not separately considered in this work.

3This work specifically distinguish between diversification objectives (SUM and MIN) and their respective diver-
sification problems (MAXSUM and MAXMIN) that aim at maximizing the objective.
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The MAXSUMDISPERSION algorithm composes the diverse set by selecting k
2

pairs of most
distant items, with distance defined as d(i, j)′ = w(i)+w(j)+2λd(i, j). If k is odd, the kth item
is randomly added to the set. Finding the pair of most distant items is of time complexityO(N2),
thus this algorithm belongs to the complexity class O(N2k). For certain distance functions, this
complexity can be reduced by employing specialized index structures or computations [1].

Similarly, MAXMINDISPERSION initializes the diverse set with the pair of most distant items,
where distance is defined as d′(i, j) = 1

2
(w(i) + w(j)) + λd(i, j). Then, it adds the item i that

maximizes minj∈S d
′(i, j). After k − 2 iterations, the diverse set is constructed. Again, finding

the pair of most distant items requires O(N2) distance computations, while the k − 2 iterations
demand O(Nk) operations, summing up to O(N2 + Nk). As described in [68], the MAX-
MINDISPERSION algorithm can be improved by the following heuristic: instead of selecting the
initial two most distant items from the whole input set, it can selected from a uniformly random
sample set of size h (h � N ). This has only a small impact on the diversification quality [67],
but reduces the complexity to O(Nk + h2).

Since both algorithms require random access to the input set, it is usually held in memory,
yielding to memory complexity of O(N). This makes the application of these algorithms prac-
tically infeasible for large sets. In case of data streams, the algorithms need to be executed
repeatedly as new items arrive, causing an even higher computational effort. In the following
Section 7.3, I present our incremental approach that solves these issues.

Stream Diversification As an extension to the set diversification problem, let’s consider the
items of the set to be a sequence or stream S = (s1, . . . ) in the order as retrieved by the respec-
tive IR system. For a given query, a traditional document retrieval system provides documents
in descending order of relevance. A news or blogs publish/subscribe system provides results
matching a continuous query as they are recognized by the system, i. e., ordered by time. The
diversification problem over a stream S at each position i in the stream is defined as

S∗k,i = arg max
Sk∈2

Si

|Sk|=k

f(Sk, w(·), d(·, ·)) (7.5)

where Si = {sj : j ≤ i} is the set of the items at positions [1, i]. In other words, for each
position i in S, a diversified set S∗k,i is defined over the subsequence Si = (s1, s2, . . . , si). It can
be seen that the set diversification problem is a special case of stream diversification, by viewing
the input set U as stream S = (s1, . . . , sN). Then,

S∗k
U=SN= S∗k,N (7.6)

In contrast to our stream diversification problem, [68, 69] consider a fixed window of recent
items for the diversification task. This, for instance, poses a problem for items like news articles
or blogs that are not published at a fixed rate. Then, at two different points in time the win-
dow covers different periods of time. Further, picking the window size represents an additional
optimization problem.
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Diversification along a time-ordered stream of results may lead to diversified k-size sets that
primarily contain “old” but relevant and highly diverse results while new, similar results are
omitted. Such a behavior can be compensated by introducing a decay factor to the relevance
function which lowers the item score as its age increases [68]: Function wi(sj) is the relevance
of item sj at time i (i.e., when item si is observed):

wi(sj) = w(sj) ∗ e−αt(si,sj) (7.7)

with α = − log 0.5
log e

t−11/2 and t1/2 being the half-life time of results’ relevances, while t(sj, si) =

max(t(si) − t(sj), 0) provides the time difference between result si and sj if the point in time
t(si) > t(sj), or 0 otherwise.

7.3 Incremental Diversification

The following section describes our incremental diversification framework. It is composed of a
generic incremental diversification algorithm that employs a general incremental objective model
to optimize computation. This algorithm efficiently and effectively produces diverse k-size sets
in linear time (for fixed k) and over streams in constant time (at each position) with respect to
input size. Based on this framework, I develop incremental algorithms for the MAXSUM and
MAXMIN diversification objectives.

7.3.1 Incremental Diversification Framework

Incremental Diversification Algorithm The core idea of the incremental diversification
algorithm is to process the input as a stream of items and to continuously maintain a diverse
subset at each position of the stream. Let S+

k,i−1 be a near-optimal diverse k-element subset of
(s1, . . . , si−1). Then, its successor S+

k,i is determined as the set with the highest objective among
all candidate sets S′k,i that can be created by replacing at most one element of S+

k,i−1 with si.
Formally, this can be defined as

S+
k,i = argmax

S′
k,i
∈2

S+
k,i−1

∪{si}

|S′k,i|=k

f(S′k,i, w(·), d(·, ·)) (7.8)

Put differently, two consecutive sets S+
k,i−1 and S+

k,i with i ∈ [k + 1, N ] relate to each other as

S+
k,i = S+

k,i−1 \ {sj} ∪ {si} : sj ∈ S+
k,i−1 ∧ sj /∈ S+

k,i (7.9)

if a modification took place, otherwise S+
k,i = S+

k,i−1. For the first k items, S+
k,i is trivially defined

as S+
k,i = S+

k,i−1 ∪ {si} : i ≤ k with Sk,0 = ∅.
Algorithm 5 specifies this approach in pseudo-code. At the end of each iteration i over [1, N ],

the algorithm provides the diverse set S+
k,i. In case of streams, this algorithm can continue com-
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putation as soon as a new item arrives.
Additionally, this algorithm can be modified in line 10 to minimize the objective value, rather

than maximizing it. This allows to also use the algorithm along with all those diversification
objectives that are to be minimized, for instance the MAXCOV objective [174].

An important characteristic of this algorithm is that the objective value is computed in the
inner loop for k candidate sets S ′k,i that, compared to the outcome set of the previous iteration,
mutually differ in only one item. In the following, we show how the objective computation can
further be optimized by exploiting this fact.

Incremental Objective Model The objective value of a set S+
k,i is computed based on the

known objective value of S+
k,i−1. Since both sets relate to each other as defined by Equation 7.9,

only the relevance scores of item sj (removal) and si (addition), as well as the distances d(sj, sl)
and d(si, sl) : sl ∈ S+

k,i−1 \ {sj} need to be considered for computation. The incremental
diversification algorithm computes the objective of different S+

k,i by subsequently varying sj
(denoted in line 8 as S′k,i). Therefore, each distance d(si, sl) is reused k − 1 times in the inner
loop and does not need to be recomputed.

Algorithm 5: Incremental Diversification Algorithm
Input: Set of items {s1, . . . , sN}, size of diverse set k
Output: diverse set of items S+

k,N

for i← 1 to N do1

// The first k items are added to the diverse set
if i ≤ k then2

S+
k,i ← S+

k,i−1 ∪ {si} ;3

next ;4

// Memorize objective of current diverse set
max← f(S+

k,i−1, w(·), d(·, ·)) ;5

// Memorize current diverse set
S+
k,i ← S+

k,i−1 ;6

// Try to replace each element of current diverse set
for ∀sj ∈ S+

k,i−1 do7

// Construct next candidate set
S′k,i ← S+

k,i−1 \ {sj} ∪ {si} ;8

// Check If new objective is larger, and memorize if so
current← f(S′k,i, w(·), d(·, ·)) ;9

if current > max then10

max← current ;11

S+
k,i ← S′k,i ;12

return S+
k,N ;13
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7.3.2 Incremental SUM Objective

The core idea of the incremental SUM objective function exploits the fact that a sum s =
∑n

i=1 ai
can — instead of recomputing it — be updated when one value aj : j ∈ [1, n] gets replaced by
a′ as s′ = s + a′ − aj . Equivalently, fSUM in Equation 7.3 with symmetric distance can be
incrementally computed as:

fSUM(S
′
k,i) = fSUM(S

+
k,i−1)+ (k − 1)(w(si)− w(sj))

+ 2λ
∑

sl∈S
+
k,i−1

sl 6=sj

(d(si, sl)− d(sj, sl)) (7.10)

where fSUM(S) is a short hand notation for fSUM(S, w(·), d(·, ·)).
As the incremental algorithm computes the objective of k different candidate sets S′k,i with

only sj varying, the algorithm keeps all distances between the elements of S+
k,i−1 in a matrix

D = (dm,n), where dm,n = d(s(m), s(n)) : ∀n,m = 1, . . . , k. The function s(·) provides the
element of the diverse set that corresponds to the index [1, k] of this matrix and the following
vectors. The symmetry of d(·) leads to a symmetric matrix D. During the construction of the
initial set (line 3 of the algorithm), this matrix is built up for the first k items. From then on, it is
updated after the inner loop, as shown later.

The distance between the new item si and the items in the current diverse subset, d(si, s(l)) :
l = 1, . . . , k, is reused k − 1 times for each s(l). Therefore vector d = (d1, . . . , dk) is defined
with dl = d(si, s(l)) : l = 1, . . . , k. This vector is computed once before the inner loop. Further,
the sum over all these distances is defined as δk,i =

∑k
l=1 dl.

The vector ςk,i−1 = (σ1,i−1, . . . , σk,i−1) with σm,i−1 =
∑k

n=1 dm,n : m = 1, . . . , k provides the
row sums of matrix D.

Then, Equation 7.10 can be rewritten as

fSUM(S
′
k,i) = fSUM(S

+
k,i−1) +(k − 1)(w(si)− w(sj))

+2λ(δk,i − dj − σj,i−1)
(7.11)

In case S+
k,i differs from S+

k,i−1 (after the inner loop), the following updates are required: Vector
ςk,i is derived from ςk,i−1 for all l = 1, . . . , k as

σl,i =

{
σl,i−1 + dl − dj,l : l 6= j

δk,i − dl : l = j
(7.12)

where j refers to the index of sj as s(j) = sj . Then, matrix D is updated as dl,j = dj,l = dl :
l = 1, . . . , k, and function s(·) is modified so that s(j) = si. With this strategy, our incremental
SUM objective achieves a computation complexity of O(1), while requiring O(k2) memory.
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7.3.3 Incremental MIN Objective

The MIN objective defined in Equation 7.4 bases on the minimum relevance and pairwise dis-
tance. Therefore, the objective of each S′k,i is computed with the new minimum relevance and
distance values of S+

k,i−1 and item si. Similar to the incremental SUM objective, the pairwise
distances between si and sj ∈ S+

k,i−1 are computed once before the outer loop of the incremental
algorithm and reused to compute the objective of the candidate sets:

min
sn∈S

′
k,i

w(sn) = min


minw(sn)

sn∈S+
k,i−1

sn 6=sj

 , w(si)

 (7.13)

min
sn,sm∈S

′
k,i

sn 6=sm

d(sn, sm) = min


 min dn,m

n,m∈{1,...,k}\{j}
n6=m

 , min dn
n∈{1,...,k}\{j}

 (7.14)

With an ordered vector of all relevances of the diverse set, Equation 7.13 can be computed in
O(1) by comparing the first element (if the respective relevance does not belong to sj) or the
second element (otherwise) of the vector with w(si). Equation 7.14 can be evaluated by finding
the smallest distance among dn,m and dl with n,m, l ∈ [1, k] that does not belong to sj . This
can be done by a sort-join [75, Sec. 15.4.5] or two-way merge [110, Sec. 5.2.4] over the ordered
vector of all dn,m, the ordered vector of all dl, and the ordered vector of dj,m. The result distance
is the minimum of the former two vectors that does not appear in the latter one (thus it does
not belong to sj). This operation has a complexity of O(k) in worst-case when the k smallest
pairwise distances of S+

k,i−1 belong to sj and all distances to si are larger than these. For the best
case, in which the smallest pairwise distance of S+

k,i−1 does not belong to sj and is larger than
the smallest dl, Equation 7.14 has a complexity of O(1).

7.3.4 Complexity Analysis

The complexities of the incremental objectives for MAXSUM and MAXMIN are briefly outlined
before. I now analyze the total complexity of our algorithm in detail. The complexities of all
algorithms are summarized in Table 7.1 for condensed reference.

The computation and memory complexities are each considered to be compound. The compu-
tation contains distance computations and basic arithmetic operations. The former may involve
several of the latter, potentially rendering distance computations to be of an order of magnitude
slower. Memory consumption can be considered as a conjunction of the memory that stores the
items (to be diversified) and memory for basic data types such as double precision floating point
values. Again, the former can be orders of magnitude larger than the latter.

As one can see from the pseudo-code, the incremental diversification algorithm has a com-
plexity of O(Nk) set modifications and objective computations.
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In case of MAXSUMINCREMENTAL, the structures D, d, σj,i−1, and δk,i are constructed and
updated incrementally outside of the inner loop, requiring O(k) operations for each item. As
shown, the computation of the objective itself is O(1). Thus, the total computational complexity
of MAXSUMINCREMENTAL is still O(Nk).

For MAXMININCREMENTAL, the objective computation has a complexity of O(k) in the
worst-case and O(1) in best case. The removal and addition of elements from and to the ordered
relevance and distances vectors each requires O(log k) operations. These operations are per-
formed before and after the inner loop, leading to a total complexity ofO(Nk2) andO(Nk log k),
respectively. For both objectives, the memory requirements for maintaining the distance matrix
dominates the overall memory complexity, leading to O(k2). Note that k is usually rather small,
according to the “less is more” [44] motto. Thus, our algorithm is essentially linear in the number
of items, with a small constant factor determined by k.

When exponential decay is part of the relevance function, our incremental algorithms have to
recompute the relevance scores at each point in time. This is done in the outer loop with cost
O(k) and does not affect the overall complexity.

diversification algorithm acronym
CPU Memory

distances basic items basic
MAXSUMDISPERSION MSDisp O(N2k) O(N2k) O(N) O(1)
MAXSUMDISPERSION cached MSDisp+ O(N2) O(N2k) O(N) O(N2)
MAXSUMINCREMENTAL MSInc O(Nk) O(Nk) O(k) O(k2)

MAXMINDISPERSION MMDisp O(N2 +Nk) O(Nk) O(N) O(1)
MAXMINDISPERSION cached MMDisp+ O(N2) O(Nk) O(N) O(N2)
MAXMINDISPERSION cached (h=2) MMDisp+h2 O(Nk + h2) O(Nk) O(N) O(Nk + h2)
MAXMININCREMENTAL MMInc O(Nk) O(Nk2) O(k) O(k2)

Table 7.1: Complexity in CPU consumption (distance computation and basic operations) and
memory consumption (items and basic data types) of different diversification algo-
rithms. Basic operations are arithmetic operations or memory access, basic data types
are double precision floating point values.

7.4 Experimental Evaluation

I presented a generic incremental diversification framework, as well as two specific incremental
algorithms, MAXMININCREMENTAL and MAXSUMINCREMENTAL. As shown, computation
and memory complexity is reduced compared to their baseline algorithms MAXMINDISPER-
SION and MAXSUMDISPERSION, at the cost of giving up approximation guarantees. Therefore,
the main goal of the experimental evaluation is to show that for real-world data, this does not
lead to a decrease in diversification quality. In addition, the performances of the algorithms and
the baseline are measured to confirm the analytical results presented in Section 7.3.4. Finally,
effectiveness and efficiency of the algorithms are investigated for stream diversification.
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7.4.1 Experimental Setup

Data Sets and Queries To show the wide applicability of the incremental algorithm, they
are evaluated on three different well-known data sets. We opted for data sets that provide large
result sets and streams — the challenge we tackle with our incremental diversification algorithms.
In the following, I describe the data sets and corresponding queries used for evaluation.

NYTimes The New York Times Annotated Corpus [158] contains over 1.8 million articles of the
New York Times spanning more than twenty years from 1987 until 2007. We obtain over
5,000 user queries from the AOL query log that guide users to query.nytimes.com
and topics.nytimes.com. The publication timestamp of publication renders this data
set particularly suitable to generate time-ordered result streams from queries.

Blogs08 The TREC Blogs 2008 data set4 provides over 28 million multi-language blog entries
crawled roughly over the period of the year 2008. We consider a subset of 18 million
entries that can be classified5 as English. As queries, we use the TREC 2008 Blog Track
topics of the opinion search and polarity task6. From these 150 topics, we take the title
as a keyword query. Again, the dates of blog retrieval allow us to generate time-ordered
streams of blog entries relevant to user queries.

DBpedia The DBpedia data set v3.5.17 is a semantic data set providing the knowledge of the
Wikipedia project as semi-structured data. We use DBpedia as complement to the other
two document-centric data sets. Structured result sets and streams may exhibit different
characteristics and challenge diversification algorithms differently than unstructured doc-
ument collection. This data set contains almost 89 million facts extracted from Wikipedia
content.

For the DBpedia data set, we aim at generating structured queries that most likely produce
long result sets suitable for our evaluation purposes and are likely to be issued. Therefore,
we exploit frequent structures exposed by the data. From the most frequent types (classes),
links between these types, and their most frequent attributes (literal properties), we auto-
matically generate queries containing at most five interconnected typed nodes (resources)
and multiple optional unbound attributes. With that approach, we create over 800 queries.

These three data sets are used to generate realistic result sets and streams to put our diversi-
fication algorithms under real workload. With a result set ordered by relevance we face the set
diversification task, ordered by time we tackle the stream diversification task.

4TREC Web Corpus — BLOGS08: http://ir.dcs.gla.ac.uk/test_collections/
blogs08info.html.

5TextCat — Java Text Categorizing Library: http://textcat.sourceforge.net/.
6Topics for opinion search and polarity task (topics 851–950, 1000–1050): http://trec.nist.gov/data/
blog08.html.

7DBpedia: http://dbpedia.org/.
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Relevance and Distance Functions The diversification tasks we are focusing on require
relevance and distance functions, which are to be defined for each type of data set individually.

NYTimes/Blogs08 The two document-centric data sets are indexed with Java Lucene8 along
with the Snowball stemmer9. We use Lucene’s normalized relevance score as relevance function.
Based on the cosine similarity cosine similarity(·, ·) of the term frequency vectors, the distance
between items is defined as d(si, sj) = 1−cosine similarity(si, sj) (see page 72 in Section 5.2).

DBpedia The semantic data set is indexed and queried using the Java Sesame10 library. After
querying, results that refer to the same resources but with varying values for their attributes are
consolidated into a single result with multi-value attributes. This provides the user with the full
spectrum of resource attributes’ values while presenting fewer results.

Following [157], we define the distance between two results si and sj as a multi-type-multi-
value distance measure:

d(si, sj) =
1

n

n∑
l=1

dl(si(al), sj(al)) (7.15)

where the query contains the attributes a = (a1, . . . , an) and si(al) refers to the multi-value for
attribute al of result si. Further, the distance dl(vi,vj) between multi-value vi and vj of result si
and sj for attribute al is defined as

dl(vi = si(al),vj = sj(al)) =
1

|vi| · |vj|
∑
t∈vi

∑
u∈vj

dl(t, u) (7.16)

which corresponds to the average pairwise distance between the values of result si and sj for
attribute al. The distance between empty multi-values is defined as 1. Obviously, this definition
considers two sparse results with disjoint sets of non-empty attributes to be maximally distant
(diverse). Consequently, the diversification would favor sets of sparse results, which is unlikely to
satisfy users. Therefore, we define relevance as the fraction that reflects the number of attributes
of the query that are covered by the result (non-empty). A result that provides values for all
attributes obtains relevance 1, whereas results with only a few attribute values get assigned a
relevance close to 0. The diversification objective that balances diversity and relevance also
balances between sparse and non-sparse results.

The result distance measure can employ different distance measures for different attributes.
For this evaluation, cosine similarity is used over term frequency vectors for textual values and
the absolute difference between numerical values, normalized by the maximum range of the
respective attribute.

8Apache Lucene: http://lucene.apache.org/java/.
9Snowball Stemmer: http://snowball.tartarus.org/.

10OpenRDF Sesame: http://www.openrdf.org/.
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7.4. EXPERIMENTAL EVALUATION

Evaluation approach In our evaluation we target at effectiveness and efficiency of our in-
cremental diversification algorithms compared to the baseline algorithms.

Effectiveness The primary challenge to evaluate diversification approaches is to measure re-
sult set diversity. Clearly, this measurement must be independent of the diversification objective,
which is maximized. A number of established diversity-aware evaluation measures for search
approaches exist, e.g., α-NDCG [53], NDCG-IA [2], and S-recall [193]. These measures also
allow for comparison of different diversification approaches and objectives.

These measures require sub-topic annotations or relevance judgments which are not available
for result set sizes in the order of 105 that we evaluate. In fact, this is not necessary, as we do
not evaluate the quality of diversification itself, but rather how well our incremental algorithms
perform compared to already established approximations [79]. Therefore, a direct comparison of
the achieved objective scores instead of using one of the above mentioned measures is appropriate
to assess the effectiveness of our approach.

For comparison, we run each algorithm for all queries, and measure the objective score of
the diverse sets. These scores are then normalized to the interval [0, 1] by division by the max-
imal possible objective value. The difference of an algorithm’s and its baseline’s normalized
objectives renders the absolute objective difference (AOD) measure. These are averaged over all
queries and used to quantify the loss of quality introduced by streamlining. An AOD value of
±0.1 expresses an improvement / impairment of 10% within the normalized interval of [0, 1].

Efficiency The algorithms efficiency is measured as follows. The queries are evaluated against
the data sets and all results are fetched into memory. Then, the algorithms perform the diversifi-
cation on these in-memory result sets. We only measure the time required for the diversification
itself, not taking into account query execution and fetching of the initial result set into mem-
ory. The experiments employed the high performance computing cluster with JavaTM version
1.6.0_16, employing Intel R© Xeon R© (X5670, 2.93GHz) processors. We measure the actual CPU
time consumed by the algorithms, not the “wall clock” time.

Computing the baseline for our experiments are too expensive for very large result sets. There-
fore, for MAXSUMDISPERSION we only consider result sets of up to 4,000 elements, for MAX-
MINDISPERSION up to 10,000 elements.

7.4.2 Set Diversification

Algorithms For each of the two objectives that we evaluate here, a number of approximation
algorithms and variants exist. As baseline algorithms we consider the facility dispersion-based
algorithms MAXSUMDISPERSION and MAXMINDISPERSION [79]. In the following, we refer
to these as MSDisp and MMDisp. Both can be modified to trade fewer computations against
higher memory consumption by caching computed distances. We refer to these as MSDisp+ and
MMDisp+, respectively. Further, the variant of MMDisp+ that initially selects the most distant
pair from a h-size random subset of all N items (h� N ) is also evaluated as MMDisp+h2 with
h = 2. Our incremental algorithms are in the following referred to as MSInc and MMInc. As
reference algorithms, we also show the diversity level reached by returning the top-k most rele-
vant item, and the diversity of a k-random selection. We call these Top and Rand, respectively.
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Figure 7.1: Diversification quality compared to baseline MAXSUMDISPERSION (top row) and
MAXMINDISPERSION (bottom row) on the NYTimes, Blogs08 and DBpedia data
set (left to right column), with λ = 1.

Diversification Quality Figure 7.1 shows the difference of the objective scores achieved
with respect to the baseline algorithm, i. e., the baseline algorithm’s score is at 0. For the upper
row with the SUM objective, the baseline algorithm is MSDisp. The lower row shows results for
the MIN objective with MMDisp as baseline. MSDisp+ shows the same diversification quality
as the baseline, because the only difference is that the former caches results.

For all three data collections, MSInc clearly is on par with the baseline. In some instances,
the incremental results are even better. Our algorithms can be better than the baseline because
both approximate the optimal solution. MSInc is sometimes better because it considers every
item in the set, while MSDisp only considers items with maximal distance within the remaining
item set (see Algorithm 1 in [79]). For instance, two identical pairs of results (a1, b1) and (a2, b2)
with maximal distance d(a1, b1) = d(a2, b2) are both added to the diverse set, though d(a1, a2) =
d(b1, b2) = 0 does not contribute diversity.

For the MIN objective, we observe a higher variation of the AOD values. However, also for
this objective, the incremental algorithm yields similar or better results than the baseline.
MSInc results are more stable over all data sets and configurations than MMInc. This charac-

teristic is due to the fact that for MIN the item with the smallest relevance and distance determines
the objective score of the entire set, whereas for SUM all items contribute to the final score.

Though MMDisp+h2 yields reasonable results for Blogs08 and DBPedia, this approach does
not work well for the NYTimes collection (Figure 7.1, bottom left).
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Figure 7.2: Diversification quality on the Blogs08 data set compared to baseline algorithm
MAXSUMDISPERSION (top row) and MAXMINDISPERSION (bottom row) for λ =
0.5, 1.0, 2.0 (left to right column).

Influence of λ To investigate the influence of different trade-offs between relevance and dis-
tance, we now vary λ between 0.5 and 2.0. The results are shown in Figure 7.2. For SUM, the
approximation quality is not substantially influenced by the choice of λ. On the other hand, the
respective differences for MIN to the baseline are significantly affected.

For λ = 0.5, the relevance-only reference Top achieves SUM objective scores comparable to
the baseline, and for MIN its score is even higher. As expected, for higher λ values the Top scores
deteriorate soon. We also observe that our incremental algorithms are able to even diversify the
top-k results for λ < 1.0 and always outperform the other variants (except for one case, MIN at
k = 50 and λ = 2.0).

Performance Results The runtime of our experiments is shown in Figure 7.3. Note that all
results are shown with log-log scales. In this representation, all polynomial complexity classes
are displayed as straight lines, with varying slopes according to the degree of complexity, i. e.,
O(N2) has a steeper slope thanO(N). Each individual run is represented by a corresponding dot.
In addition, we show the trend line for these results. All experimental results correspond to the
analytical predictions presented in Section 7.3.4. We see that the extracted queries yield result set
sizes from 100 up to 10,000 documents. As expected, processing times of the non-incremental
algorithms grow quadratic with this set size.
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Figure 7.3: Runtime for MAXSUM (top row) and MAXMIN (bottom row) diversification algo-
rithms on the three data sets NYTimes, Blogs08, and DBpedia (left to right) for
k = 5, 10, 20, 50.

Computing the distance values for our document collections NYTimes and Blogs08 is equally
fast for all documents. In contrast, we observe a high variance for the DBPedia collection (Fig-
ure 7.3, right column). This can be explained by characteristics of the distance function used for
the structured data. The performance of this function depends on the number of attributes which
varies by an order of magnitude in our query set. Regardless of this variance, the fitting curve
matches the analytical predictions also for this data set.

Already for N = 1,000 and k = 10, MSDisp requires approximately one minute to compute
the diversified subset. In contrast, our incremental variant needs only around 100 milliseconds
for this set size. MMInc has slightly higher response times than MSInc, due to the additional
k factor in objective computation. The figures also show the influence of k on the performance.
Summarized, the incremental algorithms significantly outperform their baselines for set sizes
larger than 1,000; usually by several orders of magnitude.

7.4.3 Stream Diversification

As a second experiment, we evaluate our algorithms against the stream diversification task. The
experimental setting mimics a stream of results as retrieved from a news or blogs publish /
subscribe-system, for example a RSS stream. In contrast to the set-based experiments, the items
are ordered by time stamp instead of relevance score.
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Algorithms With Equation 7.5 we define the task of stream diversification as finding at each
position of the stream a diverse subset of all items that are observed until that position. As the
baseline algorithm, we take all these observed results as a set and obtain the diverse set with the
set-based baseline algorithms. This computation turn out to be very expensive. We are unable
to process the baseline for streams larger than 10,000 while collecting a sufficient amount of
measurement points. For that amount, the diversification requires nearly one hour, although we
chose k = 10 to keep the computational cost small.

Additional to the baseline algorithm, we evaluate a window-variant following the work of
Drosou and Pitoura [68] on stream diversification, denoted as MSDispWin and MMDispWin,
respectively. We show the results for a jumping window of 100. Note that neither the algo-
rithm proposed in [68] nor our window-based dispersion variants can be modified to diversify
efficiently over the complete stream.

As before, we show two reference algorithms for comparison purposes. The Last reference
algorithm simply proposes the k most recent items from a stream as the diverse set, whereas
TopRel picks the k most relevant items from the stream, completely ignoring diversity.

Optimally, we would compute the diverse set after each new item. However, this is pro-
hibitively expensive for the baseline. Therefore, we distribute ten measuring positions logarith-
mically over the stream, and compute the results for all algorithms at these positions.
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Figure 7.4: Absolute objective improvements on the Blogs08 data set of MAXSUM (top row) and
MAXMIN (bottom row) with λ = 1.0 for streamline with no decay and decay over
100k and 1k (columns from left to right).
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Results Figure 7.4 shows diversification quality for stream data, computed on Blogs08, our
largest data set. To evaluate the influence of item relevance decay, the experiments are performed
without decay (left column) and with a half-life over 1,000 (middle) and 10 (right) items.

As expected, Last yields very low objective scores, and TopRel is only slightly better on
average. Both MSInc / MMInc and MSDispWin / MMDispWin achieve diversification scores
comparable to the baseline, with a slight advantage for the incremental variants.

With respect to performance, the baseline algorithm is unusable in practice to perform stream
diversification, as mentioned above. MSDispWin and MMDispWin require on average 250 ms
and 80 ms per step. MSInc and MMInc update the diverse set for each incoming item in virtually
no time (below time measure accuracy of 1 ms).

We can conclude that the windows-based as well as the incremental variants are efficient
enough for stream diversification. MSInc and MMInc both have the advantage that the final
outcome can immediately be updated for each new incoming item; this would be substantially
more expensive for MSDispWin and MMDispWin.

7.5 Conclusion

Diversification is an important strategy to improve user satisfaction in the presence of ambigu-
ous or broad queries. Due to their linear memory complexity, current approximation algorithms
cannot be used to diversify large sets of items, or a large number of sets concurrently. Our new
incremental approach is linear in computational complexity and constant in memory complex-
ity w. r. t. the number of items, and therefore also very well suited for very large sets. As a
framework for incremental diversification, our approach is applicable to a wide range of diversi-
fication objectives. A thorough evaluation based on three real-world data sets shows that such an
incremental computation exhibits the same quality as the baseline algorithm. On the other hand,
computation and thus query response time is sped up by several orders of magnitude for sets
of a few thousand items and more. In addition, our streaming-based computation enables very
efficient diversification of queries over continuous data sources as well, such as news streams or
tweets, opening up further applications of diversification.
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8Chapter

Summary, Outlook, and Conclusion

This thesis addresses the question how users can be supported in accessing the ever growing
amount of information stored on their computer Desktops. I primarily focus on aspects that
regard the semantics of information, which are not supported by the classical Desktop metaphor
as well as classical Desktop search engines. The semantification of the Desktop is the key to
achieve better quality of both, the search process and the information being searched for. The
main objectives throughout this thesis are to improve the efficiency of such systems and the
convenience for users, with a focus on practical solutions and prototypical implementations.

To deliver a convenient and efficient Semantic Desktop search experience, improvements at
each layer of such a system are investigated in this thesis — from data extraction and indexing to
query articulation and evaluation. In particular, this thesis makes the following contributions:

1. I propose a Semantic Desktop search engine infrastructure that reuses major building
blocks of a mature classical Desktop search engine, provides fundamental semantic ser-
vices such as an RDF store, and allows for easy integration of new semantic services.
Such services are metadata filters, metadata extraction modules, and semantic standalone
applications that directly access the semantic store, e. g., our RDF Visualizer.

2. An easy yet powerful structured query construction model and its graphical prototype tack-
les the drawbacks of search facilities of existing systems. It allows for hybrid query artic-
ulation but does not require knowledge of any query language or data ontology.

3. Our SPARQL-compliant RDF store LuceneSail provides an emancipated integration of
semantic and full-text search that facilitates full potential of both worlds. In contrast, all
major RDF store implementations only exhibit a shallow integration of full-text search.
Additionally, I achieve performance improvements for the structured search part of hybrid
queries regarding query evaluation planning and on-disk data structure optimization.

4. With the first benchmark focusing at full-text search capabilities and performance of RDF
stores, I contribute a tool that allows semantic application and store developers to evaluate
and compare feature richness and performance of semantic stores. I further provide a
comparative study of the four major open-source RDF stores.

5. I propose a generic framework for incremental diversification of large sets and streams
of search results and present incremental variants of two commonly used diversification
objectives. These algorithms exhibit improved memory and runtime performance, while
diversification quality is comparable to state-of-the-art approximation algorithms.

In the following, I highlight details of these contributions together with a respective outlook.
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Semantic Desktop Search

With my contribution to the NEPOMUK Social Semantic Desktop project, in particular the cen-
tral RDF repository and the semantic search module, we published a semantic infrastructure that
allows for easy integration of semantic applications into the NEPOMUK Desktop. This infras-
tructure bases on Web standards such as RDF, RDFS, and SPARQL, is well documented and
publicly available as open source software1.

As a semantic application for the Semantic Desktop, we developed a Semantic Desktop Search
engine that bases on an established classical Desktop search system and allows for modular ex-
tension with semantic services. With my development of a flexible architecture and my contribu-
tions to various semantic services as the metadata filters, metadata enrichment modules, semantic
search capability, result visualization, and metadata browsing, I could facilitate a number of re-
search activities that base on this system [47–49,64,177,178]. We further show with a user study
that semantification of Desktop search improves user satisfaction and search quality [122].

Finally, we gained significant influence on the open source Desktop Search community re-
garding introducing Semantic Web Technologies. There are three projects to name in particular:

1. The Gnome Beagle project — the one Beagle++ bases on — later on added a mapping from
its structured data to RDF and a statement-based query interface.

2. The KDE Desktop is shipped with a semantic infrastructure and NEPOMUK ontologies.

3. The relatively new Tracker Desktop Search project2 also builds on these ontologies and
provides a central repository that can be used by applications to share their data which just
opens their information silos.

When we look beyond the Semantic Desktop, we see that Desktop search must be extended to
all areas where personal information is stored. In recent years, we witnessed the evolvement of
the Social Web (Web 2.0), in which user-generated content and user-to-user interaction supersede
the classical flow direction of information. All the information that is generated by a user and
distributed over the Web constitutes an online entailment of the user’s Desktop and is therefore
personal information. This should also become available via Semantic Desktop Search and is
therefore a relevant future research direction.

We further consider a distributed Semantic Desktop infrastructure an interesting open research
question that fits a different setting (but nevertheless relevant) than the semantic infrastructure
used in our work. In such a distributed system, each application may maintain its own semantic
store and may provide a query interface to other applications. These stores require a distributed
discovery and search facility as it is currently developed for the Semantic Web [148]. However,
the particular setting of a user Desktop to inhabit a distributed Semantic Web poses challenges
and opportunities to such a technology that constitutes a future direction.

1The NEPOMUK Social Semantic Desktop: http://dev.nepomuk.semanticdesktop.org/wiki/
EclipseDevelopment.

2Gome Tracker: http://projects.gnome.org/tracker/.
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Structured Query Articulation

With today’s established keyword search interfaces, rich semantics as they are provided by a
semantic infrastructure cannot fully or at least only implicitly be exploited by the user. Thus
means to explicitly articulate rich structured queries needed to be studied.

Our structured query construction model enables users to construct arbitrarily complex seman-
tic queries by using only two fundamental operations:

1. Typing a node or relation.

2. Adding a new relation to a node.

Our prototype implementation provides a graphical user interface that employs the ontology
of existing data to provide the user with proper ontological terms. By this, the user cannot
mistakenly violate the schema. This avoids empty result sets and user frustration. A recom-
mendation architecture allows to employ different algorithms that aim at intelligently delivering
proper terms to the user. Such semantic queries can then be translated into syntactically and
ontologically valid queries using various structured query languages (such as SPARQL), which
can directly be processed by any RDF store.

With this structured query builder, we close the gap between the semantic information ex-
tracted from user’s Desktop data and stored in the RDF repository, and the semantic information
need in user’s mind. The user quickly learns the structure of the knowledge that exists on her Se-
mantic Desktop and can easily express and refine a query. The query builder is publicly available
as it is shipped with the NEPOMUK Semantic Desktop Rich Client3.

With such a user interface, studies can now be conducted to learn how much structure users
can express in a query given that the search engine understands the structure. An observation that
users prefer simple types of queries such as keywords should be challenged by the hypothesis
that people refrain from using complex queries because they do not expect search engines to
properly understand structural information. In such a case, people would suspect the additional
information to decrease the quality of search results.

But if people learn that structural information is correctly understood by the system, rich
queries should be facilitated more frequently in cases where simple queries are insufficient. Ad-
ditionally, one could also try to identify those user groups that benefit most from complex queries
in order to have them more frequently employ structured query interfaces in their everyday life.

Evaluating Hybrid Queries

With such a search interface, complex hybrid queries that contain keywords referring to resources
can be articulated. Such a class of structured queries pose a challenge to RDF stores. We iden-
tified and exploited performance improvement potential, which is necessary in order to provide
users with enjoyable semantic search performance.

3NEPOMUK Eclipse: http://nepomuk-eclipse.semanticdesktop.org/.
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The incorporation of full-text search into semantic search and a number of performance im-
provements provide a Semantic Web standard compliant hybrid query solution demanded by
semantic application developers. The improvements target at different levels of structured query
evaluation:

1. cardinality statistics and query evaluation planning

2. on-disk data structures

3. index selection strategy

These improvements allow for efficient evaluation of complex hybrid queries in multiple se-
mantic applications [122, 131, 165] and to support research activities [46, 64, 168] as well as
commercial products by Aduna Autofocus and ABC News4. The latter uses our system to base
many features across their site, which as of August 2009 rose with over 200 million page views
per month to the 5th rank in Nielsen rankings of online news sites5.

We believe that hybrid query evaluation will benefit from a holistic theory that integrates struc-
tured search with full-text search, a theory that combines (Relational or Graph) Database systems
with Information Retrieval systems.

Benchmarking Hybrid Queries

Today, semantic application developers can choose among various RDF store implementations
to provide semantic full-text search; one of the most common search functionality of such ap-
plications. Unfortunately, the functionality and performance varies among such stores. In order
to make a sophisticated decision, developers have to compare available RDF store implemen-
tations. However, no publicly available benchmark was available at that time that allowed for
comparable and reproducible performance measurements.

With our work, we address this demand as we provide the first benchmark focusing at full-
text search for semantic stores. With that, performance evaluations of hybrid queries become
reproducible and comparable among stores for the first time. This benchmark contains a scalable
synthetic data generator that is particularly suitable for structured full-text search. We further
developed a set of 21 queries that stress different facets and features of hybrid query evaluation.
Our benchmark enables semantic application developers to identify those stores that best fit their
performance and feature requirements, as well as semantic store developers to identify particular
bottlenecks and missing features.

In our analysis, we further identified the lack of today’s semantic stores to support complex
hybrid queries — hybrid queries that contain multiple full-text queries. Several of our research
activities expose such a requirement and could there benefit from this performance analysis.

4ABC News: http://abcnews.go.com/.
5According to e-mail conversation with an ABC News software developer on Aug 17, 2009.
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Diversifying Search Results

The last facet of semantic search that this work contributes to is the field of search result diver-
sification. Here, a small set of relevant and diverse results are to be chosen from a large result
list. This allows to easily provide the user with a representative overview of all available results,
which improves user satisfaction and reduces the risk of user saturation.

In case of large result sets or streams of results — as they exist for publish/subscribe systems
or continuous queries on news streams and tweets — no satisfying performance is provided by
state-of-the-art diversification approaches. Those exhibit large memory requirements or super-
linear runtime performance, which both are improved by our algorithms.

As a first contribution, we formalize the diversification task as a relaxation of the known set-
diversification problem. We develop an incremental diversification framework and two incre-
mental variants of the most commonly used diversification objectives: MAXSUM and MAXMIN.
With these specific instances, linear runtime and constant memory complexity could be achieved.
An extensive evaluation on three different real-world data sets shows that generated sets are sim-
ilarly diverse compared to state-of-the-art diversification algorithms.

An aspect that our evaluation does not cover, as it is generally not yet considered in the litera-
ture, is the correlation between relevance and diversity of results. The questions such an analysis
answers is whether queries can be categorized into different classes of correlation, and whether
particular algorithms are better suited for one or the other class. For instance, a query with a
strong correlation would not benefit from diversification at all, whereas for queries with no such
correlation or even negative correlation, diversification should work very well. Such a classifi-
cation of queries is not considered in literature where systems are evaluated over workloads of
queries that potentially belong to different correlation classes.

In the light of stream diversification, such a relevance-diveristy correlation analysis has an ad-
ditional dimension: time. For queries with diversity increasing over time while equally relevant
results are seen, an algorithm that focuses on most recent results should perform much better
than for queries where diverse results are seen early in the stream while the coverage of the topic
degrades to a few aspects over time. In news and blog media, a query diversity classification
could help to better understand how diversification algorithms perform.

Conclusion

We believe that semantic technologies will play a central role in managing information and
knowledge on the Web in the near future. The adoption rate by developers and users rises con-
tinuously and semantic applications (Desktop and Web applications) soon will reach a critical
mass to gain general public interest. Though a semantic killer application is not yet in sight, the
technologies exist for the next step of evolution from the Web of user-generated content — Web
2.0 with killer applications like Facebook, Twitter, YouTube, and Wikis — towards the Web of
user-generated knowledge — Web 3.0, the social Web of knowledge.

The Semantic Desktop will take a pivotal share in this evolution, with this thesis contributing
to the development of high-performance and convenient-to-use Semantic Desktop Search.
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