
Population-Based Runtime Optimisation

in Static and Dynamic Environments

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte Dissertation

von M. Sc. Emre Cakar

geboren am 24. Mai 1979 in Gaziantep

2011

ii

1. Referent: Prof. Dr.-Ing. Christian Müller-Schloer

2. Referent: Prof. Dr.-Ing. Bernardo Wagner

Tag der Promotion: 13.09.2011

iii

Zusammenfassung

Schlagworte: Organic Computing, populationsbasierte Optimierung, statische

and dynamische Fitnesslandschaften

Adaptivität und Robustheit sind die wesentlichen Merkmale moderner

technischer Systeme, die aus einer Vielzahl von miteinander kooperierenden

Subsystemen bestehen und in der Lage sind, bestimmte Aufgaben gemeinsam

zu bewältigen. Unterschiedliche Randbedingungen, wie z.B. die Veränderungen

in der Umwelt oder bestimmte Störungen, können zur Folge haben, dass das

System auf solche Effekte nicht adäquat reagiert und somit nicht auf dem

gewünschten Leistungsniveau arbeitet. Diese Tatsache erfordert geeignete

Mechanismen, die es einem technischen System ermöglichen, sein Verhalten

(und gegebenenfalls auch seine Struktur) an solche veränderlichen Umgebun-

gen anzupassen. Das Ziel des Organic Computing (OC) ist, technische Systeme

mit lebensähnlichen Eigenschaften, wie z.B. der Selbstorganisation, Selbst-

konfiguration und Selbstadaptation, auszustatten, um die Funktionsfähigkeit

dieser Systeme zu garantieren und zu jedem Zeitpunkt die optimale System-

leistung zu erzielen. In diesem Zusammenhang spielt die Selbstadaptation

eine ganz wesentliche Rolle. Diese erfordert die Nutzung geeigneter Opti-

mierungsverfahren, die in der Lage sind, in kürzester Zeit hoch qualitative

Lösungen zu liefern, um in statischen, verrauschten oder dynamischen Umge-

bungen eine schnelle Anpassung des Systemverhaltens und somit eine optimale

Leistung ermöglichen.

In dieser Arbeit wird ein neues populationsbasiertes Optimierungsverfahren

(Role-based Imitation Algorithm - RBI) vorgestellt, das die Ermittlung der

(möglichst) optimalen Lösung für OC Systeme mit statischen und dynami-

schen Fitnesslandschaften gewährleistet. RBI benutzt ein neuartiges Rol-

lenzuweisungsverfahren für explorierende und exploitierende Individuen einer

Population, um eine intelligente und schnelle Suche nach dem Optimum in

der gegebenen Fitnesslandschaft zu realisieren. In dem vorgestellten Verfahren

findet für jeden Optimierungsschritt eine klare Trennung der explorierenden

und exploitierenden Individuen statt. Diese sorgt dafür, dass die Gesamt-

iv

population gleichzeitig nach besseren Lösungen in der Fitnesslandschaft sucht,

ohne dabei die bereits gefundenen guten Lösungen zu vergessen. In dieser

Arbeit wird RBI mit bekannten Verfahren aus der Literatur (wie z.B. Dif-

ferential Evolution, Genetic Algorithms und Particle Swarm Optimisation)

in unterschiedlichen statischen (mit und ohne Rauschen) und dynamischen

Fitnesslandschaften verglichen. Zur Untersuchung in statischen Fitnessland-

schaften werden diverse unimodale und multimodale Benchmark-Funktionen

mit unterschiedlicher Anzahl von Dimensionen aus dem Themengebiet Funk-

tionsoptimierung verwendet. Um die Leistung des RBI in dynamischen Fit-

nesslandschaften zu testen, werden bestimmte Anwendungsszenarien aus der

Jäger-Beute-Domäne verwendet. Die Jäger-Beute-Domäne stellt ein generi-

sches Modell für eine Vielzahl von Multiagentensystemen zur Verfügung, wo

die Agenten miteinander kooperieren um bestimmte Aufgaben zu erledigen,

was wiederum komplexe dynamische Optimierungsprobleme zur Folge hat.

Für den Vergleich von RBI mit anderen Optimierungsverfahren werden un-

terschiedliche Experimente durchgeführt, um (1) die Qualität der gefundenen

Lösungen und (2) die Konvergenzgeschwindigkeit der Verfahren in der jewei-

ligen Fitnesslandschaft zu testen. Die Experimente zeigen, dass RBI beson-

ders in statischen verrauschten und dynamischen Fitnesslandschaften bessere

Ergebnisse als die anderen Optimierungsverfahren erzielt und somit ein hohes

Maßan Adaptivität und Robustheit gewährleistet.

Basierend auf den Ergebnissen werden unterschiedliche Möglichkeiten zur

Parallelisierung des RBI-Verfahrens diskutiert.

v

Abstract

Keywords: Organic Computing, population-based optimisation, static and dy-

namic fitness landscapes

Adaptivity and robustness are key concepts in developing today‘s tech-

nical systems. An increasing number of system elements, their complexity

and a dynamically changing environment often lead to unexpected system be-

haviour, although all system elements are available and work correctly. This

requires adequate mechanisms in order to provide a technical system with ca-

pabilities to adapt its behaviour to new environmental situations and work

properly towards its predefined goal. The vision of Organic Computing (OC)

is to endow technical systems with life-like properties such as self-organisation,

self-configuration and self-adaptation in order to address this complexity. In

this context, self-adaptation is a key aspect that allows a system to perform

well in a (possibly dynamic) environment without intervention from outside.

Establishing self-adaptation in technical systems requires adequate optimisa-

tion algorithms that can find high-quality solutions in a short time.

This thesis presents a new population-based optimisation algorithm, the

Role-based Imitation Algorithm (RBI), that can be used to establish self-

adaptation in OC systems with static and dynamic fitness landscapes. RBI

proposes a novel role assignment strategy in order to provide a strict distinction

between the exploring and exploiting individuals of the population. This role

assignment takes place according to the convergence of solutions represented

by the individuals and to the corresponding fitness values, which facilitates

an effective optimisation scheme, where previously found good solutions are

kept while other parts of the fitness landscape are further explored simul-

taneously. In this thesis, we investigate different problem settings with static

(noiseless/noisy) and dynamic fitness landscapes and evaluate the performance

of RBI in comparison to state-of-the-art optimisation algorithms from the lit-

erature such as Differential Evolution, Genetic Algorithms and Particle Swarm

Optimisation. For the comparison in static fitness landscapes, we use noiseless

and noisy benchmark functions from the literature each with different proper-

vi

ties regarding the essential aspects of fitness functions such as multimodality,

high dimensionality and separability. In order to investigate the performance

of RBI in dynamic fitness landscapes, we consider different scenarios from

the pursuit (predator/prey) domain, since these scenarios represent a generic

model for many multi-agent systems (MAS), which consist of agents moving

around in an environment and interacting with each other in order to ac-

complish a given task resulting in dynamic optimisation problems. Different

experiments are carried out in order to determine (1) the solution quality and

(2) the convergence speed obtained by RBI in comparison to other optimisa-

tion algorithms. Our experiments show that RBI outperforms its competitors

especially in noisy and highly dynamic environments providing a high level of

robustness and adaptivity.

Finally, based on the presented experimental results the future research

opportunities towards the parallelisation of RBI are discussed.

Contents

Zusammenfassung iii

Abstract v

List of Figures x

List of Algorithms xvi

List of Abbreviations xvii

List of Publications xix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement and Contribution 3

1.2.1 The two-layer Observer/Controller Architecture 3

1.2.2 Optimisation on Layer 2 4

1.3 Outline . 6

2 Optimisation for OC Systems 8

2.1 Definition: Fitness Landscape 8

2.2 Fitness Landscapes of OC Systems 12

2.2.1 Static fitness landscapes 12

2.2.2 Time-variant fitness landscapes 13

2.2.3 Self-referential fitness landscapes 13

2.3 Optimisation Tasks . 14

2.3.1 The Type of the Search Space 15

vii

viii

2.3.2 The Type of the Objective Function 17

2.3.3 The Type of the Optimisation 19

2.4 Classification and Scope . 21

3 State of the Art: Moving towards the Optimum 24

3.1 Classification of Optimisation Algorithms 24

3.2 Trajectory-based Optimisation Algorithms 27

3.2.1 Simulated Annealing 28

3.3 Population-based Optimisation Algorithms 30

3.3.1 Evolutionary Algorithms 30

3.3.2 Swarm Intelligence Algorithms 36

3.4 Summary . 40

4 The Role-based Imitation Algorithm 42

4.1 A Role-based Approach to the

Exploration/Exploitation Dilemma 42

4.2 RBI for Continuous Search Spaces 46

4.3 RBI for Discrete Search Spaces 51

4.4 Summary . 60

5 Optimisation in Static Fitness Landscapes 63

5.1 Function Optimisation with RBI 64

5.1.1 Parameter Settings . 67

5.1.2 RBI in Noiseless Environments 70

5.1.3 RBI in Noisy Environments 75

5.1.4 Convergence Speed of RBI 78

5.1.5 Conclusion . 82

5.2 Combinatorial Optimisation with RBI 84

5.2.1 Parameter Settings . 84

5.2.2 Solving TSP using RBI 85

5.2.3 Conclusion . 88

5.3 Summary . 89

ix

6 Optimisation in Self-referential Fitness Landscapes 91

6.1 Multi-robot Observation Scenario 92

6.2 Experimental Results . 98

6.2.1 Parameter Settings . 98

6.2.2 Convergence Speed of RBI 100

6.2.3 Observation Scenario without Disturbances 102

6.2.4 Observation Scenario with Disturbances 104

6.3 Robustness in OC Systems . 107

6.4 Summary . 116

7 Conclusion and Outlook 119

7.1 Summary . 119

7.2 Future Research Opportunities 123

Appendix 144

List of Figures

1.1 The two-layer Observer/Controller architecture. 4

2.1 A fitness landscape together with the individuals (agents) who

search for the lowest/highest point 9

2.2 The abstract search space S and a solution X with its neigh-

bourhood N(X) . 10

2.3 The local and global optima. 11

2.4 The abstract representation of Pareto optimal solutions for a

system consisting of two agents i and j 19

2.5 The abstract representation of an optimisation process. 20

2.6 The evaluation strategy used to compare different optimisation

algorithms. 23

3.1 The classification of stochastic optimisation algorithms. Only

the algorithms in white boxes are investigated in this thesis. For

a more detailed classification of existing optimisation algorithms

please refer to [6]. 26

3.2 The foraging behaviour of ants 39

4.1 The RBI scheme defining different roles for the agents. 43

4.2 The Role-based Imitation algorithm for continuous search spaces 47

4.3 The Hamming distance between x and y is 6. 51

4.4 The Role-based Imitation algorithm for discrete search spaces. 52

4.5 The routes R1 and R2 have to be compared both in straight

and reversed order to calculate the minimum Hamming distance

between them. 54

x

xi

4.6 The Partially Match Crossover (PMX) operator. 57

4.7 The inductive exploration (anti-imitation) for TSP 58

4.8 The evaluation strategy used to compare DE, PSO, GA, SA,

ACO and RBI. 61

5.1 The three dimensional representations of Rosenbrock (F5), Schwe-

fel (F8), Rastrigin (F9) and Shekel (F14) functions each with a

different type of fitness landscape. 65

5.2 The high-dimensional functions. These functions are imple-

mented in 30 and 50 dimensions. The functions f8 and f12

have different minimum values in 30 and 50 dimensions. 66

5.3 The low-dimensional functions. The functions f14, f16, f17 and

f18 are 2-dimensional and the functions f15, f19, f20 and f21 are

4-dimensional. 68

5.4 The averaged best fitness values obtained by DE, PSO, GA, SA

and RBI for the low-dimensional functions shown in Fig. 5.3.

The functions f14, f16, f17 and f18 have 2 dimensions and the

functions f15, f19, f20 and f21 have 4 dimensions. Best solutions

are shown in grey. 71

5.5 The averaged best fitness values obtained by DE, PSO, GA, SA

and RBI for the high-dimensional functions shown in Fig. 5.3.

The functions are implemented in 30 dimensions. Best solutions

are shown in grey. 72

5.6 The averaged best fitness values obtained by DE, PSO, GA, SA

and RBI for the high-dimensional functions shown in Fig. 5.3.

The functions are implemented in 50 dimensions. Best solutions

are shown in grey. 73

5.7 The averaged best fitness values obtained by DE, PSO, EA, SA

and RBI for the functions with moderate noise (ζ = 1). Best

solutions are shown in grey. 76

5.8 The averaged best fitness values obtained by DE, PSO, EA,

SA and RBI for the functions with severe noise (ζ = 2). Best

solutions are shown in grey. 76

xii

5.9 The success criteria defined for the functions together with

their optima. Fbest i represents the fitness value that should

be achieved by an algorithm to satisfy the success criterion for

the function i. 79

5.10 The convergence speed of RBI, DE, PSO, GA and SA measured

in terms of the number of function evaluations (#FE) required

to achieve the success criteria given in Fig. 5.9. Best results are

shown in grey. 80

5.11 The convergence speed of RBI, DE, PSO, GA and SA in mil-

liseconds regarding the success criteria given in Fig. 5.9. Best

results are shown in grey. 81

5.12 The comparison of convergence speeds and the quality of solu-

tions provided by RBI, DE, PSO, GA and SA in case of noiseless

functions. 82

5.13 The comparison of convergence speeds and the quality of solu-

tions provided by RBI, DE, PSO, GA and SA in case of noisy

functions. 83

5.14 The comparison of ACO, RBI, GA, EP, SA and AG for the TSPs

with 30, 50, 75 and 100 cities. The results show the best inte-

ger tour length and the number of function evaluations (NFE)

required to find the corresponding tour length. NA stands for

“Not available”, since there are no known results for EP, SA

and AG regarding the 100-city problem KroA100. Best results

are shown in grey. 86

5.15 The comparison of ACO and RBI using TSPs of different sizes.

The results show the average tour length and the average num-

ber of function evaluations (NFE) required to find the corre-

sponding tour length. Best results are shown in grey. 87

5.16 The comparison of convergence speeds and the quality of solu-

tions produced by RBI, ACO, GA, SA and AG for the Traveling

Salesman Problem. 88

xiii

6.1 A robot increments its NofOBS each time the target is in its

observation horizon. 93

6.2 The repulsion and attraction vectors of a robot. 94

6.3 The repulsion vectors that determine the behaviour of the tar-

get. The repulsion vectors from the robots are shown in red,

and the repulsion vectors from the edges of the environment are

shown in black. 95

6.4 The system behaviour with optimising and non-optimising agents

where all Pi’s are set to 0. 96

6.5 The scenarios used to compare the optimisation algorithms RBI,

DE, GA, PSO and SA. 97

6.6 The convergence speed of RBI, DE, PSO, GA and SA measured

in terms of the number of function evaluations. The success

criteria for Scenario 1 and Scenario 2 are 750 and 1500 obser-

vations, respectively (see Eq. 6.1). Best results are shown in

grey. 100

6.7 The total number of observations obtained by RBI, DE, GA,

PSO and SA for the scenarios without disturbances. 103

6.8 The total number of observations obtained by RBI, DE, GA,

PSO and SA in Scenario 3, which consists of 30 robots and

involves disturbances. 105

6.9 The total number of observations obtained by RBI, DE, GA,

PSO and SA in Scenario 4, which consists of 50 robots and

involves disturbances. 106

6.10 The state space of a system with several subspaces. 109

6.11 The two cases, which may occur after a disturbance at td. The

system is robust if it returns back to its target space within the

recovery period defined by tmax. 110

xiv

6.12 The system performance obtained by DE, PSO, RBI, GA and

SA. In this scenario, the system consists of 30 robots, the mini-

mum performance level X is set to 60 observations per sampling

period (500 ticks), the disturbance occurs after 50 sampling pe-

riods (25,000 ticks) and the maximum amount of time for the

system to return to its target space elapses 10 sampling periods

(5,000 ticks) after the occurrence of the disturbance. 113

6.13 The robustness obtained by DE, PSO, RBI, GA and SA in the

scenario with 30 robots, where X is set to 60 observations per

sampling period and recovery period (tmax− td) is limited to 10

sampling periods. tmax, tr and td are given in terms of sampling

periods (see Fig. 6.11 for the definition of tmax, tr, td, A1 and

A2). 113

6.14 The system performance obtained by DE, PSO, RBI, GA and

SA. In this scenario, the system consists of 50 robots, the mini-

mum performance level X is set to 90 observations per sampling

period (500 ticks), the disturbance occurs after 50 sampling pe-

riods (25,000 ticks) and the maximum amount of time for the

system to return to its target space elapses 10 sampling periods

(5,000 ticks) after the occurrence of the disturbance. 114

6.15 The robustness obtained by DE, PSO, RBI, GA and SA in the

scenario with 50 robots, where X is set to 90 observations per

sampling period and recovery period (tmax− td) is limited to 10

sampling periods. tmax, tr and td are given in terms of sampling

periods (see Fig. 6.11 for the definition of tmax, tr, td, A1 and

A2). 115

6.16 The comparison of convergence speeds and the quality of solu-

tions provided by RBI, DE, PSO, GA and SA in the multi-robot

observation scenario. 117

xv

7.1 The comparison of DE, PSO, GA, SA, ACO and RBI according

to the evaluation strategy presented in Sec. 4.4. NA stands for

“Not Available”, while the symbols “+” and “-” indicate the

higher and the lower performance, respectively. 121

7.2 The averaged best fitness values obtained by RBI, DE, PSO, EA

and SA for the functions with 30 dimensions. Best solutions are

shown in grey. 145

7.3 The averaged best fitness values obtained by RBI, DE, PSO, EA

and SA for the functions with 50 dimensions. Best solutions are

shown in grey. 146

List of Algorithms

1 The Hill Climbing procedure 27

2 The Simulated Annealing procedure 29

3 The cycle of GA . 32

4 The cycle of EP . 34

5 The DE procedure for creating offspring 35

6 The random exploration procedure 48

7 The inductive exploration procedure 49

8 The exploitation procedure . 50

9 The calculation of Hamming distance for TSP 55

10 The exploitation (imitation) procedure for TSP 59

xvi

List of Abbreviations

OC Organic Computing

SuOC System under Observation and Control

XCS Extended Classifier System

OTC Organic Traffic Control

BF Bit-flip

CX Complementary Crossover

GPS Generalised Pattern Search

SA Simulated Annealing

HC Hill Climbing

EA Evolutionary Algorithm

GA Genetic Algorithm

DE Differential Evolution

LCS Learning Classifier System

GP Genetic Programming

EP Evolutionary Computing

PSO Particle Swarm Optimisation

ACO Ant Colony Optimisation

RBI Role-based Imitation algorithm

SI Swarm Intelligence

CSP Constraint Satisfaction Problem

SAT Boolean Satisfiability Problem

SPX Single-point Crossover

MPX Multi-point Crossover

TSP Traveling Salesman Problem

PMX Partially Match Crossover

xvii

xviii

MAS Multi-agent Systems

TS Target Space

AS Acceptance Space

SS Survival Space

DS Dead Space

LS Local Search

List of Publications

1. Towards a quantitative notion of self-organisation

Emre Cakar, Moez Mnif, Christian Müller-Schloer, Urban Richter, and

Hartmut Schmeck

In IEEE Congress on Evolutionary Computation, 2007. CEC 2007.

September 2007, pp. 4222-4229.

2. Creating Collaboration Patterns in Multi-Agent Systems with

Generic Observer/Controller Architectures

Emre Cakar, Jörg Hähner, and Christian Müller-Schloer

In Proceedings of the 2nd International Conference on Autonomic Com-

puting and Communication Systems, ICST, Brussels, Belgium, 2008,

Autonomics ’08, pp. 6:1-6:9

3. Investigation of Generic Observer/Controller Architectures in

a Traffic Scenario

Emre Cakar, Jörg Hähner, and Christian Müller-Schloer

In GI Jahrestagung (2), 2008, Vol. 134GI , pp. 733-738.

4. Dynamic Control of Network Protocols - a new vision for future

self-orgsanised networks

Sven Tomforde, Emre Cakar, and Jörg Hähner

In Proceedings of the 6th International Conference on Informatics in

Control, Automation and Robotics (ICINCO), 2009, pp. 285-290

5. Self-Organising Interaction Patterns of Homogeneous and Het-

erogeneous Multi-Agent Populations

Emre Cakar and Christian Müller-Schloer

xix

xx

In Proceedings of the 3rd International Conference on Self-Adaptive and

Self-Organizing Systems (SASO), 2009, pp. 165-174

6. Adaptivity and Self-organisation in Organic Computing Sys-

tems

Hartmut Schmeck, Christian Müller-Schloer, Emre Cakar, Moez Mnif

and Urban Richter

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, pp.

10:1-10:32, September 2010

7. Decentralised and Adaptive Collaboration in Multi-Agent Sys-

tems

Emre Cakar and Christian Müller-Schloer

In Proceedings of the 9th International Symposium on Parallel and Dis-

tributed Computing (ISPDC 2010), July 2010, pp. 195-202

8. Aspects of Learning in OC Systems

Emre Cakar, Nugroho Fredivianus, Jörg Hähner, Jürgen Branke, Chris-

tian Müller-Schloer, and Hartmut Schmeck

In “Organic Computing - A Paradigm Shift for Complex Systems”,

Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer, Eds.,

incollection 3.1, pp. 237-251. Birkhäuser, Juni 2011.

9. A Role-based Imitation Algorithm for the Optimisation in Dy-

namic Fitness Landscapes

Emre Cakar, Sven Tomforde and Christian Müller-Schloer

In IEEE Swarm Intelligence Symposium, SIS 2011, Paris, France, pp.

139-146

Chapter 1

Introduction

1.1 Motivation

Evolution is not only a biological principle, which defines the adaptation of

species to their environment, but a universal concept that is omnipresent in

everyday life. In all possible areas such as economy [1], computer science [2],

medicine [3] or chemistry [4] humankind always strive for perfection by obtain-

ing the maximum benefit with the minimum effort. For example, the objective

of economy is to maximise the profit and at the same time minimise the costs,

while the objective of medicine is to minimise the time required to diagnose

a certain disease in order to begin immediately with the treatment. If we

look at these different areas, we quickly realise that they either try to max-

imise or minimise different aspects important to the particular area. In terms

of mathematics this means that in each case we have an objective function,

which defines either a minimisation or a maximisation problem. Each solution

for the given problem has a particular quality, which is also called fitness in

terms of Evolutionary Biology [5]. In this context, optimisation, which is the

branch of applied mathematics and numerical analysis, is defined as the task

of finding the best solution for the given problem from a set of solutions [6].

Since each research area has its own mathematical discipline dealing with it,

it is possible to give an abstract representation of the corresponding optimi-

1

2

sation task in terms of mathematical functions and use different optimisation

techniques from the domain of computer science to find the best solution for

the particular problem.

In this thesis, we particularly deal with Organic Computing (OC) systems

that can adapt their behaviour and structure to the changes in their opera-

tional environment. OC has emerged as a form of biologically-inspired comput-

ing [7, 8, 9, 10], and deals with technical systems, which consist of a (usually)

large number of elements that interact with each other in order to accomplish

a given task. In OC, we investigate different techniques to endow technical

systems with life-like properties (e.g., self-organisation, self-configuration and

self-optimisation) to give them the capability to adapt their behaviour to the

changes in their environment. In this context, the greatest challenge in OC

is the search for an adequate system behaviour that provides the best system

performance regarding the current conditions of the environment. Moreover,

this solution has to be found in limited time, since (1) in many cases a fast reac-

tion is mandatory, and (2) the situation might change, which makes the found

solutions obsolete. The task of finding such an adequate system behaviour

becomes even more complex with the increasing number of system elements

and their behavioral repertoire resulting in large configuration spaces. Thus,

an organic system must have an appropriate mechanism to determine the best

system configuration for the current environmental conditions in a short pe-

riod of time. This problem can be regarded as an optimisation task, where the

system tries to find the solution (i.e., the configuration) in the search space

(i.e., the configuration space) that produces the best (i.e., optimal) system

performance.

This thesis concentrates on numerical optimisation in OC systems. Here,

we define the optimisation characteristics of OC, and determine the require-

ments for an optimisation algorithm that must be satisfied for its usage in OC

systems. Accordingly, we introduce a new optimisation technique for OC and

provide a comprehensive comparison of our technique to well-known state-of-

the-art optimisation techniques from the literature. Furthermore, we present

the advantages and disadvantages of our approach in different problem settings

from the domains of numerical optimisation and OC.

3

1.2 Problem Statement and Contribution

1.2.1 The two-layer Observer/Controller Architecture

In OC we deal with technical systems that consist of a large number of el-

ements (agents) interacting with each other and also with the environment

in order to accomplish a given goal. Typically, these interactions change the

environmental conditions requiring an intelligent mechanism to determine the

optimal system behaviour at any given point in time. This fact presents two

major challenges requiring:

1. A fast and resource-efficient learning mechanism, which facilitates a

quick response to the situations that are close to previously encountered

known situations and

2. An effective optimisation algorithm, which can quickly evaluate different

solutions in a (possibly very large) search space in order to find adequate

solutions for new previously unknown situations.

In this context, the two-layer Observer/Controller architecture for OC sys-

tems has been developed (see Fig. 1.1) to react reasonably on changes in the

environment in a short period of time [11, 12].

On the lowest layer (Layer 0) of the proposed architecture is the productive

system (System under Observation and Control - SuOC). The SuOC may be

any kind of decentralised and parameterisable system, which consists of a set

of elements possessing certain observable attributes. The parameter selection

for the SuOC is implemented on Layer 1 using an eXtended Classifier System

(XCS) [13]. Here, an observer component determines the current situation in

the SuOC and the controller selects an adequate action for the corresponding

situation using an XCS facilitating a quick response to the encountered situ-

ation (see requirement 1 above). Layer 2 is triggered each time the observed

situation on Layer 0 is not covered by the population of the XCS on Layer

1. In this case, an optimised classifier covering the corresponding situation is

created by using a model-based optimisation on Layer 2. Here, an optimisa-

tion algorithm evaluates different solutions for the observed situation using a

4

Figure 1.1: The two-layer Observer/Controller architecture.

simulation model of the SuOC. At the end of the optimisation a new classifier

is created, which maps the observed situation to the best solution found by

the optimisation algorithm facilitating a fast evolution of different solutions

for a given situation (see requirement 2 above). In this thesis, we concentrate

on Layer 2 of the two-layer Observer/Controller architecture, and investigate

the requirements for an optimisation algorithm, which can be used for the

optimisation in dynamic environments. Moreover, we introduce a novel opti-

misation algorithm, the Role-based Imitation algorithm (RBI), for Layer 2 to

find high-quality solutions in a short time to react quickly to the changes in

the environment.

1.2.2 Optimisation on Layer 2

Each optimisation algorithm must preserve a particular balance between the

exploitation of already found good solutions and the exploration of new (pos-

5

sibly better) solutions. There are two main approaches in the literature re-

garding how this balance can be reached. The first approach involves more

exploration at the beginning of the optimisation in order to determine good so-

lutions, and switches to more exploitation towards the end of the optimisation

in order to make use of best solutions found. For example, the well-known op-

timisation algorithm Simulated Annealing (SA) [14] uses this approach. The

second approach uses a particular optimisation pattern, where exploration and

exploitation take place simultaneously according to predefined criteria typi-

cally expressed in form of probabilities. Evolutionary Algorithms (EAs) [15],

which use biologically-inspired mechanisms like crossover and mutation to re-

fine a set of possible solutions, use this pattern. EAs utilise a set of individuals

(i.e., abstract entities or abstract agents) to represent possible solutions in the

search space. The individuals exchange information about their corresponding

fitness values in order to find the best solution in the given fitness landscape.

In this case, each individual explores and exploits at the same time according

to predefined mutation and crossover probabilities (see Sec. 3.3.1).

Although both approaches are used in the literature to optimise problems

from different domains [6], they have some weaknesses, which prevents them

to be used effectively in OC systems. In contrast to pure optimisation prob-

lems, the optimisation in OC involves real systems (agents), which explore the

search space in order to adapt their behaviour to the current conditions of the

environment. Since these conditions may change over time, there is no guaran-

tee that a particular solution has always the same quality (i.e., fitness) at every

operational stage of the system. In other words, the solution, which produces

the best system performance (i.e., optimum), may change over time according

to the conditions of the environment. This results in a dynamic optimisation

problem, where the two approaches mentioned previously face some difficul-

ties. In this context, the first approach would fail since the corresponding

optimisation algorithm switches from more exploration to more exploitation

losing the capability to track the moving optimum over time. The weakness

of the second approach lies in its optimisation scheme, where each individual

explores and exploits at the same time according to predefined probabilities.

In this case, the exploration of the search space allows to find better solutions,

6

while the exploitation results in the acceptance of solutions that are solely in

the neighbourhood of the current best solution. Thus, the greedy exploita-

tion works against the creative exploration and increases the time, which is

required to determine the new optimum in dynamic optimisation problems.

Hence, a system that uses this kind of optimisation algorithm requires a large

amount of time to react to changes in the environment and to adapt its be-

haviour accordingly. This suggests a clear distinction between the exploring

and exploiting individuals to minimise time required to find the optimum.

Based on the requirements discussed in Sec. 1.2.1 and in Sec. 1.2.2,

we introduce in this thesis the Role-based Imitation algorithm (RBI), which

provides a clear distinction between exploring and exploiting individuals (see

Chapter 4). RBI uses a dynamic role-assignment strategy to determine the

portion of purely exploiting and purely exploring individuals in the popula-

tion, and guarantees the consistent exploration of the search space to track

the (moving) optimum at every operational stage of the system. Thus, RBI

determines the adequate balance between exploitation and exploration for a

given problem adaptively without (1) the need for a mechanism to switch from

more exploration to more exploitation over time as in SA, or (2) predefin-

ing probabilities for exploration and exploitation as in EA. These properties

makes RBI a very suitable candidate to be used on Layer 2 of the two-layer

Observer/Controller architecture to effectively track the moving optimum in

dynamic environments.

1.3 Outline

This thesis is organised as follows. Chapter 2 presents different aspects of

optimisation that are required to define the scope of this thesis. There, a

classification of existing optimisation tasks is provided, and the main charac-

teristics of the optimisation in OC systems are discussed. Chapter 3 gives an

overview of related work. There is a wide variety of optimisation algorithms,

and therefore it is not possible to consider all of them in this thesis. Hence,

we have limited our investigations to a particular set of algorithms and use

it for comparison purposes. In this context, we provide in Chapter 3 a clas-

7

sification of the investigated algorithms and present them in detail. Chapter

4 describes our main contribution, the Role-based Imitation algorithm (RBI),

in detail, and presents the implementation of RBI for different types of search

spaces. Chapter 5 and Chapter 6 provide a comprehensive comparison of RBI

to state-of-the-art optimisation algorithms presented in Chapter 3 in case of

static and dynamic optimisation problems, respectively. Chapter 7 concludes

our work and discusses the resulting future research opportunities.

Chapter 2

Optimisation for OC Systems

In this chapter, we aim at defining the scope of this thesis. In this context, we

define the term fitness landscape, and explain different types of optimisation

tasks, which are common to all optimisation processes, in order to position our

work within the current research environment. Furthermore, we extend the

existing classification of fitness landscapes from the literature and provide a

new view on dynamic optimisation tasks, which is important for OC systems.

2.1 Definition: Fitness Landscape

The term “fitness landscape”, which has been introduced into evolutionary bi-

ology already in 1932 by Sewall Wright [16], defines one of the most important

aspects in optimisation. Principally, a fitness landscape visualises the relation-

ship between the phenotypes and their corresponding reproduction probability

in evolutionary biology [17]. The idea of visualising such a relationship has

been adopted by computer scientists in order to determine and classify the

complexity of a given optimisation problem. In evolutionary optimisation, the

term “fitness landscape” defines the set of mappings between all candidate

solutions for a given problem (search space) and their fitness values (i.e., qual-

ities). This kind of abstraction provides the simplification that an optimiser

can be considered as a population of hikers (individuals or agents) with a

8

9

limited view, which try to find the lowest valley or the highest hilltop in the

corresponding fitness landscape (see Fig. 2.1).

Figure 2.1: A fitness landscape together with the individuals (agents) who
search for the lowest/highest point

The lowest valley or the highest hilltop are called the optimum in the

given fitness landscape depending on the type of the optimisation problem.

An optimum typically indicates the maximum (or in case of a minimisation

problem the minimum) fitness value in the corresponding fitness landscape. In

global optimisation, it is a convention that optimisation problems are always

defined as minimisation problems [6]. If the given problem is a maximisation

problem, we can minimise its negation.

In many real-world problems we distinguish between the global and the

local optimum. In order to explain these terms please consider the abstract

search spaces illustrated in Fig. 2.2.

In Fig. 2.2 X indicates a solution in the search space S and N(X) shows

the neighbourhood of X, which is defined as follows:

N(X) = Y ∈ S : d(X, Y) ≤ ε (2.1)

10

(a) A 1-dimensional search space (b) A 2-dimensional search space

Figure 2.2: The abstract search space S and a solution X with its neighbour-
hood N(X)

where d : S×S → < is a distance measure and ε ≥ 0 [18]. Thus, a solution

Y is in the ε-neighbourhood of X, if it satisfies the condition given in Eq. 2.1.

In this context, the term global optimum indicates the best fitness value that

can be obtained based on all solutions in the search space (global neighbour-

hood), while the term local optimum indicates the best fitness value according

to a particular subset of solutions in the search space (local neighborhood).

For example, if we have a minimisation problem (e.g., a function optimisation)

and the solution X produces the lowest fitness value in comparison to the other

solutions in its neighbourhood N(X), then we can call f(X) the local opti-

mum (in this case the minimum). In case of the global optimum, we consider

not a specific neighbourhood but the whole search space. If the solution X

produces the lowest fitness value in comparison to all other solutions in the

search space S, then f(X) is called the global optimum (see Fig. 2.3).

According to the type of the given fitness landscape, it is possible that

more than one solution produces the same fitness value for the given problem.

Hence, if the fitness landscape is previously unknown, which is mostly the case

in global optimisation problems, we typically must assume that there exists

more than one optimum.

After having defined the term “Fitness landscape” informally above, we

can now consider a more formal definition of it. A fitness landscape L is a

triple L = (χ, f, d) [19], where χ is the set of all candidate solutions (i.e.,

the search space), f is the evaluation function and d is a distance measure

11

Figure 2.3: The local and global optima.

d : χ× χ→ <+ ∪∞ for which it is required that, ∀ s, t, u ∈ χ,

d(s, t) ≥ 0

d(s, t) = 0⇔ s = t

d(s, u) ≤ d(s, t) + d(t, u)

(2.2)

Generally, fitness landscapes are classified according to their form. Fitness

landscapes with only one local optimum are called “unimodal”, whereas fitness

landscapes with more than one local optimum are called “multimodal” [19].

Having this type of classification, it is possible to further differentiate between

the landscapes according to the information they provide to an optimisation al-

gorithm. In this context, there are amongst others needle-in-a-haystack fitness

landscapes [20], which have no structure to exploit or noisy [21] and deceptive

fitness landscapes [22], where unreliable solutions mislead the search of the

optimum.

12

2.2 Fitness Landscapes of OC Systems

In OC, we deal with technical systems that consist of a large number of ele-

ments, which continuously interact with each other. These interactions result

either in static fitness landscapes, where the mapping between the solutions

and their fitness values does not change over time, or in dynamic fitness land-

scapes, where the solution-fitness mapping is not fixed, which means that it

is not guaranteed that a solution S always produces the same fitness value at

any point in time (ft1(S) 6= ft2(S)). In case of dynamic fitness landscapes,

the solution-fitness mapping can change according to different conditions. In

this context, we classify dynamic fitness landscapes into two groups: (1) Time-

varying fitness landscapes and (2) self-referential fitness landscapes. The main

difference between a time-varying and a self-referential fitness landscape is

that a time-varying one changes only as a function of time regardless of the

behaviour of system elements, while the form of a self-referential fitness land-

scape is influenced by the behaviour of each system element. This classification

of the fitness landscapes according to the change of their form over time can be

used orthogonally to the standard classification from the literature mentioned

in Sec. 2.1. In the following, we present static, time-variant and self-referential

fitness landscapes in more detail.

2.2.1 Static fitness landscapes

In a static fitness landscape the mapping between the solutions in the search

space χ and their fitness values does not change over time, which can be

characterised as follows: S ∈ χ and t1, t2 ∈ T , t1 6= t2 , ft1(S) = ft2(S),

where T is an arbitrary time interval from the beginning to the end of the

optimisation. This means, f does not depend on time so that the solution S

produces the same fitness value at any point in time. The optimisation in this

type of fitness landscapes is explicitly investigated in the context of function

optimisation [23]. In this case, the corresponding optimisation algorithm tries

to find the optimum e.g., in a unimodal or a multimodal fitness landscape

using the advantage of the fixed solution-fitness mapping.

13

2.2.2 Time-variant fitness landscapes

As mentioned previously, in case of a time-variant fitness landscape the map-

ping between the solutions in the search space and their fitness values are not

fixed, rather it changes as a result of outside conditions. The typical opti-

misation problems in traffic scenarios are good examples for problems with

time-varying fitness landscapes [24]. Particularly, the optimisation of signal

plans for traffic light controllers in urban traffic networks presents great chal-

lenges in terms of finding the optimum in a fitness landscape, which changes

as a function of time. In this context, we consider a large network of traf-

fic light controllers, which adapt their signal plan (behaviour) to constantly

changing traffic demands during the day. In this context, each signal plan

corresponds to a solution S in the search space, which determines the cycle

time1 and the length of green and red phases in this cycle time for the cor-

responding intersection. Typically, an optimal signal plan (i.e., a solution S)

for a traffic situation in the morning would not provide the same fitness value

(e.g., the average delay time per car passing the intersection) during the whole

day (e.g., in the midday or at night), since the corresponding traffic densities

change over time. In terms of optimisation it means that the solution-fitness

mapping changes as a function of time presenting a high level of complexity,

which requires sophisticated learning and optimisation algorithms to track the

moving optimum. In [24], Tomforde et al. present the Organic Traffic Control

(OTC) approach, which is based on the generic Observer/Controller architec-

ture discussed in Sec. 1.2.1, to facilitate the self-adaptation of traffic light

controllers to time-variant conditions of the environment.

2.2.3 Self-referential fitness landscapes

In contrast to a time-variant fitness landscape, a self-referential fitness land-

scape changes as a result of inherent conditions. In this case, the form of

the particular fitness landscape is influenced by the behaviour of the system

elements themselves, which makes the optimisation task much harder than in

1The cycle time determines how long it takes until the red and green phases for the traffic
light controller have been activated and the cycle is restarted.

14

static and time-varying fitness landscapes. As an example for a self-referential

fitness landscape, we can consider again a traffic scenario, where the optimisa-

tion does not take place on the traffic light controller level, but rather on the

vehicle level. In this context, the fitness landscape of such a traffic scenario

can be considered as self-referential, where the optimal behaviour of a system

element (e.g., a car) depends on the behaviour of other elements in the sys-

tem. For example, an optimal route for a car from a point A to another point

B may not be optimal after some time, if other cars also decide to take the

same route, and this may cause a traffic congestion on this particular route.

Thus, the mapping between the solution (the route from A to B) and the cor-

responding fitness value (the time required to drive from A to B) changes, if

other system elements change their behaviour. In OC, we mainly investigate

problems with a self-referential fitness landscape [25, 26, 27]. In this context,

it is important to distinguish between pure optimisation problems, where the

agents (individuals) are solely used to scan a given fitness landscape without

influencing it, and the optimisation in OC systems, where the agents represent

real systems (like cars in a city), which at the same time explore the fitness

landscape and act within the fitness landscape (hereby changing it). Traffic

systems are just one example for a self-referential fitness landscape. Another

examples are the stock market where “acting” means buying or selling stocks

(which of course immediately changes the price of the stock) or the prominent

Minority Game [28]. Of course in OC the fitness landscape is usually not

explicitly known.

2.3 Optimisation Tasks

Fitness landscapes define only one important aspect of optimisation. In order

to provide a deeper understanding of the optimisation theory, we also have to

consider the following aspects:

1. The type of the search space (continuous/discrete)

2. The type of the objective function (single-objective/multi-objective)

3. The type of the optimisation (online/offline)

15

In the following, we present these aspects in more detail.

2.3.1 The Type of the Search Space

In recent years, many efforts have been devoted to developing optimisation

algorithms, where the goal is to find the best possible set of parameters (i.e.,

an optimal solution) according to some given criteria typically expressed as

mathematical functions. In this context, an optimisation problem can have a

search space, which is either defined over continuous variables (e.g., the op-

timisation of the Griewank function [29, 23]) or over discrete variables (e.g.,

the Traveling Salesman Problem - TSP [30, 31]). In each case, we need an

adequate distance function (see Section 2.1) in order to define the neighbour-

hood of solutions in the search space, which in turn determines the form of

the corresponding fitness landscape. It is relatively easy to define a distance

function for search spaces defined over continuous variables. For this purpose,

we basically use the Euclidean metric (

√
n∑
n=0

(Xi − Yi)2) to determine the dis-

tance between two solutions X and Y . The problem of finding an appropriate

distance function becomes harder, if the problem has a discrete search space.

In this context, different operators may lead to completely different fitness

landscapes, which directly affects the optimisation process and the quality of

solutions obtained by a particular optimisation algorithm. In order to show

this effect, we consider the Bit-flip (BF) and Complementary Crossover (CX)

operators [19]. The BF-operator determines the neighbours of a given binary

solution by simply flipping one of the bits as follows:

BF : 0, 1l × Z → 0, 1l

{
z
′

k = 1− zk if i = k

z
′

k = zk otherwise
(2.3)

where z is a binary string of length l, and i is the parameter specifying the

index of the bit to be flipped. For example, the BF-neighbours of the binary

string “0000” would be (1000),(0100),(0010),(0001). Accordingly, the well-

known Hamming distance can be used to determine the distance between the

solutions. In this case, all four solutions (1000),(0100),(0010),(0001) would be

in the 1-step neighbourhood of the solution “0000” according to the Hamming

16

distance. The things get complicated, if we use the CX-operator. The CX-

operator determines the neighbours of a binary solution as follows:

CX : 0, 1l × Z → 0, 1l

{
z
′

k = 1− zk for k ≥ i

z
′

k = zk otherwise
(2.4)

where z is a binary string of length l, and i is the parameter specifying the

index of the bit to be flipped and k = 1, ..., l. Hence, the CX-neighbourhood

of the binary string “0000” now become (1111), (0111), (0011), (0001). In this

case, we have a completely different set of solutions in the 1-step neighbour-

hood of the solution “0000” so that the distance cannot be easily described by

using e.g., the Hamming distance.

The example above shows clearly that the optimisation problems with dis-

crete variables require (1) an appropriate operator to determine the neighbour-

hood of a given solution and (2) an adequate metric to determine the distance

between the solutions in the search space.

In order to exemplify the effect of a particular operator on the fitness

landscape of a given problem, we consider the Onemax problem that is about

to maximise the function F defined in Eq. 2.5:

F = max(
l∑

i=1

xi), xi ∈ 0, 1 (2.5)

As can be seen in Eq. 2.5, the goal in the Onemax problem is to find the

binary the string of length l, where the components of the corresponding bi-

nary solution consists only of 1’s. Based on this problem, the BF-operator we

have defined in Eq. 2.3 would sort the possible solutions in the search space so

that we have a unimodal fitness landscape, which can be optimised by simply

using the standard Hill Climbing algorithm (see Sec. 3.2). The CX-operator,

on the other hand, creates a highly multimodal fitness landscape for the One-

max problem, where the number of local optima increases exponentially with

the length l of the binary string (i.e., with the size of the search space). In

this case, the Hill Climbing algorithm would get stuck in a local optimum

without a chance to determine the global one [32]. This example shows clearly

that the utilisation of a particular operator determines the form of the fitness

17

landscape and affects directly the performance of the corresponding optimisa-

tion algorithm. Thus, the selection of an adequate operator depends highly

on the particular problem, and must be determined based on the underlying

semantics of the corresponding problem.

2.3.2 The Type of the Objective Function

Another important aspect in optimisation is the objective function defining

the goal to achieve. In this context, we can classify the existing types of

objective functions into two groups: (1) Single objective functions and (2)

multiple objective functions. In the first case, the optimisation problem is

either a maximisation or a minimisation of only one criterion of the given

problem. For example consider a traffic light controller that tries to minimise

the average waiting time in a junction [33] or a firm that tries to maximise its

annual profit. In single objective real-world optimisation problems, we mostly

deal with fitness landscapes that have many local optima (i.e., multimodal

fitness landscapes) requiring the corresponding optimisation algorithm to have

adequate techniques to avoid them.

The second type of objective functions - multiple objective functions - in-

volves not only one criterion in optimisation, rather there are at least two

criteria, which should be optimised at the same time [34]. Thus, this kind of

optimisation is also called multi-criteria optimisation or vector optimisation

[35]. In this context, the objective functions are elements of an objective vec-

tor, and the task is to find a solution, which satisfies all objective functions

(i.e., criteria). In this case, different objective functions may be in conflict

with each other so that it would be impossible to increase the fitness of one

objective function without decreasing the fitness of at least one another ob-

jective function. Hence, a solution X in the search space S is called Pareto

optimal, if it satisfies this condition2. More formally, Pareto optimality can be

defined using the notion of domination. In this context, a solution s1 domi-

nates another solution s2 (i.e., s1 ` s2), if s1 is better than s2 in at least one

objective function and not worse with respect to all other objective functions

2This fact was formulated by Vilfredo Pareto in the XIX century, and this concept is
associated with his name.

18

[6]. If F is the set of all objective functions fi, we can define s1 ` s2 as shown

in Eq. 2.6.

s1 ` s2 ⇔ ∀i : 0 < i ≤ n⇒ ωifi(s1) ≤ ωifi(s2)∧

∃j : 0 < j ≤ n⇒ ωifi(s1) < ωifi(s2)

ωi =

{
1 if fi should be minimised

−1 if fi should be maximised

(2.6)

Based on the definition of domination from Eq. 2.6, a solution s1 is Pareto

optimal, if it is not dominated by any other solution in the search space S (see

Eq. 2.7)[6].

s1 ∈ S ⇔ @si ∈ S : si ` s1 (2.7)

The concept of Pareto optimality has a wide application area and is also

apparent in multiagent systems. A multiagent system forms a particular type

of distributed system, which is composed of multiple interacting computing

autonomous elements called agents [36]. Since the agents are autonomous,

they can take actions on their own (either according to a predefined behaviour

repertoire or they learn new actions) in order to accomplish their goals. At

this point, there are two possibilities to define goals for the agents: (1) The

goal of each agent is a small part of a given global goal so that the agents

collaborate with each other to accomplish the global goal [37, 38] or (2) the

agents have different conflicting goals and they compete with each other to

accomplish their own goals [39]. Pareto optimal solutions belong mostly to

the second case, where agents have conflicting goals and compete with each

other. Fig. 2.4 shows the Pareto optimal solutions for two competing agents

i and j [36].

In Fig. 2.4 the solutions on the line from B to C are Pareto optimal, since

we cannot increase the fitness of one agent without decreasing the fitness of

the other one [36].

19

Figure 2.4: The abstract representation of Pareto optimal solutions for a sys-
tem consisting of two agents i and j

2.3.3 The Type of the Optimisation

Generally, in optimisation we consider two major criteria to identify the per-

formance of the corresponding optimisation algorithm: (1) The quality of so-

lutions obtained by the algorithm and (2) the time required to find adequate

solutions. The second criterion can be used to classify the type of the op-

timisation. In this context, we distinguish between two main use cases: (1)

Online (runtime) optimisation and (2) offline (design time) optimisation. The

first type of optimisation occurs in systems that are in operational state. In

this case, the optimisation process must be carried out repetitively in short

periods of time to provide an acceptable solution e.g., to be able to react to

the changes in the environment, and guarantee that the corresponding system

can continue working even in the presence of fluctuations [40]. In this context,

we consider the typical optimisation cycle presented in Fig. 2.5.

Fig. 2.5 shows two major steps we observe in each optimisation process.

20

Figure 2.5: The abstract representation of an optimisation process.

Generally, the optimisation mechanism (optimiser) produces according to its

internal scheme a new trial solution and sends it to the corresponding evalua-

tion mechanism. The time required for this part of the optimisation process is

denoted as TO. After having sent the trial solution, the evaluation mechanism

calculates the fitness value of the corresponding solution, and sends this value

back to the optimiser. The time required for the evaluation part of the opti-

misation process is denoted as TE. In many real-world problems, TE is much

larger then TO so that we can omit TO in calculating the time required to opti-

mise a given problem [24]. Thus, the maximum amount of time required for the

optimisation process is always strongly correlated to the number of (function)

evaluations that are required to find an adequate solution. This fact becomes

more apparent especially in cases where the evaluation mechanism is not a

simple function, but rather a complex simulation process as proposed in [33].

Thus, an optimisation algorithm that is used to solve an online optimisation

task must be able to create an adequate balance between the exploration of

the fitness landscape and the exploitation of the learnt knowledge about the

fitness landscape to minimise the number of function evaluations required to

find the optimal solution.

The second type of optimisation problems consists of design time opti-

misation tasks, which are basically carried out only once in a long time. In

this context, the time is not as important as in the runtime optimisation and

can take even days until the corresponding algorithm produces the optimal

21

solution. This type of optimisation takes place for example in data mining

[41] in order to correctly extract previously unknown and potentially useful

information from large databases.

2.4 Classification and Scope

In this chapter, we have presented four important aspects of optimisation in

order to define the scope of this thesis. These aspects are (1) the fitness

landscape, which can be either static or dynamic, (2) the type of the search

space, which can be defined over continuous or discrete variables, (3) the type

of the objective function, which is either single-objective or multi-objective,

and (4) the type of the optimisation, which takes place either in runtime or in

design time.

The main subject of this thesis is the runtime optimisation of problems de-

fined over continuous variables with the Role-based Imitation algorithm (RBI)

in static and self-referential fitness landscapes (see Sec. 4.2). For each type of

fitness landscape (static and self-referential), we investigate three main crite-

ria:

1. Solution quality in noiseless environments

Each optimisation algorithm uses a different technique to determine a

particular balance between the exploitation of already found good so-

lutions and the exploration of new solutions. In order to determine

whether a given algorithm can find an adequate balance of exploration

and exploitation for a particular problem, it is required to investigate

the performance of the corresponding algorithm with regard to typical

difficulties arising from the form of the given fitness landscape. This

investigation provides us with information on the investigated optimi-

sation algorithms (and on their exploitation/exploration behaviour) to

answer the question about to what extent they are capable of coping with

generic aspects of fitness landscapes like multimodality and high dimen-

sionality. Thus, this investigation is of more theoretical nature, since it

only deals with different types of fitness landscapes without concerning

noise, which is the most important aspect of real technical systems.

22

2. Solution quality in noisy environments

Generally, the optimisation problems that arise in the context of real

technical systems involve noise, which may occur due to different rea-

sons such as defect sensors, inaccurate sensor values, different internal or

external disturbances and a continuously changing environment. Thus,

an optimisation algorithm that is used in real-world applications must

not only cope with the difficulties arising from the form of the fitness

landscape, but also with the existing noise in the environment. Thus,

the investigation of noisy environments is of more practical nature and

provides answers for the questions about how a particular optimisation

algorithm can provide a consistent exploration of the fitness landscape,

and what a suitable exploitation scheme looks like, which can alleviate

the negative effect of the noise.

3. Convergence speed

The solution quality is one important criterion for the comparison of

different optimisation algorithms. Another important criterion is the

convergence speed, which defines the time that the corresponding opti-

misation algorithm requires to produce a certain system performance.

Since we deal with real technical systems in OC, it is important to find

good solutions in an acceptable amount of time. This aspect becomes

more clear in case of real-time OC systems, where we have specific time

limits to achieve a given goal. In this case, we cannot afford to execute

an optimisation algorithm beyond these time limits to obtain a good

solution, rather such solutions must be found as fast as possible within

the given time limits to keep the system in an operational state, where

it reaches the optimal performance.

As mentioned above, the main subject of this thesis is the optimisation of

problems defined over continuous variables with RBI. However, it is also pos-

sible to apply the main idea of RBI to problems defined over discrete variables

(see Sec. 4.3). In order to show this applicability we extend our investigations

to the area of combinatorial optimisation problems and test the performance

of (discrete) RBI using different instances of the Traveling Salesman Problem

23

(TSP) [42]. We emphasise here that our purpose is not to provide a detailed

study of RBI in different types of discrete environments, but rather to show

how the basic principles of RBI can be transferred into a discrete search space.

Thus, in this case we do not concern a complete set of test cases including the

investigation of noisy environments and self-referential fitness landscapes, but

study the behaviour of RBI using the TSP in its original form, which is static

and noiseless.

Based on the aspects discussed above, we summarise our evaluation strat-

egy for RBI as shown in Fig. 2.6.

Figure 2.6: The evaluation strategy used to compare different optimisation
algorithms.

In the next chapter, we present the state-of-the-art optimisation algo-

rithms, which we use in our investigations.

Chapter 3

State of the Art: Moving

towards the Optimum

In this chapter, we discuss the optimisation algorithms, which we use in our in-

vestigations, in detail. There is a wide variety of optimisation algorithms, and

therefore it is not possible to consider all of them in this thesis. Hence, we limit

our investigations to a particular set of state-of-the-art optimisation algorithms

for producing experimental results. Basically, all optimisation algorithms have

some similarities to and differences from each other so that a classification of

them must be given in order to provide an appropriate overview. In the fol-

lowing, we give a classification of the optimisation algorithms we investigate

in this thesis and present them in more detail.

3.1 Classification of Optimisation Algorithms

Existing optimisation algorithms can be classified according to the search strat-

egy they utilise to determine the optimum in the given fitness landscape. In

this context, an optimisation algorithm is either deterministic or probabilistic.

A deterministic optimisation algorithm does not use randomness to determine

what actions to take in the optimisation process. Hence, such algorithms are

used in cases where the mapping between the solution and its fitness value is

24

25

fixed (static fitness landscapes) and dimensionality of the problem is low. In

such cases, it is possible to enumerate the search space and explore it for ex-

ample using a Generalised Pattern Search algorithm (GPS) [43]. On the other

hand, the probabilistic optimisation algorithms are used to optimise more

complex problems, where the search space is large and/or its dimensionality is

high. The probabilistic (stochastic) approach incorporates random elements

to determine the exploration and exploitation behaviour of a particular opti-

misation algorithm [44] or even to decide whether a new trial solution should

be accepted or not [14]. The use of the randomness has principally two main

advantages: (1) It makes the optimisation algorithm less sensitive to modeling

errors and (2) it decreases the runtime of the optimisation process, since the

search space does not need to be enumerated.

In this thesis, we concentrate on the stochastic optimisation algorithms,

since the problems we are concerned with have both a (very) large search space

and a high dimensionality. In this context, we classify the existing stochas-

tic algorithms into two groups: (1) Population-based and (2) trajectory-based

optimisation algorithms. A population-based optimisation algorithm utilises

individuals (agents), which search for the optimum in a given fitness landscape

by exchanging information about their solutions and the corresponding fitness

values. Thus, the optimisation is carried out collectively by a population of

agents. A trajectory-based optimisation algorithm, on the other hand, consid-

ers only the form of the corresponding fitness landscape in order to examine

new trial solutions (exploration) or to use the available information about the

fitness landscape to get closer to a (possibly local) optimum (exploitation).

Fig. 3.1 shows the classification of trajectory-based and population-based op-

timisation algorithms.

There is a large number of trajectory-based and population-based optimi-

sation algorithms so that it is not possible to consider all of them in this thesis

[6]. Thus, we limit our investigations to the most prominent and well-studied

members from each class of optimisation algorithms, which are shown in white

boxes in Fig. 3.1. The algorithms in grey boxes are just further members of

each class of optimisation algorithms. Please notice that Fig. 3.1 does not

give the complete list of all existing stochastic optimisation algorithms, rather

26

it shows only a subset of them in order to demonstrate the basic semantics we

used for classification purposes.

Figure 3.1: The classification of stochastic optimisation algorithms. Only the
algorithms in white boxes are investigated in this thesis. For a more detailed
classification of existing optimisation algorithms please refer to [6].

In the following we present the algorithms, which we use for investigation

and comparison purposes in this thesis, in more detail.

27

3.2 Trajectory-based Optimisation Algorithms

Trajectory-based optimisation algorithms start with a random initial solution

and refine it at each step by replacing the current solution with another (often

better) solution found in the neighbourhood. The most prominent member of

this class of algorithms is the well-known Hill Climbing (HC) algorithm. The

HC algorithm is actually deterministic and does not utilise random elements in

the optimisation. However, HC is a very generic optimisation model, and thus

serves as a basic template for many stochastic trajectory-based optimisation

algorithms like Stochastic Hill Climbing [18], Tabu Search [45, 46] or Simulated

Annealing [14]. The HC algorithm starts with a random solution, and at each

optimisation step it searches the neighbourhood of the current solution for

better solutions. The current solution is replaced only if the new solution

provides a better fitness value than the current one (see Procedure 1).

Procedure 1 The Hill Climbing procedure
1: BEGIN
2: define MAX, bestSolution
3: Vcurrent = random() . Select a random solution in the search space
4: bestF itness = eval(Vcurrent)
5: t = 0
6: while t < MAX do
7: select Vnew ∈ N(Vcurrent) . Vnew is in the neighbourhood of Vcurrent
8: if eval(Vnew) > bestF itness then
9: bestF itness = eval(Vnew)

10: bestSolution = Vnew
11: end if
12: t = t+ 1
13: end while
14: Vcurrent = bestSolution
15: END

As shown in Procedure 1, HC starts with a random solution (line 3). Until

the termination criterion is satisfied (line 6), it selects a trial solution Vnew

from the neighbourhood of the current solution Vcurrent (line 7), and accepts

Vnew only if its fitness value is better than the fitness value of Vcurrent (lines

8-11). The HC procedure can be improved in that the Procedure 1 is carried

28

out not only for a single random solution Vcurrent, but for a specific set of

solutions. That means, we can perform HC on different parts of the search

space (parallel or sequential) and then combine all results. This improvement

of the standard HC algorithm is called Iterated Hill Climbing [18], which is

also a deterministic algorithm like the standard HC. Generally, iterated HC

provides better results than the standard HC algorithm in the majority of the

optimisation problems. Nevertheless, the success of HC and Iterated HC is

limited, since both algorithms neglect exploring particular parts of the search

space in that they never accept solutions that are worse than the current one.

This is basically a problem, if we optimise in non-linear multimodal fitness

landscapes, since the greedy optimisation algorithms like HC get stuck in a

local optimum, and cannot find the global one in such fitness landscapes. In

this case, the HC algorithm can be extended by random elements to accept

new solutions even if they have lower fitness values than the current one in

order to cope with this problem. In the next section, we present the Simulated

Annealing algorithm, which is basically a kind of stochastic HC approach.

3.2.1 Simulated Annealing

Simulated Annealing (SA) has been proposed by Scott Kirkpatrick, C. Daniel

Gelatt and Mario P. Vecchi in 1983 [14]. SA is inspired by the annealing

process of metals, which is used to alter their properties like hardness. Metal

crystals with small defects or dislocations weaken the structure of the metal.

By properly heating and then cooling the metal it is possible to destroy or

move these dislocations. A high temperature increases the energy of the ions

so that they can move to proper positions avoiding getting stuck in meta-

stable (local optimal) states. Afterwards, the temperature is decreased slowly

and the metal approaches its equilibrium (optimal) state [6]. SA incorporates

this idea into the optimisation process. In this context, the optimisation is

initialised with a high temperature to avoid local optima, i.e., at the beginning

of the optimisation there is a high probability that solutions with low fitness

values are accepted by SA. The temperature is decreased over time so that

the probability to accept bad solutions decreases, too. At the end of the

29

optimisation, the temperature is so low that the final stages of SA resemble

an ordinary hill-climbing algorithm (see Procedure 2).

Procedure 2 The Simulated Annealing procedure
1: BEGIN
2: define MAX
3: define T . Initialise the temperature T
4: best = random(Vcurrent) . Select a random solution in the search space
5: while t < MAX do
6: select Vnew ∈ N(Vcurrent) . Vnew is in the neighbourhood of Vcurrent
7: if eval(Vnew) > eval(Vcurrent) then
8: best = Vnew
9: elseif random[0, 1) < e

eval(Vnew)−eval(Vcurent)
T

10: best = Vnew
11: end if
12: t = t+ 1
13: T = decrease(T)
14: end while
15: END

As shown in Procedure 2, SA is basically very similar to the standard HC

algorithm. SA accepts a solution if it is better than the current one (line

7) or the condition random[0, 1) < e
eval(vn)−eval(vc)

T holds (line 9). The value

of e
eval(vn)−eval(vc)

T decreases with the decreasing temperature (T) so that the

probability to accept bad solutions decreases. The idea of incorporating the

annealing process into the optimisation is very promising, but there are some

important questions to be answered:

1. What termination criterion should be used (line 2 in Procedure 2)?

2. How can we initialise the temperature (line 3 in Procedure 2)?

3. How can we calculate the temperature for the next optimisation step

(line 13 in Procedure 2)?

There is not a generic answer for the questions above. This is actually

an important issue regarding all optimisation algorithms so that each of them

must be fine-tuned according to the characteristics of the particular problem

[47].

30

SA can be applied to both discrete [48, 49] and continuous search spaces

[50, 51]. Thus, it is applicable to a wide variety of problems in various domains

such as machine learning [52], networking [53] or image processing [54, 55].

3.3 Population-based Optimisation Algorithms

A population-based optimisation algorithm utilises a set of individuals (or

agents in the sense of Organic Computing), which exchange information about

the solutions and the corresponding fitness values with each other in order to

find the optimum in the given fitness landscape. How the exchanged infor-

mation is used depends on the particular algorithm. However, there are two

generic aspects, which concern all population-based optimisation algorithms.

These are (1) the diversity and (2) the similarity of solutions represented by the

individuals. In this context, a population-based optimisation algorithm must

maintain a set of diverse solution candidates (at least at the initial stages of the

optimisation) in order to avoid a premature convergence to a local optimum

[56, 57, 58, 59], while the similarity of solutions is desired in order to fine-tune

the existing solutions towards the global optimum. To achieve these two goals

each population involves two types of individuals: (1) Individuals that explore

the fitness landscape and (2) individuals that exploit the existing information

about the fitness landscape. Each population-based optimisation algorithm

uses a different method in order maintain a good balance between the explor-

ing and the exploiting individuals. In this context, we investigate two main

classes of population-based optimisation algorithms: (1) Evolutionary Algo-

rithms (EA) and (2) Swarm Intelligence (SI) algorithms. In the following, we

present EA and SI algorithms in more detail.

3.3.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) utilise biologically-inspired operators like crossover

and mutation in order to refine a set of possible solutions iteratively [15, 60].

The following steps are carried out by an EA to refine the solutions: (1) After

creating an initial population of random solutions, an EA first determines the

31

values of the objective function(s) for each solution candidate. The optimi-

sation task may expose different goals each with its own objective function.

These objective values are then used to calculate the fitness value for each

solution candidate. (2) Afterwards, EA selects the fittest individuals from the

population according to their fitness values for reproduction of new offspring

solutions using crossover and mutation. (3) Based on these new candidates,

EA checks whether a termination criterion (e.g., a maximum number of func-

tion evaluations) is met or not. Accordingly, it either returns the best solution

found so far or repeats the steps from 1 to 3.

A genome in an EA is an abstraction of the search space and defines the

set of all possible solutions. The elements of the genome (search space) are

called genotypes (chromosomes). An EA aims at finding the genotypes that

provide the best fitness values using different solution candidates called phe-

notypes (individuals). A phenotype is an instance of a genotype formed by the

corresponding genotype-phenotype mapping. Using the notion of phenotypes,

EA facilitates a goal-driven search for the optimum in the search space.

EAs can be applied to search spaces defined over discrete and continuous

variables. Thus, the crossover and mutation operations used to create new

offspring solutions look different in problems with different types of search

spaces. In this context, EAs are used in a wide range of application domains

such as function optimisation [61], Constraint Satisfaction Problems (CSP) [62,

63], data mining [64], combinatorial optimisation [65] and telecommunication

[66].

Genetic Algorithm

Genetic Algorithms (GAs) belong to the class of EAs and consist of evaluation,

selection and reproduction steps, where the genotypes in the corresponding

search space are encoded as arrays of elementary types such as binary strings

or decimal numbers. The typical GA cycle is shown in Procedure 3.

An individual (phenotype) in a GA has (1) a specific location (genotype)

in the search space and (2) a fitness value, which represents the quality of the

corresponding solution. Thus, GA creates at the beginning of the optimisation

an initial population of random individuals and assigns to each individual a

32

Procedure 3 The cycle of GA

1: define MAX . Halting criteria
2: define t = 0 . Increased in each iteration
3: define NP . The population size
4: define POP . The population
5: define S . The selected individuals for the mutation and recombination
6: define OFFSPRING . The offspring individuals
7:
8: BEGIN
9: POP = createPopulation(NP)

10: assignF itness(POP)
11: while t < MAX do
12: S = select(POP)
13: OFFSPRING = createOffspring(S)
14: assignF itness(OFFSPRING)
15: POP ← OFFSPRING
16: t = t+ 1
17: end while
18: END

genotype to specify its location in the search space (line 9). Afterwards, the

corresponding fitness values are assigned to the individuals in order to define

the quality of solutions represented by them (line 10). The fitness values are

used to select (higher quality) individuals, which are going to be put into the

mating pool (line 12). The individuals in the mating pool are used for mu-

tation and recombination. There are different methods used for the selection

process. The most prominent selection methods are amongst others (1) the

Roulette-wheel selection, where the selection probability of each individual

is proportional to its fitness value [67], (2) the Truncation selection, where

individuals are sorted according to their fitness values and only the best indi-

viduals are selected for the mating pool using a specific truncation threshold

parameter [68] and (3) the Tournament selection, where the best individual is

chosen as a parent after a comparison of fitness values of individuals in a ran-

domly selected (sub-) population. The size of the sub-population is determined

using the parameter tournament size [68]. Each selection algorithm must be

adapted to the particular problem, since it strongly affects the performance of

33

GA [69, 70].

After having selected the individuals for the mating pool, the corresponding

mutation and recombination (crossover) operators are applied to the parent

individuals in order to create new offspring individuals (line 13). Since GAs can

be applied to search spaces defined over discrete and continuous variables, the

implementation of the corresponding mutation and crossover operators varies

in problem settings with different types of search spaces. In this context, a

real-valued GA, which for example optimises continuous functions, can use the

arithmetic crossover and Gaussian mutation operators [23], while a discrete

GA, which for example optimises the Boolean Satisfiability Problem (SAT)

[18], can use the single-point (SPX) or multi-point (MPX) crossover operators

together with the single-gene or multi-gene mutation operator [71, 72]. Finally,

the offspring individuals are inserted into the population according to the

corresponding insertion scheme (line 15) [73].

GAs are used in different domains such as function optimisation [23, 74],

scheduling [75], combinatorial optimisation [76], data mining [77] and medicine

[78].

Evolutionary Programming

Evolutionary Programming (EP) has been proposed by Fogel in 1964 in his

PhD thesis “On the organization of intellect” [79]. Basically, EP and GA

are very similar to each other. However, there is an important aspect in EP,

which can be used to distinguish EP from GA. A typical GA assumes to

have individuals of the same species, which represent different solutions in the

search space. EP, on the other hand, assumes to have different species instead

of individuals as solution candidates. Thus, EP differs from GA in that it

does not make use of crossover, but only mutation in producing offspring [80].

Procedure 4 shows the typical EP cycle.

According to Procedure 4, EP creates a random population of size NP at

the beginning of the optimisation (line 8), and determines the fitness values

of the solution candidates (line 9). Each solution candidate in the population

is subject to mutation (line 11). How the mutation is implemented depends

on the search space (discrete/continuous) of the problem and should be deter-

34

Procedure 4 The cycle of EP

1: define MAX . Halting criteria
2: define t = 0 . Increased in each iteration
3: define NP . The population size
4: define POP . The population
5: define OFFSPRING . The offspring individuals
6:
7: BEGIN
8: POP = createPopulation(NP)
9: assignF itness(POP)

10: while t < MAX do
11: OFFSPRING = mutate(POP)
12: assignF itness(OFFSPRING)
13: POP ← OFFSPRING
14: pairwiseCompare(POP)
15: refresh(POP)
16: t = t+ 1
17: end while
18: END

mined accordingly. After having created the offspring using the corresponding

mutation operator, EP assigns fitness values to them according to the objective

function (line 12), and puts them into the population (line 13). Afterwards,

pairwise comparisons are conducted over all solution candidates in the popula-

tion (line 14). For each solution candidate, a specific number of opponents are

selected from the population with equal probability. After each comparison,

a solution candidate receives a “win”, if it has a higher fitness value than its

opponent. Finally, the solution candidates with the least “wins” are deleted

from the population so that the population size is again NP (line 15) [80].

EP is used in different application domains such as machine learning [81],

artificial intelligence [82] and combinatorial optimisation [83].

Differential Evolution

Differential Evolution (DE) is a population-based optimisation algorithm, which

has been proposed by Storn and Price in 1995 [84]. DE is used to optimise

problems defined over continuous spaces (e.g., multidimensional continuous

35

functions) and has been invented to solve the Chebyshev polynomial fitting

problem [85]. Each individual in DE is equipped with an n-dimensional real-

valued parameter vector (this vector corresponds to a genotype in the genome),

which represents a solution for the given problem. The main idea behind DE

is that it generates new parameter vectors by adding a weighted difference

vector between two population members to the parameter vector of a third

one. The creation of a new offspring population member looks as follows:

Procedure 5 The DE procedure for creating offspring

1: define DIM . The dimensions of the problem
2: define CR . The crossover probability
3: define F . The scaling factor
4: define POP . The population
5:
6: BEGIN
7: L = U(0, DIM]
8: R1 = select(POP) . The first individual from the population
9: R2 = select(POP) . The second individual from the population

10: R3 = select(POP) . The third individual from the population
11: temp = XR . Save the current solution of the individual R
12: while (U [0, 1) < CR AND L < DIM) do
13: XL

R = XL
R1 + F (XL

R2 −XL
R3)

14: L = L+ 1
15: end while
16: if eval(XR) < eval(temp) then
17: XR = temp . Reset XR if the previous solution was better
18: end if
19: END

In Procedure 5 the variable DIM denotes the number of dimensions of the

given problem. Thus, each individual has a real-valued parameter vector of

size DIM . In each iteration, an individual optimises a particular number of

parameters (genes) in its vector (genotype). For this purpose, the variable L

is determined randomly whose value is between 0 and DIM (line 7). After

that, three individuals R1, R2 and R3 are selected randomly (lines 8-9-10) to

carry out the crossover operation. Before continuing with the crossover, the

individual saves its current solution to the variable temp (line 11). In order

to control the crossover, DE uses the crossover probability (CR) and U [0, 1),

36

which generates a uniformly distributed random number between 0 and 1.

The crossover is carried out as long as L < DIM and U [0, 1) < CR (line 12)

by adding a weighted difference vector between R2 and R3 to the parameter

vector of a R1 for each parameter (gene) with the index L (line 13). After

the crossover has been finished, the individual compares the fitness value of

the new solution to the fitness value of the previous solution (line 16). The

previous solution is restored if the new solution has a lower fitness value (line

17).

DE is used in various application domains such as function optimisation

[86], circuit design [87], chemical engineering [88], biology [89] and control

engineering [90].

3.3.2 Swarm Intelligence Algorithms

Swarm Intelligence (SI) defines the decentralised and collective behaviour of

systems, which consist of a large number of elements interacting with each

other. The most important aspect in SI is that each member of a swarm has a

limited view and a simple behavioural repertoire so that it is not able to show

intelligent behaviour on its own. Thus, we do not observe a local intelligence

in such systems, rather the intelligence emerges trough the interactions be-

tween the members of the swarm, and therefore it is a global property of the

whole system [91]. This kind of collective behaviour makes it for the swarm

possible to solve complex problems in an adaptive and self-organised way using

solutions that are emergent rather than predefined [92].

SI has various application domains. These domains can be classified into

two groups: (1) Applications with embodied agents that use SI principles to

accomplish real-world problems [93, 94, 38, 95, 96, 97, 98] and (2) applications

with abstract (optimising) agents that use SI principles to collectively find the

optimum in a given fitness landscape [29, 99, 44, 30, 100, 101]. In this thesis,

we concentrate on SI-based optimisation, and present two prominent members

of this class of algorithms.

37

Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a population-based optimisation algo-

rithm developed by Kennedy and Eberhart in 1995 [44, 102]. PSO is inspired

by the behaviour of bird flocking, where individuals spread in the environment

to look for food and move around independently. Each individual in PSO

has a specific neighbourhood to which it communicates the current state of

its search. If an individual achieves to find food, it sends the corresponding

information to other individuals in its neighborhood so that these individuals

are also propelled towards to food. Since each individual has randomness in its

movements, the individuals do not take a deterministic path while approach-

ing to the intended position, which in turn increases the probability to find

more advantageous positions. This idea is applied to optimisation problems

using artificial individuals (particles). In this case, each particle represents a

solution in an n-dimensional search space, and has a position, a velocity and

a specific neighbourhood of other particles to exchange information about the

current state of its search. In PSO, the positions (i.e., the solutions represented

by the particles) are encoded as real-valued parameter vectors1.

At each optimisation step, a particle knows its best position and the best

position found so far in its neighbourhood, and is propelled towards these

positions. Here, a particle determines its velocity vector using the following

formula 3.1:

V i
new = ω ∗ V i + ϕ1 ∗ U1[0, 1) ∗ (Pid −Xid)

+ϕ2 ∗ U2[0, 1) ∗ (Pgd −Xid)
(3.1)

where V i stands for the current velocity of the particle, ω for the iner-

tia weight, Xid for the current position of the particle, Pid for the personal

best position of the particle, and Pgd for the best position found so far in its

neighbourhood. ϕ1 and ϕ2 are the acceleration coefficients, while U1[0, 1) and

U2[0, 1) are uniformly distributed random numbers generated between 0 and

1. After having calculated the velocity vector, a particle determines its new

1The position of a particle corresponds to a genotype in the EA terminology, while the
velocity does not have a counterpart in EA.

38

position using the following formula 3.2:

X i = X i + V i
new (3.2)

Determining the optimal set of parameters for PSO is a complex task,

since the optimal configuration depends on the particular problem (i.e., the

fitness landscape) to optimise. However, there are two approaches to determine

the “standard” parameter set for PSO. In the first approach, the particles

in PSO are initialised with high velocities using a large ω value to be able

to explore the fitness landscape at the beginning of the optimisation. The

velocities are then decreased over time so that the particles switch from more

exploration to more exploitation. Eberhart et al. have used this technique to

optimise multidimensional functions, where ω is set to 0.9 at the beginning

of the optimisation and decreased linearly to 0.4 at the maximum number of

iterations [103]. The second approach is based on Clerc’s constriction factor

proposed in [104], where ω is not changed over time, rather it has the fixed

value of 0.729, and the acceleration parameters ϕ1 and ϕ2 are both set to

1.49445.

The “standard” parameter settings proposed in [104] and [103] have pro-

vided good results regarding different set of problems so that they can be

used as a guideline in determining the best parameter configuration for the

particular problem [105].

There are different improvements and refinements of the standard PSO

approach [106, 107, 108, 99], which are successfully used in different domains

such as machine learning [109, 110], function optimisation [111, 112, 113],

chemical engineering [114] and cluster analysis [115].

Ant Colony Optimisation

Ant Colony Optimisation (ACO) has been developed by Dorigo et. al in 1996

to solve combinatorial optimisation problems, which can be reduced to the

problem of finding the shortest path in a graph [30, 116]. ACO is inspired by

the foraging behaviour of real ants. A real ant leaves a trail of pheromones

on its path while searching for food. After finding the food, the ant follows

39

the pheromone trail it has laid to get back to the nest. Thus, it again lays

pheromones on the same path and increases the pheromone density on it. Prin-

cipally, ants are attracted by pheromones and inclined to follow the path with

a high pheromone density. The pheromone density on a short path between

the nest (N) and the food (F) increases more rapidly than the pheromone

density on a longer path. This makes the short path more attractive to follow

than the longer ones so that more and more ants follow the shorter path, while

the pheromones on the longer paths vaporise after some time. Eventually, long

paths disappear and only the shortest path remains (see Fig. 3.2).

(a) The ants explore the
shortest path between the
nest and the food.

(b) The pheromone density
on the shortest path increases
rapidly.

(c) Pheromones on the long
paths vaporise and ants fol-
low the shortest path.

Figure 3.2: The foraging behaviour of ants

ACO uses artificial ants to solve optimisation problems in technical systems

based on the idea of laying down artificial pheromones on the path between

two nodes i and j in the given graph. ACO uses a special form of indirect

communication using the environment, which is called stigmergy [117]. Thus,

ACO is also called a stigmergy-based optimisation algorithm. In most cases,

the ACO algorithm utilises in addition to the positive feedback process using

stigmergy also a heuristic that allows the constructive definitions of solutions

[116]. The calculation of the corresponding heuristic depends on the partic-

40

ular problem to solve. For example, in the well-known Traveling Salesman

Problem (TSP) [42] the Euclidean distance between the nodes (cities) i and j

is used to implement the heuristic, which always prefers small distances over

the large ones. This (greedy) heuristic is combined with the stigmergy-based

approach using pheromones to calculate the probability of taking a particular

path between the nodes i and j as follows 3.3:

pij(t) =
[τij(t)]

α · [ηij]β∑
k∈allowed

[τik(t)]
α · [ηik]β (3.3)

In Equation 3.3, allowed denotes the set of all nodes which the ant can

directly reach from the node i. α and β are parameters to determine the im-

portance of the pheromone trail (τij(t)) and the heuristic (ηij), respectively.

As mentioned previously the pheromones are not permanent, rather they va-

porise so that the probability of taking the path between the nodes i and j

changes over time as shown in Equation 3.3.

ACO has been applied to different domains such as combinatorial optimi-

sation [118, 119, 120], networking and telecommunication [121, 122, 123, 124]

and data mining [125].

3.4 Summary

In this chapter, we have provided a classification of existing optimisation al-

gorithms and presented the algorithms in more detail, which we use in our in-

vestigations. Although the presented algorithms can solve problems in various

domains effectively, they have a weakness in the exploration and exploitation

scheme they utilise. Here, we recognise two common patterns regarding the

search behaviour of the presented algorithms. According to the first pattern,

an algorithm is inclined to explore the fitness landscape at the beginning of

the optimisation, and change its behaviour into exploitation step by step to-

wards the end of the optimisation. The algorithms SA (with the decreasing

temperature), ACO (with the increasing pheromone density) and PSO (with

the linearly decreased inertia weight) use this pattern. The second pattern

41

constitutes a simultaneous exploration and exploitation behaviour in the opti-

misation without any distinction between the exploring and exploiting individ-

uals. The algorithms GA, DE and EP use this pattern, where each individual

exploit and explore at the same time according to predefined probabilities (i.e.,

crossover and mutation probabilities).

In OC, we deal with dynamic and self-referential fitness landscapes, where

the form of the fitness landscape changes as a function of the agent behaviour

requiring an adequate balance between the exploration and exploitation over

the whole optimisation process. Thus, the first pattern, where the algorithm

changes its behaviour from more exploration to more exploitation would fail,

since the corresponding algorithm loses the capability to track the moving op-

timum and is not able to adapt to changes in the fitness landscape after a

certain time has elapsed. In this context, the second pattern is more promis-

ing, since the algorithms using this pattern do not stop exploring the fitness

landscape. However, this pattern has the weakness that all individuals explore

and exploit at the same time. In this context, the exploration allows to find

new higher peaks in the fitness landscape, while the exploitation of existing

information results in the acceptance of solutions that are solely in the neigh-

bourhood of the current peak. In this case, the greedy exploitation works

against the creative exploration and increases the time, which is required to

track the moving optimum and react on changes in the fitness landscape prop-

erly. This suggests a strict distinction between the exploring and exploiting

individuals to increase the convergence rate, and reduce the time required to

find higher peaks after the form of the fitness landscape has changed. Thus,

there is a need of a new and effective optimisation scheme, where previously

found good solutions are kept while other parts of the fitness landscape are fur-

ther explored, simultaneously. This requires an intelligent distinction between

exploring and exploiting individuals, which is not the case in the algorithms

presented in this chapter. In the next chapter, we present the Role-based Imi-

tation algorithm (RBI) that satisfies this requirement utilising a dynamic role

assignment strategy to determine the exploring and exploiting individuals to

effectively explore the fitness landscape and to find the optimum.

Chapter 4

The Role-based Imitation

Algorithm

“The imagination imitates. It is the critical spirit that creates.”

Oscar Wilde

One of the major issues in optimisation is the exploration/exploitation

dilemma [126] with respect to determining an adequate balance between ex-

ploring and exploiting individuals to effectively find the optimum in a partic-

ular fitness landscape. In this context, the Role-based Imitation Algorithm

(RBI) proposes a strict distinction between exploring and exploiting individu-

als (agents) providing an effective optimisation scheme, where previously found

good solutions are kept while other parts of the fitness landscape are further

explored simultaneously. In the following, we present RBI in detail.

4.1 A Role-based Approach to the

Exploration/Exploitation Dilemma

The main idea behind RBI is to assign individuals different roles during dif-

ferent optimisation steps in order to guarantee (1) a sufficient exploration of

42

43

the fitness landscape over the whole optimisation process and (2) the conver-

gence of individuals to good (possibly optimal) solutions in a short amount

of time. At any point in time, the assignment of a role (“explorer” or “ex-

ploiter”) is adapted with respect to (1) the current degree of convergence of a

(sub-)population and (2) the relative quality of the agent’s solution (see Fig.

4.1).

Figure 4.1: The RBI scheme defining different roles for the agents.

Fig. 4.1 shows the generic role assignment scheme, which can be imple-

mented in discrete and continuous search spaces using different operators (e.g.,

arithmetic or genetic). Thus, we give first an abstract definition of the roles

presented in Fig. 4.1 without explaining the detailed implementation of them

in order to show the generic idea. The concrete implementation of these roles

for continuous and discrete search spaces is presented in Sec. 4.2 and in Sec.

4.3, respectively.

At each optimisation step, an agent determines a random comparison set

44

of agents from the population to gather information about their solutions

and the corresponding fitness values. In this context, each RBI-agent has

access to the whole population and determine freely, which agent belongs to

its comparison set (i.e., there is no limitation in the selection of agents for

the comparison set). There are two important aspects we have to consider

regarding the size of the comparison set. Firstly, the comparison set should not

be too large so that the computational costs remain small and the algorithm

produces good results in acceptable time. Secondly, the comparison set should

not be too small so that it is not representative for the population and does

not reflect e.g. the convergence state of the individuals in the population.

Unfortunately, the adequate number of agents in the comparison set differs

between different problem settings. Thus, a corresponding parameter study is

required to determine the correct size of the comparison set for each particular

problem.

After having determined the comparison set, the agent examines these so-

lutions and distinguishes between two cases: (1) High convergence of solutions,

and (2) low convergence of solutions (see Fig. 4.1).

Case 1: High convergence of solutions

In this case, the agents within the comparison set have similar solutions for

the given problem, and the agent chooses one of the two possible actions Do

nothing or Random exploration according to the relative quality of its solution.

The idea is to use the less successful agents in the comparison set to explore

the fitness landscape, while preserving the already found good solutions using

the more successful ones.

1. Do nothing

The agent does not change its solution if its fitness value is larger than

the average fitness value of the agents in its comparison set maintaining

a good (possibly optimal) solution.

2. Random exploration

The agent takes on the role of an explorer, if its fitness value is less

than the average fitness value of the agents in its comparison set. This

45

type of exploration is necessary, if we optimise a problem with e.g., a

complex multimodal fitness landscape, which is mostly the case in real-

world problems. In that case, the agents may have converged to a specific

area in the fitness landscape, which possibly contains only (one or more)

local optima. In order to avoid these local optima, the explorer agents

search randomly for higher peaks (i.e., better solutions) in the fitness

landscape, while the successful agents from the comparison set do not

take any actions and preserve the already found good solutions.

Case 2: Low convergence of solutions

In this case, the solutions of the agents in the comparison set have not con-

verged, and the agent takes on the role of an explorer or an exploiter according

to its fitness value (see “inductive exploration” and “exploitation” in Fig. 4.1).

In order to implement these two roles, each agent Ai divides other agents in its

comparison set into two groups. These are (1) the agents that have a higher

fitness value than Ai (the set ϕ), and (2) the agents that have a lower fitness

value than Ai (the set λ). In this context, Ai uses the agents in ϕ to implement

the role of the exploiter (imitator), and the agents in λ to implement the role

of the explorer (anti-imitator). But before Ai can assume one of these roles,

it must first determine, which role it should take on. For this purpose, Ai

uses the more successful agents from the set ϕ, and checks whether it is also

successful or not. Ai is successful, if its fitness value is close enough to the

fitness values of agents that have a higher fitness value than itself, i.e., if the

following condition holds:

fitness(Ai) > meanF (ϕ)− stdDevF (ϕ) ∗ β (4.1)

where meanF () and stdDevF () are functions to calculate the arithmetic

mean and the standard deviation of fitness values of agents from the set ϕ,

respectively. The control parameter β is used to determine the closeness be-

tween the fitness value of Ai and meanF (ϕ). According to the condition

above, Ai takes on one of the two possible roles: (1) Inductive exploration and

(2) exploitation.

46

1. Inductive exploration (anti-imitation)

Ai is successful if condition 4.1 holds. In this case, it takes on the role of

an explorer and changes its solution “away from” those agents that have a

lower fitness value than itself using the set λ. The underlying assumption

is that the solution of agents from the set λ are not optimal, and a

“repulsion” from these solutions might lead to a better fitness value.

Since it is not guaranteed that this kind of repulsion always provides a

better fitness value, we call this step an inductive exploration.

2. Exploitation (imitation)

Ai is not successful if condition 4.1 does not hold. In this case, it takes

on the role of an exploiter and imitates the successful agents in its com-

parison set by decreasing the distance between its own solution and the

solutions represented by more successful agents in ϕ.

The imitation and anti-imitation roles create a particular search behaviour,

where successful agents “pull” less successful ones step by step towards the

optimum in the corresponding fitness landscape. Overall, the optimisation

scheme presented above facilitates both a coarse-grained and a fine-grained

search for the optimum using the random and the inductive exploration steps,

respectively. Both of them are executed over the whole optimisation process

according to the current degree of convergence of the solutions in the compar-

ison set. The other actions (roles), “Do nothing” and “imitation”, are used

to preserve previously found good solutions, and at the same time to exploit

them in order guarantee the convergence of the whole population towards the

optimum in the given fitness landscape.

In the following, we describe the implementation of the roles presented in

Fig. 4.1 for continuous and discrete search spaces in more detail.

4.2 RBI for Continuous Search Spaces

In an n-dimensional search space, each RBI-agent is a solution candidate as-

sociated with an n-dimensional parameter vector consisting of real numbers.

Each element i of this n-dimensional vector should be optimised such that the

47

whole vector consists of the “correct” values for each dimension to provide the

optimal solution. The RBI-approach for the optimisation in continuous search

spaces is shown in Fig. 4.2.

Figure 4.2: The Role-based Imitation algorithm for continuous search spaces

The solution vector of each agent is initialised randomly at the beginning

of the optimisation. At each optimisation step, an RBI-agent determines (1)

a random subset of dimensions to be optimised (the dimensions shown in grey

in Fig. 4.2) and (2) a random comparison set of agents to gather information

about their solutions and the corresponding fitness values. Afterwards, the

agent calculates the standard deviation of parameter values for each consid-

ered dimension based on its comparison set, and determines whether these

parameter values in particular dimensions are sufficiently converged or not. A

predefined threshold α is used to determine the convergence. Generally, there

is no specific rule about how to determine α. Thus, it should be adapted to the

particular problem requiring a parameter study. However, in global optimisa-

tion algorithms it is usual to determine parameters such as α using the size of

48

the corresponding search space prior to the optimisation [6]1. The agent takes

on one of the four roles shown in Fig. 4.1 according to its fitness value and to

the convergence of solutions in the considered dimension i. In the following,

we present these roles in more detail.

1 - Do nothing

In this case, the agents within the comparison set have similar parameter values

for the considered dimension i. Here, the agent does not change its parameter

value in this dimension, and maintains a good (possibly optimal) solution if

its fitness value is larger than the average fitness value of its comparison set.

2 - Random exploration

The agent takes on the role of an explorer if the agents within the comparison

set have similar parameter values for the given dimension (i.e., stdDev(Pi) <

α)) and the fitness value of the agent is less than the average fitness value of

its comparison set. Since the parameter values in the considered dimension

are converged, there is no meaningful information available according to which

the agent can change its parameter value. Thus, it chooses randomly two

additional agents (e.g., agentk and agentl) from the population that were

originally not in its comparison set, and changes its parameter value in the

ith dimension using Procedure 6.

Procedure 6 The random exploration procedure

1: probability = U [0, 1);
2: x = Pik ∗ (1− probability) + Pil ∗ probability;
3: choice = random(true, false)
4: if choice == true then
5: Pi = x+ |x−max(Pik, P il)| ∗ U [0, 2)
6: else
7: Pi = x− |x−min(Pik, P il)| ∗ U [0, 2)
8: end if

According to Procedure 6, the agent calculates a random value (variable

x) between Pik and Pil, which are the parameter values of the randomly

selected agents agentk and agentl in the ith dimension, respectively (line 2).

1For example, if the search space of a particular dimension is defined between -10 and
10, and α is set to 1/100th of this search space, then the value of α is 0.2.

49

Afterwards, the agent determines where to explore using the variable choice,

which is either true or false with a probability of 50% (line 3). If the variable

choice is true, the agent explores around max(Pik, P il), which gives the larger

parameter value of Pik and Pil. Here, the agent calculates an offset using the

difference between x and max(Pik, P il) and multiplies it with a uniformly

distributed random number between 0 and 2 (line 5). The parameter value

of the current agent in the ith dimension is determined by simply adding this

offset to the variable x (line 5). Line 7 implements the exploration around

min(Pik, P il), correspondingly.

3 - Inductive exploration (anti-imitation)

In this case, the parameter values of agents in the comparison set have not

converged and the agent (A1) is successful according to the condition given in

Eq. 4.1. Here, A1 takes on the role of an explorer and changes the value of

its parameter in the ith dimension “away from” those agents that have a lower

fitness than itself using Procedure 7:

Procedure 7 The inductive exploration procedure

1: offset = |Pi −meanPi(λ)| ∗ U [0, 2)
2: if Pi > meanPi(λ) then
3: Pi = Pi + offset
4: else
5: Pi = Pi − offset
6: end if

where λ is the set of agents from the comparison set that have a lower

fitness value than A1, meanPi(λ) is the average parameter value of agents

from the set λ in the ith dimension and U [0, 2) is a uniformly distributed

random number generated between 0 and 2.

4 - Exploitation (imitation)

If the agent A1 is not successful according to the condition given in Eq. 4.1,

it takes the role of an exploiter and imitates the successful agents in its com-

parison set using Procedure 8.

In Procedure 8, ϕ is the set of agents from the comparison set that have

a larger fitness value than A1, meanPi(ϕ) is the average parameter value of

agents from the set ϕ in the ith dimension, and U [0, 2) is a uniformly dis-

50

Procedure 8 The exploitation procedure

1: offset = |Pi −meanPi(ϕ)| ∗ U [0, 2)
2: if Pi > meanPi(ϕ) then
3: Pi = Pi − offset
4: else
5: Pi = Pi + offset
6: end if

tributed random number generated between 0 and 2.

Time complexity of RBI for continuous search spaces

We determine the time complexity of RBI for continuous search spaces

based on the number of agents n in the comparison set and the number of

dimensions m that the agent optimises at the corresponding iteration. In

this context, we consider the longest execution path to determine the time

complexity, where an agent must execute the following 3 steps:

1. The agent calculates the mean parameter value for each considered di-

mension based on its comparison set. This step has a time complexity

of O(nm).

2. The agent determines the standard deviation of parameter values for

each considered dimension based on its comparison set. This step has

the same time complexity as the step 1, which is O(nm).

3. The agent calculates a new parameter value for each dimension using

the Proc. 6, the Proc. 7 or the Proc. 8. The time complexity of this

step is O(m).

The time complexity resulting from the execution of the steps presented

above isO(2nm+m). Since the calculation of the average parameter values and

standard deviations is the dominant time factor in RBI, we can also express

the overall time complexity as O(nm).

In this section, we have presented the concrete implementation of the roles

defined in the RBI-scheme presented in Fig. 4.1 for the problems with search

51

spaces defined over continuous variables. We present in the next section 4.3

the application of the RBI-scheme to discrete optimisation problems.

4.3 RBI for Discrete Search Spaces

According to the RBI-scheme presented in Fig. 4.1, an agent determines the

convergence of solutions presented by the agents in its comparison set to decide

which role to take on. For search spaces defined over continuous variables, we

have used the standard deviation of (partial) solutions to determine whether

these solutions have converged or not. In discrete optimisation problems,

we need a different distance metric for the same purpose, since the standard

deviation may not be applicable to the particular type of discrete solutions such

as those we have in the Traveling Salesman Problem (TSP) [42]. In RBI, we use

the Hamming distance to determine the convergence of solutions in discrete

search spaces. The Hamming distance measures the similarity between two

strings of the same length by calculating the number of positions at which the

corresponding symbols in the compared strings are different (see the example

in Fig. 4.3).

Figure 4.3: The Hamming distance between x and y is 6.

Both strings x and y in Fig. 4.3 can be considered as two different solutions

for a problem that has a discrete search space. Thus, the similarity between

the solutions x and y increases with the decreasing Hamming distance so that

the Hamming distance is zero (and the similarity 100%) if x and y are identical.

Deviations between the solutions x and y, on the other hand, lead to an increase

of the Hamming distance (i.e., similarity between x and y decreases).

Another important aspect in optimisation with RBI in discrete search

spaces is the implementation of exploration and exploitation procedures. If

we consider the example given in Fig. 4.3 again, we notice immediately that

we cannot use arithmetic operators to implement the roles defined in the RBI-

52

scheme presented in Fig. 4.1. This fact becomes more apparent, if we deal

with combinatorial optimisation problems (e.g, TSP) rather than with the

optimisation of e.g., real-valued continuous functions [23]. Thus, we need dif-

ferent operators to implement the exploration and exploitation procedures of

RBI for the optimisation in discrete search spaces. For this purpose, we use

the genetic operators (i.e., crossover and mutation) instead of arithmetic op-

erators to realise the RBI-scheme. The RBI approach for the optimisation in

discrete search spaces is shown in Fig. 4.4.

Figure 4.4: The Role-based Imitation algorithm for discrete search spaces.

Fig. 4.4 defines the main characteristics of the role assignment strategy that

is used for the optimisation in discrete search spaces. However, it is not possible

to provide a concrete implementation of the proposed roles, which is applicable

to all kinds of discrete optimisation problems. The reason is that problem

representations in discrete search spaces may significantly differ according to

the particular problem to solve. Thus, different problems may require different

53

mutation and crossover operators to create new offspring solutions. In order

to understand this matter more clearly , we consider the well-known Boolean

Satisfiability Problem (SAT) [18] and the Traveling Salesman Problem (TSP)

[42]. The goal in SAT is to find the correct binary solution that provides

TRUE according to a given boolean formula, while the goal in TSP is to

find a correct permutation of cities, which provides the shortest route in the

given topology. In SAT and TSP, we cannot use the same crossover operator

to create offspring. In this context, it is possible to use the standard single-

point (SPX) or multi-point (MPX) crossover operator to create offspring for

the SAT problem, while TSP requires crossover operators for permutation-

based representations such as Partially Match Crossover (PMX) [127] or Cycle

Crossover (CX) [128] operators. Furthermore, we can use the bit-flip operator

to mutate specific genes of a solution for SAT, which is not applicable to a

typical solution for TSP. Since it is not possible to provide a generic concrete

implementation of the roles presented in Fig. 4.4 for all discrete optimisation

problems, we concentrate on TSP, which is used for benchmarking purposes

to investigate RBI in this thesis.

As mentioned previously, we calculate the Hamming distance between two

solutions to determine the similarity between them. Since we try to solve

TSP using RBI, we consider the 1-dimensional representations (permutations)

of cities in two given routes (solutions) R1 and R2. In order to determine

the similarity between R1 and R2, we have to consider the alignment of the

cities in these routes. For example, consider the case, where R2 is created by

rotation of the cities in R1 by one position to the left. In such a case, the

Hamming distance between R1 and R2 would be definitely not zero, although

they present the same solution. Thus, we have to find a way to calculate

the minimum Hamming distance between the routes R1 and R2 in order to

determine the actual similarity between them. In this context, we consider

two different cases presented in Fig. 4.5.

Fig. 4.5 shows the cases, where (1) the cities in R2 are only “rotated” so

that the minimum Hamming distance can be calculated by finding the best

alignment between R1 and R2 (see Fig. 4.5(a)) and (2) the cities in R2 are

arranged in the reversed order of the cities in R1 (see Fig. 4.5(b)). In the

54

(a) Calculate the minimum Hamming dis-
tance by finding the best alignment be-
tween R1 and R2

(b) Calculate the Hamming distance be-
tween R1 and R2 by considering the re-
versed order of cities in R1

Figure 4.5: The routes R1 and R2 have to be compared both in straight and
reversed order to calculate the minimum Hamming distance between them.

second case, we have to compare the cities in R1 and R2 by “moving” into

opposite directions to determine the minimum Hamming distance. According

to both of these aspects, we determine the similarity of a solution presented

by an agent Ai to solutions presented by the agents in its comparison set using

Procedure 9.

According to Procedure 9, the agent Ai calculates for each agent in its

comparison set (line 5) the Hamming distance between its route Ri and the

route of the corresponding agent Rj (line 6). The variable minDistance holds

the minimum Hamming distance between Ri and Rj, and is initialised with

INTEGER.MAX, which defines the maximum integer number according to

the corresponding programming language (line 7). After that, Procedure 9

iterates through the cities in Ri and Rj, and determines the values for the

variables distance (lines 12 - 14) and reversedDistance (lines 15 - 17), which

are used to determine the Hamming distance between Ri and Rj in straight

and reversed orders, respectively2 (see Fig. 4.3). The value of the variable

minDistance is changed using the minimum of the variables distance and

reversedDistance (line 20). Afterwards, the cities in Ri are rotated one po-

sition to the left so that the first city in Ri is placed at the last position in

the list of cities after the rotation (line 22). Thus, in the next iteration we

2The cities in Ri and Rj are indexed starting from 0 so that the index of the last city in
each route is numberofCities− 1. Thus, the method getCity returns the same city for the
indices 0 and numberofCities.

55

Procedure 9 The calculation of Hamming distance for TSP

1: Define CAi . The comparison set of Ai.
2: int meanHamming = 0
3: Ri = getRoute(Ai) . The route (solution) of Ai.
4:
5: for all (Aj ∈ CAi) do
6: Rj = getRoute(Aj) . The route (solution) of Aj.
7: int minDistance = INTEGER.MAX
8: for (n = 0 to numberofCities− 1) do
9: for (m = 0 to numberofCities− 1) do

10: int distance = 0
11: int reversedDistance = 0;
12: if (getCity(Ri,m)! = getCity(Rj,m)) then
13: + + distance
14: end if
15: if (getCity(Ri,m)! = getCity(Rj, numberofCities−m)) then
16: + + reversedDistance
17: end if
18: end for
19: if (min[distance, reversedDistance] < minDistance) then
20: minDistance = min[distance, reversedDistance]
21: end if
22: rotate(Ri) . Rotates the cities in Ri one position to the left.
23:
24: end for
25: meanHamming+ = minDistance
26: end for
27: meanHamming/ = numberofAgents(CAi)

calculate distance and reversedDistance beginning from the next city in Ri.

Eventually, the value of the variable meanHamming is calculated using the

number of agents in CAi (line 26).

The variablemeanHamming holds the average Hamming distance between

the route of Ai and the routes of agents in its comparison set. Here, we use

again the predefined parameter α in order to determine the convergence of

solutions (see Fig. 4.4). If the value of the variable meanHamming is less

than α, we conclude that the solution represented by Ai and the solutions

represented by the agents in its comparison set have sufficiently converged so

56

that Ai either takes no further actions (the role “Do Nothing”) or it takes

on the role of a random explorer depending on its fitness value. If the value

of the variable meanHamming is larger than α, we conclude that there are

agents in the comparison set of Ai, whose solutions significantly differ from

the solution of Ai so that it can perform either the inductive exploration or

the exploitation step.

In the following, we present the implementation of each role for TSP:

1 - Do nothing

In this case, the solutions represented by the agents in the comparison set of

Ai have sufficiently converged, and the fitness value of Ai is larger than the

average fitness value of its comparison set. Here, Ai takes no further actions

and maintains a good (possibly optimal) solution.

2 - Random Exploration

In this case, the solutions represented by the agents in the comparison set

of Ai have sufficiently converged, and the fitness value of Ai is less than the

average fitness value of its comparison set. In this situation, there is a high

correspondence between the routes represented by the agents so that Ai has

no meaningful information in its comparison set to optimise its route. Hence,

it selects randomly two additional agents from the population that were orig-

inally not in its comparison set to explore the fitness landscape. The random

exploration is implemented using the Partially Match Crossover (PMX) [127]

operator with the randomly selected agents as parents. PMX is a special type

of two-point crossover operator, which inherits edges between the selected

crossover points and, at the same time introduces new edges outside of these

points. This property makes PMX very suitable for the implementation of

random exploration. PMX is implemented as shown in Fig. 4.6.

The PMX-operator first selects two crossover points for the parents (step

1). The substrings selected in Parent 1 and Parent 2 are used to create a

mapping between the components of these substrings (step 2). After that, two

offspring, Offspring 1 and Offspring 2, are created from Parent 2 and Parent

1, respectively by simply copying the genes of parents between the selected

crossover points to the offspring (step 3). At step 4, the routes represented by

the offspring are completed. There, the components from Parent 1 are copied

57

Figure 4.6: The Partially Match Crossover (PMX) operator.

to Offspring 1 (and also from Parent 2 to Offspring 2) as long as they are not

part of the mapping created in step 2. Otherwise, PMX uses the mapping to

decide which component to add to the offspring at the corresponding position.

For example, we cannot copy 0 from parent 1 to offspring 1 directly because 0

is mapped to 6 at step 2. Thus, 6 is copied into the offspring instead 0 at the

corresponding position. At the end, the PMX-operator creates two offspring,

and the random explorer selects one of them at random.

3 - Inductive exploration (anti-imitation)

In this case, the solutions represented by the agents in the comparison set of Ai

have not sufficiently converged, and Ai is successful according to the condition

given in Eq. 4.1. Thus, Ai assumes the role of an explorer according to the

RBI-scheme presented in Fig. 4.4. In this context, Ai selects an agent from its

comparison set (e.g., Aj) randomly, which has a lower fitness value than itself,

and increases the Hamming distance between its solution and the solution of

Aj as shown in Fig: 4.7.

58

Figure 4.7: The inductive exploration (anti-imitation) for TSP

In the first step, the minimum Hamming distance between the routes Ri

and Rj is determined, which are the routes represented by Ai and Aj, respec-

tively (step 1). After that, Ai determines the positions in both routes, where

Ri(k) = Rj(k) and Ri(k + 1) = Rj(k + 1) (step 2). This step identifies the

same transitions between the cities of Ri and Rj, and saves them into the set

T . After selecting a random city (cityk) from T at step 3, Ai flips the positions

of cityk and cityk+1. Based on this action, Ai explores the fitness landscape by

increasing the Hamming distance between Ri and Rj and moving away from

the solution represented by Aj.

The inductive exploration resembles the well-known swap mutation oper-

ator for TSP [129]. The difference between both approaches is that the swap

mutation operator involves only a single solution and flips two cities in a given

route randomly without considering an additional route. The inductive ex-

ploration, on the other hand, determines the cities to flip not completely at

random, rather according to an additional (worse) solution, and thus influences

the direction of mutation.

4 - Exploitation (imitation)

In this case, the solutions represented by the agents in the comparison set of

59

Ai have not sufficiently converged, and Ai is not successful according to the

condition given in Eq. 4.1. Here, Ai assumes the role of an exploiter, and imi-

tates two randomly selected agents (parent1 and parent2) with a better fitness

value from its comparison set using the special two-point Nearest Neighbour

Crossover operator [130] as shown in Procedure 10.

Procedure 10 The exploitation (imitation) procedure for TSP

1: Define parent1 . The first parent
2: Define parent2 . The second parent
3: Define offspring . The new solution
4: int crossoverPoint1 = 0
5: int crossoverPoint2 = 0
6:
7: while (crossoverPoint1 ≥ crossoverPoint2) do
8: crossoverPoint1 = random(numberofCities)
9: crossoverPoint2 = random(numberofCities)

10: end while
11: offspring = copy(parent1, crossoverPoint1, crossoverPoint2)
12: for (i = crossoverPoint2− crossoverPoint1 to numberofCities) do
13: currentCity = getCity(offspring, i)
14: adjacentCities[] = getAdjacentCity(parent2, currentCity)
15: if (¬offspring.contains(adjacentCities[1])) then
16: offspring = add(adjacentCities[1])
17: else if (¬offspring.contains(adjacentCities[2])) then
18: offspring = add(adjacentCities[2])
19: else
20: offspring = add(nearestNeighbour(currentCity))
21: end if
22: end for

As shown in Procedure 10, we first determine two crossover points (lines

7-10) in order to copy the corresponding part of parent1 into the offspring

(line 11). After that, we complete the route of the offspring using the cities of

parent2. Here, we consider the last city copied into the offspring (currentCity

in line 13), and determine the cities in parent2 that are adjacent to currentCity

(line 14). There are two adjacent cities to currentCity in parent23, and if one

of them is not in the offspring, we add the corresponding city into the offspring

3Each city in a given TSP is connected to exactly two different cities.

60

(line 16 or line 18). Otherwise, if both adjacent cities in parent2 are already

in the offspring, we find the nearest neighbour of currentCity in the given

TSP, which is not in the offspring and use it to complete the route of the

offspring (line 20). Thus, Procedure 10 creates an offspring, which contains

as many edges as possible from both parents, and therefore is very suitable to

implement the exploitation step for TSP.

Time complexity of RBI for discrete search spaces

The dominating factor in the time complexity of RBI is the calculation

of the Hamming distance presented in Procedure 9. According to Procedure

9, an agent Ai calculates the average minimum Hamming distance between

its own route and the routes represented by the agents in its comparison set

resulting in a time complexity of O(nm2), where n is the number of agents in

the comparison set of Ai and m is the number of cities in the given topology.

At this point, we emphasise again that we concentrate on the optimisation

of TSP in this thesis. Therefore, the implementation of the roles presented

in Fig. 4.1 is adapted to TSP together with Procedure 9, which is used to

determine the convergence of solutions in the comparison set. Hence, the

time complexity of RBI would be different (possibly less) than O(nm2), if we

optimise a different problem, e.g., SAT, where we can omit the steps required

to find the best alignment between the solutions presented in Procedure 9.

4.4 Summary

In this chapter, we have presented the Role-based Imitation algorithm (RBI)

for search spaces defined over continuous and discrete variables. RBI uses an

intelligent role assignment strategy to determine the exploring and exploiting

agents in the population in order to establish a balance between the creative ex-

ploration process and the greedy exploitation process. For both types of search

spaces we have provided a detailed implementation of the roles presented in

Fig. 4.1. The implementation of RBI for problems defined over continuous

variables is generic, since we can express the corresponding technical problems

61

as n-dimensional continuous optimisation problems (e.g., as function optimi-

sation [23]), where the goal is to find a real-valued n-dimensional vector as

the complete solution. On the other hand, the problem representation is not

unique in case of optimisation in discrete search spaces (e.g., the optimisation

of problems such as SAT and TSP) so that the concrete implementation of the

roles must be defined and adapted to the particular problem. In this context,

we have investigated the well-known Traveling Salesman Problem (TSP) that

is widely used for benchmarking purposes, and provided the implementation

of the roles given in Fig. 4.1 for TSP.

According to the information provided in this chapter, we now can extend

our evaluation strategy presented in Sec. 2.4 as shown in Fig. 4.8.

Figure 4.8: The evaluation strategy used to compare DE, PSO, GA, SA, ACO
and RBI.

OC systems may have different kinds of fitness landscapes such as static,

where the solution-fitness mapping does not change over time, or dynamic and

self-referential, where the form of the fitness landscape changes as a function

62

of the agent behaviour over time [26, 27]. Thus, an optimisation algorithm,

which is designed to optimise the behaviour of an OC system should work

efficiently in both types of fitness landscapes. In this context, we investigate

in Chap. 5 and Chap. 6 the performance of RBI in static and self-referential

fitness landscapes providing a comprehensive comparison of RBI to the state-

of-the-art optimisation algorithms presented in Chap. 3.

Chapter 5

Optimisation in Static Fitness

Landscapes

In this chapter, we investigate the performance of RBI in static fitness land-

scapes, where a given solution produces always the same fitness value regard-

less of time or agent behaviour. In this context, we provide a comprehen-

sive comparison of RBI to the well-known state-of-the-art optimisation algo-

rithms presented in Chapter 3. Here, we investigate RBI (1) in search spaces

defined over continuous variables using standard benchmark problems from

the domain of function optimisation, and (2) in search spaces defined over

discrete variables using the Traveling Salesman Problem (TSP). The goal in

function optimisation is to find the solution that provides the minimum func-

tion value. In this context, we compare RBI to Differential Evolution (DE),

Particle Swarm Optimisation (PSO), Genetic Algorithm (GA) and Simulated

Annealing (SA). The corresponding experimental results are presented in Sec.

5.1. Similarly, the goal in TSP is to find the shortest route in the given topol-

ogy, which presents also a minimisation problem. In this context, we compare

in Sec. 5.2 RBI to Genetic Algorithm (GA), Simulated Annealing (SA), Ant

Colony Optimisation (ACO), Evolutionary Programming (EP) and Annealing

Genetic Algorithm (AG), and present the experimental results. Finally, in

Sec. 5.3 we summarise the results presented in this chapter and discuss the

advantages/disadvantages of the algorithms regarding the investigated set of

63

64

problems.

5.1 Function Optimisation with RBI

There are two main evaluation criteria that are used to compare the perfor-

mances of optimisation algorithms: (1) The quality of solutions provided by

the optimisation algorithm and (2) the convergence speed of the optimisation

algorithm. In order to investigate RBI according to these two criteria, we have

implemented 21 different benchmark functions with unimodal, multimodal and

noisy fitness landscapes, where each optimisation algorithm tries to find the

global minimum. The benchmark functions are taken from [23]. The imple-

mented functions can be classified into two groups: (1) High-dimensional and

(2) low-dimensional functions. We investigate the high-dimensional functions

(see Fig. 5.2) in two different levels of complexity by implementing them (1)

in 30 and (2) in 50 dimensions. The low dimensional functions, on the other

hand, have only 2 or 4 dimensions (see Fig. 5.3). The rows shown in gray

in Fig. 5.2 and in Fig. 5.3 contain the parameter information required to

calculate the high-dimensional functions f12 and f13 and the low-dimensional

functions f14, f15, f19, f20 and f21, respectively. Fig. 5.1 shows some of the

investigated functions1.

Regarding the high-dimensional functions from f1 to f13, the first seven

functions (f1 - f7) have unimodal and the remaining functions (f8 - f13) have

multimodal fitness landscapes. Since these functions are all high-dimensional,

it is not trivial to find the minimum in the corresponding search space requiring

an intelligent exploration and exploitation scheme due to the large size of the

parameters to be optimised. In this context, the multimodal functions (f8 -

f13) present an additional challenge to the optimisation algorithms, since the

number of local minima increases with the dimensionality of the corresponding

function. Thus, in this case an optimisation algorithm must not only cope

with the high-dimensionality of the functions but also with the difficulties

regarding the form of the corresponding fitness landscape. The function f7,

which is a quartic noisy function with a unimodal fitness landscape, is of

1The figures are taken from http://www-optima.amp.i.kyoto-u.ac.jp/.

65

(a) F5 is the Rosenbrock function, which is
unimodal and high dimensional.

(b) F8 is the Schwefel function, which is
multimodal and high dimensional.

(c) F9 is the Rastrigin function, which is
multimodal and high dimensional.

(d) F14 is the Shekel function, which is
multimodal and 2 dimensional.

Figure 5.1: The three dimensional representations of Rosenbrock (F5), Schwe-
fel (F8), Rastrigin (F9) and Shekel (F14) functions each with a different type
of fitness landscape.

special interest in our investigation, since noise models real-world effects like

disturbances (e.g., defective sensors) that are important in the context of OC.

As shown in Fig. 5.2, the calculation of f7 involves a noise component, which

is implemented using a random number generator. A uniformly distributed

random number between 0 and 1 is added to the fitness value of a solution (or

of an agent in case of a population-based optimisation algorithm) making the

prediction of the real form of the corresponding fitness landscape very hard

(or impossible).

Thus, the optimisation in this kind of fitness landscapes is a great challenge

due to the inconsistencies between the fitness values of solutions determined

at different points in time. The fitness landscape of f7 is not dynamic, since

66

Figure 5.2: The high-dimensional functions. These functions are implemented
in 30 and 50 dimensions. The functions f8 and f12 have different minimum
values in 30 and 50 dimensions.

67

the fitness function without noise (
n−1∑
i=0

(i + 1)x4
i) gives for a solution s always

the same fitness value f7(s) regardless of time. However, we can identify the

fitness landscape of f7 with noise as quasi dynamic, since the noise component

simulates a (random) change in the form of the fitness landscape. Thus, this

type of fitness landscapes can be considered as a preliminary stage of real

dynamic or self-referential fitness landscapes. Since OC systems are designed

to work in noisy environments [24, 33], it is very important for an optimisation

algorithm to cope with the existing noise in the environment and to find the

optimal behaviour at any given point in time.

The functions from f14 to f21 are low-dimensional multi-modal functions,

where the number of dimensions (i.e., the number of local minima in the fitness

landscape) is fixed. The functions f14, f16, f17 and f18 have 2 dimensions, and

the functions f15, f19, f20 and f21 have 4 dimensions. These functions are

easier to optimise in comparison to functions presented in Fig. 5.2.

Based on these 21 benchmark functions, we investigate the performance of

RBI in comparison to the performances obtained by DE, PSO, GA, and SA

in noiseless and noisy environments in Sections 5.1.2 and 5.1.3, respectively.

Furthermore, we provide experimental results for the convergence speed of

RBI in Sec. 5.1.4. Before we discuss the results in more detail, we present

in the next section 5.1.1 the parameter settings we use for each optimisation

algorithm.

5.1.1 Parameter Settings

In this section, we present the parameter settings used for DE, PSO, GA,

SA and RBI. Generally, it is not possible to define a parameter set for an

optimisation algorithm, which produces always the optimal solution for each

existing problem. Thus, if we want to optimise a given set of problems using a

particular optimisation algorithm, we must test and evaluate different param-

eter settings in order to determine the optimal setting for this specific set of

problems. However, there exist parameter settings for some algorithms, which

are empirically proved to be adequate for the majority of problems. Hence,

these “standard” settings provide a good starting point for the comparison of

68

Figure 5.3: The low-dimensional functions. The functions f14, f16, f17 and f18

are 2-dimensional and the functions f15, f19, f20 and f21 are 4-dimensional.

69

different parameter settings for a given set of benchmark problems. Therefore,

we adopted the existing good parameter settings for the algorithms from the

literature where possible.

The Parameter Setting for DE

We use the DE/Rand/1/exp scheme for DE, which is the most universally

applicable DE-scheme that is also used in [23], where the population size is

set to 100, the crossover constant (CR) is set to 0.9 and the scaling factor (F)

is set to 0.5.

The Parameter Setting for PSO

A “standard” parameter setting for PSO is proposed in [103], where the popu-

lation size is 30 and the inertia weight (ω) is 0.729, while the particle increment

(ϕ1) and the neighbourhood increment (ϕ2) are both set to 1.49445. We have

compared this parameter setting to the one proposed in [105], where ω is also

0.729, but ϕ1 is set to 2.0412 and ϕ2 is set to 0.9477. We use the parame-

ter setting proposed in [105] with the population size of 100 particles and a

neighbourhood size of 25 particles, since it produces the best results for PSO

regarding the benchmark functions presented in Fig. 5.2 and in Fig. 5.3.

The Parameter Setting for GA

We use here the parameter setting proposed in [23], where the population size

is set to 100 and the probabilities of mutation (pm) and crossover (pc) are set

to 0.9 and 0.7, respectively. The mutation is implemented using the Cauchy

mutation operator with an annealing scheme, while the crossover is imple-

mented using the arithmetic crossover operator. Furthermore, a tournament

selection with a tournament size of two individuals is used to select individuals

for crossover.

The Parameter Setting for SA

In contrast to PSO, it is hard to find a “standard” parameter setting for SA in

the literature, which can be adopted and used to optimise the large number of

70

benchmark functions we investigate in this section. Thus, we have performed

an intensive parameter study to determine the optimal parameter setting for

SA according to the given set of benchmark functions and according to the

maximum number of function evaluations, which is set for each algorithm

to 500,000. There are three main parameters to set for SA: (1) The initial

temperature, (2) the cooling rate and (3) a distribution function to define a

neighbourhood of the current solution in order to select a new trial solution.

In this context, the initial temperature is set to 10e+6 and the cooling rate

is set to 0.99. In order to determine the best distribution function, we have

tested the Gaussian, equal, and Adaptive Simulated Annealing (ASA) [131]

distributions each with an annealing scheme. The best results are obtained

with the ASA distribution function.

The Parameter Setting for RBI

We have also performed an intensive parameter study in order to determine the

best parameter setting for RBI. Here, we set the population size to 100 and the

neighbourhood size (i.e., the size of the comparison set) to 5. The parameter

α, which is used to determine the convergence in a particular dimension (see

Fig. 4.2), is set to 1/100th of the search space of the corresponding dimension

(e.g., in case of f12 with a search range from -50 to 50, α is set to 1). The

parameter β, which is used to select one of either the inductive exploration

(anti-imitation) or the exploitation (imitation) steps, is set to 1.5 (see Eq.

4.1).

5.1.2 RBI in Noiseless Environments

In this section, we optimise the benchmark functions presented in Fig. 5.2

and in Fig. 5.3 with DE, PSO, GA, SA and RBI using the parameter settings

presented in Sec. 5.1.1. Here, the high-dimensional functions are investigated

both in 30 and 50 dimensions, while the low-dimensional functions have a fixed

number of dimensions that is either 2 or 4. The maximum number of function

evaluations is set to 500,000 i.e., the corresponding optimisation algorithm

cannot calculate the fitness value of a solution using a particular function

71

more than 500,000 times. 30 experiments, each initialised with a different

random seed, are carried out for each algorithm and the average best fitness

values are recorded. Fig. 5.4, Fig. 5.5 and Fig. 5.6 show the experimental

results for the low-dimensional functions and the high-dimensional functions

with 30 and 50 dimensions, respectively. (In the rest of this chapter, the best

results obtained from the optimisation of functions are presented in grey. The

results below 10−45 are reported as “0.0000000e+00”).

Results for the Low-dimensional Functions

Figure 5.4: The averaged best fitness values obtained by DE, PSO, GA, SA
and RBI for the low-dimensional functions shown in Fig. 5.3. The functions
f14, f16, f17 and f18 have 2 dimensions and the functions f15, f19, f20 and f21

have 4 dimensions. Best solutions are shown in grey.

The results in Fig. 5.4 show that all algorithms produce similar results

for the low-dimensional functions, while RBI, DE and PSO are slightly better

than GA and SA. RBI and DE find almost in all cases (except f19 for RBI

and f15 for DE) the optimal solution so that both algorithms perform on the

same level in optimisation of low-dimensional functions. PSO provides very

similar results to RBI especially for function f15. In this case, PSO finds a

solution, which is very close to the solution found by RBI so that the difference

between both fitness values is less than 10−6. GA gets stuck in a local optimum

on functions f14, f19 and f21, while it finds the same solutions as RBI, DE and

PSO on functions f16, f17, f18 and f20. SA is more or less on the same level as

GA and cannot find the optimum for functions f15, f19 and f20 and gets stuck

in a local optimum in the corresponding fitness landscapes. Overall, DE, PSO

and RBI find for almost all functions the optimal (or near-optimal) solutions

72

and produce better results than GA and SA, while GA and SA are on the

same level regarding the optimisation of the corresponding low-dimensional

functions.

Results for the 30-dimensional Functions

Figure 5.5: The averaged best fitness values obtained by DE, PSO, GA, SA
and RBI for the high-dimensional functions shown in Fig. 5.3. The functions
are implemented in 30 dimensions. Best solutions are shown in grey.

We have a different situation in case of the optimisation of high-dimensional

functions. Fig. 5.5 shows the experimental results regarding the optimisation

of functions from f1 to f13, where each of them is implemented in 30 dimen-

sions.

As mentioned above, the functions from f1 to f7 have unimodal and the

functions from f8 to f13 have multimodal fitness landscapes. f7 is a noisy

function with a unimodal fitness landscape. For functions f1 - f4 RBI finds

always the optimum, while PSO can find the optimum for f1, f2 and f3 and

DE only for f1 and f3. Neither GA nor SA can provide the optimal solution

for these functions. On f5 (Rosenbrock function), DE finds the best (near-

optimal) solution, while the results obtained by other algorithms are all far

away from the optimum. Here, RBI is on the same level as GA and PSO,

and SA provides the worst fitness value. On function f6 (step function), all

algorithms find the optimum. On function f7 (quadric noise), RBI finds the

best solution, while the solution found by GA is close to the solution found by

73

RBI. Apparently, DE, PSO and SA face difficulties with noisy problems.

DE and RBI find always the optimal solution on functions f8, f9, f11 and

f12, while RBI faces some difficulties in the optimisation of f10. In this case,

DE and PSO produce better results than RBI, while the solution found by RBI

is very close to the solutions obtained by DE and PSO (< 10−14). Finally, all

algorithms except for GA find the optimal solution on function f13. Overall,

our results show that RBI produces better results than PSO, GA, and SA and

is on the same level as DE for the given 30-dimensional benchmark functions.

Results for the 50-dimensional Functions

Figure 5.6: The averaged best fitness values obtained by DE, PSO, GA, SA
and RBI for the high-dimensional functions shown in Fig. 5.3. The functions
are implemented in 50 dimensions. Best solutions are shown in grey.

The results in Fig. 5.6 show that RBI and PSO produce the best results

for functions f1 - f3, while we observe a decrease in the performance of DE

for these functions. We have observed that DE requires more than 500,000

function evaluations (approximately between 700,000 and 1,000,000) to find

the optimum for the functions f1 - f3 showing that the convergence speed

of DE decreases significantly, if we increase the number of dimensions. GA

and SA perform on functions f1 - f3 worse than RBI, PSO and DE providing

similar suboptimal solutions. The results on other unimodal functions (f4 - f7)

show that RBI produces the best results except for f5. There, in spite of its

low convergence speed DE outperforms RBI, PSO, GA and SA and provides

74

the best result.

On functions f8 and f9, we observe a decrease in the performance of RBI.

Our experiments on function f8 have shown that RBI can find in 70% of all

experiments the optimum, while it gets stuck in a near-optimum solution in the

rest of the experiments. On function f9, we have observed that RBI can find

the optimum only if we increase the maximum number of function evalutions

from 500,000 to 1,000,000. The reason is that the number of local minima in

the fitness landscape of f9 increases exponentially, if we increase the number

of dimensions from 30 to 50. Here, RBI can avoid the local minima using its

exploration scheme, but it requires much time for getting closer to the global

optimum due to the complex form of the fitness landscape. The function

f9 with 50 dimensions is the single exceptional case within our benchmark

functions, where DE has a higher convergence rate than RBI. For function

f10, RBI, DE and PSO produce very similar results, while they again perform

better than GA and SA. For functions f11, f12 and f13, RBI and DE find

always the optimum, while PSO, GA and SA can produce good (but not

optimal) results on these functions.

The results in Fig. 5.6 show that RBI and DE are on the same level

providing clearly better results than PSO, GA and SA for the functions f1 -

f13 with 50 dimensions.

In this section, we have investigated the performance of RBI using noiseless

functions (except for f7). In the next section 5.1.3, we present the noisy bench-

mark functions and investigate to what extend the algorithms can cope with

the existing noise in the environment. Afterwards in Sec. 5.1.4, we will look

at the other important criterion for a comparison of optimisation algorithms

namely the convergence speed. For the sake of convenience, in the rest of this

chapter we concentrate on the optimisation of high-dimensional unimodal and

multimodal functions presented in Fig. 5.2, since the low-dimensional func-

tions presented in Fig. 5.3 are trivial to optimise and do not provide a clear

conclusive study on the performance of the investigated set of algorithms (see

the results in Sec. 5.1.2).

75

5.1.3 RBI in Noisy Environments

The investigation of noisy functions is of special interest for us, since noise

models real-world effects like disturbances, and OC systems are designed to

work in environments that involve disturbances [10]. In this context, an OC

system must have the capability to adapt to (internal or external) changes and

to maintain a required functionality in spite of a certain range of parameter

variations. Thus, in this section we investigate to what extent the algorithms

are capable to alleviate the negative effect of noise and to find acceptable

solutions. The results presented in Fig. 5.5 and in Fig. 5.6 show that RBI

can optimise the noisy function f7 better than its competitors PSO, DE, GA

and SA. If we look at the function f7 again, we see that the fitness value of a

solution is manipulated using a uniformly distributed random number between

0 and 1 so that the noisy fitness values are always larger than the real fitness

values. Since noise models real-world effects, it is more adequate and realistic

to implement the noise so that the noisy fitness values can be larger as well as

less than the real fitness values. In order to implement this type noise we do

not use a uniformly distributed, but a normal-distributed random number with

the mean of µ and the standard deviation of ζ, where ζ is used to determine

the level of the noise. This type of noise model is called “Gaussian noise”2

(see Eq. 5.1).

noisyF itness(S) = realF itness(S) +N(µ, ζ) (5.1)

According to Eq. 5.1, we calculate first the real fitness value of a solution

S, and add N(µ, ζ) to this real fitness value, where µ = 0 and ζ > 0. In case of

f7, we remove the existing noise implementation and replace it with N(µ, ζ).

In this context, we investigate the high-dimensional functions presented in Fig.

5.2 each with 30 dimensions. In order to provide a more comprehensive com-

parison of the algorithms, we consider two different cases, where the functions

are implemented (1) using a moderate noise with ζ = 1, and (2) using a severe

noise with ζ = 2. The maximum number of function evaluations is set to

500,000 for each algorithm. 30 experiments, each initialised with a different

2http : //en.wikipedia.org/wiki/Gaussian noise

76

random seed, are carried out and the average best fitness values are recorded.

Fig. 5.7 and in Fig. 5.8 show the results provided by RBI, DE, PSO, GA and

SA for the functions with moderate and severe noise, respectively.

Figure 5.7: The averaged best fitness values obtained by DE, PSO, EA, SA
and RBI for the functions with moderate noise (ζ = 1). Best solutions are
shown in grey.

Figure 5.8: The averaged best fitness values obtained by DE, PSO, EA, SA
and RBI for the functions with severe noise (ζ = 2). Best solutions are shown
in grey.

The results in Fig. 5.7 and in Fig. 5.8 show clearly that RBI produces the

best results for the majority of the functions both with moderate and severe

noise. Generally, if we optimise a noisy function using a population-based

optimisation algorithm, there exist two types of agents in the population:

(1) Agents that are strongly affected by the noise, and (2) agents that are

slightly affected by the noise. In this context, RBI alleviates the negative

77

effect of the noise in that the RBI-agents consider not only a single agent but

a group of agents (comparison set) in determining the new solutions. Hence,

the comparison set of a particular agent consists of both types of agents, which

makes it possible for RBI to adjust its search towards the optimum using the

agents that are only slightly affected by the noise. In order to explain this

aspect, we assume that an agent is only slightly affected by the noise, if the

noise component N(µ, ζ) presented in Eq. 5.1 produces a value between [-0.5,

+0.5]. According to the Gaussian distribution with µ = 0 and ζ = 1, the noise

value is between [-0.5, +0.5] with the probability of 38.29% (≈ 40%) 3. Since,

each RBI-agent has 10 randomly selected agents in its comparison set (see the

parameter settings in Sec. 5.1.1), there exist approximately 4 agents in each

comparison set that are only slightly affected by the noise. This makes it for

an RBI-agent possible to adjust its search towards the optimal or near-optimal

solution. Nevertheless, the population requires very long time (>> 500,000

function evaluations) to determine the exact optimum, since the agents that

are strongly affected by the noise redirect the search away from the optimum

and thus permanently slow down the optimisation process.

The exploration behaviour of RBI-agents in combination with the use of the

comparison set in determining new solutions results in an effective optimisation

scheme for the noisy functions. In this context, RBI does not switch from more

exploration to more exploitation towards the end of the optimisation. Rather,

RBI-agents always explore the fitness landscape according to the RBI-scheme

presented in 4.1 even after the population has converged to a specific area in

the search space.

If we look at the results presented in Fig. 5.7 in more detail, we see that

PSO is the second best performing algorithm after RBI. PSO provides better

results than DE, GA and SA in the majority of the investigated functions. GA

produces better results than PSO only for functions f1, f2, f7 and f9, SA for

functions f8 and f9 and DE for functions f4, f5, f8 and f9. The results show

that GA, DE and SA face difficulties in the optimisation of noisy functions,

since they switch from more exploration to more exploitation towards the end

of the optimisation, which results in a premature convergence. In this context,

3http://www.stat.wvu.edu/SRS/Modules/Normal/normal.html

78

PSO (as well as RBI) follows the more successful exploration pattern, where

the particles (agents) continue exploring the fitness landscape even after the

population has converged to a specific part of the search space. Each particle

in PSO is propelled towards its own best position and the best position found

so far in its neighbourhood. Thus, the particles in PSO use only two solutions,

while they optimise. The agents in RBI, on the other hand, optimise based on

all solutions represented by the agents in the comparison set, which gives the

RBI-agents the capability to adjust their search towards the optimal solution

more effectively than the particles in PSO.

The results presented in Fig. 5.8 regarding the functions with severe noise

look similar to the results presented in Fig. 5.7. Again, the successful ex-

ploration behaviour of the particles in PSO leads to better results than the

results obtained by GA, DE and SA. Thus, PSO is the second best perform-

ing algorithm after RBI, while GA and DE perform more or less on the same

level. The results show that all algorithms provide better results than SA in

the majority of the investigated functions. Overall, the results show that RBI

can perform effectively in noisy environments and outperforms PSO, DE, GA

and SA. Thus, RBI is more suitable than its competitors to be used for OC

systems that work in noisy environments4.

5.1.4 Convergence Speed of RBI

In the previous sections, we have investigated the first important criterion for

the comparison of optimisation algorithms, which is the quality of solutions

provided in noiseless and noisy environments. Generally, it is not only impor-

tant to determine how good the solutions are, but also how many iterations

are required to find the corresponding solutions. Thus, we deal now with the

second important comparison criterion in this section, which is the conver-

gence speed. Principally, the convergence speed of an optimisation algorithms

is measured using the number of function evaluations (#FE) required to pro-

duce a certain function value (i.e., a success criterion)[132, 99]. Thus, in order

to determine a convergence speed of an algorithm, we have to define a suc-

4Further experimental results on noisy functions can be found in the Appendix on page
144.

79

cess criterion for each considered function. In this context, we implemented

the functions in Fig. 5.2 (high-dimensional functions) in 30 dimensions and

defined for each function a proper success criterion so that the algorithms can

satisfy each corresponding criterion requiring no more than 500,000 function

evaluations. Each function is optimised 30 times, and the average values are

recorded. Fig. 5.9 shows the success criterion defined for each function to-

gether with the corresponding optimum, and Fig. 5.10 shows the number of

function evaluations required for each algorithm to achieve the success crite-

rion given in Fig. 5.9.

Figure 5.9: The success criteria defined for the functions together with their
optima. Fbest i represents the fitness value that should be achieved by an
algorithm to satisfy the success criterion for the function i.

The results presented in Fig. 5.10 show clearly that RBI has the highest

convergence speed for all considered functions except for f9, where PSO and

GA perform better. SA, on the other hand, is the worst performing algorithm

with the lowest convergence speed. Only for function f8, SA provides a good

result performing better than GA and DE. Based on these results, RBI is

the best and SA is the worst performing algorithm regarding the measured

convergence speeds. PSO produces good results especially for functions f2, f3,

80

Figure 5.10: The convergence speed of RBI, DE, PSO, GA and SA measured
in terms of the number of function evaluations (#FE) required to achieve the
success criteria given in Fig. 5.9. Best results are shown in grey.

f6, f8 and f11. In this case, PSO achieves the corresponding success criteria

requiring almost the same number of function evaluations as RBI, while the

convergence speed of PSO is higher than the convergence speed of DE and

SA for these functions. PSO outperforms also GA for functions f2, f3, f4, f5,

f8, f11 and f12, while GA is only slightly better than PSO in the rest of the

benchmark functions. Thus, PSO is the second fastest algorithm after RBI

according to our benchmark functions. Furthermore, the results show that GA

outperforms DE in 7 out of 13 functions so that both algorithms are more or

less on the same level regarding their convergence speed. Overall, RBI is the

best performing algorithm followed by PSO, GA - DE, and SA in the order of

the convergence speed.

Although, it is common to use the number of function evaluations to mea-

sure the convergence speed, we have also measured the convergence speed by

the amount of time in milliseconds required to achieve the intended function

values. Here, all experiments have been carried out on the same machine with

an Intel 1.8 dual core CPU, 2 GB memory and Windows XP operating system.

Fig. 5.11 shows the time in milliseconds required for each algorithm to achieve

the success criteria given in Fig. 5.9

81

Figure 5.11: The convergence speed of RBI, DE, PSO, GA and SA in millisec-
onds regarding the success criteria given in Fig. 5.9. Best results are shown
in grey.

The results presented in Fig. 5.11 correlate with the results presented in

Fig. 5.10. Here, RBI is again the fastest algorithm for all benchmark functions

except for f9. At this point, it is important to note that the convergence speed

measured in ms depends highly on the evaluation mechanism as mentioned

in Sec. 2.3.3. In our experiments, the cost of the evaluation mechanism is

very small, since we just have to calculate a function in order to determine

the fitness of a solution. In different scenarios, such as in OTC [33, 24] or

in ONC [133], the time required for the evaluation of a particular solution

can be very high (>>100 ms), if we use e.g., a simulator to determine the

fitness values instead of calculating a simple function. In such a case, the

convergence speeds of the algorithms would differ significantly according to

(1) the evaluation mechanism used and (2) the number of function evaluations

required to achieve the success criterion. Nevertheless, the results presented in

Fig. 5.11 give an idea about how much time the algorithms require to provide

acceptable results regarding the considered benchmark functions.

82

5.1.5 Conclusion

In this section, we have investigated the performance of RBI in comparison to

DE, PSO, GA and SA using noiseless and noisy functions. Furthermore, we

have measured the convergence speed of the considered algorithms in terms

of the number of function evaluations required to achieve the predefined suc-

cess criteria. In this context, we have also shown experimental results on the

convergence speed of the algorithms regarding the required time measured in

milliseconds. The results for the noiseless functions are summarised in Fig.

5.12.

Figure 5.12: The comparison of convergence speeds and the quality of solutions
provided by RBI, DE, PSO, GA and SA in case of noiseless functions.

As shown in Fig. 5.12, RBI is the best performing algorithm with the

highest convergence speed and the best quality of solutions. Regarding the

quality of solutions, DE performs just as well as RBI, while its convergence

speed is lower than RBI. The quality of solutions produced by PSO is lower

than DE and RBI (especially in case of the 50-dimensional functions), while

the convergence speed of PSO is higher than the convergence speeds of DE,

GA and SA. GA provides solutions that are better than the solutions produced

by SA and worse than those found by RBI, DE, and PSO. The convergence

speed of GA is as high as the convergence speed of DE and lower than the

83

convergence speed of PSO and RBI. Our experiments have shown that SA

is the algorithm with the worst solution quality and the lowest convergence

speed within the set of investigated algorithms.

The investigation of the noisy functions shows that there is a change in

the relative order of the algorithms regarding the quality of solutions (see Fig.

5.12).

Figure 5.13: The comparison of convergence speeds and the quality of solutions
provided by RBI, DE, PSO, GA and SA in case of noisy functions.

In this case, we have observed that the performance of DE decreases dras-

tically so that it produces worse results than PSO. Thus, in this case RBI is

the best and PSO is the second best performing algorithm followed by DE and

GA, while the results obtained by DE are slightly better than the results ob-

tained by GA. Here, SA has provided again the worst results regarding both

the convergence speed and the quality of solutions. Overall, RBI produces

the best results and is more suitable than its competitors to be used for OC

systems that work in noisy environments.

84

5.2 Combinatorial Optimisation with RBI

In this section, we investigate the performance of RBI in discrete search spaces

using the Traveling Salesman Problem (TSP). Here, we compare RBI to the

optimisation algorithms Simulated Annealing (SA), Genetic Algorithm (GA),

Ant Colony Optimisation (ACO), Evolutionary Programming (EP) and An-

nealing Genetic Algorithm (AG) [134]. In this context, we have implemented

topologies with different numbers of cities in order to determine the perfor-

mance of the algorithms according to (1) the quality of solutions obtained and

(2) the converge speed measured in terms of function evaluations. Here, we

put special emphasis on the comparison of ACO and RBI, since ACO is partic-

ularly developed to solve shortest path problems with a graph representation

such as TSP. Thus, our investigation in this section includes a more detailed

comparison of RBI and ACO. In the next section 5.2.1, we discuss the pa-

rameter settings we have used for the algorithms followed by the experimental

results presented in Sec. 5.2.2.

5.2.1 Parameter Settings

The benchmark problems as well as the results that we have used to compare

RBI to AG, EP, SA and GA are taken from [134]. Thus, we have not imple-

mented AG, EP, SA and GA for TSP, instead we use the corresponding results

directly from [134]. A more detailed comparison is provided regarding RBI and

ACO. In this context, we have implemented RBI and ACO for TSP, and car-

ried out an intensive parameter study to determine the best configuration for

them.

RBI

In order to determine an adequate configuration for RBI, we have carried out a

parameter study using different TSPs from the TSPLIB5, which is a collection

of different benchmark problems with varying difficulties. Accordingly, we set

the parameter α, which is used to determine the convergence of solutions in

5http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

85

the comparison set, to 1/10th of the number of cities in the given TSP. For

example, we set α to 10, if we optimise a TSP with 100 cities. The second

parameter β, which is used to select one of either the inductive exploration or

the exploitation steps, is set to 1.5 (see Fig. 4.4 for α and β). Furthermore,

the population and the neighbourhood sizes are set to 20 and 5, respectively.

ACO

ACO has been extensively investigated in the literature [30]. We have obtained

the best results with ACO using the Ant Colony System (ACS), which is a

particular instance of ACO, with the parameter setting proposed in [30] on

page 71, where α = 1, β = 3, ρ = 0.1, m = 10 and τ0 = 1/nCnn.

5.2.2 Solving TSP using RBI

In order to investigate the performance of RBI, we have implemented four

topologies with 30 (Oliver30), 50 (Elion50), 75 (Eilon75) and 100 (KroA100)

cities, which are investigated in [134] in detail. There, Dorigo et al. compare

ACO to GA, EP, SA and AG using the these four TSPs and present the best

integer tour length obtained by each algorithm together with the number of

tours (this corresponds to the number of function evaluations from Sec. 5.1.4)

required to find this tour length. We use these results from [134] and compare

them with the results of RBI. We have carried out 10 experiments for each

TSP, where the maximum number of function evaluations in each experiment

is set to 150,000. Fig. 5.14 shows the experimental results.

According to the results in Fig. 5.14, ACO is the single algorithm that finds

the optimum for each TSP requiring a very small number of function evalua-

tions. RBI can find the optimum only for Oliver30, Eilon50 and Eilon75 re-

quiring a large number of function evaluations in comparison to ACO. In none

of the 10 experiments RBI has managed to find the optimum for KroA100.

GA and EP perform more or less on the same level for the given TSPs provid-

ing comparable results that are both worse than the results produced by RBI.

At this point, we emphasise again that RBI utilises genetic operators (i.e.,

crossover and mutation) such as GA in order to optimise in discrete search

86

Figure 5.14: The comparison of ACO, RBI, GA, EP, SA and AG for the TSPs
with 30, 50, 75 and 100 cities. The results show the best integer tour length and
the number of function evaluations (NFE) required to find the corresponding
tour length. NA stands for “Not available”, since there are no known results
for EP, SA and AG regarding the 100-city problem KroA100. Best results are
shown in grey.

spaces, while the exploring and exploiting agents in RBI are determined ac-

cording to the RBI-scheme instead of using some selection mechanisms, which

are specific to GA (see Sec. 3.3.1). Thus, although RBI and GA both use

genetic operators, the utilisation of the RBI-scheme leads to an improvement

of the solution quality and the convergence speed in comparison to GA. The

remaining results show that AG performs worse than GA and EP, and better

than SA. Hence, SA is the worst performing algorithm regarding the given

benchmark TSPs. Overall, ACO is the best performing algorithm followed by

RBI, EP, GA, AG and SA.

The results in Fig. 5.14 show that RBI and ACO are the two best per-

forming algorithms regarding the considered set of TSPs suggesting further

investigation of them. In this context, we extend the benchmark problems

Oliver30, Eilon50, Eilon75 and KroA100 with additional TSPs from TSPLIB

together with randomly created TSPs of different sizes. Here, we carry out

10 experiments for each TSP, where the maximum number of function eval-

uations is set to 150,000. Fig. 5.15 shows the average tour length and the

average number of function evaluations obtained by ACO and RBI for each

TSP.

The results in Fig. 5.15 confirm the results presented in Fig. 5.14. Again,

ACO performs better than RBI in the majority of the investigated problems.

RBI produces better results than ACO in TSPs with 25, 150, and 200 cities,

87

Figure 5.15: The comparison of ACO and RBI using TSPs of different sizes.
The results show the average tour length and the average number of function
evaluations (NFE) required to find the corresponding tour length. Best results
are shown in grey.

while both algorithms produce the same results for the TSPs with 30, 40, 50

and 52 cities. However, if we look at the quality of solutions produced by the

algorithms, we see that ACO is just slightly better than RBI so that the results

obtained by ACO and RBI are very similar to each other. The situation looks

different if we consider the number of function evaluations required to produce

the corresponding results. In this case, ACO has a higher convergence speed

than RBI and requires a smaller number of function evaluations to achieve

the corresponding results. RBI is faster than ACO only in TSPs with 40 and

50 cities, while the convergence speeds of both algorithms are comparable in

TSPs with 25, 65, 99 and 159 cities.

Overall, the results in Fig.5.15 show that ACO performs (slightly) better

than RBI regarding the quality of solutions, while its convergence speed is

higher than the convergence speed of RBI.

88

5.2.3 Conclusion

The results presented in Sec. 5.2.2 are summarised in Fig. 5.16.

Figure 5.16: The comparison of convergence speeds and the quality of solutions
produced by RBI, ACO, GA, SA and AG for the Traveling Salesman Problem.

Although the results obtained by ACO are better than the ones obtained

by RBI, there are some restrictions regarding the optimisation using ACO:

1) ACO can only be used to solve discrete optimisation problems that have

a graph representation, since it is particularly developed to find the shortest

path in a given graph using the environment as a communication medium

(stigmergy). On the other hand, RBI is applicable to all kind of discrete and

continuous optimisation problems.

2) OC systems have typically self-referential fitness landscapes, where the

form of the corresponding fitness landscape changes as a function of the agent

behaviour. In case of TSP, this would mean that the ants change the topology

of the given TSP by changing their routes. Thus, there would be a new shortest

path (permutation of cities) after each optimisation step preventing the ants

to increase the pheromone density on the “shortest path”, since this “shortest

path” changes continuously. Hence, the pheromones would not be deployed

89

on a specific path, rather they were distributed (possibly) on the whole graph.

So, ACO would face difficulties in terms of convergence in self-referential fit-

ness landscapes. RBI, on the other hand, overcomes such problems using its

effective exploration/exploitation scheme. RBI-agents do not require a kind of

autocatalytic feedback process to converge such as ants, rather they converge

in that they keep already found good solutions obtained so far, and at the same

time execute the exploitation (imitation) step to move towards these solutions

in the corresponding search space (see “Do nothing” and “Imitation” in Sec.

4.3). This type of exploitation guarantees the convergence of the population

to good (possibly optimal) solutions, while the remaining agents explore the

fitness landscape by executing the random and inductive exploration steps (see

“Random exploration” and “Inductive exploration” in Sec. 4.3). Hence, RBI

provides a suitable optimisation scheme also for dynamic and self-referential

fitness landscapes by (1) finding a (possibly suboptimal) solution at the be-

ginning of the optimisation and (2) improving this solution iteratively in the

course of the optimisation.

5.3 Summary

In this chapter, we have investigated the performance of RBI in static fit-

ness landscapes. In this context, we have shown experimental results on the

performance of RBI in continuous and discrete search spaces using different

benchmark functions from the domain of function optimisation and the Travel-

ing Salesman Problem, respectively. In case of the optimisation in continuous

search spaces, we have compared RBI to the well-known state-of-the art op-

timisation algorithms DE, PSO, GA and SA. The results have shown that

RBI outperforms all its competitors providing high-quality results (especially

in noisy functions) in a short time. Thus, RBI is clearly the best perform-

ing algorithm within the set of investigated algorithms for the optimisation

of functions defined over continuous variables. In case of the optimisation in

discrete search spaces, we have compared RBI to ACO, EP, GA, SA and AG.

The results have shown that ACO, which is specially developed to optimise

combinatorial problems such as TSP, is the best performing algorithm, while

90

the results of RBI are very similar to the results obtained by ACO. Hence,

these two algorithms are more or less on the same level regarding the quality

of solutions and outperform all their competitors. The results regarding the

convergence speed show that ACO is the fastest algorithm within the set of

investigated algorithms followed by RBI. Overall, the results presented in this

chapter give the clear proof that the dynamic role assignment strategy used in

RBI facilitates a very effective optimisation scheme guaranteeing high-quality

solutions with high convergence speeds in static fitness landscapes.

Chapter 6

Optimisation in Self-referential

Fitness Landscapes

In this chapter, we investigate the performance of RBI in dynamic and self-

referential fitness landscapes, where the form of the fitness landscape changes

as a function of agent behaviour. In this context, we investigate the multi-

robot observation scenario from the pursuit (predator/prey) domain [25, 135].

Generally, in a predator/prey scenario the success of a predator does not only

depend on its own behaviour, but also on the behaviour of other predators in

the system. Thus, predator/prey scenarios provide a good test-bed to investi-

gate the performance of different optimisation algorithms in a self-referential

fitness landscape. Furthermore, predator/prey scenarios represent a generic

model/abstraction for many multi-agent systems (MAS), and especially for

robotic MAS, since they involve agents, which move around in an environ-

ment and interact with each other in order to accomplish a given task [136].

In this context, the multi-robot observation scenario involves robots (preda-

tors), which work together in order to collectively follow and observe the target

(prey). This collective behaviour should be learnt in a self-referential fitness

landscape, which presents a great challenge for the corresponding optimisation

algorithms. Here, we use the Role-based Imitation algorithm (RBI), Differen-

tial Evolution (DE), Particle Swarm Optimisation (PSO), Simulated Anneal-

ing (SA) and Genetic Algorithm (GA) to learn the optimal collective behaviour

91

92

for the robots, and compare the resulting system performances obtained by

them. As comparison criteria, we use the convergence speed and the quality

of solutions provided by the algorithms as in Chapter 5. Furthermore, we in-

vestigate the system performance in the presence of disturbances and provide

a quantified definition of robustness for OC systems using the notion of state

spaces as proposed in [40, 10]. We present experimental results regarding the

level of robustness obtained by the algorithms.

In Sec. 6.1, we discuss the experimental setup of the multi-robot obser-

vation scenario in detail. Sec. 6.2 provides the parameter settings of the

algorithms and demonstrates the experimental results for the converge speed

and the quality of solutions obtained by each algorithm in scenarios without

and with disturbances. In Sec. 6.3, we present a quantified definition of ro-

bustness for OC systems and provide experimental results regarding the level

of robustness obtained by the algorithms. Sec. 6.4 summarises this chapter.

6.1 Multi-robot Observation Scenario

We use the agent-based modeling and simulation toolkit RePast [137] to im-

plement our scenario. RePast provides a scheduler, which triggers agents to

perform their predefined behaviour at each time step. A single time step in a

RePast simulation is called a tick. In our experiments, we also use the notion

of ticks in producing experimental results presented in Sec. 6.2. Our scenario

consists of robots (predators), which follow the target (prey) in order to observe

it, while the target tries to evade the robots. We use the terms “robots” for

the predators and “target” for the prey in the rest of this chapter. Each robot

has an internal variable “number of observations” (abbr. NofOBS), which is

incremented at each time step the target is within the observation horizon of

the robot. This observation horizon is defined as the 1-step neighbourhood of

the robot (see Fig. 6.1).

A robot’s local objective is to maximise the value of its internal variable

NofOBS, whereas the target tries to evade the robots in order to stay un-

observed as often as possible. Using the notion of NofOBS, we measure the

system performance as shown in Eq. 6.1.

93

Figure 6.1: A robot increments its NofOBS each time the target is in its
observation horizon.

Performance(S) =
m∑
i=1

ζ(i). (6.1)

where m is the number of robots in the system and ζ (i) is the NofOBS of

the robot with the index i.

The positions and the moving behaviour of the robots and the target are

determined according to an attraction/repulsion (pull/push) model as pro-

posed by Korf [138] together with a hard constraint, which prevents a robot

to move into the observation horizon of another robot. Thus, at any given

point of time in the simulation, the robots have a minimum of one cell dis-

tance between each other so that the target can move continuously (i.e., the

target cannot be captured as in a typical predator/prey scenario). Hence, in

conflict situations, where e.g., the attraction/repulsion forces of a robot ask it

to move into the observation horizon of some other robot, the hard constraint

overrides the attraction/repulsion force and the robot does not move. Hence,

the local objective of each robot is not to capture the target (since it is not

possible in our scenario due to the hard constraint mentioned above), but to

maximise the value of its internal variable NofOBS. Fig. 6.2 shows that the

robot R1 is attracted by the target and repelled by other robots R2 and R3.

The sizes of the attraction and repulsion vectors are determined by two

94

(a) The attraction vector towards the tar-
get and the repulsion vectors from R2 and
R3

(b) The attraction vector and the summa-
tion of both repulsion vectors

Figure 6.2: The repulsion and attraction vectors of a robot.

attributes: (1) the distance between the agents and (2) an optimisation pa-

rameter Pi used by the robots to adapt the repulsion forces. The magnitude

of the repulsion force between two robots (R1 and R2) is calculated as shown

in Eq. 6.2:

∥∥∥~VR2 R1

∥∥∥ =
1

d(R2, R1)
(6.2)

where d(R2, R1) is the distance between R2 and R1. Each robot R in the

system determines the attraction vector towards the target and the repulsion

vectors from other robots, and calculates the sum of these vectors according

to Eq. 6.3:

~VR = Pi ×
n∑
i=1

~VRi R + ~VR Target (6.3)

where n is the number of robots in the system other than R, and Pi is

the repulsion parameter that is used by R to modify the size of the repulsion

vectors from other robots (see Fig. 6.2(b)).

95

The behaviour of the target is determined similarly to the behaviour of a

robot. The target has a constant behaviour, i.e. that there is no parameter,

which the target can use to change its behaviour over time. The target is

repelled by the robots and also from the edges of the grid in order to stay

unobserved as often as possible as shown in Fig. 6.3.

Figure 6.3: The repulsion vectors that determine the behaviour of the target.
The repulsion vectors from the robots are shown in red, and the repulsion
vectors from the edges of the environment are shown in black.

According to the vectors in Fig. 6.3, the position of the target for the next

tick is determined using Eq. 6.4:

~VTarget =
m∑
i=1

~VRi Target +
4∑
i=1

~VEdgei Target (6.4)

where m is the number of all robots in the system and ~VEdgei Target is the

repulsion vector from the edge with index i. (Notice that the size of each

repulsion vector ~VEdgei Target from “Edgei” is calculated using Eq. (6.2)). Fur-

thermore, the target is two times faster than each robot in the system: A

robot R can only make one move in a single tick, whereas the target can move

twice in the same tick (by calculating ~VTarget and moving towards it twice at

each tick). Thus, the robots should optimise their repulsion parameters Pi

to be able to observe the target collectively and increase the system perfor-

96

mance. The necessity for an effective optimisation becomes more apparent, if

we consider the case, where all repulsion parameters are initialised with 0. In

this case, each robot sees only the attraction vector towards the target, and

none of them can increase its NofOBS, if they do not optimise their repulsion

parameters. This produces a non-collective system behaviour as shown in Fig.

6.4(a), where the robots form a large cluster and follow the target without

observing it, since the target moves faster than the robots. Hence, the opti-

misation of the repulsion parameters allows robots to spatially distribute over

the environment and pursue the target collectively (see Fig. 6.4(b)).

(a) The non-collective system behaviour
without optimisation where all repulsion
parameters (Pi) are set to 0.

(b) The collective system behaviour with
optimisation, where the robots spatially
distribute over the environment and pursue
the target together.

Figure 6.4: The system behaviour with optimising and non-optimising agents
where all Pi’s are set to 0.

The optimal system performance depends on the repulsion parameters Pi of

the robots leading to the question of how these Pi values can be optimised that

produce the best system performance. In this context, we use the optimisation

algorithms RBI, DE, GA, PSO and SA to determine the optimal repulsion

parameters Pi in four different scenarios with an increasing level of complexity

as shown in Fig. 6.5.

In all four scenarios presented in Fig. 6.5 the robots try to observe a single

target on a grid environment with 70x70 cells. The Pi values are initialised

97

Figure 6.5: The scenarios used to compare the optimisation algorithms RBI,
DE, GA, PSO and SA.

randomly in the corresponding search space, which is defined between the

upper bound 10 and the lower bound -10. We measure the system performance

obtained by each algorithm using Eq. 6.1. In this context, we investigate the

total number of observations achieved by each algorithm after 50,000 ticks.

Each robot in the system calculates its fitness value every 100 ticks according

to the following function 6.5:

Fitness(R) = Θti(R)−Θti−100(R) (6.5)

where Θti (R) is the NofOBS of R in the current optimisation step at

time ti and Θti−100
(R) is the NofOBS of R in the previous optimisation step

at time ti−100. Since the robots optimise their behaviour every 100 ticks and

we measure the system performance after 50,000 ticks, the number of function

evaluations (#FE) for a single robot is limited to 500 (50,000 / 100).

The first two scenarios (1-2) do not involve disturbances while the last

two scenarios (3-4) do so. In order to create a disturbance in Scenario 3 and

Scenario 4, we periodically set the repulsion parameters Pi of the robots to

a random value in the search space [-10, 10] so that the system performance

decreases until the robots have adapted their repulsion parameters to com-

pensate the disturbance. It is clear that the scenarios with disturbances are

more complex than the scenarios without disturbances, since the correspond-

ing optimisation algorithm must not only cope with the self-referential nature

of the fitness landscape, but also with the fact that the robots loose their learnt

knowledge about the environment periodically. Furthermore, if we look at the

scenarios with and without disturbances separately, we see that in each case

98

a large number of robots result in a more complex scenario, since there are

more elements (robots) which influence the form of the corresponding fitness

landscape. Thus, an optimisation algorithm can benefit from the large popu-

lation size only if it can cope with this complexity. Overall, the first scenario

with 30 robots and without disturbances is the simplest case we investigate,

while the last scenario with 50 robots and disturbances constitutes the most

complex case.

After having presented the experimental setup of the multi-robot obser-

vation scenario in this section, we will look in the next section 6.2 at the

parameter settings used for the algorithms to optimise the scenarios shown in

Fig. 6.5 together with the corresponding experimental results.

6.2 Experimental Results

6.2.1 Parameter Settings

We have performed an intensive parameter study to determine the optimal

parameters for DE, PSO, SA, GA and RBI. In the following, we present the

parameter settings used for the algorithms:

The Parameter Setting for DE

In case of DE, a large scaling factor F produces a very bad system performance

in the multi-robot observation scenario so that the repulsion parameters Pi

do not converge and remain distributed in the search space over the whole

simulation time. The setting F = 0.5, which we have used to optimise the

static functions presented in Sec. 5.1, provides such a result. Thus, we have

decreased F in order to guarantee the convergence. Here, we have observed

that the agents lose their exploration capabilities resulting in a premature

convergence, if we use a very small value for F such as 0.1. In this context,

the parameter combination F = 0.275 and Cr = 0.9 has produced the best

results for DE.

99

The Parameter Setting for PSO

For PSO, we have compared the parameter settings proposed in [103] and in

[105]. We have observed that the parameter setting proposed by Eberhart et

al. in [103] produces a better system performance regarding the total number

of observations. In this context, the inertia weight (ω) is set to 0.729, while the

particle increment (ϕ1) and the neighbourhood increment (ϕ2) are both set to

1.49445. We have also tested different neighbourhood sizes and determined

that PSO performs best, if we set the neighbourhood size to 5.

The Parameter Setting for GA

For GA, we set the probabilities of mutation (pm) and crossover (pc) to 0.1

and 0.9, respectively. In this context, we have observed that a mutation op-

erator with an annealing scheme results in a premature convergence so that

GA produces a bad system performance. Thus, the mutation is implemented

using the Gaussian mutation operator without an annealing scheme, where the

current solution of an individual is mutated with the standard deviation of 1.

The crossover is implemented using the arithmetic crossover operator, where

a tournament selection with a tournament size of two individuals is used to

select individuals for crossover.

The Parameter Setting for SA

For SA, we use the same distribution function [131] that is used in function

optimisation presented in Sec. 5.1. Here, we set the cooling ratio to 0.6 and

the initial temperature to 10e+6.

The Parameter Setting for RBI

For RBI, we set α to 0.2, which corresponds to 1/100th of the search space

defined between [-10, 10], and β to 1.5. The neighbourhood size (i.e., the num-

ber of agents in the comparison set) is set to 60% of the population size (e.g.,

the neighbourhood size is 18 for the population that consists of 30 agents).

100

6.2.2 Convergence Speed of RBI

In this section, we discuss the convergence speed of RBI, DE, PSO, GA and

SA in the multi-robot observation scenario. In this context, the system per-

formance obtained by each algorithm depends on the convergence speed of

the corresponding algorithm, since we use the total number of observations

as the performance measure (see Eq. 6.1). Thus, the algorithm, which finds

a particular solution in a shorter time produces a better system performance

than another algorithm, which requires more time to find the same solution.

We measure the convergence speed of the algorithms by determining the num-

ber of function evaluations (see Eq. 6.5) required to achieve a specific success

criterion as in Sec. 5.1.4. We use Scenario 1 and Scenario 2 presented in

Fig. 6.5 to determine the convergence speed of each algorithm. We count

the number of function evaluations required by each algorithm to achieve 750

observations in Scenario 1 with 30 robots and 1500 observations in Scenario

2 with 50 robots. 20 experiments, each initialised with a different random

seed, are carried out for each algorithm, and the average number of function

evaluations are recorded. Fig. 6.6 shows the experimental results.

Figure 6.6: The convergence speed of RBI, DE, PSO, GA and SA measured in
terms of the number of function evaluations. The success criteria for Scenario
1 and Scenario 2 are 750 and 1500 observations, respectively (see Eq. 6.1).
Best results are shown in grey.

During our experiments in Scenario 1, we have observed that all algorithms

except for SA converge to a specific range of solutions in the search space

defined between -10 and 10, while the repulsion parameters Pi with SA remain

distributed over the whole simulation time. However, SA also achieves the

success criterion of 750 observations after a considerably long time, since we

measure the system performance by determining the sum of all numbers of

observations, and the robots, which optimise using SA, observe the target

randomly from time to time without covering or cornering it. Thus, we mark

101

SA with (*) to denote that SA does not produce a specific solution and cannot

create a collective group behaviour in this scenario. The results presented

in Fig. 6.6 show that RBI has the highest convergence rate achieving the

corresponding success criterion after 1785.83 function evaluations on average.

It is interesting to compare GA and PSO. PSO is actually well-known for its

high convergence speed in static fitness landscapes in the literature [23]. The

situation looks different in self-referential fitness landscapes, where GA has a

higher convergence speed than PSO resulting in 750 observations after 2258.11

function evaluations, while PSO requires 2731.99 evaluations on average to

achieve the same result. Our experiments have shown that DE requires 3759.71

function evaluations on average to achieve 750 observations. We have observed

that DE converges very slowly and needs a considerably longer time than RBI,

PSO and GA to produce the same result.

The experiments in Scenario 2 have shown interesting results. We have ob-

served that neither SA nor DE can cope with the increasing number of robots

in the system. They don’t converge to a specific solution (or range of solutions)

in the search space defined between -10 and 10. The repulsion parameters with

SA remain distributed over the whole simulation time so that SA shows again

the lowest convergence speed (12519.17) within the set of investigated algo-

rithms. DE produces an interesting behaviour in this more complex scenario.

Here, we have observed two successively occurring situations when the robots

optimise their behaviour with DE. These are the situations, (1) where the re-

pulsion parameters are completely distributed in the search space [-10, 10] as

in the case of SA, and (2) where the repulsion parameters tend to converge to

a solution between -2 and 4. At the beginning of the optimisation, we observe

the situation (1), where the repulsion parameters are distributed in the search

space so that no specific solution can be identified. After some time, the repul-

sion values tend to converge to a specific range of solutions between -2 and 4 so

that the individuals represents solutions that are only in this part of the search

space ([-2,4]). At this point, DE cannot preserve this convergence process and

the individuals accept solutions outside of the convergence range [-2,4] again

so that the situation (1) re-occurs. Thus, it is not possible to identify a spe-

cific solution with DE in this more complex scenario. However, DE performs

102

better than SA due to the situation (2) stated above. We have marked DE

and SA with (*) to denote that none of them provides a specific solution for

the system with 50 robots. Regarding the other optimisation algorithms, RBI

has the highest convergence speed requiring 3481.84 function evaluations on

average for 1500 observations. The difference between the convergence speed

of GA and PSO becomes more apparent in this scenario. Here, GA scales well

with the increasing number of robots and provides 1500 observations after

4558.38 function evaluations, while PSO requires 6251.52 function evaluations

on average to produce the same result. Overall, the results presented in this

section give the clear proof that RBI has the highest convergence speed in

both low-complex and high-complex scenarios with 30 and 50 robots.

After having investigated the convergence speed of the algorithms in this

section, we investigate in Sec. 6.2.3 and in Sec. 6.2.4 the system performance

obtained by each algorithm in scenarios without and with disturbances, re-

spectively.

6.2.3 Observation Scenario without Disturbances

In this section, we present the experimental results for the system performance

obtained by RBI, DE, PSO, GA and SA regarding the first two scenarios, Sce-

nario 1 and Scenario 2, presented in Fig. 6.5. As mentioned before, these

scenarios are used to compare the algorithms in an environment without dis-

turbances. Scenario 2 is more complex than Scenario 1, since it involves more

elements (robots), which influence the form of the fitness landscape (see Sec.

2.2). Here, we have carried out 20 experiments each with 50,000 iterations

(ticks) for each scenario, and determined the average fitness value obtained by

each algorithm. Fig. 6.7 shows the experimental results.

Our experiments show that in both scenarios (with 30 and 50 robots) RBI

produces the best system performance. In Scenario 1 with 30 robots, the

Pi values obtained by both DE and RBI converge to the same range of values

between 1.2 and 1.6, which gives the best system performance for this scenario.

The difference between DE and RBI is that DE requires approximately 30.000

ticks and RBI only 6.000-6.500 ticks for convergence. Thus, RBI’s overall

103

Figure 6.7: The total number of observations obtained by RBI, DE, GA, PSO
and SA for the scenarios without disturbances.

performance is better than DE’s in this scenario. PSO finds in this scenario

only a suboptimal solution so that the Pi values converge to a range of values

between 1.5 and 2.5. Although PSO gets stuck in a local optimum in [1.5,

2.5], its convergence speed is higher than DE (see Sec. 6.2.2) so that PSO

compensates its weakness in finding accurate solutions with its convergence

speed and produces a system performance that is comparable to the system

performance obtained by DE. The system behaviour with GA is very similar to

the system behaviour with PSO in this scenario. In this context, GA also gets

stuck in a local optimum in [1.5, 2.5]. However, the convergence speed of GA

is slightly higher than the converge speed of PSO so that GA achieves a total

number of observations of 6612.95, while PSO provides 6545.15 observations

on average in the same time. SA does not converge in this scenario so that

the parameter values remain distributed in the search range [-10, 10] over the

whole simulation time providing the worst system performance.

In the more complex scenario with 50 robots, small repulsion forces (i.e.,

small Pi values) lead to a better system performance, since we have a large

number of robots in the same environment. Here, we have observed that the

Pi values with RBI converge to a range of values between 0.4 and 0.8 providing

104

the best system performance. GA and PSO both get stuck in a local optimum

in [0.5, 1.5], while GA scales better than PSO with the large number of robots

in this scenario so that it has the higher convergence speed (see Sec. 6.2.2).

Thus, the system performance obtained by GA is clearly better than the one

obtained by PSO. In this scenario, DE cannot cope with the increasing number

of robots so that no specific solution can be identified using DE. The Pi values

with DE temporarily converge to the range of values between -2 and 4 so

that the robots can only slightly increase the system performance. However,

DE cannot preserve the convergence process as explained in Sec. 6.2.2 so that

the Pi values become completely distributed in the search space after a specific

amount of time. Thus, the robots optimising with DE can only slightly increase

the system performance, and this explains why the system performance with

DE in Scenario 1 is better than in Scenario 2. The Pi values with SA remain

distributed in the search space [-10, 10] without any convergence over the whole

simulation time so that it produces the worst system performance. Overall,

only RBI, PSO and GA can cope with the increasing complexity and provide

good results in this more complex scenario, while RBI outperforms all its

competitors.

6.2.4 Observation Scenario with Disturbances

In this section, we present the experimental results regarding the last two

scenarios, Scenario 3 and Scenario 4, presented in Fig. 6.5. These scenar-

ios involve disturbances, and thus serve as a test-bed to determine to what

extent the algorithms are capable of compensating the negative effects of dis-

turbances. Here, we periodically set the repulsion parameters Pi of robots to

a random value between -10 and +10 in order to create a disturbance. After

each disturbance, the robots lose their learnt knowledge and the system per-

formance decreases until they have adapted their repulsion parameters Pi to

compensate the disturbance. In this context, we investigate two different lev-

els of disturbances: (1) A low-level disturbance, where the disturbances occur

every 10.000 ticks and (2) a high-level disturbance, where the disturbances

occur every 5,000 ticks. In each case, we have carried out 20 experiments

105

each with 50,000 ticks and determined the average fitness value obtained by

each algorithm. Fig. 6.8 shows the experimental results with 30 robots for

both low-level and high-level disturbances. For comparison purposes, we have

also included the results without disturbances obtained by the algorithms to

determine the decrease in the system performance after disturbances.

Figure 6.8: The total number of observations obtained by RBI, DE, GA, PSO
and SA in Scenario 3, which consists of 30 robots and involves disturbances.

The results in Fig. 6.8 show that the system performance obtained by

DE decreases drastically in the presence of disturbances. DE cannot cope

with disturbances so that the system performance decreases more than 50% in

both cases with low-level and high-level disturbances. The reason is that DE

has a very low convergence speed (see Sec. 6.2.2) so that even the low-level

disturbance occuring every 10.000 ticks can prevent it to find an acceptable

solution until the next disturbance occurs. PSO and GA, on the other hand,

can cope with disturbances in contrast to DE. The results show that GA is

better than PSO in the investigated scenario with 30 robots confirming the

results regarding the convergence speed presented in Fig. 6.6. On average,

GA provides 189.6 obervations more than PSO in the scenario with low-level

disturbances, while the difference is 515.3 observations in the scenario with

high-level disturbances. Thus, GA seems to perform better than PSO in case

106

of high-level disturbances. RBI produces the best results in this scenario pro-

viding 8241.25 and 6628.85 observations in scenarios with low-level and high-

level disturbances, respectively. The results show clearly that the effective

optimisation scheme of RBI facilitates a very high convergence speed (6.2.2)

in comparison to other algorithms so that the robots optimising with RBI can

compansate the disturbances in a very small amount of time. For the sake

of completeness, we have also investigated SA in this scenario considering the

fact that SA does not converge even in the scenarios without disturbances as

discussed in Sec. 6.2.3. As expected, the results show that SA is the worst

performing algorithm within the set of investigated algorithms providing the

lowest system performance.

The situation does not change significantly, if we increase the number of

robots in the system. Fig. 6.9 shows the system performance obtained by the

algorithms in the scenario that consists of 50 robots and involves disturbances.

Figure 6.9: The total number of observations obtained by RBI, DE, GA, PSO
and SA in Scenario 4, which consists of 50 robots and involves disturbances.

As discussed in Sec. 6.2.3, DE and SA do not converge and provide a spe-

cific solution in Scenario 2, which consists of 50 robots and does not involve

disturbances. Thus, an additional increase of complexity using disturbances

does not have a significant effect on the system performance obtained by DE

107

and SA. Hence, these algorithms produce still the worst results in this sce-

nario, which consists of 50 robots and involves disturbances. If we look at

the system performances achieved by PSO and GA, we see that GA outper-

forms PSO clearly providing 1766 and 2055.75 observations more than PSO in

case of low-level and high-level disturbances, respectively. Hence, the results

show that GA can find solutions that have at least the same quality as the

solutions provided by PSO requiring less time than PSO. Thus, regarding the

comparison of GA and PSO we can conclude that GA is the more convenient

optimisation algorithm to be used in scenarios with high-level complexity. The

results also show that RBI is the best performing algorithm in this most com-

plex scenario giving the clear proof that (1) it can cope with low-level and

high-level disturbances better than its competitors, and (2) it scales better

than its competitors with the increasing number of robots, where each robot

influences the form of the corresponding self-referential fitness landscape and

makes the optimisation task harder.

An optimisation algorithm must find acceptable solutions in a small amount

of time in order to maintain a reasonable system performance by adapting to

changing environmental situations in case of disturbances. The standard no-

tion for this issue is robustness [40, 10]. In this context, the results presented

in Fig. 6.8 and in Fig. 6.9 show clearly that the system achieves a higher

degree of robustness with RBI than with DE, PSO, GA and SA, since RBI

provides high quality solutions in a short time. However, more investigations

are required to gain a deeper understanding of robustness of a given system.

Therefore, we investigate in the next section 6.3 a quantified definition of ro-

bustness according to a framework that is based on the state space modelling

of the system behaviour as proposed in [40, 10]. Furthermore, we present ex-

perimental results regarding the degree of robustness achieved by DE, PSO,

RBI, GA and SA.

6.3 Robustness in OC Systems

Robustness has different meanings depending on the context. Typical defini-

tions include the ability of a system to maintain its functionality even in the

108

presence of changes in their internal structure or external environment [139],

or the degree to which a system is insensitive to effects that have not been

explicitly considered in the design [140]. In engineering, robust design gener-

ally means that the design is capable of functioning correctly, (or, at the very

minimum, not failing completely) under a large range of conditions. It is also

often related to manufacturing tolerances, and the corresponding literature is

immense, see e. g., the works by Taguchi [141]. In scheduling, robustness of a

plan generally means that it can be executed and will lead to satisfying results

despite changes in the environment [142], while in computing, robustness is

often associated with fault tolerance [143].

As there is a multitude of definitions of the term robustness, there are also

many different possible metrics. For example, robustness can be judged by

looking at the system performance over a distribution of scenarios, e. g., the

average performance and its standard deviation, the signal-to-noise ratio, or

the worst-case performance. Other metrics include the system’s probability

of failure, and the maximum deviation from standard conditions where the

system can still cope with failures. A procedure for deriving a robustness

metric for an arbitrary system is proposed by Shestak, Siegel et al. [144].

Robustness is defined in this context as a limited degradation of the system

performance against perturbations with regard to specified system parameters.

Waldschmidt used this procedure in [145] to derive a robustness definition for

mixed signal systems. The robustness formula proposed there can be evaluated

using simulations based on affine arithmetic [146].

Although there are many research projects done in measuring robustness

in various domains, to our knowledge, a thorough investigation of robustness

metrics for OC systems does not exist yet. Such metrics are needed to be

able to design OC systems, which can limit the degradation of their perfor-

mance against disturbances occurring inside or outside the system and adapt

its behaviour accordingly.

In OC, we define robustness as the capability to adapt to (internal or

external) changes and to maintain a required functionality in spite of a certain

range of parameter variations. In this context, we formalise robustness using

a framework based on the state space modelling of the system behaviour as

109

shown in Fig. 6.10 [40, 10].

Figure 6.10: The state space of a system with several subspaces.

In the following, the terms given in Figure 6.10 are introduced briefly.

1. Target space (TS): The target space consists of all states, where the sys-

tem produces an optimal performance. All states in the target space are

qualitatively equivalent regarding to the provided system performance.

2. Acceptance space (AS): The acceptance space consists of states, where

the system provides acceptable but not optimal performance. A system

in the acceptance space can end up in the survival space, e.g., in case of

a disturbance or it can move to another state in the target space after

an (self-) optimisation process.

3. Survival space (SS): The survival space consists of a maximal range of

states including the acceptance space. A system, which is in the survival

space but not in the acceptance space, is in a functional state providing

highly degraded (possibly minimum) system performance. An OC sys-

tem provides the corresponding interfaces for a control mechanism that

can lead a system back into its acceptance space.

110

4. Dead space (DS): A system leaving its survival space ends up in the dead

space and is permanently damaged.

Based on this kind of modelling, we can determine the level of robustness

monitored in the system according to the transitions between different sub-

spaces. The occurrence of a disturbance would move the system, which ideally

will be in its target space, to a state outside of its target space. In this context,

the robustness can be characterised as the capability of a system to move again

to an optimal state after the occurrence of a particular disturbance. Based on

the framework presented Fig. 6.10, we investigate now two questions: (1) Is

the system capable of moving back to its target space after the disturbance?

and if so, (2) how much time does the system require to get back to a state in

its target space? In this context, we consider two different cases as shown in

Fig. 6.11.

(a) The system is not robust since it cannot re-
turn to its target space by tmax.

(b) The system is robust since it returns back
to its target space at tr < tmax.

Figure 6.11: The two cases, which may occur after a disturbance at td. The
system is robust if it returns back to its target space within the recovery period
defined by tmax.

In order to measure the robustness of a given system, we have to determine

(1) a minimum system performance level (X) that the system must achieve to

be in a state in the target space, and (2) a recovery period, which defines the

maximum amount of time for the system to return back to its target space

after the occurrence of a disturbance. In order to determine this recovery

period, we consider td, which is the occurrence time of the disturbance, and

tmax, which is the last point in time at which the system should be in its

111

target space again in order to show a robust behaviour. In this context, the

system shown in Fig. 6.11(a) is not robust, since it cannot regain the minimum

required system performance X within the recovery period (tmax − td) after

the occurrence of a disturbance at td. Fig. 6.11(b), on the other hand, shows

a robust system behaviour, where the system returns back to its target space

at tr (tr stands for the time of recovery) within the recovery period (tmax− td).
Here, the disturbance results in a decreased system performance, which can

be determined using the area A2, while the loss in the system performance

corresponds to the area A1 as presented in Fig. 6.11(b). In this context, we

measure the robustness R of a given system S according to X, tr, td and tmax

using Eq. 6.6:

RS(X, td, tr, tmax) =
A2

A1 + A2

=

∫ tr
td
PS(t)dt+X ∗ (tmax − tr)

X ∗ (tmax − td)
(6.6)

where A2 represents the actual system performance that is provided be-

tween td and tmax, while (A1+A2) represents the minimum system performance

that should have been achieved to be always in the target space between td

and tmax. Here, we determine A2 considering (1) the decreased system perfor-

mance between td and tr (
∫ tr
td
PS(t)dt) and (2) the minimum required system

performance X between tr and tmax. In order to calculate (A1 + A2), we

simply multiply the minimum required system performance X with the time

elapsed between tmax and td. The robustness is then determined by calculating

A2/(A1 + A2). Please notice that PS(t) given in Eq. 6.6 is not a simple func-

tion that we can use to calculate the system performance after the disturbance,

rather it is an observation of the system performance between tr and td. Thus,

in order to calculate
∫ tr
td
PS(t)dt, we observe and measure the system perfor-

mance after the occurrence of the disturbance at time td and determine the

overall decreased system performance until the time of recovery tr is reached.

Hence, the robustness of a given OC system cannot be calculated prior to the

accomplishment of this observation and measurement process.

In the following, we measure the robustness of the system obtained by DE,

PSO, RBI, GA and SA. In this context, we investigate two scenarios with 30

112

and 50 robots, where each scenario is simulated for 50,000 ticks. In order to

investigate how the system reacts on the particular disturbance and how fast

it can recover from this disturbance, we consider the number of observations

provided every 500 ticks (sampling period) instead of calculating the sum of

all number of observations provided until the end of the simulation. Thus,

we have 100 consecutive samples (50,000 / 500) that we consider in our ex-

periments. We use the same disturbance as presented in Sec. 6.2.4, where

the repulsion parameters Pi of the robots are set to a random value between

-10 and +10. In this context, we implement the disturbance so that it does

not occur periodically, but only once at tick 25,000 (after 50 sampling peri-

ods), and give the system 5000 ticks (10 sampling periods) to recover from the

disturbance and return back to its target space. Thus, in terms of sampling

periods td is set to 50 and tmax to 60 corresponding to 25,000 and 30.000 ticks,

respectively. This results in a recovery period that consists of 10 sampling

periods (tmax − td). The parameter X, which defines the minimum system

performance level that must be achieved to be in a state in the target space,

is set to 60 observations per sampling period for the scenario with 30 robots

and 90 observations per sampling period for the scenario with 50 robots. Fig.

6.12 and Fig. 6.14 show the system performance after the disturbance with 30

and 50 robots, respectively.

The results presented in Fig. 6.12 show that the system performance with

DE, PSO, RBI, GA and SA decreases after the occurrence of the disturbance,

while all algorithms except for SA recover from the disturbance after some time

and provide 60 observations per sampling period. Although DE can compen-

sate the disturbance, it needs clearly more time than the recovery period (10

sampling periods) to provide the minimum required system performance of 60

observations per sampling period. Thus, only PSO, RBI, and GA create a

robust system behaviour according to the results presented in Fig. 6.12. In

order the determine the robustness of the system provided by the algorithms,

we calculate the area A1 +A2 as (tmax − td) ∗X = (60− 50) ∗ 60 = 600, while

A2 is calculated using (tmax − tr) ∗ X and the system performance obtained

between tr and td as shown in Fig.6.11(b). The robustness obtained by each

algorithm is presented in Fig. 6.13.

113

Figure 6.12: The system performance obtained by DE, PSO, RBI, GA and
SA. In this scenario, the system consists of 30 robots, the minimum perfor-
mance level X is set to 60 observations per sampling period (500 ticks), the
disturbance occurs after 50 sampling periods (25,000 ticks) and the maximum
amount of time for the system to return to its target space elapses 10 sampling
periods (5,000 ticks) after the occurrence of the disturbance.

Figure 6.13: The robustness obtained by DE, PSO, RBI, GA and SA in the
scenario with 30 robots, where X is set to 60 observations per sampling period
and recovery period (tmax− td) is limited to 10 sampling periods. tmax, tr and
td are given in terms of sampling periods (see Fig. 6.11 for the definition of
tmax, tr, td, A1 and A2).

The system with SA is not robust, since it cannot optimise the repulsion

parameters Pi so that the system provides 60 observations per sampling period

(X). DE requires 37 sampling periods (18.500 ticks) to achieve the intended

114

system performance X. Thus, neither DE nor SA can compensate the dis-

turbance within the recovery period so that the robustness of the system is

0 in each case. The results show that GA and PSO provide almost the same

(with 1% difference) robustness level, while the system achieves the highest

level of robustness with RBI. RBI can recover from the disturbance faster than

GA and PSO requiring only 4 sampling periods (tr = 54) after the occurrence

of the disturbance (td = 50), while GA and PSO require 10 (tr = 60) and

9 (tr = 59) sampling periods, respectively to achieve the same performance.

Overall, the degree of robustness achieved with RBI is 89.33%, while PSO

and GA achieve 75% and 74%, respectively. Fig. 6.14 presents the number of

observations provided by the algorithms in every sampling period (500 ticks)

for the system 50 robots.

Figure 6.14: The system performance obtained by DE, PSO, RBI, GA and
SA. In this scenario, the system consists of 50 robots, the minimum perfor-
mance level X is set to 90 observations per sampling period (500 ticks), the
disturbance occurs after 50 sampling periods (25,000 ticks) and the maximum
amount of time for the system to return to its target space elapses 10 sampling
periods (5,000 ticks) after the occurrence of the disturbance.

The results presented in Fig. 6.14 show that neither DE nor SA can cope

with the complexity caused by the increased number of robots and recover from

115

the disturbance providing approximately 45 and 20 observations per sampling

period, respectively. RBI, PSO and GA, on the other hand, compensate the

disturbance after some time and provide the minimum required system per-

formance for the target space, which is 90 observations per sampling period.

We have observed that RBI requires considerably less time in comparison to

PSO and GA to recover from the disturbance, while GA provides a better

system performance than PSO in this more complex scenario. In this context,

RBI recovers from the disturbance only 4 sampling periods after the distur-

bance (tr = 54), while GA and PSO do the same requiring 10 (tr = 60) and

13 (tr = 73) sampling periods, respectively. Since the recovery period is set

to 10 sampling periods (5,000 ticks), only RBI and GA achieve a robust sys-

tem behaviour providing the minimum required system performance X within

the recovery period. Although PSO can also recover from the disturbance,

it does not provide the intended system performance until tmax so that the

system behaviour with PSO is categorised as “not robust” as well as the sys-

tem behaviour with DE or SA. The robustness obtained by each algorithm is

presented in Fig. 6.15.

Figure 6.15: The robustness obtained by DE, PSO, RBI, GA and SA in the
scenario with 50 robots, where X is set to 90 observations per sampling period
and recovery period (tmax− td) is limited to 10 sampling periods. tmax, tr and
td are given in terms of sampling periods (see Fig. 6.11 for the definition of
tmax, tr, td, A1 and A2).

As mentioned above, PSO, DE and SA cannot provide a robust system

behaviour based on their recovery times (tr). The recovery times of DE and SA

are both∞ and the recovery time of PSO is 73 so that in each case we have tr >

tmax providing a robustness of 0%. RBI recovers 4 sampling periods after the

116

disturbance (tr = 54) and provides 805 oberservations within this 4 sampling

periods, while GA recovers 10 sampling periods after the disturbance (tr = 60)

and provides 709 obersations within this 10 sampling periods. Accordingly,

the robustness achived by RBI 89.44% and the robustness achieved by GA

is 78.77%. Thus, RBI outperforms all its competitors in this more complex

scenario with 50 robots providing the highest level robustness for the system.

Overall, the results presented in Fig. 6.13 and in Fig. 6.15 give the clear

proof that RBI is the most effecient algorithm within the set of investigated

algorithms achieving the highest level of robustness for the system with the

self-referential fitness landscape presented in this section.

6.4 Summary

In this section, we have investigated the performance of DE, PSO, RBI, GA

and SA in the multi-robot observation scenario from the predator/prey do-

main. The presented scenario defines a problem with a self-referential fitness

landscape, where the solution-fitness mapping changes as a function of agent

(robot) behaviour. In this context, the fitness value of a particular repulsion

parameter Pi changes based on the distribution of all Pi values in the system

resulting in a highly dynamic fitness landscape that changes each time the

robots optimise their Pi values. Hence, in order to optimise in such a fitness

landscape the corresponding optimisation algorithm must cope with this com-

plexity guaranteeing (1) the convergence of solutions and (2) the exploration

of new solutions without forgetting the already found good solutions. In this

context, we have investigated 4 different observation scenarios (see Fig. 6.5)

with an increasing level of complexity and compared the optimisation algo-

rithms DE, PSO, RBI, GA and SA with each other. The experimental results

have shown that RBI can effectively cope with the increasing level of com-

plexity in the presented self-referential fitness landscape providing the highest

quality solutions in a short period of time. The results are summarised in Fig.

6.16.

The results have also shown that GA scales well with the increasing number

of robots and performs better than PSO especially in scenarios with a higher

117

Figure 6.16: The comparison of convergence speeds and the quality of solu-
tions provided by RBI, DE, PSO, GA and SA in the multi-robot observation
scenario.

level of complexity, while PSO outperforms DE in the corresponding scenarios

(see scenario 2-3-4 in Fig. 6.5). DE provides good results only in Scenario

1, which is the simplest scenario with 30 robots and without disturbances,

while it cannot cope with the increasing level of complexity investigated in

Scenarios 2, 3 and 4. Thus, the results obtained by DE are worse than the

results obtained by RBI, PSO and GA. In none of the investigated scenarios,

the robots optimising with SA can cover the target and increase the number

of observations effectively so that SA provides the worst results in all of the

investigated scenarios.

After having investigated the convergence speed and system performance

obtained by the algorithms, we presented a framework based on the state

space modelling of the system behaviour to provide a quantified notion of ro-

bustness. In this context, we have elaborated the effects of the convergence

speed and solution quality achieved by the algorithms on the robustness of

the system. Our experiments have shown that RBI is the most effective opti-

misation algorithm within the set of investigated algorithms, and can recover

from the disturbances in a very small amount of time using its highly efficient

exploration/exploitation scheme. Overall, all the aspects investigated in this

118

chapter such as convergence speed, solution quality and robustness suggest the

use of RBI to optimise in self-referential fitness landscapes, since it provides

the best performance regarding all these aspects.

Chapter 7

Conclusion and Outlook

“The saddest summary of a life contains three descriptions:

could have, might have, and should have.”

Louis E. Boone

7.1 Summary

Motivated by OC, the goal of this thesis has been to investigate and identify

the challenges of optimisation in OC fitness landscapes, and develop an suit-

able optimisation algorithm, which finds high-quality solutions in a short time,

to allow an OC system to react quickly to the changes in its environment. In

this context, we have provided a classification of OC fitness landscapes based

on the solution-fitness mapping used by the particular optimisation algorithm

to determine the optimum. We have distinguished between the static and

dynamic fitness landscapes. The main difference between the static and the

dynamic fitness landscapes is that the solution-fitness mapping of a static fit-

ness landscape does not change over time, while the solution-fitness mapping

of a dynamic one changes e.g., as a function of agent behaviour. We have

identified this type of fitness landscapes as self-referential. The agents (or in-

dividuals in terms of EA), which optimise in a self-referential fitness landscape,

influence directly the solution-fitness mapping so that the fitness of a single

119

120

agent does not only depend on its own behaviour, but also on the behaviour

of other agents in the system. Based on this classification, we have deter-

mined the following requirements that an optimisation algorithm must satisfy

to be used in an OC system. The corresponding optimisation algorithm should

provide:

1. a consistent exploration of the fitness landscape over the whole optimi-

sation process to be able to track the moving optimum, and

2. a clear distinction between the exploring and exploiting individuals to

minimise the time required to determine the new optimum after the form

of the fitness landscape has changed.

We have developed a novel optimisation algorithm, the Role-based Imita-

tion algorithm (RBI), which satisfies these requirement, and compared it to

different state-of-the-art population-based and trajectory-based optimisation

algorithms from the literature. For comparison purposes, we have considered

different static and self-referential fitness landscapes, and measured the con-

vergence speed and the quality of solutions obtained by the algorithms as

comparison criteria. At this point, we complete the evaluation strategy pre-

sented in Sec. 4.4 with the corresponding results provided in Chapter 5 and

in Chapter 6 as shown in Fig. 7.1.

To study the performance of RBI in problems defined over continuous vari-

ables with static fitness landscapes, we have implemented 21 different bench-

mark functions from the literature. The investigation of noiseless and noisy

functions presented in Sec. 5.1 have shown that RBI outperforms DE, PSO,

GA and SA regarding the convergence speed and the quality of solutions ob-

tained by the algorithms. Particularly, the results regarding the noisy func-

tions give the clear proof that the distinction of exploring and exploiting agents

based on our novel role assignment strategy provides the whole population with

the capability to cope effectively with the existing noise in the environment.

In order to evaluate the performance of RBI in dynamic and self-referential

fitness landscapes, we have implemented the multi-robot observation scenario

from the predator/prey domain. The decision on the choice of a scenario

121

Figure 7.1: The comparison of DE, PSO, GA, SA, ACO and RBI according to
the evaluation strategy presented in Sec. 4.4. NA stands for “Not Available”,
while the symbols “+” and “-” indicate the higher and the lower performance,
respectively.

from the predator/prey domain was based on fact that scenarios from this

domain present a generic model/abstraction for many multi-agent systems

(MAS), and especially for robotic MAS, since they involve agents, which move

around in an environment and interact with each other in order to collectively

accomplish a given task. In this context, we have compared RBI to DE,

PSO, GA and SA. As comparison criteria, we have used the convergence speed

and the quality of solutions obtained by the algorithms. Our experiments

have shown that RBI can successfully provide (1) a consistent exploration of

the fitness landscape over the whole optimisation process that is required to

track the moving optimum, and (2) a clear distinction between the exploring

and exploiting individuals to minimise the time required to determine the

new optimum after the form of the fitness landscape has changed. In this

context, RBI has outperformed all its competitors, and found highest quality

of solutions in the shortest time. Furthermore, we have presented in Sec. 6.3

122

a framework based on the state space modelling of the system behaviour to

provide a quantified notion of robustness. There, we have investigated the

level of robustness achieved by RBI, DE, PSO, GA and SA in the multi-

robot observation scenario. Our experiments have shown that RBI is the most

effective optimisation algorithm within the set of investigated algorithms, and

can recover from the disturbances in a very small amount of time using its

highly efficient exploration/exploitation scheme providing the highest level of

robustness (see Chapter. 6).

We have investigated the performance of RBI in search spaces defined over

discrete variables using different instances of the well-known Traveling Sales-

man Problem (TSP). In this context, we have compared RBI to SA, GA and

ACO. The experiments have shown that RBI and ACO outperform GA and

SA, while the results obtained by ACO are slightly better than the ones ob-

tained by RBI. Furthermore, ACO has found its solutions in a smaller amount

of time in comparison to other algorithms so that it has the highest conver-

gence speed within the set of the investigated algorithms. At this point, it

is important to mention that there are two main restrictions on the set of

problems that can be optimised with ACO. The first restriction is that ACO

can only be used to solve problems, which have a graph representation, since

it is particularly developed to find the shortest path in a given graph using

the environment as a communication medium (stigmergy). On the other hand,

RBI is applicable to all kind of discrete and continuous optimisation problems.

The second restriction arises in case of optimisation in self-referential fitness

landscapes. There, ACO would face difficulties in terms of convergence, since

the ants need to increase the pheromone density on the shortest path in order

to converge, and this “shortest path” changes continuously in a self-referential

fitness landscape based on the exploration and exploitation behaviour of the

ants. In contrast, RBI follows another optimisation pattern, which guarantees

the convergence of solutions, where the agents find a (possibly suboptimal)

solution at the beginning of the optimisation and improve this solution step

by step in the course of the optimisation. Although ACO outperforms RBI,

we have shown that the dynamic role assignment strategy of RBI can success-

fully be applied to problems defined over discrete variables. Thus, our results

123

provides a valuable reference for the further improvement of RBI for discrete

search spaces.

Overall, our experiments have shown that RBI is a fast optimisation algo-

rithm that produces high quality solutions for problems defined over continu-

ous and discrete variables. One further advantage of RBI is the time required

to configure RBI for a specific problem (or class of problems). Since RBI uses

a small number of parameters (see Sec. 4.2), it can be quickly configured

for the considered set of problems, which is a particular challenge for other

optimisation algorithms like PSO (see Sec. 3.3.2).

7.2 Future Research Opportunities

Based on the presented experimental results, the main future research oppor-

tunity arises towards the parallelisation of RBI. In this context, the parallel

version of RBI can be investigated in order to reduce the optimisation time

for solving large-scale problems. Generally, population-based optimisation al-

gorithms are suitable candidates for an efficient parallelisation, where the in-

dividuals (or agents) of a particular algorithm can run on different processors

of a PC-cluster [147, 148]. This opens new possibilities for determining the

adequate balance between the exploiting and exploring individuals to speed up

the optimisation process and to improve the solution quality. In the following,

we discuss some of these possibilities in more detail.

Partitioning of the Search Space

In this thesis, we have investigated a single population of RBI agents that

try to determine the optimum in a single search space. In order to increase the

performance of the algorithms, it is possible to partition the search space into

distinct sectors and implement multiple populations of RBI agents, where each

of them optimises in a particular sector of the search space. Here, the pop-

ulations can communicate with each other in order to exchange information

about the solutions they have found in their corresponding sectors, and try

to collectively determine the global optimum. In this context, we can make

124

use of a parallel computer architecture to implement each population on a

different processor (or group of processors) and to realise the communication

(1) between the agents inside of each population and, (2) between the popula-

tions. Here, different problems may arise regarding the local synchronisation

between the agents of a population and the global synchronisation between

the populations. Thus, these problems should be solved first to exploit the

advantage of the use of multiple populations.

Using Hybrid Algorithms

On parallel computer architectures, it is also possible to combine different

algorithms in order to solve large-scale optimisation problems [149]. Basi-

cally, population-based optimisation algorithms, such as RBI and EA, have

good exploration capabilities, while the local search (LS) algorithms, such

as Stochastic Hill Climbing, are good candidates to refine the best solutions

found so far. In this context, it is possible to make use of a parallel computer

architecture in order to combine RBI with a particular LS algorithm. Here,

RBI can be used to quickly identify the promising areas in the search space

facilitating a coarse-grained optimisation, while an adequate LS algorithm can

be used concurrently to refine the best solutions found so far facilitating a

fine-grained optimisation.

In this thesis, we have achieved to answer only a few questions that arose

regarding the optimisation in OC systems. Thus, the two research opportu-

nities presented above do not cover all possible issues, which can be investi-

gated in the future. Rather, they only show the direction for future work,

which includes the ideas presented in this dissertation. The use of multiple

populations and hybrid algorithms raises some new questions regarding the

cooperation and coordination of different entities (i.e., individuals, popula-

tions etc.), which requires the consideration of different research areas such as

Organic Computing, Multi-Agent Systems, Parallel Computing and numerical

optimisation at the same time.

Bibliography

[1] Shu-Heng Chen, Evolutionary Computation in Economics and Finance,

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[2] Mitchell Potter and Kenneth De Jong, “A cooperative coevolutionary

approach to function optimization,” in Parallel Problem Solving from

Nature - PPSN III, Yuval Davidor, Hans-Paul Schwefel, and Reinhard

Männer, Eds., vol. 866 of Lecture Notes in Computer Science, pp. 249–

257. Springer Berlin / Heidelberg, 1994.

[3] Hongmei Yan, Yingtao Jiang, Jun Zheng, Chenglin Peng, and Shouzhong

Xiao, “Discovering critical diagnostic features for heart diseases with a

hybrid genetic algorithm.,” in METMBS’03, 2003, pp. 406–409.

[4] R. L. Johnston, Applications of Evolutionary Computation in Chemistry,

Springer, Berlin, Germany, 2004.

[5] Charles Darwin, On the origin of species, New York :D. Appleton and

Co.,, 1871, http://www.biodiversitylibrary.org/bibliography/28875.

[6] Thomas Weise, Global Optimization Algorithms – Theory and Applica-

tion, it-weise.de (self-published): Germany, 2009.

[7] Organic Computing, “Website,” http://en.wikipedia.org/wiki/

Organic_computing.

[8] Christian Muller-Schloer, “Organic computing - on the feasibility of con-

trolled emergence,” in CODES+ISSS ’04: Proceedings of the interna-

tional conference on Hardware/Software Codesign and System Synthesis,

Washington, DC, USA, 2004, pp. 2–5, IEEE Computer Society.

125

126

[9] Hartmut Schmeck, “Organic computing - a new vision for distributed

embedded systems,” in ISORC ’05: Proc. of the Eighth IEEE Interna-

tional Symposium on Object-Oriented Real-Time Distributed Computing,

Washington, DC, USA, 2005, pp. 201–203, IEEE Computer Society.

[10] Hartmut Schmeck, Christian Müller-Schloer, Emre Cakar, Moez Mnif,

and Urban Richter, “Adaptivity and self-organization in organic comput-

ing systems,” ACM Transactions on Autonomous and Adaptive Systems,

vol. 5, pp. 10:1–10:32, September 2010.

[11] Sven Tomforde, Holger Prothmann, Jürgen Branke, Jörg Hähner, Moez

Mnif, Christian Müller-Schloer, Urban Richter, and Hartmut Schmeck,

“Observation and control of organic systems,” in Organic Computing -

A Paradigm Shift for Complex Systems, Christian Müller-Schloer, Hart-

mut Schmeck, and Theo Ungerer, Eds., incollection 4.1, pp. 325–338.

Birkhäuser, Juni 2011.

[12] Fabian Rochner, Holger Prothmann, Jürgen Branke, Christian Müller-

Schloer, and Hartmut Schmeck, “An organic architecture for traffic light

controllers,” in Informatik 2006 – Informatik für Menschen, Christian

Hochberger and Rüdiger Liskowsky, Eds. Oktober 2006, vol. P-93 of

Lecture Notes in Informatics (LNI), pp. 120–127, Köllen Verlag.

[13] Stewart W. Wilson, “Generalization in the XCS classifier system,” Ge-

netic Programming 1998: Proceedings of the Third Annual Conference,

pp. 665–674, 1998.

[14] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by

simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[15] T. Back, U. Hammel, and H. P. Schwefel, “Evolutionary computation:

comments on the history and current state,” Evolutionary Computation,

IEEE Transactions on, vol. 1, no. 1, pp. 3–17, April 1997.

[16] Sewall Wright, “The roles of mutation, inbreeding, crossbreeding, and

selection in evolution,” Proceedings of the Sixth International Congress

on Genetics, 1932.

127

[17] S. Gavrilets, “Fitness landscapes and the origin of species,” Austral

Ecology, vol. 30, no. 5, pp. 610–611, 2004.

[18] Zbigniew Michalewicz and David B. Fogel, How to Solve It: Modern

Heuristics, Springer, December 2004.

[19] Colin R. Reeves, “Fitness landscapes and evolutionary algorithms,” in

AE ’99: Selected Papers from the 4th European Conference on Artificial

Evolution, London, UK, 2000, pp. 3–20, Springer-Verlag.

[20] Stephen D. Turner, Marylyn D. Ritchie, and William S. Bush, “Conquer-

ing the needle-in-a-haystack: How correlated input variables beneficially

alter the fitness landscape for neural networks,” in EvoBIO ’09: Pro-

ceedings of the 7th European Conference on Evolutionary Computation,

Machine Learning and Data Mining in Bioinformatics, 2009, pp. 80–91.

[21] Jurgen Branke, Evolutionary Optimization in Dynamic Environments,

Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[22] Jeffrey Horn and David E. Goldberg, “Genetic algorithm difficulty and

the modality of fitness landscapes,” in Foundations of Genetic Algo-

rithms 3. 1994, pp. 243–269, Morgan Kaufmann.

[23] Jakob S. Vesterstrøm and René Thomsen, “A comparative study of

differential evolution, particle swarm optimization, and evolutionary al-

gorithms on numerical benchmark problems.,” in Proceedings of the 2004

Congress on Evolutionary Computation, 2004, vol. 2, pp. 1980–1987.

[24] Holger Prothmann, Fabian Rochner, Sven Tomforde, Jürgen Branke,

Christian Müller-Schloer, and Hartmut Schmeck, “Organic control of

traffic lights,” in Proceedings of the 5th International Conference on

Autonomic and Trusted Computing (ATC-08). Juni 2008, vol. 5060 of

LNCS, pp. 219–233, Springer.

[25] Emre Cakar and Christian Müller-Schloer, “Self-organising interaction

patterns of homogeneous and heterogeneous multiagent populations,” in

128

Proceedings of the 3rd IEEE International Conference on Self-Adaptive

and Self-Organizing Systems, 2009, pp. 165–174.

[26] Emre Cakar, Sven Tomforde, and Christian Müller-Schloer, “A role-

based imitation algorithm for the optimisation in dynamic fitness land-

scapes,” in IEEE Swarm Intelligence Symposium, 2011. SIS 2011, Paris,

France, 2011, pp. 139–146.

[27] Emre Cakar, Nugroho Fredivianus, Jörg Hähner, Jürgen Branke, Chris-

tian Müller-Schloer, and Hartmut Schmeck, “Aspects of learning in oc

systems,” in Organic Computing - A Paradigm Shift for Complex Sys-

tems, Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer,

Eds., incollection 3.1, pp. 237–251. Birkhäuser, Juni 2011.

[28] D. Challet and Y Zhang, “Emergence of cooperation and organization

in an evolutionary game,” Physica A, vol. 226, pp. 407–418, 1997.

[29] Arlindo Silva, Ana Neves, and Ernesto Costa, “An empirical compar-

ison of particle swarm and predator prey optimisation,” in AICS ’02:

Proceedings of the 13th Irish International Conference on Artificial Intel-

ligence and Cognitive Science, London, UK, 2002, pp. 103–110, Springer-

Verlag.

[30] Marco Dorigo and Thomas Stützle, Ant Colony Optimization, Bradford

Company, Scituate, MA, USA, 2004.

[31] R. Takahashi, “Solving the traveling salesman problem through genetic

algorithms with changing crossover operators,” in Machine Learning

and Applications, 2005. Proceedings. Fourth International Conference

on, December 2005, p. 6 pp.

[32] Christian Höhn and Colin Reeves, “The crossover landscape for the one-

max problem,” in Proceedings of the 2nd Nordic Workshop on Genetic

Algorithms, 1996, pp. 27–43.

[33] Sven Tomforde, Holger Prothmann, Fabian Rochner, Jürgen Branke,

Jörg Hähner, Christian Müller-Schloer, and Hartmut Schmeck, “De-

129

centralised progressive signal systems for organic traffic control,” in

Proceedings of the 2nd IEEE International Conference on Self-Adaption

and Self-Organization (SASO 2008), Sven Brueckner, Paul Robertson,

and Umesh Bellur, Eds. Oktober 2008, pp. 413–422, IEEE.

[34] Kalyanmoy Deb, J. Sundar, Udaya Bhaskara Rao N, and Shamik Chaud-

huri, “Reference point based multi-objective optimization using evolu-

tionary algorithms,” in International Journal of Computational Intelli-

gence Research. 2006, pp. 635–642, Springer-Verlag.

[35] C. A. C. Coello, “An updated survey of evolutionary multiobjective

optimization techniques: state of the art and future trends,” in Evolu-

tionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress

on, 1999, vol. 1, pp. 3 vol. (xxxvii+2348).

[36] Michael Woolridge and Michael J. Wooldridge, Introduction to Multia-

gent Systems, John Wiley & Sons, Inc., New York, NY, USA, 2009.

[37] Kurt Konolige, Charles Ortiz, Regis Vincent, Andrew Agno, Michael

Eriksen, Benson Limketkai, Mark Lewis, Linda Briesemeister, Enrique

Ruspini, Dieter Fox an Jonathan Ko, Benjamin Stewart, and Leonidas

Guibas, “CentiBOTS: Large scale robot teams,” in In AAMAS, 2003.

[38] Roderich Groß, Michael Bonani, Francesco Mondada, , and Marco

Dorigo, “Autonomous self-assembly in a swarm-bot,” in Proceed-

ings of the 3rd International Symposium on Autonomous Minirobots for

Research and Edutainment (AMiRE 2005), Kazuyuki Murase, Kosuke

Sekiyama, Naoyuki Kubota, Tomohide Naniwa, and Joaquin Sitte, Eds.

2006, pp. 314–322, Springer.

[39] Nadir Khessal, “Towards a distributed multi-agent system for a robotic

soccer team,” in RoboCup-99: Robot Soccer World Cup III, Manuela

Veloso, Enrico Pagello, and Hiroaki Kitano, Eds., vol. 1856 of Lecture

Notes in Computer Science, pp. 357–365. Springer Berlin / Heidelberg,

2000.

130

[40] Hartmut Schmeck and Christian Müller-Schloer, “A characterization of

key properties of environment-mediated multiagent systems,” in En-

gineering Environment-Mediated Multi-Agent Systems: Int. Workshop,

EEMMAS 2007. Selected Revised and Invited Papers, 2008, pp. 17–38.

[41] Li Gao, Shangping Dai, Shijue Zheng, and Guanxiang Yan, “Using

genetic algorithm for data mining optimization in an image database,”

in Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth

International Conference on, August 2007, vol. 3, pp. 721 –723.

[42] Eugene Lawler, The Traveling Salesman Problem: A Guided Tour of

Combinatorial Optimization, Wiley, New York, 1985.

[43] Michael Wetter and Jonathan Wright, “Comparison of a generalized pat-

tern search and a genetic algorithm optimization method,” in Proc. 8 th

International Building Performance Simulation Association Conference

vol III, 2003, pp. 1401–1408.

[44] R.C Eberhart and J. Kennedy, “Particle swarm optimization,” in Pro-

ceedings of IEEE International Conference on Neural Networks, 1995,

vol. 4, pp. 1942–1948.

[45] Fred Glover, “Tabu search - part i,” ORSA Journal on Computing, vol.

1, no. 3, pp. 190–206, 1989.

[46] Fred Glover, “Tabu search - part ii,” ORSA Journal on Computing, vol.

2, no. 1, pp. 4–32, 1989.

[47] Felix Dobslaw, “A parameter tuning framework for metaheuristics based

on design of experiments and artificial neural networks,” in Proceeding

of the International Conference on Computer Mathematics and Natural

Computing 2010. 2010, WASET.

[48] F. T. Lin, C. Y. Kao, and C. C. Hsu, “Applying the genetic approach to

simulated annealing in solving some np-hard problems,” IEEE Transac-

tions on Systems, Man, and Cybernetics, vol. 23, pp. 1752–1767, 1994.

131

[49] Zbigniew J. Czech and Piotr Czarnas, “Parallel simulated annealing for

the vehicle routing problem with time windows,” Parallel, Distributed,

and Network-Based Processing, Euromicro Conference on, vol. 0, pp.

0376, 2002.

[50] Ihor O. Bohachevsky, Mark E. Johnson, and Myron L. Stein, “Gener-

alized simulated annealing for function optimization,” Technometrics,

vol. 28, no. 3, pp. pp. 209–217, 1986.

[51] William L. Goffe, Gary D. Ferrier, and John Rogers, “Global opti-

mization of statistical functions with simulated annealing,” Journal of

Econometrics, vol. 60, pp. 65–99, 1994.

[52] H. Martinez-Alfaro and D.R. Flugrad, “Collision-free path planning

for mobile robots and/or agvs using simulated annealing,” in Systems,

Man, and Cybernetics, 1994. ’Humans, Information and Technology’.,

1994 IEEE International Conference on, Oct. 1994, vol. 1, pp. 270 –275

vol.1.

[53] Alejandro Quintero and Samuel Pierre, “Assigning cells to switches in

cellular mobile networks: a comparative study,” Computer Communi-

cations, vol. 26, no. 9, pp. 950 – 960, 2003.

[54] E. Sundermann and I. Lemahieu, “Pet image reconstruction using sim-

ulated annealing,” in Medical Imaging 1995: Image Processing, SPIE

Proceedings vol. 2434, M.H. Loew, Ed., San Diego, California, 1995, pp.

378–386, SPIE.

[55] Maqsood Yaqub, Ronald Boellaard, Marc A Kropholler, and Adriaan A

Lammertsma, “Optimization algorithms and weighting factors for anal-

ysis of dynamic pet studies,” Physics in Medicine and Biology, vol. 51,

no. 17, pp. 4217, 2006.

[56] Peter A. N. Bosman and Dirk Thierens, “Multi-objective optimization

with diversity preserving mixture-based iterated density estimation evo-

lutionary algorithms,” International Journal of Approximate Reasoning,

vol. 31, no. 3, pp. 259 – 289, 2002.

132

[57] E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic pro-

gramming: an analysis of measures and correlation with fitness,” Evolu-

tionary Computation, IEEE Transactions on, vol. 8, no. 1, pp. 47 – 62,

February 2004.

[58] Markus Brameier and Wolfgang Banzhaf, “Explicit control of diver-

sity and effective variation distance in linear genetic programming,” in

Proceedings of the 5th European Conference on Genetic Programming,

London, UK, 2002, EuroGP ’02, pp. 37–49, Springer-Verlag.

[59] Daniel N. Wilke, Schalk Kok, and Albert A. Groenwold, “Comparison of

linear and classical velocity update rules in particle swarm optimization:

notes on diversity,” International Journal for Numerical Methods in

Engineering, vol. 70, no. 8, pp. 962 – 984, May 2007.

[60] Thomas Back, David B. Fogel, and Zbigniew Michalewicz, Eds., Hand-

book of Evolutionary Computation, IOP Publishing Ltd., Bristol, UK,

UK, 1st edition, 1997.

[61] Mitchell A. Potter and Kenneth A. De Jong, “A cooperative coevolution-

ary approach to function optimization,” in Proceedings of the Interna-

tional Conference on Evolutionary Computation. The Third Conference

on Parallel Problem Solving from Nature: Parallel Problem Solving from

Nature, London, UK, 1994, PPSN III, pp. 249–257, Springer-Verlag.

[62] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and

multiple constraint handling with evolutionary algorithms. i. a unified

formulation,” Systems, Man and Cybernetics, Part A: Systems and Hu-

mans, IEEE Transactions on, vol. 28, no. 1, pp. 26 –37, Jan. 1998.

[63] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and

multiple constraint handling with evolutionary algorithms. ii. applica-

tion example,” Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, vol. 28, no. 1, pp. 38 –47, Jan. 1998.

133

[64] Ashish Ghosh and Lakhmi C. Jain, Eds., Evolutionary computation in

data mining, Number 163 in Studies in fuzziness and soft computing.

Springer, Berlin [u.a.], 2005.

[65] Claudio Rossi Dept, Claudio Rossi, Elena Marchiori, and Joost N. Kok,

“An adaptive evolutionary algorithm for the satisfiability problem,” Evo-

lutionary Computation, vol. 10, pp. 35–50, 2000.

[66] Pablo Cortés, Luis Onieva, Jesús Muáuzuri, and Jose Guadix, “A revi-

sion of evolutionary computation techniques in telecommunications and

an application for the network global planning problem,” in Success in

Evolutionary Computation, Ang Yang, Yin Shan, and Lam Bui, Eds.,

vol. 92 of Studies in Computational Intelligence, pp. 239–262. Springer

Berlin / Heidelberg, 2008.

[67] James E. Baker, “Reducing bias and inefficiency in the selection algo-

rithm,” in Proceedings of the Second International Conference on Ge-

netic Algorithms on Genetic algorithms and their application, Hillsdale,

NJ, USA, 1987, pp. 14–21, L. Erlbaum Associates Inc.

[68] Tobias Blickle and Lothar Thiele, “A comparison of selection schemes

used in genetic algorithms,” Tech. Rep., Gloriastrasse 35, CH-8092

Zurich: Swiss Federal Institute of Technology (ETH) Zurich, Computer

Engineering and Communications Networks Lab (TIK, 1995.

[69] Tobias Blickle and Lothar Thiele, “A comparison of selection schemes

used in evolutionary algorithms,” Evol. Comput., vol. 4, pp. 361–394,

December 1996.

[70] Jinghui Zhong, Xiaomin Hu, Min Gu, and Jun Zhang, “Comparison

of performance between different selection strategies on simple genetic

algorithms,” in Computational Intelligence for Modelling, Control and

Automation, 2005 and International Conference on Intelligent Agents,

Web Technologies and Internet Commerce, International Conference on,

November 2005, vol. 2, pp. 1115 –1121.

134

[71] David E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1st edition, 1989.

[72] Melanie Mitchell, An introduction to genetic algorithms, MIT Press,

Cambridge, MA, USA, 1996.

[73] S. Sumathi, T. Hamsapriya, and P. Surekha, Evolutionary Intelligence:

An Introduction to Theory and Applications with Matlab, Springer Pub-

lishing Company, Incorporated, 1st edition, 2008.

[74] Ling Qing, Wu Gang, Yang Zaiyue, and Wang Qiuping, “Crowding clus-

tering genetic algorithm for multimodal function optimization,” Appl.

Soft Comput., vol. 8, pp. 88–95, January 2008.

[75] David Levine, “Application of a hybrid genetic algorithm to airline crew

scheduling,” Comput. Oper. Res., vol. 23, pp. 547–558, June 1996.

[76] K.Q. Zhu, “A diversity-controlling adaptive genetic algorithm for the

vehicle routing problem with time windows,” in Tools with Artificial

Intelligence, 2003. Proceedings. 15th IEEE International Conference on,

November 2003, pp. 176 – 183.

[77] Ali Kamrani, Wang Rong, and Ricardo Gonzalez, “A genetic algorithm

methodology for data mining and intelligent knowledge acquisition,”

Comput. Ind. Eng., vol. 40, pp. 361–377, September 2001.

[78] Rafal Smigrodzki, Ben Goertzel, Cassio Pennachin, Lucio Coelho, Fran-

cisco Prosdocimi, and Jr. W. Davis Parker, “Genetic algorithm for anal-

ysis of mutations in parkinson’s disease,” Artif. Intell. Med., vol. 35, pp.

227–241, November 2005.

[79] Lawrence Jerome Fogel, On the organization of intellect, Ph.D. thesis,

UCLA University of California, Los Angeles, California, USA, 1964.

[80] D.B. Fogel, “Applying evolutionary programming to selected control

problems,” Computers & Mathematics with Applications, vol. 27, no.

11, pp. 89 – 104, 1994.

135

[81] David B. Fogel, System Identification through Simulated Evolution: A

Machine Learning Approach to Modeling, Ginn Press, 1991.

[82] David B. Fogel, “Evolving a checkers player without relying on human

experience,” Intelligence, vol. 11, pp. 20–27, June 2000.

[83] D.B. Fogel, “Applying evolutionary programming to selected control

problems traveling salesman problems,” Cybernetics and Systems: An

International Journal, vol. 24, no. 1, pp. 27 – 36, 1993.

[84] Rainer Storn and Kenneth Price, “Differential evolution – a simple and

efficient heuristic for global optimization over continuous spaces,” J. of

Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[85] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a

practical approach to global optimization, Springer, 2005.

[86] Rainer Storn, “On the usage of differential evolution for function op-

timization,” in Fuzzy Information Processing Society, 1996. NAFIPS.

1996 Biennial Conference of the North American, June 1996, pp. 519–

523.

[87] Rainer Storn, Designing digital filters with differential evolution, pp.

109–126, McGraw-Hill Ltd., UK, Maidenhead, UK, England, 1999.

[88] Feng-Sheng Wang and Horng-Jhy Jang, “Parameter estimation of a

bioreaction model by hybrid differential evolution,” in Evolutionary

Computation, 2000. Proceedings of the 2000 Congress on, 2000, vol. 1,

pp. 410 –417 vol.1.

[89] René Thomsen, “Flexible ligand docking using differential evolution,”

in Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on,

December 2003, vol. 4, pp. 2354–2361.

[90] R.K. Ursem and P. Vadstrup, “Parameter identification of induction

motors using differential evolution,” in Evolutionary Computation, 2003.

CEC ’03. The 2003 Congress on, December 2003, vol. 2, pp. 790–796.

136

[91] Moez Mnif and Christian Müller-Schloer, “Quantitative emergence,” in

IEEE Mountain Workshop on Adaptive and Learning Systems (IEEE

SMCals 2006), July 2006.

[92] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, From Natural to

Artificial Swarm Intelligence, Oxford University Press, 1999.

[93] Steven A. Curtis, Walter F. Truszkowski, Michael L. Rilee, and

Pamela E. Clark, “Ants for human exploration and development of

space,” in Proc. of IEEE Aerospace Conf., 2003, vol. 1, pp. 1–261.

[94] Michael G. Hinchey and Roy Sterritt, “99% (biological) inspiration...,”

in Proc. of the 1st IFIP Int. Conf. on Biologically Inspired Cooperative

Computing. 2006, vol. 216 of IFIP Int. Federation for Information Pro-

cessing, Springer.

[95] Roderich Groß, Michael Bonani, Francesco Mondada, and Marco Dorigo,

“Autonomous self-assembly in swarm-bots,” IEEE Transactions on

Robotics, vol. 22, no. 6, pp. 1115–1130, 2006.

[96] Roderich Groß, Marco Dorigo, and Masaki Yamakita, “Self-assembly

of mobile robots – From swarm-bot to super-mechano colony,” in Pro-

ceedings of the 9th International Conference on Intelligent Autonomous

Systems. 2006, pp. 487–496, IOS Press.

[97] Nikolaus Correll and Alcherio Martinoli, “Collective inspection of regular

structures using a swarm of miniature robots,” in Proc. of the 9th Int.

Symp. on Experimental Robotics, 2006, vol. 21 of Springer Tracts in

Advanced Robotics, pp. 375–385.

[98] Nikolaus Correll and Alcherio Martinoli, “Modeling and optimization of

a swarm-intelligent inspection system,” in Proceedings of 7th Interna-

tional Symposium on Distributed Autonomous Robotic Systems (DARS

2004), 2004, Distributed Autonomous Robotic Systems, Springer Verlag,

pp. 369–378.

137

[99] Srinivas Pasupuleti and Roberto Battiti, “The gregarious particle swarm

optimizer (g-pso),” in GECCO ’06: Proceedings of the 8th annual con-

ference on Genetic and evolutionary computation, New York, NY, USA,

2006, pp. 67–74, ACM.

[100] Xin-She Yang, “Firefly algorithms for multimodal optimization,” in

Stochastic Algorithms: Foundations and Applications, Osamu Watanabe

and Thomas Zeugmann, Eds., vol. 5792 of Lecture Notes in Computer

Science, pp. 169–178. Springer Berlin / Heidelberg, 2009.

[101] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi,

“The bees algorithm, a novel tool for complex optimisation problems,” in

In Proceedings of the 2nd International Virtual Conference on Intelligent

Production Machines and Systems (IPROMS 2006), 2006.

[102] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in Micro Machine and Human Science, 1995. MHS ’95., Pro-

ceedings of the Sixth International Symposium on, Oct. 1995, pp. 39 –43.

[103] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constric-

tion factors in particle swarm optimization,” in Proceedings of the 2000

Congress on Evolutionary Computation, 2000, vol. 1, pp. 84 –88 vol.1.

[104] M. Clerc, “The swarm and the queen: towards a deterministic and

adaptive particle swarm optimization,” in Evolutionary Computation,

1999. CEC 99. Proceedings of the 1999 Congress on, 1999, vol. 3, pp. 3

vol. (xxxvii+2348).

[105] Anthony Carlisle and Gerry Dozier, “An off-the-shelf pso,” in Pro-

ceedings of the Particle Swarm Optimization Workshop, April 2001, pp.

1–6.

[106] Zhi-Hui Zhan, Jun Zhang, Yun Li, and Henry Shu-Hung Chung, “Adap-

tive particle swarm optimization,” Trans. Sys. Man Cyber. Part B, vol.

39, no. 6, pp. 1362–1381, 2009.

138

[107] Yuelin Gao and Yuhong Duan, “An adaptive particle swarm optimiza-

tion algorithm with new random inertia weight,” in Advanced Intelligent

Computing Theories and Applications. With Aspects of Contemporary

Intelligent Computing Techniques, De-Shuang Huang, Laurent Heutte,

and Marco Loog, Eds., vol. 2 of Communications in Computer and In-

formation Science, pp. 342–350. Springer Berlin Heidelberg, 2007.

[108] Yuelin Gao and Zihui Ren, “Adaptive particle swarm optimization algo-

rithm with genetic mutation operation,” in Natural Computation, 2007.

ICNC 2007. Third International Conference on, August 2007, vol. 2, pp.

211 –215.

[109] Michael Meissner, Michael Schmuker, and Gisbert Schneider, “Opti-

mized particle swarm optimization (opso) and its application to artificial

neural network training,” BMC Bioinformatics, vol. 7, no. 1, pp. 125,

2006.

[110] Thomas Kiel Rasmussen and Thiemo Krink, “Improved hidden markov

model training for multiple sequence alignment by a particle swarm

optimization–evolutionary algorithm hybrid,” Biosystems, vol. 72, no.

1–2, pp. 5–17, 2003, Computational Intelligence in Bioinformatics.

[111] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to global

optimization problems through particle swarm optimization,” Natural

Computing, vol. 1, pp. 235–306, 2002, 10.1023/A:1016568309421.

[112] Tao Li, Chengjian Wei, and Wenjang Pei, “Pso with sharing for multi-

modal function optimization,” in Neural Networks and Signal Process-

ing, 2003. Proceedings of the 2003 International Conference on, Decem-

ber 2003, vol. 1, pp. 450 – 453 Vol.1.

[113] Changhe Li and Shengxiang Yang, “An adaptive learning particle swarm

optimizer for function optimization,” in Evolutionary Computation,

2009. CEC ’09. IEEE Congress on, May 2009, pp. 381 –388.

[114] Walter Cedeño and Dimitris K. Agrafiotis, “Using particle swarms for

the development of qsar models based on k-nearest neighbor and kernel

139

regression,” Journal of Computer-Aided Molecular Design, vol. 17, no.

2-4, pp. 255–263, 2003.

[115] J. Nenortaite and R. Butleris, “Application of particle swarm optimiza-

tion algorithm to decision making model incorporating cluster analysis,”

in Human System Interactions, 2008 Conf. on, May 2008, pp. 88 –93.

[116] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni, “The ant system:

Optimization by a colony of cooperating agents,” IEEE Transactions on

Systems, Man, and Cybernetics-Part B, vol. 26, pp. 29–41, 1996.

[117] Ajith Abraham, Crina Grosan, and Vitorino Ramos, Stigmergic Opti-

mization (Studies in Computational Intelligence), Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2006.

[118] L. M. Gambardella and M. Dorigo, “Solving symmetric and asymmetric

tsps by ant colonies,” in Evolutionary Computation, 1996., Proceedings

of IEEE International Conference on, May 1996, pp. 622 –627.

[119] L. M. Gambardella, ÉD Taillard, and M. Dorigo, “Ant colonies for the

quadratic assignment problem,” The Journal of the Operational Research

Society, vol. 50, no. 2, pp. pp. 167–176, 1999.

[120] Bernd Bullnheimer, Richard F. Hartl, and Christine Strauss, “An im-

proved ant system algorithm for the vehicle routing problem,” Annals

of Operations Research, vol. 89, pp. 319–328, 1997.

[121] Ruud Schoonderwoerd, Janet L. Bruten, Owen E. Holland, and Leon

J. M. Rothkrantz, “Ant-based load balancing in telecommunications

networks,” Adapt. Behav., vol. 5, pp. 169–207, September 1996.

[122] Kwang Mong Sim and Weng Hong Sun, “Multiple ant-colony optimiza-

tion for network routing,” in Cyber Worlds, 2002. Proceedings. First

International Symposium on, 2002, pp. 277–281.

[123] A. Forestiero, C. Mastroianni, and G. Spezzano, “Antares: an ant-

inspired p2p information system for a self-structured grid,” in Bio-

140

Inspired Models of Network, Information and Computing Systems, 2007.

Bionetics 2007. 2nd, December 2007, pp. 151–158.

[124] Kwang Mong Sim and Weng Hong Sun, “Ant colony optimization for

routing and load-balancing: survey and new directions,” Systems, Man

and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,

vol. 33, no. 5, pp. 560–572, September 2003.

[125] K. Ravikumar and A. Gnanabaskaran, “Aco based spatial data mining

for traffic risk analysis,” in Innovative Computing Technologies (ICICT),

2010 International Conference on, February 2010, pp. 1–6.

[126] Lilia Rejeb, Zahia Guessoum, and Rym M’Hallah, “The exploration-

exploitation dilemma for adaptive agents,” in Proceedings of the Fifth

European Workshop on Adaptive Agents and Multi-Agent Systems, 2005.

[127] D. E. Goldberg and R. Lingle, “Alleles, loci and the traveling salesman

problem,” in International Conference on Genetic Algorithms and Their

Applications, 1985, pp. 154–159.

[128] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation

crossover operators on the traveling salesman problem,” in Proceedings of

the Second International Conference on Genetic Algorithms on Genetic

algorithms and their application, Hillsdale, NJ, USA, 1987, pp. 224–230,

L. Erlbaum Associates Inc.

[129] Jean-Yves Potvin, “Genetic algorithms for the traveling salesman prob-

lem,” Annals of Operations Research, vol. 63, pp. 337–370, 1996,

10.1007/BF02125403.

[130] G. Reinelt, “The traveling salesman problem: Computational solutions

for tsp applications,” in Lecture Notes in Computer Science 840. 1994,

pp. 172–186, Springer-Verlag.

[131] Lester Ingber, “Very fast simulated reannealing,” Mathl. Comput. Mod-

elling, vol. 12, pp. 967–973, 1989.

141

[132] Antonio Nebro, Juan Durillo, Carlos Coello Coello, Francisco Luna,

and Enrique Alba, “A study of convergence speed in multi-objective

metaheuristics,” in Parallel Problem Solving from Nature – PPSN X,

Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni, and Nicola

Beume, Eds., vol. 5199 of Lecture Notes in Computer Science, pp. 763–

772. Springer Berlin / Heidelberg, 2008.

[133] Sven Tomforde, Ioannis Zgeras, Jörg Hähner, and Christian Müller-

Schloer, “Adaptive control of sensor networks,” in Proceedings of the 7th

international conference on Autonomic and trusted computing, Berlin,

Heidelberg, 2010, ATC’10, pp. 77–91, Springer-Verlag.

[134] Marco Dorigo and Luca M. Gambardella, “Ant colonies for the traveling

salesman problem,” BioSystems, vol. 43, pp. 73–81, 1997.

[135] Miroslav Benda, Vasudevan Jagannathan, and Rajendra Dodhiawala,

“An optimal cooperation of knowledge sources: An empirical investiga-

tion,” Tech. Rep. BCS–G2010–28, Boeing Advanced Technology Center,

USA, July 1986.

[136] Peter Stone and Manuela Veloso, “Multi-agent systems: A survey from

a machine learning perspective,” Autonomous Robots, vol. 8, no. 3, pp.

345–383, June 2000.

[137] M.J. North, T.R. Howe, N.T. Collier, and J.R Vos, “The repast sim-

phony development environment,” in Proceedings of the Agent 2005 Con-

ference on Generative Social Processes, Models and Mechanisms, 2005.

[138] R. E. Korf, “A simple solution to pursuit games,” in In Working Papers

of the 11th Int. Workshop on Distributed Artificial Intelligence, 1992,

pp. 183–194.

[139] Duncan S. Callaway, Mark E. J. Newman, Steven H. Strogatz, and Dun-

can J. Watts, “Network robustness and fragility: Percolation on random

graphs,” Physical Review Letters, vol. 85, no. 25, pp. 5468–5471, 2000.

142

[140] Jean-Jacques E. Slotine and Weiping Li, Applied Nonlinear Control,

Prentice Hall, 1990.

[141] Genichi Taguchi, Taguchi on Robust Technology Development – Bringing

Quality Engineering Upstream, Amer Society of Mechanical, 1993.

[142] Armin Scholl, Robuste Planung und Optimierung – Grundlagen,

Konzepte und Methoden, Experimentelle Untersuchungen, Physica-

Verlag, Heidelberg, 2001.

[143] Pankaj Jalote, Fault Tolerance in Distributed Systems, Prentice Hall,

1994.

[144] Vladimir Shestak, Howard Jay Siegel, Anthony A. Maciejewski, and

Shoukat Ali, “The robustness of resource allocations in parallel and dis-

tributed computing systems,” in Proceedings of the International Con-

ference on Architecture of Computing Systems (ARCS 2006), 2006, pp.

17–30.

[145] Klaus Waldschmidt, “Robustness in soc design,” in Proceedings of the

9th EUROMICRO Conference on Digital System Design: Architectures,

Methods and Tools (DSD 2006). 2006, pp. 27–36, IEEE Computer Soci-

ety.

[146] Wilhelm Heupke, Christoph Grimm, and Klaus Waldschmidt, “A new

method for modeling and analysis of accuracy and tolerances in mixed-

signal systems,” in Proceedings of the Forum on Specification and Design

Languages (FDL 2003), 2003.

[147] Enrique Alba and Carlos Cotta, “Parallelism and evolutionary algo-

rithms,” IEEE Transactions on Evolutionary Computation, vol. 6, pp.

443–462, 2002.

[148] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, and A. D.

George, “Parallel global optimization with the particle swarm algo-

rithm,” Journal of Numerical Methods in Engineering, vol. 61, pp. 2296–

2315, 2003.

143

[149] T. Van Luong, N. Melab, and E.G. Talbi, “Parallel hybrid evolutionary

algorithms on gpu,” in Evolutionary Computation (CEC), 2010 IEEE

Congress on, july 2010, pp. 1–8.

Appendix

Further Experiments with Noisy Functions

In addition to the experiments presented in Sec. 5.1.3 we have carried out

further experiments with 30 different noisy functions provided by the “Black-

Box Optimization Benchmarking (BBOB 2010)” environment. Each function

is implemented with a moderate and severe level of noise using the Gaussian,

Cauchy and uniform distributions1. We have investigated the performance

of RBI, DE, PSO, GA and SA using 30 and 50 dimensional functions. 30

experiments, each initialised with a different random seed, are carried out and

the average best fitness values are recorded. Fig. 7.2 and in Fig. 7.3 show the

results provided by RBI, DE, PSO, GA and SA for the functions implemented

in 30 and 50 dimensions, respectively. Both results show that RBI can perform

effectively in noisy environments provided by BBOB and outperforms PSO,

DE, GA and SA. Thus, these results confirm that RBI is more suitable than

its competitors to be used for OC systems that work in noisy environments.

Please notice that the results shown in Fig. 7.2 and in Fig. 7.3 do not include

the optima for the functions. BBOB provides a compiled .dll file (i.e., a black-

box), which includes the noisy functions, so that we do not have an access to

the concrete implementation of these functions. Since the functions are for

example shifted in the given search space, it is not possible to determine the

exact optima prior to the optimisation.

1For more details on the investigated functions and the corresponding noise
models please refer to http://coco.lri.fr/BBOB-downloads/download10.2/
bbobdocnoisyfunctionsdef.pdf

144

145

Figure 7.2: The averaged best fitness values obtained by RBI, DE, PSO, EA
and SA for the functions with 30 dimensions. Best solutions are shown in grey.

146

Figure 7.3: The averaged best fitness values obtained by RBI, DE, PSO, EA
and SA for the functions with 50 dimensions. Best solutions are shown in grey.

147

Lebenslauf

Name: Emre Cakar

Geburtsdatum: 24.05.1979

Geburtsort: Gaziantep, Türkei

Staatsangehörigkeit: türkisch

Schulausbildung: 1990 – 1997 Deutsch-Türkisches Gymnasium Cagaloglu,

Istanbul, Türkei

Abschluss: Allgemeine Hochschulreife

Studium: 1997 – 2002 Informatikstudium an der Fakultät für Inge-

nieurwissenschaften der Universität Istanbul, Türkei

Abschluss: Diplom Informatiker

Masterstudium: 2003 – 2006 Masterstudium an der Fakultät für Elek-

trotechnik und Informatik der Universität Hannover

Abschluss: M.Sc.-Inf.

Berufstätigkeit: 2006 – 2011 wissenschaftlicher Mitarbeiter am Institut für

Systems Enginnering, Fachgebiet System und Rechnerar-

chitektur an der Leibniz Universität Hannover

