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Abstract

An intriguing application in the electrostatic separation process of the salt minerals in
the industry is that different compounds can be distinguished by certain molecules when
operated in an inhomogeneous electrical field. This effect is understood by the charge
transfer model, in which the occupied and unoccupied states introduced by the molecular
adsorbates play a central role. A precise control of the efficiency of the separation process
requires not only the accurate knowledge of the organic molecules and the host insulator,
but also the microscopic picture of the molecule-insulator interaction.

Although the properties of the conditioner molecules (such as benzoic acid and its
phenolic derivatives) and the rock salt are well-known, the detailed mechanism of the
interaction between the organic molecules and the insulating surface is yet absent. The
interaction at the interface becomes more complicated when various defects are present
at the surface. These defects are subject to have enormous impact on the adsorption
configuration and the electronic structure of the adsorbate system.

This thesis investigates the adsorption of benzoic acid and its various phenolic deriva-
tives on wide-gap insulators (e.g. NaCl and KCl surfaces) from first-principles, in an
effort to demystify the contact charging effect between certain minerals mixed with or-
ganic molecules. While Kohn-Sham density functional theory (KS-DFT) becomes a de

facto standard for the prediction of ground-state properties, it is far from being perfect
because the standard semilocal density functional approximations suffer from several
limitations, such as the notorious gap problem and the neglect of the prevalent long-
range van der Waals interaction in the weakly bonded systems. Moreover, the problem
of electronic excitations are beyond the scope of KS-DFT. In this work, a variety of ab

initio methods are adopted at the respective level of theory, from KS-DFT (with hybrid
functionals and dispersion force corrections) to Hedin’s GW approximation and ulti-
mately the Bethe-Salpeter equation (BSE) to include the excitonic effect in electronic
excitations.

The results reveal a complex interplay between the short-range and long-range inter-
actions upon the adsorption of organic molecules on wide-gap insulator surfaces. The
frontier molecular orbitals of the adsorbates exhibit shifts and broadenings as a result of
rehybridizations. The adsorbate is stabilized by the short-range ionic interaction and the
long-range van der Waals contribution, whereas the adsorption configuration is largely
dominated by the covalent interaction. Charge transfer between the molecule and the
surface is negligible on ideal surfaces. In the presence of surface color centers, the binding
energy is substantially enhanced due to the charge transfer of the unpaired electron from
the surface vacancy to the adsorbate. By engineering the polarity of the surface steps,
it is demonstrated that the fundamental gap of the adsorbate system can be effectively
reduced. Moreover, the dynamic polarization effect within the surface has been found
to be responsible for the renormalization of the molecular quasiparticle levels at the
molecule-insulator interfaces. The lowest excitation energies of the gas-phase molecules
and the adsorbate systems are further determined by the two-particle BSE calculations.



The important roles of the nonlocal correlations, surface defects and excitonic effect are
presented in the context of the molecule-insulator interfaces.
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Zusammenfassung

Eine verblüffende Anwendung im elektrostatischen Trennungsprozess von Salzminera-
lien in der Industrie stellt die Möglichkeit dar, dass unterschiedliche Anteile des Salzes in
einem inhomogenen elektrischen Feld durch Zufügen bestimmten Moleküle getrennt wer-
den können. Dieser Effekt lässt sich mit Hilfe des Modells des Ladungstransfers verstehen,
in dem die durch die absorbierten Moleküle hervorgerufenen, besetzten und unbesetzten
Zustände eine zentrale Rolle spielen. Eine exakte Kontrolle der Effizienz beim Tren-
nungsprozesses bedarf nicht nur der genauen Kenntnis der organischen Moleküle und
des Wirtsisolators, sondern auch ein mikroskopisches Verständnis der Molekül-Isolator
Wechselwirkung

Obwohl die Eigenschaften der Konditioniermoleküle (wie Benzoesäure und seine phe-
nolischen Derivate) und von Steinsalz bekannt sind, sind detaillierte Mechanismen der
Wechselwirkung zwischen organischen Molekülen und der isolierenden Oberfläche nach
wie vor unbekannt. Die Wechselwirkung an der Grenzfläche wird abermals komplizier-
ter, sobald verschiedenartige Defekte auf der Oberfläche vorhanden sind. Defekte spielen
dabei eine enorme Bedeutung für die Adsorptionsanordung und die elektronischen Ei-
genschaften des Adsorbatsystems.

In dieser Arbeit werden die Grundprinzipien bei der Adsorption von Benzoesäure und
seiner verschiedenartigen phenolischen Derivate auf Isolatoren mit großer Bandlücke
(z.B. NaCl und KCl Oberflächen) untersucht, um den Kontaktaufladungseffekt zwi-
schen mit Molekülen versetzten Mineralsalzen zu entschlüsseln. Obwohl die Kohn-Sham
Dichtefunktionaltheorie (KS-DFT) zur Standardmethode bei der Vorhersage von Ei-
genschaften des Grundzustands geworden ist, ist sie weit davon entfernt, perfekt zu
sein, da die Näherungen bei der üblichen semilokalen Dichtefunktionaltheorie diversen
Einschränkungen unterliegen. Dazu zählt das offenkundige Energielückenproblem und
die Mißachtung der vorherrschenden langreichweitigen van der Waals Wechselwirkung
in schwach gebundenen Systemen. Zudem liegt das Problem der elektronischen Anre-
gungen jenseits des Gültigkeitsbereichs der KS-DFT. In dieser Arbeit wurden deshalb
diverse ab initio Methoden verwendet, ausgehend von KS-DFT (mit Hybridfunktiona-
len und Korrekturen der Dispersionskräfte) über Hedin’s GW Näherung bis hin zur
Bethe-Salpeter Gleichung (BSE), um excitonische Effekte in elektronischen Anregunen
mit einzubeziehen.

Die Ergebnisse machen ein komplexes Zusammenspiel zwischen der kurz- und lang-
reichweitigen Wechselwirkung bei der Adsorption organischer Moleküle auf Oberflächen
von Isolatoren mit großer Bandlücke deutlich. Die an der Bindung beteiligten Mo-
lekülorbitale der Adsorbate weisen Verschiebungen und Verbreiterungen als Ergebnis
der Umhybridisierung auf. Das Adsorbat wird durch die kurzreichweitige ionische Wech-
selwirkung und die langreichweitigen van der Waals Beiträge stabilisiert, wohingegen
die Adsorptionsanordnung von der kovalenten Wechselwirkung dominiert wird. Ein La-
dungstransfer zwischen dem Molekül und der Oberfläche ist auf idealen Oberflächen
vernachlässigbar. In Gegenwart von Oberflächenfarbzentren wird im Wesentlichen die



Bindungsenergie durch den Ladungstransfer von ungepaarten Elektronen aus den Leer-
stellen der Oberflächen in das Adsorbat erhöht. Es zeigt sich, dass durch geschickte
Anpassung der Polarität an den Stufenkanten die fundamentale Bandlücke des Adsorbat-
systems effektiv verkleinert werden kann. Darüber hinaus stellte sich heraus, dass der dy-
namische Polarisationseffekt verantwortlich ist für die Verschiebung der Energiezustände
der am Molekül lokalisierten Quasiteilchenniveaus der Molekül-Isolator Grenzfläche. Die
niedrigsten Anregungsenergien der Moleküle in der Gasphase und des Adsorbatsystems
wurden durch Zweiteilchen-BSE-Berechnungen genauer bestimmt. Die wichtige Rolle
von nichtlokalen Korrelationen, Oberflächendefekten und exzitonischen Effekten werden
im Zusammenhang mit der Molekül-Isolator- Grenzfläche vorgestellt.
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1 Introduction

We are living in a world surrounded by surfaces. There are various surfaces, either
metallic or insulating, with which we are interacting every now and then in our daily
life. Reactions on surfaces are so prevalent that we can easily list a few examples, such as
rust and corrosion on some metal surfaces due to oxidations. In an effort to understand
the physical and chemical phenomena occurring at the surface and the interface of two
phases, a new field of research, i.e. the surface science is born. Heterogeneous catalysis is
one of the first concept and application in the field of surface chemistry which is pioneered
by Paul Sabatier and Fritz Haber [1]. A tremendous progress has been achieved since
then in the understanding of microscopic characteristics of surfaces and the reactions
on surfaces, which is benefited from the novel experimental techniques and the state
of the art theoretical approaches. The advances in surface science immediately boost
the development of semiconductor device fabrication (e.g. epitaxial growth [2], chemical
vapor deposition [3] and atomic layer deposition [4]), self-assembled monolayer based
molecular electronics [5, 6], catalysts [7], and fuel cells [8].

One central ingredient in a wide class of applications in surface science (such as het-
erogeneous catalysts and self-assembled monolayer) is the molecule-surface interaction.
Notably, Gerhard Ertl’s contribution to the investigation of the CO molecules adsorbed
on Pt surfaces earned him a Nobel Prize of Chemistry in 2007. Indeed, for the last decade
adsorption of molecules on metal surfaces [9–12] and semiconductors [13, 14] gains a great
deal of attention stimulated by their relevances in catalysis and molecular electronics.
Meanwhile, we have seen considerably fewer studies of the molecule-insulator interfaces.
Adsorption of organic molecules on wide-gap insulator surfaces is usually chemically in-
ert and is treated as weak physisorption as long as the surface is free of defect. For
instance, the features of the frontier molecular orbitals (MOs) of a pentacene molecule
are preserved upon its adsorption on Cu-supported NaCl films as is resolved by scan-
ning tunneling microscopy (STM) [15]. Due to the inertness of the wide-gap insulator
surfaces, they are excellent candidates for the supporting substrates in chemical and
technical applications.

Nevertheless, an intriguing separation process in the mining industry draws back our
attention to revisit the interface between organic molecules and wide-gap insulators. It
has been observed that the addition of certain organic molecules can trigger the separa-
tion of various minerals such as halite (NaCl), sylvite (KCl) and kieserite (MgSO4·H2O)
effectively by electrostatic forces in an inhomogeneous electrical field. The electro-
static separation process is plausibly explained by a charge transfer model (sketched
in Fig. 1.1). Without adsorbates, electronic excitation is practically impossible at room
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1 Introduction

temperature according to Fermi-Dirac statistics

f(ε) =
1

exp[(ε− µ)/kBT ] + 1
, (1.1)

where kB is the Boltzmann constant, T the temperature, and µ the chemical potential.
We see that the occupation of electrons in the conduction band edge, or the probability
of exciting an electron to the conduction band minimum (CBM) at room temperature
is thus zero for an insulator with a band gap of 8 eV, typical for alkali chlorides. This
situation, however, is changed by the unoccupied states brought by the adsorbate on
the insulator surface as shown in Fig. 1.1(b). Depending on the position of the highest
occupied molecular orbital (HOMO) with respect to the valence band maximum (VBM),
electrons can be much more easily promoted to the lowest unoccupied molecular orbital
(LUMO) either from HOMO or VBM since the effective energy gap is now much smaller
than the band gap of the insulator surface. When the adsorbate covered surfaces are
brought into contact, electrons can hop from the molecules of one side to the other if there
is a difference in the Fermi energy of the surfaces, which is well-defined by the occupied
and unoccupied states. The electron exchange vanishes until the thermal equilibrium
is reached and the Fermi levels of both surfaces are aligned. A contact voltage drop
U = (φB − φA)/e appears across the interface as a result of the net charge transfer,
where φ = Evac −Ef . The contact voltage is supposedly responsible for the electrostatic
separation process.

While the model of charge transfer is sound and straightforward, it is simply a proof
of concept and it deserves a much more careful thinking. One readily recognizes that
in order to make this model work, a relatively small molecular HOMO-LUMO gap is
necessary. In practice, industry uses phenolic benzoic acid molecules for the separation
process. A näıve quantum chemistry calculation shows that the HOMO-LUMO energy
gap is over 4.5 eV for these molecules, which is definitely too large for thermal excitations.
One shall then naturally argue that the molecule-surface interaction should play an
important role in this context. Although the perfect insulating surface are usually not
reactive, defects on the surface evidently enhance the adsorption of the molecules [16–
19]. As a matter of fact, a large number of various defects can be introduced inevitably
because of entropic reasons during the mechanical grinding process of the minerals.
Defects might not only alter the adsorption geometry but also impose significant changes
in the electronic structure of the adsorbate system. Altogether, we find ourselves trapped
in this simple charge transfer model because of our ignorance of the molecules, the
surfaces, and their interfaces.

To this end, we realize that the molecule-insulator interface is the heart of the charge
transfer model. Besides, it is also of great relevance to the molecular electronics and self-
assembled monolayer on ultrathin insulator films at the atomic scale. Experimentally,
the information of the occupied and unoccupied state of both molecules and extended
systems can be accurately measured from various surface sensitive techniques, such as
photoemission, absorption and energy loss spectroscopy. The adsorption geometry can
be also derived precisely from diffraction and reflection methods such as normal incident
X-ray standing wave [20], while thermal desorption experiment is able to evaluate the
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Figure 1.1: Charge transfer model in the presence of adsorbates on wide-gap insulators.
(a) Without adsorbates, electronic excitations are suppressed due to the large band gap.
(b) The adsorbate introduces unoccupied states within the gap of the insulator, enabling
electronic excitations to the unoccupied state provided that the excitation energy is
sufficiently small. (c) When two adsorbate systems are brought into contact, mobile
electrons flow from A to B depending on the position of the Fermi level. When thermal
equilibrium is reached, it results in the alignment of the Fermi level Ef . A contact
voltage U then appears, which facilitates the electrostatic separation process.

adsorption energy. On the other hand, the atomic configuration and electronic structure
are in principle directly accessible from quantum mechanics. The fast developing theo-
ries and boosting computational resources in first-principles community have made the
theoretical calculation a indispensable piece of treasure for both explanatory and pre-
dictive purposes. An obvious advantage of first-principles approach is that the system
of interest, for example, a specific type of defect on the surface, can be designed arbi-
trarily to get its quantitative properties, while it is much complicated experimentally.
It also helps to understand the phenomena at the nanoscale found in experiment. In
fact, the interpretation of STM images relies heavily on density functional theory (DFT)
nowadays.

It should be borne in mind that the first-principles calculation is by no means a
panacea to real-life problems. It will be shown in Part I that there is no universal
method for all problems. We consider DFT as an illustration since it is prevalent in the
predictions of ground-state properties. However, the semilocal nature of the standard
functional approximations fails to correctly describe the van der Waals force in weakly
bound systems [21]. DFT also tends to yields wrong magnetization of strongly correlated
systems [22]. Moreover, the notorious band gap problem associated with self-interaction
error and functional discontinuity refrains DFT from an accurate description of the
electronic structure even at ground-state. As a static mean-field theory, DFT misses
dynamic polarization effect as well [23]. Ultimately DFT is a ground-state theory so
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one should resort to other methods for excitation properties. Indeed, the charge transfer
model involves electronic excitation, and therefore theories beyond DFT are required for
this work.

In this thesis, the molecule-insulator interface is extensively investigated by first-
principles calculations within the framework of DFT and many-body perturbation the-
ory. After a comprehensive introduction to the theoretical methods given in Part I, we
examine the gas-phase benzoic acid and its phenolic derivatives, as well as the properties
of bulk NaCl and KCl in Part II. Part III presents the adsorption of the selected benzoic
acid molecules on the ideal alkali chlorine surfaces. The effect of various surface defects
(e.g. color center and steps) on the adsorption configuration and electronic structure is
also demonstrated. Finally, we discuss the implication of the results in the context of
the charge transfer model in Ch. 14.
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2 Hartree-Fock Theory

2.1 Many-electron Wavefunction

The physical and chemical properties of any system at atomic scale can be fundamentally
traced back to the many-body Hamiltonian, whose description is governed by quantum
mechanics. Let us consider a system consisting of N electrons and K nuclei. We solve
the time-independent Schrödinger’s equation in terms of the many-body Hamiltonian
operator H and many-body wavefunction Ψ

HΨ(ri,Rk) = EΨ(ri,Rk), (2.1)

where ri and Rk denote the coordinates of the electrons and nuclei, respectively. Casting
the Hamiltonian into mathematical notation, we write1

H = −1

2

N∑

i=1

∇2
i −

1

2

K∑

k=1

∇2
k −

N∑

i=1

K∑

k=1

Zk
|ri − Rk|

+
∑

i<j

1

|ri − rj|
+
∑

k<l

ZkZl
|Rk − Rl|

, (2.2)

where Zk is the charge for the k-th nucleus. In most cases, the nuclei are moving much
more slowly than the electrons as the nucleus is much more massive than the electron
(Mn ≈ 1800me). Therefore, it is convenient to decouple the motion of the electrons from
that of the nuclei and calculate electronic energies for fixed nuclear positions. This is
the Born-Oppenheimer approximation, where the electronic Schrödinger equation reads



−1

2

N∑

i=1

∇2
i −

N∑

i=1

K∑

k=1

Zk
|ri − Rk|

+
∑

i<j

1

|ri − rj |



Ψel(ri) = EelΨel(ri). (2.3)

The Born-Oppenheimer approximation has profound consequences to the theoretical
communities, leading to concepts like potential energy surface. The approximation is
entirely justified in general, and it reduces the many-body problem to a tractable form.

Let us now examine the many-electron wavefunction Ψ(x1,x2, · · · ,xi, · · ·)2, where
xi = (ri, σi) are combined spin-orbital coordinates. Electrons are fermions, and since a
wavefunction of identical fermions is anti-symmetric, the electronic wavefunction must
change sign whenever the coordinates xi of two electrons are swapped:

PijΨ (r1, r2, · · · , ri, · · · , rj, · · · ) = Ψ (r1, r2, · · · , rj, · · · , ri, · · · )
= −Ψ (r1, r2, · · · , ri, · · · , rj, · · · ) , (2.4)

1Hartree atomic unit ~ = me = 4πε0 = e2 = 1 is used throughout this thesis by default.
2The subscript ’el’ is omitted since most of the time we are dealing with the electronic wavefunction.
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2.2 Hartree Equation

where Pij is a permutation operator interchanging the coordinates of electrons i and j.
This is another proof of Pauli exclusion principle, namely two fermions cannot occupy
the same state because Ψ = 0 if we let ri = rj in Eq. (2.4).

In an early attempt to construct the many-electron wavefunction Ψ, it is written as
products (i.e. Hartree-product) of one-electron eigenstates ψi(xi) in an independent
particle picture:

ΨHP(x1,x2, · · · ,xN ) = ψ1(x1)ψ2(x2) · · ·ψN (xN ), (2.5)

and the independent one-electron Hamiltonian is

HIP =

N∑

i=1

[

−1

2
∇2
i −

K∑

k=1

Zk
|ri − Rk|

]

, (2.6)

where the electron-electron interaction is fully neglected. The construction in Eq. (2.5)
suggests that the electrons are uncorrelated, and the eigenvalue of Ψ is thus the sum of

the one-electron eigenvalues
N∑

i=1
εi.

However, the Hartree-product obviously violates Pauli principle, because the wave-
function in Eq. (2.5) is symmetric when the coordinates of two electrons are interchanged.
A simple and correct ansatz for the many-electron wavefunction is given by the Slater
determinants [24]

Ψ(x1,x1, · · · ,xN ) =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x2) ψ2(x2) · · · ψN (x2)

...
...

. . .
...

ψN (xN ) ψ2(xN ) · · · ψN (xN )

∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.7)

The prefactor reflects the N ! permutations of N electrons on the set of N coordinates.
By the variational principle, the ground-state energy of a system can be approximated.

2.2 Hartree Equation

Using the Hartree-product wavefunction in Eq. (2.5), we obtain the expectation value
of the electronic Hamiltonian in Eq. (2.3), i.e. the ground-state energy

〈ΨHP|H|ΨHP〉 =

N∑

i=1

∫

d3rψ∗
i (r)

(

−1

2
∇2
i + vext

)

ψi(r)

+
1

2

N∑

i,j

∫

d3rd3r′
|ψi(r)|2 |ψj(r′)|2

|r − r′| , (2.8)

where vext is the external potential for the electron due to the nuclei. The expectation
value can be minimized with respect to the one-electron function ψi under the constraint
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2 Hartree-Fock Theory

that the wavefunctions are normalized via Lagrange multipliers. The resulting set of
equations are called the Hartree equations [25]



−1

2
∇2 + vext(r) +

N∑

j=1

∫

d3r′
|ψj(r′)|2
|r − r′|



ψi(r) = εiψi(r), (2.9)

where εi are the Lagrange multipliers. The third term in the Hamiltonian in Eq. (2.9) is

the Hartree potential vH since the electron density n(r) =
N∑

i=1
|ψi(r)|2. The one-electron

Hartree Hamiltonian hi includes the one-electron kinetic energy and its electrostatic
interaction to the other electrons and nuclei

hi = −1

2
∇2
i + vext + vH. (2.10)

In this way, the original many-body problem is reduced to a single-particle problem.
This is the essence of a mean-field theory. We combine the vext and vH into an effective
potential veff so that the Hartree equation has a simple form as

[

−1

2
∇2 + veff(r)

]

ψi(r) = εiψi(r) (2.11)

From Eq. (2.9), it is straightforward to write the expectation value of the total electronic
energy in the Hartree equation as

EH = 〈ΨHP|H|ΨHP〉 =

N∑

i=1

εi −
1

2

∫

d3rd3r′
n(r)n(r′)

|r − r′|

=
N∑

i=1

εi − VH (2.12)

where VH is the Hartree energy, a mean-field electrostatic energy of the electronic
charge distribution. As the electronic repulsion is double-counted in the sum of the
non-interacting one-electron eigenvalues, VH has to be subtracted in Eq. (2.12).

Hartree Hamiltonian is dependent on the wavefunction, and therefore an iterative
self-consistent field (SCF) scheme is usually employed to calculate the Hartree equation.
During the SCF process, one guesses the wavefunctions ψ0(r) and constructs the one-
electron Hamiltonian operator H0. The Hartree equations are then solved, providing a
new set of ψ(r) presumably different from the initial guess. This process is repeated
until the difference between the old wavefunction and the new one meets the convergence
criterion. In practice, the new veff is by construction mixed with the one of the previous
SCF step to speed up the convergence.

One problem with the Hartree equation is the spurious interaction of one electron with
itself. This is evident from Eq. (2.9) when i = j. The self-interaction error is inherited
from the unphysical symmetric behavior of the Hartree-product wavefunction discussed
in Sec. 2.1. Therefore the results from Hartree equations are usually inaccurate. We
will see that the self-interaction is canceled exactly by an exchange potential if a single
Slater determinant is used as the many-electron wavefunction in the next section.
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2.3 Hartree-Fock Method

2.3 Hartree-Fock Method

Fock extended the Hartree equation to the anti-symmetric Slater determinant wave-
functions shown in Eq. (2.7) [26]. A new term, i.e. the exchange term appears in the
Hartree-Fock (HF) equations for the one-electron wavefunction



−1

2
∇2 + vext(r) +

N∑

j=1

∫

d3r′
|ψj(r′)|2
|r − r′|



ψi(r)

−
N∑

j=1

∫

d3r′
1

|r − r′|ψ
∗
j (r

′)ψi(r
′)ψj(r)δσiσj

= εiψi(r). (2.13)

An alternative definition of the non-interacting one-electron Fock operator F for each
electron i in the quantum chemistry community is

F = −1

2
∇2
i + vext + V HF

i , (2.14)

where the HF potential V HF
i = 2Ji − Ki, and the Ji and Ki are the Coulomb operator

and exchange operator, respectively. As is mentioned in Sec. 2.2, the HF method is also a
mean-field theory like the Hartree equation. A practical route to solve the HF equations
is the Roothaan SCF method independently proposed by Hall [27] and Roothaan [28],
in which the HF orbitals are expanded via linear combinations of atomic orbitals (see
Sec. 4.1.1). The eigenvalues εi of the HF equations are the orbital energies. Koopmans’
theorem states that the orbital energy εi of the occupied orbital state ψi is equivalent
to the negative value of the energy necessary to remove one electron from orbital ψi

IP(ψi) = −εi. (2.15)

In the case of an one-electron system (i = j), the Hartree potential is exactly canceled
by the exchange term, i.e. the Fock exchange. As a result, the HF method is free of

self-interaction. The Fock exchange arises when the two electrons are of the same spin
σi = σj , and the probability of finding two electrons of the same spin close to one another
is therefore reduced. It can be visualized as a exchange hole around each electron.

Analogous to Eq. 2.12, the total energy in the HF method is

EHF =

N∑

i=1

εi − VH − Ex, (2.16)

where Ex is the exchange energy. It turns out that the total energy in the HF equation
differs from the Hartree equation by exactly the exchange energy. The Fock exchange
introduces a great complexity to the calculations since the exchange is a nonlocal term,
and it depends on the information of one wavefunction at both r and r′. In practice,
it involves a rather tedious evaluation of the two-electron integrals, which scales as N4

with respect to the number of basis functions.
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2 Hartree-Fock Theory

While the correlation effect between electron with the same spin is included (and
labeled as the exchange effect), in the HF method the electrons with opposite spin
are yet not correlated. Indeed, the motion of each electron is correlated with every
other so that the total energy is further reduced. Such dynamic correlation is absent
in the HF theory because of the neglect of possible excited state configuration of the
HF determinant. The difference between the exact energy of the system and the HF
total energy is defined as the correlation energy. The correlation energy per electron can
easily amount to more than 1 eV [12], and it is therefore of paramount importance for
a reliable description of molecule-surface interactions.

The correlation effect can be included in the post-Hartree-Fock methods, in which the
electronic correlations can be described as the virtual electronic excitations. In this way,
the electrons do not feel the mean-field of other electrons. Rather, they are interacting
with each other. The Møller-Plesset (MP) theory treats the excitations perturbatively
to take into account of the correlation. The total energy of the popular second-order
MP2 approximation is written as

EMP2 = EHF −
occ.∑

l<m

unocc.∑

p<q

[(lm|pq) − (lq|mp)]2
εl + εm − εp − εq

, (2.17)

where the two-electron four-orbital integral is in the form of

(lm|pq) =

∫

d3rd3r′ψ∗
l (r)ψ∗

m(r)
1

|r − r′|ψ
∗
p(r

′)ψ∗
q (r

′). (2.18)

It should be noted that the MPn method is not variational, so it is likely that the corre-
lation energy given by the perturbations are overestimated. The MP2 in particular fails
to describe electronic repulsive terms at higher orders, which also leads to an overesti-
mation of the correlation. Last but not least, the MPn energy might be divergent for a
metallic system [29].

Instead of the perturbation method, the wavefunction can be reconstructed as a linear
combination of multiple Slater determinants rather than a single HF determinant

Ψ = ΨHF + c1Ψ1 + c2Ψ2 + · · · , (2.19)

where the new Slater determinants Ψi represent the excited states by reorganizing the
occupation of the orbitals of the HF determinant. Then the optimum wavefunction can
be determined by the variational principle with respect to the coefficient ci. This is the
configuration interaction (CI) method. The CI method is extremely expensive, and it is
rarely used for extended systems.

It is eminent at this point that we need a different theory than the HF method to give
an appropriate description of the molecule-surface interaction including the exchange-
correlation effect in an affordable way. This theory is the density functional theory
(Chapter 3).
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3 Density functional Theory

3.1 Early approximations

At a first glance at the Hartree-Fock method, we get the impression that it is really a
complicated equation as the electronic wavefunction depends on three spatial and one
spin coordinates of each electron. Moreover, despite the mathematical transparency of
the wavefunction, the wavefunction itself is not a physical observable. The electron
density n(r), or the probability of finding one electrons at r, on the other hand, is an
observable. The integration of electron density over the whole space yields the number
of electrons ∫

d3rn(r) = N. (3.1)

It is thus instructive to work on the electron density n(r) instead of the wavefunction.
In the language of electron density, the electron-nuclei attraction in the potential of

K nuclei is defined as

Vnucl-el[n(r)] =
K∑

k=1

∫

d3r
Zk

|r − Rk|
n(r), (3.2)

and the electron-electron Coulomb repulsion is

Vel-el[n(r)] =
1

2

∫

d3rd3r′
n(r)n(r′)

|r − r′| . (3.3)

The kinetic energy of a continuous electron distribution is less straightforward. In 1927,
Thomas [30] and Fermi [31] derived the kinetic energy T for a jellium system1

TTF[n(r)] =
3

10
(3π2)

2

3

∫

d3r[n(r)]
5

3 (3.4)

The Thomas-Fermi (TF) equation along with Eq. (3.2) and (3.3) was the first attempt to
define a density functional where the variable n(r) is a function of the three-dimensional
spatial coordinates.

What is again missing in the TF approximation is electronic exchange-correlation
effect. Slater in 1951 proposed that the exchange energy can be determined as

Ex[n(r)] = −9α

8

(
3

π

)1

3
∫

d3r[n(r)]
4

3 , (3.5)

1Jellium is a system characterized by an homogeneous electron gas moving in an infinite volume of a
space consisting of a uniformly distributed positive charge.

11



3 Density functional Theory

and Eq. (3.5) defines the Slater exchange when α = 1. Although these early approx-
imations are far from being rigorous and accurate in terms of modern theories, these
pioneer works are provocative and they lead to the successful establishment of density
functional theory.

3.2 Hohenberg-Kohn Theorems

In an N -electron interacting system, electrons interact with one another and with the
potential of nuclei as an external potential. One recognizes that there must be an one-to-
one correspondence between the electron density n(r) and the external potential vext in
order for the DFT to be a legitimate first-principles method. The mapping from vext to
n(r) is explicit since it is always possible to solve the many-body Schrödinger equation
from the external potential to obtain the many-body wavefunction and the electron
density. The reverse mapping is proved by Hohenberg and Kohn in 1964 via reductio ad

absurdum, which is now known as the Hohenberg-Kohn (HK) existence theorem [32]. The
HK theorem states that for an N -electron interacting system in an external potential
vext(r), the ground-state energy E0 is a universal functional of the density n(r), i.e.

every observable can be obtained from the density

n(r) ⇒ vext(r) ⇒ H ⇒ E0,Ψ0. (3.6)

The proof is generalized and extended to degenerate ground-states by Levy [33].
Hohenberg and Kohn showed in a second theorem that density obeys a variational

principle, which provides evidence that the ground-state total energy can be obtained
by minimization under arbitrary wavefunction variations. Here we demonstrate the
density variational principle, following the constraint search approach of Levy [33]. The
variational procedure is carried out in two stages. First, we minimize the energy E[n]
with respect to the wavefunctions for a given density n

E[n] = min
ψ

〈ψ|H|ψ〉. (3.7)

If we separate the Hamiltonian into the Hamiltonian H0 for the homogeneous electron
gas and the external potential, for a given density n, the functional E[n] can be written
as

E[n] = min
ψ

[〈ψ|H0|ψ〉] +

∫

d3rvext(r)n(r), (3.8)

where H0 has a kinetic contribution and an electron-electron interaction Vee. We define
a universal functional F [n]

F [n] = min
ψ

〈ψ|H0|ψ〉. (3.9)

Then the ground-state energy can be obtained by the minimization with respect to the
density n while vext is kept fixed

E[n] = F [n] +

∫

d3rvext(r)n(r). (3.10)

The minimization is subject to the constraint of a fixed N . The minimizing density is
hence the ground-state density.
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3.3 Kohn-Sham Formalism

The plain adoption of density functional does not simplify the calculation with respect
to the Hartree-Fock equation due to the complicated nature of electronic interactions
Vee. In 1965 Kohn and Sham [34] proposed a groundbreaking method for calculating
the ground-state energy of an interacting system in terms of a fictitious system of non-

interacting electrons. The non-interacting electrons are in an effective potential veff so
that the ground-state density of the fictitious system is the same as the real system.
The KS-DFT total energy can be written as

EKS = T0[n] + Eext[n] + EH[n] + Exc[n], (3.11)

where the correction to the non-interacting kinetic energy T0 and all exchange and
correlation effects have been grouped into the exchange-correlation (XC) energy Exc.
Minimizing Eq. (3.11) by the variation principle, we have the Kohn-Sham (KS) one-
electron equation

[

−1

2
∇2
i + vext + vH + vxc

]

ψi =

[

−1

2
∇2
i + veff

]

ψi = εiψi, (3.12)

where the XC potential vxc is the functional derivative of Exc

vxc =
∂Exc

∂n
. (3.13)

The single-particle energies εi appear as Lagrange multipliers to ensure the correct nor-
malization to the number of particle N . The Kohn-Sham states have no specific physical
interpretation except for the highest occupied state.

A comparison between Eq. (3.11) and (3.12) implies that the summation of the single-
particle energies εi of the occupied states leads to a double-counting of the Hartree energy
and there is also a difference in the exchange-correlation energy. The total energy in
Eq. (3.11) then can be explicitly expressed as

EKS =

N∑

i=1

εi −
1

2

∫

d3rd3r′n(r)
1

|r − r′|n(r′) + Exc[n] −
∫

d3rvxc[n(r)]n(r) (3.14)

Like the HF equations, KS-DFT calculations are also carried out self-consistently
because vext is a functional of n(r), while n(r) depends on the one-particle wavefunction.
We note that KS-DFT is an exact ground-state theory. Unfortunately, the exact form
of Exc with respect to n(r) is unknown, and Exc has to be approximated. The accuracy
of KS-DFT, in this sense, is solely connected to the specific approximation of the XC
functional.

3.4 Exchange-correlation Functionals

In order to provide physical insights into the exchange and correlation energies, we first
define a non-negative coupling constant λ which controls the strength of inter-electronic
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3 Density functional Theory

interaction Vee in a many-electron system

H = T + V λ
ext + λVee. (3.15)

The system corresponds to a non-interacting system when λ = 0, or a fully-interacting
one when λ = 1. Varying λ at fixed n(r), we have a real external potential for λ = 1,
and a KS effective potential for λ = 0. The coupling constant λ therefore acts like a
switch that smoothly converts a non-interacting KS reference system to an interacting
system in an adiabatic connection as λ is increased from 0 to 1. The exchange-correlation
energy Exc, as the sum of exchange energy Ex and correlation energy Ec, then can be
written as

Exc[n] = 〈ψmin,λ
n |T + λVee|ψmin,λ

n 〉 |λ=1 −〈ψmin,λ
n |T + λVee|ψmin,λ

n 〉 |λ=0 −EH

=

∫ 1

0
dλ

d

dλ
〈ψmin,λ

n |T + λVee|ψmin,λ
n 〉 − EH, (3.16)

where ψmin,λ
n is the interacting ground-state wavefunction for density n when λ = 1, and

the non-interacting (or the KS) wavefunction for the same density when λ = 0.
The exchange-correlation functional Exc[n(r)] is connected to the exchange-correlation

energy density (energy per particle) εxc[n(r)] via

Exc[n(r)] =

∫

d3rn(r)εxc[n(r)]. (3.17)

It is convenient to introduce the exchange-correlation hole distribution nxc

nxc(r, r
′) = g(r, r′) − n(r′), (3.18)

where g(r, r′) is the probability of finding an electron at r′ if there is an electron at r.
Integrating over r′, we find that

∫

d3r′nxc(r, r
′) =

∫

d3r′g(r, r′) −
∫

d3r′n(r′) = N − 1 −N = −1, (3.19)

which implies that when an electron is definitely at r, it is absent elsewhere. The
exchange-correlation hole vanishes for large separations, and for |r| → ∞,

∫

d3r′
nxc(r, r

′)

|r − r′| → − 1

|r| . (3.20)

3.4.1 Local Density Approximation

In the local density approximation (LDA), the exchange-correlation energy depends on
the local value of electron density at r exclusively2

ELDA
xc [n(r)] =

∫

d3rn(r)εLDA
xc [n(r)], (3.21)

2The spin dependence for spin-polarized system is suppressed in this thesis.
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3.4 Exchange-correlation Functionals

where εLDA
xc [n(r)] is the exchange-correlation density of a homogeneous electron gas.

The exchange part of LDA can be derived from, e.g., the Slater exchange for a ho-
mogeneous electron gas in Eq. (3.5). As for the correlation energy, one often resorts to
quantum Monte Carlo techniques to calculate the total energy for uniform electron gases
accurately [35].

LDA is by construction accurate for homogeneous systems, as well as for systems
with very slow varying densities. In particular, LDA satisfies the important sum rule in
Eq. (3.19). While it is the simplest exchange-correlation functional, LDA is also surpris-
ingly useful in a wide range of bulk and surface problems [36]. A possible explanation
of the seemingly success of LDA is due to the error-cancellation in the exchange and
correlation energy [37]. Nevertheless, LDA tends to predict smaller lattice constant and
higher cohesive energy. As for adsorbate systems, the binding energy from LDA is over-

estimated in general. Indeed, the over-binding in LDA leads to spurious binding energy
in weakly bound systems [21]. Moreover, LDA suffers from the self-interaction and it
lacks functional derivative discontinuity, which as a result yields much smaller funda-
mental band gaps of insulators and semiconductors. We will discuss these two issues
after the generalized gradient approximation.

3.4.2 Generalized Gradient Approximation

The first step to improve the LDA is to approximate the exchange-correlation energy
by a Taylor expansion. The exchange-correlation functional is expanded in terms of
both the local density n and its gradient ∇n [38]. This gradient expansion approxi-

mation, however, violates the sum rule in Eq. (3.19), and does not produce consistent
improvement over the LDA since in real systems the gradients are too large.

The generalized gradient approximation (GGA) modifies the behavior of the exchange-
correlation functional at large gradients to preserve some properties such as the sum
rule and the scaling laws [39]. Analogous to the LDA, the exchange-correlation energy
in GGA can be expressed as

EGGA
xc [n(r)] =

∫

d3rn(r)εGGA
xc [n(r),∇n(r)]

=

∫

d3rn(r)εhom
x [n(r)]Fxc[n(r),∇n(r)], (3.22)

where εhom
x is the exchange energy density of the unpolarized homogeneous electron

gas, and the enhancement factor Fxc is a dimensionless term. The GGA functional
is usually referred to as a semilocal functional. Different constructions of Fxc lead to
various flavors of GGA functionals, noticeably the Perdew and Wang (PW91) [40] and
the Perdew-Burke-Ernzerhof (PBE) functional [41]. The GGA provides a much better
agreement with experiment than the LDA. It reduces the over-binding in the LDA,
predicting more realistic properties for both the bulk and surface systems. There has
been constant development of the GGA functionals over the recent years. These new
functionals are designed for the specific systems, such as the revised PBE (RPBE) for
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3 Density functional Theory

the chemical reactivity on surfaces [42], and the PBEsol for the improved equilibrium
properties of solids and surfaces [43].

As mentioned in Sec. 3.4.1, the self-interaction cannot be canceled by the exchange
energy in either GGA or LDA, in contrast to the Hartree-Fock theory where the Hartree-
Fock exchange cancels exactly the self-interaction (see Sec. 2.3). This spurious self-
interaction of one electron with itself might lead to an incorrect description of the elec-
tronic structure since the self-interaction tends to put the eigenvalues of the localized
states too high in energy [37]. In other words, the self-interaction favors the delocaliza-

tion of electrons [44]. We will see this in Chapter 6 where the molecular orbitals of a
benzoic acid are incorrectly ordered by LDA. In addition, the XC potential of the local
and semilocal functionals exhibits exponential decays for large distances r, while the
asymptotic form of the exact potential follows r−1. As a consequence, Rydberg states
are not properly treated by the LDA and GGA functionals [37].

Another problem associated with the failures of LDA and GGA is the absence of func-
tional derivative discontinuity [37]. According to Janak’s theorem [45], the eigenvalue of
an orbital εi can be derived from the variation of the total energy with respect to the
occupation number of that orbital

εi =
∂E

∂ni
. (3.23)

For an N -electron system with nuclear charge Z, the highest (partially) occupied KS
orbital eigenvalue εHO is the chemical potential µ = ∂E/∂N . Varying N in the vicinity
of Z, we have [46]

εHO =

{
−I = E(Z) − E(Z − 1) (Z − 1 < N < Z)
−A = E(Z + 1) − E(Z) (Z < N < Z + 1)

, (3.24)

where I andA are the ionization energy and the electron affinity of the Z-electron system.
The difference between −I and −A arises from a discontinuous jump in the derivative of
the total energy with respect to the electron number. Since the functional derivative of
the external potential and Hartree potential are both continuous with respect to n(r),
there must be a discontinuity in the exchange-correlation functional derivative ∆xc as N
crosses the integer Z. However, as the LDA and GGA exchange-correlation potentials
are continuous in the density and its gradient, they do not exhibit the derivative dis-
continuity. Instead, the LDA and GGA averages over the discontinuity [47], so that the
highest occupied KS eigenvalue given in the LDA and GGA differs −I by ∆xc = 1

2(I−A).
The absence of the derivative discontinuity is intimately responsible for the signif-

icantly underestimated band gap in KS-DFT. We see this by defining the real band
gap (fundamental gap) as the ground-state energy difference between the N and N ± 1
systems:

Eg = I −A = E(N + 1) + E(N − 1) − 2E(N). (3.25)

The KS gap is the difference between the highest occupied and lowest unoccupied states
of the N -electron system:

εKS
N+1(N) − εKS

N (N) = [εKS
N+1(N + 1) − εKS

N (N)] − [εKS
N+1(N + 1) − εKS

N+1(N)]

= Eg − ∆xc. (3.26)
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3.4 Exchange-correlation Functionals

Thus, the KS gap is always smaller by ∆xc even if the exchange-correlation energy is
exact. For the bulk NaCl, the GGA-PW91 functional predicts a KS gap of 5.4 eV, while
the experimental gap amounts to 8.5 eV.

Apart from the gap problem, the local and semilocal nature of the LDA and GGA
fails to describe the long-range van der Waals (vdW) forces. The vdW interactions
are particularly important for weakly bound systems, such as molecules on perfect ionic
surfaces. The implementation of vdW in the framework of DFT will be discussed in
Sec. 3.5. The self-interaction error and derivative discontinuity, however, can be intu-
itively remedied to some extent by the introduction of Hartree-Fock exchange into the
DFT.

3.4.3 Hybrid Functional

We resume the adiabatic connection in Eq. (3.16), which can be simplified according to
the Hellmann-Feynman theorem3

Exc =

∫ 1

0
dλ〈ψmin,λ|Vee|ψmin,λ〉 − EH

=

∫ 1

0
dλ〈ψmin,λ|Vxc|ψmin,λ〉. (3.27)

In the non-interacting limit when λ = 0, Vxc in Eq. (3.27) reduces to the HF exchange
V HF

x using the KS orbitals. We then decompose Eq. (3.27) into two parts

Exc =

∫ 1

0
dλ〈ψmin,0|V HF

x |ψmin,0〉 +

∫ 1

0
dλ〈ψmin,λ|Vxc − V HF

x |ψmin,λ〉

= EHF
x + z(EKS

xc − EHF
x )

= αEHF
x + (1 − α)EKS

xc , (3.28)

where α is between 0 and 1. The exchange-correlation in this form is called a hybrid func-

tional as it includes both exact HF exchange and KS-DFT exchange-correlation4 . The
incorporation of HF exchange effectively remedies the self-interaction error and deriva-
tive discontinuity in the exchange-correlation functional within KS-DFT. The structural
parameters, as well as the molecular energy gap and band gap of solids are usually much
improved by hybrid functionals [48–51]. As is pointed out by Yang et al. [52], the correct
prediction of the band gap relies on the fact that the exact energy varies linearly as a
function of the electron number between two adjacent integer numbers. This is a natural
consequence from the functional discontinuity mentioned in the last section. However, it
has been shown that the semilocal and local functionals exhibit a convex manner, while
HF curves are concave rather than straight. The band gaps from (semi)local DFT and
HF calculations are therefore either too small or too large. The band gaps can benefit

3The Hellmann-Feynman states that for Eλ = 〈ψλ|Hλ|ψλ〉,
dEλ

dλ
= 〈ψλ|

dHλ

dλ
|ψλ〉.

4Hybrid functional is considered as one of the orbital-dependent density functional because the KS
orbitals are explicitly expressed in Exc.
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3 Density functional Theory

from the mixing of the exact exchange due to the fact that the straight line behavior
can be recovered to some extent. We will use the PW1PW hybrid functional [48] pri-
marily for the adsorbate calculation in this thesis, which mixes 20% exchange exchange
with the PW91 XC functional. Another widely used hybrid functional for condensed
matter is the PBE0 functional, and it usually incorporates 25% exact exchange based on
perturbation theory argument [53]. We note that the value α is tunable and it is often
dependent on the system under investigation.

Hybrid functional has been quite popular within the quantum chemistry community
for a long time, but it is until recently that it has been adopted in solid state physics.
One of the main obstacle is that the exact exchange is nonlocal, and it is extremely
ineffective to evaluate the exact exchange in the reciprocal space expanded by plane-
wave basis sets compared to that computed in localized Gaussian-type orbitals in the
real-space formalism. Since the long-range exchange interaction in insulators decays
exponentially with respect to the energy gap [54], one can benefit from the truncation
of the Coulomb repulsion in the slow-varying long-range tail. This gives rise to the
screened hybrid functionals. In the Heyd-Scuseria-Ernzerhof (HSE) screened functional,
the exchange is divided into the short-range (sr) and long-range (lr) components [49]

EHSE
xc = αEHF,sr

x (µ) + (1 − α)EPBE,sr
x (µ) + EPBE,lr

x (µ) + EPBE
c , (3.29)

where the screening parameter µ determines the separation of the short-range and long-
range parts

1

r
= sr(r) + lr(r) =

1 − erf(µr)

r
+

erf(µr)

r
. (3.30)

In one limit when µ = 0, the long-range term is zero and HSE reduces to the unscreened
PBE0 functional. For µ → ∞, HSE is identical to GGA-PBE since the whole exact
exchange is screened. The range-separated functional sees an increasing interest from
the solid state physics community as it usually requires a less dense k-point sampling
than its unscreened counterpart in reciprocal space. Moreover, for metallic systems the
screened Coulomb interaction avoids the singularity in the derivative of the orbital energy
with respect to k arising from the Fourier transform 4π/k of the 1/r Coulomb potential.
Nevertheless, screened hybrid functionals are not panacea either, and sometimes HSE
results are not on par with GGA calculations for many metals [50, 51].

3.5 van der Waals Interactions in Density Functional Theory

Generally speaking, the van der Waals force includes contributions between two per-
manent dipoles, between a permanent dipole and a induced dipole, and between two
instantaneously induced dipoles. In this thesis, we restrict the term to the last contribu-
tion, i.e. the London dispersion force due to the instantaneous dipoles. This attractive
dispersion force arises when charge fluctuations in one part of an atomic system is corre-
lated with that in another, and hence it is a truly nonlocal correlation effect. The vdW
interaction, while being relatively small compared to ionic and covalent interactions,
is very important in sparse matters and weakly bound systems. The vdW interaction
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3.5 van der Waals Interactions in Density Functional Theory

energy follows the R−6 asymptotic form for atoms and molecules, and the R−4 form for
insulating sheets [21].

As is mentioned in Sec. 3.4.1, one important issue in KS-DFT is that the standard
functional approximations are incapable of describing the long-range correlation effects,
such as the vdW interaction. In this thesis, we apply two different approaches to account
for the vdW interaction in the DFT calculations: the empirical DFT-D method and the
ab initio vdW density functional (vdW-DF). In the DFT-D method proposed by Grimme
[55], the long-range dispersion is taken into account by an additional pair-wise interaction
term

EDFT-D = EKS-DFT − s6

N−1∑

i=1

N∑

j=i+1

C6
ij

R6
ij

fdamp(Rij), (3.31)

where Cij and Rij are the dispersion coefficients and inter-atomic distances for atom
pair ij, respectively. s6 is a global scaling factor, which is empirically set to 0.75 for the
PBE functional. The damping function fdamp given by

fdamp(Rij) =
1

1 + e−α(Rij/R0−1)
(3.32)

serves to cut off the unphysical behavior of the asymptotic vdW interaction for small
Rij . R0 is the sum of modified atomic vdW radii, and α is a global parameter.

The vdW-DF proposed by Dion et al. is another attempt to describe the long-range
dispersion force seamlessly within KS-DFT without any empirical fitting parameters
[56]. The vdW-DF XC energy is expressed as

EvdW-DF = EGGA
x + ELDA

c + Enl
c , (3.33)

where the energy terms on the right-hand side represent the GGA exchange, LDA cor-
relation and nonlocal correlation energy, respectively. The dynamical long range disper-
sion is therefore explicitly included as the nonlocal correlation effect. In this thesis, the
revPBE exchange is chosen as the GGA exchange because it is close to the Hartree-Fock
exchange and it suffers least from the erroneous over-binding due to exchange alone
compared to other exchange functionals [21, 56]5. The nonlocal correlation energy Enl

c

is expressed in terms of the interaction kernel φ(r, r′)

Enl
c =

1

2

∫

d3rd3r′n(r)φ(r, r′)n(r′). (3.34)

The nonlocal kernel is derived from the adiabatic connection fluctuation-dissipation the-
orem (ACFDT) with several approximations, and it is computationally more feasible
than other ab initio techniques, such as exact exchange and random phase approxima-
tion (EXX/RPA) [58–60]. Both methods allow self-consistent calculations, although it
is straightforward to see that DFT-D is computationally much faster than the vdW-DF
method. In this thesis, the algorithms proposed by Soler et al. is used for the SCF
vdW-DF calculations [61].

5The search for an optimized exchange in vdW-DF is still in progress. See Ref.[57] for example.
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4 Implementations of Density Functional
Theory

4.1 Basis Sets

The choice of basis set is central to the first-principles calculations. The basic idea of a
basis set is to expand the information of an atom in terms of a mathematical form. It
is common to expand a basis set in either a localized atomic-like form, or a plane-wave.
In this section, a concise introduction of these two basis sets will be given in the context
of periodic systems.

4.1.1 Atomic-like orbitals

The atomic-centered basis set, or the linear combination of atomic orbitals (LCAO)
method is prevalent in the quantum chemistry of solids. In LCAO, each crystalline
orbital ψi(r,k) is a linear combination of a set of Bloch functions φµ(r;k)

ψi(r;k) =
∑

µ

aµ,i(k)φµ(r;k), (4.1)

where aµ,i are the coefficients to be optimized. The Bloch functions are defined in terms
of atomic-centered functions ϕµ(r)

φµ(r;k) =
∑

R

ϕµ(r − Aµ − R)eik·R, (4.2)

where R is the lattice translation vector, and Aµ is the coordinates of the nucleus in
the zero reference cell where ϕµ is centered. The atomic orbital ϕµ is expanded by a set
(contracted) of individually normalized Gaussian-type functions (GTFs) gj at the same
center1, with fixed coefficients dj and exponents αj

ϕµ(r − Aµ − R) =
∑

j

djgj(αj ; r − Aµ − R), (4.3)

and the Gaussian primitives can be written in terms of spherical harmonics

gj(αj ; r; l,m) = Nlm(α)rlYlm(θ, φ)e−αjr2, (4.4)

1Although the atomic orbitals are typically Slater orbitals, it is numerically more convenient to write
a Slater orbital by a linear combination of Gaussians and operate the Gaussians. For example, one
advantage of using Gaussian-type functions is that the product of two Gaussians is another Gaussian.
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4.1 Basis Sets

where l and m are angular quantum numbers. The expansion coefficients aµ,i(k) are
determined by the solution of the generalized eigenvalue equation for each reciprocal
lattice vector k

F(k)C(k) = S(k)C(k)E(k) (4.5)

where S is the overlap matrix, F the Fock matrix, C the coefficient matrix, and E the
diagonal energy matrix.

A minimal basis set is known as a single-ζ basis set, and for each shell2 there is
only one corresponding basis function. The STO-3G basis set is a minimal basis set.
The core and valence shells described by the STO-3G basis set are each constructed
by a linear combination of 3 primitive Gaussian-type functions. One problem related
to the minimal basis sets is the transferability because alteration of basis orbitals is
not allowed. A more versatile construction of a basis set is the split-valence scheme,
in which the valence electrons are treated with two or more basis functions for each
atomic orbital. The core electrons can still be described by a single-ζ basis set since
the core electrons are less affected by the environment. For example, in the 6-31G
basis set, the core shell is the sum of 6 primitive Gaussians, and the valence shells are
described by a linear combination of two basis functions, one of which has 3 primitive
Gaussians and the second would simply be the normalized primitive. Basis sets like
6-31G are double-ζ basis. Accordingly, a triple-ζ basis describes the valence shells in
terms of three basis functions. The different orbitals in the split-valence scheme allow
the electron density to adapt the chemical environment so that split-valence basis sets
have a high transferability.

It is common to include polarization functions to improve the accuracy of a basis set.
For example, a d function can be added to the basis of atoms without d electrons in
the 6-31G(d) basis set. In case of a carbon atom, a p-orbital centered on the atom can
be polarized away from the nucleus by the additional d-orbital. The lowered symmetry
gives rise to a more accurate description of chemical reactions. One can also add diffuse

functions to provide more accurate descriptions of anions, or neutral molecules with
lone-pair electrons. A diffuse function has a small exponent, and it improves the basis
set at the tails of atomic orbitals which is faraway from the nucleus. However, in periodic
systems, a diffuse basis set might gives rise to a convergence problem and one should
avoid using a basis set which is too diffuse.

It should be borne in mind that due to the incompleteness of the basis set that are
usually used, the basis set superposition error (BSSE) arises when one tries to evaluate
the binding energy of two interacting fragments in atomic-centered basis sets. In a system
comprising two fragments A and B, if the basis sets are not complete, the energy of A
will be improved by the basis sets of B, and vice versa. Since the total energy of isolated
fragments are described by their own basis set, the binding energy in the presence of
the BSSE is overestimated. A common technique to correct the spurious binding due to
the basis set incompleteness is the counterpoise method by Boys [62]. The energy of a
separated fragment are calculated in the presence of the “host” basis set of the other
fragment. The energy difference referenced to the calculation using the individual basis

2The nomenclature shell implies a group of atomic orbitals with the same quantum number n and l.
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set of the fragment is the correction to the BSSE. The counterpoise method is necessary
for an accurate prediction of molecular adsorption on surfaces with the localized basis
sets.

4.1.2 Plane-wave Basis Set

In periodic systems, it is natural to write a basis set in a plane-wave basis set. We see
this by rewriting the Schrödinger equation in reciprocal space. Since the potential V is
periodic, it can be expanded as a Fourier series in the reciprocal vectors G

V (r) =
∑

G

eiG·rVG. (4.6)

Similarly, under the periodic boundary condition, an arbitrary wavefunction can be
expanded as a Fourier series with wave vectors q

ψ(r) =
∑

q

eiq·rCq. (4.7)

Then we have the central equation in the reciprocal space by writing q = k + G

[
1

2
(k + G)2 − ε

]

Ck+G +
∑

G′

VG−G′Ck+G′ = 0 (4.8)

For each wave vector k, we can solve the central equation (4.8), and obtain the eigenval-
ues ε and eigenvectors with components Ck+G. The eigenvectors are the Bloch functions,
which can be expressed as the product of a plane-wave times a periodic function with
the periodicity of the lattice R

ψk,n(r) =

(
∑

G

Ck+G,ne
iG·r

)

eik·r = uk,n(r)eik·r, (4.9)

where n represents the band index, and uk,n(r) = uk,n(r+R). The sums over wave vec-
tor k can be performed over the irreducible Brillouin zone (IBZ) using certain sampling
schemes, e.g. the Monkhorst-Pack sampling [63].

The plane-waves are orthonormal and independent of the position of the atoms, so
that they do not suffer from the BSSE. Plane-waves are diagonal in any powers of the
momentum p, so they are eigenfunctions of the kinetic energy operator. The kinetic
energy can be written as

T =
1

2

∑

k,n

∑

G

f(εk,n)|Ck+G,n|2|k + G|2, (4.10)

where f(εk,n) is the occupation number. In practice, one cannot do an infinite summation
over the reciprocal lattice vectors and the kinetic energy is truncated to a cut-off energy

1

2
|k + G|2 ≤ Ecut. (4.11)
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As another example, the Hartree energy can be expressed in the reciprocal space as

EH =
Ω

2

∑

G

vH(G)n(G), (4.12)

where Ω denotes the volume of the unit cell. The Hartree potential is obtained using
Poisson’s equation3

vH(G) =
4πn(G)

|G|2 . (4.13)

The expansion in plane-waves in reciprocal space is computationally very efficient thanks
to the fast Fourier transformation on modern computers.

In practice, the number of plane-waves could be an order of magnitude larger than
that of localized basis set. Since in the core region the valence electron wavefunctions
must be orthogonal to those of the core, the wavefunction has rapid oscillation near the
core, which requires a huge number of plane-wave functions. This can be circumvented
either using a localized atomic-centered basis set in the core region, such as the muffin-
tin sphere in the linearized augmented-plane-wave (LAPW) method [64], or employing
a pseudopotential which replaces the potential near the core with a smooth part. For
the plane-wave calculations involved in this work, we use the pseudopotential method.

4.2 Pseudopotentials

The essence of the pseudopotential method is to replace the strong core potential by a
smoothly varied potential. The ground-state wavefunction ψPS of the pseudopotential
reproduces the all electron valence wavefunction outside the core radius rc. In the core
region where r < rc,

4 the wavefunction becomes smooth instead of exhibiting rapid
oscillation as in the all-electron wavefunction. In this way, the pseudo-wavefunction ψPS

can be represented by a low number of |G| plane-waves.

4.2.1 Norm-conserving Pseudopotentials

A good pseudopotential should be both accurate and transferable, thereby ensuring that
the pseudopotential generated from atomic calculations can be applied to different ap-
plications, such as ions, molecules, and condensed matter. We start with the concept of
norm-conserving pseudopotential (NCPP)[65], the pioneer of modern ab initio pseudopo-
tentials. Norm-conservation requires that inside rc the norm of the pseudo-wavefunction
ψPS is constrained to the true wavefunction

∫ rc

0
drr2|ψPS(r)|2 =

∫ rc

0
drr2|ψ(r)|2, (4.14)

3Although the Hartree potential diverges when G = 0, the sum of the Hartree potential, the electron-
nucleus interaction energy and the nucleus-nucleus energy is a constant for a neutral system.

4The frozen core approximation is often applied to a pseudopotential as the core states are not changed
by the environment in most cases.
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where the spherical symmetry is implied. As the eigenvalue and wavefunction are angular
momentum l-dependent, pseudopotentials of this type are semilocal.

The conservation ensures that the total charge in the core region is correct, and the
normalized pseudo-wavefunction outside rc is equal to the true wavefunction5. These
conditions are prerequisites for a correct description of the pseudo-wavefunction and
potential in the valence region where bonding occurs when the NCPP is applied to a
molecule or solid.

A good measure of the pseudopotential transferability is provided by the logarith-
mic derivatives and its first energy derivative at rc of the all-electron and pseudo-
wavefunction. We first see that the equality for r > rc ensures that the logarithmic
derivatives at rc of ψPS agrees with that of ψ

1

ψPS(r,E)

dψPS(r,E)

dr

∣
∣
∣
r=rc

=
1

ψ(r,E)

dψ(r,E)

dr

∣
∣
∣
r=rc

, (4.15)

where E is the atomic reference energy. In addition, using Green’s theorem, we have the
first energy derivative of the logarithmic derivatives

− ∂

∂E

∂

∂r
lnψ(r,E)

∣
∣
∣
r=rc

=
1

r2c |ψ(rc, E)|2
∫ rc

0
drr2|ψ(r,E)|2. (4.16)

Thus, norm-conservation also ensures that the first derivative of the logarithmic deriva-
tives with respect to E matches between the true and pseudo-wavefunction.

Constructing a pseudopotential requires one to determine the core radius rc. A large
rc makes a soft pseudopotential, which needs a small number of plane-waves. But a
soft pseudopotential is usually less transferable than a hard potential, while the latter
requires more plane-waves.

It should be noted that pseudopotentials in a semilocal form, like the NCPP, are not
very efficient. We may write the pseudopotential in terms of each atomic l value

V PS(r) = V loc(r) +

lmax∑

l=0

V PS
l (r)Pl, (4.17)

where V loc is a local (l-independent) potential, and Pl is an angular momentum pro-
jection operator. The nonlocal component of the pseudopotential is denoted by V PS

l .
When a pseudopotential in the form of Eq. (4.17) is expanded with a plane-wave basis,
the calculation becomes unpleasant because a huge number of integrals arising from the
k-dependence needed to be calculated due to the nonlocality [64]. Kleinman and By-
lander realized this problem and managed to constructed a separable pseudopotential
operator [66]. The construction begins by adding and subtracting a local function V L

∑

l

V PS
l (r)Pl = V L(r) +

∑

lm

|Ylm〉δVl(r)〈Ylm|, (4.18)

5Equality is not applied to nonlocal potentials like the Hartree-Fock exchange potential.
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where δVl = V PS
l − V L, and the projection operator is expressed by spheric harmonics.

A nonlocal pseudopotential operator V NL is used to replace the second term on the right
hand side (RHS) of Eq. (4.18), i.e. the semilocal term V SL

V NL =
∑

lm

|δVlψPS
lm〉〈ψPS

lmδVl|
〈ψPS

lm |δVl|ψPS
lm〉 . (4.19)

Unlike the semilocal V SL, V NL is fully nonlocal in both angular momentum (l and m)
and radius r. It is readily shown that when operating on the reference atom states |ψPS

lm〉,
V NL and V SL are equivalent. With this separable form, the matrix element is indeed
much easier to operate with as it can be written as the product of projection operations

〈ψi|V NL|ψi〉 =
∑

lm

〈ψi|δVlψPS
lm〉〈δVlψPS

lm |ψi〉
〈ψPS

lm |δVl|ψPS
lm〉 (4.20)

From the perspective of numerical efficiency, this offers a significant improvement over
the semilocal form, where integrals for each pair of ψi and ψj are involved.

We note here that the success of pseudopotential relies on the linearization of the
exchange-correlation functional Vxc with respect to density n. However, in pseudopo-
tential calculations for alkali and transition metals, because there is significant overlap
between core and valence electron densities, the linearization might result in system-
atic errors. One straightforward method is to include semi-core electrons as valence
electrons. Alternatively, one can resort to non-linear core correction [67] to explicitly
treat the non-linear exchange-correlation interaction between core and valence electron
densities

Ṽxc = Vxc(n
PS) + [Vxc(n

PS + ncore) − Vxc(n
PS)]. (4.21)

4.2.2 Ultrasoft Pseudopotentials

A different approach by Vanderbilt et al., known as ultrasoft pseudopotential (USPP)
[68], is able to achieve the same accuracy as the NCPP while making the pseudopotential
more smooth by abandoning the norm-conservation inside the core region. In ultrasoft
pseudopotential approach, the total energy is expressed as

E =
∑

occ

〈ψ̃j |T + V NL|ψ̃j〉 +

∫

d3rV L(r)ñ(r) + EH + Exc + Enucl-nucl. (4.22)

The nonlocal separable pseudopotential V NL is a projection operator

V NL =
∑

mn

D(0)
nm|βn〉〈βm|, (4.23)

where βm are represented by the product of spherical harmonics and radial functions.
We have the pseudo-charge density

ñ(r) =
∑

occ

[

ψ̃∗
j (r)ψ̃j(r) +

∑

mn

Qnm(r)〈ψ̃j |βn〉〈βm|ψ̃j〉
]

, (4.24)
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where Qnm are local functions. The pseudo-wavefunction ψ̃ can be obtained by solving
the secular equation by the variational principle

[H− εjS] ψ̃j = 0, (4.25)

with
H = T + Vxc + VH + V L +

∑

mn

Dnm|βn〉〈βm|, (4.26)

S = 1 +
∑

mn

∫

r<rc

d3rQnm(r)|βn〉〈βm|, (4.27)

and

Dnm = D(0)
nm +

∫

r<rc

d3r
[
V L(r) + Vxc + VH

]
Qnm(r). (4.28)

4.2.3 Projector Augmented Wave Method

Finally, we brief sketch the basic concept of the projector augmented wave (PAW) method
by Blöchl [69], which will be heavily used throughout this work. The PAW method
is similar to the ultrasoft pseudopotential method, but it keeps the full all-electron
wavefunction as in the APW method. We define an auxiliary smooth wavefunction |ψ̃n〉,
which can be transformed to the true wavefunction |ψn〉 through a linear transformation
operator T

|ψn〉 = T |ψ̃n〉. (4.29)

The Schrödinger equation is then transformed in terms of the auxiliary wavefunctions

T †HT |ψ̃n〉 = εnT †T |ψ̃n〉. (4.30)

Now we need to find a suitable transformation T to make the auxiliary wavefunctions
well behaved.

Since the true valence wavefunction is smooth, the transformation has no effect outside
the core sphere centered on the nucleus

T = 1 + T0. (4.31)

Within the sphere, each smooth function |ψ̃〉 can be expanded by partial waves |φ̃m〉

|ψ̃n〉 =
∑

m

cm|φ̃m〉. (4.32)

Analogously, we define partial waves |φm〉 to expand the true wavefunction in the sphere

|ψn〉 = T |ψ̃n〉 =
∑

m

cm|φm〉. (4.33)

Thus the all-electron wavefunction can be rewritten as

|ψn〉 = |ψ̃n〉 +
∑

m

cm

[

|φm〉 − |φ̃m〉
]

(4.34)
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4.2 Pseudopotentials

As T is a linear operator, the coefficients cm must be linear functionals of |ψ̃n〉

cm = 〈p̃m|ψ̃n〉 (4.35)

for some smooth projector functions |p̃m〉. The one-center expansion
∑

m |φ̃m〉〈p̃m|ψ̃n〉
of the smooth function |ψ̃n〉 reduces to itself if the smooth projector functions are or-
thonormal to the partial waves inside the augmentation sphere

〈p̃m|φ̃m′〉 = δmm′ . (4.36)

Using the condition (4.36), we see that the transformation T involves the all-electron
wavefunction

T = 1 +
∑

m

[

|φm〉 − |φ̃m〉
]

〈p̃m|. (4.37)

The true all-electron wavefunction ψn(r) = 〈r|ψn〉 can therefore be obtained from the
transformation operator in Eq. (4.37)

ψn(r) = ψ̃n(r) +
∑

m

[

φm(r) − φ̃m(r)
]

〈p̃m|ψ̃n〉

= ψ̃n(r) + ψn(r − R) − ψ̃n(r − R), (4.38)

where R is the coordinates of the nucleus. The all-electron wavefunction now can be
considered as a superposition of three contributions: the auxiliary wavefunctions which
are smooth everywhere, the rapid oscillating part within the core sphere (i.e. on-site),
and the smooth wavefunctions within the sphere which are subtracted from the all-
electron wavefunctions.

In general, for an arbitrary operator A in the all-electron wavefunctions problem, it
is possible to transform it to Ã that operate on the smooth functions

Ã = T †AT , (4.39)

where T is in the form of Eq. (4.37). We can derive the density in this way and it has a
similar form as in Eq. (4.38)

n(r) = ñ(r) + n1(r) − ñ1(r), (4.40)

where the superscript 1 denotes the localized density within the augmentation sphere.
To summarize, we note that the PAW method is as efficient as the ultrasoft pseu-

dopotential, and it is superior in the way that the core states information is not lost.
Therefore, unlike NCPP and ultrasoft pseudopotential, non-linear core correction is not
necessary for the PAW method since the explicit non-linear dependence of the total
energy on the one-center density is properly taken into account.
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5 Many-body Perturbation Theory

We are facing a paradox with the density functional theory: DFT is in principle exact,
which implies that it should be able to treat the properties of a many-electron system
exactly. But unfortunately we do not have access to the exact exchange-correlation func-
tional. It is thus desirable to climb up towards the highest rung of the “Jacob’s ladder”
of exchange-correlation functional1 to achieve the highest chemical accuracy. On the
other hand, DFT is essentially a static ground-state theory, although it can be applied
to excited states with a proper choice of the exchange-correlation functional. The most
relevant deficiency is the gap problem associated with the derivative discontinuity men-
tioned in Sec. 3.4.2. Long-range correlations (such as vdW and dynamic polarization)
are neither captured by standard DFT approximations.

The static DFT can be extended to the time-dependent DFT (TDDFT) [70], where
time-dependence is introduced to the exchange-correlation potential and the electron
density. An analogous approach based on the Green’s functions, i.e. many-body pertur-
bation theory (MBPT) [71], achieved much success in solid-state physics in recent years.
In this thesis, Hedin’s GW approximation is used to correct the fundamental gap from
DFT calculations, followed by the two-particle Bethe-Salpeter equation for the bound
electron-hole (e-h) interaction in the excited state.

5.1 Green’s Function Theory

Green’s functions are extraordinarily useful for perturbation problems. Let us begin
with the one-particle Schrödinger equation

[H0(r) + V (r)]ψE = EψE , (5.1)

where the external potential V is treated as a perturbation. We define the corresponding
Green’s function by the differential equation

[E −H0(r)]G0(r, r
′, E) = δ(r − r′). (5.2)

The Schrödinger equation can be rewritten as

[G−1
0 (r, E) − V (r)]ψE = 0, (5.3)

and the solution for the system under some perturbation is

ψE(r) = ψ0
E(r) +

∫

dr′G0(r, r
′, E)V (r′)ψE(r′), (5.4)

1A good example of the highest rung of a Jacob’s ladder is the EXX/RPA functional.
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5.1 Green’s Function Theory

where ψ0
E(r) is the eigenfunction of H0.

This can be extended to the time-dependent equation

[i∂t −H0(r) − V (r)]ψ(r, t) = 0, (5.5)

and the related Green’s functions are defined by

[i∂t −H0(r)]G0(rt, r
′t′) = δ(r − r′)δ(t− t′) (5.6)

[i∂t −H0(r) − V (r)]G(rt, r′t′) = δ(r − r′)δ(t− t′). (5.7)

Analogous to the static equation, the eigenstates can be expressed in terms of G0 and G

ψ(r, t) = ψ0(r, t) +

∫

dr′dt′G0(rt, r
′t′)V (r′)ψ(r′, t′) (5.8)

ψ(r, t) = ψ0(r, t) +

∫

dr′dt′G(rt, r′t′)V (r′)ψ0(r′, t′) (5.9)

By iterating Eq. (5.2) and comparing it to Eq. (5.9), a Dyson-like equation can be derived

G = G0 +G0V G, (5.10)

and it corresponds to a sum over the Feynman diagrams (cf. Fig. 5.1). We can see that
Green’s function method is indeed extremely useful since the full and the unperturbed
Green’s functions can be connected directly through the Dyson equation.

We now define the one-electron Green’s function as the expectation value with respect
to the many-body ground-state |N〉

G(rt, r′t′) = −i〈N |T ψ(rt)ψ†(r′t′)|N〉 =

{
−i〈N |ψ(rt)ψ†(r′t′)|N〉 for t > t′

i〈N |ψ†(r′t′)ψ(rt)|N〉 for t < t′,
(5.11)

where T is the time-ordering operator, and ψ(rt) is the field operator in the Heisenberg
picture which annihilates an electron at point r and time t. ψ†(r′t′) is the field operator
that creates an electron at (r′, t′). When t > t′, G describes the propagation of an
electron which was added at r′ to r. When t < t′, G is interpreted as the probability
amplitude that a hole created at r will propagate to r′. Therefore, the Green’s function
describes either the propagation of an electron (t > t′) or a hole (t < t′).2

G is intimately related to not only the expectation value of any single-particle op-
erator in the ground-state (e.g. charge density and ground-state energy), but also the
one-electron excitation spectrum in photoemission and inverse photoemission. In the
photoemission process (PES), a photon hν is absorbed by a system and an electron is
emitted with a kinetic energy Ekin. The binding energy of the electron is thus

εi = hν − Ekin. (5.12)

In the inverse photoemission (IPES), the process is reversed and the final state energy
of the electron is

εf = Ekin − hν. (5.13)

2The Green’s function is also called retarded if t > t′, or advanced if t < t′.
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The photoemission current observed in experiment is described by Fermi’s golden rule,
and it is related to the spectral function

A(r, r′, ω) =
∑

s

fs(r)f∗s (r
′)δ(ω − Es), (5.14)

where s represents the excited state. The electron removal energy Es in PES and the
transition amplitude fs(r) are defined by the N - and (N − 1)-electron states

fs(r) = 〈N − 1, s|ψ(r)|N〉 (5.15)

Es = E(N) − E(N − 1, s) < µ, (5.16)

where µ is the chemical potential. The electron addition energy in IPES can be defined
analogously

fs(r) = 〈N |ψ(r)|N + 1, s〉 (5.17)

Es = E(N + 1, s) − E(N) > µ. (5.18)

Inserting a complete set of (N±1)-electron states by the closure relation
∑ |N ± 1〉〈N ± 1| =

1 between the field operators in Eq. (5.11), we have the Green’s function in the Lehmann
representation

G(r, r′, ω) =
∑

s

fs(r)f∗s (r
′)

ω − Es ± iη
, (5.19)

where iη is an infinitesimal imaginary part needed for the convergence of the Fourier
transform to frequency domain. The poles of the Green’s function G then are the one-
electron addition and removal energies. The spectral function is given by the imaginary
part of the Green’s function

A(r, r′, ω) =
1

π

∣
∣ImG(r, r′, ω)

∣
∣ (5.20)

In the non-interacting system, each δ peak in the spectral function corresponds to the
excitation of a single particle. When interactions are present, the peaks of the spectral
function are broadened as a result of the finite lifetime of the peak. Nevertheless, one
can still treat those broadened peaks are particle-like as long as their main profile are
identifiable. This gives rise to the concept of a quasiparticle (QP).

5.2 Hedin’s GW Approximation

We see from Eq. (5.2) that the Green’s function can generally be expressed as

G(ω) = [ω −H]−1 (5.21)

It is always possible to separate the fully-interacting H into a non-interacting H0, and
a nonlocal and energy-dependent self-energy operator Σ

H(r, r′, ω) = H0(r) + Σ(r, r′, ω) (5.22)

30



5.2 Hedin’s GW Approximation

with

H0(r) = −1

2
∇2 + vext(r) + vH(r). (5.23)

The problem of solving the many-electron system is now corresponding to the solution
of the one-particle QP equation

H0ψ
QP
i (r) +

∫

dr′Σ(r, r′, εQP
i )ψQP

i (r′) = εQP
i ψQP

i (r). (5.24)

While it looks similar to the one-particle mean field theories like DFT or Hartree-Fock
theory, Eq. (5.24) is essentially a dynamic formulation, and the energy and wavefunction
are not single-particle quantities but are related to quasiparticles.

The Green’s function G0 of the non-interacting H0 can be cast into the Lehmann
representation3

G0(r, r
′, ω) =

∑

i

ψi(r)ψ∗
i (r

′)

ω − Ei + iηsgn(Ei − µ)
, (5.25)

where ψi is the one-particle wavefunction, and Ei the eigenvalue of the non-interacting
Hamiltonian. It is illuminating from Eq. (5.10) that the interacting one-particle Green’s
function G and the non-interacting G0 should also be connected by the Dyson equation,
as is proposed by Hedin [72].

G(12) = G0(12) +

∫

d3d4G0(13)Σ(34)G(42). (5.26)

Hedin’s simplified notation 1 ≡ (r1, σ1, t1) is used to represent a group of the space,
spin and time variables. 1+ denotes t1 + η where η is a positive infinitesimal, and
∫
d1 = Σσ

∫
dr1
∫
dt1. The Feynman diagram for the Green’s function G(12) is shown

in Fig. 5.1.
The self-energy Σ is obtained by self-consistently solving a set of coupled integro-

differential equations involving the vertex Γ, the polarization P , the bare (v) and screened
Coulomb interaction W

Σ(12) = i

∫

d3d4G(14)W (1+3)Γ(42; 3) (5.27)

Γ(12; 3) = δ(12)δ(13) +

∫

d4d5d6d7
δΣ(12)

δG(45)
G(46)G(75)Γ(67; 3) (5.28)

W (12) = v(12) +

∫

d3d4W (13)P (34)v(42) (5.29)

P (12) = −i
∫

d3d4G(23)G(42+)Γ(34; 1). (5.30)

The screened potential W is another Dyson-like equation like the Green’s function.
While G0 and G are the propagators for electrons or holes, v and W can be understood
as the propagations of the quantum particles of the electric field. The polarization P

3The notation of G and G0 in this section differs from Sec. 5.1.
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Figure 5.1: Feynman diagram of the Dyson equation for the Green’s functionG(12). The
heavy double line and the plain line denote the propagation of an interacting electron
and of a non-interacting electron, respectively.

is the response of the system to the additional electron or hole, which is built up by
the creations of electron-hole pairs. In other words, the polarization acts like the self-
energy for the electric field particles, and it converts the bare Coulomb potential into
the screened potential. Indeed, we see that P and Σ share the same structure, which
contains two propagators connected via the vertex function Γ. The vertex Γ is a three-
point kernel that contains the information of the electron-hole interactions. It is the most
complicated term in Hedin’s equation, and it cannot in general be evaluated numerically
since it includes a functional derivative. Hedin approximated the vertex by neglecting
the variation of the self-energy with respect to the Green’s function, which leads to a
much simplified form of Γ

Γ(12; 3) = δ(12)δ(13). (5.31)

The polarization is accordingly reduced to the form of the random phase approximation
(RPA) [73, 74]

P (12) = −iG(12+)G(21). (5.32)

For example, using the non-interacting G0 in Eq. (5.25), we have the polarizability P 0

in the independent particle (IP) form

P 0(r, r′, ω) =
∑

ij

(fi − fj)
ψi(r)ψ∗

j (r)ψj(r
′)ψ∗

i (r
′)

ω − (εj − εi) + iη
, (5.33)

where fi are occupation numbers. The self-energy becomes the simple product of G and
W

Σ(12) = iG(12)W (1+2). (5.34)

This is Hedin’s GW approximation for self-energy, which can be visualized by the dia-
gram in Fig. 5.2 as a series of scattering processes in RPA.
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Figure 5.2: Feynman diagram for the self-energy in the GW approximation. The double
wiggly line is the screened Coulomb interaction in the RPA form. The zigzag lines
represent the bare Coulomb interaction. The bubble refers to an electron-hole pair. The
self-energy in the RPA is an infinite summation containing scattering of all orders with
the most divergent term.

In practice, G is constructed using single-particle KS-DFT orbitals. The single-particle
orbitals and eigenvalues can be considered as a zeroth-order approximation to the QP
amplitudes and energies. The QP energies in Eq. (5.24) then can be approximated as a
first-order perturbation

εQP
i = εKS

i + Zi〈ψKS
i |Σ(εKS

i ) − V KS
xc |ψKS

i 〉, (5.35)

where the renormalization factor Zi is defined as

Z−1
i = 1 − 〈ψKS

i

∣
∣
∣
∣

∂Σ

∂ε

∣
∣
∣
ε=εKS

i

∣
∣
∣
∣
ψKS
i 〉. (5.36)

Instead of using the full Green’s function, it is customary to use the non-interacting
Green’s function G0 in Eq. (5.25) and screened interaction W0 in the so-called one-
shot G0W0 method. Iterating both G and W in the self-consistent GW calculations is
not straightforward since Σ is non-Hermitian and energy dependent, and it does not
guarantee a systematic improvement over the G0W0 method without vertex corrections
[75–77]. With vertex corrections, self-consistent GW is able to achieve very accurate
band gaps [78], but the calculation is formidable for large systems. It is often sufficient
to start the GW calculations with the LDA orbitals, whereas for certain systems (such
as transition-metal oxides) hybrid functionals are preferred [79].

TheGW self-energy can be decomposed into exchange and correlation parts by writing
the screened interaction W into W − v + v

Σ = iGKS
0 W = iGKS

0 v + iGKS
0 (W − v) = Σx + Σc. (5.37)

The exchange part can be evaluated analytically in a form of the Hartree-Fock exchange.
The correlation self-energy needs to be calculated numerically. One central quantity is
the evaluation of the full dielectric response of the system, which connects the bare and
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screened Coulomb interaction 4

W (r, r′, ω) =

∫

drε−1(r, r′′, ω)v(r′′, r′) (5.38)

WGG′(q, ω) = ε−1
GG′(q, ω)v(q + G′), (5.39)

where q is a vector in the first Brillouin zone, and the bare Coulomb potential v(q) in
the momentum space is given by 4π/(Ω|q|2). The local field effect, which is due to the
local inhomogeneities of the electronic system, is taken into account by the off-diagonal
components with G 6= G′. In GW approximation, the dielectric function is related to
the polarizability by

εGG′(q, ω) = δGG′ − v(q + G)PGG′(q, ω). (5.40)

When P is zero, there is no polarization and the total potential Vtot is equal to the
external potential Vext according to the linear response relations

Vtot = Vext + Vind, (5.41)

Vext = εVtot, (5.42)

Vtot = ε−1Vext, (5.43)

ρind = χVext = PVtot, (5.44)

where Vind is the induced potential by external perturbations, and the induced charge
ρind is connect to the external potential via the reducible polarizability χ. The inverse
dielectric function can be expressed in terms of v and χ

ε−1
GG′(q, ω) = δGG′ + v(q + G)χGG′(q, ω). (5.45)

The reducible polarizability χ is linked to the irreducible polarizability P by a Dyson-like
equation

χ = P + Pvχ. (5.46)

The inverse dielectric function is of great significance to determine the excitation spec-
tra. The electron-energy-loss spectra (EELS) are accessible from its imaginary part
−Im[ε−1(q, ω)]. In optical absorption experiment, the spectra are described by the
imaginary part of the macroscopic dielectric function εM

εM(ω) ≡ lim
q→0

1

ε00(q, ω)
. (5.47)

Alternatively, the macroscopic dielectric function can be expressed in a more useful form
in terms of a modified polarizability P̃

εM(ω) ≡ 1 − lim
q→0

[

v(q)P̃00(q, ω)
]

, (5.48)

4εGG′(q, ω) ≡ ε(q + G, q + G′, ω).
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with

P̃ = P + P ṽP̃ . (5.49)

The modified ṽ is nothing but the bare Coulomb interaction v except that ṽ vanishes
for the long-range contribution (G = 0).

The evaluation of the dielectric function is cumbersome and it requires a full integra-
tion in ω along the imaginary axis [80], or by a real-axis integration [81, 82]. However, it
is noticed that in most cases εGG′(q, ω) is characterized by a strong peak corresponding
to a plasmon excitation at the plasmon frequency, which can be described by a single-
pole function. In the plasmon-pole approximation, the position and strength of the pole
can be determined by sum rules [83] or by reproducing the dielectric function at two
imaginary energies [84]. The plasmon-pole approximation is reasonable as the details of
the energy dependence in εGG′(q, ω) are not critical. It works well when the screening
is dominated by a small number of poles at high energies. Nevertheless, the lifetime
of a quasiparticle cannot be obtained by the plasmon-pole approximation because the
imaginary part of the self-energy is zero outside the poles.

5.3 Two-particle Bethe-Salpeter Equation

In the GW method, the vertex Γ, as the linear response of the self-energy to a change
in the total potential, is approximated to δ, and the two Green’s functions are no longer
coupled in the polarizability P . The decoupling implies that the bound electron-hole
interaction, i.e. the excitonic effect is neglected in the absorption spectra. Indeed, it
has been found that the polarizability in the IP-RPA form (Eq. 5.33) even with GW
corrections yields a blue-shift of the absorption peak for several insulators and metallic
systems [85–89]. In the context of this work where the creation of mobile electron is
involved, it is apparent that the electron-hole attraction is important in determining the
effective excitation energy.

The inclusion of the excitonic effect through the vertex corrections is achieved in a
second iteration of Hedin’s equation from Eq. (5.27) to (5.30), assuming the self-energy is
in the GW approximation. The vertex function can be formally written as the derivative
of the inverse Green’s function with respect to the total potential

Γ(12; 3) = −δG
−1(12)

δV (3)
= δ(12)δ(13) + i

δ[G(12)W (1+2)]

δV (3)
. (5.50)

Neglecting the change in screening due to the excitation, we have

Γ(12; 3) = δ(12)δ(13) + iW (1+2)
δG(12)

δV (3)
(5.51)

From the identity

δG(12)

δV (3)
= −

∫

d4d5G(14)
δG−1(45)

δV (3)
G(52), (5.52)
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we reach an integral equation for the vertex

Γ(12; 3) = δ(12)δ(13) + iW (1+2)

∫

d67G(16)G(72)Γ(673). (5.53)

This is the Bethe-Salpeter equation (BSE) [90] for the irreducible vertex function. We
now define a three-point polarizability P in terms of the Γ

P (312) = −i
∫

d6d7G(16)G(72)Γ(673). (5.54)

Multiplying with −iG(41)G(25) on the left, the polarization can be expressed as

P (345) = −iG(43)G(35) + i

∫

d1d2G(41)G(25)W (1+2)P (312), (5.55)

where the kernel GGW is a four-point function. We then introduce a four-point screened
interaction

W (1234) ≡W (12)δ(13)δ(24), (5.56)

and the four-point P and W are connect by a Dyson equation as

P = P 0 − PWP 0, (5.57)

where P 0 is the four-point IP-RPA polarizability. As for the modified polarizability in
Eq. (5.48), there is an analogous Bethe-Salpeter equation for the four-point P̃

P̃ = P 0 + P 0KP̃ . (5.58)

The kernel K comprises the bare electron-hole exchange ṽ and the screened electron-hole
attraction −W 5

K(1234) = δ(12)δ(34)ṽ(13) − δ(13)δ(24)W (12). (5.59)

The solution of the four-point P̃ can be transformed to an eigenvalue problem associ-
ated with an effective two-particle Hamiltonian

H(n1n2)(n3n4) ≡ (εn2
− εn1

)δn1n3
δn2n4

+ (fn1
− fn2

)K(n1n2)(n3n4), (5.60)

where ni refer to energy indexes of one-particle KS states. In practice, the static screening
is used and the two-particle equation is reduced to

∑

n3n4

{(εn2
− εn1

)δn1n3
δn2n4

+ (fn1
− fn2

)
[
ṽ(n1n2)(n3n4

−W(n1n2)(n3n4)

]
}A(n3n4)

λ

= EλA
(n3n4)
λ , (5.61)

where Eλ is the excitation energy.

5When the spin is considered, K = 2ṽ −W .
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5.3 Two-particle Bethe-Salpeter Equation

It has been shown that the two-particle excitonic Hamiltonian can be formally sepa-
rated into four blocks [71]

Hexc =

(
Hres Hcpl

−[Hcpl]∗ −[Hres]∗

)

. (5.62)

The resonance part Hres contains the transitions at positive absorption energies ω, which
is defined as

Hres
(vc)(v′c′) = (εc − εv)δvv′δcc′ +K(vc)(v′c′), (5.63)

where c and v denote the conduction and valence states, respectively. The coupling part
is symmetric, and it describes the interaction between the resonant and antiresonant
parts, i.e. the electron-hole pairs at both positive and negative energies

Hcpl
(vc)(v′c′) = K(vc)(v′c′), (5.64)

where the electron-hole antipairs are denoted by v′c′. While the two-particle Hexc is
generally not Hermitian, the resonant part is Hermitian. Therefore in the Tamm-Dancoff

approximation (TDA), the Hexc is approximated by its resonant part and the effect of the
coupling is neglected. The macroscopic dielectric function in the TDA can be expressed
as

εM(ω) ≡ 1 − lim
q→0

∑

λ

∣
∣
∣
∑

vc,k〈v,k − q|e−iqr|c,k〉Avc,kλ

∣
∣
∣

2

Eλ − ω
. (5.65)

Although the TDA is now becoming a standard method to study excitations in nanos-
tructures [91–93], defects in solids [94] and molecules [95], the neglect of the coupling
part might shift the absorption peak to higher energy [96], and the TDA could eventu-
ally break down for nanostructures where the confined optical excitation has a mixed
excitonic-plasmonic behavior [97]. Hence, full BSE calculations including the coupling
part are always desirable.

To this point, we have reviewed all the first-principles techniques that are used to
study the molecule-surface interfaces in this thesis. Before preceding to the results, we
should be aware of the fact that there is no all-in-one first-principles method for all types
of properties in realistic calculations. One will be definitely thwarted by the huge and
unrealistic amount of computation time and memory if everything is carried out with
the highest level of theory. We now sketch the basic strategy in dealing with different
properties with the corresponding level of theory. The ground-state properties, such as
structural parameters and adsorption geometries can already be well described within
the KS-DFT using hybrid functionals. The long-range dispersion force in weakly bound
systems are taken into account by either DFT-D or vdW-DF. The GW approximation,
being a dynamical theory, is able to provide an accurate prediction of the fundamental
band gap and dynamic correlations. Finally, the BSE is an indispensable tool to include
the electron-hole interaction for the excitation properties.
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Gas-phase Molecules and Bulk
Insulators
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6 Benzoic Acid and Its Phenolic Derivatives

6.1 Ground-state Geometries

The representative organic molecules studied in this work is benzoic acid and its phenolic
derivatives. Their molecular structures are shown in Fig. 6.1. Benzoic acid (C6H5COOH)
is the simplest aromatic carboxylic acid, with one carboxylic group attached to an aro-
matic ring. BA can be functionalized to hydroxybenzoic acids, namely salicylic acid
(SA) or para-salicylic acid (p-SA) by attaching one phenolic group to the ortho- or
para- position with respect to the carboxylic group1. All molecules are flat due to sp2

hybridization over the benzene, carboxylic and phenolic groups.

Figure 6.1: Structures of benzoic acid, sal-
icylic acid, and para-salicylic acid. The
red (black), gray, and small white atom
represent oxygen, carbon, and hydrogen,
respectively.

The ground-state structural parame-
ters of these molecules are calculated
with the PW1PW hybrid functional (See
Sec. 3.4.3) in the localized basis set as
implemented in crystal06 [98]. The
C, O, and H atoms of the molecules are
expanded by Pople-type 6-31G(d) basis
sets2. The values for the intramolecular
bond lengths are given in Table 6.1. The
results given by the PW1PW hybrid func-
tional are in accord with the experimental
values.

6.2 Electronic Structures

Apparently, the electronic properties of
the benzoic acid should be affected by the
presence of the phenolic group. This is evidenced experimentally by the occupied elec-
tronic states of these acids in condensed films as resolved by ultra-violet photoemission
spectroscopy (UPS) [101]. We show in Table 6.2 both PW1PW calculations and UPS
results of the frontier orbital energies. A first impression from the comparison is that the
separation between HOMO and HOMO−1 by PW1PW functional is in agreement with
UPS, whereas the discrepancy becomes larger for the HOMO−3 energy with respect to
the HOMO. In addition, the presence of phenolic OH in SA and p-SA changes the in-
tramolecular interaction and leads to a larger separation between HOMO and HOMO−1

1The alternative (IUPAC) names for SA and p-SA are 2- and 4-hydroxybenzoic acid, respectively.
2One can refer to Appendix E for a detailed description of the basis set.
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6 Benzoic Acid and Its Phenolic Derivatives

Table 6.1: Intramolecular bond lengths (Å) of benzoic acid, salicylic acid and para-
salicylic acid. The C−C is the average values of the six bond lengths between neighboring
carbon atoms over the aromatic ring.

BA SA p-SA

PW1PW Expt.1 PW1PW Expt.2 PW1PW

C−C 1.394 1.388 1.399 1.385 1.395
C−Ccarb. 1.482 1.484 1.460 1.457 1.475
Ccarb.−Ocarb. 1.351 1.341 1.307 1.353
Ccarb.=Ocarb. 1.213 1.231 1.234 1.214
Ocarb.−H 0.974 0.974 1.000 0.973
C−Ophenol 1.336 1.358 1.354
Ophenol −H 0.990 1.029 0.968

1 Reference [99].
2 Reference [100].

Table 6.2: Frontier molecular orbital energies (eV) of BA, SA and p-SA calculated with
the PW1PW hybrid functional. The energies are shifted so that the HOMO energy is
zero.

BA SA p-SA

PW1PW Expt.1 PW1PW Expt.1 PW1PW Expt.1

LUMO 5.81 4.79 5.36
HOMO 0.00 0.00 0.00 0.00 0.00 0.00
HOMO-1 -0.05 -0.18 -1.04 -1.00 -0.81 -0.73
HOMO-2 -0.37 -1.67 -0.97
HOMO-3 -1.55 -2.36 -2.82 -3.10 -2.10 -2.58

1 Reference [101].
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6.2 Electronic Structures

than that of BA. While the unoccupied states are not accessible from UPS, the PW1PW
calculations suggest that SA has the smallest HOMO-LUMO gap among all three acids,
and the gap for p-SA is the largest.

However, in the absence of experimental data of the gap, it is unclear how reliable
the PW1PW functional is for the electronic structure of hydroxybenzoic acids. It is
thus tempting to extend the calculations to the GW approximation since in principle an
accurate energy gap can be obtained by the quasiparticle energies from GW calculations.
Here we briefly introduce the scheme and parameters for the one-shot G0W0 calculations.
The LDA orbitals and eigenvalues are used as the input to the quasiparticle corrections.
The LDA calculations are performed in a plane-wave basis set with norm-conserving
pseudopotentials implemented in abinit [102]. The molecules are confined in a box
with the dimension of 30.0 × 30.0 × 24.0 Bohr3, which is repeated periodically in x,
y and z directions. The k point is sampled at the Γ point, and the cut-off energy
for the kinetic energy is 70 Ry (952 eV). In the subsequent G0W0 calculations, the
slowly decaying Coulomb potential between the periodic images is corrected with a box-
like cutoff (20.0 × 20.0 × 10.0 Bohr3) [103]. We include over 450 empty states in the
evaluation of the polarizability and the Green’s function for the self-energy. 2 × 105

reciprocal lattice G vectors (equivalent to a cut-off energy of about 68 Ry) are included
in the calculation of the exchange self-energy. The plasmon pole approximation is used
to calculate the RPA response function, and 3000 G vectors (4 Ry) are included to
account for the local-field effect. The quasiparticle gap is converged within 0.1 eV with
these parameters. The GW (and BSE) calculations are carried out with the yambo

package [104].
The molecular orbital energies from LDA, PW1PW and G0W

LDA
0 are compiled in

Fig. 6.2. It is not surprising that LDA predicts too small HOMO-LUMO gap for all
molecules. More seriously, LDA gives a wrong order of the three highest occupied or-
bitals of BA when compared to the hybrid functional and G0W0 calculations. Both
PW1PW and G0W0 predict that the HOMO and HOMO−1 are delocalized bonding-
states of the cyclic benzene ring for all the three molecules. These two orbital levels
are almost degenerate, which is very similar to the benzene molecule. However, LDA
instead predicts the highest occupied state as a non-bonding state, where the electron
density is localized around the carboxylic group. This is indeed the consequence of the
self-interaction in the local and semilocal approximations of KS-DFT, which is discussed
in Sec. 3.4.2. The self-interaction in LDA has a tendency to delocalize the electrons, and
as a result the localized electronic states are often put too high in energy. In fact, we
see from Fig. 6.2 that the energy separation between the two highest π orbitals can be
well described at the level of LDA because the delocalized states are usually much less
influenced by the self-interaction error. On the other hand, the LDA orbital energies of
the localized state at the carboxylic group, i.e. the HOMO-2 in the PW1PW and G0W0

calculation, are consistently blue shifted by about 0.6 eV for all the three molecules.
This is clearly an effect of the self-interaction.

It is a relief to see that the Hartree-Fock exchange in the PW1PW hybrid functional
indeed improves the spurious self-interaction, and the PW1PW orbital characteristics
and the energies for the occupied states are in line with the G0W0 results. Being a
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6 Benzoic Acid and Its Phenolic Derivatives

Energy (eV)
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LUMO HOMO
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LUMO HOMO

HOMO-1 HOMO-2

BA
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Figure 6.2: Molecular orbital energies of various hydroxybenzoic acids calculated with
PW1PW, LDA and G0W

LDA
0 . The three highest occupied states for BA are highlighted

in the inset. The UPS data is from Ref. [101]. The highest occupied states are aligned
to zero energy. The electron density of LUMO and three highest occupied MOs from
hybrid functional calculations are presented in the right panel.
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6.3 Molecular Excitonic Effect
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Figure 6.3: Optical absorption spectra ImεM(ω) for BA (left) and SA (right) molecules.
The spectra are broadened by an artificial Lorentzian of 0.1 eV.

dynamic theory, the G0W0 yields quasiparticle energies in quantitative agreement with
the UPS experiment. In particular, the HOMO−3 levels for all molecules by G0W

LDA
0

align well with the UPS peaks. The HOMO−3 is also a localized non-bonding state at
the carboxylic group, with a different molecular orbital symmetry than the HOMO−2.
Hence, it is reasonable to assert that the self-interaction error is further suppressed in
GW calculations. Nevertheless, in overall PW1PW gives a good account of the occupied
states.

Moving to the unoccupied states, we find the quasiparticle energy corrections to the
HOMO and LUMO are rather substantial. An interesting observation is that the quasi-
particle correction to the LUMO+2 is about 2 eV smaller than the LUMO and LUMO+1
in the present calculations. Instead of the π∗ anti-bonding character of the LUMO
and LUMO+1, the wavefunction of the LUMO+2 is largely delocalized away from the
molecule, a sign of a Rydberg orbital. We mentioned in Sec. 3.4.2 that the Rydberg state
is not correctly described by the LDA because of the unrealistic exponential decay of
the potential in the long-range. As a result, for the BA and the p-SA, the quasiparticle
energy of the LUMO is marginally higher than that of the LUMO+2. The quasiparticle
energy gap, i.e. the difference between the electron removal and affinity energy now
amounts to 8.63, 7.62, and 7.88 eV for BA, SA, and p-SA, respectively. These values are
about twice as large as the LDA gap, and even the PW1PW hybrid functional under-
estimates the fundamental gap to a large extent when referenced to the G0W0 gap (See
Table 6.2). To wrap up, we find that LDA not only gives a too small HOMO-LUMO
gap but could also distort the spectrum for the occupied orbitals. Therefore, hybrid
functional is necessary for physical interpretations of the molecules.
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6 Benzoic Acid and Its Phenolic Derivatives

6.3 Molecular Excitonic Effect

When comparing the GW gaps of the molecules to the lowest optical peaks from the
available UV/visible optical spectra, one finds that the discrepancies are enormous. For
example, the lowest two excitation states of BA appear at 4.55 and 5.38 eV in optical
spectra [105]. However, the quasiparticle gap from GW approximation reaches over
9 eV. As for SA, the quasiparticle energy gap is also much larger than the observed
optical peak around 4.0 eV [106]. These findings lead to an assumption that the bound
electron-hole interaction must play an important role in the optical absorption if the GW
fundamental gap is reasonable. Therefore, we conduct the two-particle BS equation
within the Green’s function method to explicitly evaluate the excitonic effect in the
optical process of these molecules. We take BA and SA as the subjects because a direct
comparison to experiment is possible. The BSE calculation requires the quasiparticle
corrections of the G0W

LDA
0 results. The two-particle excitonic Hamiltonian includes

both resonant and coupling parts, as the Tamm-Dancoff approximation using only the
resonant part of the excitonic Hamiltonian has been found to affect the excitonic peak
position and the spectral lineshape in molecular systems [96, 97]. In the present study,
we find that the lowest excitation peak using the TDA tends to shift to higher energy
by about 0.1 eV with respect to the full BSE calculation. A comparison between the
TDA and the full BSE calculation on the optical absorption of BA and SA is given in
Appendix A. The static screened Coulomb potential (with a cut-off of 4 Ry) is used as
the effective electron-hole interaction in the BSE calculations. We use a cut-off of 2 Ry
(about 1000 G vectors) for the screened interaction W , and a cut-off of 68 Ry (2 × 105

G vectors) for the exchange component ṽ. Electron-hole pairs involving the transitions
in an energy window of 33.2 eV are considered in the BSE kernel (Eq. 5.60), and this
ensures that the absorption spectra are well converged.

Figure 6.4: Excitonic wavefunc-
tion of the lowest singlet exciton of
SA molecule. The position of the
hole (i.e. the removed electron) is
indicated by a circle.

The absorption spectra ImεM(ω) in Fig. 6.3 in-
deed show excellent agreement with optical spectra
in terms of the lowest excitation peak. The differ-
ence between the BSE calculations and experimen-
tal optical peaks are within 0.15 eV. The lowest
excited states for both BA and SA correspond to
the singlet excitations from HOMO to LUMO, i.e.

the transitions from the bonding state to the anti-
bonding state of the aromatic ring. This can visu-
alized by the excitonic wavefunction in Fig. 6.4, as
the excitonic wavefunction resembles to that of the
LUMO (Fig. 6.2) if an electron is removed from the
HOMO.

The binding energy Eb of the bound electron-
hole is defined as the energy difference between the
continuum state and the exciton state

Eb = Eg − Eexc, (6.1)
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6.3 Molecular Excitonic Effect

where Eg is the quasiparticle energy gap, and Eexc refers to the exciton energy. The
exciton binding energy of the lowest excited state of BA is 8.8 − 4.6 = 4.2 eV 3, and
it amounts to 7.6 − 3.8 = 3.8 eV for SA. Therefore, both molecules show substantial
exciton binding energies, whose magnitudes are about half of the fundamental gap. The
electron-hole pair is thus very strongly bound, and the exciton is spatially localized at
the aromatic benzene ring. The strong excitonic effect is an important feature of the
benzoic acid and its phenolic derivatives.

3Here 8.8 eV is the quasiparticle energy difference between the π and π∗ states.
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7 NaCl and KCl

7.1 Structural Parameters

In this section, we first examine the bulk properties of NaCl. The NaCl crystal struc-
ture is face-centered cubic (space group Fm3̄m). The equilibrium lattice constant (a0),
bulk modulus (B0) and lattice energy (El) are calculated and compared to experiment,
which are summarized in Table 7.1. We use the 8-511G and 86-311G split-valence
basis sets for Na and Cl [107], respectively.1 The cell parameters of bulk NaCl have
been fully optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
A fine Monkhorst-Pack (MP) k-point mesh of 8×8×8 was employed, corresponding to
29 k -points in the IBZ of the primitive unit cell. The energy convergence criteria for self-
consistent field (SCF) calculation is 10−7 hartree. Geometry optimizations is considered
as converged when the residual force is below 0.0003 Hartree/Bohr.

The lattice constant and bulk modulus are calculated with several functionals, includ-
ing HF method, GGA-PW91 functional, and two hybrid functionals, namely B3LYP
[108] and PW1PW. It is found that the lattice constant predicted by PW1PW (5.68 Å)
is closest to experiment with a slight overestimation of 0.7%. It should be kept in mind
that the experimental a0 measured at room temperature includes zero-point phonon ef-
fects, which usually show an expansion of 1% compared to the 0 K value for the ionic
solids [109]. The bulk modulus is obtained by fitting the curve E(V ) with a strain (ǫ)
matrix. PW1PW gives a more accurate description of the bulk modulus among all the
methods, although the value is still underestimated by 6.0%. The lattice energy (El) of
NaCl at zero Kelvin is defined as

El = ENaCl − ENa+ − ECl− , (7.1)

where ENaCl, ENa+ and ECl− refer to the total energy of bulk NaCl, isolated Na and Cl
ions, respectively. We see that although all methods are able to obtain reasonable lattice
energies, the El calculated by PW1PW (8.00 eV) is again closest to the experimental
value.

KCl shares the same crystal structure as NaCl. PW1PW hybrid function using the
86-511G basis sets for K yields a lattice constant a0 = 6.48 Å, which is about 4.5% larger
than experiment (6.20 Å) [113]. GGA-PBE2 slightly improves over PW1PW, but the
lattice constant is still about 4.1% too large. Hence, we find that the lattice constants
of both NaCl and KCl are overestimated by GGA and hybrid functionals.

1The detailed information of the basis sets is presented in Appendix E.
2The PBE calculations are performed using the PAW potential in a plane-wave basis set.
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7.2 Band Structure

Table 7.1: Calculated equilibrium lattice constant (a0), bulk modulus (B0), lattice en-
ergy (El) and band gap (Eg) of NaCl.

Parameters HF PW91 B3LYP PW1PW Expt.

a0 (Å) 5.79 5.72 5.73 5.68 5.641

B0 (GPa) 22.9 24.2 24.9 25.0 26.62

El (eV) 7.71 7.98 7.82 8.00 8.203

Eg (eV) 14.00 5.40 7.00 7.15 8.53

1 Reference [110].
2 Reference [111].
3 Reference [112].

7.2 Band Structure

7.2.1 KS-DFT Electronic Structure

Both NaCl and KCl are direct band-gap insulators. We show the band structure of NaCl
in Fig. 7.1 as an illustration. From Table 7.1 we see that the band gap obtained with HF
or the GGA functional is either far too wide or too narrow. Hybrid functionals are able to
improve the band gap value, although it is still somehow underestimated. In particular,
PW1PW yielded a band gap of 7.15 eV for bulk NaCl, which is in better agreement with
experiment than B3LYP. The density of states (DOS) plotted in Fig. 7.1(b) gives some
insights into the electronic structure. The projected density of states (PDOS) ρm(ε) are
defined as the projection of the KS eigenstates |ψn,k〉 onto a set of orthonormal state
|φm〉

ρm(ε) =
∑

n,k

wk|〈φm|ψn,k〉|2δ(ε − εn,k), (7.2)

where wk is the k-point weight, and the summation is performed over the band index
n and k-point index k. The NaCl valence band is essentially formed by 3p states of
Cl atom, whereas the conduction band minimum is of Cl 4s character. The 3s states
of Na has only marginal contribution to the conduction band. While this is on the
contrary to common belief that the conduction band of NaCl consists of Na s state solely,
recent calculations proved that the conduction band indeed has a predominant chlorine
character [114]. The valence band width is 1.97 eV by PW1PW functional, comparable
to the experimental value of 1.8 eV. The small band dispersion is an indication of strong
ionic bonding between Na and Cl atoms. The ionic nature can also be evidenced by a
Mulliken population analysis, in which the net atomic charges of Na and Cl are +0.972
and −0.972 e, respectively.

The band structure of KCl predicted by PW1PW closely resembles that of bulk NaCl.
The valence band is mostly of Cl 3p character, and the lowest conduction band sees
a mixture of the K 4s, and more significantly, the Cl 4s states. The PW1PW band
gap amounts to 8.00 eV, about 0.7 eV smaller than experiment. GGA-PBE functional,
on the other hand, severely underestimates the gap (EPBE

g = 5.04 eV). Therefore, the

47



7 NaCl and KCl

valence band
maximum

conduction band
minimum

Figure 7.1: (a) Band structure of bulk NaCl and (b) total DOS and projected density of
states (PDOS) onto the s and p states of Na and Cl, calculated with PW1PW functional.
The top of the valence band is set to zero energy.

addition of the nonlocal HF exchange to the GGA exchange manages to correct the band
gap to some extent, leading to a much closer agreement with experiment. We note that
the valence bandwidth of KCl is 0.94 eV as predicted by PW1PW, about 1 eV smaller
than that of NaCl. As the valence bandwidth is determined by second-neighbor p-p
overlap, the smaller dispersion of the KCl valence band is a result of partial screening
of the overlap, which stems from the higher degree of ionic bonding due to the higher
electropositivity of K. This is also evidenced by the Mulliken population analysis that
results in an absolute net atomic charge of KCl of 1.004 e for the ions, which is larger
than that of bulk NaCl.

7.2.2 Quasiparticle Band Gap

Following the gas-phase molecules, we calculate the quasiparticle band structure of
NaCl in G0W0 approximation on top of LDA eigenvalues and orbitals. The Na norm-
conserving pseudopotential includes non-linear core correction. We use a cut-off energy
of 80 Ry (1088 eV), and a 6 × 6 × 6 MP k-point mesh equivalent to 16 k points in the
IBZ. The LDA optimized a0 = 5.54 Å is adopted as the lattice constant. The resulting
band gap from LDA exchange-correlation functional is 4.95 eV.

In the subsequent G0W0 calculations, the state summation in the calculation of self-
energy includes 124 empty bands, i.e. those states up to 112 eV above the VBM using
LDA. Local field effect is taken into account via 230 G vectors (with a cut-off energy of
12 Ry) in the RPA response function calculations. The G0W

LDA
0 significantly corrects

the underestimated band gap by the LDA exchange-correlation functional, shifting the
VBM downward by 2.07 eV, and the CBM upward by 1.05 eV. This consequently gives
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7.3 Excitonic Effect
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Figure 7.2: Absorption spectra of bulk NaCl calculated with independent particle RPA
and BSE. The quasiparticle energies are obtained by rigid scissors shifts of the LDA
eigenvalues to reproduce the experimental gap. A broadening of 0.1 eV is applied.

rise to a quasiparticle gap of 8.06 eV, about 0.4 eV smaller than the experimental gap.
This is in accord to the general trend of the G0W0 calculations on top of LDA eigenvalues
that the quasiparticle gaps are usually slightly underestimated [78].

7.3 Excitonic Effect

The lowest energy exciton in alkali halides is known as a tightly bound Frenkel exci-
ton localized at the anion because of the small screening in between the electron-hole
pair [115]. We calculate the macroscopic dielectric function of NaCl as an example in
both independent particle RPA and two-particle BSE. The excitonic peak is dependent
on the fundamental gap, and due to the underestimation of the quasiparticle gap by
G0W

LDA
0 , we apply rigid scissors shifts to both the conduction band and valence band

and reproduce the experimental band gap of 8.5 eV. We include 4 valence bands and 28
conduction bands in the evaluation of the BSE kernel, with 230 G vectors (12 Ry) in
the screened interaction and 4200 G vectors (90 Ry) in the exchange interaction. The
static dielectric function includes 530 G vectors (23 Ry). It is obvious from Fig. 7.2 that
the independent particle RPA using the shifted eigenvalues exhibits a blue-shift of the
lowest excitation peak, which corresponds to the fundamental gap of NaCl. The BSE
calculation correctly captures the lowest exciton peak as compared to the experimental
room temperature spectrum [116], with calculated exciton binding energy of 0.9 eV.
Apart from the position of the peak, the intensity and lineshape also change from the
independent particle to the two-particle equation. Similar results have been also iden-
tified by Bechstedt [117]. At larger energies, the optical peaks from BSE calculations

49



7 NaCl and KCl

deviate from the experimental peaks by a rigid shift of about 0.5 eV, which is possibly
as a result of the crude scissors operation. We note that the optical spectra can be well
described by the Tamm-Dancoff approximation (TDA) including only the positive en-
ergy electron-hole pairs in the excitonic Hamiltonian. The difference between the TDA
and full BSE calculation in the absorption spectra is negligible.
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8 Hydroxybenzoic Acids on Ideal NaCl(100)

After discussing the properties of the isolated molecules and alkali halides insulators,
we now turn to the investigation of the molecule-insulator interfaces. This chapter is
devoted to the adsorption of organic molecules, specifically the hydroxybenzoic acids
on the perfect (100) surfaces of NaCl and KCl. As a first step, we will present the
adsorption on NaCl(100) surface, discussing the properties of the surface, the adsorption
configurations, and the roles of the long-range vdW interaction.

8.1 Properties of NaCl(100) Surface

We start with the surface energy calculation because it is the most basic thermodynamic
quantity of a surface, and it is a good benchmark for various theoretical methods. The
surface energy can be expressed as [118]

γ = lim
n→∞

Es(n) = lim
n→∞

E(n) − n[E(n) − E(n − 1)]

2A
, (8.1)

where E(n) is the total energy of an n-layer slab, and A is the area of the primitive
surface cell. The factor 2 accounts for the upper and lower surfaces of the slab. Thus
Es(n) is the energy per unit cell area needed to form the surface from the bulk, and it
converges to the surface energy per unit area as more layers are added. In this study
up to 12 layers have been used to check the surface energy convergence, as is illustrated
in Fig. 8.1. The calculated γ is 12.25 meV/Å2, consistent with the results obtained
by other functionals and earlier experiments [119]. The Es shows a rapid convergence
after three and more layers have been put together. In fact, the Es difference between a
5-layer and 12-layer slab is only 0.08% of the γ value.

Figure 8.1: Surface energy of NaCl(100)
calculated for various numbers of layers by
PW1PW functional. The surface energy is
well converged with 5 and more layers.
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8.1 Properties of NaCl(100) Surface

Table 8.1: The relaxation of the NaCl(100) surface with a 5-layer and 12 layer slab. The
subscripts 1, 2 and 3 designate the first, second and third layer, respectively.

∆z (Å)

Na1 Cl1 Na2 Cl2 Na3 Cl3

5-layer slab −0.023 0.019 0.002 −0.003 0.000 0.000
12-layer slab −0.023 0.020 0.003 −0.003 0.001 0.001

∆i (Å)

1(Na−Cl) 2(Na−Cl) 3(Na−Cl) ∆12 (%) ∆23 (%)

5-layer slab −0.021 0.003 0.000 −0.05 −0.02
12-layer slab −0.022 0.003 0.000 −0.04 −0.03
Expt.1 −0.07 0.01 0.00 −1.4 0.1

1 Reference [120].

The relaxation of NaCl(100) surface (see Tab. 8.1) induces small vertical displacements
of Na and Cl atoms in the first and second layer of the slab, whereas there is almost
no change for atoms in deeper layers. The average rumpling of the surface is calculated
using the following relation

∆i =
1

2
(∆z,Na(i) − ∆z,Cl(i)) (8.2)

where ∆z,Na(i) and ∆z,Cl(i) is the vertical displacement of Na and Cl in the i -th layer. It
can be seen from the calculation that in the top layer the Na atom tends to move towards
the bulk by 0.023 Å while the Cl atom relaxes away from the bulk by about 0.020 Å.
The buckling of the surface atoms was also found in a low-energy electron diffraction
(LEED) experiment [120], but the rumpling observed by LEED is larger. It is obvious
that the buckling of surface atoms also affects the interlayer distance. The change of the
interlayer distance ∆i,i+1 is defined as

∆i,i+1 =
∆z,Na(i) + ∆z,Cl(i) − ∆z,Na(i+1) − ∆z,Cl(i+1)

a0
, (8.3)

where a0 is the equilibrium lattice constant of NaCl. According to both the calculation
and LEED the distance between the upper two layers is reduced after relaxation. Small
buckling of atoms in the second and third layer leads to much smaller changes in the
interlayer spacing between these two layers. In addition, the results obtained from the
5-layer slab agree quite well to the 12-layer slab. Therefore we will use a 5-layer supercell
slab for the study of adsorption on perfect NaCl(100).

Before proceeding to the next section, we give a glimpse into the electronic structure
of NaCl(100) surface. Fig. 8.2(a) shows the band structure of NaCl(100) obtained from a
relaxed 5-layer slab. The unrelaxed (100) slab exhibits a very similar electronic structure
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8 Hydroxybenzoic Acids on Ideal NaCl(100)

Figure 8.2: (a) Band structure and (b) DOS of a 5 layer NaCl(100) slab calculated using
the PW1PW functional. The top of the valence band is shifted to energy zero.

because of the small relaxation and rumpling at the surface. The electronic structure
of NaCl(100) surface is qualitatively identical to that of the bulk. The calculated sur-
face band gaps are 7.41 eV and 7.20 eV obtained from the 5-layer and 12-layer slab,
respectively. This, however, is contradictory to the common belief that band gap of the
ionic surface should be smaller than that of the bulk due to the decreased Madelung
potential at the surface. For reference, we calculated the electronic structure of a thicker
slab consisting of 30 layers of atoms, and obtained a band gap of 7.15 eV, the same as
the bulk value. This is in agreement with previous DFT calculations based on the plane
wave pseudo-potential approach, where the band gaps for both the bulk and the (100)
surface were found to be identical [119]. One can see from the layer-resolved DOS of a
5-layer slab in Fig. 8.2(b) the narrowing of the valence band width in the first layer, as
well as a small shift of the peaks to the valence band maximum. The second and third
layers, however, already exhibit bulk-like electronic properties.

8.2 Adsorption of Benzoic Acid and Its Phenolic Derivatives on
NaCl(100)

8.2.1 Adsorption Configurations

The adsorption geometries of various benzoic acids on NaCl(100) are obtained from
an initial configuration where the molecules are placed at different positions on the
surface with a vertical separation distance of about 2.5 Å, followed by subsequent BFGS
updates. It is reasonable to start the optimization from a parallel configuration with
a molecule lying flat on the surface, as is suggested by previous experiments [16, 101].
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8.2 Adsorption of Benzoic Acid and Its Phenolic Derivatives on NaCl(100)

Table 8.2: Adsorption energies, representative bond lengths and charge transfer to the
adsorbates for adsorption on NaCl(100). The subscripts c and p denote atoms in car-
boxylic and phenolic group, respectively (see Fig. 8.3).

Bond lengths d (Å)

Na−O1,c Na−O2,c Na−Op Cl−Hc Cl−Hp

BA 2.74 2.37 2.18
SA 3.25 2.37 2.50 2.31 2.97
p-SA 3.16 2.32 2.44

Adsorption Energy (eV) Charge (e)

Eads EBSSE
ads

BA -0.60 -0.43 0.021
SA -0.70 -0.48 0.001
p-SA -0.61 -0.41 0.016

The adsorption is modeled by a two-sided adsorption on a 3×3 supercell with five-layer-
thick slab including 90 atoms. The final adsorption geometries for BA, SA and p-SA on
NaCl(100) are shown in Fig. 8.3. The adsorption energy, which is given in Table 8.2, is
calculated according to the definition

Eads = EM/NaCl − ENaCl − EM, (8.4)

whereEM/NaCl, ENaCl and EM denote the total energy of the adsorbed system, NaCl(100)
and the isolated molecule, respectively. It is necessary to include the basis set super-
position error (BSSE) correction for the adsorption energy in all calculations using the
localized basis set. The BSSE corrected adsorption energy calculated using the usual
counterpoise scheme is expressed as [62]

EBSSE
ads = Eads + (ENaCl − ENaCl‖M) + (EM − EM‖NaCl), (8.5)

where Eads (ENaCl) is the energy of the NaCl(100) surface (adsorbate molecule) at its op-
timized adsorption geometry, and ENaCl‖M (EM‖NaCl) is the energy of NaCl(100) (adsor-
bate molecule) with optimized geometry including ghost basis functions on the molecule
(surface). As shown in Table 8.2, the BSSE correction to the adsorption energy amounts
to about 0.2 eV, nearly 30% of the uncorrected adsorption energy.

We see from Fig. 8.3 that all three molecules bind to the surface through the interaction
between a surface Na atom and the carboxylic oxygen. For SA, an additional bonding
between Na and the phenolic oxygen is present. Moreover, the carboxylic hydrogen
points downward to the surface Cl as a result of the interaction between these two
atoms. Some representative bond lengths for the adsorption geometries are presented in
Table 8.2. Overall, the bindings between various benzoic acids and NaCl(100) surface
are quite weak. The adsorption energy for SA (0.48 eV) is largest among these three
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8 Hydroxybenzoic Acids on Ideal NaCl(100)

Figure 8.3: Adsorption geometries of (a)BA, (b)SA and (c)p-SA on the NaCl(100)
surface. Only the top two layers of NaCl(100) are shown in the side views. Sodium and
chlorine atoms are shown in green (dark grey) and yellow (light grey), whereas oxygen,
carbon and hydrogen atoms of the adsorbates are shown in red (black), grey and white,
respectively.

molecules because of the additional interaction between phenolic oxygen and surface
sodium atoms. Indeed this additional Na-O interaction makes the SA tilted so that
the aromatic ring is slightly rotated. It is noteworthy that all molecules still remain
planar upon adsorption, and the intramolecular structure distortion shown in Table 8.3
is very small, which is in accord to experiment [16]. The contraction or expansion of
the intramolecular bond lengths reflect how the molecule interacts with the surface. For
instance, the expansion of the intramolecular hydrogen bond O2,c −Hp is a consequence
of the interactions between Na−O2,c as well as Cl−Hp. In addition, we find that the
dissociative adsorption where the carboxylic hydrogen is detached from the molecule is
thermodynamically unfavorable compared to the molecular adsorption.

The charge density difference map shown in Fig. 8.4 reveals more details of the bonding
between functionalized benzoic acids and NaCl(100). Here we use SA as an example
and the nature of the bonding is qualitatively the same for both BA and p-SA. In
Fig. 8.4 major electron accumulation can be seen in the region between the carboxylic
O atom and the surface Na atom. Yet, most of the electrons forming the bond are
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8.2 Adsorption of Benzoic Acid and Its Phenolic Derivatives on NaCl(100)

Table 8.3: Changes of intramolecular bond lengths ∆d (in %) for various benzoic acids
adsorbed on NaCl(100).

carboxyl phenol

C−O1 C−O2 O1−H C−O O−H O2−Hp

BA 0.64 -0.57 1.58
SA 0.42 -0.84 1.22 0.98 -0.01 1.93
p-SA 0.77 -0.79 1.00 -0.30 0.02

contributed by the lone-pair electrons from carboxylic oxygen, which makes the bonding
character covalent, or more specifically, a dative bond. The charge transfer is evaluated
by Mulliken population analysis, as given in Table 8.2. It shows that there is a very
small amount of electrons transferred to the benzoic acids upon adsorption. Although
the partition of electrons based on the Mulliken population is rather arbitrary and basis
set dependent, this small charge transfer is still expected in the context of the small
intramolecular distortion of these molecules as well as of their low binding energies to
the surface. Meanwhile, one should also recognize that the ionic contribution, i.e. the
electrostatic interaction must take place in between the Na cation and the carboxylic O
of the molecule. In the next section, we discuss the nature of the (short-ranged) binding
in terms of the projected density of states and the renormalizations of the molecular
orbitals upon adsorption.

O2,c

Na Cl

Figure 8.4: Change in electron density for Na−O bonding after SA adsorption on
NaCl(100). The solid and dashed lines represent electron accumulation and depletion,
respectively. The dashed-dotted line indicates zero. The difference between adjacent
lines is 0.015 e/Bohr3.

One important aspect missing so far is the long-range dispersion forces between the
delocalized π electrons from the molecules and the surface. As pointed out in Sec. 3.5,
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8 Hydroxybenzoic Acids on Ideal NaCl(100)

this is out of scope of the semilocal PW91 correlation functional. We will discuss the
effect of the vdW interaction in Ch. 9, but at this moment we should be aware of the fact
that the short-ranged chemical interactions (either covalent or electrostatic interaction)
are not affected by the vdW force for the adsorption of benzoic acids on NaCl(100).

8.2.2 Electronic and Binding Properties

The effect of various benzoic acids on the electronic structure of the adsorbed NaCl(100)
is illustrated in Fig. 8.5. It is evident from the band structures that the effective band
gap of the adsorbed surface is now dependent on the distance between the HOMO and
LUMO of the adsorbate. The calculated band gaps are 5.68, 4.86 and 5.16 eV for BA,
SA and p-SA adsorbed NaCl(100), respectively. Another eminent feature shown in the
PDOS in Fig. 8.5 is the broadening and splitting of some occupied molecular orbitals
of the adsorbate. In order to get a closer view of the electronic properties, a blow-up
of the DOS projected on SA upon its adsorption on NaCl(100) is given in Fig. 8.6. It
is evident that molecular orbital splitting occurs for HOMO-1, HOMO-2 and HOMO-
3 of the adsorbate, while HOMO-2 exhibits a large band broadening. As clearly seen
from the electron density isosurfaces, the electrons of HOMO-2 and HOMO-3 are mainly
located at the in-plane pxy and out-of-plane pz orbitals of the carboxylic O atom. Apart
from the appreciable π electron density of the benzene ring, HOMO-1 also exhibits a
small but non-negligible electron density on the carboxylic O atom. These broadenings
and splittings are the signals of the rehybridizations in the frontier orbitals including
HOMO-2, HOMO-3, and to some extent HOMO-1 during the covalent interactions.
Similar features have been found when 4-hydroxy-thiophenol is adsorbed on NaCl(100)
[121].

The molecular orbital shifts and broadenings of the adsorbate are addressed in the
Newns-Anderson model [122, 123]. In principle, the Newns-Anderson model applies to
the adsorption of atoms and molecules on metallic surfaces, but we will see that this also
applies to the BA-NaCl interface. The projected density of states na(ε) onto a single
valence state of an adatom (or a molecule) according to the Newns-Anderson model can
be expressed as

na(ε) =
1

π

∆(ε)

[ε− εa − Λ(ε)]2 + ∆2(ε)
, (8.6)

with

∆(ε) = π
∑

k

|Vak|2δ(ε − εk) (8.7)

and

Λ(ε) =
1

π
P
∫

dε′
∆(ε′)

ε− ε′
. (8.8)

Here, the subscripts a and k refer to the adatom and the surface, respectively. Vak is
the interaction between the surface and adatom states. P denotes the Cauchy principle
value. In case of the weak chemisorption, the interaction Vak is much smaller than the
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Figure 8.5: Band structures (top row) and PDOS (bottom row) of BA, SA and p-SA
adsorbed on NaCl(100) using the PW1PW functional. The respective HOMOs are set
to energy zero.
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Figure 8.6: PDOS of SA upon adsorption on NaCl(100). The solid dots correspond
to the energy levels of an isolated SA molecule at the adsorption geometry for direct
comparison. The electron density isosurfaces of five frontier orbitals are also given. The
HOMO is aligned to energy zero.

bandwidth of the surface W , and we have

∆(ε) ≈ π
∑

k

|V0|2δ(ε − εk) = πV 2
0 nk(ε), (8.9)

where V0 is the averaged value of Vak, and nk(ε) is the density of states of the unperturbed
surface. nk and accordingly Λ can be considered as energy-independent, and na turns
into a Lorentzian broadening of the valence states centered on εa. In other words, the
single valence state of the adsorbate is broadened into a resonance with a finite lifetime
∆−1. When the adatom-surface coupling increases and Vak > W , two localized states
appear outside the continuous spectrum, which are given by the roots of ε−εa−Λ(ε) = 0.
This is equivalent to the splitting of the adsorbate valence state into a bonding and
antibonding state. We can see that these features are also present for the hydroxybenzoic
acid adsorbates on wide-gap insulators. The evolutions of HOMO-1, HOMO-2 and
HOMO-3 upon adsorption are indeed due to the covalent interaction between the Na
atoms at the surface and the carboxylic (and phenolic if present) O atoms. In fact,
outside the Na 3s valence states, the molecular orbitals of the adsorbates remain sharp
and there is no coupling between these orbitals and the surface (see Fig. 8.5). Within the
Na 3s states window, pronounced broadening and splittings of the adsorbate molecule
orbitals arise as a result of the resonances.

However, we find that the covalent interaction does not contribute to the binding
energy because all bonding and antibonding states of the adsorbate are still fully filled.
This is reasonable since there is nearly no charge transfer between the surface and
adsorbate. Physically, this implies that the covalent interaction acts like a repulsive
Pauli barrier, where the electrons feel repulsion due to exclusion principle. Therefore, it
is plausible to conclude that attractive interaction predicted by KS-DFT is attributed to
the electrostatic interaction as in physisorption. Nevertheless, the covalent interaction
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8.2 Adsorption of Benzoic Acid and Its Phenolic Derivatives on NaCl(100)

has a predominant role in determining the adsorption geometry because the orientation
and tilting angle of the adsorbate molecule rely on the symmetry of the molecular orbital
involved in the rehybridizations. This will be demonstrated in the next chapter where
vdW interaction is introduced.
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9 The Effect of van der Waals Interaction

In the preceding chapter, we find that the short-range ionic and covalent contributions
at the benzoic acid-NaCl(100) interface give rise to an average adsorption energy of
about 0.5 eV. It is interesting to see how the long-range dispersion force affects the
binding energy and the adsorption geometry in the context of aromatic organic molecules
on wide-gap insulators. Before presenting the effect of the dispersion force, we first
review several theoretical studies on the vdW interactions in some organic molecule
and insulator interfaces. Chakarova-Käck et. al. investigated the adsorption of phenol
and α-Al2O3(0001) by vdW-DF1 [124]. They found the binding was governed by the
short-range interaction between the phenolic O atom and a surface Al atom, whereas
the vdW contribution was secondary yet not negligible (about 20% of total binding
energy). This is in contrast to the adsorption of phenol on graphite(0001), in which
the interaction is purely nonlocal and long-ranged [125]. Using vdW-DF, Moses et.

al. found a predominant contribution from the vdW interaction in the adsorption of
aromatic and conjugated molecules on the basal plane of MoS2 [126]. Pakarinen et. al.

addressed the role of vdW forces in the adsorption and diffusion of PTCDA molecules
on a nanostructured KBr(001) surface in terms of vdW-DF as well [127]. It was found
that at some sites on the surface, most of the molecular binding is provided by vdW
interactions, and the ionic contribution only accounts of 15% of the total binding energy.
In light of these results we find that the effect of the dispersion force is indeed system-
dependent. Without any quantitative calculations, it is an open question as to whether
DFT calculations of conjugated molecules on insulators are reliable in the absence of the
ubiquitous vdW forces.

In this chapter, we demonstrate the role of the vdW interaction in the binding of conju-
gated molecules and insulating surfaces by investigating the adsorption of SA molecule on
NaCl(001) surface using vdW-DF within the framework of KS-DFT. The semi-empirical
DFT-D provides a very similar picture of the binding energy and adsorption configura-
tion. A comparison between the vdW-DF and the DFT-D method will be given in the
next chapter.

9.1 Roles of vdW Forces in the Adsorption Energy

In order to measure the binding strength to the surface and to study the influence of
chemical and vdW contributions, two quantities, the adsorption (Eads) and interaction

1The term vdW-DF in this thesis refers to the vdW-DF 04 version which uses the revPBE exchange
functional.
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9.1 Roles of vdW Forces in the Adsorption Energy

Table 9.1: Calculated adsorption and interaction energies of the SA adsorbed on the
NaCl(001) surface for the tilted adsorption configuration obtained with various exchange-
correlation functionals. The superscript PBE indicates that the value reported is the
single point energy evaluated by the corresponding XC functional at the PBE optimized
geometry. All energies are given in eV.

PW1PW PBE revPBEPBE vdW-DFPBE revPBE SC vdW-DF

Eads -0.48 -0.45 -0.02 -0.72 -0.14 -0.82
Eint -0.66 -0.28 -0.96 -0.31 -0.97

energies (Eint) are introduced. They are defined as

Eads/int = Erelaxed
system − E

relaxed/rigid
surface − E

relaxed/rigid
SA (9.1)

where Erelaxed or Erigid indicate whether the corresponding structure is optimized or
kept fixed at the optimized surface-adsorbate system coordinates. Thus Eads is a ther-
modynamic quantity which refers to the different reference systems, whereas Eint is a
non-adiabatic interaction energy between the different parts of the system.

We start with standard DFT calculations using the PBE exchange-correlation (XC)
functional [41, 128] and the PAW method [69] as implemented in vasp [129, 130]. The
plane-wave basis set kinetic cutoff energy is 450 eV and the Brillouin zone is sampled
with a 2×2×1 Monkhorst-Pack k-point mesh. The NaCl(001) surface is modeled using
a (4 × 4) surface unit cell with a thickness of three atomic layers. This corresponds to
a cell side length of 15.99 Å, taking the equilibrium NaCl lattice constant as 5.65 Å.
The periodically repeated images of the slab are separated by a vacuum region with a
thickness of 18 Å. A large unit cell is therefore constructed to ensure that the inter-
molecular interaction is minimized. The calculated adsorption energies are converged
within 1 meV with the chosen computational parameters. The upper two NaCl slab
layers and the molecule are allowed to relax until the atomic forces are less than 0.02
eV/Å.

The optimization within PBE-GGA DFT results in a non-parallel configuration as
shown in Fig.9.1, as we have seen in the Sec. 8.2.1. The bond length between carboxylic
O and Na atoms is 2.35 Å, while the average SA-NaCl(001) distance is about 3.5 Å. The
optimal tilt angle between the SA and the surface is 30.2◦. The adsorption geometry,
and Eads of -0.45 eV (see Table 9.1) are in agreement with previous PW1PW hybrid
functional calculations.

In the next step, the vdW interaction is included as a post-GGA perturbation utilizing
the self-consistent GGA electronic density with the vdW-DF method implemented in the
grid based real space PAW code gpaw [131]. We choose a grid spacing of 0.20 Å in all
gpaw calculations. In order to evaluate the contribution from the vdW interaction,
which depends mostly only on the separation of the molecules from the surface, an
artificial flat adsorption geometry is generated in addition to the tilted configuration by
fixing the z coordinate of the molecule at a distance of 3.0 Å above the surface. The
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9 The Effect of van der Waals Interaction

Figure 9.1: Interaction energies between the SA molecule and NaCl(001) surface as a
function of average separation for the tilted (top) and parallel (bottom) adsorption
configuration. The inset shows the adsorption geometries viewed from the side (left)
and the top (right). Sodium and chlorine atoms are represented by the blue (black) and
yellow (large light grey) balls, whereas carbon, oxygen and hydrogen atoms are shown
in grey, red (dark grey) and white, respectively.
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9.2 The Effect on the Adsorption Geometry and Electronic Structure

binding site is then determined by the in-plane x and y position of the molecule which
is optimized within the PBE-GGA in vasp.

We show in Fig.9.1 the interaction energy curve of the adsorbate system calculated
with both revPBE XC and vdW-DF as a function of the average distance between the
molecule and surface. The geometrical structures of the molecule and surface were kept
fixed at the values optimized with the PBE. As can be seen from the tilted adsorption
configuration, the revPBE gives much lower interaction energies than the PBE (see Table
9.1 for the adsorption energy). This is in accordance with the general picture that the
PBE and PW91 functionals tend to overestimate the binding energy [42, 132]. The
revPBE has been shown to improve the chemisorption energy for atoms and molecules
on transition metal surfaces [42]. It is also shown in Fig. 9.1 that the revPBE favors
a larger separation between the SA and NaCl surface by 0.25 Å compared to the PBE
functional. After the nonlocal correlation energy is taken into account, Eint exhibits a
significant increase up to -0.96 eV. The nonlocal part now accounts for 70% of the total
interaction energy. The vdW-DF predicts an equilibrium average distance of 3.6 Å, 0.15
Å shorter than that of the revPBE calculation since the nature of the vdW forces is
attractive.

Turning to the parallel adsorption configuration, Fig. 9.1 shows that revPBE yields
a very weak bond (less than 0.05eV). The vdW-DF, on the contrary, gives rise to an
interaction energy of -0.68 eV at a distance of 3.3 Å. It is clear that the binding for this
flat configuration purely originates from the vdW interaction. Note that Eint is about 0.3
eV smaller than that of the tilted configuration, which implies that the Na-O chemical
interactions are also important and the final adsorption geometry with the inclusion of
vdW interactions should be still non-parallel.

9.2 The Effect on the Adsorption Geometry and Electronic

Structure

Based on these findings, we finally perform a self-consistent vdW-DF calculation in an
attempt to obtain the most accurate adsorption properties for the SA-NaCl(001) system.
The initial geometrical structure is pre-optimized within the revPBE in gpaw, since the
vdW-DF also uses the revPBE exchange. The revPBE predicts a configuration similar
to the PBE although the separation of the SA molecule and surface is 0.2 Å larger. Eads

is -0.14 eV, which amounts to one third of the PBE value. Then the vdW-DF forces
are evaluated self-consistently for the adsorbate system in order to reach the equilibrium
adsorption geometry.

To our surprise, the vdW-DF optimized structure turns out to be almost the same

as in the revPBE calculations. The SA molecule is now slightly more parallel to the
surface as a result of the attractive vdW forces. The tilt angle found is 0.5◦ smaller than
that of the revPBE calculation, which corresponds to a decreased average distance of
0.1 Å between the SA and the surface. It is noteworthy that the bond distance between
the carboxylic O and surface Na atoms remains unaltered. The self-consistent vdW-
DF calculated Eads is -0.82 eV (Table 9.1), which is 0.10 eV stronger than that of the
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electron gain electron lossatomistic model

Figure 9.2: The change in electron density difference after inclusion of the nonlocal
term (∆ρvdW-DF − ∆ρrevPBE). The absolute isovalue is 2×10−4 electrons/Å3.

PBE optimized structure. Yet the difference of Eint between the SC vdW-DF and the
perturbative correction based on the PBE geometry is negligible.

The sheer change in the adsorption geometry of the adsorbate reveals that the short-

ranged contributions between the carboxylic O atom and surface Na atom still plays a

central role in the final adsorption configuration. We have already seen in Sec. 8.2.2 that
the Na−O covalent interaction acts effectively as a Coulomb repulsion, and the equi-
librium Na−O bond distance is determined by the joint effect of the repulsive covalent
interaction and attractive ionic contribution. The tilting angle of the molecule, on the
other hand, is a consequence of the symmetry of the molecular orbitals involved in the
rehybridizations with the surface. This can be readily rationalized in a simple tight-
binding picture, in which the HOMO-2 and HOMO-3 of the adsorbate are interacting
with the 3s states of the Na atoms. The out-of-plane pz orbital in the HOMO-3 (see
Fig. 8.6) favors a more parallel orientation referenced to the surface due to the s-pz σ
bond, whereas the overlap between the in-plane pxy orbital in the HOMO-2 and the s
orbital of Na is benefited from a more perpendicular molecular orientation. These two
competing factors thus give rise to a tilted adsorption configuration. The vdW contribu-
tion are delocalized and extended to the whole molecule, including the carboxylic group
and the aromatic benzene ring. The usual effect of including the vdW interaction is to
bring the molecule closer to the surface as a result of electronic correlations. In the con-
text of the present molecule-insulator interface, we see that the energy gain by further
decreasing the molecule-surface distance is counterbalanced by the Coulomb repulsion.
Meanwhile, the adsorbate molecule remains planar after the dispersion force is included
because of the strong intramolecular sp2 hybridizations. In other words, the energy cost
to bend the sp2 C−C bond in between the carboxylic group and the aromatic ring is
much higher than the energy gain from the vdW attractive contribution by bringing the
aromatic ring closer to the surface. As a result, the molecule is refrained from a sizeable
tilt or shift toward to the surface when the vdW interaction is switched on. The motion
due to the vdW force is indeed restricted by the short-range interactions.

The nature of the vdW interaction can be visualized by the change in electron density
difference after the inclusion of the nonlocal correlation functional (see Fig. 9.2). The
electron density difference ∆ρ is expressed as

∆ρ = ρsystem − ρmolecule − ρsurface, (9.2)

where ρsystem, ρmolecule and ρsurface represent the electron density of the relaxed system,
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Figure 9.3: Local density of states (LDOS) of the SA adsorbed on NaCl(001) calculated
with the SC vdW-DF and revPBE methods. The LDOS is convoluted with a 0.1 eV
wide Gaussian function. The three uppermost occupied molecular orbitals are depicted
on the top panel.

the isolated molecule and surface being in the same atomic configurations as in the
relaxed system, respectively. Thus the electron density difference gives a clear indication
of the bonding mechanism. As depicted in Fig. 9.2, the electron density moves from
around the nuclei to the region between the aromatic ring and NaCl surface after the
nonlocal correlation functional is switched on. The charge redistribution, albeit relatively
small, accounts for the enhanced binding energy in terms of the changes in the Coulomb
forces acting on the nuclei. This falls into line with the concept of the vdW force within
the classical picture [133–135]. While the vdW-DF is central to the spirit of the long-
range correlations from electronic motions, it is clear that this functional is capable of
providing a coherent and unified picture of the dispersion force.

The electronic structure of the adsorbate system is also affected by the inclusion
of vdW interactions. In Fig. 9.3, we plot the local density of states (LDOS) of the
SA molecule for the revPBE and vdW-DF methods. In both cases the splitting and
broadening of the HOMO-2 and HOMO-1 can be observed. The splitting of HOMO-
2 can be ascribed to the hybridization of the σ electrons at the carboxylic group and
surface Na s bands, while the broadening of the HOMO-1 arises mainly due to the
interaction between the π electrons and the surface. Such broadenings have also been
seen in previous ultra-violet photoemission spectroscopy (UPS) spectra of condensed
SA on NaCl(001) [101]. It is clear that the SC vdW-DF yields a broader π2 resonance
than the revPBE-GGA functional as a result of stronger hybridizations between the pz
electrons delocalized over the aromatic ring and surface valence states. Nevertheless,
when the vdW-DF is applied to the revPBE optimized structure, the resultant LDOS
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9 The Effect of van der Waals Interaction

is similar to that of the revPBE-GGA. Thus, it is mainly the slightly closer proximity
between the SA and NaCl surface that induces the larger broadening of the π2 band.
Furthermore, the resonance between the HOMO-1 of the SA molecule and surface valence
states pins the valence band maximum Γ15 0.15 eV closer to the HOMO of the SA
after the inclusion of vdW interaction, resulting in a HOMO-Γ15 separation of 0.5 eV.
Experimentally UPS measurements found the HOMO of the SA (π3) 0.1 eV above the
Γ15 point of NaCl(001) [101]. Although the vdW-DF predicted value is yet not in perfect
agreement with the experiment, the relative shift of the HOMO towards the Γ15 proves
that the vdW interaction plays a significant role in the adsorption of the SA on NaCl(001)
surface.

We have shown that the vdW dispersion forces play a dominant role in the binding
between aromatic carboxylic acids and wide band gap insulators. The inclusion of the
nonlocal correlation functional significantly enhances the adsorption energy of the SA
molecule on NaCl(001) to -0.8 eV. Accordingly, the vdW forces must be taken into ac-

count when treating adsorption energies of aromatic and conjugated molecules on inert
surfaces. As for the bonding configuration, however, we find that short-range interactions
still play a crucial role. As demonstrated here, although their relative contribution to
binding is not very large, their strong variation with bond angles, bonding sites and dis-
tances turns out to be decisive for the optimal bonding geometry of SA on the NaCl(001)
surface, i.e. the local chemical bonds between the carboxylic and phenolic O and surface
Na atoms are crucial for the adsorption configuration. In addition, vdW interactions
have an influence on orbital alignment and broadening, as also demonstrated by our cal-
culations. This proves that vdW interaction is essential and it plays an important part
in both the adsorption energetics and electronic structure of the aromatic carboxylic
acids on insulators.
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10 Generic Aspects of Adsorption on Alkali
Halide (100) Surfaces

We have addressed the binding energy, adsorption configuration, and the effect on the
electronic structure of various benzoic acid molecules on the perfect (100) surface of
NaCl in the last two chapters. In this chapter, a comprehensive study is dedicated to
the adsorption on the KCl surface, including all the ingredients discussed in the earlier
chapters. We concentrate here on a comparison of adsorption geometries and electronic
structures on the ideal (100) surface between KCl and NaCl, so that a detailed picture
of the interaction between the hydroxybenzoic acids and alkali halide surfaces can be
obtained from first-principle calculations. The computational methods and parameters
follow the descriptions in the preceding chapters.

10.1 Adsorption Geometries

The adsorption study starts with the investigation of various hydroxybenzoic acids on
the ideal KCl(100) surface, shown in Fig. 10.1 The electronic structure of KCl(100)
surface is, as expected, very close to that of the bulk with no traces of surface states.
The calculated surface energy is 9.25 meV/Å with the PW1PW functional, which falls
in line with other theoretical values and experiments [136, 137].

In 10.1 calculated adsorption and interaction energies are presented for the various
adsorption systems on KCl(100), as well as on NaCl(100) for comparison. As seen there,
the standard DFT methods employing the PW1PW hybrid functional and the PBE GGA
functional yield quite similar Eads since the two flavors of GGA, i.e. the PW91 functional
in PW1PW and PBE are generally equivalent for many properties.[42, 132, 138] The
adsorption energies on both surfaces are also very close, although on NaCl Eads values
are slightly larger.

The adsorption on KCl(100) follows the same configuration as that on NaCl(100)
through the electrostatic interaction between the K-O and Cl-H bonds. The dominant
chemical bonding occurs between the double bonded carboxylic O and surface K atoms,
with an average bond length of 2.8 Å and 2.7 Å by PW1PW and PBE, respectively.
The partially covalent character of the K-O bond can be revealed by the charge density
difference map (not shown) where the electrons are localized in the region between
the two atoms joined by the bond. This is supported by the projected density of states
(PDOS) in Fig. 10.2 where the HOMO-1 and HOMO-2 of the adsorbate are smeared out
as a result of the hybridizations between the px,y (HOMO-2), pz (HOMO-1) electrons of
the molecule (see Fig. 10.3) and the 4s band of surface K atoms. This can be qualitatively
described within the Newns-Anderson model of adsorption in the weak chemisorption
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BA SA p-SA

Figure 10.1: Side view (top panel) and top view (bottom) schematics of the adsorption
of BA, SA and p-SA on KCl(100) surface. Potassium atoms: blue, chlorine atoms: green,
oxygen atoms: red, carbon atoms: grey, hydrogen atoms: white.
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Figure 10.2: Comparison of the density of states projected onto the SA molecule and
onto the cations for adsorption on KCl (top) and NaCl(100) (bottom) surfaces calculated
with the PW1PW functional. The energy zero is shifted to the HOMO of SA.
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10.1 Adsorption Geometries
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Figure 10.3: Diagrams of high-
est occupied and lowest un-
occupied molecular orbital en-
ergy levels for BA, SA and
p-SA molecules calculated by
PW1PW. The s valence state
bandwidths of the respective
cations and their alignments
with the molecular orbitals are
illustrated.

limit, i.e. a single valence level of the molecule is broadened into a resonance with
a finite lifetime [122, 123, 139]. Consequently, the carboxylic group is slightly rotated
along the C−−C bond with respect to the benzene ring. Moreover, the hybridization
between the in-plane px,y orbital of the carboxylic group and K 4s valence states gives
rise to a tilted molecular adsorption configuration.

Interestingly, it is clearly seen in Fig. 10.1 and Table 10.2 that on KCl(100) the
adsorbed p-SA is significantly more rotated out of the surface plane as compared to both
BA and SA. Inspecting the PDOS (not shown), one sees a rather pronounced broadening
of both the HOMO-2 and HOMO-1 of p-SA. This strong HOMO-2 resonance in p-SA,
which gives rise to a more upright adsorption configuration on KCl(100), is essentially
caused by the small separation between the HOMO-1 and HOMO-2 (0.16 eV) as shown
in Fig. 10.3. Indeed, we find that the tilt angle for adsorption on KCl(100) is directly
related to the energetic difference between the HOMO-1 and HOMO-2 of the adsorbate
molecule: the smaller the separation between the HOMO-1 and HOMO-2 is, the more
the molecule is tilted out of the surface plane. On the NaCl(100) surface, due to the
broader Na 3s valence band and a more equal distribution of resonance states for all
three molecules, the tilt angle dependence is thus absent. The role of covalent resonances
also explains the difference of the molecule tilting angles when we move from the NaCl
to the KCl substrate. For example in case of SA, it is seen in Fig. 10.3 that using
the PW1PW hybrid functional, both the pz and px,y orbitals come into resonance with
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10 Generic Aspects of Adsorption on Alkali Halide (100) Surfaces

the NaCl surface, while on the KCl surface the dominating resonance is between the pz
orbital (HOMO-1) and the surface s orbital, thus making the adsorbate molecule more
parallel to the surface on KCl.

In the next step, geometric optimizations are performed within the dispersion-corrected
PBE-D calculations to account for the missing vdW contribution in standard DFT ap-
proximations. Nevertheless, the final adsorption configurations for all molecules are very
close to those obtained without dispersion corrections (see 10.2). This is in accordance
with our previous self-consistent vdW-DF study on the SA-NaCl(100) system, which
shows that the local interaction turns out to be decisive for the optimal bonding geom-
etry (Sec. 9.2). A close inspection shows a systematic decrease of the distance between
the singly bound carboxylic O and surface K atoms after the dispersion is included,
while the bond length between the doubly bound carboxylic O and K atoms is unaltered
(see the first row of dK-O in 10.2). One can also see that the PBE parts of the adsorp-
tion energy in PBE-D calculations are equivalent to the descriptions without dispersion.
Specifically, a very small decrease (0.03 eV) of the PBE Eads for the BA adsorbate sys-
tem is found after the vdW interaction is taken into account. This suggests that the
final optimal geometry is stabilized by the interplay of the local chemical interaction and
long range dispersion. In general, the whole molecule is closer to the surface as a result
of the attractive vdW forces, but the change is rather subtle.

Although the effect on the adsorption geometry of the vdW interaction is small, it
greatly enhances the binding to the surface. As seen from 10.1, the total Eads increases
by -0.2 to -0.5 eV due to the vdW contribution. Thus the strength of the vdW interaction
is comparable to the chemical interaction. Only for the p-SA+KCl(100) system the
magnitude of the vdW contribution is much smaller because the aromatic ring is further
away from the surface. When the vdW-DF is applied to the PBE-D optimized structure,
it yields Eint values close to the PBE-D values. This should not be considered as a
coincidence, as the PBE-D and vdW-DF are constructed from qualitatively different
approaches. The well-known trend is also found that revPBE systematically yields
smaller binding energies than PBE and PW91 [42, 140]. It should be pointed out that
while the choice of the revPBE exchange in the vdW-DF is generally appropriate, in
some cases such as for the hydrogen-bonded complexes it may underestimate the binding.
Nevertheless, we show that the overall interaction energies agree well with the PBE-D
method when the revPBE exchange is combined with the nonlocal correlation energy.
It is thus reasonable to expect that both PBE-D and vdW-DF are capable of describing
the long range dispersion between the conjugated molecules and ionic insulators. In
addition, we find that the SA adsorbate systems yield the largest dispersion. Since
the π electrons are delocalized over the whole molecule from the aromatic ring to the
carboxylic and phenolic group, the enhanced vdW interaction can be explained by the
contribution from the additional phenolic group in SA. The phenolic group in the p-SA
adsorbate system, on the other hand, is positioned quite far away from the surface, thus
imposing a smaller effect on the interaction energy.
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Figure 10.4: Band diagram of BA, SA
and p-SA adsorbed on KCl(100) surface
with the PW1PW functional. The va-
lence band maximum of the surface de-
fines energy zero. Values of adsorbate
systems on NaCl(100) are also reported
in parentheses.

10.2 Effective Kohn-Sham Gap and Molecular Orbital

Alignment

To address the effect of various hydroxybenzoic acids on the electronic structure of the
adsorbate systems, the Kohn-Sham energy levels for adsorptions on KCl and NaCl(100)
are compiled and presented in Fig. 10.4. One should note that although the PW1PW
functional is used here for the prediction of the electronic structure, the overall picture is
still valid, since we have shown in Ch. 9 that the inclusion of long range dispersion has a
limited effect on the band alignment between the adsorbate MOs and surface electronic
states. We see a systematic trend that the HOMO and LUMO of the adsorbate on
KCl(100) surface is 0.2 to 0.4 eV closer to the valence band maximum (VBM) (Γ15

point) of the surface as compared to the adsorption on NaCl(100). Such a difference
can be rationalized by the PDOS of the different surfaces given in Fig. 10.2. We use the
SA adsorbed system as an example, but an analogous discussion can be applied to the
other systems. As we have mentioned, the valence s states bandwidth of Na is broader
than that of K. For adsorption on NaCl(100), the HOMO-2 couples more strongly to the
surface Na valence band than the HOMO-1, while on KCl(100) the broadening of the
HOMO-1 is more pronounced. The rehybridization between HOMO-1 and K valence
band shifts the whole MOs of the molecule with respect to the surface, giving rise to a
closer alignment between the HOMO and Γ15 on KCl(100). In fact, this is in accord to the
larger tilt angle of SA on NaCl(100) shown in Table 10.2 because of the strong resonance
the HOMO-2 develops on NaCl(100). Nevertheless, it is clear from the diagram that
the effective KS gaps for all systems are determined by the HOMO-LUMO separation.
The HOMO-LUMO gaps stay almost identical after adsorption on KCl and NaCl, i.e.

they do not deviate significantly from the isolated state as a result of weak interactions.
For both NaCl and KCl, we show that the additional molecular levels introduced by the
various hydroxybenzoic acid adsorbates can reduce the effective Kohn-Sham band gap
to the HOMO-LUMO gap of the adsorbate.

75



10 Generic Aspects of Adsorption on Alkali Halide (100) Surfaces

10.3 Insights From Kohn-Sham DFT

In the last few chapters, we have investigated the adsorption of various hydroxybenzoic
acids on flat (100) surface of KCl and NaCl within the framework of Kohn-Sham DFT.
The adsorption configurations are governed by a complex interplay between the ionic
contribution, covalent interaction and long-range vdW interaction.

• The ionic contribution arises simply from the electrostatic attraction between the
carboxylic oxygen and the cation at the surface (and between the hydrogen and
chlorine to some extent), which is responsible for the molecule-surface binding in
the short range.

• The covalent interaction, while it behaves as a repulsive Coulomb interaction, has
a fundamental impact on the adsorption geometry and the alignment of the molec-
ular orbital with respect to the VBM. This is evidenced by the observed difference
in the molecular orientation and the alignment of the HOMO with respect to the
VBM upon adsorption on NaCl and KCl (100) surfaces.

• The vdW dispersion force, being a nonlocal polarization effect, considerably sta-
bilizes the binding between the molecule and the surface of wide-gap insulators.
In the present work, the vdW interaction accounts for about half of the total ad-
sorption energy. However, we find that the dispersion force has little influence on
the adsorption geometry. Both vdW-DF and PBE-D give equivalent description
of the vdW part in the molecule-surface interaction, affirming the validity of both
methods in the context of the current work.

Our calculations suggest that upon molecular adsorption on the ideal alkali halide
(100) surface, the features of the molecular orbitals are generally preserved. The chemical
inertness of the ideal surface facilitates the use of alkali halides as supporting templates
for a wide variety of applications [127]. However, we note that this scenario does not

necessarily hold for all organic-insulator systems. In Appendix B, we show that when
a gluconic acid is adsorbed on the MgSO4 · H2O (100) non-polar surface, the molecular
frontier orbitals undergo significant changes due to the rehybridizations. This is also a
result of the peculiar covalent interaction.

We close this chapter by restating that the band gap obtained from KS-DFT, while
being able to track the trend of various adsorbate systems, is usually underestimated
and is thus inaccurate in its absolute value even when hybrid functionals are used. This
has already been demonstrated by the gas-phase molecules and bulk insulators in Ch. 6
and 7. Moreover, some dynamic effects are clearly beyond the description of a mean-field
theory such as KS-DFT. For instance, when a molecule is near a surface, the HOMO and
LUMO experience the image potential due to the image charge in the surface, leading to
a renormalization of the energy level positions of these two orbitals. This polarization
effect is a dynamic and nonlocal correlation effect, and it is not captured by KS-DFT with
standard exchange-correlation functionals. The properties of the electronic excitation
are further altered if the electron-hole interaction is taken into account. In the next
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chapter, we first resort to the GW approximation to correct the quasiparticle energies
and to include the polarization effect in the molecule-insulator systems.
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11 Polarization Induced Renormalization of
Molecular Energy Levels

In this chapter, we will see how the long-ranged dynamic correlation due to the im-
age charge potential influences the energy levels of the HOMO and LUMO of the
molecular adsorbate on wide-gap insulators. The renormalization of the HOMO and
LUMO has been observed in photoemission spectra [141] and electron transport mea-
surements [15, 142]. Notably, Repp et al. observed that when a pentacene is adsorbed
on NaCl(100)/Cu surface, the energy gap of the molecule exhibits sizeable reduction
as the thickness of the NaCl film decreases [15], which is a direct indication of the
renormalization of molecular levels due to the surface polarization effect. Using model
GW calculations, Neaton et al. found a pronounced quasiparticle energy gap reduction
(3.3 eV) of a benzene molecule upon its physisorption on graphite (0001) [23]. Later,
they analyzed the C60-Au(Ag) interfaces based on a constrained DFT calculation and
a GW approximation of an Anderson impurity model, and a similar renormalization of
energy levels is shown [143]. Thygesen and co-workers systematically investigated the
renormalization of molecular levels at metallic and semiconducting surfaces through GW
calculations [144, 145]. It was found that both local (semilocal) and hybrid exchange-
correlation potentials fail to describe the polarization effect. Therefore, the Kohn-Sham
eigenvalues of physisorbed species are not affected by the substrate. To illustrate to
what extent the affinity and ionization levels of the benzoic acid adsorbates are shifted
due to the surface polarization effect, we carry out G0W0 calculations for the BA and
SA molecules adsorbed on NaCl(100) surface. We first discuss the classical image charge
theory, which has been shown to be capable of qualitatively capturing the essence of the
polarization effect.

11.1 Classical Image Charge Theory

In the classical model, a point charge q outside a substrate will induce an image charge
inside the substrate. The image charge then subsequently creates an image potential
Vim for the point charge [146, 147]

Vim = −1

4

ε− 1

ε+ 1

q2

z − z0
, (11.1)

where ε is the static dielectric constant of the substrate. z and z0 refer to the position of
the point charge and image plane, respectively. Now think of a molecule on a substrate.
The HOMO level of the molecule is related to the ionization potential, i.e. the energy
required to remove an electron (or add a hole) from (to) the molecule. The additional

78



11.2 Renormalization of Electronic Levels at NaCl(100)

4.21

-1.55

7.56

4.18

-1.43

6.72

isolated adsorbate

LDA G W
0 0 LDAG W

0 0

VBM

BA

LDA G W
0 0 LDAG W

0 0

isolated adsorbate

3.08

-1.40

6.26

-1.04

5.55

3.09

SA

Figure 11.1: The evolution of the π − π∗ energy gap of the BA and SA molecules upon
adsorption on NaCl(100). The π orbital of the molecule is aligned to energy zero.

hole now sees the image potential due to its image charge in the substrate. The effect
of the image potential can be evaluated as the work done by the image force −∂Vim/∂z
to bring a hole from infinity to z

Iim =

∫ z

+∞
dz′
[

−1

4

ε− 1

ε+ 1

1

(z′ − z0)
2

]

=
1

4

ε− 1

ε+ 1

1

z − z0
. (11.2)

Hence, the effective ionization energy in the presence of the image potential is given by

Ieff = I − 1

4

ε− 1

ε+ 1

1

z − z0
. (11.3)

This implies that the ionization level will move upwards by |Vim| because of the image
potential. In analogous to the ionization energy, the effective electron affinity increase
by |Vim| due to the attractive interaction between the additional electron and its image.
The electron affinity level accordingly moves down by |Vim|

Aeff = A+
1

4

ε− 1

ε+ 1

1

z − z0
. (11.4)

The energy gap, which is the difference between the ionization energy and the electron
affinity, is therefore reduced by 2|Vim| as a result of the image potential. As can be
seen in Eq. (11.1), the magnitude of the gap reduction is proportional to the dielectric
constant ε of the surface. On wide-gap insulator surfaces, the effect of the polarization
effect is thus much less pronounced than that on metal surfaces.

11.2 Renormalization of Electronic Levels at Benzoic
Acids/NaCl(100) Interfaces

The G0W0 quasiparticle energy is calculated using a four-layer (2×2) NaCl(100) super-
cell with molecules adsorbed on it, which represents an adsorption coverage of a full
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11 Polarization Induced Renormalization of Molecular Energy Levels

Table 11.1: Calculated π − π∗ energy gaps (in eV) of BA, SA, and p-SA molecules on
NaCl(100) by LDA and G0W

LDA
0 . The isolated molecule refers to the molecule detached

from the surface while its geometry is kept fixed as that of the adsorbate.

BA SA p-SA

LDA G0W
LDA
0 LDA G0W

LDA
0 LDA G0W

LDA
0

Adsorbate 4.18 8.15 3.09 6.59 3.58 6.97
Isolated 4.21 9.11 3.08 7.66 3.77 8.38

monolayer. While the unit cell is relatively small, the lateral intermolecular interaction
is still suppressed, as the LDA calculations of an isolated molecule in the unit cell show
limited energy level dispersions of the HOMO and LUMO with respect to the k-point.
The dispersions of the corresponding quasiparticle energy levels from GW calculations
are still very small, about 0.03 eV.1 The adsorption geometry optimized by the LDA
functional is justified as the influence of the vdW interaction has been shown to be neg-
ligible. We include a total number of 512 and 960 bands for the self-energy calculation
of the isolated molecule and the adsorbate system, respectively. A Γ centered 3×3 MP
k-point mesh (5 k-points in the IBZ) is used throughout this section. The exchange
self-energy includes over 105 G vectors (60 Ry), and about 2000 G vectors (4 Ry) are
taken into account in the evaluation of the response function. The spurious long-range
Coulomb interaction between the periodic images is truncated by a box-shape cutoff in
the direction normal to the (100) surface. In Table 11.1 the results for all the three
hydroxybenzoic acids are given.

An obvious reduction of the molecular energy gap can be found for all molecules when
adsorbed on NaCl(100) according to the G0W0 calculations. This is clearly different
from the LDA calculations where a slight change in the HOMO-LUMO gap is involved.
In particular, we find that LDA predicts that the HOMO of BA is below the VBM of the
surface (see Fig. 11.1), which is opposed to what have been found by the PW1PW hybrid
functional (Fig. 8.5) and the G0W0 approximation. This is essentially a consequence of
the distorted ordering of the frontier orbitals stemming from the spurious self-interaction
error discussed in Ch. 6. Accordingly, in Table 11.1, the reported π − π∗ gap for BA
refers to the LDA (HOMO-1)-LUMO gap, while for SA and p-SA the π − π∗ gap is the
plain HOMO-LUMO gap. LDA yields nearly identical energy gaps due to the effective
potential of the surface since the polarization effect cannot be described by the KS-DFT
energy gap. We see in Fig. 11.1 that the G0W0 approximation tends to shift the HOMO
and LUMO of an adsorbate to the mid-gap, thus decreasing the quasiparticle energy
gap. For example, the ionization energy level moves up by 0.36 eV whereas the electron
affinity level moves down by 0.71 eV when a SA molecule is adsorbed on the NaCl(100),
corresponding to a gap reduction of 1.07 eV. Moreover, the renormalization of the G0W0

energy level should in principle inherit all the static ground-state effect from KS-DFT.

1Note the dispersion of some unoccupied levels could be substantial due to the overlap of the electronic
states.
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11.2 Renormalization of Electronic Levels at NaCl(100)

Hence, the change in the energy gap upon adsorption given by G0W0 includes the effect
described by KS-DFT

∆EG0W0
g = ∆Epol

g + ∆EKS-DFT
g (11.5)

where ∆EKS-DFT
g is due to the polarization effect. Accordingly, the renormalization of

the quasiparticle energy gap due to the polarization in the surface amounts to 1.1 and
1.2 eV for the SA and p-SA adsorbed systems, respectively. When it comes to the
BA, we should be aware of the fact that the quasiparticle ionization energy level of the
molecule does not correspond to the LDA HOMO anymore. Instead, it is the HOMO-1
level from the LDA calculations (cf. Fig. 6.2). Nevertheless, the results of the SA and
p-SA suggest that ∆EKS-DFT

g is negligible, and thus the polarization effect accounts for
the G0W0 energy gap renormalization observed for all three molecules.

If we decompose the self-energy into the bare (Fock) exchange (Σx) and correlation
(Σc) parts as in Eq. 5.37, we find that the renormalization of the HOMO and LUMO
indeed arises from the change in the correlation energy (∆Σc). The change ∆Σx is rather
small (0.2 eV), which is nearly equal to the change in the DFT exchange-correlation
energy (∆Exc). For the HOMO, ∆Σc ≈ 0.5 eV, while for the LUMO ∆Σc ≈ −0.8
eV. From this, we see that it is indeed the change in the correlation part of self-energy
that is responsible for the renormalization of the molecular energy gap. However, the
asymmetric shift of Σc for the HOMO and LUMO suggests that the renormalization in
the present case does not strictly follow the classical image potential theory. This is
not unexpected in a full monolayer coverage as polarizations between the molecules are
likely to take place.

To this end, it is demonstrated from the GW calculations that the adsorption of or-
ganic molecules on wide-gap insulator surface renormalizes the energy gap of the molec-
ular adsorbate by about 1 eV. We show in Appendix B a similar polarization induced
renormalization when a gluconic acid is adsorbed on a MgSO4 · H2O (100) surface. The
effect of the polarization in the surface is to reduce the HOMO-LUMO gap. In the
presence of a metallic surface, the KS-DFT using hybrid functionals (or even local and
semilocal functionals) can occasionally reproduce the quasiparticle energy gap from a
GW calculation [145]. This is simply an error cancellation due to the spurious self-
interaction and the neglect of functional derivative discontinuity and polarization effect.
For adsorption on wide-gap insulators, the discrepancy in the energy gap between a GW
and a KS-DFT calculation will always be very pronounced. This imposes an important
restriction on KS-DFT for the description of molecule-insulator interfaces.
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12 Excitonic Effect at Molecule-Insulator
Interface

In Sec. 6.3 sizeable molecular excitonic effects have been observed for the gas-phase
hydroxybenzoic acids. The presence of the bound e-h pair reduces the effective excitation
energy of an electron to nearly half of the HOMO-LUMO energy gap. It thus tempting
to see how the excitonic effect behaves at the molecule-insulator interface using the
two-particle BSE. The BSE calculation has been a rather formidable for the extended
systems because of the extreme requirement in the memory when solving the excitonic
Hamiltonian. It is until very recently that the excitonic effect is exploited for molecular
adsorption on surfaces in terms of MBPT. In this chapter, we reveal the electron-hole
interaction at the interface between the hydroxybenzoic acids and NaCl(100) surface.
To the best of our knowledge, this is the first attempt to investigate the excitonic effect
for a conjugated organic molecule adsorbed on an insulating surface.

The BSE calculations follow the adsorption of one-monolayer benzoic acids on a (2×2)
unit cell as in Ch. 11, and use the quasiparticle energies from the G0W0 calculations.
We are restricted to include the e-h pairs with energies up to 33 eV in the response
function of the BS kernel using the full Hamiltonian.1 The exciton energies are expected
to be converged within 0.2 eV using this number of e-h pairs. For the statically screened
Coulomb interaction and the exchange part of the BS kernel, about 1000 (3 Ry) and
20000 (20 Ry) G vectors have been found sufficient for a well converged spectrum,
respectively. The iterative Lanczos-Haydock recursive method is used to solve the full
non-Hermitian excitonic Hamiltonian [97].

We first consider the absorption spectra in the TDA shown in Fig. 12.1. The first
excitation peak appears at around 4.1 eV for both the BA and SA adsorbate systems.
This peak is assigned to the HOMO-LUMO transition, i.e. the π − π∗ transition at the
aromatic benzene ring according to a full diagonalization of the Hamiltonian2. Going
from the parallel perturbing field (θ = 0◦) to the perpendicular polarization (θ = 90◦),
we see that the intensity of the π−π∗ peak does not change much because the molecules
are tilted on the surface. This lowest singlet exciton energy is equivalent to the gas-
phase molecule for the SA, whereas it is about 0.4 eV smaller than the isolated molecule
for the BA. Nevertheless, this lowest molecular exciton state is barely affected by the
underlying substrate. Moving to higher photon energies, we find the second lowest peak

1 The size of the excitonic Hamiltonian is proportion to Nv ×Nc ×Nk, where Nv, Nc, and Nk denote
the number of the valence bands, the conduction bands, and the k-points, respectively. The inclusion
of the whole 90 occupied states and 70 unoccupied states already results in a memory consumption
of around 10 GB per process.

2A smaller number of e-h pairs with energies up to 20 eV is included due to the extremely cumbersome
procedure of diagonalization.
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Figure 12.1: Absorption spectra of the BA and SA molecules adsorbed on NaCl(100)
calculated within the Tamm-Dancoff approximation (TDA) and full excitonic Hamilto-
nian. The perturbative polarization direction with respect to the surface is denoted by
θ. The spectra are broadened by a 0.1 eV Lorentzian.

occurs at 4.6-4.7 eV for both molecules, which is assigned to the transition from the
VBM (Cl 3p) to the anti-bonding π∗ state of the adsorbate. This peak thus is attributed
to a charge transfer exciton, which in principle arises from the overlap between the
surface VBM and the delocalized π∗ orbital of the molecule. The presence of the charge
transfer exciton is somehow surprising since in the ground state there is nearly no charge
transfer from the molecule to the surface. At 6.0-6.1 eV the most strong absorption peak
appears in the parallel polarization due to the surface exciton of the four-layer NaCl(100)
slab. The surface exciton is much smaller than the bulk exciton (7.6 eV from the G0W0

eigenvalues), in line with the results of some other wide-gap materials [148, 149]. The
peak related to the surface exciton is nearly fully suppressed for the transverse field
(θ = 90◦).

When the coupling part is switched on in the full Hamiltonian calculation, a size-
able red-shift of the 3p − π∗ absorption peak can be witnessed in Fig. 12.1 for both
molecules. The shift amounts to 1.3 and 2.0 eV for the BA and SA adsorbates, re-
spectively. Remarkably, not only the excitation energy shifts, but the intensity of the
3p → π∗ transition also grows much stronger when θ = 90◦. Such large perpendicular
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12 Excitonic Effect at Molecule-Insulator Interface

transition dipole moment further evidences that the exciton is along the direction nor-
mal to the surface. The much stronger oscillating strength of this peak for the adsorbed
SA molecule is benefitted from its adsorption configuration, as the SA molecule is more
parallel and closer to the surface, resulting in a stronger overlap between the VBM and
the π∗ state. On the other hand, the lowest singlet molecular excited state and the
surface excited state are not much influenced by the coupling part. We have already
seen this in Sec. 6.3 and 7.3 that the TDA yields reliable energies for the lowest singlet
exciton of the molecules and the bulk exciton of NaCl. As a consequence, the lowest
exciton state for the adsorbate system is now related to the 3p− π∗ transition. The e-h
antipair introduced by the coupling between the resonant and antiresonant part of the
excitonic Hamiltonian must be responsible for the dramatic shift of the surface-molecule

transition. Within the TDA where the excitonic Hamiltonian is approximated by the
resonant term, the excitons are the e-h pairs propagating forward in time because the
resonant part contains the v → c transitions of positive energy, while the antiresonant
part contains the c → v transitions of negative energy. The coupling part between the
resonant and the antiresonant part hence includes the e-h antipairs which propagate
backward in time. Therefore, the full BSE calculation involves the oscillation of the
e-h pairs back and forth in time. As the coupling is simply the exchange term (bare
and screened) of the e-h interaction, it is speculated that the prominent red shift of the
3p-π∗ peak arises from the sizeable exchange interaction between the electron and hole.
In addition, we can see from Fig. 12.1 that the 3p − π∗ peak becomes much stronger
when the light polarization is changed from the parallel to the perpendicular direction to
the surface. This is in accordance with the fact that the excitation is spatially confined
at the molecule-surface interface.

It has been shown that the TDA fails describe the plasmonic excitation in the EELS of
bulk Si [150] and some confined systems [97]. When applied to some isolated molecules,
the TDA can lead to a substantial shift of the lowest excitation energy [151]. Here we
find that in an extended system where an organic molecule is adsorbed on an insulating
surface, the TDA can be also insufficient in describing the excitonic effect when the ex-
change interaction of the e-h pair for some specific transitions is important. As for the
BA and SA adsorbates on the NaCl(100) surface, the presence of the excitation at the
molecule-surface interface revealed in the full BSE calculation further reduces the exci-
tation energy to 3.3 and 2.7 eV, respectively. While the intramolecular excitonic effect
is still preserved upon adsorption, the coupling between the conjugated molecule and
wide-gap insulator surface offers a more effective channel for the electronic excitation.
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13 Roles of Surface Defects

The preceding chapters are devoted to the discussion on ideal alkali halide (100) surfaces.
While these calculations are informative for the understanding of the molecule-surface
interaction, one prefers a more realistic modeling of the system where surface defects
are present. In fact, ideal surfaces with complete translation symmetry do not exist for
entropy reasons. Even on pristine NaCl(100) surface, monatomic steps and kinks are
also present inevitably. These surface defects are often decisive in chemical reactivity
on insulator surfaces, and they play an important role in both the adsorption geometry
and the electronic structure. For example, a few experiments and theoretical studies
suggest dissociative adsorption of water at the color center on NaCl(100) [17, 152, 153].
Malaske et al. studied the adsorption of SA on the perfect NaCl(100) surface and at
surface color center with EELS and UPS [16], and it was found that the binding of SA at
the color center is much stronger than on undistorted surfaces. In this chapter, we shed
light on the effect of surface defects by presenting two types of surface defects, namely
the surface color center (Fs center) and the stepped surface. These results, together with
the adsorption on ideal surfaces, provide a complete picture of the molecule-insulator
interaction.

13.1 Adsorption at Surface Color Centers

In this section, the influence of NaCl(100) surface anion vacancies on the adsorption of
various benzoic acid molecules is discussed. The anion vacancy, i.e. the color center (F
center), is one of the most common point defects in ionic insulators. The term originates
from the experimental observed coloration of the otherwise transparent crystals in the
presence of the anion vacancies [154]. For example, the absorption peak associated
with the F center at 465 nm renders the NaCl crystal yellow [155–157]. The neutral
anion monovacancy is the simplest form of the F center, with a single bound electron
in the vacancy center. An eminent application of anion vacancies in alkali halides is
the color center laser first demonstrated in 1965 by Fritz and Menke [158]. We present
in Appendix C a comprehensive description of the F center in bulk NaCl using hybrid
functionals. The hybrid functionals have been shown to give a better account of the
lattice relaxation for the defect systems than the GGA functional due to the reduced
self-interaction. As for the adsorption at surface Fs center, we use the PW1PW hybrid
functional in spin-polarized DFT calculations.
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13 Roles of Surface Defects

Figure 13.1: Electron-spin den-
sity of an Fs centers at NaCl(100)
in the (100) plane. XX repre-
sents the anion vacancy. The
lines are drawn in intervals of
0.01 e/Bohr3. The solid, dashed
and dot-dashed lines indicate pos-
itive, negative and zero values,
respectively.

13.1.1 Surface Color Center at NaCl(100)

The neutral Fs center is created from the five-layer-thick NaCl(100) slab with a (3 ×
3) unit cell used in Sec. 8.2. One Cl atom is removed from the surface to from the
anion vacancy. One unpaired electron is left in the vacancy center, whose electronic
wavefunction is expanded by a ghost basis set. The ghost basis set is the same as that
for Cl atoms. The geometry relaxation shows that the four Na atoms closest to the Fs
center in the top layer shift towards the vacancy by 0.021 Å, and the displacement of
the Na atom beneath the Fs center in the second layer towards the defect is 0.29 Å.
The four second shell Cl neighbors in the top layer also show displacements of 0.021 Å
towards the vacancy. It is noteworthy that the inward relaxation of the nearest cations
around the cavity is quite different from what has been found for other wide band gap
ionic insulators, like MgO and LiF [159–161]. To understand this discrepancy, geometry
relaxations have been calculated within the HF and DFT GGA theory, respectively.
While the HF theory also predicts an inward displacement of the surface neighboring Na
atoms of 0.15 Å, the PW91 functional, however, shows an outward relaxation of 0.002
Å. It is well-known that DFT tends to delocalize the electrons, whereas the HF favors
more electron localization. The larger degree of delocalization of the unpaired electron
gives rise to an effective positive electrostatic potential at the vacancy, which slightly
pushes away the neighboring Na atoms. Moreover, if we remove the ghost basis function
at the vacancy and add a diffuse function to the neighboring Na atoms for an adequate
description of the unpaired electron, it turns out that an outward relaxation can also be
achieved with the hybrid PW1PW functional. Despite the ambiguities of the relaxation
behavior, the geometry perturbation induced by the Fs center is very small overall.

As shown in the spin density map in Fig. 13.1, the unpaired electron is well localized
in the vacancy center. The trapping is stabilized by the Madelung potential and the
effective positive charge on the vacancy. The calculation with the PW1PW functional
showed a spin charge of 0.786 e for the ghost vacancy atom (XX ). The rest of the spin
density is spread over the nearest Na ions. The unpaired electron in the vacancy center
also introduces singly occupied state in the band gap of NaCl(100). This new electron
level lies 2.4 eV below the bottom of the conduction band, which is comparable to earlier
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(a)

(b)

(c)

side view top view

Figure 13.2: Adsorption geometries of (a)BA, (b)SA and (c)p-SA at an NaCl(100) Fs
center. The color scheme is the same as in Fig. 8.3.

EELS results [16, 162].
The formation energy Ef of an Fs center as the energy required to extract a Cl atom

is given by

Ef = Ed + ECl − ENaCl(100) (13.1)

where Ed and ECl are the total energy of the NaCl(100) with an Fs center and the atomic
energy of an isolated Cl atom, respectively. The computed Ef for an anion vacancy is
5.79 eV at the HF level, while PW1PW gives a higher formation energy of 6.47 eV.
Nevertheless, these values are in agreement with other theoretical studies.[163, 164]

13.1.2 Adsorption at Surface Color Center

The optimized adsorption geometries of various benzoic acids at NaCl(100) Fs center
are given in Fig. 13.2. The ghost atom was kept fixed during the relaxation. It is evident
that all molecules bind to the surface via the interaction between O atom and Na atom.
For BA and p-SA, one carboxylic O atom forms a bond with surface Na, while the other
carboxylic O atom binds to the surface in a bridging configuration across two Na atoms.
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Table 13.1: Adsorption energies, representative bond lengths and spin density ρα−β of
the adsorbates for adsorption at an NaCl(100) Fs center. The BSSE corrected adsorption
energy is given in parenthesis. The subscripts follow the convention in Fig. 8.3.

Bond lengths d (Å)

Eads (eV) Na−O1,c Na1−O2,c Na2−O2,c Na−Op Spin density (e)

BA -1.98 2.25 2.32 2.36 0.992
SA -2.03 (-1.39) 2.31 2.19 2.28 1.000
p-SA -1.79 2.24 2.32 2.32 0.995

Table 13.2: Changes of intramolecular bond lengths, ∆d (in %), for various benzoic
acids adsorbed at the NaCl(100) Fs center.

carboxyl phenol

C−O1 C−O2 O1−H C−O O−H O2−Hp

BA 3.2 6.0 0.3
SA 3.2 4.7 0.5 2.4 1.9 -7.0
p-SA 3.6 6.5 0.3 0.9 0.0

Similar to the adsorption on NaCl(100), there is an additional bonding for the adsorption
of SA through the interaction between the phenolic O and the surface Na, which makes
its binding energy the largest of all three, as shown in Table 13.1. The BSSE corrected
values are not included in Table 13.1 as BSSE correction gives rise to a large degree of
overcorrection in the interaction energy due to the presence of the ghost basis function
at the vacancy center. Alternatively, single point energy calculations at the previously
optimized structures are performed without the ghost atom so that the counterpoise
scheme can be applied. An additional diffuse function is added to the neighboring Na
atoms around the vacancy to give an equivalent description of the Fs center. The basis
set for the adsorbate molecule is also improved with the 6-311G(d,p) basis set. For
SA, this results in an adsorption energy of 1.39 eV after BSSE correction, which agrees
well with our calculations based on the plane-wave basis set. This implies that the real
binding energy should be smaller than the values in Table 13.1 by about 0.6 eV. It is
evident that the adsorption energies at the vacancy site are much higher than those on
the ideal NaCl(100) surface. The increased adsorption energy is partly contributed by
the stronger Na-O interactions, which is accompanied by a smaller Na-O bond lengths
compared to the values on the flat NaCl(100) surface. This stronger interaction can be
also seen in the intramolecular distortion of the molecules, as shown in Table 13.2. The
expansions of the C−O bonds in both carboxylic and phenolic groups are much larger
compared to the intramolecular distortions on NaCl(100) without defects. Nonetheless,
the calculation suggests that dissociative adsorption energy of benzoic acids at the Fs
center is higher by about 0.6 eV than in molecular adsorption. This is different from the
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13.1 Adsorption at Surface Color Centers

Figure 13.3: Electron spin density ρα−β isosurface for adsorption of SA at the NaCl(100)
Fs center. The isovalue is 0.002 e/Bohr3.

Figure 13.4: Density of states projected onto the Na atoms at the surface and the SA
molecule upon adsorption at the Fs center. The LUMO is aligned to energy zero.

conclusion that dissociative adsorption of water at the surface color center is energetically
favored [16, 17, 152]. Earlier experiments also revealed that SA is intact after adsorption
at Fs centers on NaCl(100) [16], which agrees with our calculations.

While the vdW interaction is relatively important for the weakly bound system, it is of
less importance to the adsorption at the Fs center. Without an explicit calculation of the
long-range contribution, we might assume that the magnitude of the vdW interaction
should be similar to that on ideal (100) surface, which is about half eV. The anion
vacancy turns out to be chemically quite reactive, leading to the chemisorption of the
benzoic acid molecules. This is clearly depicted in the spin density shown in Fig. 13.3,
where the unpaired electron is now transferred to the carboxylic group and the aromatic
ring of the SA molecule upon adsorption at the vacancy. In other words, adsorption at
the vacancy causes a local magnetization of the adsorbate molecule. This large charge
transfer is indeed the origin of the enhanced binding energy. It can be seen from Fig. 13.2
that the surface Na+ cation is attracted by the increased electron density delocalized on
the aromatic ring, and consequently it shows a small displacement towards the molecule.

Due to the pronounced charge transfer, the spin-resolved PDOS in Fig. 13.4 shows
that the LUMO for the SA molecule is now partly occupied. Meanwhile, the HOMO
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13 Roles of Surface Defects

Figure 13.5: Slab model (left) and geo-
metric relaxation (right) of [001] step on
NaCl(100). Only the [001] step and two
underlying NaCl(100) layers are shown.
The arrows represent the directions of
the atomic displacements. The white
and black circles on the right denote Na
and Cl atoms, respectively.
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and the HOMO-1, which are mainly located at the aromatic ring, are now split. Apart
from the broadening due to the resonance, the HOMO-2 also exhibits spin-polarized
behavior due to the spin density at the carboxylic group. It turns out that the electronic
properties of the organic molecule adsorbed at the color center are largely altered. This
is also consistent with the sizeable changes in the intramolecular structure.

To summarize, the adsorption at the surface color center is in contrast to that on the
ideal (100) surface. The charge transfer of the unpaired electron at the vacancy to the
molecule gives rise to a chemisorption of the molecule with a large binding energy and
a pronounced intramolecular distortion. Most notably, the energy gap of the molecule-
insulator interface is no longer determined by the HOMO-LUMO gap of the molecule.

13.2 Effect of Non-Polar Stepped Surface

A step is an important line defect, in which the ledge separates two terraces from each
other. In case of alkali halide surfaces, monatomic steps, i.e. steps of single atomic height
prevail. Steps on NaCl(100) have been found to enhance the adsorption of H2O [17, 153,
165] and CO2 [166]. The electronic structures of ionic materials are also dependent on
the properties of the steps on the surfaces [167]. In this section, we first examine the
properties of a non-polar stepped surface, namely the [001]-oriented step on NaCl(100)
surface.

13.2.1 Bare [001]-oriented Step

The [001] monatomic step, presented in Fig. 13.5, is created from a NaCl(301) vici-
nal surface. The monatomic step is separated by (100) terraces with a width of three
anion-cation interatomic distances. Calculations are performed with the PW1PW hy-
brid functional in localized basis sets, using a 4 ×4 k-point mesh corresponding to 10
k-points in the IBZ. The geometry relaxation reveals that the atoms near the step edge
tend to move towards their first neighbors, which is illustrated in Fig. 13.5. Due to
symmetry reasons, there is no atomic displacement in the direction parallel to the step
edges. From Table 13.3, we find that the most under-coordinated atoms, i.e. the edge
atoms (Cl3 and Na4 in Fig. 13.5) show the largest displacement. The lower edge atoms
(Na5 and Cl6) move out of the (100) plane to get closer to their first neighbors, which
can be seen as bond contractions in Table 13.3. Further, the bond contraction is much
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13.2 Effect of Non-Polar Stepped Surface

Table 13.3: Geometric relaxation of the atoms at the [001] step edge site. The subscripts
of the atoms are the same as in Fig. 13.5. The color scheme follows the convention as
Fig. 8.3.

Displacement (Å)

∆x ∆z

Na1 -0.11 -0.03
Cl2 -0.12 0.00
Cl3 -0.20 0.14
Na4 -0.26 0.10
Na5 0.08 0.15
Cl6 0.07 0.13
Cl7 -0.01 -0.08
Na8 -0.02 -0.14

Changes of interatomic distances

∆d (Å) ∆d (%)

Na1-Cl3 -0.14 -5.1
Cl2-Na4 -0.16 -3.7
Cl3-Na5 -0.05 -1.7
Na4-Cl6 -0.01 -0.5
Na5-Cl7 -0.05 -1.9
Cl6-Na8 -0.05 -1.6

stronger when the coordination number (Z) of the atom connected to the edge atom is
smaller. For instance, the distance between the edge atom Na4 and step terrace atom
Cl2 (Z=5) is 2.696 Å, while the lower edge atom Cl6 (Z=6) is 2.792 Å away from Na4.
Generally the Madelung potential acting on the under-coordinated atoms decreases as
the coordination number of their first neighbors decreases. The bond contraction can be
regarded as a compensation of the Madelung potential, and thus it becomes larger in the
presence of more under-coordinated atoms. However, the overall atomic displacements
and bond contractions for the [001] step are still quite limited.

The ledge formation energy can be expressed as

Eledge =
Estep − nEbulk − 2γA

mL
, (13.2)

where Estep is the total energy of the stepped slab which includes n formula units of
NaCl. γ, A and L represent the surface energy of NaCl(100), surface area and step
length, respectively. The factor m, accounting for the number of ledges in the unit cell,
is 4 for the [001] step. The calculated ledge energy is 67 meV/Å for the rigid stepped
surface. Geometric relaxation further decreases the ledge energy to 51 meV/Å. It should
be borne in mind that the ledge energy consists of the step energy which is required to
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Figure 13.6: Adsorption geom-
etry of SA at the [001] step edge
on the NaCl(100) surface. The
color scheme follows the conven-
tion as Fig. 8.3.

ledge

side view top view

form the step, and the step-step interaction which depends on the separation of the steps
[119, 168]. Nonetheless, the actual step energy should be slightly lower than the ledge
energy since the inter-step interaction only has a small contribution to the ledge energy
[119].

The band structure of the NaCl(301) stepped surface is very close to that of the
flat surface. The small perturbations of Madelung potentials around the step site are
effectively compensated through geometric relaxation. The computed band gap of 7.46
eV is comparable to that of the flat NaCl(100) surface, in agreement with experiment
[169].

13.2.2 Adsorption at the [001] Step

We show here the adsorption of SA as an example, whose most stable adsorption geome-
try at the [001] step is presented in Fig. 13.6. At the optimized adsorption configuration,
the carboxylic O atom of C−−O group prefers to bind to the surface at a bridge adsorp-
tion site, where it interacts with both the Na atom at the step edge and the Na atom
of NaCl(100). Since the step edge atoms are more under-coordinated, the binding of
carboxylic O to the step edge Na is stronger than that to the surface Na atom. This
can be manifested by the shorter bond length to the step edge Na atom(2.48 Å) than to
the surface Na atom (2.61 Å). Likewise the bond length between carboxylic H atom and
step edge Cl atom (2.13 Å) is contracted compared to that on the ideal NaCl(100) (see
Table 8.2). In addition, the phenolic O atom also interacts with the surface Na atom
with an interatomic separation of 2.75 Å. The charge gain on SA after adsorption is 0.02
e according to the Mulliken population analysis. The PW1PW binding energy including
BSSE correction is 0.72 eV, which is 0.24 eV larger than on flat NaCl(100) surface. This
affirms that steps are preferred binding sites for molecular adsorption on NaCl surface.

The electronic structure of benzoic acids adsorbed at the [001] step is, not surprisingly,
similar to the adsorption on the flat NaCl(100) surface because of the identical bonding
mechanisms. The calculated PW1PW gap for SA adsorbed at the [001] step edge is 4.75
eV, nearly identical to the band gap on NaCl(100) surface. The alignment of the HOMO
and the VBM is also consistent with the result on ideal surface. While vdW interaction
is not included in PW1PW calculations, its impact on the electronic structure should be
rather limited according to the discussion on the ideal surface. Hence, when a molecule
is exposed to a non-polar stepped surface, the step edge provides a preferred binding
site, while the electronic structure of the adsorbate system does not vary much from
that of the molecular adsorption on the ideal surface.
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Figure 13.7: Schematics of relaxed ge-
ometries for the [011] step on NaCl(100)
with a step width of 4 (S1) and 6 (S2)
atomic rows. The inset shows the dis-
placement directions of the atoms at the
step edge site based on the S2 model.
The color scheme follows the convention
in Fig. 8.3.

13.3 Roles of Polar Steps

13.3.1 Bare [011] Step

Polar steps are often very different from the non-polar ones in terms of the structural
parameters and the electronic properties because of the varied electrostatic environment.
In Fig. 13.7, two stoichiometric NaCl [011]-oriented step models with different step
terrace widths are presented. Unlike the [011] step, the edge of the [011] step is either
terminated with Cl or Na atomic rows. Such alternating atomic rows generate a net
dipole moment along [011] arising from the nonzero electrical field between the two
neighboring atomic rows [170–173]. The total dipole moment is thus clearly proportional
to the number of the atomic rows along the step direction. This implies that the S2 model
is more polar than the S1.

The [011] step edge atoms is three-fold coordinated, making them even more under-
coordinated than the step edge atoms of the [001] step. The values of atomic charges
at the step edge are smaller than those at the step terrace and on the regular surface
according to the Mulliken analysis, which corresponds to a lower ionicity at the step edge.
Therefore a much larger geometric relaxation is expected, as is presented in Table 13.4,
especially for the edge atoms which have the largest displacements and move towards
their nearest neighbors in order to compensate for the reduced Madelung potential.
Similar to the [001] step, the upper edge atoms tend to retract from step within their
layer, in contrast to the lower edge atoms. It is also found that at the Na-terminated
step site, the step edge Na atom shows a larger relaxation than the step edge atom at the
Cl-terminated site. Generally both stepped surfaces exhibit almost the same geometric
relaxation, and the displacements of step edge atoms in the S2 model are slightly larger
due to its higher polarity. Similar behaviors are expected for KCl stepped surface.

The ledge energy of the NaCl [011] step, as calculated from Eq. (13.2) with m=2, is
substantially higher than that of the [001] step. The rigid [011] step shows ledge energies
of 339 and 406 meV/Å for the S1 and S2, respectively1 Relaxation effects significantly
lower the ledge energy to 180 and 209 meV/Å, nearly half of the value of the rigid step.
The higher ledge energy for the S2 is consistent with its larger atomic displacements of
the step edge atoms, as a consequence of the higher polarity along the step direction.

1 We do not attempt to correct the artificial dipole moment stemming from the periodic repetition of
the slab model in the two-dimensional direction. After all, the model proposed here is hypothetical
and the total energy correction to the dipole moment does not affect the observed trend.
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Table 13.4: Geometric relaxation of the atoms at the NaCl [011] step site. The sub-
scripts of the atoms are illustrated in Fig. 13.7.

S1 S2

∆x (Å) ∆z (Å) ∆x (Å) ∆z (Å)

Cl-terminated
Na1 0.22 0.15 0.13 0.14
Cl2 -0.21 0.12 -0.27 0.16
Na3 0.26 0.36 0.25 0.41
Cl4 0.13 -0.12 0.16 -0.10

Na-terminated
Cl1 -0.07 0.21 0.03 0.21
Na2 0.42 0.01 0.48 0.01
Cl3 -0.21 0.28 -0.22 0.32
Na4 -0.16 -0.16 -0.20 -0.14

S1 S2

∆d (Å) ∆d (%) ∆d (Å) ∆d (%)

Cl-terminated
Na1-Cl2 -0.29 -10.1 -0.27 -9.4
Cl2-Na3 -0.19 -6.8 -0.20 -7.1
Na3-Cl4 -0.05 -1.6 -0.02 -0.8

Na-terminated
Cl1-Na2 -0.31 -11.0 -0.29 -10.4
Na2-Cl3 -0.20 -7.0 -0.21 -7.5
Cl3-Na4 -0.00 -0.1 0.02 0.8
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Figure 13.8: Band structures of the relaxed NaCl [011] stepped surface constructed by
two slab models. The VBM is aligned to energy zero. The lattice vectors of the real-space
and the reciprocal-space unit cells are not to scale.

As for the relaxed KCl [011] step, the calculated PW1PW ledge energy amounts to 199
meV/Å using the S2 model.

The electronic structure, particularly the band gap of a stepped surface, is explic-
itly dependent on the local electronic environment of the step edge atoms. For ionic
insulators like NaCl, the VBM is mostly of Cl p character, whereas the CBM has a con-
tribution from Na s state. The separation of the VBM and CBM is therefore sensitive to
the anion-cation interaction. Generally, a weaker Madelung potential is corresponding
to a smaller gap width. Indeed, we find that the PW1PW band gap of a rigid [011]
step (S1) is merely 2.81 eV. Geometric relaxation compensates the Madelung potential
by bond contractions around the step edge atoms, shifting the Na and Cl energy levels
towards higher and lower energies, respectively. This results in a substantial recovery of
the band gap to 5.58 eV after relaxation, but it is still about 2 eV smaller than that of
the flat surface. An interesting feature in the band structure (Fig. 13.8) is the splitting of
the VBM. The states that appear near the valence band edge are localized around the Cl
atoms at the step edge, a consequence of the lowered electrostatic potential. Moreover,
the S2 model shows a smaller gap width of 4.52 eV, associated with a larger split of the
VBM because of the higher polarity. The dispersion of the VBM along k10 − k11 and
k10 − k00 indicates a strong inter-atomic interaction between the step edge Cl atoms.

The effect of the polar step on the electronic structure is also present for the KCl [011]
stepped surface. The calculated PW1PW band gap based on the S2 model is reduced
by 3.7 eV compared to the bulk value. To conclude, we find that the reduced Madelung
potential acting on the under-coordinated [011] step edge atoms results in much larger
relaxation than on a surface with [001] steps. As a result, the band gap is significant
reduced due to the shift of the energy levels of step edge anions towards mid-gap.
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Figure 13.9: Adsorption geometry
of SA at the Cl-terminated side of
the [011] step on NaCl(100). The
color code follows the convention as
Fig. 8.3. side view top view

ledge

Figure 13.10: Band structure
(left) and PDOS (right) of SA
adsorbed at the Cl-terminated
side of a [011] step on NaCl(100)
obtained from the S1 surface
model. The highest occupied state
is shifted to energy zero. PDOS (arb. units)
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13.3.2 Adsorption at the [011] Step

The stoichiometric [011] stepped surface provides two potential adsorption sites, one at
the Cl-terminated step edge and the other on the Na-terminated side. We first briefly
discuss the adsorption at the Cl-terminated site, using the SA molecule adsorbed at the
NaCl [011] step (S1) as an example. The choice of the slab model is not critical and it
shall not influence the general conclusion since the two models differ from each other by
a rigid shift of the VBM and CBM.

The adsorption geometry optimized with the PW1PW functional is depicted in Fig. 13.9,
where a carboxylic H atom binds to the step edge Cl atom with a bond length of 2.17/Å.
Meanwhile, we see carboxylic and phenolic O atoms interact with the Na cations on the
(100) terrace in the same fashion as the adsorption on (100) surface. The PW1PW
adsorption energy is -0.80 eV including BSSE correction. The intramolecular distortion
is comparable to that on the flat surface, and nearly no charge transfer is observed upon
adsorption.

The PW1PW band structure and PDOS shown in Fig. 13.10 reveals that the effective
band gap corresponds to the HOMO-LUMO separation of the SA molecule upon adsorp-
tion at the Cl-terminated step edge of the [011] step. Analogous to the adsorption on
(100) surface discussed in Sec. 8.2.2, the alignment of the molecular orbital with respect
to the stepped surface is indeed dominated by the interaction between the HOMO-2
and the Na 3s states. Accordingly, the whole molecular orbitals are shifted relative to
the effective potential of the surface. We note that due to the small separation between
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Figure 13.11: Adsorption geometries of (a) BA, (b) SA and (c) p-SA bound to the
Na-terminated step edge of the [011] step on NaCl(100).

the HOMO and HOMO-2 for the BA molecule (cf. Table 6.2), a different alignment
occurs where the HOMO of the BA adsorbate lies marginally below the VBM of the
stepped surface. Nevertheless, the overall band gaps for all three benzoic acids adsorbed
at Cl-terminated step edge are of the similar magnitude as those obtained on the ideal
(100) surfaces.

Now we move the adsorption site from the Cl-terminated site to the Na-terminated
step edge. As a first step, we show the adsorption configurations of the benzoic acid
molecules at the NaCl [011] stepped surface.

The adsorption geometries optimized with the PW1PW hybrid functional are illus-
trated in Fig. 13.11. All configurations share a common Na−O bond and a less influential
Cl−H bond, whereas an additional Na−O bond takes place for the SA adsorbate from
the phenolic O atom. From Table 13.5, we see that the average Na-O bond length is
shorter than that on the ideal NaCl(100) surface. This indicates that the binding be-
tween the O atom and the under-coordinated Na atom at the step edge is stronger, in
accordance to the larger adsorption energy shown in Table 13.5. Hence, the molecules
are more likely to be found at the Na-terminated step edge site.

We now extend the study to the adsorption at KCl [011] stepped surface. To address
the influence of the vdW interaction, the semi-empirical PBE-D method is employed. In
Fig. 13.12, some representative adsorption configurations of the BA and SA adsorbate
systems are illustrated with the long-range dispersion correction. The corresponding
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Table 13.5: Adsorption energies and representative bond lengths for adsorption at the
Na-terminated step edge of the [011] step on NaCl(100) (S1). The subscripts c and p

denote atoms in carboxylic and phenolic group, respectively.

Adsorption Energy (eV) Bond lengths d (Å)

Eads EBSSEads Na−O1,c Na−O2,c Cl−Hc Na−Op

BA -1.09 -0.87 2.47 2.26 2.46
SA -1.21 -0.99 3.59 2.40 2.09 2.28
p-SA -1.18 -0.91 2.45 2.26 2.57 3.26

I II III

[011]

[100]

IV V

SA

BA

Figure 13.12: Adsorption sites of SA (I to III) and BA (IV and V) at the KCl [011] step
with different configurations optimized by the semi-empirical PBE-D method with vdW
interaction included.

98



13.3 Roles of Polar Steps

Table 13.6: Molecular Eads (in eV) for various adsorption configurations at the K-
terminated step edge of the KCl [011] stepped surface calculated by the PBE-D method.
The configurations refer to the structures in Fig. 13.12.

Configuration Total Eads GGA-PBE vdW

SA
I -0.68 -0.23 -0.45
II -0.38 -0.15 -0.23
III -1.10 -0.67 -0.43

BA
IV -0.99 -0.76 -0.23
V -0.98 -0.47 -0.51

adsorption energies calculated with the PBE-D method are given in Table 13.6, including
the contributions from the semilocal GGA-PBE functional and the vdW interaction.
One readily identifies that the structure (III) in Fig. 13.12 is the preferred adsorption
configuration for SA where the carboxylic group points towards the lower terrace of
the (100) surface while the phenolic O is in close proximity to the under-coordinated K
atom at the step edge. This coincides with the optimal adsorption geometry predicted
by the PW1PW functional (cf. Fig. 13.11). While this configuration has the largest
energy gain already from the GGA part, we see in Table 13.6 a sizeable contribution
from the long-range vdW interaction. In structures (I) and (II), the vdW interaction
is predominant for the molecular adsorption, whereas in (III) we find a larger ionic
contribution to the adsorption energy. Thus the inclusion of vdW forces does not change
the trends set by the hybrid functionals. As for the BA molecule, the GGA functional
prefers the configuration (IV) in Fig. 13.12 in which the adsorbate binds to the step
edge site in an upright configuration. The inclusion of dispersion, however, gives rise to
another flat configuration on (100) terrace with almost the same adsorption energy as
that of the standing up configuration (see Table 13.6). Obviously, opposed to structure
(IV), the vdW interaction is now predominant due to the close proximity between the
molecular plane and the low lying surface, which compensates for the smaller electrostatic
interactions in the flat configuration. Therefore, at low coverage both configurations
(IV and V) are energetically equivalent for the adsorption of BA at the [011]-stepped
surface although their binding mechanisms differ. Nevertheless, as the adsorption on
flat surfaces, the optimal adsorption geometry is still governed by the local electronic
environment. Using the PW1PW1 hybrid functional, we find Eads of -0.89, -0.97 and
-0.94 eV for the BA, SA and p-SA adsorbate systems at the KCl [011] step edge including
BSSE correction, respectively. These values are in line with those at the same step site
on NaCl.

We now see in Fig. 13.13 that the presence of the polar step effectively reduces the
PW1PW band gap of the adsorbate system when a molecule is adsorbed at the Na-
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Figure 13.13: Band structure (left) and PDOS (right) of SA adsorbed at the K-
terminated edge of the KCl [011] stepped surface calculated with the PW1PW func-
tional. The dots give the molecular orbital energies of a gas-phase SA molecule. The
HOMOs of the gas-phase and the adsorbed molecule are aligned. The top of the valence
band is energy zero.
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Figure 13.14: Projected density of states onto the SA molecule adsorbed at the cation
step edge site of the KCl and NaCl [011] steps, using the PW1PW hybrid functional.
The top of the stepped surface valence band is energy zero.
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terminated step edge. The effective gap amounts to the separation between the LUMO
and the VBM of the stepped surface. Most notably, the gap of the SA/KCl [011] stepped
surface is about 1 eV smaller than the NaCl counterpart as is shown in Fig. 13.15. The
origin of the discrepancy is revealed in the PDOS, as a consequence of the different
resonance states of the adsorbate with the s states of the step edge cations. On the
NaCl stepped surface, the HOMO-2 is broadened into resonance, whereas the HOMO-2
is apparently not coupling to the KCl [011] step, leaving the HOMO-1 in resonance with
the valence states from the step edge cations. This is in agreement with what has been
found on flat KCl (100) surface where the HOMO-1 exhibits more evident smearing
than the HOMO-2 does. The different schemes of alignments on these two surfaces
consequently shift the whole MOs and put the LUMO closer to the top of the valence
band for the KCl stepped surface. It can be also seen in Fig. 13.13 that the relative
distance between the MOs of the adsorbate agrees well with the isolated molecule.

In Fig. 13.15 the effective PW1PW band gaps of the three hydroxybenzoic acids
adsorbed at the NaCl and KCl [011] stepped surface are given, along with the alignment
of the MOs referenced to the VBM. As expected, the effective gaps for BA and p-SA
adsorbed at the KCl polar step are about 0.6 eV smaller than those at the NaCl step.
To this end, it is clear that the band gap of the adsorbate system is determined by both
the intrinsic HOMO-LUMO gap and the resonance with respect to the surface, and it
does no matter whether there is a surface defect or not. As a matter of fact, we always
find that the KS band gaps for the SA adsorbed slabs have the smallest effective gap
among the chosen benzoic acid molecules. This is not a coincidence provided with the
similar characteristics of the MOs involved in the resonance (e.g. HOMO-2) and the
HOMO-LUMO separations of the three molecules.

Due to the large size of the adsorbate on the polar stepped surface, the Green’s func-
tion based MBPT calculation becomes formidable within the current computational
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scheme. Although quantitative descriptions of the dynamic correlation effect and exci-
tonic effect require the GW quasiparticle energies and BSE calculation, their influences
can be implied from the previous calculations on flat surfaces. We first note that the
quasiparticle correction for adsorption at the polar stepped surface will increase the
PW1PW band gap. This is a reasonable assumption because the quasiparticle energy
gaps of the molecules are much larger than the PW1PW gaps (Fig. 6.2). The alignment
of the HOMO with respect to the VBM of the stepped surface, however, should be less
modified by the quasiparticle energy correction since the valence states can be well de-
scribed by the PW1PW hybrid functional. As a result, the G0W0 quasiparticle energy
gap of the adsorbate system at the polar stepped surface should also be significantly
smaller than that on the ideal flat surface. Moreover, it has been revealed in Ch. 11
that the polarization in the surface reduces the molecular energy gap of the adsorbate
on the ideal (100) surface by about 1 eV. As the magnitude of the renormalization is
related to the molecule-surface separation according to the classical image charge theory,
a similar reduction of the molecular energy gap is expected at the stepped surface due to
the surface polarization effect. The situation becomes more complex when the excitonic
effect comes into play. It is unclear at this stage how the coupling between the molecule
and the polar step edge could modify the electronic excitation spectra. In fact, the
excitation at the stepped surface must be different from that on the ideal (100) surface
presented in Ch. 12, because the VBM, i.e. the 3p valence states localized at the step
edge Cl atoms are spatially separated from the adsorbate in the employed stepped sur-
face model (Fig. 13.12). Thus, unlike the adsorption on (100) surface, it is doubtful that
the transition can take place between the VBM of the stepped surface and the LUMO
of the adsorbate. However, even without an explicit account of these higher-order dy-
namic correlation effect and excitonic effect, it turns out that while non-polar defects
have a small effect on the electronic structure of the adsorbate system, polar defects can
impose prominent influence on the alignment of the molecular orbitals with respect to
the valence band of the substrate through tailoring the local electrostatic environment.
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14.1 Discussion

When the present work was first initiated by the intriguing contact charging effect in
technological applications, KS-DFT was the method of choice and the problem is re-
duced to the investigation on the electronic properties of the selected organic molecules.
However, it soon became apparent that the interfaces of the organic molecules and wide-
gap insulators are not as trivial as one would expect. The complex interaction at the
interface imposes some interesting effect on the molecular adsorbate. Hence, the influ-
ence of the underlying substrate cannot be neglected anymore, and it is crucial to treat
the coupled molecule and surface as a whole. In addition, we have shown in Part III
that methods beyond KS-DFT are necessary for an accurate account of the energy gap
and the dynamic correlation effect at the molecule-insulator interface. Even for a single
gas-phase molecule, LDA in KS-DFT could predict distorted spectra for the occupied
molecular orbitals, and the strong molecular excitonic effect addressed in Ch. 6 can
only be taken into account in a state-of-art MBPT formalism. This work uncovers how
our understanding of the molecule-insulator interface is refined through the gradually
developed level of theory.

As mentioned in the Introduction, the puzzle behind the contact charge effect is inti-
mately related to the electronic excitation. In a simplified picture where we just consider
the electronic excitation on a single wide-gap insulator surface, the magnitude of the ex-
citation energy has been found to be dependent on the intrinsic molecular energy gap of
the hydroxybenzoic acid molecules. We first discuss the implications of the calculation
to the single organic molecule. Using the PW1PW hybrid functional, we saw in Sec. 6.2
that the salicylic acid (SA) possesses the smallest HOMO-LUMO gap among all three
molecules, while the benzoic acid (BA) molecule owns the largest gap. The quasiparti-
cle correction to the HOMO and the LUMO in GW approximation does not alter the
relative trend of the molecular energy gaps from the hybrid functional. The shift of the
quasiparticle energy depends on the electronic localization of the orbital. This tendency
is still maintained when the molecular excitonic effect is included in Sec. 6.3 as the exci-
ton binding energy is proportional to the quasiparticle energy gap of the molecule. From
the theoretical perspective, we feel the urge to at least use the hybrid functional even
for the gas-phase conjugated molecules. The spurious self-interaction in the local (or
semilocal) approximation of DFT exchange-correlation energy ruins the correct ordering
the highest occupied molecular orbitals of the BA and p-SA molecule.

While the general features of the molecular orbitals are preserved when the hydrox-
ybenzoic acid molecules are adsorbed on the ideal (100) surface of alkali chloride sur-
faces, the broadening of some interacting orbitals evolves an important signature of the
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molecule-surface interaction. In Sec. 8.2.2, we find the covalent characteristic of the
involved bonds mostly between the oxygen and surface cations. Although this covalent
interaction does not contribute to the attractive binding energy, it is crucial in determin-
ing the adsorption geometry of the hydroxybenzoic acid molecules. The different adsorp-
tion configuration on NaCl and KCl(100) surfaces can be explained by the symmetry of
the molecular orbitals, which are in resonance with the surface (Sec. 10.1). Even if the
long-range vdW force is included, it can be seen in Sec. 9.2 that the tilting angle of the
molecules and the distance between the molecule and surface are barely affected. This
refreshes our knowledge of the role of the covalent contribution at the molecule-insulator
interface. For a wide variety of carboxylic acids on a wide-gap insulating surface, there
is no strict boundary between the physisorption and the chemisorption, because both
electrostatic and covalent interactions are involved. We see that the binding energy for a
single benzoic acid on NaCl or KCl(100) surface is about 0.4-0.5 eV from the short-range
contributions, and about 0.5 eV from the long-range vdW interaction. The short-range
attractive interaction comes from the ionic contribution, since the covalent interaction
simply acts as a Pauli barrier.

The electronic structure of the benzoic acids on the ideal (100) surface in terms of the
KS-DFT calculations does not reveal much excitement. The effective PW1PW energy
gap is usually reduced to the HOMO-LUMO gap of the adsorbate because of the relative
alignments of the frontier orbitals to the VBM of the surface. However, this scenario
changes significantly if we include the dynamic correlation in the GW calculations in
Sec. 11.2. Due to the polarization effect in the surface, the HOMO and LUMO experience
sizeable renormalization and the quasiparticle energy gap exhibits a reduction of over 1
eV for the hydroxybenzoic acid molecules. This can be understood by the classical image
charge theory, where the addition or removal of an electron in the molecule induces a
corresponding image charge in the surface. Whereas the dielectric constant of the wide-
gap insulator is relatively small, the GW calculations indicate that the reduction of the
molecular energy gap can be still quite substantial.

The most striking feature appears in the Ch. 12 when the electron-hole interaction is
taken into account for the adsorbate system. The BSE calculation using the full excitonic
Hamiltonian finds a peculiar strong peak with an absorption energy in the vicinity of 3
eV when the light polarization is perpendicular to the surface. The excitation energy
related to this peak, which is assigned to the transition from the VBM to the LUMO,
is about 1 eV smaller than the molecular lowest singlet exciton energy of the π-π∗

transition. In particular, we find that the position of this peak is shifted to higher
energy if the electron-hole antipairs with negative frequencies are neglected in the Tamm-
Dancoff approximation. This implies that this lowest excitation confined at the molecule-
insulator interface has a substantial exchange of the e-h interaction. We show that for
the conjugated molecule coupled to the wide-gap insulator, this intriguing excitonic effect
can take place and it can only be accounted in a full BSE calculation. The presence of
the molecule-surface exciton further reduces the excitation energy with respect to the
gas-phase molecule.

Up to now, it has been quite a long journey from the KS-DFT to the Hedin’s GW
approximation, and ultimately to the two-particle BS equation during the adventure
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of exploring the interface between the organic molecules and the wide-gap insulator
surface. We recall that the KS-DFT with LDA gives an effective energy gap of about
3-4 eV for the various hydroxybenzoic acids adsorbed on NaCl and KCl(100) surfaces.
Thus, the LDA gaps fortuitously coincide with the BSE excitation energies. This is,
however, not too surprising because of the error cancellation in the LDA results. The
LDA severely underestimates the band gap of the insulator and the HOMO-LUMO gap
of the molecule. On the other hand, it totally misses the dynamic correlation effect and
the excitonic effect, which tends to lower the excitation energy. Most notably, we show
that the origin of the lowest excitation from the LDA and the BSE is fundamentally
different.

In Ch. 13 we turn to study the influence of the surface defects because they are preva-
lent in real surfaces. Two kinds of defects, namely the surface color center and the polar
step, have been shown to be decisive on the electronic structure of the adsorbate system.
For adsorption at the surface color center, the most interesting feature is the charge
transfer of the unpaired electron to the molecular adsorbate, which subsequently results
in the magnetization of the adsorbate. The polar stepped surface is another example
of band engineering through tailoring the electrostatic environment of the surface. We
see in Sec. 13.3.2 that the effective KS-DFT gap can be decreased by over 2 eV when
the hydroxybenzoic acid is adsorbed at the artificial [011]-oriented monatomic step edge.
While this type of polar step is conceptual and it requires a high formation energy, these
results demonstrate the possibility of controlling the alignment of the molecular orbitals
with respect to the surface by such adsorption.

14.2 Outlook

In an effort to understand the microscopic mechanism in the separation process, this
work provides a comprehensive insight into the molecule-surface adsorption geometry,
interaction, and excitation properties. Meanwhile, the adsorption of aromatic carboxylic
acid on wide-gap insulator offers an excellent playground to benchmark various ab ini-

tio methods for this specific system. The ever-increasing power in the contemporary
supercomputers makes it possible to push the state of the art theoretical approaches
to a new level in the first-principles calculations. We have already seen in this work
that an accurate description of electronic excitations is accessible from the two-particle
Green’s function method, whereas it is beyond the scope of KS-DFT or even the GW -
RPA method. In light of the interesting properties of the surface defects (e.g. the polar
step), it is desirable to perform the BSE calculation when the molecules are adsorbed at
these defect sites.

Last but not least, it is still not transparent how the contact charging effect is mediated
between two insulators. For example, the separation output dependence on the relative
humidity remains a mystery. 1 On the other hand, the charge transfer in between the
insulators requires the knowledge of both insulators and their interface including the

1It is tentatively shown in Appendix D that the adsorption of water molecules at the [011] step could
recover the band gap.
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14 Summary and Perspectives

adsorbed molecules. These are the directions that needed to be worked on in the future.
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Appendix A

Tamm-Dancoff Approximation to the
Optical Absorption Spectra of Benzoic
Acids

The optical absorption spectra Im(εM) of the benzoic acid and salicylic acid molecules are
calculated in terms of the Tamm-Dancoff approximation (resonant part only) and the full
excitonic Hamiltonian (both resonant and coupling parts). The calculation parameters
follow the description in Sec. 6.3. The resulting spectra are shown in Fig. A.1.
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Figure A.1: Absorption spectra of the BA and SA molecules using the Tamm-Dancoff
approximation and the full BSE Hamiltonian. The polarization direction is along the x
axis illustrated in Fig. 6.3.

For both molecules, the optical absorption spectra exhibit blue-shifts with respect to
the full BSE spectra. In particular, the shift for the lowest singlet excitation peak is
quite insignificant. For example, the lowest π → π∗ transition shifts by about 0.2 eV
to higher energy for the SA (see Fig. 6.3), while the shift is less than 0.1 eV for the
BA molecule. Hence, at least for the lowest excitation peak, the TDA is still a valid
approximation for these benzoic acids. However, the discrepancies between the TDA
and the full Hamiltonian becomes more substantial when one moves to the higher energy
excitations. Not only the position of these peaks, but also the intensities are different
from the full calculation. This can be understood by the large exchange interaction of
the e-h pair [151]. It is suggested that the coupling between the e-h pairs and antipairs
is important in reproducing the characteristics of the excitations at large energies for
the benzoic acid molecules.
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Appendix B

Gluconic Acid on MgSO4 · H2O (100)

The perfect non-polar surface of a wide band gap insulator, e.g. alkali halides is chemi-
cally inert with respect to organic molecules, and the features of the molecular orbitals
are usually preserved upon adsorption. This has been resolved by scanning tunneling
spectroscopy [15] and first principles calculations (Sec. 8.2.2). However, we show in the
appendix that the molecular orbital of an organic molecule can also experience strong

variations upon adsorption on a wide-gap insulating surface. The system under investi-
gation is a gluconic acid (GA) molecule adsorbed on a MgSO4 · H2O (100) surface.

B.1 Bulk MgSO4 · H2O

MgSO4·H2O has a monoclinic structure (space group C6
2h), and is chemically formed

from MgSO4 by incorporating one water molecule per unit. The crystal structure pa-
rameters were calculated with the PBE XC potential [41] within the generalized gradient
approximation (GGA) as implemented in vasp [130]. The electron-ion interaction was
described within the projector augmented wave method [174]. A kinetic energy cutoff
of 500 eV and a 5× 5× 5 k-point mesh in the Brillouin zone are used. The convergence
criterion of lattice parameter and atomic position relaxation is set to 0.02 eV/Å. The
resultant lattice constants (a = 6.79 Å, b = 7.79 Å, c = 7.69 Å) and β = 117.7◦ are in
good agreement with experiment and previous theoretical values [175]. The direct band
gap at the Γ point is severely underestimated by the GGA-PBE (5.53 eV) and the local
density approximation (LDA) (5.26 eV), compared to a surface sensitive experimental
value (7.4 eV) [176]. A much more realistic gap of 7.41 eV is obtained with the screened
hybrid functional HSE06 [49, 177] owing to the alleviation of the self-interaction er-
ror and derivative discontinuity problem by the nonlocal exact exchange. As resolved
from the projected density of states (PDOS) in Fig. B.1, the valence band maximum
(VBM) is of O-2p character and the conduction band minimum consists of Mg-3s and
S-3s states. We also carry out the quasiparticle (QP) calculations according to Hedin’s
GW approximation [72, 178], which starts from the Kohn-Sham (KS) wavefunctions
and adds QP corrections to the KS eigenvalues. We include 300 empty states with a
4 × 4 × 4 k-point mesh for the self-energy and a cutoff of 200 eV for the polarizability
matrices. The QP correction substantially recovers the LDA gap to 8.36 eV, while the
correction is much smaller (1.05 eV) to the HSE06 gap (see Fig. B.1). The projected
density of states (PDOS) plot (Fig. B.1) given by HSE06 agrees quite well to the G0W0

calculation, which proves that the HSE06 hybrid functional is a good approximation for
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Appendix B Gluconic Acid on Kieserite (100) Surface

Figure B.1: Projected density of
states of bulk MgSO4 · H2O calcu-
lated with HSE06 hybrid functional
(top panel) and G0W0 calcula-
tions using the HSE orbitals and
eigenvalues (bottom panel).
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the electronic properties of MgSO4 · H2O. Another feature that is evident in Fig. B.1 is
the hybridization between the molecular water 1b1 state and O 2p state, while the lower
molecular orbitals of the incorporated water remain sharp. The pronounced broadening
of the water 1b1 orbital is a consequence of the bonding to the neighboring Mg atoms.

B.2 Adsorption Geometry

We use a (1×2) MgSO4 · H2O(100) surface supercell with 14 atomic layers (72 atoms)
for the adsorption studies. Test calculations using larger unit cells confirmed that the
(1×2) supercell is adequate for various adsorption configurations while keeping the in-
termolecular interaction minimized. By construction, the (100) surface is cleaved in a
way that the electrostatic dipoles between the Mg2+ and SO2−

4 are nearly within the
surface plane. Hence, the macroscopic dipole moment is negligible along the surface nor-
mal, making this surface thermodynamically more favorable than other surface planes.
The non-polar nature of the surface is also evidenced by the small displacements of the
surface atoms during relaxations. A vacuum thickness of 14 Å was used to separate
the adsorbate system from its periodic image. The calculations have been checked to
converge well with respect to the slab thickness, k-point mesh (2 × 4 × 1) and kinetic
energy cutoff (400 eV). The PBE-D scheme [55] is employed to take into account the
long-range vdW force. The electronic properties of the adsorbate system are evaluated
with the HSE06 hybrid functional.

In Fig. B.2, the two configurations with the lowest Eads (see Table B.1) are presented,
both of which depict the fixture of the molecule via multiple localized Mg-O and O-
H bonds. Such bonding type implies that an ordered structure can be achieved on
MgSO4·H2O(100) where the GA molecule is prone to lie flat on the surface along the
[010] direction. Specifically, in Conf. I the molecule is stabilized via three Mg-O bonds
from the carboxylic and hydroxylic O atoms with bond lengths ranging from 2.10 to 2.16
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B.2 Adsorption Geometry
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Figure B.2: Top: Two representative configurations of GA adsorbed on
MgSO4·H2O(100). Color code: Mg blue (large gray), S yellow (light gray), O
red (black), C small gray, H white. Bottom: Adsorbate induced electron density
difference ∆ρ for Conf. II obtained from HSE06 calculations along with the planar
integrated ∆ρ(z) and accumulated induced dipole ∆µ(z). The red (dark gray) and green
(light gray) regions correspond to electron accumulation and depletion, respectively.
The isosurface value is ±0.03 e/Å3.

Table B.1: Adsorption (Eads) and interaction energy (Eint) (in eV) for the two ad-
sorption configurations optimized by PBE-D as shown in Fig. B.2. The GGA-PBE
contributions to the Eads (Eint) are explicitly listed. The deformation energy of the
molecule is denoted by ∆Ed. The definitions of Eads and Eint are given in Eq. (9.1).

Conf. EPBE-D
ads EPBE

ads EPBE-D
int EPBE

int ∆Ed

I -2.47 -1.63 -4.26 -3.42 0.77
II -2.49 -1.53 -4.04 -3.09 0.53
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Appendix B Gluconic Acid on Kieserite (100) Surface

Å. The incorporated water molecule at the surface is not interacting with the adsorbate.
In the second configuration, we see a dominating Mg-O bond from the hydroxylic O
(2.06 Å), accompanied by two weaker Mg-O bonds with larger bond lengths (2.22 and
2.55 Å). Besides, one of the hydroxylic O atom binds to the hydrogen of the water
molecule at the surface (Hw). The difference in adsorption configurations has a direct
influence on the binding energy as shown in Table B.1, where Eint calculated with GGA-
PBE is 0.33 eV higher for Conf. I. While the vdW interaction (EPBE-D

int − EPBE
int ) has

been found substantial for both configurations (0.84 and 0.95 eV), it accounts for a
relatively small portion (20-25%) of the total Eint compared to the short-range molecule-
surface interactions. Hence, we conclude that the long-range vdW force does not play a
predominant role in the adsorption of GA on MgSO4 · H2O(100).

Inspecting the charge density difference (Fig. B.2), one finds electron accumulations in
between the bond region upon adsorption, as expected for covalent interactions. This is
analogous to the BA/NaCl interface. Here, the dative covalent bond takes place through
the donation from the lone-pair electrons of the O to the Mg atom. The strong interaction
energy is still ascribed to the attractive electrostatic interaction. The adsorbate also has
an effect on the dipole moment at the surface. The induced dipole moment is defined as
[179]

∆µ(z) =

∫ z

zc

z∆ρ(z) dz, (B.1)

where ρ(z) is the planar-integrated charge density difference, and zc is the position of
the slab center. The reference position is the top of the surface layer (z = 0). The upper
limit of the integral z > zc, and is chosen somewhere in the vacuum where the charge
density difference is zero. In practice, we rewrite the adsorbate induced dipole as

∆µ(z) = ∆µ(z − dz) +
1

2
[∆ρ(z − dz) + ∆ρ(z)]dz, (B.2)

where dz is the z interval between two adjacent data. The calculated change in the
surface dipole is -2.3 Debye due to the electron redistribution at the molecule-surface
interface. Furthermore, the charge transfer is found to be small. For instance, a Bader
analysis [180] predicts that 0.01 e are transferred to the molecule for Conf. II. This is
expected as the energy gaps of both the surface and molecule are rather large.

An interesting indication of the large ∆Ed in Table B.1 is the pronounced intramolec-
ular distortion from its equilibrium geometry upon adsorption. This feature stems par-
tially from the intrinsic molecular structure of GA, and is not observed for some other
organic molecules, e.g. hydroxybenzoic acid on MgSO4·H2O(100) [175]. The sp3 hy-
bridization in the carbon chain makes the structure versatile through the rotation along
the C-C bond with a small energy barrier, which can be easily overcome by the energy
gain through the subsequent GA-surface interactions. An immediate consequence of this
structural change can be manifested by the reduced gap of the adsorbate with respect
to that of the gas phase molecule (Table B.2). In addition, our calculation on KCl(001)
shows a minor deformation of the GA molecule with a much weaker Eads (-0.4 eV ex-
cluding the vdW force), an indication that the intramolecular distortion is also related
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Table B.2: Calculated energy gaps (in eV) of the GA molecule by DFT and GW
approximation. The adsorbed molecule refers to the GA molecule adsorbed on
MgSO · H2O(100) as in Conf. II, whereas the isolated molecule refers to the GA molecule
detached from the surface while its geometry is kept fixed as that of the adsorbed
molecule. The GA molecule in its equilibrium geometry is denoted by the gas phase
molecule. The energy gaps of the SA adsorbed on MgSO4H2O(100) are given in paren-
theses for comparison.

PBE HSE06 LDA G0W
LDA
0

adsorbed 4.84 (3.21) 6.73 (4.30) 4.81 10.01
isolated 4.10 (3.37) 5.97 (4.49) 4.06 10.59
gas phase 4.46 (3.17) 6.39 (4.22) 4.43 10.94

to the surface. The higher reactivity of MgSO4 · H2O (100) is associated with its lower
Madelung potential as the ions at the surface are more exposed to the environment.

B.3 Anomalous Molecular Orbital Variation

We now turn to the surface and adsorbate induced effect on the molecular orbital of the
GA molecule. It is surprising to see from Fig. B.3 that, in Conf. II, the highest occupied
molecular orbital (HOMO) experiences dramatic changes upon adsorption, even with
the intramolecular structure kept intact. A detailed analysis reveals that the order
of the HOMO and HOMO-1 is reversed after the molecule is attached to the surface.
Consider the HOMO and HOMO-1 of GA in the gas phase are by no means degenerate,
such reordering of the molecular orbitals is rather unusual on wide band gap insulators.
This sends a signal that the adsorption can strongly modify the molecular orbitals even
on pristine insulating surfaces. The interchange of HOMO and HOMO-1 subsequently
increases the energy gap of the adsorbate by about 0.75 eV with respect to the isolated
molecule (see Table B.2). We note that such gap variation shows no dependence of
the XC functional used. The drastic modification of the HOMO, however, is absent for
Conf. I where the electron density redistribution is considerably smaller. In Fig. B.4
two distinct behaviors of the frontier orbitals are perceivable when the GA molecule is
lifted away from the surface while the intramolecular structure is fixed at its adsorbate
state. In Conf. I, the gap between the HOMO and the lowest unoccupied molecular
orbital (LUMO) experiences a small decrease relative to the isolated molecule. As the
molecular HOMO in Conf. I lies within the surface band gap, there is no coupling between
the HOMO and the surface valence band. Hence, the small gap reduction arises from the
electrostatic potential of surface dipoles. This also holds true for the hydroxybenzoic
acid (SA) adsorbate on MgSO4 · H2O(100) as well as the GA on alkali halide (001)
surface. On the other hand, for Conf. II, the HOMO of the adsorbate is pinned below
the surface VBM as a result of the resonance between the hydroxylic oxygen and Hw

of the surface. Since the hydrogen bond weakens rapidly as the molecule is gradually
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Figure B.3: Density of states projected onto the GA molecule (solid line) and surface
(gray dashed line) calculated with the HSE06 functional for Conf. I and II. The adsorbed
molecules are denoted by (a) and (c), and the isolated ones are given in (b) and (d). A
Gaussian smearing of 0.05 eV has been applied. The HOMO of the isolated molecule is
aligned to that of the adsorbate. The electron density distributions of HOMO for the
adsorbed and isolated molecules are also illustrated.

detached from the surface, one can see the accelerated upshift of the HOMO against
the VBM as well as the declining of the molecular energy gap in Fig. B.4. It is thus
clear that the strong variations of the frontier orbitals upon molecular adsorption stem
from the rehybridizations. The water molecule, which was usually thought to be inactive
in MgSO4 · H2O, however plays an important role in the electronic properties of the
adsorbate.

We have seen up to this point that the frontier orbital of the adsorbate can be effec-
tively influenced by the molecule-insulator interactions based on the KS-DFT. Following
Ch. 11, we now illustrate the polarization effect on the electron affinity and ionization
energy of the adsorbate upon adsorption on MgSO4 · H2O(100). Norm-conserving pseu-
dopotentials, a cutoff energy of 816 eV (60 Ry) and a 2×4×1 k-point mesh are used for
the LDA calculation. In the GW calculation, we include 200 and 400 empty bands for
the isolated GA and adsorbate system in the evaluation of self-energy Σ, respectively.
3400 G vectors are used for the local field effect in the response function. The slowly
decaying Coulomb potential in the repeated-slab approach is corrected with a boxlike
cutoff. The QP gap is converged within 0.1 eV with these parameters. The resulting
QP gap from the G0W

LDA
0 for the gas phase GA exhibits a much larger opening than

the HSE06 HOMO-LUMO gap. When the molecule is brought into contact with the
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Figure B.4: The evolution of the HOMO-LUMO gap (left) and the HOMO energy
(right) (within HSE06) of the GA adsorbate with respect to the distance to the surface
d. dopt is the separation between the molecule and surface at the optimized geometry.

surface, a pronounced gap reduction (0.58 eV) is obtained from the G0W
LDA
0 calcula-

tion. This is clearly opposed to what has been found by DFT calculations. In fact,
we find that ∆EQP

HOMO = 0.6 eV and ∆EQP
LUMO = −0.7 eV, corresponding to a gap re-

duction of 1.3 eV due to surface polarization. Note that apart from the polarization
effect, the change in the energy gap upon adsorption given by G0W0 (∆EG0W0

g ) in Ta-
ble B.2 also includes the contribution from the local interactions. Using Eq. (11.5), we
find that ∆EKS-DFT

g = (−0.58) − (−1.3) = 0.72 eV, in excellent agreement with the
HOMO-LUMO gap change upon adsorption from the DFT calculations (see Table B.2).

In summary, we have demonstrated in this appendix that upon adsorption to the sur-
face of a wide band gap insulator, the molecular orbitals of the adsorbate can experience
substantial changes as a result of the complex interplay of the sizeable electrostatic in-
teraction and rehybridization. As the electronic properties are dictated by the energetic
positions and characteristics of frontier orbitals of the adsorbate, one has to carefully
assess the molecule-insulator interface when interpreting the transport and spectroscopic
measurements.
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Appendix C

Color Centers in NaCl

In this appendix, we investigate the anion (Cl) vacancy in NaCl in different charge states
(-1, 0 and +1) by both semi-local and hybrid functionals, aiming for a better understand-
ing of the F center in alkali halide and the performance of the hybrid functionals for
localized defects. We note that the finite-size effect arises within the current modeling
scheme for the vacancy. The common procedure for defect energetics calculation is to
embed the defect into a supercell under periodic boundary condition (PBC). The ad-
vantage of using supercells instead of cluster methods is that the band structure of the
host crystal is well-defined, as the cell is bulk-like [181]. However, tractable DFT calcu-
lations are usually constrained to about 1000 atoms, and the size of system is further
limited for hybrid functionals in a plane-wave basis set. A single Cl vacancy in a 1000-
atom NaCl supercell corresponds to a vacancy concentration of the order of 1020cm−3,
which is much higher than those found in experiment (1015 to 1019 cm−3). The periodic
images of the point defects in a high density thus give rise to unrealistic defect-defect
interactions, making the defect energetics dependent on the size of the supercells. The
problem is even more serious for charged defects, as the neutralizing background slows
the convergence of defect energies with respect to the supercell size [182]. Other sources
of error for small supercells involve the elastic energy due to artificial relaxations of
ions, and defect level dispersions introduced by defect-defect interactions. Corrections
for the finite-size effect have been found indispensable in defect calculations for realistic
interpretations [183–186], and they will be discussed and applied to the present study of
Cl vacancies.

We first assess the performance of the hybrid functionals on the bulk properties of
NaCl, and compare it to the GGA-PBE (Perdew-Burke-Ernzerhof) functional [41]. Both
unscreened and screened hybrid functionals are employed. In the unscreened PBE0
functional, the exchange part of the XC energy Exc is constructed by mixing a fraction
(α) of non-local exact exchange Ex with PBE exchange EPBE

x , while the correlation
energy is simply taken from PBE, EPBE

c :

EPBE0
xc = αEx + (1 − α)EPBE

x + EPBE
c . (C.1)

The amount of exact exchange α is a variable from 0 to 1, although conventionally
α = 0.25 is used as suggested by perturbation theory [53]. In practice α is usually
varied to meet the experimental gap value. In a plane-wave basis set, the evaluation
of the exact (HF) exchange is a hog to the computational resources and tends to be
rather slow because of its truly non-local nature. The calculation can be accelerated
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Table C.1: Calculated lattice constant (a0), fundamental band gap at Γ (Eg), dielectric
constant (ǫ∞) and enthalpy of formation (∆Hf ) of rocksalt NaCl using various DFT
functionals.

a0(Å) Eg(eV) ǫ∞ ∆Hf(eV)

GGA-PBE 5.69 5.00 2.33 -3.69
HSE06 5.65 6.43 2.13 -3.85
PBE0 (α = 0.25) 5.64 7.19 1.98 -3.85
PBE0 (α = 0.40) 5.62 8.47 1.86 -3.93
Expt. 5.571 8.52 2.33 -4.261

1 Reference [187].
2 Reference [188].
3 Reference [189].

by truncating the slowly decaying long-range part of the exact exchange as in the HSE
(Heyd-Scuseria-Ernzerhof) hybrid functional [49]:

EHSE
xc = αEsr

x (µ) + (1 − α)EPBE,sr
x (µ) + EPBE,lr

x (µ) + EPBE
c . (C.2)

The screening parameter µ in Eq. (C.2) is given in Eq. (3.30). Here we use the optimized
µ = 0.207 Å−1, following Ref. [177] along with α = 0.25 and refer to this functional as
HSE06.

In Table C.1 selected bulk properties of NaCl calculated using the GGA-PBE and
hybrid functionals are summarized together with the experimental values. The calcu-
lations are carried out in the projector augmented wave (PAW) framework with the
vasp code [130, 174, 190]. A semicore pseudopotential of Na is used, treating the 2p3s
electrons as valence electrons. The kinetic cutoff energy for the plane-wave basis set
is 500 eV. A Γ-centered 8 × 8 × 8 Monkhorst-Pack k-point mesh [63] is applied to the
primitive cell containing one formula unit of NaCl. For HSE06 and PBE0 calculations,
a down-sampled 4 × 4 × 4 mesh is used to evaluate the non-local exact exchange. The
down-sampling for the non-local exchange reduces the computing time significantly. It
is generally necessary for the PBE0 to have a finer k-point mesh than for the screened
HSE functional to reach convergence.[50, 51] For the present case, the HF exchange us-
ing the PBE0 changes by roughly 15 meV per atom from the down-sampled 4 × 4 × 4
to the full 8 × 8 × 8, while the energy is already converged within 10−2 meV with the
HSE06 functional. Nevertheless, the choice of the down-sampled k-point for the PBE0
calculations is sufficient for the bulk properties. The lattice constant a is determined
when the residual force is smaller than 5 meV/Å. The high frequency macroscopic di-
electric constant ǫ∞ can be calculated within a GW scheme using the random-phase
approximation (RPA) with local field effect included. Around 90 empty bands are used
for calculating the dielectric constant. The dielectric constant will also be referred to
later for the finite-size corrections. Finally, the formation energy ∆Hf is defined as

∆Hf = ENaCl(s) − ENa(s) −
1

2
ECl2(g). (C.3)
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In Eq. (C.3), ENaCl(s) is the total energy of bulk NaCl. ENa(s) is the energy of bulk Na in
a body centered cubic (bcc), which was optimized and calculated using the same k-point
mesh and cutoff energy as for bulk NaCl. ECl2(g) refers to the energy of one gas phase
Cl2 molecule in a large tetragonal cell.

One immediately observes that the hybrid functionals improve not only the direct
band gap (Γ15 → Γ1) but also the lattice constant and heat of formation compared to
the GGA-PBE calculation in Table C.1, in agreement with earlier calculations [50, 51].
Yet, it is found the band gaps are still underestimated for the hybrid functionals with the
original fraction (0.25) of exact exchange, and the PBE0 yields a much closer value to
experiment than the HSE06. This implies that for wide gap insulators, as the electronic
screening is quite weak, the unscreened exact exchange in PBE0 is preferred. For defect
calculations, it is customary to tune the fraction of the exact exchange so that the
experimental band gap can be reproduced [191, 192]. By increasing the amount of the
non-local exchange from 0.25 to 0.40 within the PBE0, the band gap of NaCl recovers
nearly to the experimental value, and the lattice constant and heat of formation are also
reproduced best among the chosen functionals. We note that hybrid functionals tend
to underestimate the dielectric constant of NaCl, a trend also found for semiconductors
and other insulators [193]. An accurate description of the electronic dielectric constant
with the hybrid functionals will require an explicit account of excitonic effects [78, 194].

To this end, we face several functionals for the subsequent calculations of the Cl va-
cancy in NaCl. The PBE0 (α = 0.40) (we will refer it to mPBE0 hereafter) is apparently
favored since it reproduces the experimental gap. However, as the choice of the fraction
of the non-local exact exchange is empirical to some extent, its impact on the position of
the deep defect level for wide gap insulators is still unknown. Meanwhile, the screened
hybrid functional is of great interest as it shows considerable success in the prediction
of defect energetics. Therefore it is plausible to also include the HSE06 functional with
the original α, as well as the GGA-PBE for the defect calculations.

C.1 Electronic Structure of Chlorine Vacancies

In this section we briefly sketch out the single-particle Kohn-Sham (KS) eigenvalues of
the Cl vacancy induced electronic levels. Supercells containing 64 atoms are employed
for the calculations. The Brillouin zone is sampled with a 2 × 2 × 2 k-point mesh, and
a plane-wave basis set cutoff energy of 450 eV is used. Further, the k-point mesh for
the non-local exact exchange is down-sampled to the Γ-point for HSE06, while a full
2 × 2 × 2 k-point mesh is necessary for well converged energies in PBE0 calculations.
The convergence criterion for full relaxations is 0.01 eV/Å.

The removal of one Cl atom in a perfect NaCl crystal leaves a neutral vacancy V 0

with one electron bound to the vacancy center. The localized nature of the unpaired
electron can be clearly identified in the charge density isosurface shown in Fig. C.1. The
1s characteristics of the wavefunction in the vacancy is contributed equally from the six
neighboring Na atoms. The negligible displacement of the neighboring atoms around
V 0 (see Table C.2) keeps the singly occupied a1g level unshifted after relaxation. In
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V0 V
+

V
-

Figure C.1: The electron density (V 0 and V −) and hole density (V +) isosurface of the
a1g state in the (100) plane calculated with the mPBE0 functional. The lines are drawn
in intervals of 0.01e/Å3. The displacements of the nearest neighbor atoms around the
Cl vacancy after relaxation are illustrated by the arrows. The blue and green circles
represent the Na and Cl atoms, respectively.

Table C.2: Displacements (in the equilibrium bond length 0.5a0) of the nearest-neighbor
Na atoms around the Cl vacancy calculated using the 64-atom cell. The positive value
represents an outward relaxation against the vacancy, and vice versa. The values ob-
tained with the 216-atom cell using the GGA-PBE are shown in parentheses.

GGA-PBE HSE06 mPBE0

V + +0.035 (+0.043) +0.035 +0.036
V 0 −0.000 (−0.000) −0.000 −0.000
V − −0.039 (−0.040) −0.041 −0.044

the +1 charge state V +, the a1g state is unoccupied and the polaronic hole is trapped
in the vacancy. The nearest neighbor Na atoms tend to relax away from the vacancy
because of the positive electrostatic potential inside the vacancy. The outward relaxation
delocalizes the a1g (see Fig. C.1), and shifts it to higher energy towards the CBM. In
the -1 charge state V −, the a1g state becomes doubly-occupied. Upon relaxation the
six nearest Na atoms show inward displacement towards the vacancy (Fig. C.1) as a
polaronic distortion. As a consequence, the two electrons are more localized inside the
vacancy site, shifting the a1g state to lower energy. We note that the relaxations of
the neighboring atoms around the anion vacancy follow the Oh symmetry for all charge
states. No symmetry lowering (or Jahn-Teller distortion) is found since the defect level
is either singly occupied for V 0, or doubly occupied (unoccupied) for V − (V +). The
reduced self-interaction in hybrid functionals also results in more pronounced atomic
displacements for the charged defects as seen in Table C.2.

Table C.3 summarizes the KS energies of the Cl vacancies in various charge states for
both rigid and relaxed defect structures. The choice of k-point gives rise to a dispersion
of the electronic level within the finite-size supercell scheme. The dispersion introduces
a strong dependence on the supercell size of the energy level at the Γ-point ǫΓ. Thus we
average the defect level energy over the Brillouin zone ǫ since the averaged level shows
a much better convergence than ǫΓ. [183] The dispersion also slightly pushes the host
CBM to higher energies. The finite-size effect will be discussed in detail in Sec. C.2.1.
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Table C.3: Energy levels (in eV) of the single-particle Kohn-Sham a1g state of the Cl
vacancy in a cubic 64-atom cell referenced to the VBM. The energy is averaged over
the BZ. For V 0, the positions of the a1 state in spin-up (occupied) and spin-down
(unoccupied) channels are given. The absolute positions of the host band edges are also
given.

PBE HSE06 mPBE0

rigid relaxed rigid relaxed rigid relaxed

V +(a0
1g) 3.74 5.02 4.90 6.25 6.81 8.25

V 0(a1
1g)↑ 4.09 4.10 4.83 4.83 5.30 5.30

V 0(a1
1g)↓ 4.85 4.86 6.13 6.13 8.12 8.12

V −(a2
1g) 5.04 4.37 6.07 5.22 6.87 5.69

ǫVBM -0.76 -1.63 -2.78
ǫCBM 4.24 4.80 5.69

As predicted by all functionals, the a1g states in all charged states lie within the upper
half of the host band gap. We note that the absolute KS energies of the a1g states
[ǫKS(a1g) + ǫVBM] are less affected when going from semi-local to hybrid functionals.
In hybrid functionals, the VBM is lowered by 0.9 eV (HSE06) and 2.0 eV (mPBE0)
with respect to the GGA-PBE as a result of the reduced self-interaction for the Cl 3p
states. On the other hand, for rigid structures, the widening of the band gap in hybrid
functionals tends to place the a1g of V − further away from the CBM compared to the
semi-local functional, while the unoccupied a1g state of V + is closer to the CBM when
hybrid functionals are used.

C.2 Thermodynamic Transition Energies and Finite-Size
Corrections

In general the single-particle energy level of the defect as calculated from the KS equation
differs from the experimentally observed transition energies. [183] A rigorous approach
to the transition energies, as discussed in this section, relies on the total energy difference
of the defect energetics in various charged states.

A central quantity for the defect energetics is the formation energy Ef for a defect D
in charge state q

Ef = ED − EH + Σniµi + q(ǫVBM + ǫF), (C.4)

where ED and EH are the total energy of the supercell with the defect D, and the
host supercell without defects, respectively. ni is the number of atoms removed from the
supercell (ni = 1 for the Cl monovacancy) or the number of impurities added (ni < 0). µi
refers to the chemical potential of the associated defect particle reservoir, and is subject
to equilibrium conditions. For the present study, under extreme Cl-rich (or equivalently

120



C.2 Thermodynamic Transition Energies and Finite-Size Corrections

Na-poor) conditions

µCl =
1

2
ECl2(g). (C.5)

This places an upper limit on µCl. The lower bound can be deduced from the following
relation:

µNa + µCl = ENaCl(s). (C.6)

Therefore under Cl-poor (or Na-rich) conditions, which facilitate the formation of Cl
vacancies,

µCl = ENaCl(s) − µNa(s) = ∆Hf +
1

2
ECl2(g), (C.7)

and this sets the lower limit of µCl.
The remaining term ǫVBM + ǫF in the formation energy [Eq. (C.4)] represents the

chemical potential, or Fermi energy of the electrons in charged defects. The Fermi
energy ǫF is varied within the band gap referenced to the energy of the host VBM ǫVBM

(0 ≤ ǫF ≤ Eg). Here ǫVBM is evaluated as the energy difference between a perfect host
supercell and the same host supercell with one electron removed from the VBM:

ǫVBM = E0
H(n) − E+

H (n− 1), (C.8)

where n is the number of electrons in the host supercell. In principle, one needs a
sufficiently large supercell with n → ∞ corresponding to the dilute limit. In practice, a
fractional charge q can be used along with a small supercell to obtain the ǫVBM

ǫVBM = lim
q→0

E0
H − EqH
q

. (C.9)

In the present case, the ǫVBM converges well within a 64-atom cell and a fraction charge
of 0.001 e.

For charged defects, it is evident from Eq. (C.4) that the formation energy is dependent
on the chemical potential of the exchanged electron. The thermodynamic transition
energy ǫ(q/q′) is defined as the Fermi energy at which the charge state q and q′ of the
defect system can be transformed spontaneously from one to the other. Therefore at the
transition energy ǫ(q/q′) these two charge states have the same formation energy. This
gives the following form of the transition energy

ǫ(q/q′) =
ED(q) − ED(q′)

q′ − q
− ǫVBM. (C.10)

C.2.1 Finite-Size Corrections

Before proceeding to the results, we shall discuss the correction methods for the finite-size
effect, whose causes have been already identified in Introduction. For charged defects,
the simplest correction is to align the electrostatic potential in the defect supercell to
that of the host supercell. This is usually done by inspecting the potential difference
∆V between the core potentials of the atoms far from the defect center and that of the

121



Appendix C Color Centers in NaCl

bulk cell, and the energy correction term is essentially ∆E = q∆V . This correction is
rationalized by the fact that in periodic supercell calculations the zero of the electrostatic
potential is chosen arbitrarily for each calculation, and the charged defect gives rise to
a constant shift in the potential so that the bulk VBM cannot be applied directly to
the defect supercell. However, due to the small size of the supercell used even the
atoms farthest from the charged defect center are not bulk-like, making such correction
scheme inaccurate. Recent study reveals that the potential alignment resembles the
Makov-Payne scheme, [182] whereas the latter targets the correction of the unphysical
defect-defect interactions. Indeed, Komsa and Rantala found that ∆V has the form
(ǫL)−1, where L is the lattice constant of a cubic supercell. [195] This is analogous to
the Makov-Payne scheme to first order.

The popular Makov-Payne scheme for a charged defect in a cubic supercell in the
dilute limit (L→ ∞) is expanded as

Ef (L) = Ef (L→ ∞) − αMdq
2

2ǫL
− 2πqQ

3ǫL3
+O(L−5), (C.11)

where αMd is the Madelung constant dependent on the lattice type, and q and Q the
monopole and quadrupole moment of the defect charge, respectively [182]. The first
order term, also called the Madelung energy, is thus the correction to the monopole-
monopole interaction arising from the periodic image. The L−1 behavior of the artificial
electrostatic interaction vanishes slowly, and this is usually the leading source of error.
The higher order corrections have much smaller effects on the formation energy for ionic
crystals, and it is usually accurate enough to include the corrections up to the quadrupole
term. We note that in the Makov-Payne scheme the defect states are assumed to be
localized, which is the case for the Cl vacancies in NaCl. For delocalized levels higher
order corrections might become necessary. Although the Makov-Payne expansion is
sound and accurate, it has been found that direct corrections using the Madelung energy
and multipole interactions are prone to overshoot the formation energy, in particular
for small supercells [196]. A more reliable approach is to employ a scaling method
by performing a series of calculations using supercells of different sizes with the same
symmetry. [197] The corrected formation energy Ef (L→ ∞) then can be extrapolated
to the dilute limit by fitting the calculated formation energies within finite-size cells to

Ef (L) = Ef (L→ ∞) + a1L
−1 + a3L

−3, (C.12)

where an and Ef (L→ ∞) are fitting parameters. It is clear that this scaling law method
requires at least 4 supercells, and is rather computationally laborious.

In a recent work Freysoldt et al. proposed a general correction scheme (we will refer
to it as the FNV scheme hereafter) for finite-size effect based on a single calculation of
defect supercell without empirical parameters [198]:

Ef = Ef (L→ ∞) + Elatt
q − q∆q/b, (C.13)

where Elatt
q is the macroscopically screened lattice energy of the defect charge qd with

compensating background, and ∆q/b is an alignment term referenced to the bulk supercell
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Figure C.2: Demonstration of the correc-
tion schemes for the formation energies of
the Cl vacancy in the +1 and −1 charge
states (in Cl-rich limit) with respect to
the reciprocal supercell lattice constant
L−1. The calculations were performed
with the GGA-PBE functional without
structural relaxations.

to account for the microscopic screening. As the long-range Elatt
q scales as L−1 and the

short-range alignment term as L−3, the FNV scheme can be seen as an extension to the
Makov-Payne expansion. It also allows for an explicit expression for the third-order L−3

energy term.

Now we apply both Makov-Payne scaling and FNV schemes to the formation energies
of the charged Cl vacancies (V + and V −) in NaCl. We refrain from including the
potential alignment in these two schemes in order to avoid double-counting of the long-
range L−1 term. Indeed Castleton et al. noticed that finite-size scaling with potential
alignment resulted in wide error bars. [196] A series of simple cubic supercells containing
64, 216, 512 and 1000 atoms is chosen in the present study. The exceedingly large 1000-
atom supercell restricts the calculations to the GGA-PBE functional, although we show
that the obtained trend is applicable to hybrid functionals as well. For the 64- and
216-atom cells, the Brillouin zone is sampled with a 2 × 2 × 2 k-point mesh. For larger
supercells, we use two special k-points, i.e. Γ-point (0,0,0) and R-point (0.5,0.5,0.5) in
reciprocal coordinates. Moreover, in the FNV scheme, the point charge qd consists of an
exponential decaying term and a localized contribution modeled by a Gaussian

qd(r) = qxNγe
−r/γ + q(1 − x)Nβe

−r2/β2

, (C.14)

whereNγ andNβ are normalization constants, and x is the fraction of the relative amount
of the exponential decay. In practice, the resulting corrected energy is insensitive to the
choice of the specific parameters in Eq. (C.14) [198].

In Fig. C.2, we demonstrate the effects of finite-size corrections to the formation
energies of Cl vacancies in +1 (V +) and -1 (V −) charge states. No relaxation is taken
into account at this stage so as to exclude the finite-size effect of elastic energies. For V +,
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Figure C.3: Band structures (upper
panel) of the Cl vacancy in the −1
charge state (V −) in the unrelaxed 64-
and 216-atom cells using the GGA-
PBE functional. The shaded areas
show the bandwidth of the doubly-
occupied a1g state induced by the neg-
atively charged defect. The horizon-
tal dashed line indicates the CBM of
the perfect host without defects. In
the bottom panel, the evolution of the
bandwidth of the a1g state (by closed
circles •) as a function of the super-
cell lattice constant is shown with an
exponential fit curve for the unrelaxed
structure. The band dispersion for the
relaxed cell is also given by open circles
◦.
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one first notices that the extrapolated formation energy from the Makov-Payne scaling
law falls in line with that of the FNV scheme. The L−1 clearly dominates for the Makov-
Payne fitted curve. The FNV scheme, on the other hand, shows a rapid convergence of
the V + formation energy. We see that finite-size correction is indeed mandatory for an
accurate description of formation energy of charged defects. For the smallest 64-atom
cell, the uncorrected formation energy is underestimated by roughly 0.6 eV. Even for
the 1000-atom cell, the formation energy without correction is still 0.2 eV too low.

Complexity arises when we move to the -1 charged Cl vacancy. The uncorrected
formation energies in Fig. C.2 for V − exhibit a zigzag evolution with respect to the
increasing supercell size, making the Makov-Payne fit unreliable. Meanwhile, the FNV
correction apparently yields a too high energy for small supercells, and the value does not
appear to converge until we use the 512-atom cell. The source of such error is identified
as the spurious dispersion of the defect levels as a result of the overlap between the
wavefunctions of the defect and its periodic images. In the dilute limit, this localized
defect level should be strictly a flat band. However, as shown in Fig. C.3, the Cl vacancy
induced a1g level within the band gap shows a prominent dispersion for small supercells.
For hybrid functionals, the dispersion is less pronounced as the exact exchange favors a
more localized electronic state in the vacancy. This artificial interaction tends to push
the CBM of the host crystal to higher energies, or otherwise the CBM will become
populated. The defect level dispersion has a short-range characteristics, as is evidenced
by the exponential fit of the a1g bandwidth with respect to the supercell lattice constant
L for the 64-, 216- and 512-atom cells (in Fig. C.3). This short-ranged effect is not
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included in either the Makov-Payne or FNV scheme, and thus one has to take it into
account explicitly. We note that the dispersion correction is not necessary for V + since its
a1g level is unoccupied. Here the correction for the dispersion is considered by calculating
the energy difference between the KS energy of the a1g level at the Γ-point ǫΓ and the a1g

KS energy averaged over the sampled k-points in the Brillouin zone ǫ. The FNV scheme
based on the dispersion corrected formation energies is again able to yield converged
results for small supercells, and the results are also comparable to the Makov-Payne
method including the dispersion effect in the dilute limit.

For the neutral Cl vacancy V 0, the situation becomes trouble-free since the electron is
tightly bound to the vacancy center with a strongly localized electron density distribution
as seen in Fig. C.1. The formation energy barely varies for the supercells considered,
and therefore there is no need for finite-size corrections for V 0.

We have shown the finite-size corrections for the charged defect supercells in rigid
geometries with atoms fixed at their bulk positions. However, the introduction of a Cl
vacancy inevitably changes the electrostatic potential of the local environment, resulting
in atomic relaxations around the vacancy. The supercell approach, in this aspect, will
lead to another error because the supercell employed in practice is usually not large
enough for all local relaxations around the defect. This error can be partially alleviated
by restricting the relaxations to the first two atomic shells around the defect, although
it might underestimate the relaxation energy. Here we assess the finite-size effect on
the elastic energy of the Cl vacancy in various charge states based on full relaxations
using the GGA-PBE functional. We do not discuss the relaxations of the outer shell
atoms since their displacements are much smaller than the first shell Na atoms and they
contribute little to the formation energy. For the neutral vacancy V 0, negligible inward
relaxations of the six nearest neighbor Na atoms are found with supercells containing up
to 216 atoms (see Table C.2). For V −, the net negative potential induced by the excess
electron added to the vacancy gives rise to an inward displacement of the neighboring
cations. As discussed in Sec. C.1, this results in a more localized a1g state, which
consequently suppresses the dispersion of the a1g with respect to the rigid structure (see
Fig. C.3). Due to the finite-size of the supercell, Table C.2 shows that the displacement
obtained from the 64-atom cell is 0.05 Å smaller than that from the 216-atom cell. The
inability to fully relax in the 64-atom cell consequently gives a formation energy about 0.2
eV higher than that of the larger supercells. For the positively charged vacancy V +, the
six nearest neighbor Na atoms experience an outward displacement due to the positive
potential in the vacancy center. In contrast to V −, the finite-size effect on the elastic
energy is not significant for V +, as seen in Table C.2, since the atomic displacements
using the 64- and 216-atom cells are of similar magnitude.

With all these comprehensive finite-size effects in mind, we now summarize the correc-
tion scheme applied in the present appendix. We restrict the calculations of formation
energies with hybrid functionals to the use of the 64-atom supercell. Thanks to the
localized nature of the defect state and negligible relaxation for V 0, no correction is nec-
essary. For V + we apply the FNV to the 64-atom cell and refrain from any correction
for the elastic energy. For V − the dispersion correction is applied to the 64-atom cell,
followed by the FNV scheme. Further, the relaxation energies are aligned with those
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Table C.4: Formation energies (in eV) of Cl vacancies in various charge states calcu-
lated with the GGA-PBE, HSE06 and mPBE0 functionals under Cl-rich and Cl-poor
conditions. The Fermi energy is chosen at the VBM for charged defects. All values are
corrected for finite-size effect.

Cl-rich conditions Cl-poor conditions

GGA-PBE HSE06 mPBE0 GGA-PBE HSE06 mPBE0

V 0

rigid 4.44 4.63 4.71 0.75 0.78 0.78
relaxed 4.44 4.63 4.71 0.75 0.78 0.78
V +

rigid 1.47 0.75 -0.26 -2.22 -3.10 -4.19
relaxed 0.63 -0.10 -1.10 -3.05 -3.95 -5.03
V −

rigid 9.71 11.40 12.91 6.02 7.55 8.98
relaxed 9.55 11.01 12.50 5.86 7.16 8.57

obtained from the 216-atom cell, provided the latter already yields a converged elastic
energy. In practice, due to the similar amount of atomic displacement, we use the PBE
result as a reference for the hybrid functional, and subsequently lower the formation
energies by 0.2 eV for the relaxed 64-atom supercells in the −1 charge state.

C.2.2 Chlorine Vacancy Thermodynamic Transition Energies

The calculated formation energies with finite-size corrections for the Cl vacancy in NaCl
are shown in Table C.4, with the Fermi energy ǫF fixed at the VBM. For the neutral
vacancy V 0, the hybrid functionals yield higher formation energies than the GGA-PBE,
although the energy differences are small. The functional dependence of formation en-
ergies for the charged states is much more prominent. With the hybrid functionals, we
obtain higher formation energies for V − and lower formation energies for V +. In par-
ticular, the negative formation energy of V + under Na-rich conditions suggests that the
F+ center could be predominating when the Fermi energy is close to the VBM.

To trace the source of the functional dependence of formation energy for charged
vacancies, we may first rewrite the formation energy of V + in a rigid geometry with ǫF
fixed at the VBM as

Ef (V
+) = (E+

D − E0
D) + (E0

D − E0
H + µCl) + ǫVBM, (C.15)

where the first term on the right-hand side is the electron ionization energy of V 0 (or
equivalently the affinity energy of V +), and the second term simply the formation energy
of V 0. By decomposing the formation energy into several contributions, it is clear that
the discrepancies in Ef (V

+) stem mostly from the different positions of the VBM by
various functionals. We note that the ionization energy of V 0 shows very small changes
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Figure C.4: Calculated mPBE0
formation energies of the Cl va-
cancy with full relaxations as a
function of the Fermi energy un-
der the Cl-poor condition. The
solid lines represent the forma-
tion energies corrected for the
finite-size effect. The thermody-
namic transition levels and the
zero-phonon lines (ZPL) are in-
dicated. The uncorrected val-
ues are given in dashed lines for
reference.

(within 0.05 eV) from semi-local to hybrid functionals, consistent with the similar abso-
lute energy of the singly occupied a1g state (see Table C.3). Analogously, the formation
energy of V − can be rewritten as

Ef (V
−) = (E−

D −E0
D) + (E0

D − E0
H + µCl) − ǫVBM, (C.16)

where the first term on the right-hand side is now the (negative) electron affinity energy
of V 0 (or the ionization energy of V −). In contrast to the ionization energy, it is found
that hybrid functionals tend to yield a smaller affinity energy of V 0 than semi-local
functionals, and that the difference reaches up to 0.9 eV. Along with the ǫVBM, they
explain the variations in the formation energy observed in Table C.4.

The atomic relaxation energy due to the polaronic electron or hole can be further
extracted from Table C.4 as the difference between the rigid and relaxed structures. It
is not surprising that the relaxation energies given by various functionals are consistent
provided the atomic displacements are similar with these functionals (see Table C.2).
The relaxation energy for V + is about 0.8 eV, while it ranges from 0.2 to 0.4 eV for V −.

For a charged defect, the formation energy is a function of the Fermi energy as illus-
trated in Fig. C.4. The intersections of different charge states are the thermodynamic
transition levels defined in Eq. (C.10). We see in Fig. C.4 that the transition levels
ǫ(+/0) and ǫ(0/−) are both within the band gap. Therefore, the mPBE0 functional
predicts that all charge states (-1, 0 and +1) of Cl vacancy could be thermodynamically
stable when the Fermi energy is varied within the band gap. We note that although this
is also qualitatively predicted by the uncorrected formation energies, the Fermi energy
window for the neutral V 0 vacancy is much narrower.

The density functional dependence of the thermodynamic transition levels is illustrated
in Fig. C.5(a). Both neutral and +1 charge states are predicted to be stable since
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Figure C.5: (a) The thermodynamic transition levels of the Cl vacancy calculated with
various functionals. The position of the VBM is aligned to energy zero. (b) The absolute
values of the thermodynamic transition energies.

the ǫ(+/0) levels are within the band gap for all functionals, with transition energies
increasing from 3.81 eV to 5.81 eV as the band gap widens from semi-local to hybrid
functionals. On the other hand, the ǫ(0/−) is placed slightly above the CBM in the PBE,
while its position falls into the band gap in HSE06 and is further shifted downwards with
respect to the CBM in the mPBE0 calculations. Hence in contrast to the GGA-PBE,
both the HSE06 and mPBE0 imply that the V − is stable.

While the thermodynamic transition energy generally increases with respect to the
VBM as the band gap enlarges, we see from Fig. C.5(b) that the absolute position
[ǫ(q/q′)+ ǫVBM] of the ǫ(+/0) level remains roughly unaffected from semi-local to hybrid
functionals. This coincides with the findings by Alkauskas et al. that the calculated
energy levels of localized defect are generally not tied to the position of the CBM [199].
The ǫ(0/−) levels are nevertheless more dispersed.

C.3 Optical Properties of the Color Center

The experimentally available optical properties of the F (V 0) and F ′ (V −) center in
NaCl serve as a benchmark for the assessment of the performance of the functionals. The
optical processes are clearly marked in the configuration coordinate diagram in Fig. C.6
according to the Franck-Condon principle [200]. In the Franck-Condon approximation
the electronic transition is assumed to occur very fast compared with the motion of
nuclei in the lattice. Therefore, the optical excitation spectrum observed in experiment
does not involve the relaxation of the defect structure, in contrast to the thermodynamic
transition.

The optical absorption and emission can be described by vibronic (simultaneous vi-
brational and electronic) transitions, in which the lattice vibration mode is treated by a
quantum harmonic oscillator. We first consider the excitation of an F center, which is
a well-defined feature [155–157, 201]. By absorption of a photon, the unpaired electron
is transferred to an excited electronic state (V + state) and an excited vibrational state.
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nate diagram for the neutral and
+ charge state of Cl vacancy in
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The excitation of an electron into the CBM is equivalent to bringing an electron to a
reservoir with a chemical potential of ǫVBM + Eg. The optical absorption energy Ea, as
illustrated in Fig. C.6, is thus given by

Ea = ER0

f (+; ǫF = Eg) − ER0

f (0), (C.17)

where the first term on the right-hand side is the formation energy of the unrelaxed +1
charge state (at coordinate R0) with the Fermi energy at the CBM, and the second term
the formation energy of the relaxed neutral charge state (at R0). The excited state (F+

center) subsequently relaxes to its zero-point vibration states. The energy gain due to the
relaxation is the Stokes shift ES between the vertical absorption and the zero-phonon line
(ZPL). The ZPL is the transition energy from the lowest vibrational level (zero phonon
mode) of the ground state to the lowest level of the excited state (at R1), without energy
transfer to lattice phonons. In terms of thermodynamic transition energy, it is easy to
see from Fig. C.4 that the ZPL can be expressed in terms of the difference between the
band gap Eg and ǫ(+/0). In the present case, due to the identical formation energy
between the rigid and relaxed V 0, the Stokes shift reduces to the relaxation energy of
the V + from the rigid structure. In the vertical emission (luminescence), the excited
electron from the CBM recombines into the defect level and the emission energy Ee is
given by

Ee = ER1

f (+; ǫF = Eg) − ER1

f (0), (C.18)

where the defect structure in the neutral state is kept fixed as that in the relaxed +1
charge state. Finite-size correction on this relaxation energy is taken into account ac-
cording to Sec. C.2.1. Once the electron is in the ground state, it relaxes to the bottom
of the state with the relaxation energy EAS (i.e. the anti-Stokes shift between the ZPL
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Table C.5: Calculated vertical absorption (Ea) and emission (Ee) energies, zero-phonon
line (ZPL) and the Stokes (ES) and anti-Stokes (EAS) shifts of the F and F ′ centers in
NaCl. All values in eV.

Ea Ee ZPL ES EAS

F center
GGA-PBE 2.03 0.65 1.19 0.84 0.55
HSE06 2.56 1.07 1.70 0.85 0.63
mPBE0 3.50 1.88 2.66 0.84 0.78
Expt. 2.771 0.982

F ′ center
GGA-PBE 0.76 -0.27 -0.11 0.87 0.16
HSE06 0.91 -0.34 0.04 0.86 0.38
mPBE0 2.03 0.27 0.68 1.35 0.41
Expt. 2.433

1 Reference [202].
2 Reference [203].
3 Reference [204].

and the vertical emission). The pronounced Stokes and anti-Stokes shifts (see Table C.5)
are expected due to the large polaronic distortion.

The calculated vertical absorption and emission energies of the F center using the
GGA-PBE and hybrid functionals are reported in Table C.5. The zero-point energy is not
included since it is usually comparable for both the ground state and excited state. We
find that the absorption and emission energies are underestimated by the GGA-PBE, and
this is most likely related to the small band gap. As to the hybrid functionals, the mPBE0
yields too large values, about 0.8 eV higher for both the absorption and emission energies
than the experimental values. The HSE06 hybrid functional apparently outperforms the
GGA-PBE and the mPBE0 for the vertical transition energies, with deviations within
0.2 eV and 0.1 eV for the absorption and emission energies, respectively. The available
experimental ZPLs for several F -aggregated centers (1.96 eV for R2 band [205] and 1.48
eV for N band [206]) suggest the mPBE0 also gives a too large ZPL.

Analogously, we extend the calculation to the optical process of the F ′ center, which
is formed when an electron is trapped at an F center by light absorption at low temper-
atures [157]. Instead of the sharp and bell-shaped curve of the F band, the F ′ center of
NaCl gives rise to a broad F ′ absorption band, peaking at the longer wavelengths side
of the F band [155–157]. It is seen in Table C.5 that all functionals now predict smaller
absorption energies with respect to the experimental F ′ band peak. In accord with the
F band absorption, the F ′ Ea increases from the semi-local functional to the hybrid
functionals as the calculated band gap widens. The Ea values given by the GGA-PBE
and HSE06 are well below the experimentally observed peak, whereas the mPBE0 yields
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a value that is in better agreement with experiment. In addition, we find that the var-
ious functionals predict either a negative or a very small emission energy Ee from the
excited F ′ state to the ground state. A negative emission energy in Table C.5 suggests
that the configuration coordinate of the intersection lies between the coordinates of the
minimum of the ground state and excited state. It is conceivable that in such case the
excited state can return back to the ground state through a non-radiative process by
vibrational relaxations, which leads to the luminescence quenching. The non-radiative
path is also valid for a vibronic system with a small emission energy where the inter-
section is in the vicinity of the minimum of the excited state [207]. Experimentally, a
radiative transition of an F ′ excited state is indeed absent [208].

C.4 Discussion

We have shown that, while hybrid functionals have been reported to be adequate for
defects in some semiconductors [192, 209–214], the description of the localized anion
vacancy in a wide gap insulator is less satisfactory by hybrid functionals when compared
to the experimental optical absorption spectra. In this section, we aim to identify the
possible origins of the failure of hybrid functionals for the description of the color centers
in NaCl. It should be mentioned that the total energy difference scheme used to deter-
mine the absorption energy does not include the electron-hole interaction. Nonetheless,
this should not affect the overall trend of the results because the presence of the exciton
usually introduces a uniform redshift of the absorption energy irrespective of the density
functionals.

We start with the discussion of the optical absorption since it is well-defined experi-
mentally. The absorption energy of an F center in Eq. (C.17) can be rewritten as

Ea = −ǫ(+/0)R0 + Eg

= [ER0

D (+) −ER0

D (0)]
︸ ︷︷ ︸

IP(V 0)

+ (ǫVBM + Eg)
︸ ︷︷ ︸

ǫCBM

, (C.19)

where ǫ(+/0)R0 refers to the vertical transition energy occurring at the geometry for the
neutral vacancy, and IP(V 0) is the ionization energy of V 0. Therefore the absorption
energy is solely dependent on the ionization of the neutral vacancy and the position of
the band edge in a perfect supercell, and no structural relaxation is involved. As the
ionization energy is not sensitive to the choice of the functional as discussed in Sec. C.2.2,
it becomes obvious that the discrepancies in the absorption energy reported in Table C.5
mostly stem from the variations in the CBM energy. For instance, the GGA-PBE ǫCBM

is 1.45 eV lower than the mPBE0 value as a result of the well-known band gap problem
associated with the local and semi-local DFT functionals. While the energy gap can be
reproduced by mixing 40% exact exchange in mPBE0, it is yet not clear whether the
positions of the band edges are accurate.

In principle, the band gap problem can be overcome by quasiparticle (QP) self-energy
calculations based on many-body perturbation theory. Here we follow the widely adopted
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GW approximation for the electronic self-energy [72] and calculate the QP corrections to
the Kohn-Sham eigenvalues. The GW approximation can be understood as the Hartree-
Fock theory with a dynamically screened Coulomb interaction. The QP energies are
calculated in a two-atom NaCl unit cell with a Γ centered 4 × 4 × 4 k-point mesh
and an energy cutoff of 200 eV for the response function, and a total of 256 bands.
The dynamic dielectric matrix is constructed with a frequency grid of 200 points.[215]
We note that the QP gap of NaCl is closely related to the starting wavefunction and
self-consistency. It is found that single shot G0W0 correction is too small when it is
applied to the GGA-PBE eigenstates, whereas G0W0 on top of mPBE0 overestimates
the QP gap. A fully self-consistent GW calculation also yields a too large QP gap
irrespective of the initial eigenstates, as a result of the neglect of the attractive electron-
hole interaction.[78] By updating the eigenvalues (four times) in the Green’s function G
and keeping the screened Coulomb interaction W at the RPA level within the initial PBE
eigenvalues, the GW0@PBE scheme produces a QP gap of 8.43 eV, in agreement with
experiment. The VBM is now lowered by 2.77 eV with respect to the PBE eigenvalue,
and the CBM is lifted up by 0.66 eV, reaching to 4.90 eV by QP corrections. Compared
to the GW0 result, the mPBE0 CBM is placed 0.8 eV too high in energy, while the
CBM energy calculated with the HSE06 functional coincides with that of the GW0 (see
Table C.3). A good agreement with the experiment F band absorption energy can be
already obtained if the ǫCBM in Eq. (C.19) is naively replaced by the GW0 value while
keeping the ionization energy untouched. Therefore, the ionization energies of the neutral
Cl vacancy V 0 calculated by semi-local and hybrid functionals are well described from
the total energy difference (∆SCF) method. In contrast, the calculated ionization energy
of the negative charge system V − is less satisfactory with GGA-PBE and is not much
improved with the hybrid functionals based on the experimental F ′ band absorption peak
and the GW0 CBM energy. This is easily understood since the electronic correlations
for the removal of a second electron from the a1g level is beyond the scope of DFT [94].
These many-body effects are accessible from the many-body perturbation theory, e.g. in
the GW approximation via the self-energy.

In the GW approximation, the QP energies of the highest occupied and lowest unoc-
cupied level correspond to the electron removal and addition energies, respectively. It
is then straightforward from Eq. (C.19) that the absorption energy can be calculated
as the QP energy difference between the CBM and the lowest unoccupied state of the
V +, provided the ionization potential of the neutral defect system is equivalent to the
electron affinity of the positive charged system. For example, using a 64-atom supercell
with a cutoff energy of 100 eV and a Γ point for the response function and 1024 total
bands, the GW0@PBE method yields an F band absorption energy of 2.47 eV. We note
that the two-particle excitonic effect in the optical absorption is not taken into account
in the GW approximation either.

For shallow defects, it has been found that the hybrid functional shows great improve-
ment over local or semi-local functionals in the defect transition energies [214]. This is
mostly likely benefited from the fact that the position of the shallow defect follows the
band edge (either CBM or VBM), which can be reproduced by hybrid functionals with
tunable α. For deep levels as demonstrated in this study, we find that a reproduction of
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a realistic band gap by an ad hoc tuning of the amount of the exact exchange in hybrid
functionals does not guarantee an accurate description of the optical defect levels, and
the thermodynamic charge transition levels as well. We see that the GGA-PBE is prone
to an underestimation of the vertical transition energy, which is obviously impaired by
a small band gap and a low conduction band edge. A significant shift for the band
edges can be observed with the hybrid functionals. This leads to an increased vertical
transition energy which is usually in better agreement with experiment, although the
overestimation of the CBM energy by an increased fraction of the exact exchange in
mPBE0 might give too high values (e.g. for the F band).

In addition to the electronic contributions (e.g. ionization energy and the position of
the band edge), the structural relaxation also plays an important role in predicting the
transition energies. The Frank-Condon shift (i.e. the difference between the absorption
and emission energy) sheds light on the effect of the exact exchange on the lattice relax-
ations around the vacancy. By adopting the GW0 CBM energy into the F band emission
energy in Table C.5, we find that the lattice relaxation in presence of the electron-phonon
interaction is best accounted by the mPBE0 hybrid functional as a result of the more
localized electron density in the vacancy. The localization is proportional to the amount
of the non-local exact exchange which reduces the self-interaction arising from the DFT
XC functional. The localized nature of the trapped electron is further enhanced by a
GW calculation, exhibiting an even smaller k-dispersion of the a1g level than the mPBE0
since the GW approximation is free of self-interaction. In this context, we expect the
structural relaxation will also be more realistic within many-body perturbation theory.

The discussion of the vertical transition energies finally invokes us to return to the
thermodynamic transition level presented in Sec. C.2.2. The thermodynamic transition
level can be readily decomposed into the electronic and structural contributions as

ǫ(+/0) = [Eg − Ea(F )] + ∆E+
D (C.20)

and
ǫ(0/−) = [Eg − Ea(F

′)] + ∆E0
D (C.21)

where ∆E+
D and ∆E0

D are the relaxation energies from the initial geometry for the pos-
itive and neutral charge state, respectively. By incorporating the experimental vertical
absorption energy and mPBE0 relaxation energy into Eq. (C.20) and (C.21), we come
to the thermodynamic transition energies ǫ(+/0)=6.6 eV and ǫ(0/−)=7.5 eV. There-
fore, the general picture of the Cl vacancy energetics by the adjusted hybrid functional
so as to reproduce the experimental band gap remains qualitatively sound albeit not
numerically accurate.

To wrap up, we find that the reduced self-interaction error alleviated by the exact
exchange allows for a more accurate description of the atomic relaxations in the vicinity
of the vacancy compared to the DFT results. Yet, hybrid functionals are unable to
achieve quantitative agreement with experimental optical absorption peaks. We show
that this is closely related to the overestimations of the band edges when the fundamental
gap is reproduced by an empirical amount of exact exchange. Meanwhile, when the
electronic correlation comes into play during the removal (addition) of a second electron
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from (to) the localized defect level, the ionization (affinity) energy predicted within
the framework of DFT is far from satisfactory. More elaborate methods (such as GW
approximation [216–219] and two-particle Bethe-Salpeter equation [71, 94, 220, 221]) are
thus necessary for more accurate descriptions of the optical process and defect energetics
of the localized defects in wide gap insulators.
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Appendix D

Passivation of the Polar Step by Water

It has been found in technological applications that in an environment with relatively
high humidity, the output of the mineral separation process falls dramatically. We ten-
tatively explain this phenomenon by utilizing the polar [011] monatomic step discussed
in Sec. 13.3. The band structure in Fig. 13.8 shows a pronounced gap reduction due to
the presence of the dipole and the under-coordinated step edge atoms. We now put one
water molecule at the Cl-terminated side for each step edge Cl atoms. This gives a full
coverage of the Cl step edge by the water molecules.

H O2

Cl
Na

[0 1]1

[011]

[100]

Figure D.1: Water molecules adsorbed at the Cl-terminated NaCl [011] stepped surface.

The optimized adsorption geometry based on the S2 model is illustrated in Fig. D.1,
using the PW1PW hybrid functional. The water molecule sits on the (100) terrace with
one hydrogen atom pointing at the Cl atom at the step edge. The H−Cl bond length is
2.32 Å, typical for a hydrogen bond.

It can be seen in Fig. D.2 that the band gap recovers to over 5 eV after the water
molecule is adsorbed, which is about 0.5 eV larger than the band gap of the bare [011]-
oriented stepped surface. The offset of the step edge Cl 3p states from the rest electronic
states is also much smaller compared to the band structure in Fig. 13.8. Hence, the
water adsorbate can effectively passivate the electronic states localized at the step edge
Cl atoms. This is a consequence of the enhancement of the Madelung potential near
the Cl atoms at the step edge, and the coordination number of these Cl atoms becomes
larger.

If a hydroxybenzoic acid is now adsorbed at the Na-terminated side of the stepped
surface, the effective gap of the adsorbate system will increase with respect to the ad-
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Figure D.2: Band structure of the NaCl [011] stepped surface with the water adsorbed
at the Cl-terminated step edge.

sorption at the bare [011] step because the energy gap relies on the separation between
the VBM and the LUMO. Due to the small offset of the step edge Cl 3p state, the
HOMO-2 resonance state is closer to the VBM, which leads to a larger distance between
the VBM and the LUMO. Therefore, in the high humidity condition, the effect of the
polar steps in reducing the gap could be partially compensated by the water molecules.
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Localized Basis Sets

The basis sets used in crystal calculations are provided in this appendix. The carbon,
oxygen and hydrogen atoms of the molecules are described by 6-31G(d) basis sets. A
test calculation with larger 6-311G(d,p) basis set yields an adsorption energy difference
of 0.04 eV for the SA adsorbed on NaCl(100).

Carbon:

6 4

0 0 6 2.0 1.0

3047.52490 0.183470000E-02

457.369510 0.140373000E-01

103.948690 0.688426000E-01

29.2101550 0.232184400

9.28666300 0.467941300

3.16392700 0.362312000

0 1 3 4.0 1.0

7.86827240 -0.119332400 0.689991000E-01

1.88128850 -0.160854200 0.316424000

0.544249300 1.143456400 0.744308300

0 1 1 0.0 1.0

0.168714400 1.000000000 1.00000000

0 3 1 0.0 1.0

0.800000000 1.000000000

Hydrogen:

1 2

0 0 3 1.0 1.0

18.7311370 0.334946000E-01

2.82539370 0.234726950

0.640121700 0.813757330

0 0 1 0.0 1.0

0.161277800 1.000000000
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Oxygen:

8 4

0 0 6 2.0 1.0

5484.67170 0.183110000E-02

825.234950 0.139501000E-01

188.046960 0.684451000E-01

52.9645000 0.232714300

16.8975700 0.470193000

5.79963530 0.358520900

0 1 3 6.0 1.0

15.5396160 -0.110777500 0.708743000E-01

3.59993360 -0.148026300 0.339752800

1.01376180 1.130767000 0.727158600

0 1 1 0.0 1.0

0.270005800 1.000000000 1.00000000

0 3 1 0.0 1.0

0.800000000 1.000000000

Using the O as an example, we see that the 1s electrons of O are expanded by a linear
combination of 6 primitive Gaussians 0.0018e−5484.7r2 + 0.14e−825.2r2 + 0.068e−188.0r2 +
· · · + 0.36e−5.8r2 . The 2s valence electrons are expanded by two functions in a double-
ζ scheme, namely −0.11e−15.5r2 − 0.15e−3.6r2 + 1.1e−1.0r2 , and a normalized primitive
e−0.27r2 . Analogously, the 2p electrons are described by two functions: 0.07e−15.5r2 +
0.34e−3.6r2 + 0.73e−1.0r2 and e−0.27r2 . A 3d polarization Gaussian-type function e−0.8r2

is also appended to the atom.

For Na, K, and Cl atoms, the 8-511G, 86-511G and 86-311G split-valence basis sets
are used in this work, respectively.

Sodium:

11 4

0 0 8 2.0 1.0

56700.0000 0.000225

8060.00000 0.001910

1704.00000 0.011050

443.600000 0.050060

133.100000 0.169100

45.8000000 0.365800

17.7500000 0.399800

7.38000000 0.149400

0 1 5 8.0 1.0

119.000000 -0.006730 0.008030

25.3300000 -0.079800 0.063900
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7.80000000 -0.079300 0.207400

3.00000000 0.305600 0.339800

1.28900000 0.563900 0.372600

0 1 1 0.0 1.0

0.57800000 1.000000 1.000000

0 1 1 0. 1.

0.32300000 1.000000 1.000000

Potassium:

19 6

0 0 8 2.0 1.0

172500.0000 0.000220

24320.00000 0.001920

5140.000000 0.011090

1343.900000 0.049920

404.5000000 0.170200

139.4000000 0.367900

54.39000000 0.403600

22.71000000 0.145900

0 1 6 8.0 1.0

402.0000000 -0.006030 0.008410

93.50000000 -0.080500 0.060200

30.75000000 -0.109400 0.211700

11.91000000 0.258000 0.372600

5.167000000 0.684000 0.402200

1.582000000 0.399000 0.186000

0 1 5 8. 1.

17.35000000 -0.007400 -0.032100

7.550000000 -0.129000 -0.062000

2.939000000 -0.683400 0.169100

1.190000000 1.080000 1.500000

0.674000000 1.030000 1.060000

0 1 1 0.0 1.0

0.389000000 1.000000 1.000000

0 1 1 0.0 1.0

0.216000000 1.000000 1.000000

0 3 3 0.0 1.0

3.940000000 0.160000

1.072000000 0.313000

0.394000000 0.406000
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Chlorine:

17 5

0 0 8 2.0 1.0

135320.000 0.000225

19440.0000 0.001910

4130.00000 0.011100

1074.00000 0.049890

323.400000 0.170300

111.100000 0.368300

43.4000000 0.403600

18.1800000 0.145900

0 1 6 8.0 1.0

324.800000 -0.007630 0.008200

73.0000000 -0.082900 0.060500

23.7100000 -0.104600 0.211500

9.13800000 0.254000 0.376500

3.93000000 0.695000 0.396700

1.32900000 0.399000 0.186000

0 1 3 8.0 1.0

4.75500000 -0.374000 -0.034000

1.75600000 -0.475400 0.161700

0.78500000 1.340000 0.925000

0 1 1 0.0 1.0

0.32000000 1.000000 1.000000

0 1 1 0.0 1.0

0.12500000 1.000000 1.000000

Regarding the isolated Na+ and Cl– for the lattice energy calculations, the two most
diffuse sp shells are re-optimized. The exponent of the most diffuse shell is also optimized
(0.117 Bohr−2) for calculations of the isolated Cl atom.
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Lundqvist, “Adsorption of phenol on graphite(0001) and α − Al2O3(0001) : Na-
ture of van der Waals bonds from first-principles calculations,” Phys. Rev. B 74,
155402 (2006)

[126] Poul Georg Moses, Jens J. Mortensen, Bengt I. Lundqvist, and Jens K. Nø rskov,
“Density functional study of the adsorption and van der Waals binding of aromatic
and conjugated compounds on the basal plane of MoS2,” J. Chem. Phys. 130, 104709
(2009)

[127] O. H. Pakarinen, J. M. Mativetsky, A. Gulans, M. J. Puska, A. S. Foster, and
P. Grutter, “Role of van der Waals forces in the adsorption and diffusion of organic
molecules on an insulating surface,” Phys. Rev. B 80, 085401 (2009)

[128] John P. Perdew, Matthias Ernzerhof, Aleš Zupan, and Kieron Burke, “Nonlocality
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inverse dielectric function, 34
inverse photoemission, 29
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Koopmans’ theorem, 9
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Lehmann representation, 30
local density approximation, 14
local field effect, 34

macroscopic dielectric function, 34
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Newns-Anderson model, 58
norm-conservation, 23
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photoemission, 29
plasmon-pole approximation, 35
polar step models, 92
projected density of states, 47
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quasiparticle, 30

random phase approximation, 32
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self-consistent field, 8
self-interaction, 16
Slater determinants, 7
Slater exchange, 12
split-valence scheme, 21
surface color center, 85

Tamm-Dancoff approximation, 37
Thomas-Fermi approximation, 11

van der Waals force, 18
vertex correction, 35
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