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Kurzfassung

In der Analyse von Microarray Daten ist es in der Forschung häufig von Interesse, Gene

zu finden, welche sich zwischen zwei Behandlungsgruppen um ein bestimmtes k -faches

in ihrer Aktivität unterscheiden. Oft wird ein Gen als signifikant erachtet, wenn die

Punkt-Nullhypothese, dass kein Behandlungseffekt vorliegt, abgelehnt werden kann und

gleichzeitig der Quotient der Behandlungsmittelwerte oder -Mediane das k -fache übersteigt.

Dies ist statistisch nicht ausreichend. Stattdessen ist es angebracht, direkt die relevanz-

geshiftete Hypothese, dass der Behandlungseffekt das k -fache nicht übersteigt, zu testen.

Ziel dieser Arbeit ist die Entwicklung eines Testverfahrens, welches mittels eines Zweistich-

probentests je Gen diese relevanzgeshiftete Hypothese überprüft.

Für die Entwicklung eines Testverfahrens muss die besondere Datenkondition von Micro-

arrays beachtet werden. Aus ökonomischen Gründen ist die Anzahl an Beobachtungen in

Microarray Datensätzen gering; eine Fallzahl von 8 oder weniger ist nicht ungewöhnlich.

Neben der eingeschränkten Anzahl an Wiederholungen werden Tausende von Endpunkten

simultan getestet. Diese hohe Dimensionalität führt zu einem extremen Multiplizitäts-

problem. Auch kann nicht immer von gauss- oder lognormal-verteilten Daten ausgegan-

gen werden. In der vorliegenden Arbeit wird eine Testprozedur vorgestellt, welche robust

gegen Abweichungen der Gauß- oder Lognormalverteilung ist. Für spezielle Datenkondi-

tionen weist das Verfahren eine hohe Güte auf. Dies ist essentiell für Microarrays, da durch

eine fälschliche Nichtsignifikanz ein mögliches Kandidatengen von einer weiteren genetisch-

en Analyse ausgeschlossen sein kann. Das Erzielen einer hohen Güte ist besonders dann

eine Herausforderung, wenn die Fallzahlen gering sind, die Datenverteilung schief ist und

ein multiples Testverfahren angewandt wird. Um diese Probleme zu überwinden, nutzt

das Verfahren relevanzgeshiftete Tests, eingebunden in eine Prozedur mit datengeordneten

Hypothesen. Diese Klasse von Prozeduren erwies sich als mächtig in der Analyse von Mi-

croarrays.

Neben dem nichtparametrischen relevanzgeshifteten Quotiententest mit datengeordneten

Hypothesen werden auch zwei parametrische Versionen vorgestellt. Zusätzlich wird ein
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nichtparametrischer Permutationsalgorithmus mit Quotiententests vorgeschlagen. Weiter-

hin werden zwei parametrische und ein nichtparametrisches Analogon für relevanzgeshifte-

te Tests auf Differenz beschrieben.

Für alle Prozeduren werden detaillierte Gütestudien im Vergleich mit Standardverfahren

für die Analyse von Microarrays gezeigt. Alle neuen Methoden, welche in der Arbeit

vorgestellt werden, sind Approximationen. Daher werden detaillierte Simulationsergeb-

nisse der globalen Fehlerrate präsentiert.

Die in dieser Arbeit verwendeten Funktionen und Beispieldatensätze sind in einem R Paket

verfügbar.

Schlagworte: k -fach, nichtparametrisch, Quotiententest, relevanzgeshiftete Hypothese



Abstract

In the analysis of microarray data frequently the research interest is to find genes which

differ in their expression activity by a specific k -fold among two treatment groups. Al-

though it is conventional practice, it is not sufficient to test the point-zero null hypothesis

of no treatment effect and the ratio of treatment means or medians has to exceed the

k -fold. Instead a relevance-shifted hypothesis has to be tested, that the treatment effect

does not exceed the k -fold of interest. The aim of this work is the development of a testing

procedure, which includes two-sample tests analyzing this relevance-shifted hypothesis for

each gene.

To construct a testing procedure, the special data condition of microarrays has to be taken

into account. For economical reasons microarray data tends to have a small number of

observations; a sample size of 8 or less is not unusual. Besides the lack of repetitions, thou-

sands of endpoints are tested simultaneously. This high-dimensionality leads to a massive

multiplicity problem. Finally, a Gaussian or lognormal population distribution cannot al-

ways be assumed. In this thesis a testing procedure is proposed, which is robust against

deviations from the Gaussian or lognormal distribution. Given certain data conditions, it

provides a high power. This is essential for microarray data, as a miss of a possible candi-

date gene is severe as non-significant genes may be lost in further genetical analysis. The

achievement of a high power is a challenge, if the sample size is small, the data distribution

is skewed and a multiple testing method is applied. To overcome these problems, the new

method uses a relevance-shifted test embedded in a procedure with a data-driven order of

hypotheses. This class of procedures proved to be powerful for microarray data.

Besides the nonparametric relevance-shifted test on ratio with a data-driven order of hy-

potheses two parametric versions are given as well. Further a nonparametric permutation

algorithm to test for a relevant ratio is presented. Finally two parametric and one non-

parametric analog to test for a relevant difference are proposed.

For all procedures detailed power simulations in comparison with standard methods for

the analysis of microarray data are shown. And as all new methods presented in this work
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are approximations, detailed simulation results of the familywise error rate are given.

An R-package with the functions and example data sets used in this work is available.

Keywords: k -fold, nonparametric, test on ratio, relevance-shifted hypothesis
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Chapter 1

Introduction

In recent years biotechnological research has made it possible to obtain information about

the activity of genes in a cell. This activity can be measured quantitatively in terms of

expression levels by use of a technique called microarrays. Such a method to monitor the

expression levels of thousands of genes simultaneously is applied for various experimental

questions. Agricultural experimental questions include for example the local and systemic

response of native tobacco Nicotiana attenuata to various herbivores (Heidel and Bald-

win (2004)) or the response of tomato tissue to derivatives of the phytotoxin coronatine

(Uppalapati et al. (2005)). In human medicine microarrays are used to find differentially

expressed genes among for example two types of a specific cancer, such as differences be-

tween acute myeloid leukemia and acute lymphoblastic leukemia (Golub et al. (1999)).

Other experimental questions of interest can be found in dermatology. For example studies

of inflamatory skin diseases such as psoriasis are published (Kunz et al. (2004)).

Experiments are mainly done by one of two types of platforms: the oligonucleotide array

GeneChip (Affymetrix, Santa Clara, CA) and the cDNA microarray proposed by Stanford

University. The following brief introduction to the functionality of a microarray is given

by focussing on oligonucleotide arrays. To measure the gene expression of a test subject,

a messenger ribonucleic acid (mRNA) sample is taken. Passing through several processes

the mRNA is transformed to complementary RNA (cRNA), labelled with a fluorescent dye
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and applied on the array. On the surface of the array sequences of single-stranded deoxyri-

bonucleic acid (DNA) called oligonucleotides corresponding to several thousands of genes

are spotted via photolithography. The single-stranded cRNA from the test sample binds

to the complementary oligonucleotides and the quantity of the gene expressions is then

obtained by measuring the intensities of the fluorescent dye (Lockhart et al. (1996)).

To achieve microarrays which are comparable to one another, these intensities have to be

normalized in terms of for example background correction and variance stabilization (see

Irizarry et al. (2003), Bolstad et al. (2003) or Geller et al. (2003) for details on

normalization of oligonucleotide arrays). Finally a statistical analysis has to be applied to

the normalized data.

The aim of this work is to find differentially expressed genes among two treatment groups

of normalized data in a parallel two-sample group design. In the early beginnings of the

application of microarrays the k -fold rule has been used to decide whether the activity of

genes is dependent between the two groups. That is, if the ratio of treatment effects ex-

ceeds a certain threshold, then the difference in activity is significant. For example DeRisi

et al. (1997) searched for a 2-fold change of gene expression compared to a control and

Iyer et al. (1999) sought genes whose expression changed by a factor of 2.2 or more in

at least two of the experiments. If the k -fold rule is the only criteria to declare genes a

differentially expressed, then ‘conclusions made on the basis of such fragile foundations are

likely to prove misleading and premature’ as Miller et al. (2001) write in their article.

In current literature statistical tests are used to find differentially expressed genes. Usually

the common t-test is used. This test evaluates for each gene the null hypothesis of no dif-

ference between the activity among the two treatments against the alternative hypothesis,

that the activity is different from 0. Nevertheless authors may not only be interested in

a general difference. Rather than testing this point-zero hypothesis, sometimes the aim is

to find genes with a ratio larger than a specific k -fold. Examples are Halitschke et al.

(2003), who declared genes as differentially expressed, if the p-value of the t-test is less

than 0.05 and the ratio of treatment means exceeds a relevance threshold of 0.75 or 1.25.
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A further approach to include a k -fold on interest is an analysis software for Microsoft

Excel developed by the Stanford University and described in the article of Tusher et

al. (2001) 1. This program tests the individual genes based on the point-zero hypothesis.

However an additional relevance threshold in terms of the fold change can be specified.

The procedure declares genes as differentially expressed, if both the activities among the

two groups are significantly different from 0 and the mean expression ratio exceeds the rel-

evance threshold. While this algorithm correctly declares genes as significantly expressed

from 0, it is not a valid proof for a k -fold change in expression. A claim of a significant

fold change can only be justified by use of a statistical procedure, which directly tests

the relevance-shifted hypothesis. Such a procedure for microarray data is proposed by Li

and Wong (2001). They use a parametric confidence interval of the fold change based

on the originally scaled data. However the application of parametric procedures on the

non-transformed expression data is not common (Abruzzo et al. (2005)). The reason for

a transformation of microarray data will be discussed in the further introduction.

In this work procedures are discussed, which directly test the relevance-shifted hypothesis

and concern the special data conditions of microarray data. In particular methods are

given, in which for each gene in the multivariate data set a relevance-shifted test in terms

of either a relevant difference or a relevant ratio is embedded.

The challenge of the development of such a procedure is the data condition of a microarray

experiment. First of all for each individual gene a relevance-shifted test among the two

treatment groups has to be applied. With the use of a statistical test different types of

errors can occur. According to Neyman-Pearson test theory two errors are of interest: the

Type I error (α or false positive) occurs, if the null hypothesis is falsely rejected. The

second error (β or false negative) happens, if a null hypothesis is falsely accepted. Com-

monly the Type I error is set to 0.05 when testing a single hypothesis i.e. for each gene

independently. However this is not appropriate for the high-dimensional microarray data,

1The software is available at www-stat.stanford.edu/tibs/SAM.
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as this results in testing several thousands of hypotheses. If one were to use for each of

the thousands of hypotheses the same error rate of 0.05, the overall error of an experiment

would increase dramatically. Several solutions for this problem exist.

The classical control for this multiple testing (or multiplicity) problem is the use of a

procedure which controls the familywise error rate (FWER). This error rate is defined as

the probability, that in the entire set of concerned hypotheses at least one falsely rejected

hypothesis occurs. The FWER is the conventional error definition to protect against an

inflating number of falsely rejected null hypotheses. Procedures which control the FWER

are proposed by Hochberg and Tamhane (1987). The control of the FWER is of in-

terest in this thesis. However it has to be noted that other error definitions exist, and two

of them shall be briefly introduced here.

According to Benjamini and Hochberg (1995) it is not necessary to control the FWER

particularly for high dimensional testing problems. They give the example of a treatment

and a control group, which are compared to each other in terms of several endpoints. The

overall result, that the treatment is superior to the control may not be erroneous, even if

some false positives occur. Here the FWER can be omitted in favor of the so-called false

discovery rate (FDR), which is defined as the expected proportion of errors among the

rejected null hypotheses. The FDR is less stringent than the FWER, that is, by use of the

FDR the number of - truly and falsely - rejected hypotheses increases. For microarray data

the FDR is used, because it is more acceptable to falsely declare some genes as significant

than to miss possible discriminatory endpoints. Procedures which control the FDR and are

proposed for the analysis of microarrays are given by for example Reiner et al. (2003).

Well-known is the significance analysis of microarrays (SAM), which is based on the FDR

and introduced by Tusher et al. (2001).

Another less stringent error rate is the k -FWER proposed by Victor (1982), Hommel

and Hoffman (1988) and recently discussed by Lehmann and Romano (2005). As

well as for the FDR the motivation for this error rate is the higher power (the probability

that a test rejects a false null hypotheses and declares a gene as differentially expressed)

due to the acceptance of more falsely rejected hypotheses. The k -FWER is defined as
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the probability of rejecting at least k true null hypotheses. In the special case of k = 1

this error rate reduces to the FWER. A procedure controlling the k -FWER is used for

comparison of the new methods proposed in this thesis.

However as the FWER is the classical error rate for multiplicity, the procedures discussed

here are based on this rate. Hence the condition of the new procedures is the control of the

FWER and in addition they have to show a superior power behavior compared to other

FWE-controlling methods.

For the analysis of microarray data several procedures controlling the FWER are discussed

by for example Dudoit et al. (2002), Dudoit et al. (2003) and Ge et al. (2003). Exam-

ples, which are used in this work for comparison, are the easily implemented α-adjustment

according to Bonferroni (for application on microarray data see Shaffer (1995)) and the

powerful (double-)permutation algorithm for step-down minP adjusted p-values proposed

by Westfall and Young (1993). Especially the permutation algorithm proved to be

useful for the analysis of microarrays, as it takes the correlation structure among the test

statistics into account and it is hence more powerful. On the other hand this approach

lacks power if the sample sizes are small, which is common for microarray data (see below).

As will be shown in this work, in this case the permutation algorithm tends to become

discrete. That is, the p-values cannot achieve a value from a continuous null distribution;

but rather the possible outcomes are of a limited number. This can lead to an extreme

loss of power.

In experiments with a small sample size the procedures with a data-driven order of hy-

potheses proved to be superior even to the permutation algorithm. This class of tests is

introduced by Kropf (2000) and in more detail by Kropf et al. (2002). It is the basis

of the procedures proposed in this work and hence the motivation and basic algorithm

shall be briefly introduced here. The classical procedures which control the FWER and

are used for microarray data correct for multiplicity by reducing the local error rate for

the individual hypotheses, such as the α-adjustment of Bonferroni. Or, like the permuta-

tion algorithm, they adjust the result of the test, the p-value, for multiplicity. As will be
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described in the further thesis, both types of correction can be disadvantageous for high di-

mensional data in combination with small sample sizes. The procedures with a data-driven

order of hypotheses are in so far a new class of tests, as they compute the non-multiplicity

corrected p-values and in addition for each hypothesis a so-called selector statistic directly

from the data. Afterwards the null hypotheses are sorted in a decreasing order of these

selector statistics. Starting with the null hypothesis corresponding to the largest selector

the non-multiplicity corrected p-values are compared with the unadjusted α. As long as

the p-values are less than α the corresponding null hypotheses are rejected. With the

first exceeding of the α by a p-value, the corresponding null hypothesis is accepted and

the procedure ends. All further null hypotheses in the order are automatically accepted.

This approach is a multiple testing method. However with the data-driven order of the

hypotheses by use of the selector statistic this is a multivariate test as well. In fact the

procedure is derived from the so-called class of stabilized tests; these are multivariate tests

and are introduced in the following chapter. Because it is a multivariate approach it has

the advantage, that it concerns the correlation structure among the test statistics. Hence if

certain conditions hold, it is more powerful compared to standard multiple testing methods.

To understand the challenges of the statistical analysis of microarrays especially concern-

ing multiple testing, the typical data condition of these experiments has to be taken into

account. With the simultaneous analysis of thousands of genes this kind of data is ex-

tremely high dimensional. However due to the comparably high cost of these experiments,

the sample sizes per group and gene are small. Examples for the sample sizes and number

of genes in a microarray experiment are given in the following table:
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research sample size number of

area per group and gene genes
source

11, 27 7,129 Golub et al. (1999)

8 5,548 Callow et al. (2001)
human medicine

24, 20 12,582 Armstrong et al. (2002)

4, 5 13,824 Polacek et al. (2003)

3 11,243 Schmidt et al. (2005)
agriculture

3 119 Giegé et al. (2005)

Various problems occur with this special type of data. Firstly classical multivariate tests,

such as Hotelling’s T 2 cannot be applied, because these tests require a sample size larger

than the number of endpoints, that is genes. Furthermore the power of a statistical test

can be extremely small, as with the small number of repetitions around 3 to 5 the number

of degrees of freedom is small and hence p-values increase intensely (Kooperberg et al.

(2005)).

In combination with the small number of replications, another property of microarray data

sets is challenging. The data only seldom follows a normal distribution as described by

Giles and Kipling (2003). Commonly it is assumed, that the data is approximately

Gaussian distributed after a logarithmic transformation (Speed (2001)). That is, a log-

normal distribution of the data is supposed. However articles can be found where this

assumption is questioned. For example Hunter et al. (2001) describe in their article,

that microarray data is often noisy and not normally distributed. Ma (2004) analyzes in

his work the distribution of a microarray data set and describes the distribution of the

individual gene expressions as non-normal with partly extreme values of skewness and kur-

tosis compared to the normal distribution due to outliers. Although the t-test is robust

against a certain degree of non-normality, it requires among others Gaussian distributed

data and lacks power if this assumption is violated.

The following two figures depict the power of the t-test and the distribution-free rank sum

test, when the normal assumption is fulfilled and also if the samples follow an exponential

distribution instead. To simulate the power two samples with 10 observations each are
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generated. The true means are set to 100 and 100 plus the treatment effect and a standard

deviation of 10 is selected. The nominal false positive rate is set to α = 0.05. Further-

more each result is computed with 10,000 simulation runs. In the left graphic the random

numbers are generated from the standard normal distribution and in the right one the

samples follow the exponential distribution. As denoted above, the common assumption

on microarray data is that after a logarithmic transformation the data is normal. The

additional curve depicts a case where this assumption does not hold; it is the power of the

t-test on the originally exponential distributed data with a logarithmic transformation.

For the rank sum test the log-transformation is not necessary, as it gives exactly the same

results.
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Figure 1.1: Power of t- and rank sum test for normal and exp. distributed samples

From the graphics it can be seen, that if the assumption of Gaussian distributed data is

fulfilled, the t-test achieves a higher power compared to the distribution-free rank sum

test. However if this requirement is not given, the rank sum test is superior; even if the
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t-test is used on the log-transformed data.

For the the analysis of microarray experiments, several nonparametric procedures are pro-

posed in the literature. For example Troyanskaya et al. (2002) compares the power of

the permuted t-test, the rank sum test according to Wilcoxon and an ideal discrimination

method based on Pearson’s coefficient of correlation. However this article does neither

concern a relevance shift nor the problem of small sample sizes in combination with the

multiplicity correction. For example if the two-sided Wilcoxon’s rank sum test is used in an

experiment with a sample size of 5 for each group, then the smallest achievable two-sided

p-value is
(

10
5

)
= 0.0079, for a sample size of 4 the smallest probability is 0.0286 and finally

for a sample size of 3 it is 0.1. This is a consequence of the small sample sizes, because

with a limited number of observations the null distribution of the rank sum test becomes

discrete. This leads to a limited number of possible p-values. Assuming the experimental

data set contains 3000 genes, the α-adjustment of Bonferroni is used and the false positive

rate is set to 0.05, then the individual p-values have to be less than the comparisonwise

error rate of 0.000017 to be significant, because with the Bonferroni correction the overall

FWER is divided by the number of hypotheses to be tested. In this case no significant

results can be found. The following graphic shall illustrate this problem. It is initially the

same graphic as the right one above, but with an α = 0.001.

With both a small error rate and sample size the rank sum test achieves a smaller power

compared to the t-test, although the samples are taken from the exponential distribution.

Beasley et al. (2004) take this problem into account. They suggest to use the maximum

p-value from the t-test and a p-value computed by Chebyshev’s inequality. This approach

has the advantage, that even in experiments with small samples sizes significant results can

be found. For example they achieved significant p-values in a simulated two-sample testing

scenario with a sample size of 3 per group and α = 0.0005%. Another nonparametric ap-

proach concerning the small sample sizes is proposed by Neuhäuser and Senske (2004).

They propose to use the Baumgartner-Weiß-Schindler test, which is less conservative than

the rank sum test, because its permutation distribution is less discrete.
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Figure 1.2: Power of t- and rank sum test for α = 0.001

Summarizing, a procedure may be of interest, which uses a relevance-shifted test on ratio.

Furthermore it has to control the FWER by use of a data-driven order of hypotheses and

it shall be appropriate for skewed data. Such a procedure is the goal of this work. For its

development the concept of stable tests is required, which is the basis for the procedures

with a data-driven order of hypotheses. Stable tests are introduced in the second chapter.

Afterwards the procedures with a data-driven order of point-zero hypotheses are discussed.

First the parametric method proposed by Kropf et al. (2002) and afterwards the non-

parametric analog given by Kropf et al. (2004) are introduced. Both the parametric and

the nonparametric multiple testing procedures to test for a relevant difference are presented

in chapter 4. Then two parametric procedures to test for a relevant ratio follow in chapter

5. The nonparametric procedure with a data-driven order of hypotheses to test for a rel-

evant ratio is introduced in chapter 6. In the chapters 3 to 6 detailed explanations to the

computation and examples are given. After the presentation of the algorithms in chapter
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7 the power of the procedures compared with alternative FWER-controlling methods and

some results of a k -FWER approach are shown graphically. Chapter 8 gives a summary of

the results and conclusions of this thesis. Finally in appendix A detailed simulation results

of the FWER are shown.

It should be noted, that although the aim of this work is the construction of procedures

for the analysis of microarrays, they are general multiple testing methods for multivariate

designs and can be applied for other experimental questions as well.

The entire software used in this work is implemented in R, version 2.0.1; as this sta-

tistical analysis software is widely used for the analysis of microarray data. A printout of

the software is omitted in this work, but an R package with a selection of algorithms is

available on request. For the software the R packages ‘exactRankTests’ (Hothorn and

Hornik (2004)), ‘multtest’ (Pollard et al. (year not specified by authors)) and ‘DAAG’

(Maindonald and Braun (2004)) are required.
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Chapter 2

Introduction to stabilized tests

Many experimental questions require different observations from experimental units. If

more than one kind of observation is taken from a subject, the statistical term for such a

sample is multivariate data and the individual observations are denoted as endpoints. A

multivariate data set is characterized by a set of m endpoints taken from n experimental

units. In the one-sample case all endpoints of an object k (k = 1, . . . , n) can be summarized

in the column vector xk. The entire data set can be written as all n column vectors

combined in a matrix X with the dimensions m× n:

X =




x11 · · · x1n

...
. . .

...

xm1 · · · xmn




. (2.1)

Column k denotes the m endpoints taken of the experimental unit k and row j (j =

1, . . . , m) represents the n independent measurements. Hence each row denotes an endpoint

and for each endpoint the columns represent the repetitions.

In the two-sample randomized parallel design the data set contains the samples 1 and 2

with the index i = 1, 2. And the data matrix X subsumes all m-dimensional vectors xik
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to a m×N(N = n1 + n2) matrix. It is denoted by

X =




x111 · · · x11n1 x211 · · · x21n2

...
. . .

...
...

. . .
...

x1m1 · · · x1mn1 x2m1 · · · x2mn2




. (2.2)

In this work statistical tests for the difference or ratio are used on the multivariate data to

find differences in the locations between the groups for each endpoint. Except as otherwise

stated, differences or ratios in arithmetic means are of interest. For all further parametric

tests it is assumed, that the m-dimensional observation vectors are multivariate normal

distributed with expected values dependent on the treatment group and unknown, but

equal covariance matrices:

xik ∼ Nm(µi, Σ = (σjj′) = (ρjj′σjσj′)), k = 1, . . . , ni, (2.3)

where ρjj′ denotes the correlation among the endpoints for group i. In the univariate

case the estimator of the expected value µi for the treatment group i is computed by x̄i =

1
ni

∑ni
k=1 xik. And the estimator of the variance σ2

i is calculated by s2
i = 1

ni−1

∑ni
k=1(xik−x̄i)

2.

For the multivariate data the mean vector µi including all m means for group i is estimated

with

x̄i =




x̄i1

x̄i2

...

x̄im




=




1
ni

∑ni
k=1 xi1k

1
ni

∑ni
k=1 xi2k

...

1
ni

∑ni
k=1 ximk




(2.4)

and the covariance matrix Σi is estimated with Si by

Si =
1

ni − 1

ni∑

k=1




(xi1k − x̄i1)2 (xi1k − x̄i1)(xi2k − x̄i2) . . . (xi1k − x̄i1)(ximk − x̄im)

(xi2k − x̄i2)(xi1k − x̄i1) (xi2k − x̄i2)2 . . . (xi2k − x̄i2)(ximk − x̄im)
...

...
. . .

...

(ximk − x̄im)(xi1k − x̄i1) (ximk − x̄im)(xi2k − x̄i2) . . . (ximk − x̄im)2




.(2.5)

Here it is assumed, that Σi = Σi′ = Σ for i 6= i′.

In the statistical analysis of multivariate data at least two problems occur. First, a restric-

tion to the classical multivariate tests is that the number of repetitions has to be larger
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than the number of endpoints (N > m). The second problem is that with an increasing

correlation among the endpoints the power can decrease. Both problems will be discussed

by the use of Hotelling’s T 2 test.

2.1 Simulated power of Hotelling’s T 2 test

The classical test to analyze data sets consisting of two samples and multiple endpoints

is Hotelling’s T 2 test. In the two sample case this method tests whether there is at least

one endpoint different between two independent groups. More formally, the test compares

the m endpoints within the two treatment groups concerning the mean vectors µ1 and µ2.

The ith mean vector µi = (µi1, µi2, . . . , µim)′ includes the individual expected values of the

different endpoints. The null hypothesis (H0) states the equality of the two mean vectors:

H0 : µ1 = µ2, and the alternative hypothesis (H1) represents the experimental interest,

which is to show at least one difference in the location vectors of the two populations :

H1 : µ1 6= µ2. For equal covariance matrices Hotelling’s T 2 test statistic is given by:

T 2 =
n1 · n2

N
(x̄2 − x̄1)

′ · S−1 · (x̄2 − x̄1), (2.6)

where the covariance matrix S is computed with S = 1
N−2

((n1 − 1)S1 + (n2 − 1)S2)

(Hartung & Elpelt) (1999). The test rejects the null hypothesis at significance level

α if T 2 > m(N−2)
N−m−1

· Fdf1=m,df2=N−m−1,1−α, where Fdf1=m,df2=N−m−1,1−α denotes the (1 − α)-

quantile of the F -distribution with m and N −m− 1 degrees of freedom.

As described above, a number of endpoints less than the sample size and redundancies in the

endpoints are problematic in the analysis of multivariate data. The following simulated

example shows this problem. It is motivated by Kropf (2000), where the author uses

instead of a two-sample Hotelling’s T 2 the analog for the one-sample case. For many tests

closed expressions exist to compute the power. Alternatively or if no equations exist, these

probabilities can be estimated by computer simulations. To clarify the problems occurring

with multivariate testing graphically, two samples with five repetitions each (n1 = n2 = 5)

and a varying number of endpoints shall be tested with Hotelling’s T 2. For the first
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treatment group all expected values are set to µ1 = (0, . . . , 0)′ and the mean vector for

group two is µ2 = (1.5, . . . , 1.5)′. The theoretical standard deviation for each endpoint of

the ith treatment group is σij = 1 and the correlation ρijj′ between the endpoints j and

j′ (j 6= j′) of group i is variable. The following graphic presents the simulated power of

Hotelling’s T 2 dependent on the number of endpoints. For four different correlations the

power curves are shown. Each power result is obtained with 10,000 simulation runs and a

fixed seed is used.
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Figure 2.1: Hotellings T 2 test: comparison of power for varying number of endpoints and

correlations

For only one endpoint - and therefore no differences between the curves for different ρijj′

- all power lines are the same. In this case Hotelling’s T 2- test reduces to the two sided,

two-sample t-test, which is given by

t =
| x̄2 − x̄1 |

spool ·
√

1
n2

+ 1
n1

∼ tdf,1−α/2 (2.7)
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with spool =
√

((n1 − 1)s2
1 + (n2 − 1)s2

2)/(N − 2) denoting the pooled standard deviation

(”Student” (1908)). The t-test is t-distributed with df = N − 2 degrees of freedom and

α− quantiles are taken from the upper tail.

For all curves, and therefore independent of the correlation, the power increases with the

inclusion of up to four endpoints. If more endpoints are included in the analysis, then

the power decreases. With eight endpoints the power lines in the graphic end, because

a number of endpoints equal to or larger than the total number of experimental units

results in a singular and thus noninvertible covariance matrix. If the endpoints are corre-

lated to a small degree then with each included endpoint valuable information is gained.

Hence the power increases until the procedure lacks power due to the increased number

of endpoints. However with an increasing correlation, the gain in additional information

decreases. Although the power increases, it does not reach the same level as the power of

the less correlated endpoints.

To overcome the classical problems of multivariate procedures Läuter et. al. (1996)

introduced a class of so-called stabilized tests for the analysis of dimensional data. These

tests exactly control the α-level, have a higher power compared to other procedures under

special restrictions and can be used for high-dimensional data sets with small sample sizes.

First the general idea of the theory is shortly presented. For this purpose the so-called stan-

dardized sum test is introduced. Detailed explanations, other special test versions, more

general theorems and their proofs can be found in Läuter et. al. (1996) and Läuter

(1996).

2.2 Stabilized parametric two-sample tests

Basically a stabilized test consists of two steps. In the first step the high-dimensional data

vectors are transformed into univariate or low-dimensional scores by use of a linear data

transformation with a data-dependent weight vector. Afterwards these scores are tested

with a classical univariate or multivariate test. The following example is restricted to
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univariate scores, which are compared with the common two-sample t-test.

In contrast to the original data vectors the scores are neither Gaussian distributed nor

independent. However if these scores are derived by following special rules, then they can

be compared with the t-test, which controls exactly the Type I error rate. The score zik

consists of the data vector xik and a m-dimensional weight vector d and it is computed as

zik = d′xik. (2.8)

The weight vector d may be a function of the sums of squares and cross products matrix

W = (X− X̄)(X− X̄)
′

(2.9)

where X̄ is the 2×N matrix of total means. For it’s computation an N -dimensional vector

of ones 1N is required:

X̄ =
1

N
X1N1′N . (2.10)

Furthermore it has to be ensured, that d 6= 0 with probability 1.

With the scores zik the t-test can be computed in the usual way:

t =
z̄2 − z̄1

sz

√
1
n1

+ 1
n2

, (2.11)

where z̄i = 1
ni

∑ni
k=1 zik and s2

z = 1
N−2

∑2
i=1

∑ni
k=1(zik − z̄i) and the test statistic follows a

t-distribution with N − 2 degrees of freedom.

The matrix W itself is the sum of the matrices H and G. The first one represents the

deviations from the null hypothesis:

H =
n1n2

N
(x̄2 − x̄1)(x̄2 − x̄1)

′. (2.12)

And matrix G includes the residual errors:

G =
2∑

i=1

ni∑

k=1

(xik − x̄i)(xik − x̄i)
′. (2.13)

Hence it is called the total sums of squares and cross products matrix. Both H and G

follow a central Wishart distribution with the same matrix parameter Σ and degrees of
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freedom 1 and N − 2 under H0.

For the standardized sum test (SS-test) the weight vector is computed by

d = (Diag(W))−1/21N . (2.14)

Alternatively the scores are calculated with

zik =
m∑

j=1

xijk√∑2
i=1

∑ni
g=1(xijg − x̄j)2

. (2.15)

The following graphic shows the power of the stabilized SS-test in comparison to the

classical Hotelling’s T 2. It is generated under the same conditions as figure 2.1.
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Figure 2.2: Hotelling’s T 2 and standardized sum test: comparison of power

It can be seen, that the SS-test is not as powerful as Hotelling’s T 2 if the number of

endpoints is less than 7. However, if more endpoints are observed, then Hotelling’s T 2

looses power and is finally not computable anymore. But even with 11 endpoints, the
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power of the SS-test stays constant on its highest level. It has to be noted that the

application of the SS-test is even possible with a further inclusion of endpoints.

An additional advantage of the SS-test not shown here is the option for one-sided testing.

This is not available for Hotelling’s T 2.

The further procedures discussed in this work are used for the analysis of multivariate data.

However instead of a global statement as possible with Hotelling’s T 2 or the SS-test these

procedures give local decisions. Hence differences among the groups for each individual

endpoint are of interest. As Kropf (2000) showed in his work the theory of stabilized

tests can be used for the construction of a multiple testing procedure as well. In this thesis

procedures are presented, which are based on the idea of Kropf (2000).



Chapter 3

Testing procedures for point

zero-hypotheses

In the former chapter the idea of stabilized tests was introduced. The stabilized tests

can be used for the construction of multiple testing procedures as well. For the first time

Kropf (2000) presents such tests and among others further works extends this method

to parametric (Kropf and Läuter (2002)) and nonparametric procedures (Kropf et

al. (2004)). The new procedures discussed here are derived from such multiple testing

procedures. Hence before the new methods are shown, a parametric and a nonparametric

multiple testing method based on the theory of stabilized tests are presented.

However before the algorithms and their explanation are given, the concept of the fami-

lywise error rate and a special type of power are required. After the algorithms a small

example data set and two microarray experiments are analyzed with these methods and

finally graphical simulation results of the power compared to standard multiple testing

methods are given.

The familywise error rate and the power: In the introduction the Type I error rate

and the power were briefly introduced. These definitions are valid for testing a single null

hypothesis. For multiple testing the definitions have to be extended. If more than one null

hypothesis is tested, the familywise error rate (FWER) is used. It is the probability of
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rejecting at least one null hypothesis when all null hypotheses are considered. Out of m

null hypotheses let m′ hypotheses be true and the other m−m′ false. Then the FWER is

defined as

FWER = P (reject at least one of H0,1, H0,2, . . . , H0,m′ | H0,1, H0,2, . . . , H0,m′ are true).

(3.1)

The FWER can be controlled in the weak and in the strong sense. A multiple testing

procedure controls the FWER in the weak sense, if the FWER is less than or equal to

the selected α in the special case that all null hypotheses are true. Further, the FWER is

protected in the strong sense, if the probability to reject any true null hypotheses is less

than or equal to α even in the case where some null hypotheses are false and some are true.

As denoted in the introduction the definition for the power is the probability of rejecting

a false null hypothesis. This holds for the case of testing a single hypothesis. Concerning

multiple hypotheses the definition is more complex. Westfall et al. (1999) describes

four types:

• complete power = P (reject all null hypotheses that are false)

• minimal power = P (reject at least one null hypothesis that is false)

• individual power = P (reject a particular null hypothesis that is false)

• proportional power = average proportion of false null hypotheses that are rejected.

The proportional power represents the goal of the experiments discussed here, as reflects

the goal of such studies: to find as many false null hypotheses as possible (Westfall

& Krishen (2001)). For microarray data this definition of power is widely accepted,

see for example Kropf & Läuter (2002) and Dudoit et al. (2003). As it is the aim

to control the FWER here, the minimal power could have been used as well. If all null

hypotheses observed in an experiment are true, then the minimal power converges to the

FWER. However, as it does not distinguish between rejecting one null hypothesis or more



3.1 Procedures 23

than one, it cannot reflect the goal of the experiment. Further the complete power is not

appropriate, as it demands that the multiple testing procedure is able to reject all false

null hypotheses. The individual power considers one specific null hypothesis. Hence unless

the analyst has for example a priori knowledge of one specific endpoint and the interest

lies in this hypothesis only, the individual power is not useful for multivariate data.

3.1 Procedures

All multiple testing procedures based on the stabilized tests which are discussed in this

work are split in two parts. In the first part for each endpoint the p-value of a two-sample

test and a data-dependent selector statistic are calculated. In the second step the p-values

are sorted in descending order of their corresponding selector statistics and sequentially

the p-values are compared with the unadjusted α. The null hypothesis of an endpoint is

rejected, if the corresponding p-value is equal or less than α and all former null hypotheses

in the ordering have been rejected as well. Thus the procedure stops at the first non-

significance and all further null hypotheses are accepted automatically.

Therefore both the parametric and the nonparametric procedure shown here are similar

except that one uses a parametric test and a selector based on the deviations of the indi-

vidual observations to the arithmetic mean and the other one consists of a nonparametric

test and the selector is a robust estimator of dispersion.

3.1.1 Parametric procedure

With the following parametric procedure proposed by Kropf and Läuter (2002) it will

be tested for each endpoint whether the two samples have a significant difference. In

terms of hypotheses it will be tested, whether the null hypothesis H0,j : µ2j − µ1j = 0

can be rejected in favor of H1,j : µ2j − µ1j 6= 0. The algorithm of the two-sided two-

sample parametric multiple testing procedure with a data-driven order of hypotheses for

independent samples is:
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1. Compute independently for each endpoint the two-sided p-value pj by use of the

two-sided two-sample t-test for independent samples:

tj =
| x̄2j − x̄1j |

spool,j ·
√

1
n2

+ 1
n1

(3.2)

with the two sample means of the jth endpoint x̄ij = 1
ni

∑ni
k=1 xijk and the standard

deviation of the pooled samples spool,j =

√∑2

i=1

∑ni
k=1

(xijk−x̄ij)2

N−2
.

Furthermore calculate the selector statistic

wj =
2∑

i=1

ni∑

k=1

(xijk − x̄j)
2, (3.3)

with the total mean of both samples per endpoint x̄j = 1
N

∑2
i=1

∑ni
k=1 xijk.

2. Sort the variables according to their selector statistic in decreasing order. To re-

ject H0,j : µ2j − µ1j = 0 pj has to be less than the unadjusted α. At the first

non-significance the procedure stops and all further null hypotheses are accepted

automatically.

This procedure can be applied with one-sided tests as well. In this case the one-sided

p-values are used, but the selector statistic remains the same. However it has to be noted,

that by the application of one-sided tests the procedure can lack power. With the same

selector statistics the order of hypotheses is exactly the same as for two-sided testing. If an

endpoint has a significant result in the opposite direction, then although it’s unadjusted

p-value is large, the selector is large as well. Hence the procedure can abort prematurely.

The connection to the stabilized tests is the derivation of the selector statistic. The jth

selector statistic wj =
∑2

i=1

∑ni
k=1(xijk − x̄j)

2 corresponds to the jth diagonal element of

the matrix of the total sums of squares and cross products W:

W = H + G =
n1n2

N
(x̄2 − x̄1)(x̄2 − x̄1)

′ +
2∑

i=1

ni∑

k=1

(xik − x̄i)(xik − x̄i)
′. (3.4)

The weight vector d is a vector of zero elements and a one element at the position of the

maximum diagonal elements of W. Hence the first endpoint corresponding to the maximum
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selector statistic is tested with a two-sample test. If the null hypothesis of this endpoint

is correctly rejected, then the procedure continues with the second largest selector. But if

the null hypothesis is incorrectly rejected, then it has to be ensured that this occurs with

a probability α. Otherwise if the null hypothesis is accepted, the procedure stops and no

Type I error can occur.

In this procedure the selector statistic reflects the variance among both samples per end-

point and it is therefore an estimate of the scale. If the difference in means is close to 0

the selector achieves a comparatively small value, because the squared deviations to the

total mean of both samples is small. And with an increasing difference between the two

samples the selector increases. Two small examples shall illustrate the effect. Note that

the index j is omitted. The two samples x1k = 3, 3.5, 4 and x2k = 3.1, 3.6, 3.9 are given.

Clearly both have similar observations. The difference in means is x̄2 − x̄1 = 0.033 and

the selector statistic wj = 0.828 indicates the small dispersion. In the second example the

former samples are used as well, but with x′2k = x2k + 1 = 4.1, 4.6, 4.9. In this case the

second sample has clearly larger values compared to the first one. The difference in means

is 1.033 and the selector statistic increases to wj = 2.428. Hence if a difference in location

among the groups exists, the endpoint achieves a large selector. Otherwise the selector

does reflect the variances of the individual groups only.

This procedure is powerful, if the variances among the endpoints are homogeneous. If this

is not given, the FWER is still controlled, but the procedure loses power. For example

if the single values of the two samples x1k and x2k are multiplied by 2, then the differ-

ence in means increases to 0.067, the selector however achieves a value of 3.313. Although

the difference in means is less than in the second example, the selector is larger. Hence

with heterogeneous variances among the endpoints a lack of power may arise, because

endpoints under H0 with a p-value greater than α and a high variance leading to a large

selector can stop the procedure prematurely, which may result in false acceptances of other

null hypotheses. Summarizing the procedure is particularly appropriate for endpoints with

equally scaled observations.

In all further procedures with a data-driven order of hypotheses the selector is a function
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of both the treatment effect and the variance of the the samples.

3.1.2 Nonparametric procedure

In data sets with several endpoints it is likely that the assumption of Gaussian distributed

data can not be fulfilled. As discussed in the introduction this is especially true for high-

dimensional data such as microarrays, where usually thousands of endpoints are tested.

In this case the use of a nonparametric procedure is reasonable. This section presents the

nonparametric multiple testing procedure with a data-driven order of hypotheses proposed

by Kropf et al. (2004).

For the application of the procedure, it is assumed that the independent m-dimensional

sample vectors x1k > 0 and x2k > 0 follow the continuous distribution functions Fm(x)

and Gm(x). These functions are considered to be equal except for a shift in location:

Gm(x) = Fm(x−∆) with the vector of the treatment effects ∆ = (∆1, . . . , ∆m)′.

The procedure tests whether the treatment effect of endpoint j is unequal to 0. In terms

of hypotheses, it is tested whether the null hypothesis H0,j : ∆j = 0 can be rejected in

favor of H1,j : ∆j 6= 0.

The procedure uses the rank sum test according to Wilcoxon (1945) instead of the t-test

as the two-sample test. As this test is more complex than the t-test, it will be started

with the algorithm of this test. For sake of simplicity it is presented by use of two samples

without the index for the jth endpoint.

Exact rank sum test: To compute the exact rank sum test sort the combined samples

x1k and x2k in an increasing order and rank them. Denote the ranks of the second treatment

group by r2k. Calculate the sum of the r2k:

W =
n2∑

k=1

r2k. (3.5)

The two-sided null hypothesis H0 : ∆ = 0 is rejected, if either W ≥ wα/2 or W ≤
n2(n1 + n2 + 1) − wα/2, where wα/2 denotes the upper tail probabilities from the null

distribution of the Wilcoxon rank sum test and values for the quantile are given in for
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example Hollander and Wolfe (1999) with n2 ≤ n1. If n1 < n2 the rank sum is taken

from the ranks of the first sample and the critical value of n2(n1 + n2 + 1)−wα/2 changes

to n1(n1 +n2 +1)−wα/2. The assumption of n2 ≤ n1 is done throughout this work. In the

one-sided case to test on increase this test reduces to H0 : ∆ ≤ 0 and it is rejected with

W ≥ wα. For testing against a decrease H0 : ∆ ≥ 0 is rejected if W ≤ n2(n1 +n2 +1)−wα.

If samples are tested which include equal observations (ties), then the conditional null-

distribution can be computed as proposed by Hollander and Wolfe (1999).

Asymptotic rank sum test: In addition to the exact version the asymptotic one is

presented as well for reason of completeness. However as the normal approximation requires

a sample size larger than 25 in one group (Büning and Trenkler (1994)), it may not

be appropriate for the analysis of microarray data using small sample sizes.

To compute the asymptotic rank sum test the expectation and the variance of the statistic

W are needed. The expectation of W is computed with

E(W ) =
n2

N

2∑

i=1

ni∑

k=1

rik (3.6)

and the variance of W is given by

V ar(W ) =
n1n2

N2(N − 1)



N

2∑

i=1

ni∑

k=1

r2
ik −

(
2∑

i=1

ni∑

k=1

rik

)2


 . (3.7)

Then the large-sample approximation of the Wilcoxon test is

W approx =
W − E(W )

{V ar(W )}1/2
. (3.8)

The expected value and the variance are taken from Hothorn and Hornik (2002). As

the authors stated, the equation is valid for tied samples as well. To reject the two-sided

null hypothesis |W approx| has to be greater or equal to z1−α/2, where z1−α/2 denotes the

α/2-quantile from the right tail of the standard normal distribution. In the one-sided case

H0 is rejected if W approx ≥ z1−α (increase) or W approx ≤ zα (decrease), where zα denotes

the α-quantile from the left tail of the standard normal distribution.
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Nonparametric procedure with data-driven order of hypotheses: As the two-

sample test the rank sum test is used. However, a selector statistic which is robust against

deviations from the normal distribution is required as well. A nonparametric statistic to

measure the ’total variance’ is the interquartile range (IQR), which is here the difference

of the 75% to the 25% quantile among the two samples per endpoint. To compute the

quantiles, the pooled samples are ordered, such that x
(1)
ijk ≤ . . . ≤ x

(N)
ijk . Following the

default definition of R (see help file for ’quantile’), the quantile is given by q(h−1)/(N−1) =

x
(h)
ijk, with h = 1, . . . , N (Parzen (2004)). By use of the rank sum test and the IQR the

two-sided testing procedure is computed as:

1. Compute independently for each endpoint the p-value of the two-sided rank sum test

according to Wilcoxon (1945) either exact or asymptotic.

Furthermore calculate the interquartile range as selector statistic

IQR = q75 − q25. (3.9)

2. Sort the variables according to their IQR in decreasing order.

3. To reject H0,j : ∆j = 0 the jth p-value has to be less than the unadjusted α. At the

first non-significance the procedure stops and all further null hypotheses are accepted

automatically.

Both the parametric and the nonparametric procedures control exactly the FWER. In the

following chapter similar procedures including relevance-shifted tests are presented. As

no proof of them is provided, the empirical control of the FWER is given only. However

the procedures reduce to the approaches introduced in this chapter, when the relevance

thresholds are set to 0 (test on relevant differences) or 1 (test on relevant ratios) and if

in one case the data is logarithmized (see chapter 6). In the appendix simulation results

of the FWER are shown. As the reduction to the above discussed procedures is tested as

well, the two procedures above can be used as a benchmark for the simulated FWER of

the new procedures. The simulations of the FWER are listed in the appendix starting on

page 155.
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Adjusted p-values: To present results of the procedures with a data-driven order of

hypotheses, a table listing the p-values and the selector statistics is necessary. However,

by reporting a p-value, which is adjusted for multiplicity, the selector statistics can be

omitted. Here the adjusted p-value can be directly compared with the chosen FWER

without regarding the ordering of the hypotheses.

Irrespective of the multiplicity correction, an adjusted p-value is defined as the smallest

overall significance level at which the corresponding hypothesis can be rejected by use of

a multiple testing method (Wright (1992)). For the procedures with a data-driven order

of hypotheses the (unadjusted) p-values are sorted according to their selector statistic in

decreasing order and denoted as p(1), . . . , p(m). Then the adjustment is as follows: padj
(1) ←

p(1) and padj
(j) ← max(padj

(j−1), p(j)).

3.2 Examples

In this section three example data sets are analyzed by use of the parametric and the

nonparametric procedures with a data-driven order of hypotheses. The first data set is

a small one including nine endpoints. This small data set is chosen as an example to

show all results of the procedures with a data-driven order of hypotheses. The other two

experiments are microarray data sets. Because of their size, only a part of the results can

be shown.

For comparison the results of the corresponding two-sample tests with another multiplicity

correction is given. For this purpose the α-adjustment according to Bonferroni is used. This

method is probably the best known and easiest correction. Following Sachs (1997) each

hypothesis is tested against α/# hypotheses, which is α/m for the two-sample multivariate

data discussed here. Alternatively the Bonferroni adjusted p-values for the m hypotheses

can be computed by pbon
j = min(pj· # hypotheses, 1). An advantage of this method is the

control of the FWER in the weak and the strong sense for many settings and its easy

application. This method can however be extremely conservative because, among other

reasons, it ignores the stochastic dependencies among the endpoints. This is a considerable
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disadvantage for the analysis of the multivariate data discussed here, because as it will be

seen in chapter 7 the genes in a microarray data set are correlated and therefore their test

statistics as well.

In all analysis in this and the following chapters it is tested two-sided by use of an error

rate of α = 5%.

3.2.1 Possum data set

This data set is published by Lindenmayer et al. (1995) and it is available in the R pack-

age ‘DAAG’ from Maindonald and Braun (2004). In this experiment morphological

measurements are taken from mountain brushtail possums (Tichosurus caninus) on seven

locations in Australia. The individual morphological endpoints are the length of the head

(hdlngth), the distance across the widest part of the head (skullw), the total body length

(totlngth), the distance from the base to the tip of the tail (taill), the distance from the

heel to the tip of the largest toe (footlgth), the length of the ear conch (earconch), the

distance from medial canthus to lateral canthus of right eye (eye), the body girth (chest)

and the belly girth (belly).

Only a part of this data set is used here. In particular only male animals are observed and

the treatment groups correspond to the second and the third site. The following table lists

the here used subset of the original data set:

endpoint site 2 site 2 site 2 site 2 site 2 site 2 site 2 site 2 site 3 site 3 site 3 site 3

hdlngth 90.6 94.4 93.3 92.4 85.3 85.1 90.7 91.4 90.1 98.6 95.4 97.6

skullw 55.7 57.9 59.3 56.0 54.1 51.5 55.9 54.4 54.8 63.2 59.2 61.0

totlngth 85.5 85.0 88.0 80.5 77.0 76.0 81.0 84.0 89.0 85.0 85.0 93.5

taill 36.5 35.5 35.0 35.5 32.0 35.5 34.0 35.0 37.5 34.0 37.0 40.0

footlgth 73.1 71.2 74.3 68.4 62.7 70.3 71.5 72.8 66.0 66.9 69.0 67.9

earconch 53.1 55.5 52.0 49.5 51.2 52.6 54.0 51.2 45.5 44.9 45.0 44.3

eye 14.4 16.4 14.9 15.9 13.8 14.4 14.6 14.4 15.0 17.0 15.9 15.8

chest 26.0 28.0 25.5 27.0 25.5 23.0 27.0 24.5 25.0 28.0 29.5 28.5

belly 28.5 35.5 36.0 30.0 33.0 27.0 31.5 35.0 33.0 35.0 35.5 32.5
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The first table shows the analysis of the data set by use of the parametric procedure. In

the first column the name of the endpoint is listed. Afterwards the difference in means,

the selector statistic and the test statistic follow. Then the unadjusted and the adjusted

p-values are given and finally the Bonferroni corrected p-value are shown.

Results of the parametric procedures:

difference selector test unadjusted adjusted Bonferroni
endpoint

in means statistic statistic p-value p-value adjusted p-value

totlngth 6.000 270.563 2.345 0.041 0.041 0.369

hdlngth 5.025 194.143 2.304 0.044 0.044 0.395

earconch -7.463 173.380 -7.726 1.595 · 10−5 0.044 1.44 · 10−4

footlgth -3.087 123.690 -1.608 0.139 0.139 1.000

skullw 3.950 119.457 2.312 0.043 0.139 0.390

belly 1.938 96.229 1.078 0.307 0.307 1.000

taill 2.250 44.563 2.085 0.064 0.307 0.573

chest 1.938 38.729 1.867 0.091 0.307 0.823

eye 1.075 10.389 2.054 0.067 0.307 0.604

While with the α-adjustment only one significant p-value can be observed, three signifi-

cant endpoints can be found with the parametric procedure with a data-driven order of

hypotheses. Theoretically four significant endpoints could have been observed, however the

procedure is aborted prematurely because the fourth endpoint (‘footlgth’) has a p-value

larger than α and a comparatively high selector.
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Results of the nonparametric procedures:

difference selector test unadjusted adjusted Bonferroni
endpoint

in medians statistic statistic p-value p-value adjusted p-value

earconch -7.35 7.350 10.0 0.004 0.004 0.036

totlngth 4.50 5.250 37.0 0.077 0.077 0.691

skullw 4.30 4.525 36.0 0.109 0.109 0.982

hdlngth 5.45 4.175 36.0 0.109 0.109 0.982

footlgth -3.95 4.175 15.0 0.073 0.109 0.655

belly 1.75 4.000 30.5 0.489 0.489 1.000

chest 2.50 2.625 35.5 0.113 0.489 1.000

taill 2.00 1.875 35.5 0.109 0.489 0.982

eye 1.35 1.500 36.5 0.073 0.489 0.655

Only one significant endpoint can be found by both the Bonferroni adjustment and the

procedure using a selector statistic, because already all other unadjusted p-values are larger

than 5%. Nevertheless the procedure with a data-driven order of hypotheses gives smaller

adjusted p-values compared to the conservative α adjustment. In addition, the ordering

of the hypotheses is similar in comparison with the parametric analysis: three of the first

four endpoints in the ordering occur in both cases. While the parametric procedure finds

more significant results, the advantage of the nonparametric approach is, that it lists the

endpoint ‘earconch’ at the top of the order. Considering the unadjusted p-values it is the

most discriminating endpoint of the data set.

3.2.2 TSHR mutation data set

The second example is a microarray data set. It consists of patients with autonomously

functioning thyroid nodules (AFTNs), which are benign tumors producing more thyroid

hormones compared to the healthy tissue. Approximately 60% of the AFTNs are caused by

a mutation of the thyrotropin receptor (TSHR). The goal of interest in this experiment is

the identification of other causes leading to the pathogenesis of AFTNs. For this purpose 15

patients are observed, where 10 have a mutation of the TSHR and the remaining 5 have not.

In total 12,625 genes are observed. The experiment was performed by use of Affymetrix
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GeneChips and the data is normalized. Further information about the experiment and

results are published by Eszlinger et al. (2004).

Results of the parametric procedures: The first analysis of the microarray data set

is done by application of the testing procedures on the originally scaled data. As discussed

in the introduction commonly a microarray data set is logarithmized prior the analysis.

However for sake of comparison the non-logarithmized data shall be analyzed as well.

By use of the two-sample t-test without any multiplicity correction 1,266 significant genes

can be found. With the α-adjustment of Bonferroni only endpoint # 10018 with an ad-

justed p-value 0.034 is significant. By use of the parametric procedure with a data-driven

order of hypotheses no significantly discriminatory genes can be found. The following table

presents the results of the first ten endpoints of the procedure with the data-driven order

of hypotheses:

difference selector test unadjusted adjusted
endpoint

in means statistic statistic p-value p-value

1702 18999.786 6185936136 1.772 0.0998 0.0998

2071 16438.726 5739625540 1.556 0.144 0.144

12575 -8276.965 4947876639 -0.793 0.442 0.442

1539 16176.468 4751679940 1.710 0.111 0.442

12569 -5416.750 4696048346 -0.526 0.608 0.608

7940 -23469.326 4211279601 -3.170 0.007 0.608

5132 18945.422 3990932797 2.359 0.035 0.608

3304 -18418.397 3838254166 -2.330 0.037 0.608

3305 -17431.033 3784863556 -2.179 0.048 0.608

12573 -10074.488 3646527578 -1.153 0.270 0.608

Out of the first ten endpoints with the highest selector statistics four have an unadjusted

p-value less than 0.05. However the procedure stops prematurely because the gene with

the largest selector is not significant. It has to be noted, that the endpoint # 10018, which

is significant with the Bonferroni correction, does not appear in this list.

However this result is expected, because the intensities of gene expression cover the range
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of values close to 0 and up to values of around 50,000. Depending on the intensities the

variance varies as well. Hence the selector statistics are biased by the variance heterogeneity

among the endpoints. The following graphic depicts the dependency of the variance on

mean for the patients with a mutation of the TSH receptor.
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Figure 3.1: Variance vs. mean dependency for non-logarithmized data

In the literature it is commonly assumed, that by use of the logarithmic transformation

the variance becomes independent from the mean intensities (Speed (2005), Geller et

al. (2003) and Lu (2004)). As this is essential for the procedure with a data-driven order

of hypotheses, a second analysis is done with the logarithmized data. Throughout this

work the natural logarithm is used. It has to be noted however that the assumption of the

data has changed. It is now assumed, that after the logarithmic transformation the data

is Gaussian distributed with homogeneous variances. Hence prior the data transformation

a log-normal distribution of the populations is presupposed.
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With the local tests 1,241 significant genes can be found. That is 25 significant genes

less than without the logarithmic transformation. By use of the Bonferroni correction no

significant genes are achieved. And for the parametric procedure with a data-driven order

of hypotheses the first ten endpoints with the highest selectors are:

difference selector test unadjusted adjusted
endpoint

in means statistic statistic p-value p-value

11321 -2.038 67.543 -1.830 0.090 0.090

8435 -2.317 45.023 -2.928 0.012 0.090

6022 0.178 42.465 0.180 0.860 0.860

4145 -2.808 41.828 -4.688 0.0004 0.860

12177 1.147 41.525 1.239 0.237 0.860

7940 -2.662 40.011 -4.327 0.0008 0.860

3839 2.502 39.971 3.768 0.002 0.860

11876 1.769 39.292 2.167 0.049 0.860

8273 -2.487 38.019 -3.925 0.002 0.860

2148 1.353 36.819 1.606 0.132 0.860

As well as for the non-logarithmized data no significant results can be found. The number

of endpoints with an unadjusted p-value less than 0.05 has increased however, from four

to six. In addition it has to be noted, that all ten endpoints in this list are other genes

than the ones listed for the analysis with non-logarithmized data.

One reason for the lack of power of the procedure with a data-driven order of hypotheses

can be an insufficient variance stabilization due to the logarithm. Although the logarithm

is commonly used to stabilize the variance, there are those who find this approach ques-

tionable. Durbin et al. (2002) and Huber et al. (2002) for example discuss this problem.

In both articles the authors describe the variance versus mean dependency as linear, if the

mean intensities are moderately large. However this constant coefficient of variation is not

given for genes with a small intensity. Here, it is assumed that the variance is constant.

If the intensity of the gene is in between these extremes, the variance structure becomes

more complex.

The following figure supports the assumption, that the logarithm is not a sufficient ap-
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proach for the stabilization of the variance, for at least the procedures with a data-driven

order of hypotheses. The figure is initially the same as the former one, but the data is

logarithmized.
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Figure 3.2: Variance vs. mean dependency for logarithmized data

Due to the logarithmic transformation the variance becomes moderately constant for large

mean intensities. However for small gene expressions the variance inflates. Approaches to

stabilize the variance more sufficiently are described by Durbin et al. (2002) and Huber

et al. (2002). But as this is beyond the scope of this work a further investigation of such

methods is omitted.

Results of the nonparametric procedures: It is conceivable, that the absence of

significant findings is due to the application of parametric procedures. In this section the

nonparametric procedures are applied to the data.
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First the data is analyzed on the original scale. Without a multiplicity correction in total

1,023 significant genes can be found. However with both the Bonferroni correction or the

procedure with a data-driven order of hypotheses no significant endpoints are achieved.

With the logarithmized data the number of significant genes for the local tests and the

Bonferroni correction stay the same because the result of the rank sum test is indepen-

dent from the application of this transformation. The logarithm has however an impact

on the computation of the selector; but even with this transformation the nonparametric

procedure with a data-driven order of hypotheses does not find any differentially expressed

genes. The following two tables list the ten endpoints with the highest selector statistics.

Analysis based on original data

difference selector test unadjusted adjusted
endpoint

in medians statistic statistic p-value p-value

12573 -14826.332 27625.60 71.0 0.296 0.296

1637 8103.799 25331.70 85.0 0.591 0.591

6190 16769.580 25200.54 90.5 0.212 0.591

12575 -12610.240 24908.27 73.0 0.437 0.591

1539 24165.513 23714.04 95.0 0.075 0.591

5132 15213.176 23049.45 97.0 0.040 0.591

11555 8364.084 22950.42 89.0 0.310 0.591

9686 14652.715 22878.27 89.5 0.260 0.591

2071 17429.607 22477.94 88.0 0.329 0.591

7107 3440.071 18818.10 86.0 0.513 0.591
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Analysis based on log-transformed data

difference selector test unadjusted adjusted
endpoint

in medians statistic statistic p-value p-value

6022 3.671 3.001 81 0.953 0.953

7940 0.069 2.928 56 0.001 0.953

4145 0.057 2.818 58 0.005 0.953

3839 10.189 2.781 103 0.003 0.953

2808 2.568 2.744 82 0.859 0.953

12337 0.902 2.659 81 1.000 1.000

2148 3.404 2.635 93 0.129 1.000

9207 0.897 2.626 75 0.594 1.000

7892 0.201 2.575 71 0.310 1.000

5589 5.370 2.533 88 0.371 1.000

With the logarithmic transformation more unadjusted p-values can be found compared

to the analysis on the original scaled data. In the analysis of the logarithmic data the

endpoint with the largest selector has a large p-value. If this endpoint had not stopped

the procedure, three significant genes would have been found.

3.2.3 TNFα data set

The second microarray data set is a subset of the published data from Polacek et al.

(2003). In this subset, genes are sought which have a differential expression among tumor

necrosis factor α (TNFα) stimulated human cells and non-stimulated cells. The entire data

set consists of transcriptional profiles generated from amplified and unamplified mRNA.

Here the amplified data is used only.

Each treatment group contains five replicates. These are repetitions pooled from several

dishes. Hence this data set consists of technical and not of biological repetitions and it

is here analyzed for illustration purpose only. Originally filter arrays of 13,824 genes are

used. Here endpoints with a sample size less than 2 in at least one group are removed and

13,224 genes remained for the analysis. Furthermore the data set is normalized. Among
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other techniques the logarithm to the base of 10 is used. Thus an analysis based on the

originally scaled data is omitted.

Results of the parametric procedures: In this data set many significantly expressed

genes can be found. By use of the t-test without any multiplicity correction 4,501 null

hypotheses are rejected. As a high proportion of the endpoints are highly significant 135

differentially expressed genes are found in combination with the Bonferroni adjustment.

Due to this high number of extremely small unadjusted p-values the conservative correction

is superior to the procedure with a data-driven order of hypotheses, which is aborted after

finding nine significant genes:

difference selector test unadjusted adjusted
endpoint

in means statistic statistic p-value p-value

5979 1.756 7.779 30.165 1.583 · 10−09 1.583 · 10−09

13618 1.660 7.059 17.968 9.440 · 10−08 9.440 · 10−08

11600 1.649 6.827 40.775 1.441 · 10−10 9.440 · 10−08

8563 1.612 6.610 21.691 2.151 · 10−08 9.440 · 10−08

13585 1.614 6.546 39.803 1.746 · 10−10 9.440 · 10−08

6629 1.604 6.499 28.522 2.469 · 10−09 9.440 · 10−08

13653 1.567 6.381 14.299 5.582 · 10−07 5.582 · 10−07

10284 1.437 6.197 2.582 0.049 0.049

7599 1.492 5.588 42.060 1.125 · 10−10 0.049

1689 1.082 5.169 2.230 0.067 0.067

Results of the nonparametric procedures: If it is assumed, that the underlaying

populations of the samples are not Gaussian distributed and nonparametric procedures

are preferred, then 3,288 significant results are achieved with unadjusted rank sum tests.

That is 1,213 less differentially expressed genes compared to the unadjusted t-tests. The

Bonferroni adjustment results in no discriminatory endpoint - all adjusted p-values are 1.

Due to the small sample sizes this result is expected, as the smallest possible unadjusted

p-value is 0.0079. Hence an adjusted p-value less than 1 can not be achieved with the

Bonferroni correction. However the nonparametric procedure with a data-driven order of
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hypotheses finds six differentially expressed genes:

difference selector test unadjusted adjusted
endpoint

in medians statistic statistic p-value p-value

5979 1.728 1.697 40 0.008 0.008

11600 1.665 1.653 40 0.008 0.008

13585 1.640 1.623 40 0.008 0.008

13618 1.660 1.593 40 0.008 0.008

6629 1.565 1.546 40 0.008 0.008

8563 1.551 1.520 40 0.008 0.008

7018 1.590 1.510 15 0.100 0.100

13653 1.569 1.491 40 0.008 0.100

7599 1.450 1.439 40 0.008 0.100

11277 1.381 1.343 40 0.008 0.100

Endpoint # 7018 stops the procedure prematurely. If α = 10% would have been chosen,

then 11 discriminatory genes could have been found. For comparison the parametric analog

would have resulted in 12 rejections of null hypotheses. Summarizing both procedures with

a data-driven order of hypotheses have similar results: irrespective of the selected α, out

of the first ten endpoints with the highest selector found by the parametric procedure with

a data-driven order of hypotheses, eight can be found here as well.

3.3 Simulation results of the proportional power

In this section results of the simulated proportional power of the two procedures are pre-

sented. Additionally to the two procedures with a data-driven order of hypotheses results

of local tests are shown as well. These are the t-tests or rank sum tests without a correction

for multiple testing. Furthermore results from the α-adjustment according to Bonferroni

are given. In the graphics the α-adjustment with either the t-test or the rank sum test

and the local tests are abbreviated as ‘Bonferroni’ and ‘local’ for the use of the parametric

or the nonparametric two-sample tests. The procedures with a data-driven order of hy-

potheses are denoted as ‘p-selector’ and ‘np-selector’ for the parametric and nonparametric
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version. If not stated otherwise 50 endpoints are analyzed in each simulated experiment,

where five of them are differently expressed and 45 are under the null hypothesis. For

endpoints under H1 three endpoints have true means of µ1j = 100 and µ2j = 100 + τ

and the remaining two variables have µ1j = 100 + τ and µ2j = 100, where τ denotes the

true treatment effect. All endpoints under H0 have µ1j = µ2j = 100. In each scenario

two-sided hypotheses are tested. The FWER is set to 5% and each simulation result is

computed with 10,000 simulation runs. In all scenarios the random numbers are taken

from the standard normal distribution.

3.3.1 Power with increasing treatment effect

The first six graphics show the proportional power for increasing treatment effects and

correlations among the endpoints. In the first three figures results of the parametric tests

are presented; in the left graphic all endpoints per group are uncorrelated (ρijj′ = 0.01),

in the middle one the correlation is set to ρijj′ = 0.5 and in the right graphic ρijj′ = 0.999.

The lower three figures are the same as the upper one but for nonparametric tests. For all

simulated experiments the remaining parameters are set as ni = 7 and σij = 10.
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Figure 3.3: Parametric tests for point-zero hypotheses: Power for increasing treatment

effect with different correlations
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Figure 3.4: Nonparametric tests for point-zero hypotheses: Power for increasing treatment

effect with different correlations
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In all six scenarios the procedures with a data-driven order of hypotheses show a higher

power compared to the Bonferroni adjustment and, as expected, a lower power than the

local tests. While the power stays constant for the local tests and the α-adjustment, the

procedures with a data-driven order of hypotheses gain power with an increasing corre-

lation among the endpoints. In the extreme case of ρijj′ = 0.999 the difference in power

between the parametric local tests and the parametric procedures with a data-driven order

of hypotheses is marginal. As it can be expected for Gaussian distributed data, the para-

metric tests achieve generally a higher power compared to the nonparametric tests. This

is true as well for all further simulations in this chapter.

3.3.2 Power for varying sample sizes and different levels of α

These graphics present the dependency of the power on the sample size per group and the

selected α. The true difference in means for the endpoints under H1 is set to τ = 15, the

standard deviation is σij = 10 and the correlation is set to ρijj′ = 0.3.
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Figure 3.5: Parametric tests for point-zero hypotheses: Power for different sample sizes

per group and α
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Nonparametric tests
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Figure 3.6: Nonparametric tests for point-zero hypotheses: Power for different sample sizes

per group and different levels of α
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The graphics show an expected behavior of the power curves. With an increasing sample

size the power increases. However the Bonferroni adjustment benefits more from the in-

crease in sample sizes than the procedures with a data-driven order of hypotheses, because

with an increasing sample size the absolute test statistic becomes larger and the critical

value becomes smaller - which is essential for the conservative α-adjustment. The selector

procedures do not require extreme test statistics or critical values because the α is not

reduced due to multiple testing.

With an increasing α the power increases for all four methods. The highest gain in power

shows Bonferroni, because this procedure adjusts the α - an increase of the Type I error has

a direct effect. For the procedures with a data-driven order of hypotheses the p-values are

sorted in an independent order of the α. Thus the probability to find significant p-values

increases with an increasing α, but the order of the p-values stay the same compared to a

lower Type I error.

These graphics clearly show that the α-adjustment of Bonferroni is not appropriate for

high-dimensional data with small sample sizes combined with the selection of a small α.

For the parametric tests it lacks power and for the nonparametric tests it is even impossible

to compute any significant result because of the discreteness of the rank sum test. However

if α is set to 10% or even higher, the adjustment can achieve a comparably good power.

This may be taken into account for experiments which are planned for screening.
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3.3.3 Adapted expected difference in means and varying sample

size

As it could be seen from the latter graphic for small sample sizes the procedures with a

data-driven order of hypotheses are more powerful than the α-adjustment according to

Bonferroni. The next graphic visualizes the influence of the samples size on the multiple

testing methods while the test statistics stay constant. In particular an adapted expected

true difference in means is computed, which decreases with increasing sample sizes.

As a reference curve local test results are plotted. The ‘adapted difference’ is selected, such

that the proportional power of the local test is around 80% in a simulation setting with a

true difference of means of 20, n1 = n2 = n = 5, σij = 10 and ρijj′ = 0.3.

To compute the adapted expected true difference in means the non-centrality parameter

of the t-test is used:

ν =
µ2 − µ1

σ
√

2
n

⇔ µ2 − µ1 = ν · σ ·
√

2

n
. (3.10)

With the input of the above proposed simulation parameters the adapted expected differ-

ence in means of 20 is:

120− 100 = 3.162278 · 10 ·
√

0.4. (3.11)

For any sample size n the difference becomes:

µ2 − µ1 =
√

3.1622782 · 10 ·
√

2

n
=
√

10 ·
√

200

n
=

√
2000

n
. (3.12)

By the use of the latter equation the true means for endpoints under H1 are set to µ1j = 100

and µ2j = 100 +
√

2000/n.
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Figure 3.7: Tests for point-zero hypotheses: Power for different sample sizes with adapted

true ratio

While the test statistics stay constant, the power of the Bonferroni adjustment and of the

local tests increases with an increase of the sample sizes because the degrees of freedom

increase. And with increasing degrees of freedom the critical values and the p-values

become smaller, respectively. However the power lines of the procedures with a data-

driven order of hypotheses show a monotone decrease (parametric) or a small increase and

afterwards a monotone decrease (nonparametric). The reason for this decrease is that a

high selector is received only with a large treatment effect. An increase in sample sizes has

no impact. As the treatment effect decreases with the increasing sample size the procedures

with a data-driven order of hypotheses lack power.

3.3.4 Simulations with increasing disturbance

The following graphic shows the power for varying variances among the endpoints. For each

endpoint and group separately the true standard deviation is computed as σij = 10 + u · d
(u ∼ U(−5, 5)), where u takes values from 0 to 2 in steps of 0.1 units and U(-5,5) is the
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uniform distribution on the interval from -5 to 5. The other parameters are µ2j −µ1j = 20

and ρijj′ = 0.3, n1 = n2 = 7.
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Figure 3.8: Tests for point-zero hypotheses: Power for increasing disturbance

On the left end of the curves the true standard deviation is 10. For this scenario the power

for the local tests is between 90% and 100%. With the increasing disturbance factor the

local tests loose power, because for some endpoints the variance increases. The variance

decrease for the other endpoints has no impact, because these endpoints already show a

significance (as the variance is lower than 10 - and with 10 the power is close to 100%). In

contrast to the local tests the Bonferroni adjustment gains power, because with σij = 10

less than 50% of the endpoints under H1 show a non-significant result. Hence for more

than 50% of the endpoints the power can increase with a reduction of the variance. At

the right end of the graphics the power of the Bonferroni methods converges to 50% - with

a disturbance of 2 50% of the endpoints profit from the variance reduction and the other

50% have non-significant results as the variance is too large.

The procedures with a data-driven order of hypotheses lose power constantly, because

the selectors are sensitive to the variance. If the variance per endpoint increases, then

the treatment effect, which is equal to the variance of the pooled groups per endpoint, is
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masked by the individual variances of the two samples.

In the right graphic the proportion of the power of the parametric procedure with a data-

driven order of hypotheses compared to the nonparametric one changes: the nonparametric

procedure is more robust for an increasing variance heterogeneity among the endpoints.



Chapter 4

Relevance-shifted testing procedure

on difference

This chapter introduces the procedures with a data-driven order of hypotheses for tests on

relevant differences. Instead of testing the point-zero hypothesis as in the former chapter,

it is now of interest whether the treatment effect is significantly smaller or larger than a-

priori chosen relevance thresholds. Both algorithms for a parametric and a nonparametric

relevance-shifted approach with a data-driven order of hypotheses are shown.

Before the approaches are introduced some remarks concerning all further procedures with

a data-driven order of hypotheses irrespective of parametric or nonparametric versions and

test on difference or ratio have to be given. As denoted above all further procedures include

a relevance-shifted test. In combination with such a test the selector statistics from the

former chapter can not be used, because those procedures exceed the FWER in a high

degree. For example if the relevance-shifted t-test (introduced below) is used with the

selector statistic wj =
∑2

i=1

∑ni
k=1(xijk − x̄j)

2, then in some tested scenarios empirical error

rates around 50% and even higher can be observed. Hence selectors corresponding to the

applied test statistic have to be developed. All motivations and problems of appropriate

selector statistics discussed here are valid for the procedures in the further chapters.

In this work first testing procedures for relevant differences are presented. However the



52 Relevance-shifted testing procedure on difference

entire work on relevance-shifted tests with a data-driven order of hypotheses has its origin

in a selector for the parametric test on ratio. An equation for this selector can be derived

from the theory of Läuter et al. (1996), as it will be presented in section 5.1.1 of chapter

5. This selector considers the relevance shift in the hypotheses system and in combination

with an appropriate test on ratio it is an exact α-level test. The selector statistic however

has two disadvantages. First if the aim is to test two-sided the analyst needs to select

two relevance thresholds; one for a relevant under-expression and one for the relevant

over-expression. But the selector allows only the use of one threshold. Furthermore the

selector regards only one margin of the null hypothesis. In contrast to the point-zero

hypothesis, where the null hypothesis states that the difference in treatment means is 0,

the relevance-shifted hypothesis covers the ratio of the treatment effects between 1 and the

relevance threshold. But with the derived selector the testing procedure focuses only on

the margin of the hypothesis, that is the point where the ratio of the means is equal to

the relevance threshold. This results in a lack of power, as it will be shown in chapter 5

for the parametric relevance-shifted test on ratio with a data-driven order of hypotheses.

To overcome these two problems modifications had to be constructed which control the

FWER and achieve a higher power than the standard multiple testing methods. These

modifications are generated in an empirical way. Hence no proofs can be presented and the

empirical control of the FWER is shown by simulations. Furthermore all procedures with

a data-driven order of hypotheses for relevant differences or ratios are based on the ideas

of the modified procedures with a data-driven order of hypotheses. Therefore all testing

procedures are approximations.

4.1 Parametric procedures

The relevance-shifted t-test: As the aim of this work is testing against a relevance

threshold, a relevance-shifted t-test is used, which includes the relevance threshold δside

and takes the values δlower ≤ 0 and δupper ≥ 0. Throughout this work the thresholds are

set to the special case of −δlower = δupper. In the univariate case the null hypotheses to
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test for a relevant increase is H0 : µ2 − µ1 ≤ δupper. One-sided against a relevant decrease

is tested as H0 : µ2 − µ1 ≥ δlower and for two-sided testing the following null hypothesis

H0 : δlower ≤ µ2−µ1 ≤ δupper is rejected in favor of H1 : µ2−µ1 < δlower or µ2−µ1 > δupper.

The critical values are the same as for the unshifted t-test. However compared to the t-test

(equation (2.7) on page 16), the test statistic changes to:

tδside =
x̄2 − x̄1 − δside

spool

√
1
n1

+ 1
n2

. (4.1)

While for one-sided testing equation (4.1) is used with δlower or δupper depending on the

direction of interest, for the two-sided test both test statistics are computed. The null

hypothesis H0 : δlower ≤ µ2 − µ1 ≤ δupper is rejected if either tδlower ≤ tdf,α/2 or tδupper ≥
tdf,1−α/2.

Here the two-sided p-values are denoted by pδ.

For data sets with multiple endpoints the relevance-shifted t-test is computed for each

endpoint separately. Thus beside the inclusion of index j for the jth endpoint, the test

statistic stays the same.

4.1.1 The shift-selector procedure

The procedure with a data-driven order of point-zero hypotheses uses the two-sample t-test

for unpaired data. In comparison the procedure with a data-driven order of hypotheses

for relevance-shifted tests uses the t-test including a relevance shift. A straight-forward

approach is the inclusion of the relevance threshold(s) in the computation of the selector

statistics as well. In particular a data shift prior to the computation of the selector has to

be done.

This procedure is abbreviated as ‘shift-selector’ in the further thesis.

1. Select relevance thresholds δlower ≤ 0, δupper ≥ 0.

2. For each endpoint j:

(a) Compute the two-sided p-value pδ
j of the relevance-shifted t-test by use of equa-

tion (4.1).
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(b) Shift the data of the first treatment group to:

x∗1jk =





x1jk + δupper; ∀ j | x̄2j − x̄1j ≥ 0

x1jk + δlower; ∀ j | x̄2j − x̄1j < 0.
(4.2)

(c) Calculate the selector statistic

wj =
n1∑

k=1

(x∗1jk − x̄∗j)
2 +

n2∑

k=1

(x2jk − x̄∗j)
2. (4.3)

with the mean of the combined samples per endpoint computed as

x̄∗j = (
∑n1

i=1 x∗1jk +
∑n2

i=1 x2jk)/N .

3. Sort the m p-values for decreasing selectors wj.

4. Compare the jth ordered p-value with the unadjusted α. It is significant, if pδ
j <

unadjusted α.

5. Stop at the first non-significance and accept for all further endpoints the null hy-

pothesis.

For one-sided testing the data transformation changes to x∗1jk = x1jk + δupper (increase)

or x∗1jk = x1jk + δlower (decrease), respectively. The remaining procedure stays the same

except that one-sided p-values are used.

As it will be shown in section 4.3 this procedure controls empirically the FWER in the

weak and in the strong sense. It can not however be recommended in practice because of

its low proportional power. The following graphics show the proportional power of this

procedure in a two-sided testing scenario where five out of 50 endpoints are under the

alternative hypothesis. Three of the endpoints have a difference in means equal or greater

than 0; their expected values are set to µ1j = 100 and µ2j = 100 + τH1
δ , where τH1

δ denotes

the selected difference in means for endpoints under H1. The other two endpoints under

H1 have means of µ1j = 100 + τH1
δ and µ2j = 100. τH1

δ takes the values from a) 0 to 50

and b) 400 to 460.
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Each endpoint under H0 receives a random true difference in means between δlower and

δupper in steps of five units. The random differences in means per endpoint are uncorrelated.

If not stated otherwise for all further simulation settings with tests on relevant differences

the expected values for endpoints under H0 are selected as described here.

If τH0
δ < 0 then expected values are set to µ1j = 100 + |τH0

δ | and µ2j = 100. Otherwise the

true mean values are µ1j = 100 and µ2j = 100+τH0
δ . The relevance thresholds are set to a)

δlower = δupper = 0 and b) −δlower = δupper = 400. For both scenarios the other parameters

are set to ni = 5, σij = 10, ρijj′ = 0.3 and α = 5%. The proportional power of all five

endpoints under H1 is computed. Although this includes endpoints with a difference in

means less than 0, for the sake of simplicity only the values of τH1
δ are plotted on the

abscissae.

Relevance thresholds: δlower = δupper = 0
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Figure 4.1: Power of the shift-selector procedure for varying differences in expected values

and relevance thresholds

The procedure achieves a high power when it reduces to the procedure for point-zero hy-

potheses (δlower = δupper = 0). However with increasing relevance thresholds the approach
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lacks power. The following graphic shows the reason for this problem. It depicts the value

of the selector for increasing differences in means in a two-sided testing scenario. To con-

struct this graphic for each point on the abscissae a data set consisting of two samples and

five endpoints is created. The expected values are set to µ1j = 10 + |τH1
δ | and µ2j = 10 for

τH1
δ < 0 and µ1j = 10 and µ2j = 10 + τH1

δ for τH1
δ ≥ 0, with τH1

δ taking values from -30

to 30 in steps of one unit. The true standard deviation for each endpoint is set to σij = 1

and the endpoints are uncorrelated. The sample size per group is ni = 20. To reduce noise

the mean of the five selectors per τH1
δ is computed and plotted against τH1

δ . The relevance

thresholds are set to −δlower = δupper = 10.
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Figure 4.2: Shift-selector: minima at δside and local maximum at 0

The reason for the minima at the relevance thresholds and the local maximum at 0 is the

shift of the first treatment group by the amount of δside. It results in a small variabil-

ity between the two groups when the difference in means is approximately equal to the

threshold. In particular, if the difference in means is equal to δside, then the selector takes

the value of the numerator of the variance among both groups, because the difference in
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means is reduced to 0 after the shift. To the left and to the right of these local minima

the selector increases, because to the left of δlower and to the right of δupper the selector is a

compound of the sample variance and the significant treatment effect minus a comparably

smaller relevance shift. And for differences in means between δlower and δupper the selector

increases when the difference in means changes towards 0, because then the selector is a

compound of the variance and the non-relevant treatment effect minus a comparably larger

relevance threshold. Finally the most extreme selector statistic for endpoints with non-

relevant mean differences is achieved, when the difference is 0, because then the selector

reflects the sample variance and a pseudo-treatment effect of δside.

This local maximum of the selector at the mean difference of 0 is the reason for the lack

of the power. For example in this scenario endpoints with a difference in means of 0 have

similar selectors as endpoints with a difference of -20 or 20. This means a significant end-

point needs a difference larger than | ± 20| to prove a relevant difference of at least | ± 10|.
The problem increases with increasing relevance thresholds |δside|.

4.1.2 The δ-shift procedure

The former procedure lacks power due to endpoints under H0 with δlower < x̄2j − x̄1j <

δupper. A data transformation to shift the difference in means equal to the relevance thresh-

old(s) solves the problem. In particular, for testing one-sided for a relevant increase all

endpoints with a difference in means less than δupper are transformed, such that their differ-

ence is equal to the threshold. Equivalently, for testing one-sided for a relevant decrease all

endpoints with a difference greater than the lower threshold are shifted to δlower. Finally,

for two-sided testing all endpoints with differences in means between δlower and 0 are set

to δlower and differences between 0 and δupper are set to the value of the upper threshold.

This data transformation is used for the computation of the selector only. The transformed

endpoints cannot cause an α-error, because the p-value of the shifted t-test for endpoints

with a difference in means not exceeding the threshold will always be larger than α.

In the following graphics and tables this procedure will be abbreviated as the ‘δ-shift’ pro-
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cedure.

Compared to the two-sided testing procedure of the former section 4.1.1, 2. (c) changes

to:

2. (c) For each endpoint with x̄2j − x̄1j ≥ 0 transform the data independently to

x∗2jk =





δupper + x̄1j − x̄2j + x2jk; ∀ j | 0 ≤ x̄2j − x̄1j < δupper

x2jk; ∀ j | x̄2j − x̄1j ≥ δupper.
(4.4)

And for endpoints with x̄2j − x̄1j < 0 x2jk changes to:

x∗2jk =





δlower + x̄1j − x̄2j + x2jk; ∀ j | 0 > x̄2j − x̄1j > δlower

x2jk; ∀ j | x̄2j − x̄1j ≤ δlower.
(4.5)

Calculate the selector statistic:

wj =
n1∑

k=1

(x∗1jk − x̄∗j)
2 +

n2∑

k=1

(x∗2jk − x̄∗j)
2. (4.6)

with the mean of the combined relevance-shifted first group and the δ-transformed

second group per endpoint computed as x̄∗j = (
∑n1

i=1 x∗1jk +
∑n2

i=1 x∗2jk)/N .

As well as for the two-sided procedure, for the one-sided testing problem a data transforma-

tion is included and the computation of the selector changes. In case of testing for a relevant

increase x2jk is transformed to x∗2jk = δupper + x̄1j− x̄2j +x2jk if x̄2j− x̄1j < δupper, otherwise

x∗2jk = x2jk. And for testing against a relevant decrease x∗2jk = δlower + x̄1j − x̄2j + x2jk if

x̄2j − x̄1j > δlower, otherwise x∗2jk = x2jk. In both cases the selector statistic is computed

by equation (4.6). In the former chapter, it was indicated that the procedures with a data-

driven order of point-zero hypotheses may lack in power if one-sided hypotheses are tested.

For this and all further procedures with a data-driven order of relevance-shifted hypotheses

the problem does not occur. If tested one-sided on for example increase, then the data

of an endpoint, which would be significant in the opposite direction, is transformed, such

that the selector is comparably small.

The following graphic shows the effect of the transformation to a difference in means of

δside. It is generated under the same conditions as graphic 4.2.
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Figure 4.3: δ-shift with minimal selector between δlower and δupper

Note that all selector statistics of endpoints with the differences between δlower and δupper are

exactly equal. After the two data transformations - δ-shift and the transformation by the

relevance thresholds - all mean differences of these endpoints are 0. In this case the selector

is a measurement of the numerator of the variance only. And due to the same starting

value for each simulation run the variances are always equal. Thus in real data sets with

approximately equal variances among the endpoints as well as in the further simulations

with more than one endpoint the selector statistics of such endpoints are roughly but not

exactly the same.

Further it should be noted, that the selector statistic still depends on δside. The following

graphic shows this dependency of the selector statistic on the thresholds. To the former

graphic two more curves are added; both are generated under the same conditions but with

−δlower = δupper = 50 and −δlower = δupper = 100.
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Figure 4.4: δ-shift selector for different δside

From the graphic it can be seen, that the selector statistics have a small value if the

difference in means is between the relevance thresholds and the selectors increase when the

difference exceeds one of the thresholds. Summarizing it can be said, that although the

data is transformed by the amount of a relevance threshold, the selector is still dependent

on the relevance criteria.

In section 4.3 and in more detail in the appendix it will be shown, that this procedures

controls empirically the FWER in most cases. Slight exceeds may appear if one-sided

hypotheses are tested.

Further with the inclusion of the data transformation the procedure with a data-driven

order of hypotheses can achieve a high power. The behavior of the proportional power

compared to other procedures is graphically shown in chapter 7.
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4.1.3 The randomδ procedure

To ensure a control of the FWER for one-sided testing, another approach is presented. The

δ-shift method transforms the data of the second treatment group such that endpoints with

difference in means between 0 and δside receive exactly x̄2j − x̄1j = δside. For the further

method it is assumed that the FWER is exceeded because the selector statistics of the

transformed endpoints lack variability and receive homogeneously small selectors. It is

assumed that endpoints under H0 with x̄2j − x̄1j < δlower or x̄2j − x̄1j > δupper have an

advantage concerning the sorting by the selectors, because they have a larger selector

as the transformed endpoints. Hence because of the construction of homogeneously small

selectors the probability that the procedure stops before a false positive endpoint is declared

as significant is decreased.

The following procedure transforms the second treatment group as the δ-shift method.

However it generates random data from the normal distribution, such that the difference of

means is not exactly equal but close to (one of) the relevance threshold(s) and the standard

deviation is the same as the original pooled one spool,j. Summarizing, the transformed

endpoints of the procedure have nearly the same difference in means and exactly the same

pooled standard deviation as the δ-shift method. Therefore the variability of the selectors

of the procedure is only slightly increased.

The following two histograms show the frequencies of the selector statistics of the two

procedures. In each setting 1000 endpoints are generated with true means of µ1j = 100

and µ2j = 200. All endpoints have a sample size per group of 10, the correlation is set

to 0.3, the standard deviation is 10 and the relevance thresholds are -100 and 100. Only

selector statistics of transformed endpoints are plotted.

As in this plot and all further graphics and tables the procedure is abbreviated as ‘randomδ’.
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Figure 4.5: δ-shift and randomδ: variation of the selector

The distribution of the selectors from the randomδ procedure is slightly wider compared

to the one of the δ-shift method. With the inclusion of the small proportion of noise, the

selectors become more variable.

The algorithm of the randomδ method is similar to the procedure of section 4.1.1, only 2.

(c) changes to:

2. (c) Replace for each endpoint with δlower ≤ x̄2j − x̄1j ≤ δupper separately x2jk with

Gaussian distributed random numbers xz
2jk ∼ N(µ = x̄1j, σij = 1). Indepen-

dently for each endpoint with x̄2j − x̄1j ≥ 0 transform the data of the second
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treatment group to

x∗2jk =





xz
2jk−x̄z

2j

sz
2j

· spool,j + x̄z
2j + δupper; ∀ j | 0 ≤ x̄2j − x̄1j < δupper

x2jk; ∀ j | x̄2j − x̄1j ≥ δupper.
(4.7)

And for endpoints with x̄2j − x̄1j < 0 the data of the second treatment group is

x∗2jk =





xz
2jk−x̄z

2j

sz
2j

· spool,j + x̄z
2j + δlower; ∀ j | 0 > x̄2j − x̄1j > δlower

x2jk; ∀ j | x̄2j − x̄1j ≤ δlower.
(4.8)

Calculate the selector statistic according to equation 4.6, which is the selector

used in the former section.

The changes for the one-sided testing problem are: for a test on increase replace for each

j with x̄2j − x̄1j < δupper independently the x2jk by xz
2jk ∼ N(µ = x̄1j, σij = 1) and

transform xz
2jk to x∗2jk =

xz
2jk−x̄z

2j

sz
2j

·spool,j + x̄z
2j +δupper. All other endpoints have x∗2jk = x2jk.

Equivalently for testing on decrease endpoints with x̄2j − x̄1j > δlower transform xz
2jk to

x∗2jk =
xz
2jk−x̄z

2j

sz
2j

· spool,j + x̄z
2j + δlower and all other j have x∗2jk = x2jk. For both one-sided

testing problems the selector according to equation (4.6) is computed for each endpoint

separately.

As discussed in section 4.3 this procedure controls empirically the FWER in the weak and in

the strong sense for more tested scenarios compared to the δ-shift procedure. Some further

selected simulation results can be found in the appendix on page 156. The proportional

power of the randomδ procedure is slightly less or in some cases equal as the δ-shift method.

Again graphical results are shown in chapter 7 . For practical use this procedure has the

disadvantage, that the result is dependent on the random number generator. That is, in

extreme cases the number of significant endpoints can depend on the starting value.

4.2 Nonparametric procedure

Analog to the parametric test a nonparametric version can be constructed. As in the

nonparametric procedure for point-zero hypotheses the interquartile range is used as se-

lector. And in total analogy to the parametric procedures for relevant differences prior to



64 Relevance-shifted testing procedure on difference

the computation of the selector statistic a relevance shift of the data is applied. Further-

more to achieve an appropriate power the additional data transformation is used. Hence

the method presented in this section is similar to the δ-shift procedure. A nonparametric

analog to the parametric randomδ method could not be found for two reasons. First, the

generation of the random numbers needs an a-priori knowledge of the distribution of the

data. And second, as only one type of distribution can be implemented in the data trans-

formation, all data to be replaced would need to have the same distribution.

The procedure makes the same assumptions concerning the data as described in the for-

mer chapter for the nonparametric test. However as in this chapter a relevant difference

is of interest, it is now tested, whether the estimate of ∆j of endpoint j exceeds the a-

priori selected relevance threshold(s) δside. In terms of two-sided hypotheses this is stated

as H0j : δlower ≤ ∆j ≤ δupper versus H1j : ∆j < δlower or ∆j > δupper. As with the

relevance-shifted nonparametric two-sample test for independent samples, the rank sum

test according to Wilcoxon (1945) is used.

The following section presents this relevance-shifted test and afterwards the procedure is

discussed.

The relevance-shifted rank sum test: The well-known rank sum test proposed by

Wilcoxon (1945) and introduced in section 3.1.2 is usually used for point-zero hypotheses

and not for testing against relevance criteria. Following Hollander and Wolfe (1999)

the rank sum test can be applied to test against a specified relevance threshold δside. For

this purpose a pseudosample is formed, such that x∗1k = x1k + δside and the rank sum test

is computed from the samples x∗1k and x2k.

As for the test for the point-zero hypothesis both the exact and the asymptotic version are

presented.

Exact nonparametric test for relevant differences: The exact two-sided relevance-

shifted Wilcoxon rank sum test is computed as follows: Shift the first treatment group,

such that x∗1k = x1k + δlower, sort the combined samples x∗1k and x2k in an increasing order
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and rank them. Denote the ranks of the second treatment group by r2k. Calculate the sum

of the r2k:

Wlower =
n2∑

k=1

r2k. (4.9)

Repeat the procedure with the ranks taken among x∗1k = x1k + δupper and x2k and compute

Wupper =
n2∑

k=1

r2k. (4.10)

The two-sided null hypothesis H0 : δlower ≤ ∆ ≤ δupper is rejected, if either Wupper ≥ wα/2

or Wlower ≤ n2(n1 + n2 + 1) − wα/2. In the one-sided case to test for a relevant increase

H0 reduces to H0 : ∆ ≤ δupper and it is rejected with Wupper ≥ wα. For testing against a

relevant decrease H0 : ∆ ≥ δlower is declined if Wlower ≤ n2(n1 + n2 + 1)− wα.

Asymptotic nonparametric test for relevant differences: For the computation of

the asymptotic test the expectation and the variance are required again. These are denoted

by:

E(Wside) =
n2

N

2∑

i=1

ni∑

k=1

rik (4.11)

and

V ar(Wside) =
n1n2

N2(N − 1)



N

2∑

i=1

ni∑

k=1

r2
ik −

(
2∑

i=1

ni∑

k=1

rik

)2


 . (4.12)

Hence the large-sample approximation of the Wilcoxon test is

W approx
side =

Wside − E(Wside)

{V ar(Wside)}1/2
. (4.13)

The two-sided null hypothesis is rejected, if either |W approx
lower | or W approx

upper is greater or equal to

z1−α/2. In the one-sided case H0 is declined if W approx
upper ≥ z1−α (increase) and W approx

lower ≤ zα

(decrease).

The two-sided p-values of the exact and the asymptotic rank sum test are denoted pnp−δ.

4.2.1 The np-δ-shift procedure

By use of the relevance-shifted data and the data transformation of definite non-significant

endpoints the nonparametric procedure with a data-driven order of hypotheses to test for

a relevant difference is defined as:



66 Relevance-shifted testing procedure on difference

1. Select relevance thresholds δlower ≤ 0, δupper ≥ 0.

2. For each endpoint j:

(a) Depending on the sample size compute the p-value of the relevance-shifted rank

sum test pnp−δ
j either exact or asymptotic by use of the test statistics in section

4.2.

(b) Order the observations of both samples separately, such that x
(1)
ijk ≤ . . . ≤ x

(ni)
ijk′ ,

where k 6= k′. Calculate for both samples the median x̃ij. If ni is odd, then

x̃ij = x
((ni−1)/2+1)
ijk (4.14)

and if ni is even, then

x̃ij =
x

(ni/2)
ijk + x

(ni/2+1)
ijk

2
. (4.15)

For each endpoint with x̃2j − x̃1j ≥ 0 transform independently the data of the

second group to

x∗2jk =





x2jk − x̃2j + x̃1j + δupper; ∀ j | 0 ≤ x̃2j − x̃1j < δupper

x2jk; ∀ j | x̃2j − x̃1j ≥ δupper

(4.16)

And for endpoints with x̃2j − x̃1j < 0 transform the x2jk to

x∗2jk =





x2jk − x̃2j + x̃1j + δlower; ∀ j | 0 > x̃2j − x̃1j > δlower

x2jk; ∀ j | x̃2j − x̃1j ≤ δlower

(4.17)

If x̃2j − x̃1j < 0 compute the selector IQRj among the pooled treatment groups

x1jk + δlower and x∗2jk. Otherwise it is calculated among x1jk + δupper and x∗2jk.

3. Sort the m p-values for decreasing selectors IQRj.

4. For each endpoint independently compare the jth ordered p-value with the unad-

justed α. It is significant, if it is less than α and all previously tested null hypotheses

are rejected as well.
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5. Stop at the first non-significance and accept for all further endpoints the null hy-

pothesis.

For one-sided testing the selectors are calculated from either x1jk + δlower and x∗2jk (test on

decrease) or x1jk + δupper and x∗2jk (test on increase).

As for the parametric δ-shift method this procedure controls empirically the FWER in both

the strong and the weak sense for two-sided testing. Detailed results of FWER-simulations

start on the page 159. The graphical power simulation results start on page 109 in chapter

7. In the further work this procedure is abbreviated as ‘np-δ-shift’.

4.3 Control of the FWER

In this section the main statements about the empirical control of the FWER by the

procedures with a data-driven order of hypotheses presented in this and the further chapter

are given. As noted above, more detailed information and results are listed in the appendix

starting on page 155.

However before the behavior of the empirical power can be characterized, a decision rule

is required, to decide whether an approach controls the FWER or not. For example as

an empirical FWER of 5.23% is larger than the nominal level of 5%, it could be either

concluded that the method does not control the FWER, or that the exceeding is a result of

the simulation error. In the literature it is common to use the Wald interval as a decision

rule. It is given by π̂ ± zα/2

√
π̂(1− π̂)/NSIM , where π̂ denotes the empirical error rate

and NSIM is the number of simulation runs. This interval is advantageous because of its

simplicity. However it is known to be liberal for π̂ close to 0 or 1 combined with a small

number of simulation runs NSIM . Hence instead of the Wald interval the Wilson interval

is used throughout this thesis to decide, whether a procedure controls the FWER or not.

The two-sided (1-α) Wilson score interval for π is denoted as:


π̂ +

z2
α/2

2 ·NSIM
± zα/2

√√√√
[
π̂(1− π̂) +

z2
α/2

4 ·NSIM

]
/NSIM


 /(1 + z2

α/2/NSIM) (4.18)



68 Relevance-shifted testing procedure on difference

(Agresti and Coull (1998), Piegorsch (2004)). A detailed summary of confidence

intervals for the proportion is proposed by Schaarschmidt (2005).

Here the lower one-sided confidence limit is used, to decide if the empirical FWER exceeds

the nominal level. The limit itself is computed to an α-level of 5% and 10,000 simulation

runs. For example, for α = 5% the observed error rate has to be larger than 5.358%,

such that the 5% are not included in the interval. In all further chapters an exceed of the

nominal FWER is printed bold.

Detailed simulation studies on the weak and the strong control of the FWER are done for

all new procedures. In all simulations 50 endpoints are tested. Further, for the procedures

discussed in this chapter the nominal FWER is set to 5%. Tested are scenarios with varying

relevance thresholds, correlation structures among endpoints, sample sizes and variances.

For the parametric procedure the simulated data follow a normal distribution. In addition

for the nonparametric procedure skewed distributed data is generated as well. Tested are

both one- and two-sided hypotheses.

By use of the one-sided Wilson confidence limit, it can be said that all four procedures

empirically control the FWER for two-sided testing. If it is tested one-sided and δlower =

δupper = 0, then the δ-shift and the np-δ-shift procedure exceed slightly the FWER. Largest

simulated empirical error rates are 5.89% for δ-shift and 6.24% for the np-δ-shift. In

comparison to the δ-shift the largest empirical FWER of the randomδ approach in a one-

sided testing scenario is 5.25%, which is not an exceed according to the Wilson confidence

limit. However one-sided tests for high dimensional data sets are rarely used, as this

requires either the a-priori knowledge of the direction of the treatment effect or a general

interest in over- or under-expression of all genes.

4.4 Examples

In this section the application of the δ-shift, the randomδ and the np-δ-shift procedure is

shown. As in the former chapter, the small data set including the morphological measure-

ments of possums and the large microarray data sets are analyzed with two-sided tests and
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an error rate of 0.05. However in contrast to the former analysis, relevance thresholds have

to be selected.

4.4.1 Possum data set

For the possum data the relevance thresholds are set to −δlower = δupper = 0.25. As the

absolute values of the differences are larger than 0.25, the data transformations of the

procedures are not applied. Hence the δ-shift and the randomδ approaches lead to the

same results.

Results of the δ-shift and the randomδ procedure:

difference selector test unadjusted adjusted Bonferroni
endpoint

in means statistic statistic p-value p-value adjusted p-value

totlngth 6.000 262.729 2.247 0.048 0.048 0.436

hdlngth 5.025 187.609 2.190 0.053 0.053 0.480

earconch -7.463 163.597 -7.468 2.14 · 10−05 0.053 1.92 · 10−4

footlgth -3.087 119.739 -1.478 0.170 0.170 1.000

skullw 3.950 114.357 2.165 0.056 0.170 0.500

belly 1.938 93.813 0.938 0.370 0.370 1.000

taill 2.250 41.729 1.853 0.094 0.370 0.842

chest 1.938 36.313 1.626 0.135 0.370 1.000

eye 1.075 9.123 1.576 0.146 0.370 1.000

The α-adjustment and the procedures with a data-driven order of hypotheses reject one

hypothesis only. While the δ-shift and the randomδ method declare the endpoint ‘totlngth’

as significant, the Bonferroni correction results in a significant p-value for ‘earconch’. The

reason for the non-superior behavior of the procedures with a data-driven order of hypothe-

ses is the abortion of the algorithm at the second endpoint (‘hdlngth’), which has a larger

selector as ‘earconch’ and a p-value of 0.053. If this p-value would have been significant,

the procedures with a data-driven order of hypotheses would have lead to three significant

endpoints.

In the following table results of the nonparametric relevance-shifted procedures are shown.
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Results of the np-δ-shift procedure:

difference selector test unadjusted adjusted Bonferroni
endpoint

in medians statistic statistic p-value p-value adjusted p-value

earconch -7.350 7.100 10 0.004 0.004 0.036

totlngth 4.500 5.250 36 0.101 0.101 0.909

skullw 4.300 4.525 36 0.109 0.109 0.982

hdlngth 5.450 4.175 36 0.109 0.109 0.982

belly 1.75 3.938 29 0.683 0.683 1.000

footlgth -3.950 3.925 15 0.073 0.683 0.655

chest 2.500 2.500 35 0.141 0.683 1.000

taill 2.000 1.813 35 0.137 0.683 1.000

eye 1.350 1.313 35 0.150 0.683 1.000

With the use of the relevance-shifted rank sum test all unadjusted p-values are increased

compared to the ones resulting from the t-test. Only the endpoint ‘earconch’ has an

unadjusted p-value less than the significance level of 0.05. As for the parametric analysis

the Bonferroni adjustment declares this endpoint to be significant. And as ‘earconch’ has

the largest selector statistic, the same result is given by the np-δ-shift method.

To give an example of the transformations, it is now assumed, that in site 3 for endpoint

‘belly’ data the following measurements are observed: 31.1, 33.1, 33.5 and 30.5. This

results in a difference in treatment means of -0.013 and a difference in medians of -0.150.

Results of the data transformations:

difference in selector test unadjusted
procedure

means / medians statistic statistic p-value

δ-shift -0.013 86.229 0.132 1.000

randomδ -0.013 105.756 0.132 1.000

np-δ-shift -0.150 3.500 16 1.000

Initially the results do not change. The order of the hypotheses stay the same for the

parametric procedure and in the nonparametric approach ‘belly’ and ‘footlgth’ switch their

position. However the adjusted p-values of the endpoints with a smaller selector as ‘belly’

would change to 1.000.
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The effect of the additional noise generated by the randomδ method can clearly be seen.

While ‘belly’ achieves a selector of 86.229 if the δ-shift is used, the selector increases to

105.756 by use of the randomδ method. It has to be pointed out that the selector statistic

of ‘belly’ depends on the random number generator and the initial seed. In this analysis

the seed is set to 1010 and the final transformed data to compute the selector is 31.68397,

28.42102, 35.55216 and 32.59850.

4.4.2 TSHR mutation data set

As noted in the former chapter the range of mean expression among the genes is between

0 and 50,000. Here it is impossible to select a relevance threshold in terms of the differ-

ence, because to achieve a significant result the required treatment effect increases with an

increasing mean expression. Hence individual relevance thresholds for thousands of genes

would need to be specified. However an analysis is possible if the data is logarithmized. Be-

sides the moderate variance stabilization the logarithmic transformation is advantageous,

because by its application a multiplicative model changes into an additive one. That is here

a test on ratio turns into a test on difference. By setting −δlower = δupper = log(1.5) and an-

alyzing the logarithmized data it is tested for a relevant ratio of means of 1.5 based on the

data on the original scale. Then without a multiplicity correction 65 significant endpoints

can be found. In comparison with results of the former chapter (−δlower = δupper = 0),

that is 1,176 fewer significant endpoints. As in the analysis in the former chapter no sig-

nificant endpoints were found by use of the Bonferroni correction and the procedure with

a data-driven order of hypotheses, none are found here either. The following two tables

list the first ten endpoints with the highest selector statistics. As in this chapter a relevant

ratio of means of 1.5 based on the original data is of interest, the second column values are

transformed back on the original scale. Still this is equivalent to the difference in means

of the logarithmized data as listed in the table in the former chapter. The first table gives

the results of the δ-shift method.
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Results of the δ-shift procedure:

ratio selector test unadjusted adjusted
endpoint

of means statistic statistic p-value p-value

11321 0.130 62.583 -1.466 0.166 0.166

6022 1.195 42.359 -0.230 1.000 1.000

8435 0.099 39.309 -2.415 0.031 1.000

12177 3.149 38.971 0.801 0.437 1.000

11876 5.865 35.058 1.671 0.119 1.000

4145 0.060 34.786 -4.011 0.001 1.000

3839 12.207 33.756 3.157 0.007 1.000

2148 3.869 33.711 1.125 0.281 1.000

7940 0.070 33.364 -3.668 0.003 1.000

The same ten endpoints can be found as in the analysis with the parametric procedure

with a data-driven order of point-zero hypotheses applied on the logarithmized data. As

expected all p-values enlarge, the selector statistics decrease and, no significant results

can be found. Endpoint # 6022 is transformed by the δ-shift method, because the ratio

of means is between 1/1.5 and 1.5. The selector statistic does not change marginally.

However as for all other endpoints the selector decreases, # 6022 moves up one rank in

the order of hypotheses.
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Results of the randomδ procedure:

ratio selector test unadjusted adjusted
endpoint

of means statistic statistic p-value p-value

11321 0.130 62.583 -1.466 0.166 0.166

6022 1.195 40.049 -0.230 1.000 1.000

8435 0.099 39.309 -2.415 0.031 1.000

12177 3.149 38.971 0.801 0.437 1.000

1321 1.147 35.811 -0.332 1.000 1.000

11876 5.865 35.058 1.671 0.119 1.000

4145 0.060 34.786 -4.011 0.001 1.000

1681 0.908 34.672 0.407 1.000 1.000

3839 12.207 33.756 3.157 0.008 1.000

2148 3.869 33.711 1.125 0.281 1.000

By use of the randomδ procedure the overall result stays the same. However the list of the

ten genes with the highest selectors is slightly different. Eight endpoints appear in both

lists. The two genes, which are included in the list of the randomδ only, are transformed

by both procedures. As the randomδ method adds a small noise term to the data, these

two endpoints achieve a comparably large selector and appear in this list. Here it can be

disadvantageous, as such endpoints may abort the procedure prematurely.

However the opposite effect is possible as well. With the data transformation the endpoint

# 6022 achieved a smaller selector compared to results of the δ-shift procedure.

The application of the nonparametric tests is omitted, because with the logarithmic trans-

formation the procedure with a data-driven order of hypotheses is equal to the nonpara-

metric procedure to test for a relevant ratio. This approach will be discussed in chapter

6.

4.4.3 TNFα data set

In analogy to the analysis of the TSHR mutation data set the TNFα experiment is evalu-

ated in terms of the selection of relevance thresholds for the difference in means based on



74 Relevance-shifted testing procedure on difference

the logarithmic transformed data. These are set to −δlower = δupper = log(1.5) as well. And

the nonparametric analysis is omitted, as it gives the same results as the nonparametric

procedure with a data-driven order of hypotheses discussed in chapter 6.

Without the application of a multiple testing approach 502 significant genes can be found.

By use of the Bonferroni correction 56 discriminatory endpoints are achieved.

Results of the δ-shift procedure: In comparison with the parametric procedures with

data-driven order of point-zero hypotheses, instead of nine significant endpoints three are

found by the δ-shift procedure here. As expected, the number of significant genes is less,

because here relevance thresholds are included. However a second reason is the endpoint

# 10284, which is the fourth endpoint in the order and has an unadjusted p-value of

0.073. Hence it stops the procedure, before the following four genes with small p-values

are evaluated.

ratio selector test unadjusted adjusted
endpoint

of means statistic statistic p-value p-value

5979 5.789 6.310 27.140 3.660 · 10−09 3.660 · 10−09

13618 5.259 5.675 16.062 2.265 · 10−07 2.265 · 10−07

11600 5.202 5.453 36.420 3.541 · 10−10 2.265 · 10−07

10284 4.208 5.383 2.265 0.073 0.073

8563 5.013 5.268 19.322 5.341 · 10−08 0.073

13585 5.023 5.202 35.460 4.379 · 10−10 0.073

6629 4.973 5.163 25.392 6.200 · 10−09 0.073

13653 4.792 5.079 12.692 1.397 · 10−06 0.073

12453 0.506 4.505 -0.733 0.496 0.496

1689 2.951 4.469 1.868 0.111 0.496

Results of the randomδ procedure: A rather unexpected result is achieved by use of

the randomδ procedure. Out of the ten endpoints with the highest selectors, only one has an

unadjusted p-value less than 1. And its adjusted p-value is 1, because it is not on the top of

the ordering. As the randomδ procedure includes additional noise to the transformed data

of endpoints with a difference in means not exceeding a relevance threshold, the selectors
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increase. In this example some of the transformed endpoints receive such a large selector,

that they appear at the top of the ordering and stop the procedure prematurely.

ratio selector test unadjusted adjusted
endpoint

of means statistic statistic p-value p-value

10965 0.945 11.106 1.498 1.000 1.000

7162 0.938 9.376 2.385 1.000 1.000

13277 1.087 7.311 -0.356 1.000 1.000

2613 0.840 7.050 0.055 1.000 1.000

9027 0.949 6.465 1.608 1.000 1.000

5979 5.789 6.310 27.140 3.660 · 10−09 1.000

3792 0.969 6.173 1.876 1.000 1.000

1968 0.893 5.959 1.699 1.000 1.000

3357 0.842 5.895 0.062 1.000 1.000

13711 0.975 5.771 0.469 1.000 1.000
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Chapter 5

Parametric testing procedures for

relevant ratios

In the former chapter, procedures are presented which are used to detect relevant differ-

ences among the treatment groups. However, in high dimensional data with endpoints that

have different scaled observations, it is hardly possible to define for each variable a relevant

difference. Especially this is not possible for microarrays, because the individual genes for

one experimental unit are expressed with differential intensity. Hence this would require

the a-priori knowledge of the expression intensity of thousands of genes. Here a relevance

criteria in terms of the ratio is more appropriate. In this chapter such parametric proce-

dures are discussed. The null hypothesis to be tested is H0j : θlower ≤ µ2j

µ1j
≤ θupper against

the alternative H1j : µ2j

µ1j
< θlower or µ2j

µ1j
> θupper, with the lower threshold θlower ≤ 1 and the

upper one θupper ≥ 1. Throughout the entire thesis the thresholds are set to θ−1
lower = θupper.

As well as for the procedures in the former chapter it is not possible to use an appropriate

two-sample test in combination with the selector statistic wj =
∑2

i=1

∑ni
k=1(xijk− x̄j)

2 from

the parametric procedure for point-zero hypotheses. Simulations of the FWER with a

nominal level of 5% resulted in an empirical α around 40%.

A conceivable approach is a data transformation in terms of a reduction of a treatment

group by the relevance threshold before computing the selector, as it was applied in the
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former chapter. A simple multiplication or division of a treatment group by θlower or θupper

is inappropriate because of the change of the variance. However as proposed by Hauschke

(1999) a hypothesis system to test for a relevant difference in means can be rewritten to a

system for a relevant ratio of means and vice versa. For example the one-sided hypotheses

to test on a relevant increase can be rewritten to:

Hδ
0,j : µ2j − µ1j ≤ δupper,j = fµ1j ⇔ Hθ

0,j :
µ2j

µ1j

≤ 1 + f = θupper, (5.1)

Hδ
1,j : µ2j − µ1j > δupper,j = fµ1j ⇔ Hθ

1,j :
µ2j

µ1j

> 1 + f = θupper. (5.2)

By use of the estimates of µij an approximate data transformation follows as

x∗2jk = x2jk − δupper,j = x2jk − fx̄1j = x2jk − (θupper − 1)x̄1j. (5.3)

Such an approach was tested for various conditions as for one- and two-sided hypotheses,

different sample sizes and relevance thresholds. The method achieved in the tested settings

empirical error rates up to around 30%. The reason for the exceed is the use of the estimates

instead of parameters for the data transformation.

A procedure which controls exactly the FWER in the weak and the strong sense can be

derived from the theory of the stabilized tests. Such a procedure is used here. However, as

mentioned in the introduction of chapter 4, the proposed procedure solves the problem of

the control of the FWER, but lacks power. The reason for the lack of power is the same

as discussed in chapter 4. But as will be presented in this chapter, two approximations of

the procedure can be done by including a data transformation. The resulting approaches

control empirically the FWER and are powerful compared to alternative multiple testing

methods if certain data conditions hold.

5.1 Procedures

The Sasabuchi-test: In practice it is often difficult to define relevance thresholds for

a difference of means. An alternative to the δ-shifted t-test is the parametric test on

ratio according to Sasabuchi (1988). In the further work this test will be denoted as the
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Sasabuchi-test.

In the univariate case for two-sided testing the test tests the null hypothesis H0 : θlower ≤
µ2

µ1
≤ θupper against the alternative H1 : µ2

µ1
< θlower or µ2

µ1
> θupper The null hypothesis is

rejected, if either the ratio of the means is significantly less than θlower:

tθlower =
x̄2 − θlowerx̄1

spool

√
1
n2

+
θ2
lower

n1

(5.4)

or the ratio is significantly greater than θupper :

tθupper =
x̄2 − θupperx̄1

spool

√
1
n2

+
θ2
upper

n1

. (5.5)

The two-sided null hypothesis is rejected, if either tθlower ≥ tdf=N−2,α/2 or tθupper ≤ tdf=N−2,1−α/2.

For the one-sided test against a relevant decrease the null hypothesis and the test statistic

reduce to H0 : µ2

µ1
≥ θlower and equation (5.4) with the critical value tdf=N−2,α and to test for

a relevant increase H0 : µ2

µ1
≤ θupper and equation (5.5) with the critical value tdf=N−2,1−α

are used. For testing multiple endpoints the equations are similar, only the index j for the

endpoints is added. For example equation (5.4) changes to:

tθlower,j =
x̄2j − θlowerx̄1j

spool,j

√
1
n2

+
θ2
lower

n1

. (5.6)

In the following multiple testing procedures the two-sided p-value of the Sasabuchi-test for

the jth endpoint is denoted by pθ
j .

Compared to the other two-sample tests used in this work the Sasabuchi-test has an excep-

tional behavior of the power. This is briefly discussed here, as it influences the simulation

settings. Due to the asymmetry of the ratio, the power is dependent on the direction of

the test. The dependency can be illustrated by use of the equation for the sample size

calculation, which is proposed by Kieser and Hauschke (1999):

n ≥ (1 + θ2
side) · (t1−α/2,2n−2 + t1−β/2,2n−2)

2 ·
(

CV1

τθ − θside

)2

(5.7)

with τθ denoting the true ratio of means, n1 = n2 = n and CV1 is the coefficient of variation

of the first treatment group. To test one-sided on increase against θupper = 2, a sample
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size of 15 per group is needed to prove a ratio of means of 2.15 as significant (CV1 = 0.1,

α = 5%, β = 20% and µ1 = 100, µ2 = 215, σ = 10.) Compared to this, for testing on

decrease with θlower = 0.5 and µ2/µ1 = 2.15−1 with µ1 = 100, µ2 = 46.5 and all other

parameters equal to the test on increase a sample size of 65 is required. The effect is based

in the last term of the sample size equation:
(

CV1

τθ−θside

)2
. Given that for testing on decrease

the ratio and the relevance threshold are the inverse of the ones from testing on increase,

the denominator of the fraction is much smaller for testing on decrease as for testing on

increase because of the asymmetry of the ratio.

To achieve for the simulations a behavior of the power independent from the direction of

the test, for both test on increase and decrease the same settings of expected values are

used, but for testing on decreased the index of the group is switched. When testing on

increase the non-centrality parameter of the Sasabuchi-test is

νupper =
µ2 − µ1 · θupper

σ

√
1
n2

+
θ2
upper

n1

(5.8)

(Hauschke (1999)). By dividing by µ1 the equation changes to:

νupper =

µ2

µ1
− θupper

σ
µ1

√
1
n2

+
θ2
upper

n1

. (5.9)

And the Sasabuchi-test on increase can be written as:

tθupper =
x̄2 − θupperx̄1

spool

√
1
n2

+
θ2
upper

n1

= − x̄1 − θ−1
upperx̄2

spool

√
θ−2
upper

n2
+ 1

n1

. (5.10)

Hence the modified non-centrality parameter is:

νupper−1 = − µ1 − µ2θ
−1
upper

σ

√
θ−2
upper

n2
+ 1

n1

:µ2⇒ −
µ1

µ2
− θ−1

upper

σ
µ2

√
θ−2
upper

n2
+ 1

n1

. (5.11)

Note that the coefficient of variation changed to σ
µ2

, which is now dependent of group 2.

Given that θlower = θ−1
upper it follows that the same power behavior (or sample size re-

quirements) for both testing on increase and decrease are achieved in simulations, if the

expected values of the groups are switched. The effect can be visualized with an estimation
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of the sample size. In the equation the coefficient of variation is now taken from group 2.

In the example above for testing on increase, a sample size of 15 is required. To test on

decrease the same parameters are used, but µ1 = 215, µ2 = 100 and θlower = 0.5. Then the

coefficient of variation is CV2 = 0.0465 and the required sample size is again 15.

5.1.1 The Sasabuchi selector procedure

In this section the derivation of a selector statistic for an exact parametric procedure with a

data-driven order of hypotheses to test for a relevant ratio and a first approximation of it are

shown. To construct the exact approach the factor-shifted null-hypothesis H0 : µ2 = θµ1 is

considered, where the a-priori chosen shift parameter θ > 0 denotes the relevance threshold.

In the special case of θ = 1 the hypothesis reduces to the classical unshifted test problem.

For the construction of the selector the matrices H and G are needed. While the error

matrix G remains unchanged with respect to (3.4)

G =
2∑

i=1

ni∑

k=1

(xik − x̄i)(xik − x̄i)
′, (5.12)

the matrix H representing the deviation from the null hypothesis changes to

H =
n1n2

n1 + θ2n2

(x̄2 − θx̄1)(x̄2 − θx̄1)
′. (5.13)

To derive the weight vectors and the scores the matrix of the total sums of squares and

cross products W is needed. It is given by

W =
n1n2

n1 + θ2n2

(x̄2 − θx̄1)(x̄2 − θx̄1)
′ +

2∑

i=1

ni∑

k=1

(xik − x̄i)(xik − x̄i)
′. (5.14)

In analogy to the multiple testing procedure for point-zero hypotheses (Kropf and

Läuter (2002)) the diagonal elements of W are used as selector statistic:

wj =
n1n2

n1 + θ2n2

(x̄2j − θx̄1j)
2 +

2∑

i=1

ni∑

k=1

(xijk − x̄ij)
2 (5.15)

=
n1n2

n1 + θ2n2

(x̄2j − θx̄1j)
2 +

(
2∑

i=1

ni∑

k=1

x2
ijk

)
− n1x̄

2
1j − n2x̄

2
2j (5.16)

=
2∑

i=1

ni∑

k=1

x2
ijk −

1

n1 + θ2n2

· (n1x̄1j + n2θx̄2j)
2. (5.17)
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By use of scores instead of the variables the univariate terms corresponding to H and G

result in

hz =
n1n2

n1 + θ2n2

(z̄2 − θz̄1)
2 (5.18)

and

gz = (N − 2)s2
z. (5.19)

Then the Sasabuchi test for the scores is given by
√

hz

gz
. As in the procedure with a data-

driven order of hypotheses the Sasabuchi test is used on the two samples per gene, the

single variables are used as scores.

With the use of equation (5.17) combined with the Sasabuchi-test this procedure with a

data-driven order of hypotheses is an exact α test. However as described in chapter 4 the

equation allows the inclusion of only one relevance threshold - θ instead of θlower and θupper.

Hence in this section a modified version of the selector is used. All endpoints indicating

an over-expression, that is here a ratio of means greater or equal than 1, use θupper instead

of θ. And for the remaining endpoints, the ones which indicate an under-expression, have

θlower instead of θ.

The resulting algorithm is:

1. Select relevance thresholds θlower ≤ 1, θupper ≥ 1.

2. For each endpoint j:

(a) Compute the two-sided p-value pθ
j of the Sasabuchi-test by the use of equations

5.4 and 5.5.

(b) Calculate the selector statistic

wj =





∑2
i=1

∑ni
k=1 x2

ijk − 1
n1+θ2

lower
n2
· (n1x̄1j + n2θlowerx̄2j)2; ∀ j | x̄2j

x̄1j
< 1

∑2
i=1

∑ni
k=1 x2

ijk − 1
n1+θ2

uppern2
· (n1x̄1j + n2θupperx̄2j)2; ∀ j | x̄2j

x̄1j
≥ 1

(5.20)

3. Sort the m p-values for decreasing selectors wj.

4. Compare the jth ordered p-value with the unadjusted α. It is significant, if pθ
j <

unadjusted α.
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5. Stop at the first non-significance and accept for all further endpoints the null hy-

pothesis.

For one-sided testing the one-sided p-values are used and the selector statistic stays the

same. If tested on increase, for the selector statistic the lower relevance threshold is given

by θlower = θ−1
upper and vice versa for one-sided testing on decrease.

However it lacks power for the same reason as the shift-selector method proposed in section

4.1.1: the selector statistic reaches a local maximum when the treatment effect is 0 or the

ratio of means is 1, respectively.

An additional problem may arise when the mean levels of the endpoints differ. As could

be seen from the procedures with a data-driven order of point-zero hypotheses the power

depends on the degree of the variance homogeneity among the endpoints. This is true as

well for the relevance-shifted ones, as it will be shown in chapter 7. For the analysis of

microarrays this is a problem, as usually the individual genes per treatment group vary in

the intensity of the expression and thus in the variance. However even if the variance is

set to a constant value, while the mean level of the endpoints differ, the Sasabuchi-selector

procedure shows a lack of power. The following graphic depicts this problem. Here the

selector is plotted against the true ratio of means. The setting is equivalent to the corre-

sponding graphic 4.2 for the shift-selector procedure. Only the expected values and the

relevance thresholds change to µ1j = (1/τH1
θ ) · 10 and µ2j = 10 for τH1

θ < 1 and µ1j = 10

and µ2j = τH1
θ · 10 for τH1

θ ≥ 1, with τH1
θ taking values from 0.25 to 4 in steps of 0.1

units. The random ratio τH1
θ is constructed from two combined sets of values. One set

includes all values between 1 and θupper in steps of 0.05. To receive an equal amount of

ratios compared to the first set, for the second one all values between 1 and θ−1
lower in steps

of 0.05 are computed and the second set is the inverse of these values.

In this graphic two additional curves are included. For each of the three curves the un-

derlaying data levels are different. The first one has a level of 50 (µ1j = (1/τH1
θ ) · 50 and

µ2j = 50 for τH1
θ < 1, µ1j = 50 and µ2j = τH1

θ · 50 for τH1
θ ≥ 1), the second has a level of
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75 and the third one 100. Again the scenario is a two-sided one and the thresholds are set

to 0.5 and 2.

true ratio of expected values

m
ea

n 
of

 fi
ve

 s
el

ec
to

rs

1 2 3 4 5

20
00

0
40

00
0

60
00

0
80

00
0

level = 50
level = 75
level = 100

Figure 5.1: Sasabuchi selector: comparison of selectors for different data levels

If the ratio equals the thresholds, all lines show the same selector statistic, because none

has a difference in means and all have the same standard deviation. For all other values of

τH1
θ the selector depends extremely on the level of the data. The reason for this behavior

is, that while the variance per endpoint and the true ratio of means stay constant, the

difference in means increases with increasing data levels. The effect can be best explained

by use of the test statistic of the Sasabuchi-test. For each of the simulated experiments

the denominator of the test is the same. But the numerator changes; for example if the

true ratio of means is set to 3, then the true difference in means for the data levels are

µ2j − θupperµ1j, these are 150− 2 · 50 = 50, 225− 2 · 75 = 75 and 300− 2 · 200 = 100. Hence

the test statistic increases with the increasing data levels. As the selector statistic reflects

the test statistic, the same behavior can be seen. The effect is correct for endpoints, which

exceed one of the thresholds. However the selector of endpoints under H0 with a large
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mean level can abort the testing procedure too early.

In the further work this approach is abbreviated as ‘Sasabuchi-selector’.

5.1.2 The θ-shift procedure

As for the procedures with a data-driven order of hypotheses for relevant differences the low

proportional power can be increased with an inclusion of a data shift for endpoints under

H0 with θlower < x̄2j/x̄1j < θupper. Furthermore the data shift solves the lack of power

which occurs with different levels: With the data transformation the treatment effect of

the shifted endpoints is dismissed. Thus the selector reflects the pooled variance of the

two samples only.

The computation of this procedure with a data-driven order of hypotheses for two-sided

testing against a relevant ratio is the same as in section 5.1.1, only 2. (b) changes to:

2. (b) For each endpoint with x̄2j/x̄1j ≥ 1 transform the data independently to

x∗2jk =





θupperx̄1j − x̄2j + x2jk; ∀ j | 1 ≤ x̄2j

x̄1j
< θupper

x2jk; ∀ j | x̄2j

x̄1j
≥ θupper.

(5.21)

For endpoints with x̄2j/x̄1j < 1 exchange the group indices, such that x′1jk = x2jk

and x′2jk = x1jk and transform the switched second group to

x∗2jk =





θ−1
lowerx̄

′
1j − x̄′2j + x′2jk; ∀ j | 1 > x̄2j

x̄1j
> θlower

x′2jk; ∀ j | x̄2j

x̄1j
≤ θlower.

(5.22)

Calculate the selector statistic

wj =





∑n′1
k=1 x′1jk

2 +
∑n′2

k=1 x∗2jk
2 − 1

n′1+θ−2
lowern′2

· (n′1x̄′1j + n′2θ
−1
lowerx̄

∗
2j)

2; ∀ j | x̄2j

x̄1j
< 1,

∑n1
k=1 x2

1jk +
∑n2

k=1 x∗2jk
2 − 1

n1+θ2
uppern2

· (n1x̄1j + n2θupperx̄
∗
2j)

2; ∀ j | x̄2j

x̄1j
≥ 1.

(5.23)

which is the selector statistic used in the former procedure, but including the

transformed second treatment group and the exchange of the group index i.

When testing one-sided against a relevant increase for endpoints with x̄2j/x̄1j < θupper

then x2jk is transformed to x∗2jk = θupperx̄1j − x̄2j + x2jk and for j with x̄2j/x̄1j ≥ θupper,
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x∗2jk = x2jk. The selector is computed as wj =
∑n1

k=1 x2
1jk+

∑n2
k=1 x∗2jk

2− 1
n1+θ2

uppern2
·(n1x̄1j +

n2θupperx̄
∗
2j)

2.

Equivalently for one-sided testing against a relevant decrease for endpoints with x̄2j/x̄1j >

θlower, x′2jk transforms to x∗2jk = θ−1
lowerx̄

′
1j − x̄′2j + x′2jk and for each j with x̄2j/x̄1j ≤ θlower

x∗2jk = x2jk. The computation of the selector is done by wj =
∑n′1

k=1 x′1jk
2 +

∑n′2
k=1 x∗2jk

2 −
1

n′1+θ−2
lower

n′2
· (n′1x̄′1j + n′2θ

−1
lowerx̄

∗
2j)

2.

With this data transformation the procedure solves both the problem occurring with dif-

ferent data levels and the problem of the selector statistic having a maximum at the ratio

of means equal to 1. The next graphic shows the selector statistic for different ratio of

means and data levels. It has the same setting as figure 5.1.
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Figure 5.2: θ-shift procedure: comparison of selectors for different data levels

As for all scenarios with different data levels and ratio of means the variances are equal,

the selectors do not vary between the relevance thresholds. If the ratio of means exceeds

one of the thresholds, the selectors increase. Here one can see differences in the increase:

with higher data levels the increase is stronger compared to lower data levels.
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In the following graphics and tables this procedure will be abbreviated as the θ-shift pro-

cedure.

5.1.3 The randomθ procedure

The final procedure presented in this chapter is a procedure with a data-driven order of

hypotheses for relevant ratios in analogy to the randomδ method for differences. For the

test on relevant differences the data transformation for two-sided testing and endpoints

with 0 ≤ x̄2j − x̄1j < δupper is

x∗2jk =
xz

2jk − x̄z
2j

sz
2j

· spool,j + x̄z
2j + δupper. (5.24)

To construct a transformation for the test on relevant ratios, the transformation of relevance

threshold from difference to ratio according to Hauschke (1999) is applied. Following

Hauschke (1999) δupper can be exchanged with (θupper−1)µ1j. By replacing the unknown

µ1j with it’s estimate x̄1j, the data transformation for the two-sided testing and endpoints

with 1 ≤ x̄2j

x̄1j
< θupper changes to:

x∗2jk =
xz

2jk − x̄z
2j

sz
2j

· spool,j + x̄z
2j + (θupper − 1) · x̄1j. (5.25)

Again, the procedure is based on the procedure of section 5.1.1 with 2. (b) changing to to:

2. (b) For each endpoint j with 1 < x̄2j

x̄1j
< θupper transform the data of the second

group x2jk to:

x∗2jk =
xz

2jk − x̄z
2j

sz
2j

· spool,j + x̄z
2j + (θupper − 1) · x̄1j, (5.26)

where xz
2jk denotes random numbers taken from the normal distribution N(µ =

x̄1g, σij = 1). For endpoints with x̄2j/x̄1j < 1 exchange the group indices, such

that x′1jk = x2jk and x′2jk = x1jk. Endpoints with 1 > x̄2j/x̄1j > θlower have x′2jk

transformed to

x∗2jk =
xz

2jk − x̄z
2j

sz
2j

· spool,j + x̄z
2j + (θ−1

lower − 1) · x̄′1j, (5.27)
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with Gaussian distributed random numbers xz
2jk ∼ N(µ = x̄′1g, σij = 1). End-

points with x̄2j

x̄1j
≤ θlower or x̄2j

x̄1j
≥ θupper have x∗2jk = x2jk.

Calculate the selector statistic (5.23), which is the selector statistic from the

former section.

The changes for the one-sided procedures are as follows: to test against a relevant decrease,

transform for each endpoint with x̄2j

x̄1j
< θupper independently x2jk according to equation

(5.26), with random numbers xz
2jk ∼ N(µ = x̄1g, σij = 1). Endpoints with x̄2j

x̄1j
≥ θupper

have x∗2jk = x2jk. Compute the selector statistic wj =
∑n1

k=1 x2
1jk +

∑n2
k=1 x∗2jk

2− 1
n1+θ2

uppern2
·

(n1x̄1j + n2θupperx̄
∗
2j)

2.

For one-sided testing against a relevant decrease, transform x′2jk of endpoints with x̄2j

x̄1j
>

θlower as proposed in equation (5.27), with random numbers xz
2jk ∼ N(µ = x̄′1g, σij = 1).

Endpoints with x̄2j

x̄1j
≤ θlower have x∗2jk = x′2jk. Calculate the selector by use of wj =

∑n′1
k=1 x′1jk

2 +
∑n′2

k=1 x∗2jk
2 − 1

n′1+θ−2
lower

n′2
· (n′1x̄′1j + n′2θ

−1
lowerx̄

∗
2j)

2.

In the graphics at the end of this chapter, this procedure will be abbreviated as ‘randomθ’.

5.2 Control of the FWER

For all three procedures the weak and the strong control of the FWER is tested for varying

sample sizes, variances, correlation structures among the endpoints and relevance thresh-

olds. Both one- and two-sided hypotheses are concerned. Furthermore different α-levels

are chosen. In general 50 endpoints are observed; in some scenarios the number of end-

points under H0 varies. For most of the studies the mean level of the data is set to 100

and in some cases the individual levels are exponentially distributed (see section A.3 in

the appendix). Unbalanced designs are observed as well. Finally for some scenarios the

correlations vary among the endpoints; in general the correlation is constant.

The Sasabuchi selector keeps empirically the FWER in the weak as well as in the strong

sense. In none of the scenarios is an exceeding observed. As with the δ-shift method the
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θ-shift procedure controls the FWER empirically, if it is tested two-sided. For one-sided

testing and in the case of θlower = θupper = 1 slight exceeds of the FWER occur; the largest

empirical error rates for nominal levels of 1%, 5% and 10% are 1.21%, 5.92% and 11.67%.

Compared to this the randomδ procedure shows only exceeds, if the levels of the endpoints

are exponentially distributed and if tested one-sided. Here the highest empirical error rate

of 5.49% is observed. Detailed simulation results of the three procedures are presented in

the appendix starting on page 165.

5.3 Examples

In this chapter the possum data set and afterwards the TSHR mutation data set are

analyzed only. An evaluation of the TNFα data set is omitted, as the data is already

logarithmized and a test on ratio for such data is beyond the scope of this work. For both

examples two-sided tests and α = 0.05 are used.

5.3.1 Possum data set

The use of relevance-shifted tests on difference is problematic for the possum data set,

because the nine endpoints vary in the scale of the measurements. Largest values are

observed for the length of the head, it has measurements around 90. In contrast the

distance from medial canthus to lateral canthus of right eye takes values around 15. Hence

the selection of relevance thresholds based on the difference is hardly possible for this data.

The appropriate analysis is done by the use of statistics which test a treatment effect

against relative relevance criteria.

In the following tables the possum data set is analyzed by the θ-shift and the randomθ

procedures. Additionally results of the Bonferroni correction are shown. The relevance

thresholds are set to θ−1
lower = θupper = 1.02. The following table gives the results for the

θ-shift, the randomδ and the Bonferroni methods:
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ratio selector test unadjusted adjusted Bonferroni
endpoint

of means statistic statistic p-value p-value adjusted p-value

totlngth 1.073 224.524 1.692 0.122 0.122 1.000

hdlngth 1.056 154.038 1.465 0.174 0.174 1.000

earconch 0.858 136.759 -6.706 5.322 · 10−5 0.174 4.790 · 10−4

footlgth 0.956 106.117 -0.894 0.392 0.392 1.000

skullw 1.071 99.043 1.650 0.130 0.392 1.000

belly 1.060 90.640 0.716 0.490 0.490 1.000

taill 1.065 37.404 1.429 0.184 0.490 1.000

chest 1.075 34.034 1.360 0.204 0.490 1.000

eye 1.072 8.900 1.476 0.171 0.490 1.000

In this analysis the Bonferroni adjustment is superior to the θ-shift and the randomδ

approach, as it gives one significant endpoint (‘earconch’), while the procedures with a

data-driven order of hypotheses accept all null hypotheses. Compared to the tests on

relevant differences the endpoint ‘totlngth’ is not significant. The reason for this non-

significance in this analysis is the scale of the measurement. Observations of ‘totlngth’ are

around 85 and the relevant difference is set to 0.25. This relevance criteria is marginal

in comparison with the scale of the measurements. Hence for the tests on difference this

endpoint is tested against a neglecting relevance criteria and it is therefore significant. In

contrast to this, the use of percental thresholds is clearly more appropriate for the analysis

of this data set.

As well as for the relevance-shifted tests on difference results for a modified endpoint ‘belly’

are computed.

Results of the data transformations:

ratio selector test unadjusted
procedure

of means statistic statistic p-value

θ-shift 1.000 86.229 -0.361 1.000

randomθ 1.000 105.756 -0.361 1.000

Basically the overall results do not change. With the randomθ procedure the positions of

‘belly’ and ‘skullw’ exchange. Furthermore all adjusted p-values in the order after ‘belly’
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change to 1.

The observations to compute the selector statistic generated by randomθ are 32.57522,

29.31227, 36.44341 and 33.48975.

5.3.2 TSHR mutation data set

For sake of completeness in this section the microarray data is analyzed with the para-

metric procedures, which test for a relevant ratio. However for practical use this is not

recommended for the analysis of microarrays.

By setting the relevance thresholds to θ−1
lower = θupper = 1.5, 37 significant endpoints can be

found if the Sasabuchi-tests are applied without a multiplicity correction. For comparison

in chapter 3 1,266 significant genes were found. With the Bonferroni adjustment and the

procedures with a data-driven order of hypotheses no significant endpoints can be found.

The following two tables list the results of the ten endpoints with the highest selector

statistics.

Results of the θ-shift procedure:

ratio selector test unadjusted adjusted
endpoint

of means statistic statistic p-value p-value

1702 2.165 5196498397 0.747 0.468 0.468

2071 1.429 4838853130 -0.190 1.000 1.000

12575 0.796 4719516117 0.637 1.000 1.000

12569 0.791 4598244393 0.395 1.000 1.000

1539 2.273 4054920369 0.767 0.457 1.000

7940 0.102 3527908282 -2.512 0.026 1.000

3304 0.106 3414275223 -1.842 0.088 1.000

3305 0.114 3397795663 -1.713 0.110 1.000

12573 0.800 3308209852 0.975 1.000 1.000

1637 1.141 2971993013 -1.459 1.000 1.000
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Results of the randomθ procedure:

ratio selector test unadjusted adjusted
endpoint

of means statistic statistic p-value p-value

2071 1.429 6626295535 -0.190 1.000 1.000

1702 2.165 5196498397 0.747 0.468 1.000

12575 0.796 4395406702 0.637 1.000 1.000

1539 2.273 4054920369 0.767 0.457 1.000

12569 0.791 3866838410 0.395 1.000 1.000

7940 0.102 3527908282 -2.512 0.026 1.000

3304 0.106 3414275223 -1.842 0.088 1.000

3305 0.114 3397795663 -1.713 0.110 1.000

1637 1.141 3363643455 -1.459 1.000 1.000

8273 0.137 2939211692 -2.244 0.043 1.000

Both procedures do not show any significant result. But the lists of the approaches are

consistent: Nine of ten endpoints appear in both lists. Here the θ-shift method is prefer-

able, as with the randomθ procedure the not discriminating endpoint # 2071 gains a high

selector.



Chapter 6

Nonparametric testing procedures

for relevant ratios

In this chapter two nonparametric multiple testing procedures for multivariate data are

shown, which use tests on ratio for relevance-shifted hypotheses. First a data-driven or-

der of relevance-shifted hypotheses is presented in analogy to the δ-shift and the θ-shift

methods. As this procedure is the main aim of this work, in chapter 7 its behavior of

the power will be compared with the powerful permutation algorithm for step-down minP

adjusted p-values proposed by Westfall and Young (1993), because the application

of the permutation algorithm is common in the analysis of microarray data. However the

permutation method tests point-zero hypotheses. Hence a modification in terms of testing

relevance-shifted hypotheses has to be created. This modified permutation algorithm is

the second procedure discussed in this chapter.

Although the nonparametric procedure with a data driven-order of hypotheses proposed in

this chapter is similar to the former nonparametric ones, it has one main difference. The

assumptions about the data differ from the former methods. Up to now the nonparametric

procedures assumed independent and continuous sample vectors with equal distribution

functions except an additive treatment effect ∆. In this chapter for both methods it is

assumed as well, that the independent and continuous sample vectors x1k > 0 and x2k > 0
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have the distribution functions Fm(x) and Gm(x). But both distribution functions are

assumed to be equal except for the treatment effect κ, such that Gm(x) = Fm(x/κ) where

‘/’ indicates a component-wise division of vectors and κ = (κ1, . . . , κm)′ denotes a scal-

ing factor. This means, the treatment effect is not only a shift in the location; the scale

changes as well. Hence by setting θlower = θupper = 1 the procedure with a data-driven

order of hypotheses presented in this chapter does not reduce to the nonparametric analog

for point-zero hypotheses (section 3.1.2), unless prior to the computation a logarithmic

data transformation is applied. In particular, the unadjusted p-values are the same, how-

ever the order of the selector statistic may change.

However the hypotheses system used in this chapter is similar to the one used for the

parametric tests on ratio. In this chapter the parameter of interest is κj, which denotes

the true ratio of medians of the jth endpoint. And it will be tested, whether the two-

sided null hypothesis H0,j : θlower ≤ κj ≤ θupper can be rejected in favor of the alternative

H1,j : κj < θlower or κj > θupper .

The chapter begins with the introduction of the nonparametric test on ratio. For sake of

simplicity it is presented for the univariate case. Afterwards the two new procedures are

shown. Then some results of the simulation study on the control of the FWER are given

for both methods. Finally the three example data sets are analyzed.

6.1 Procedures

The nonparametric test for a relevant ratio As introduced in section 4.2 the

Wilcoxon rank sum procedure tests, whether the treatment effect ∆ is different from 0:

H0 : ∆ = 0 versus H1 : ∆ 6= 0. To construct a nonparametric test for a relevant ratio, the

confidence interval for ∆ based on the logarithmized samples is computed. The confidence

limits are transformed back to the original scale and become limits for the treatment effect κ

in terms of the ratio of medians. With these limits a test for a relevant ratio is constructed,

which rejects in the univariate case the two-sided null hypothesis H0 : θlower ≤ κ ≤ θupper

in favor of the alternative H1 : κ < θlower or κ > θupper.
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Hodges and Lehmann (1963) propose an estimator of the difference in medians ∆,

which is denoted here as ∆̂. To estimate the location shift all n1n2 differences between the

two samples are computed with Ukk′ = x2k − x1k′ . Afterwards the differences are sorted

in an increasing order, such that U(1) ≤ . . . ≤ U(n1n2). If n1n2 is odd, then calculate

b = (n1n2−1)/2 and ∆ is estimated with ∆̂ = U(b+1). And if n1n2 is even, then b = n1n2/2

and ∆̂ = (U(b) + U(b+1))/2.

To construct an exact (1−α) confidence interval for ∆, the Wilcoxon Mann Whitney test

statistic of x1k on the transformed observations z2k(d) = x2k−d is computed for all possible

values of d, d ∈ R:

WWMW (d) =
n2∑

k=1

r2k(d)− n2(n2 + 1)

2
, (6.1)

where r2k(d) is the rank of the transformed z2k(d) among both samples. The ranks r2k(d)

change only in the points d ∈ Ω = {Ukk′ = x2k − x1k′} and with increasing d the rank sum

and with it WWMW (d) decrease. Thus the statistic WWMW (d) is a monotone decreasing

step-function, which changes only at the points of the n1n2 differences Ukk′ (Bauer (1972)).

To receive the confidence interval for ∆ the null distribution of the test statistic WWMW (d)

is linked to the differences in Ω. Let wWMW = wWMW
α/2,n2,n1

be the lower α/2-quantile of the

null-distribution of the WMW test and n1n2 − wWMW be the upper α/2-quantile. Then

the two-sided interval is given by

CI = (Ulower; Uupper) = (U(wWMW ); U(n1n2−wWMW +1)), (6.2)

with the ordered differences U(1) ≤ . . . ≤ U(n1n2).

The one-sided confidence limit is calculated with the critical value according to α instead

of α/2. If ties occur the critical values have to be taken from the conditional distribution

of the WMW test.

To compute an asymptotic confidence interval for the Hodges-Lehmann estimator the non-

relevance-shifted rank sum test W =
∑n2

k=1 r2k, it’s expectation E(W ) = n2

N

∑2
i=1

∑ni
k=1 rik

and it’s variance V ar(W ) = n1n2

N2(N−1)

{
N

∑2
i=1

∑ni
k=1 r2

ik −
(∑2

i=1

∑ni
k=1 rik

)2
}

are needed,
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where rik denote the ranks among xijk. Besides the exclusion of the relevance thresholds,

these equations are exactly the same as introduced in section 4.2 for the nonparametric

relevance-shifted test on differences.

The confidence limit is given, when (Ulower; Uupper) are found, such that

zα/2 =
W (Ulower)− E(W (Ulower))√

V ar(W (Ulower))
and z1−α/2 =

W (Uupper)− E(W (Uupper))√
V ar(W (Uupper))

(6.3)

(Hothorn and Hornik, 2002). For a one-sided limit zα or z1−α is used, respectively.

With the confidence limit for ∆ the test for a relevant ratio is constructed. Note that this

test makes other assumptions regarding the data than the Wilcoxon rank sum test and the

confidence limit for ∆. For the univariate case let x1k > 0 and x2k > 0 be independent and

continuous observations from the distribution functions F (x) and G(x) = F (x/κ), with

k = 1, . . . , ni as the index of the repetition and i = 1, 2 as the index of the group.

To test whether κ is more extreme than a specific relevance threshold θside, the nonpara-

metric confidence interval for the ratio of medians proposed by Hothorn & Munzel

(2002) is used. The two-sided procedure is as follows:

1. Select relevance thresholds θlower ≤ 1 and θupper ≥ 1.

2. Logarithmize the data yik = loge(xik), where here the natural logarithm is used.

3. Dependent on the sample size calculate the nonparametric confidence interval CI =

(Ulower; Uupper) for the Hodges-Lehmann estimate ∆ by the use of yik either exact or

asymptotic as defined in the former subsections.

4. Transform the limits of the confidence interval back into the original scale:

(κ̂lower; κ̂upper) = (eUlower ; eUupper).

5. The null hypothesis is rejected if either κ̂lower > θupper or κ̂upper < θlower.
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One-sided tests are computed by the use of the according one-sided confidence limit.

An alternative construction of the nonparametric test for relevant ratios is the use of

the relevance-shifted rank sum test as introduced in section 4.2 with the use of both the

logarithmized data and the logarithmized relevance thresholds (Pflüger and Hothorn

(2002)). This alternative method results in the same FWER and power as the computation

of the confidence limit.

6.1.1 The np-θ-shift procedure

With the use of the logarithm the multiplicative model switches to an additive model.

Thus the confidence interval for the difference of medians can be used as a confidence for

the ratio of medians. To compute the selectors the logarithmized data is used as well.

As selector the interquartile range IQR is used. However compared to the nonparametric

procedure with a data-driven order of hypotheses of Kropf et al. (2004), the data is

logarithmized and the first treatment group is shifted by the amount of the logarithm of

the relevance threshold. In particular for one-sided testing against a relevant increase to

the logarithmized data of the first treatment group the logarithm of the upper relevance

threshold is added and for one-sided testing on decrease the logarithm of the lower threshold

is added. For two-sided testing the data is split in two parts: endpoints with a ratio of

medians greater or equal to 1 follow the data shift as introduced for one-sided testing on

increase and the other endpoints have a shift equal to the test on decrease.

Furthermore a data transformation similar to the one of the parametric θ-shift procedure

from section 5.1.2 is embedded: all endpoints with a ratio of medians neither equal to nor

exceeding the relevance threshold(s) receive a transformation, such that their transformed

data has a ratio of medians equal to the threshold(s).

The algorithm of the ‘np-θ-shift’ procedure is:

1. Choose relevance thresholds θlower ≤ 1 and θupper ≥ 1.

2. Logarithmize the data, such that yijk = loge xijk, where loge is the natural logarithm.
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3. For each endpoint j:

(a) Depending on the sample size compute the limits κ̂lower and κ̂upper of the con-

fidence interval for the Hodges-Lehmann estimate, either exact or asymptotic

as introduced in section 6.1 by the use of yijk. Use the unadjusted α/2 for the

computation of the confidence limit.

(b) Transform the data of the second group to

y∗2jk =





y2jk − ỹ2j + ỹ1j + loge(θupper); ∀ j | 0 ≤ ỹ2j − ỹ1j < loge(θupper)

y2jk − ỹ2j + ỹ1j + loge(θlower); ∀ j | loge(θlower) < ỹ2j − ỹ1j < 0

y2jk; else.

(6.4)

If ỹ2j − ỹ1j < 0 compute the interquartile range IQRj = q75,j − q25,j as selector

statistic among the combined samples y∗1jk = y1jk + loge(θlower) and y∗2jk. Oth-

erwise the IQRj is calculated from the pooled samples y∗1jk = y1jk + loge(θupper)

and y∗2jk.

4. Sort the m confidence intervals CI = (κ̂j,lower; κ̂j,upper) for decreasing selectors IQRj.

5. For each endpoint independently compare the jth ordered κ̂j,lower with θupper and

κ̂j,upper with θlower. It is significant, if either κ̂j,lower ≥ θupper or κ̂j,upper ≤ θlower.

6. Stop at the first non-significance and accept for all further endpoints the null hy-

pothesis.

In the one-sided case, the endpoints with ratios not exceeding the relevance criteria are

transformed by the equation with the corresponding relevance threshold only. The selectors

are computed by the use of y1jk +log θupper and y∗2jk (increase) and y1jk +log θlower and y∗2jk

(decrease).

To illustrate that the procedure solves both the problems of the maximum of the selector

statistic at 1 and the lack of power due to different data levels, two graphics are shown

next. The left graphic is generated under similar conditions as 5.1 with one exception.

The nonparametric test on ratio assumes, that the population of the second sample is the
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κ-fold of the population corresponding to the first sample of endpoint j. Hence instead of

setting the true means to µ1j = 100 and µ2j = 100 · κH1 only, the standard deviation is

multiplied by κ as well: σ1j = 10 and σ2j = 10 ·κH1 , where this is the setting for endpoints

with a true ratio of medians greater or equal than 1. For endpoints with a ratio less than

1 the expected values are set to µ1j = 100 · (1/κH1) and µ2j = 100 and the true standard

deviations are σ1j = 10 · (1/κH1) and σ2j = 10. The right figure has a different setting of

σij. While in the left one for all three mean levels σij was set to 10, it depends now on

the mean level with a coefficient of variation of 10% - which is far more realistic than the

former setting.
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Figure 6.1: np-θ-shift procedure: comparison of selectors for different data levels

In the left figure the selector for endpoints with θlower ≤ x̃2j

x̃1j
≤ θupper increases for decreasing

data levels. Due to the logarithmic transformation large values move together much more

than small values. Because the variances are homogeneous among all three curves and only
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a constant is added, the IQR for samples with larger mean levels is smaller.

This effect is negated with a constant coefficient of variation, as it can be seen in the right

graphic. With the logarithmic algorithm log(a · b) = log(a) + log(b), one can see that the

mean level between the curves change, but the variances stay constant. Hence this method

is appropriate for the analysis of microarray data, given the logarithmic transformation

stabilizes the variances among the genes sufficiently.

6.1.2 The relevance-shifted permutation algorithm for step-down

minP adjusted p-values

In many experimental questions test statistics and therefore p-values are correlated. For

microarray data groups of genes are co-regulated and correlations between them and hence

between their p-values occur. The Bonferroni adjustment, which is used for comparison

as well, does not consider this correlation structure. Among others this is the reason for

its conservativeness. The permutation algorithm for step-down minP adjusted p-values

according to Westfall and Young (1993) regards the dependence structure of the test

statistics, and hence can achieve a much higher power. Thus the nonparametric procedure

with a data-driven order of hypotheses to test for relevant ratios shall be compared with

the permutation algorithm, as it is the most important procedure for the analysis of mi-

croarrays proposed here. The comparison with the other methods is abandoned, because

the permutation algorithm is very time consuming.

The traditional double permutation algorithm as proposed by Westfall and Young

(1993) is split in two parts. First permuted raw (unadjusted) p-values are computed for

each endpoint and afterwards the raw p-values are adjusted with a second resampling al-

gorithm. Due to the two resampling runs, this “double permutation algorithm” is very

time consuming. A faster algorithm computing exactly the same results is presented by

Ge et al. (2003). This algorithm needs the permutation process only once, because for

the second permutation algorithm the permutations of the first one are used.

However the permutation algorithm according to Westfall and Young (1993) does



6.1 Procedures 101

not consider relevance-shifted tests. Hence a modification in terms of a relevance-shifted

algorithm is used here for comparison. No mathematical proof exists for this modification

and the empirical control of the FWER is shown by simulations only.

The modified permutation algorithm splits in two parts: first the multiplicity adjusted p-

values for one-sided testing against a relevant decrease; and in the second step the adjusted

p-values for a relevant increase are computed. Afterwards for each endpoint the two cor-

responding one-sided p-values are combined to a two-sided p-value. For the computation

the fast algorithm of Ge et al. (2003) is used.

Computation of the modified permutation algorithm: As explained above first

the permutation raw p-values p∗j have to be computed.

Create the pseudosamples y1jk = loge(x1jk) + loge(θlower) and y2jk = loge(x2jk).

Permutation algorithm for raw p-values: For each gene compute the one-sided asymp-

totic Wilcoxon rank sum test Wj on decrease as introduced in section 3.1.2.

For the bth permutation, b = 1, . . . , B:

1. Permute the n1 + n2 = N columns of the m×N dimensional data matrix X.

2. Compute the test statistics W1b, . . . , Wmb for each hypothesis.

After the B permutations are done the one-sided raw p-value for hypothesis H0,j : κ ≥ θlower

is

p∗j,lower =
#{b : Wj,b ≤ Wj}

B
for j = 1, . . . , m. (6.5)

Permutation algorithm for multiplicity correction: Instead of doing additional B permuta-

tions to adjust p-values for multiplicity, the already existing B permutations are used for

further computations. In the following algorithm three m×B matrices are computed.

The first one will include the test statistics:
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T =




W11 W12 · · · W1b · · · W1B

...
...

...
...

Wj1 Wj2 · · · Wjb · · · WjB

...
...

...
...

Wm1 Wm2 · · · Wmb · · · WmB




. (6.6)

In the second matrix the raw p-values will be filled in:

P =
(

pjb

)
(6.7)

and the matrix Q will contain the minima of raw p-values:

Q =
(

qjb

)
(6.8)

as explained below in the algorithm.

For T, P and Q the bth column corresponds to the data matrix X with permuted columns.

Next follows the algorithm by use of these three matrices.

1. Assume that the raw permuted p-values computed as described above are p∗1,lower ≤
p∗2,lower ≤ . . . ≤ p∗m,lower, otherwise sort the rows of the data matrix X according to

the ordered p∗j,lower. Set j = m and qm+1,b = 1 for b = 1, . . . , B.

2. For hypothesis H0,j (row j), use the B permutation test statistics Wj,1, . . . , Wj,B and

get the B one-sided raw p-values pj,1, . . . , pj,B with

pj,b =
#{b′ : Wj,b′ ≤ Wj,b}

B
, (6.9)

which is in row j for each Wj,b the percentage of equal or smaller test statistics Wj,b′ .

3. Update the successive minima qj,b

qj,b ← min(qj+1,b, pj,b), b = 1, . . . , B. (6.10)
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4. Compute the adjusted p-value for hypothesis H0,j : κ ≥ θlower:

p̃∗j,lower =
#{b : qj,b ≤ p∗j,lower}

B
. (6.11)

5. Move up one row, i.e. j ← j − 1. If j = 0, go to step 7, otherwise go to step 2.

6. Enforce monotonicity of p̃∗j,lower:

p̃∗1,lower ← p̃∗1,lower, p̃∗j,lower ← max(p̃∗j−1,lower, p̃
∗
j,lower) for j = 2, . . . , m.

(6.12)

Repeat the entire procedure with the pseudosamples y1jk = loge(x1jk) + loge(θupper) and

y2jk = loge(x2jk) and the asymptotic rank sum test on increase to achieve the one-sided

multiplicity adjusted p-values on increase p̃∗j,upper. Then the two-sided adjusted p-values

are given by p̃∗j = min(2 · p̃∗j,lower, 2 · p̃∗j,upper).

The R package multtest by Pollard et al. (year not specified by authors) includes the

new permutation algorithm of Ge et al. (2003). In this package the asymptotic Wilcoxon

rank sum test can be used as the two-sample test. And as the relevance shift of the data

is prior the computation of the algorithm this package is used for the simulation of the

power and the FWER. In these simulations the relevance-shifted permutation algorithm is

abbreviated as ‘minP’. Simulations results of the proportional power are given in chapter

7.

6.2 Control of the FWER

For the np-θ-shift procedure the control of the FWER is tested in detail. Due to the high

duration of the simulations for the minP method, a limited set of scenarios is observed.

For both methods 50 endpoints are tested with various conditions are tested with varying

sample sizes (unbalanced designs as well), variances, correlations structures and relevance

criteria. Most of the simulations include multivariate Gaussian distributed data; however
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deviations from this assumption are tested as well.

Only for the np-θ-shift procedure is additionally the asymptotic method tested. Further-

more, for the exact approach scenarios are tested, where the correlation structure among

the endpoints is not constant; in particular three of 50 endpoints have a different correla-

tion. Usually in all scenarios the mean level of the data is fixed. For the np-θ-shift method

scenarios are included with mean levels following the exponential distribution. In these

scenarios either the variance or the coefficient of variation is constant. Finally only for this

method and not for the minP one-sided tests are observed as well.

The np-θ-shift procedure shows an equivalent behavior of the simulated FWER as for all

three θ- or δ-shifted methods as well. For one-sided testing the empirical FWER exceeds

in some situations with θlower = θupper = 1 slightly the nominal level. The largest exceed is

6.30% (nominal level: 5%). But in the more relevant case of two-sided testing the FWER

is controlled asymptotically. In the case of two-sided testing no exceeds are found. For the

minP algorithm only two-sided scenarios are tested. Here no exceeds occurred.

6.3 Examples

The three example data sets are analyzed in this section by use of the nonparametric tests

on ratio. As in all former chapters two-sided tests are used and the significance level is set

to 0.05.

6.3.1 Possum data set

For the possum data set the relevance thresholds are set to θ−1
lower = θupper = 1.02. The

following table shows the result of the np-θ-shift procedure, the Bonferroni correction and

the minP algorithm:
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ratio selector test unadjusted adjusted minP Bonferroni
endpoint

of medians statistic statistic p-value p-value adjusted p-value adjusted p-value

earconch 0.859 0.130 10 0.004 0.004 0.024 0.036

belly 1.054 0.113 28 0.808 0.808 1.000 1.000

chest 1.097 0.088 34 0.198 0.808 0.812 1.000

eye 1.093 0.084 35 0.149 0.808 0.723 1.000

skullw 1.077 0.072 34 0.214 0.808 0.800 1.000

totlngth 1.055 0.061 33 0.267 0.808 0.800 1.000

footlgth 0.945 0.049 17 0.154 0.808 0.610 1.000

taill 1.057 0.045 34 0.194 0.808 0.800 1.000

hdlngth 1.060 0.040 35 0.154 0.808 0.747 1.000

All three methods reject the null hypothesis of endpoint ‘earconch’. All other endpoints

have unadjusted p-values larger than 0.05, hence none of the procedures could have led to

more significant results.

It has to be noted that due to the logarithmic transformation the ordering of the endpoints

differ from all previous analysis. Especially the endpoint ‘belly’ has a comparatively larger

selector.

To demonstrate the data transformation the statistics of the modified endpoint ‘belly’ are

computed as well.

Results of the data transformations:

ratio selector test unadjusted
procedure

of medians statistic statistic p-value

np-θ-shift 0.995 0.109 27 1.000

Apart from the statistics for ‘belly’ the result does not change.

6.3.2 TSHR mutation data set

In this section the microarray data set is analyzed by the nonparametric tests for relevant

ratios. As well as in the former chapters the relevance thresholds are set to θ−1
lower = θupper =
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1.5. The analysis begins with the unadjusted exact rank sum test for relevant ratios. Here

48 significant genes are found. As could be expected, no significant endpoints can be found

with the Bonferroni adjustment. In particular all adjusted p-values are 1. The same result

is achieved by the procedure with a data-driven order of hypotheses. The next table lists

the ten endpoints with the highest selector statistic:

ratio selector test unadjusted adjusted
endpoint

of medians statistic statistic p-value p-value

2808 2.568 2.709 77 1.000 1.000

6022 3.671 2.654 77 1.000 1.000

2148 3.404 2.635 89 0.310 1.000

9207 0.897 2.625 83 1.000 1.000

12337 0.902 2.606 86 1.000 1.000

3568 1.300 2.600 75 1.000 1.000

7940 0.069 2.592 59 0.008 1.000

1383 0.264 2.474 72 0.371 1.000

6168 7.881 2.462 91 0.206 1.000

12462 0.577 2.413 82 1.000 1.000

Only the seventh endpoint (# 7940) has an unadjusted p-value less than 0.05. Finally the

modified permutation algorithm is applied on the data. It achieves the same result as the

Bonferroni adjustment: all adjusted p-values are 1.

Regarding the results of all procedures applied on the microarray data set, the procedures

with a data-driven order of hypotheses did not result in more significant endpoints com-

pared to the alternative multiple testing approaches. Beside the single significant endpoint

found by the Bonferroni adjustment with a non-relevance-shifted t-test on the original

scaled data, no further significant results were achieved with the alternative methods.

It can however be summarized, that although the sample sizes are not extremely small

for microarray data, the alternative methods lack power. With an even smaller number

of observations these approaches are unlikely to find any significant result because both

methods suffer from the discreteness of the p-values. But the multiplicity correction of the

procedure with a data-driven order of hypotheses is based on an order of the endpoints.
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Hence irrespective of the number of endpoints and sample sizes (unless smaller than 4 per

group), it can achieve significant results.

6.3.3 TNFα data set

Finally the TNFα data set is analyzed with the nonparametric procedures to test for a rel-

evant ratio. As well as in the other analysis the thresholds are set to θ−1
lower = θupper = 1.5.

For the application of the np-θ-shift procedure the a-priori logarithmic transformation has

to be taken into account; the transformation has to be omitted and instead of exponenti-

ating the confidence limits, a base of 10 has to be used.

Without any multiplicity correction 370 significant genes can be found. As described in

chapter 3 it is not possible to find significant endpoints with the Bonferroni adjustment,

because the sample sizes are too small. The minP algorithm lacks power for the same

reasons. With a sample size of 5 per group resulting in 252 permutations, the procedure

becomes too discrete to find any significant endpoints. However by use of the np-θ-shift

procedure six significant endpoints are achieved:

ratio selector test unadjusted adjusted
endpoint

of medians statistic statistic p-value p-value

5979 53.432 1.520 40 0.008 0.008

11600 46.206 1.477 40 0.008 0.008

13585 43.662 1.447 40 0.008 0.008

13618 45.730 1.417 40 0.008 0.008

6629 36.737 1.370 40 0.008 0.008

8563 35.596 1.344 40 0.008 0.008

7018 38.869 1.334 15 0.100 0.100

13653 37.085 1.315 40 0.008 0.100

12453 0.129 1.311 10 0.629 0.629

7599 28.184 1.263 40 0.008 0.629
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Chapter 7

Power simulations for

relevance-shifted tests

In this chapter simulation results of the power for all relevance-shifted procedures discussed

in this work are presented. For simulation the same scenarios as in chapter 3 are applied

and for each scenario - as for example increasing sample size or disturbance - the results

of all four types of methods are printed. As it will be seen in the graphics the behavior

of the power of the relevance-shifted procedures with a data-driven order of hypotheses is

similar to the methods with point-zero hypotheses.

As in chapter 3 two-sided testing scenarios with 50 endpoints are observed, where five

have relevant differences between the treatment groups and 45 are under H0. However in

this chapter the true differences or ratios for endpoints under H0 are not any longer 0 or

1. Here they are random values and are greater than the lower and less than the upper

threshold. These settings are introduced in section 4.1.1 for tests on relevant differences and

in section 5.1.1 for the parametric testing against a relevant ratio. For power simulations of

the nonparametric testing methods the random treatment effect κH0 is derived as explained

for the treatment effect τH0
θ for the parametric analog. The expected values and standard

deviations are set to µ1j = 100 · κH0 , µ2j = 100 and σ1j = σ2j · κH0 for tests on decrease

and µ1j = 100, µ2j = 100 · κH0 and σ2j = σ1j · κH0 for tests on increase.
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The expected values of the five endpoints under H1 are set as follows:

procedure treatment effect

parametric & nonparametric µ1j = 100 + τH1
δ and µ2j = 100 (two endpoints)

test on difference µ1j = 100 and µ2j = 100 + τH1
δ (three endpoints)

µ1j = 100 · τH1
θ and µ2j = 100 (two endpoints)

parametric test on ratio
µ1j = 100 and µ2j = 100 · τH1

θ (three endpoints)

µ1j = 100 · κH1 , µ2j = 100 and σ1j = σ2j · κH1 (two endpoints)
nonparametric test on ratio

µ1j = 100, µ2j = 100 · κH1 and σ2j = σ1j · κH1(three endpoints)

If not stated otherwise, multivariate normal distributed random numbers are used. Fur-

thermore the FWER is set to 5%, the standard deviation is σij = 10 and the individual

simulation results are calculated with 10,000 simulation runs each. The settings of all

further parameters are given in the individual sections. As well as in chapter 3 the new

procedures are compared to standard methods. In all graphics the power results of local

tests with the corresponding two-sample test are printed and these local tests are abbre-

viated as ‘local’. Except for the ones of the nonparametric tests on relevant ratios, in

all figures the power results of the corresponding two-sample tests with the α-adjustment

of Bonferroni are given. These are abbreviated as ‘Bonferroni’. The nonparametric test

for relevant ratios with a data-driven order of hypotheses is compared with the modified

permutation algorithm for step-down minP adjusted p-values.

In the first graphics (section 7.2) results of an additional definition of the error rate to

control the multiplicity problem is plotted for comparison. This error is the k -FWER,

which shall be introduced here.

7.1 The k-FWER

As discussed in the introduction the FWER is a stringent error rate to control the mul-

tiplicity problem. For microarray data a researcher may tolerate a larger number of false

rejections to prevent a miss in possible candidate genes. Then, instead of controlling the
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probability of at least one false rejection (FWER), the probability of rejection of at least k

true null hypotheses can be used. This so-called k -FWER is proposed by Lehmann and

Romano (2005) and it is formerly defined as:

k − FWER = P (reject at least k of H0,1, H0,2, . . . , H0,m′ | H0,1, H0,2, . . . , H0,m′ are true).

(7.1)

By setting k = 1 the k -FWER reduces to the common FWER.

In their article Lehmann and Romano (2005) introduce a Bonferroni variant for the

k -FWER, which will be used for comparison in section 7.2. The algorithm is initially the

same as for the control of the FWER, but the individual p-values are compared with kα/m

instead of α/m.

7.2 Power for varying treatment effect, relevance thresh-

olds and correlation

In total analogy to chapter 3 the first graphics show the proportional power for varying

treatment effects and correlations among the endpoints. In addition the behavior of the

power is shown for varying relevance thresholds as well. The simulation settings are:

Tests on relevant differences

figure τH1
δ −δlower = δupper ρijj′

a) 100 to 150 in steps of 5 units 100 0.01

b) 100 to 150 in steps of 5 units 100 0.5

c) 100 to 150 in steps of 5 units 100 0.999
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Tests on relevant ratios

figure τH1
θ and κH1 θ−1

lower = θupper ρijj′

a) 1 to 1.5 in steps of 0.05 units 1 0.01

b) 2 to 2.8 in steps of 0.05 units 2 0.01

c) 5 to 7 in steps of 0.1 units 5 0.01

a) 1 to 1.5 in steps of 0.05 units 1 0.5

b) 2 to 2.8 in steps of 0.05 units 2 0.5

c) 5 to 7 in steps of 0.1 units 5 0.5

a) 1 to 1.5 in steps of 0.05 units 1 0.999

b) 2 to 2.8 in steps of 0.05 units 2 0.999

c) 5 to 7 in steps of 0.1 units 5 0.999

For the tests on difference the sample size per group is set to 7 and the test on ratios have

ni = 5. The reason for the larger sample size for the tests on difference is the discreteness of

nonparametric test with the adjustment of Bonferroni controlling the FWER. It requires

a sample size of at least 7 to compute a significant p-value. Instead of the Bonferroni

adjustment the permutation algorithm is used for comparison with the nonparametric test

on ratio with a data-driven order of hypotheses. Here a sample size of 5 is sufficient.

Only in this section are results from the Bonferroni correction by controlling the k -FWER

shown. These are abbreviated in the legend as ‘k -FWER’.

Further, in the graphics for the relevance-shifted nonparametric tests on difference, the

power curve of the corresponding parametric δ-shift method is plotted also for comparison.
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Parametric tests for relevant differences
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Figure 7.1: Parametric test for rel. diff.: Power for different correlation structures

Nonparametric tests for relevant differences
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Figure 7.2: Nonparametric test for rel. diff.: Power for different correlation structures
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Parametric tests for relevant ratios
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Figure 7.3: Parametric test for rel. ratios: Power for different θside; with ρijj′ = 0.01
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Figure 7.4: Parametric test for rel. ratios: Power for different θside; with ρijj′ = 0.5
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Figure 7.5: Parametric test for rel. ratios: Power for different θside; with ρijj′ = 0.999

Nonparametric tests for relevant ratios
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Figure 7.6: Nonparametric test on rel. ratios: Power for different θside; with ρijj′ = 0.01
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Figure 7.7: Nonparametric test on rel. ratios: Power for different θside; with ρijj′ = 0.5
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Figure 7.8: Nonparametric test on rel. ratios: Power for different θside; with ρijj′ = 0.999
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In general, for all procedures with a data-driven order of hypotheses the power increases

with an increasing correlation among the endpoints. If the correlation is set to ρijj′ = 0.999,

the power of the parametric ones equals the power of the parametric local tests. The

nonparametric procedures do not reach such a high power.

As the random numbers are generated from a normal distribution, the parametric procedure

with a data-driven order of hypotheses for relevant differences is more powerful compared

to the nonparametric one. This can be seen for the procedures with a data-driven order to

test for a relevant ratio as well. However they cannot be compared as both have different

underlaying data conditions.

For the tests on relevant differences all scenarios have the same relevance thresholds. The

reason for this is, that the power is not dependent on them. There is only one exception:

the power is slightly increased with thresholds different from 0 compared to the procedure

for point-zero hypotheses. This increase is based on the generation of the endpoints under

H0. For tests with point-zero hypotheses (δlower = δupper = 0) all empirical deviations

of µ2j − µ1j = 0 result in an increased selector. For the relevance-shifted procedures all

endpoints under H0 have a true random difference in means of δlower ≤ µ2j − µ1j ≤ δupper.

Most of the endpoints receive a data transformation and thus a small selector, which is

unlikely to abort the procedure before false negatives can occur. Largest difference in

power are around 5% (see for comparison the results in chapter 3). It has to be noted that

for testing against a relevant difference the power difference occurs only for the procedures

with a data-driven order. The local tests and the Bonferroni adjusted ones have no data-

driven order of hypotheses and are thus not influenced by a change of the thresholds.

Furthermore the differences vanish, when the endpoints under H0 receive a true difference

in means equal to one of the thresholds.

The dependency of the power on the selection of the thresholds is more important for tests

on a relevant ratio. Except for the permutation algorithm all procedures lose power with

an increase of the relevance criteria. For the parametric procedures this effect is clarified
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with the equation for sample size estimation of the Sasabuchi-test:

n ≥ (1 + θ2
side) · (t1−α/2,2n−2 + t1−β/2,2n−2)

2 ·
(

CV1

τθ − θside

)2

. (7.2)

Let τθ − θside, CV1, n, α and β be a constant value for different θside. Then (t1−α/2,2n−2 +

t1−β/2,2n−2)
2 ·

(
CV1

τθ−θside

)2
can be omitted. Only 1 + θ2

side is left of the equation, which is the

reason of the decrease in power for increasing θside: (t1−α/2,2n−2 + t1−β/2,2n−2)
2 ·

(
CVc

τθ−θside

)2

is among others multiplied by the squared relevance threshold. For the analyzed examples

the behavior power of the nonparametric tests except of the permutation algorithm is mul-

tiplicative. That is, for a k-fold treatment effect against the threshold the power stays con-

stant for varying θside. For example in the scenario with ρijj′ = 0.5 and θ−1
lower = θupper = 2

the true treatment effect is the 1.2fold of the threshold and the true ratio of means is set to

2.4. In this scenario the nonparametric test with a data-driven order of hypotheses achieves

a power around 25.35%. Likewise for θ−1
lower = θupper = 5 the true ratio is set to 1.2 · 5 = 6

and the power is around 25.498%, which is the same assuming the small differences result

from the simulation error.

The permutation algorithm lacks power for small sample sizes, because a small number of

repetitions results in a limited number of possible permutations. Hence already the unad-

justed p-values are discrete and with the small number of permutations for the multiplicity

correction (here: 252) the discreteness becomes even more severe. Even for extremely high

correlated endpoints it shows an inferior power behavior compared to the procedure with a

data-driven order of hypotheses. In addition a correlation of nearly 1 among the endpoints

does not reflect the empirical correlation among the genes in a microarray experiment.

The following figure shows a histogram of the empirical pairwise correlation coefficients of

the TSHR example data set. Correlations are computed from the first 6,000 genes of the

patients with a mutated TSH receptor.
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Figure 7.9: Histogram of empirical pairwise correlations among the endpoints

90.2% of the empirical correlation coefficients are less than |± 0.5| and 76.8% are less than

| ± 0.3|. Shedden (2004) presents similar results with even a higher proportion of small

absolute coefficients of correlation.

Finally the power results of the Bonferroni approach controlling the k -FWER are discussed.

In comparison with the procedures with a data-driven order of hypotheses, the k -FWER

method is in all scenarios except for the parametric tests on ratio superior, if the correlation

is is near 0. This superiority decreases with an increasing correlation among the endpoints.

Hence it can be said, that the FWER approaches are not necessarily less powerful compared

to methods controlling less stringent error rates. Even if only the k -FWER has to be

controlled, the conservative Bonferroni correction achieves a smaller power.
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7.3 Power for varying sample sizes and α

The following figures show the behavior of the power for different sample sizes per group

and four different levels of α. The treatment effects and relevance thresholds are set as

listed in the following table:

procedure treatment effect relevance thresholds

parametric & nonparametric on difference τH1
δ = 115 −δlower = δupper = 100

parametric test on ratio τH1
θ = 2.35 θ−1

lower = θupper = 2

nonparametric test on ratio κH1 = 2.35 θ−1
lower = θupper = 2

For all simulated experiments the standard deviation is set to σij = 10 and the correlation

is set to ρijj′ = 0.3. As stated above the number of permutations for the minP approach

is set to 10,000, except for α = 0.01. For α = 1% up to 20,000 simulation runs are used,

because with 10,000 permutations the null distribution is too discrete.
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Parametric tests for relevant differences
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Figure 7.10: Parametric test for rel. diff.: Power for different ni
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Nonparametric tests for relevant differences
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Figure 7.11: Nonparametric test for rel. diff.: Power for different ni



7.3 Power for varying sample sizes and α 123

Parametric tests for relevant ratios
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Figure 7.12: Parametric test for rel. ratios: Power for different ni
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Nonparametric tests for relevant ratios
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Figure 7.13: Nonparametric test for rel. ratios: Power for different ni
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The four graphics show exactly the same behavior of the power as the tests for point-zero

hypotheses. All procedures with a data-driven order of hypotheses are superior to the

alternative approaches with multiplicity correction when the sample sizes are small. From

the graphics proposals for the application of these procedures can be made:

• The procedures to test for a relevant difference should be used, if ni ≤ 9 at α = 5%.

• The parametric procedure to test for a relevant ratio is superior, if ni ≤ 8 at α = 5%.

• The nonparametric procedure to test for a relevant ratio is the most powerful ap-

proach, if ni ≤ 6 at α = 5%.

However these guidelines depend on α, the treatment effect, the variance per endpoint,

the amount of variance heterogeneity and correlation between the endpoints, and for the

procedures for relevant ratios on the choice of θside. For larger sample sizes and α the

permutation algorithm loses its discreteness and is therefore more powerful. Likewise the

Bonferroni correction is more advantageous with a higher number of observations and

especially with a large FWER.

7.4 Adapted expected treatment effect and varying

sample size

As discussed in chapter 3, it is interesting to visualize the influence of the increasing sample

size while the test statistic stays constant. The following figures show the dependency of

the power on the sample size and the adapted treatment effect. For the tests for relevant

differences and ratios an adapted difference and an adapted ratio are required. Both

are computed by use of the relevance-shifted t-test and the Sasabuchi-test. For sake of

simplicity the nonparametric tests use the adapted treatment effects of their parametric

analog. Both adapted treatment effects are chosen, such that the local test has a power of

around 80%.
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The adapted difference: In a simulation setting with −δlower = δupper = 100, n1 = n2 =

n = 5, σij = 10 and ρijj′ = 0.3 a local relevance-shifted t-test requires a true difference

in means of 120 to achieve a power of around 80%. To compute the adapted expected

true difference in means the non-centrality parameter of the relevance-shifted t-test to test

against a relevance threshold of δupper is used:

ν =
µ2 − µ1 − δupper

σ
√

2
n

⇔ µ2 − µ1 − δupper = ν · σ ·
√

2

n
. (7.3)

With the input of the above proposed simulation parameters the adapted expected differ-

ence in means of 120 is:

220− 100− 100 = 3.162278 · 10 ·
√

2

5
. (7.4)

For any sample size n the difference becomes:

µ2 − µ1 − δupper =
√

3.1622782 · 10 ·
√

2

n
=
√

10 ·
√

200

n
=

√
2000

n
. (7.5)

By the use of the latter equation the true means for endpoints under H1 are set to µ1j = 100

and µ2j = 200 +
√

2000/n.

The adapted ratio: By setting θ−1
lower = θupper = 2, n1 = n2 = n = 5, σij = 10 and

ρijj′ = 0.3 the local Sasabuchi-test requires a ratio of means of 2.325 to obtain a power

of around 80%. The adapted expected true ratio of means is computed by use of the

non-centrality parameter of the Sasabuchi-test. The equation to test against a relevance

threshold of θupper is:

ν =
µ2 − µ1 · θupper

σ
√

1+θ2
upper

n

⇔ µ2 − µ1 · θupper = ν · σ ·
√

1 + θ2
upper

n
. (7.6)

By including the parameters as defined above the adapted expected true difference in

means of 32.5 is:

232.5− 100 · 2 = 3.25 · 10 ·
√

1. (7.7)
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For an arbitrary sample size n the true difference becomes:

µ2 − µ1 · θupper =
√

3.252 · 10 ·
√

5

n
=
√

10.625 ·
√

500

n
=

√
5281.25

n
. (7.8)

Hence the expected values for endpoints under H1 are set to µ1j = 100 and µ2j =

200 +
√

5281.25/n. This is the adapted treatment effect for the parametric tests. If

this adapted effect were to be used for the nonparametric tests on relevant ratios, then

the resulting power curves would be hardly comparable because of the lack of power. As

an approximation the non-centrality parameter from the Sasabuchi-test is used as well,

but with the input of a true ratio of means of 2.475. Then the expected values are set to

µ1j = 100 and µ2j = 200 +
√

11281.25/n.

Tests for relevant differences

parametric

sample size per group

pr
op

or
tio

na
l p

ow
er

4 6 8 10 12 14

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Bonferroni
δ−shift
local
randomδ

nonparametric

sample size per group

pr
op

or
tio

na
l p

ow
er

4 6 8 10 12 14

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Bonferroni
δ−shift
np−δ−shift
local

Figure 7.14: Test for rel. diff.: Power for different ni with adapted difference
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Tests for relevant ratios
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Figure 7.15: Test for rel. ratios: Power for different ni with adapted ratios

These four graphics confirm the results of the former graphics: the procedures with a

data-driven order of hypotheses achieve a higher power compared to the Bonferroni ad-

justment and the modified permutation algorithm when the sample sizes are small. Both

the α-adjustment according to Bonferroni and the permutation algorithm benefit from the

increase of the sample size - as for both the increase of the degrees of freedom has a direct

influence on the p-values and - for the nonparametric tests - the discreteness of the exact

rank sum test (concerning Bonferroni) and of the numbers of permutations (resampling

algorithm) vanishes with increasing sample sizes. And as already discussed in chapter 3

the procedures with a data-driven order of hypotheses do not benefit from the increase

in sample size, because the selector statistics of the significant endpoints decrease. They

depend on the treatment effect and not on the sample size.
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7.5 Simulations with increasing disturbance

Compared to the procedures with a data-driven order of point-zero hypotheses the new

procedures show exactly the same lack of power when the variances among the endpoints

are heterogeneous. The following figures depict this lack of power for all four types of

relevance-shifted procedures. As in chapter 3 the true standard deviation per endpoint is

computed as σij = 10 + u · d (u ∼ U(−5, 5)), where u takes values from 0 to 2 in steps of

0.1 units. The correlation among the endpoints per group is set to 0.3. And the remaining

parameters are

treatment relevance sample size
procedure

effect thresholds per group

tests on difference τH1
δ = 220 −δlower = δupper = 200 7

parametric test on ratio τH1
θ = 3.6 θ−1

lower = θupper = 3 5

nonparametric test on ratio κH1 = 3.6 θ−1
lower = θupper = 3 7
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Figure 7.16: Test for rel. diff.: Power for increasing disturbance
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Figure 7.17: Test for rel. ratios: Power for increasing disturbance
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The increasing variance heterogeneity among the endpoints has the same influence on all

relevance-shifted procedures compared to the ones for point-zero hypotheses discussed in

chapter 3. The modified permutation algorithm benefits in this setting from the increasing

heterogeneity as well.

7.6 Simulations with varying mean levels

The next graphics show the proportional power for varying treatment effects and relevance

thresholds. Basically they are the same graphics as 7.2 for ρijj′ = 0.3, but the simulation

setting is more realistic to microarray data. Attoor et al. (2004) proposed a simulation

setting with different expression-intensity means of genes. While so far all endpoints had

a basic mean of 100, an exponential distributed level is proposed. It is characterized as

Ij ∼ φ+Exp(π), where φ is the minimal detectable expression level above the background

noise and Exp(π) denotes the exponential distribution with expectation 1/π and variance

1/π2. Following the proposal of Attoor et al. (2004) the parameters are set to π = 100

and φ = 2000.

As well as the mean level of the endpoints differ, the variances are changed as well. For

each endpoint and group the data is generated as xijk ∼ N(Ij, γIj), with the coefficient of

variation γ. Following Attoor et al. (2004) γ is set to 0.1 (proposed: 0.05-0.15). The

sample size per group is set to 5 and ρijj′ = 0.3.
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Figure 7.18: Param. test for rel. ratios: Power with data model of Attoor et al. (2004)

Nonparametric tests for relevant ratios
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Figure 7.19: Non-param. test for rel. ratios: Power with data model of Attoor et al.

(2004)
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The parametric tests with a data-driven order of hypothesis to test for a relevant ratio lack

power compared to the α-adjustment of Bonferroni. This decrease in power is expected,

as due to the different levels of means and the constant coefficient of variation a variance

heterogeneity among the endpoints appears.

This variance-heterogeneity vanishes with the logarithmic transformation included in the

nonparametric test for relevant ratios. Hence the nonparametric test with a data-driven

order of hypotheses is superior compared to Bonferroni’s adjustment. However this supe-

riority depends on the constant coefficient of variation. If the coefficient varies among the

endpoints, the power of the nonparametric test using the selector statistic decreases.

7.7 Simulations with non-normal distributed data

For all former simulations of the power multivariate normal distributed data is used. How-

ever as in this work nonparametric procedures are discussed and furthermore microarray

data tends to a skewed (or unknown) data distribution, the power is observed for non-

normal distributed data as well. To construct univariate non-normal distributed samples

with a priori selected expected value, standard deviation, skewness and kurtosis a poly-

nomial data transformation proposed by Fleishman (1978) is used. If X ∼ N(0, 1) is

a random variate and transformed by Y = a + bX + cX2 + dX3, then Y has a distribu-

tion depending on the constants a, b, c and d with skewness γ1 = E((Y−µ)3)
σ3(Y )

and kurtosis

γ2 = E((Y−µ)4)
σ4(Y )

. In his article Fleishman (1978) lists the corresponding values for the con-

stants for −0.25 ≤ γ1 ≤ 1.75 and −1 ≤ γ2 ≤ 3.75. Nürnberg (1982) extends the listing

and gives constants for combinations of 0 ≤ γ1 ≤ 2 and 0 ≤ γ2 ≤ 7. To generate multiple

variables with a specific variance and correlation structure this polynomial transformation

is used as well. Let Y denote a n × m matrix with m univariate variables following a

distribution with γ1 and γ2. Then the variables of the n × m matrix Z are non-normal

multivariate distributed with variance-covariance matrix Σ, where Z is given by the matrix

multiplication of Y and R:

Z = YR. (7.9)
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The m×m matrix R is given by the Cholesky decomposition, which factorizes Σ into the

upper triangular matrix R, such that Σ = R′R.

In the following table the empirical estimates of a-priori selected parameters for two exam-

ples are presented. For both examples five endpoints are created with 1,000 observations

each. Due to the estimation of the kurtosis such a high sample size is required. In the first

example the correlation among the endpoints is set to 0 and in the second it is ρijj′ = 0.5.

estimates of endpoint
example parameter

1 2 3 4 5

µj = 0 0.010 0.019 -0.020 -0.002 -0.008

σj = 1 0.989 1.042 1.023 1.056 1.016
first

γ1,j = 0.5 0.502 0.397 0.602 0.729 0.399

γ2,j = 1 1.017 1.001 1.732 1.565 0.630

µj = 0 0.143 0.336 0.384 0.470 0.529

σj = 1.5 1.486 1.534 1.528 1.570 1.512
second

γ1,j = 1.5 1.478 1.032 1.176 1.092 0.915

γ2,j = 3 3.262 1.448 2.383 1.498 1.060

And the estimated correlation matrices ρ̂ are:

ρ̂ =




1 0.035 0.033 −0.002 0.012

0.035 1 −0.004 −0.041 0.007

0.033 −0.005 1 0.010 0.013

−0.002 −0.041 0.010 1 −0.039

0.012 0.007 0.013 −0.039 1




(7.10)

and

ρ̂ =




1 0.497 0.512 0.488 0.513

0.497 1 0.494 0.472 0.500

0.512 0.494 1 0.473 0.508

0.488 0.472 0.473 1 0.477

0.513 0.500 0.508 0.477 1




. (7.11)
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The final graphics in this chapter are initially the same as in section 7.2. However instead of

using Gaussian distributed data, the observation vectors follow a skewed distribution with

a skewness of 2 and a kurtosis of 7 and the correlation among the endpoints is set to 0.3. To

show the superiority of the np-θ-shift compared to a parametric analog, power results of the

parametric procedure with a data-driven order of relevance-shifted hypotheses including

the relevance-shifted t-test on difference are show as well (abbreviated as ‘parametric’).

This procedure equals the δ-shift method applied on the logarithmized data. However, to

compare a parametric procedure with the np-θ-shift method, as described in the beginning

of chapter 6, the assumptions on the data and hence the simulation settings are different.

Before the results of the power are shown, a histogram is plotted for illustration of the

distribution of 1,000 random numbers taken from N(0,1) and transformed by the Fleishman

algorithm, such that γ1 = 2 and γ2 = 7. For a better comparability the results of the

parametric and the nonparametric tests on difference are plotted in one figure. To avoid

confusion resulting of too many curves, results of the local tests are omitted.
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Figure 7.20: Histogram of 1000 Fleishman-transformed random numbers (γ1 = 2, γ2 = 7)

And in the following graphics the power results of the procedures are shown.
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Figure 7.21: Test for rel. diff.: Samples taken from a non-normal distribution
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7.7 Simulations with non-normal distributed data 137

The graphic corresponding to the tests on difference show that the np-δ-shift method is

more powerful as the δ-shift and the random procedure when the data is not Gaussian

distributed. The violation of the normal assumption biases both the test statistic and the

selector statistic of the parametric versions. An oppositional behavior of the power can

be seen for the parametric and the nonparametric tests with the Bonferroni correction:

the parametric version achieves more significant results. The reason for this result is the

discreteness of the rank sum test. As already described in the univariate example in the

introduction (figures 1.1 and 1.2) the number of permutations of the exact rank sum test

is dependent on the sample size. With small sample sizes this number is limited and due

to the Bonferroni correction this effect becomes even more severe.

With deviations from the Gaussian distribution the parametric tests on ratio lose power.

This is especially true for the two procedures with a data-driven order of hypotheses. The

reason for this breakdown in power is, that not only is the test statistic influenced by the

skewed distributed data, but the selector statistic as well. Hence the parametric Bonferroni

adjustment is more powerful in this setting. It is only excelled by the local tests, which do

not control the FWER.

The presence of non-normal distributed samples has no impact on the ranking of the

nonparametric tests on ratio in terms of power. As expected the np-θ-shift procedure

is more powerful than the modified permutation algorithm, because the sample sizes are

very small. Furthermore it can be seen, that the np-θ-shift method is more powerful as

the parametric analog, as the non-gaussian distributed data bias the selector statistics of

the latter procedure. And the local tests achieve the highest power, because they do not

consider the multiplicity. Clearly, the non-parametric procedures with a data-driven order

of relevance-shifted hypotheses are advantages compared to the parametric methods.
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Chapter 8

Final remarks and conclusions

Various problems occur in the analysis of microarray data. While the data is high-

dimensional, the sample size per treatment group and endpoint is small. By testing thou-

sands of endpoints simultaneously a multiplicity correction has to be applied. As sample

sizes are small, multiple testing procedures lack power. Due to a possible discreteness, this

problem even increases if the nonparametric two-sample tests to analyze the individual

endpoints are used. Various methods to overcome these problems and test for differences

between the treatment groups among the genes exist. However in many articles the au-

thors interest is to find not only a general difference, but a ratio in expression intensities

exceeding a specific k -fold. Here, instead of testing the point-zero hypothesis, a relevance-

shifted test is appropriate. The goal of this thesis is to develop a nonparametric testing

procedure, which analyzes such relevance-shifted hypothesis in terms of the ratio. Fur-

thermore this procedure has to use the technique of the data-driven order of hypotheses

as multiplicity correction, because this class of tests has been proven to be superior to

the other FWER-controlling methods for the analysis of microarray data when the sample

sizes are extremely small.

In total the thesis includes five new types of procedures; both parametric and nonpara-

metric methods including relevance thresholds in terms of the difference or the ratio are

presented. In addition a nonparametric relevance-shifted modification of the permutation
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algorithm according to Westfall and Young (1993) is presented, which can be used to

test for relevant ratios.

In general the new procedures can be appropriate for the analysis of high-dimensional

data. The procedures to test for a relevant difference are however not appropriate to use

for microarray data, as long as the data is not logarithmized. Without this transformation

the overall distribution of the expression intensities is skewed, and the measurements range

between 0 and several thousand. Hence the selection of a relevant difference is impossible.

In addition the variances among the endpoints are highly heterogeneous. With the loga-

rithmic transformation the multiplicative model switches to an additive one. If the tests

on difference are used on the logarithmized data and the relevance thresholds are adapted,

then these tests become tests on relevant ratios. In this case these tests are appropriate

for the analysis of microarray data. However the changes in the data assumptions have

to be regarded. When used on the logarithmized data, the parametric test on difference

assumes lognormal distributed samples on the original scale and as the nonparametric test

on difference becomes exactly the nonparametric test on ratio proposed in this thesis, it

achieves the same assumptions as this test.

Whereas the tests on difference can be used on the logarithmized microarray data, the

parametric test on ratio with a data-driven order of hypotheses can not be recommended

for the analysis of this type of data. If the data is not logarithmized then the procedure

lacks power because of the variance heterogeneity among the endpoints. And by use of

this transformation on the data the parametric procedures seeks for a relevant k -fold on

the logarithmic scale, which is usually not the aim of a microarray experiment.

Recommended for the analysis of microarray data are the the nonparametric test on rele-

vant ratios with a data-driven order of hypothesis and the modified permutation algorithm,

because both do not have as stringent data assumptions as the parametric test. And as

the procedure with a data-driven order of hypotheses incorporates the logarithmic trans-

formation, the variance heterogeneity among the endpoints is highly decreased.
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Detailed power studies show, that the power of the new procedures has a similar be-

havior compared to standard multiple testing methods as the methods such for point-zero

hypotheses proposed by Kropf and Läuter (2002) and Kropf et al. (2004). All

relevance-shifted procedures with a data-driven order of hypotheses are superior to the α-

adjustment of Bonferroni and the nonparametric test on ratio is even more powerful than

the modified permutation algorithm if certain data conditions hold. Due to the high num-

ber of endpoints and the small sample sizes the Bonferroni correction is very conservative

as well. The loss in power is even worse if the nonparametric rank sum test is used as the

two-sample test, because due to the small sample sizes the number of permutations for the

exact test is limited and therefore this test becomes discrete. The more powerful modified

permutation algorithm suffers from the discreteness resulting from the small number of

observations as well.

Based on the simulation results the nonparametric testing procedure to test for a ratio

can be recommended for experiments with samples of sizes per gene and group less than

7. For larger sample sizes the modified permutation algorithm achieves a higher power.

All other relevance-shifted procedures with a data-driven order of hypotheses are superior

to the Bonferroni correction if the sample sizes are less than 10. This recommendation

depends however on various factors, such as the significance level, the variance among the

endpoints and the treatment groups, the number of endpoints and the correlation among

the genes. For example in the simulation study only 50 endpoints are observed. It can be

expected that the Bonferroni correction needs a larger sample size to be superior to the

new procedures when the number of endpoints is higher. On the other hand, this simple

multiple testing method can be recommended, if the sample sizes are not too small and the

significance level is higher. In the simulation results the Bonferroni adjustment achieved

a higher power compared to the new procedures if α = 0.2 and the sample size is 7 or more.

However, to be superior compared to these alternative methods, the procedures with a

data-driven order of hypotheses require moderately homogenous variances among the end-

points. As denoted above for microarray data, this can be achieved with the logarithmic



142 Final remarks and conclusions

transformation, because moderately large expression intensities have an approximately

constant coefficient of variation. The stabilization of the variance could even be improved

with, for example, the algorithm of Huber et al. (2002), but as this method uses the

arsin-transformation, a different type of nonparametric two-sample test as used here would

be required. An interesting further research topic is the variance-stabilization algorithm of

Durbin et al. (2002), who applies the natural logarithm on an additive data transforma-

tion to achieve a constant variance among the endpoints.

An alternative method is to implement the relevance-shifted tests in a weighted procedure

with a data-driven order of hypotheses. Such an approach is proposed by Westfall et

al. (2004), where an a-priori defined weight η ≥ 0 is included in the computation of the

selector statistics and the p-values. In the extreme cases of η = 0 the weighted procedure

equals the α-adjustment according to Bonferroni-Holm (see Holm (1979) for details). And

if η = ∞ the procedure converges to the non-weighted procedure with a data-driven order

of hypotheses as proposed for example in chapter 3. Hence if the weight is set to a value

close to 0, then the procedure is more robust against deviations of the variance hetero-

geneity among the endpoints. The choice of the optimal weight η and a further testing

procedure are proposed by Kropf and Hothorn (2004).

Other extensions of the procedures with a data-driven order of hypotheses exist, and an

embedding of the relevance-shifted tests in such a method could be worthwhile. For ex-

ample, if a procedure proposed in this work is applied, it may abort prematurely because

of a non-significant endpoint with a high selector; although the following endpoints in the

order could have been significant. To overcome the problem of a premature ending of the

procedure, Hommel and Kropf (2005) proposed to test each hypothesis against α/s,

where s defines an a-priori chosen integer. The value of s−1 is the number of accepted null

hypotheses which can be ignored before the procedure has to be stopped. Hence if s = 1

the algorithm reduces to the original procedures with a data-driven order of hypotheses.

An important research topic may be the derivation of a mathematical proof, as for all

proposed procedures the control of the FWER is shown empirically with simulations of the

error rate only.
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Neuhäuser, M. and R. Senske (2004): The Baumgartner-Weiß-Schindler test

for the detection of differentially expressed genes in replicated microarray experi-

ments. Bioinformatics, 20 (18), 3553–3564.
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Appendix A

Simulations

In this chapter a selection of simulation results of the FWER is presented. Irrespective

of the power properties, those methods are listed which do not clearly exceed the FWER.

This chapter is divided into four parts: First results from the parametric procedures to test

for relevant differences are given, then the nonparametric methods to test for a relevant

difference follow. Afterwards the simulation results of the parametric methods for relevant

ratios and last for the nonparametric procedures are listed.

For all four parts the weak and the strong control of the FWER is analyzed. Only ta-

bles for one-sided testing against a relevant increase and for two-sided testing are listed

because testing one-sided against a relevant decrease gives equivalent results as one-sided

against a relevant increase. Simulation results exceeding the FWER according to the Wil-

son confidence limit (section 4.3) are printed bold. If not stated otherwise, a simulation

scenario includes 50 endpoints and a FWER of 5% is chosen. Every simulation result is

computed with the same starting value and 10,000 simulation runs. Likewise the number

of permutations of the minP-algorithm is restricted to 10,000.
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A.1 Parametric procedures to test for relevant differ-

ences

The first section presents a table with simulation results of the FWER for parametric pro-

cedures with a data-driven order of hypotheses to test for relevant differences. These are

the shift-selector, the δ-shift and the randomδ procedure.

Most of the parameters, as for example sample size per group, vary between the scenarios.

However depending on one- or two-sided testing all scenarios have the same computation of

the true mean values. For one-sided testing the expected values for endpoints under the null

hypothesis are µ1j = 100 and µ2j = τH0
δ + 100, where for each j τH0

δ is assigned randomly

a value between 0 and δupper in steps of 5 units. Endpoints under H1 have the true mean

values µ1j = 100 and µ2j = 100 + δupper + 50. For two-sided testing τH0
δ is a random value

between δlower and δupper in 5 steps. If τH0
δ ≥ 0 endpoints under H0 have the true mean

values µ1j = 100 and µ2j = τH0
δ + 100 and for τH0

δ < 0 µ1j = |τH0
δ |+ 100 and µ2j = 100. If

the control of the strong FWER is tested, three endpoints under H1 receive the expected

values µ1j = 100 and µ2j = 100 + δupper + 50 and two have µ1j = 100 + |δlower| + 50 and

µ2j = 100.
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Table A1: Parametric for relevant differences

side −δlower = δupper ni σ ρijj′
shift-selector δ-shift randomδ

weak strong weak strong weak strong

0 5 10 0.1 5.09 5.14 5.84 5.89 4.90 4.93

50 5 10 0.1 0 0 0.11 0.12 0.07 0.06

400 5 10 0.1 0 0 0.01 0.01 0.01 0.02

0 30 10 0.1 5.17 5.09 5.49 5.39 4.54 4.42

50 30 10 0.1 0 0 0 0 0 0

400 30 10 0.1 0 0 0 0 0 0
one-sided

0 5 10 0.9 4.89 4.90 4.89 4.90 5.08 5.25

50 5 10 0.9 0 0 0.81 0.84 0.71 0.067

400 5 10 0.9 0 0 0.22 0.24 0.17 0.19

0 5 50 0.1 5.09 4.45 5.84 5.03 4.90 4.30

50 5 50 0.1 0.45 0.59 1.30 1.10 0.99 0.79

400 5 50 0.1 0 0 0.16 0.14 0.10 0.13

0 5 10 0.1 5.11 5.14 5.11 5.14 5.11 5.14

50 5 10 0.1 0 0 0.38 0.48 0.26 0.22

400 5 10 0.1 0 0 0.06 0.08 0.05 0.03

0 30 10 0.1 5.09 5.00 5.09 5.00 5.09 5.00

50 30 10 0.1 0 0 0.23 0.31 0.19 0.18

400 30 10 0.1 0 0 0.04 0.05 0.02 0.02
two-sided

0 5 10 0.9 5.02 4.98 5.02 4.98 5.02 4.98

50 5 10 0.9 0 0 3.23 3.01 2.50 2.44

400 5 10 0.9 0 0 0.81 0.76 0.039 0.58

0 5 50 0.1 5.11 4.24 5.11 4.24 5.11 4.24

50 5 50 0.1 0.65 0.58 0.88 0.72 0.65 0.59

400 5 50 0.1 0 0 0.12 0.12 0.08 0.06

All characteristics of the behavior of the FWER will appear in the following tables for

all other methods (test for relevant means/ratios and parametric/nonparametric) as well.

Hence these effects are discussed exemplary for these procedures and not further mentioned

for the further ones.
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The δ-shift exceeds slightly the FWER in the case of one-sided testing in com-

bination with the setting of δlower = δupper = 0. But more important this method controls

empirically the FWER for two-sided testing.

For the shift-selector procedure the empirical FWER is often 0, because the se-

lector has the local maximum if the difference in means of an endpoint is 0. To receive

a larger selector statistic than those variables, endpoints have to have a high treatment

effect, which in unlikely to appear in these simulation settings.

With increasing distance of δside from 0 the empirical FWER decreases in all

scenarios, because the probability to achieve a false positive endpoint decreases as the

endpoint under H0 achieve a random difference in means larger than δlower and less than

δupper.

In the special case of two-sided testing and δlower = δupper = 0 all three methods

receive the same error rates because in the two-sided case the δ-shift and the randomδ

method transform endpoints with δlower < x̄2jk − x̄1jk < δupper, that is 0 < x̄2jk − x̄1jk < 0.

Therefore no endpoints are transformed by both methods and all three procedures have

the same number of false positives in the simulation.
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A.2 Nonparametric procedures to test for relevant

differences

This section gives the empirical results of the FWER for the nonparametric procedure with

a data-driven order of hypotheses to test for relevant differences, which is the np-δ-shift

method. If not stated otherwise the settings of the expected values are the same as for the

parametric test for relevant differences.

Table B1: Nonparametric for relevant differences, FWER dependent on ni

The first table shows the empirical FWER for exact and asymptotic testing when the

sample size per group varies. In this setting a more unrealistic selection of the expected

values is used as it gives the highest empirical FWER for scenarios with δlower, δupper 6= 0.

Here all endpoints under H0 have a difference in means equal to either δlower or δupper. For

the weak control 25 endpoints have µ1j = 100 + |δlower| and µ2j = 100 and the other 25

variables have µ1j = 100 and µ2j = 100 + δupper. In scenarios analyzing the strong control

the true means of endpoint under H0 are set to the same values, but for 22 variables on

decrease and 23 on increase.

All scenarios include two-sided tests.
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assumption −δlower = δupper ni σ ρijj′ weak strong

0 4 10 0.1 2.96 2.88

400 4 10 0.1 2.20 2.07

0 7 10 0.1 3.76 3.89
exact

400 7 10 0.1 2.42 2.54

0 15 10 0.1 4.70 4.62

400 15 10 0.1 2.79 2.61

0 4 10 0.1 5.90 5.69

400 4 10 0.1 4.38 4.11

0 7 10 0.1 5.36 5.43
asymptotic

400 7 10 0.1 3.49 3.48

0 15 10 0.1 5.21 5.09

400 15 10 0.1 3.09 2.92

By use of the exact tests the FWER is protected empirically in all analyzed settings. The

asymptotic procedures exceed the FWER when the sample sizes are too small and δlower =

δupper = 0. The reason why the FWER is not exceeded for the other setting of the relevance

threshold is, that the FWER generally decreases in scenarios with δlower, δupper 6= 0:

For the exact methods the empirical FWER is a value roughly equal to the nominal FWE/2.

The reason for the dependence of the FWER on the thresholds may be that while for

δlower, δupper 6= 0 half of the data show a difference of means > 0 and the other half has a

difference < 0 and to receive significant result, the simulated data of an endpoint has to

be in the same direction as the endpoint’s true treatment effect is. Either the simulated

data for endpoints testing against δlower have to have an empirical difference < δlower or

the endpoints against δupper an empirical difference > δupper. For δlower = δupper = 0 the

empirical differences have to be only significantly different from 0.

For example in the third row (δlower = δupper = 0), for the weak control and the exact

procedure an endpoint has an empirical difference in means of 21.5175 and receives an

unadjusted p-value of 3.79%. The same endpoint can be observed with −δlower = δupper =

400. Here the difference in means is -378.4825, as for this endpoint the true difference in

means is set to -400 and the empirical one is given by the true difference minus the simulated

effect from the random number generator: -400+21.5175=-378.4825. With the difference
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in means not exceeding the corresponding relevance threshold δlower the unadjusted p-value

for this endpoint is 1.

The procedures with a data-driven order of hypotheses are superior to alternative methods

when the sample sizes are small. Therefore the exact method is proposed, as it provides

an empirically stronger control of the FWER.
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Table B2: Nonparametric for relevant differences, asymptotic, θlower ≤ µ2j−µ1j ≤
θupper for endpoints under H0

However for the sake of completeness a table with simulation results for the asymptotic

procedure is listed. The table gives results on the weak and the strong control of FWER.

Analyzed are diverse settings of sample size, relevance thresholds, variances and correla-

tions. The endpoints under H0 have a random true difference in means.

side −δlower = δupper ni σ ρijj′ weak strong

0 10 10 0.1 6.10 6.08

50 10 10 0.1 0.95 0.86

400 10 10 0.1 0.29 0.21

0 30 10 0.1 5.39 5.43

50 30 10 0.1 0.56 0.58

400 30 10 0.1 0.11 0.15
one-sided

0 30 10 0.9 5.20 5.25

50 30 10 0.9 1.16 1.22

400 30 10 0.9 0.26 0.27

0 30 15 0.1 5.36 5.65

50 30 15 0.1 0.61 0.63

400 30 15 0.1 0.16 0.16

0 10 10 0.1 5.37 5.28

50 10 10 0.1 0.44 0.39

400 10 10 0.1 0.06 0.04

0 30 10 0.1 5.13 4.89

50 30 10 0.1 0.29 0.35

400 30 10 0.1 0.03 0.03
two-sided

0 30 10 0.9 5.13 5.13

50 30 10 0.9 0.75 0.83

400 30 10 0.9 0.10 0.12

0 30 15 0.1 5.13 4.89

50 30 15 0.1 0.28 0.36

400 30 15 0.1 0.03 0.03

The same pattern as in the former tables can be seen: the np-δ-shift method shows slight

exceeds of the FWER when a one-sided testing scenario is chosen and δlower = δupper = 0.
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Table B3: Nonparametric for relevant differences, exact, θlower ≤ µ2j−µ1j ≤ θupper

for endpoints under H0

This table is equivalent to the former one in terms of settings and results, but for the exact

version with smaller sample sizes.

side −δlower = δupper ni σ ρijj′ weak strong

0 5 10 0.1 6.22 6.24

50 5 10 0.1 0.20 0.17

400 5 10 0.1 0.02 0.02

0 10 10 0.1 5.23 5.15

50 10 10 0.1 0.07 0.07

400 10 10 0.1 0.01 0.01
one-sided

0 5 10 0.9 4.77 4.82

50 5 10 0.9 0.60 0.58

400 5 10 0.9 0.13 0.15

0 5 15 0.1 6.22 6.22

50 5 15 0.1 0.38 0.37

400 5 15 0.1 0.04 0.05

0 5 10 0.1 3.47 3.10

50 5 10 0.1 0.32 0.32

400 5 10 0.1 0.04 0.03

0 10 10 0.1 4.48 4.30

50 10 10 0.1 0.38 0.31

400 10 10 0.1 0.05 0.03
two-sided

0 5 10 0.9 3.13 3.25

50 5 10 0.9 1.32 1.42

400 5 10 0.9 0.32 0.31

0 5 15 0.1 3.47 2.98

50 5 15 0.1 0.35 0.32

400 5 15 0.1 0.04 0.03
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Table B4: Nonparametric for relevant differences, exact with (non-)normal

data and true differences under H0 equal to δlower, δupper

The next table shows simulation results for the weak and the strong sense of the FWER by

use of the exact method. Different to the setting above, the differences for endpoints under

H0 are set to the margins of the null hypothesis as in table table B1. For the strong control

the five endpoints under H1 have expected values as explained in the introduction of this

chapter. Only two-sided testing is analyzed. In the first two columns of the empirical

results the individual samples per group are multivariate Gaussian distributed, while in

the two following ones the data follows a multivariate skewed distribution with a skewness

of 2 and a kurtosis of 7 generated with the algorithm proposed by Fleishman (1978).

−δlower = δupper

ni σ ρijj′
normal skewed

control weak strong weak strong

0 5 10 0.1 3.47 3.10 3.27 2.87

50 5 10 0.1 2.49 2.27 2.40 1.91

400 5 10 0.1 2.49 2.27 2.40 1.91

0 10 10 0.1 4.48 4.30 4.11 4.32

50 10 10 0.1 2.72 2.81 2.48 2.60

400 10 10 0.1 2.72 2.81 2.48 2.60

0 5 10 0.9 3.13 3.25 3.17 2.99

50 5 10 0.9 2.14 2.20 2.20 2.15

400 5 10 0.9 2.14 2.20 2.20 2.15

0 5 15 0.1 3.47 2.98 3.27 2.26

50 5 15 0.1 2.49 2.16 2.40 1.51

400 5 15 0.1 2.49 2.16 2.40 1.51
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A.3 Parametric procedures to test for relevant ratios

This section presents simulation results for parametric procedures with a data-driven order

of hypotheses to test for relevant ratios discussed in chapter 5. These are the Sasabuchi

selector, the θ-shift and randomθ method.

As for testing against a relevant difference many parameters vary between the scenarios

except the expected values. If not stated otherwise, for one-sided testing the expected

values for endpoints under the null hypothesis are µ1j = 100 and µ2j = τH0
θ · 100, where for

each j τH0
θ is a random value between 1 and θupper in 0.05 steps. Endpoints under H1 have

the true mean values µ1j = 100 and µ2j = 100 · (θupper + 0.5)). In the two-sided case τH0
θ is

set for each endpoint under H0 to a random value chosen between θlower and θupper in 0.05

steps as described in section 5.1.1. The five endpoints under H1 receive either the expected

values µ1j = 100 and µ2j = 100 · (θupper + 0.5) (three endpoints) or µ1j = 100 · θ−1
lower + 0.5

and µ2j = 100 (two endpoints).
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Table C1: Parametric for relevant ratios - weak control / one-sided

The first table gives the simulation results for the weak control of the FWER by testing

one-sided for a relevant increase. In all scenarios 50 endpoints under the null hypothesis

are tested. The expected values are set as denoted in the introduction of this section. All

other relevant information is given in the table.

θupper ni σ ρijj′
Sasabuchi selector θ-shift randomθ

α = 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 5 10 0.1 1.05 5.09 10.03 1.21 5.84 11.61 1.01 4.90 9.61

1.5 5 10 0.1 0 0 0 0.17 0.89 1.75 0.11 0.55 1.22

5 5 10 0.1 0 0 0 0.04 0.17 0.33 0.03 0.17 0.33

1 10 10 0.1 1.01 4.87 9.85 1.10 5.35 10.97 0.97 4.58 9.12

1.5 10 10 0.1 0 0 0 0.14 0.63 1.37 0.10 0.45 0.89

5 10 10 0.1 0 0 0 0.03 0.13 0.26 0.02 0.08 0.16

1 30 10 0.1 1.05 5.17 10.20 1.12 5.49 10.89 0.86 4.54 8.86

1.5 30 10 0.1 0 0 0 0.14 0.58 1.08 0.05 0.31 0.66

5 30 10 0.1 0 0 0 0.02 0.11 0.25 0.01 0.05 0.11

1 5 10 0.9 0.95 4.89 9.95 0.95 4.89 9.95 0.89 5.08 10.09

1.5 5 10 0.9 0.03 0.09 0.09 0.80 3.51 5.96 0.74 2.84 5.03

5 5 10 0.9 0 0 0 0.41 1.59 2.55 0.38 1.51 2.39

1 10 10 0.9 0.92 4.94 9.72 0.92 4.94 9.72 1.11 5.09 10.11

1.5 10 10 0.9 0 0 0 0.78 2.82 4.47 0.66 2.19 3.70

5 10 10 0.9 0 0 0 0.30 0.96 1.48 0.26 0.93 1.48

1 30 10 0.9 1.05 5.02 10.08 1.05 5.02 10.08 1.08 5.11 10.13

1.5 30 10 0.9 0 0 0 0.05 1.59 2.59 0.38 1.49 2.68

5 30 10 0.9 0 0 0 0.09 0.37 0.063 0.12 0.43 0.83

1 5 50 0.1 1.05 5.09 10.03 1.21 5.84 11.61 1.01 4.89 9.62

1.5 5 50 0.1 0.33 1.72 3.77 0.37 1.98 4.33 0.30 1.50 3.17

5 5 50 0.1 0.01 0.04 0.09 0.11 0.69 1.64 0.08 0.46 1.08

In total analogy to the tests for relevant differences, the only procedure which shows slight

exceeds of the FWER is the θ-shift procedure in the special case of one-sided testing and

θlower = θupper = 1.
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Table C2: Parametric for relevant ratios - weak control / two-sided

This table gives results for the same scenarios as the last table but for the two-sided

problem. Hence no exceeds of the FWER are to be expected.

θ−1
lower = θupper ni σ ρijj′

Sasabuchi selector θ-shift randomθ

α = 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 5 10 0.1 1.08 5.11 10.21 1.08 5.11 10.21 1.08 5.11 10.21

1.5 5 10 0.1 0 0 0 0.09 0.44 0.88 0.08 0.30 0.59

5 5 10 0.1 0 0 0 0.03 0.10 0.22 0.01 0.06 0.12

1 10 10 0.1 0.99 4.82 9.90 0.99 4.82 9.90 0.99 4.82 9.90

1.5 10 10 0.1 0 0 0 0.07 0.38 0.72 0.05 0.22 0.45

5 10 10 0.1 0 0 0 0.02 0.06 0.13 0 0.06 0.09

1 30 10 0.1 0.98 5.09 10.05 0.98 5.09 10.05 0.98 5.09 10.05

1.5 30 10 0.1 0 0 0 0.05 0.31 0.61 0.04 0.20 0.38

5 30 10 0.1 0 0 0 0 0.06 0.13 0 0.02 0.04

1 5 10 0.9 1.02 5.02 9.99 1.02 5.02 9.99 1.02 5.02 9.99

1.5 5 10 0.9 0 0 0 0.71 3.05 5.47 0.69 2.63 3.98

5 5 10 0.9 0 0 0 0.33 1.25 2.09 0.34 1.00 1.50

1 10 10 0.9 0.98 4.90 10.09 0.98 4.90 10.09 0.98 4.90 10.09

1.5 10 10 0.9 0 0 0 0.67 2.50 3.95 0.047 1.46 2.19

5 10 10 0.9 0 0 0 0.23 0.69 1.08 0.14 0.43 0.59

1 30 10 0.9 1.11 4.94 9.89 1.11 4.94 9.89 1.11 4.94 9.89

1.5 30 10 0.9 0 0 0 0.43 1.38 2.11 0.21 0.57 0.81

5 30 10 0.9 0 0 0 0.07 0.19 0.35 0.03 0.07 0.11

1 5 50 0.1 1.07 5.11 10.21 1.07 5.11 10.21 1.07 5.11 10.21

1.5 5 50 0.1 0.17 0.94 1.85 0.20 1.12 2.24 0.10 0.71 1.64

5 5 50 0.1 0.01 0.01 0.03 0.06 0.37 0.82 0.04 0.25 0.52
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Table C3: Parametric for relevant ratios - strong control / one-sided

This table gives simulation results for the strong control of the FWER. Apart from the

inclusion of endpoints under the alternative hypothesis it is equal to table C1. Out of

the 50 endpoints 45 are under the null hypothesis and 5 show differences between the

treatment groups. The expected values for these 5 endpoints are given as explained in the

introduction of this section.

θupper ni σ ρijj′
Sasabuchi selector θ-shift randomθ

α = 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 5 10 0.1 1.09 5.00 10.09 1.13 5.69 11.67 0.93 4.96 9.87

1.5 5 10 0.1 0 0 0 0.18 0.90 1.82 0.11 0.53 1.06

5 5 10 0.1 0 0 0 0.01 0.16 0.38 0.02 0.11 0.25

1 10 10 0.1 0.92 4.88 9.86 1.01 5.43 10.85 0.87 4.40 9.15

1.5 10 10 0.1 0 0 0 0.11 0.59 1.25 0.07 0.49 0.97

5 10 10 0.1 0 0 0 0.03 0.17 0.29 0.02 0.12 0.25

1 30 10 0.1 0.94 5.10 10.09 1.15 5.47 10.79 0.88 4.32 8.78

1.5 30 10 0.1 0 0 0 0.11 0.53 1.11 0.05 0.31 0.65

5 30 10 0.1 0 0 0 0.02 0.12 0.23 0 0.05 0.13

1 5 10 0.9 1.05 5.07 10.13 1.01 5.07 10.20 0.93 5.19 10.02

1.5 5 10 0.9 0.05 0.07 0.07 0.83 3.45 5.80 0.75 2.96 5.08

5 5 10 0.9 0 0 0 0.40 1.60 2.59 0.31 1.32 2.36

1 10 10 0.9 0.95 5.06 10.09 0.91 5.06 9.96 0.96 4.98 10.03

1.5 10 10 0.9 0 0 0 0.70 2.64 4.36 0.56 2.15 3.82

5 10 10 0.9 0 0 0 0.31 1.00 1.49 0.21 0.79 1.32

1 30 10 0.9 1.07 5.10 10.13 1.05 5.10 9.95 1.02 5.02 10.14

1.5 30 10 0.9 0 0 0 0.52 1.69 2.57 0.38 1.50 2.63

5 30 10 0.9 0 0 0 0.14 0.38 0.61 0.10 0.47 0.80

1 5 50 0.1 0.76 4.33 9.35 0.81 4.85 10.69 0.69 4.23 9.21

1.5 5 50 0.1 0.22 1.48 3.34 0.25 1.67 3.86 0.18 1.31 2.96

5 5 50 0.1 0.01 0.06 0.17 0.11 0.69 1.43 0.08 0.49 1.06
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Table C4: Parametric for relevant ratios - strong control / two-sided

In the following table the same scenarios as in the last one are observed, but for two-sided

testing.

θ−1
lower = θupper ni σ ρijj′

Sasabuchi selector θ-shift randomθ

α = 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 5 10 0.1 0.99 4.97 9.97 0.99 4.97 9.97 0.99 4.97 9.97

1.5 5 10 0.1 0 0 0 0.10 0.46 0.87 0.08 0.27 0.53

5 5 10 0.1 0 0 0 0.02 0.07 0.16 0.01 0.05 0.12

1 10 10 0.1 1.00 5.00 10.09 1.00 5.00 10.09 1.00 5.00 10.09

1.5 10 10 0.1 0 0 0 0.08 0.37 0.74 0.07 0.25 0.49

5 10 10 0.1 0 0 0 0.01 0.07 0.16 0 0.05 0.12

1 30 10 0.1 0.98 5.06 10.07 0.98 5.06 10.07 0.98 5.06 10.07

1.5 30 10 0.1 0 0 0 0.09 0.30 0.63 0.01 0.12 0.29

5 30 10 0.1 0 0 0 0.02 0.06 0.12 0.01 0.03 0.07

1 5 10 0.9 1.02 5.12 10.03 1.02 5.12 10.03 1.02 5.12 10.03

1.5 5 10 0.9 0 0 0 0.66 2.95 5.18 0.57 2.34 3.76

5 5 10 0.9 0 0 0 0.27 1.13 1.93 0.26 0.92 1.47

1 10 10 0.9 1.03 4.91 10.12 1.03 4.91 10.12 1.03 4.91 10.12

1.5 10 10 0.9 0 0 0 0.67 2.36 3.81 0.47 1.45 2.09

5 10 10 0.9 0 0 0 0.14 0.73 1.19 0.11 0.32 0.47

1 30 10 0.9 1.03 5.18 10.15 1.03 5.18 10.15 1.03 5.18 10.15

1.5 30 10 0.9 0 0 0 0.40 1.28 1.95 0.24 1.45 0.90

5 30 10 0.9 0 0 0 0.07 0.27 0.38 0.02 0.32 0.15

1 5 50 0.1 0.72 4.15 8.74 0.72 4.15 8.74 0.72 4.15 8.74

1.5 5 50 0.1 0.13 0.71 1.61 0.16 0.82 1.85 0.14 0.70 1.43

5 5 50 0.1 0 0.01 0.02 0.08 0.33 0.70 0.02 0.20 0.42

As well as for the weak control an exceed of the FWER for the θ-shift method appears in

the one-sided case only.
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Table C5: Parametric for relevant ratios - varying number of endpoints under H0

In the following table the empirical FWER is shown for a varying number of endpoints

under the null hypothesis. The upper half of the table gives results for one-sided hypothesis

testing, and the lower part presents the results for two-sided testing. The true means for

the endpoints are set as explained in the beginning of this section. The further parameters

are: ni = 5, ρijj′ = 0.1 and σ = 10. Note that the rows 3, 6, 9 and 12 show the results of

the weak control and the eight others give results for the strong one.

side
relevance number of endpoints empirical FWE

thresholds under H0 (out of 50) Sasabuchi selector θ-shift randomθ

1 1 4.92 4.92 5.07

1 25 5.12 5.81 5.14

1 50 5.09 5.84 4.90
one-sided

5 1 0 0 0

5 25 0 0.10 0.08

5 50 0 0.17 0.17

1 / 1 1 5.13 5.13 5.13

1 / 1 25 5.25 5.25 5.25

1 / 1 50 5.11 5.11 5.11
two-sided

0.2 / 5 1 0 0 0

0.2 / 5 25 0 0.03 0.01

0.2 / 5 50 0 0.10 0.06

As well as for tables C1 to C4 the empirical FWERs are close to the nominal levels only

for relevance threshold(s) of 1. In the two-sided case for θlower = θupper = 1 all error rates

are again the same because no endpoints have to be transformed by the θ-shift and the

randomθ method. For one-sided testing, θlower = θupper = 1 and one endpoint under H0

the Sasabuchi-selector and the θ-shift procedure have the same empirical FWER: Either

the ratio of the endpoint is less than 1; in this case it will not be a false positive (the data

transformation of the θ-shift procedure changes the values of the second treatment group,

which has no effect on the FWER in this setting). Or the ratio of the endpoint is greater

than 1; then the data transformation is not used by the θ-shift method and the algorithms
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of both procedures are equal. The randomθ procedure would show exactly the same er-

ror rate of 4.92 %, but the data transformation of this procedure includes the use of the

random number generator. Therefore other random numbers are used for the generation

of the data. Although the true FWER is equal for all three methods, the empirical one is

slightly different for the randomθ method.

Tables C6: Parametric for relevant ratios - ratio under H0 equal to θlower, θupper

The following four tables give simulation results of the FWER-control concerning the weak

sense for α = 5%. These results present the maximal exceeds of the FWER of all para-

metric procedures, which occurred in the one-sided case only. Basically the scenarios are

the same as in tables C1 to C4 but the true ratios under the null hypothesis are set to the

relevance thresholds. In the first table all mean data levels are set to 100 and in the sec-

ond table the mean level of the endpoints are exponential distributed including a constant

coefficient of variation as presented in section 7.6. Table 3 and 4 are the same but for the

control of the FWER in the strong sense. The means of the 5 endpoints under H1 are set

as introduced in the beginning of this section.
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Table C6.1: Weak control with mean level of 100

θ−1
lower = θupper

ni σ ρijj′
Sasabuchi selector θ-shift randomθ

side one two one two one two

1 5 10 0.1 5.09 5.11 5.84 5.11 4.90 5.11

1.5 5 10 0.1 5.19 2.57 5.87 3.27 5.02 2.73

5 5 10 0.1 5.13 2.69 5.92 3.25 4.97 2.57

1 10 10 0.1 4.87 4.82 5.35 4.82 4.58 4.82

1.5 10 10 0.1 4.77 2.54 5.29 2.99 4.56 2.40

5 10 10 0.1 4.85 2.58 5.33 2.98 4.66 2.38

1 30 10 0.1 5.17 5.09 5.49 5.09 4.54 5.09

1.5 30 10 0.1 5.16 2.43 5.47 5.01 4.49 2.18

5 30 10 0.1 5.10 2.68 5.41 4.93 4.43 2.23

1 5 50 0.1 5.09 5.11 5.84 5.11 4.89 5.11

1.5 5 50 0.1 5.46 2.92 5.87 3.27 5.00 2.65

5 5 50 0.1 5.13 2.68 5.91 3.25 4.97 2.57

Table C6.2: Weak control with exponential distributed mean level

θ−1
lower = θupper

ni cv ρijj′
Sasabuchi selector θ-shift randomθ

side one two one two one two

1 5 0.1 0.1 5.11 5.00 5.39 5.00 5.36 5.00

1.5 5 0.1 0.1 5.03 2.54 5.38 2.72 5.41 2.85

5 5 0.1 0.1 5.05 2.47 5.37 2.63 5.45 2.71

1 10 0.1 0.1 4.86 4.93 5.02 4.93 5.11 4.93

1.5 10 0.1 0.1 4.81 2.44 4.97 3.34 5.22 2.57

5 10 0.1 0.1 4.96 2.44 5.12 2.55 5.30 2.67

1 30 0.1 0.1 5.19 5.02 5.09 5.02 4.90 5.02

1.5 30 0.1 0.1 5.28 2.62 5.10 2.54 4.96 3.79

5 30 0.1 0.1 5.21 2.67 5.05 2.54 5.02 2.47

1 5 0.5 0.1 5.11 5.00 5.39 5.00 5.34 5.00

1.5 5 0.5 0.1 5.13 2.58 5.38 2.72 5.38 2.64

5 5 0.5 0.1 5.05 2.46 5.37 2.63 5.49 2.71
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Table C6.3: Strong control with mean level of 100

θ−1
lower = θupper

ni σ ρijj′
Sasabuchi selector θ-shift randomθ

side one two one two one two

1 5 10 0.1 5.00 4.97 5.69 4.97 4.93 4.97

1.5 5 10 0.1 5.08 2.46 5.76 3.13 5.01 2.53

5 5 10 0.1 4.38 2.06 4.98 2.45 4.39 2.02

1 10 10 0.1 4.88 5.00 5.43 5.00 4.66 5.00

1.5 10 10 0.1 4.90 2.69 5.36 3.13 4.32 2.41

5 10 10 0.1 4.84 2.50 5.26 2.84 4.41 2.19

1 30 10 0.1 5.10 5.06 5.07 5.06 4.23 5.06

1.5 30 10 0.1 5.10 2.48 5.13 2.78 4.49 2.22

5 30 10 0.1 4.99 2.47 5.07 2.75 4.35 2.27

1 5 50 0.1 4.33 4.15 4.85 4.15 4.20 4.15

1.5 5 50 0.1 4.71 2.35 5.03 2.59 4.33 2.31

5 5 50 0.1 4.57 2.35 5.23 2.83 4.15 2.27

Table C6.4: Strong control with exponential distributed mean level

θ−1
lower = θupper

ni cv ρijj′
Sasabuchi selector θ-shift randomθ

side one two one two one two

1 5 0.1 0.1 4.87 5.01 5.17 5.01 5.18 5.01

1.5 5 0.1 0.1 4.85 2.70 5.18 2.89 5.30 2.78

5 5 0.1 0.1 4.67 2.39 4.95 2.53 5.00 2.45

1 10 0.1 0.1 5.05 5.00 5.17 5.00 4.89 5.00

1.5 10 0.1 0.1 5.02 2.54 5.15 2.63 5.36 2.55

5 10 0.1 0.1 5.05 2.60 5.18 2.69 5.20 2.65

1 30 0.1 0.1 5.33 5.09 5.36 5.09 5.20 5.09

1.5 30 0.1 0.1 5.25 2.69 5.29 2.73 5.32 2.60

5 30 0.1 0.1 5.30 2.64 5.35 2.77 5.12 2.46

1 5 0.5 0.1 4.53 4.50 4.79 4.50 4.72 4.50

1.5 5 0.5 0.1 4.54 2.48 4.73 2.61 5.11 2.46

5 5 0.5 0.1 4.47 2.36 4.72 2.52 5.01 2.42

Here randomθ procedure exceeds slightly the FWER for one-sided testing as well. However

in the two-sided case this method still controls the false positive rate.
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Table C7: Parametric for relevant ratios - varying ratio of endpoints under H0

In the following table the control of the FWER depending on the ratio of means of the

endpoints under H0 is observed. Both the weak and the strong sense are simulated. The

expected values for the endpoints under the alternative hypothesis are computed as denoted

in the introduction of this section. And for the endpoints under H0 the true ratio of means

is set to θupper (one-sided) or to one of the two relevance thresholds (two-sided). The

remaining parameters are set to ni = 5, σ = 10, ρijj′ = 0.1, θ−1
lower = θupper = 5.

side τH0
θ

empirical FWER (weak sense) empirical FWER (strong sense)

Sasabuchi selector θ-shift randomθ Sasabuchi selector θ-shift randomθ

1 0 0 0 0 0 0

2 0 0 0 0 0 0

one-sided 3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 5.13 5.92 4.97 4.38 4.98 4.39

1 0 0 0 0 0 0

(0.5 or) 2 0 0 0 0 0 0

two-sided (1/3 or) 3 0 0 0 0 0 0

(0.25 or) 4 0 0 0 0 0 0

(0.2 or) 5 2.69 3.25 2.57 2.06 2.45 2.02

If the endpoints under H0 receive a true ratio less than θupper (one-sided) or less than

θupper and greater than θlower (two-sided) the error rates are close or exactly equal to 0,

because the probability that the empirical ratio exceeds the threshold(s) is small. Only

with true ratios equal to the relevance threshold(s) is the probability relatively high that

false positives appear; hence only in these settings is the empirical error rate larger than

0.
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Table C8: Parametric for relevant ratios - varying correlation of endpoints un-

der H0

The next two tables show the weak and the strong control for varying correlations between

endpoints. In the simulation settings for the first table three of the endpoints under H0

have a correlation close to zero (ρijj′ = 0.01) and in the second table the correlation of

three endpoints is set to -0.3. For all other endpoints the correlation is 0.3. Only two-sided

testing is observed.

The expected values of the endpoints under H1 (strong control) are chosen as given in the

introduction of this section. And the endpoints under H0 have true ratios equal to one of

the relevance thresholds.

C8.1: Three endpoints with ρijj′ = 0.01

θ−1
lower = θupper

ni σ ρijj′
Sasabuchi selector θ-shift randomθ

control weak strong weak strong weak strong

1 5 10 0.3 5.18 4.96 5.18 4.96 5.18 4.96

1.5 5 10 0.3 2.68 2.63 3.60 3.50 3.05 2.96

5 5 10 0.3 3.01 2.35 3.56 2.76 2.97 2.45

1 10 10 0.3 4.94 5.11 4.94 5.11 4.94 5.11

1.5 10 10 0.3 2.55 2.60 3.26 3.27 2.56 2.66

5 10 10 0.3 2.69 2.56 3.04 2.98 2.78 2.51

1 30 10 0.3 4.98 5.04 4.98 5.04 4.98 5.04

1.5 30 10 0.3 2.66 2.43 3.01 2.81 2.14 2.19

5 30 10 0.3 2.85 2.51 3.09 2.72 2.33 2.27

1 5 50 0.3 5.18 4.12 5.18 4.12 5.18 4.12

1.5 5 50 0.3 3.21 2.68 3.60 2.95 2.95 2.58

5 5 50 0.3 3.00 2.54 3.55 2.99 2.95 2.62
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C8.2: Three endpoints with ρijj′ = −0.3

θ−1
lower = θupper

ni σ ρijj′
Sasabuchi selector θ-shift randomθ

control weak strong weak strong weak strong

1 5 10 0.3 5.10 4.91 5.10 4.91 5.10 4.91

1.5 5 10 0.3 2.70 2.51 3.72 3.48 3.04 2.86

5 5 10 0.3 3.02 2.35 3.67 2.74 3.06 2.24

1 10 10 0.3 4.74 4.96 4.74 4.96 4.74 4.96

1.5 10 10 0.3 2.50 2.59 3.15 3.24 2.52 2.61

5 10 10 0.3 2.74 2.64 3.10 3.00 2.41 2.29

1 30 10 0.3 5.05 4.91 5.05 4.91 5.05 4.91

1.5 30 10 0.3 2.60 2.40 2.92 2.80 2.29 2.26

5 30 10 0.3 2.72 2.55 2.94 2.82 2.30 2.24

1 5 50 0.3 5.09 4.12 5.09 4.12 5.09 4.12

1.5 5 50 0.3 3.30 2.67 3.71 2.95 3.04 2.50

5 5 50 0.3 3.02 2.57 3.66 3.02 3.06 2.55
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Table C9: Parametric for relevant ratios - unbalanced design

The last table for the parametric tests on relevant ratios gives results of the empirical

FWER for unbalanced designs. All scenarios are tested two-sided and the endpoints under

H0 receive a true ratio of means equal to one of the relevance thresholds.

θ−1
lower = θupper

n1 n2 σ ρijj′
Sasabuchi selector θ-shift randomθ

control weak strong weak strong weak strong

1 15 5 10 0.1 5.11 5.05 5.11 5.05 5.11 5.05

1.5 15 5 10 0.1 2.50 2.53 3.00 2.93 2.59 2.64

5 15 5 10 0.1 2.60 2.39 3.03 2.73 2.52 2.34

1 5 15 10 0.1 5.07 5.03 5.07 5.03 5.07 5.03

1.5 5 15 10 0.1 2.54 2.67 3.02 3.22 2.52 2.43

5 5 15 10 0.1 2.49 2.49 2.85 2.85 2.59 2.34

1 15 5 10 0.9 5.18 4.99 5.18 4.99 5.18 4.99

1.5 15 5 10 0.9 2.87 2.90 4.83 4.86 4.45 4.67

5 15 5 10 0.9 4.01 4.06 4.64 4.71 4.56 4.67

1 5 15 10 0.9 4.67 4.93 4.67 4.93 4.67 4.93

1.5 5 15 10 0.9 2.72 2.82 4.64 4.76 4.71 4.75

5 5 15 10 0.9 4.11 4.11 4.65 4.72 4.49 4.55

As expected, the procedures control empirically the FWER in the analyzed experiments.
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A.4 Nonparametric procedures to test for relevant ra-

tios

The final section presents first the simulation results for the nonparametric procedure

with a data-driven order of hypotheses (np-θ-shift), which use tests for relevant ratio and

afterwards some results of the modified permutation algorithm (minP) are given. As

discussed in chapter 6 these procedures have a different assumption on the data compared

to the other nonparametric tests. In the one-sided case for endpoints under H0 the expected

values are set to µ1j = 100 and µ2j = 100 ·κH0 and the true standard deviation is σ1j = 10

and σ2j = 10 · κH0 , with κH0 denoting a random value between 1 and θupper in steps of

0.05 units. For two-sided testing the parameters are set to µ1j = 100, µ2j = 100 · κH0 ,

σ1j = 10 and σ2j = 10 ·κH0 (increase) and µ1j = 100 · (1/κH0), µ2j = 100, σ1j = 10 · (1/κH0)

and σ2j = 10 (decrease), where κH0 denotes in this case a random value with θlower ≤
κH0 ≤ θupper. For the strong control and one-sided testing the endpoints under H1 have

parameters set as: µ1j = 100, µ2j = 100 · θupper + 50, σ1j = 10 and σ2j = 10 · θupper + 5.

In the two-sided case the parameters as selected as: µ1j = 100, µ2j = 100 · θupper + 50,

σ1j = 10 and σ2j = 10 · θupper + 5 (increase) and µ1j = 100 · (1/θlower) + 50, µ2j = 100,

σ1j = 10 · (1/θupper) + 5 and σ2j = 10.
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A.4.1 Procedure with a data-driven order of hypotheses

Table D1: Nonparametric for relevant ratios, FWER dependent on ni

The first table shows the empirical FWER for exact and asymptotic testing for varying

sample size per group. Endpoints under H0 receive a random true ratio of means equal to

one of the relevance thresholds. Only two-sided testing scenarios are observed.

assumption θ−1
lower = θupper ni σ ρijj′ weak strong

1 4 10 0.1 2.99 2.45

5 4 10 0.1 2.18 1.60

1 7 10 0.1 3.73 3.82
exact

5 7 10 0.1 2.43 2.18

1 15 10 0.1 4.68 4.61

5 15 10 0.1 2.75 2.37

1 4 10 0.1 5.85 5.37

5 4 10 0.1 4.27 3.37

1 7 10 0.1 5.25 5.33
asymptotic

5 7 10 0.1 3.37 3.00

1 15 10 0.1 5.17 5.05

5 15 10 0.1 3.04 2.66

Only for a sample size of 4 and θlower = θupper = 1 an empirical exceed of the FWER by

the asymptotic versions can be found. However as the procedures with a data-driven order

of hypotheses are superior for small sample sizes, the exact versions have to be used.
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Table D2: Nonparametric for relevant ratios - asymptotic

However to show that the np-θ-shift method controls the FWER when the asymptotic

versions are used on experiments with higher sample sizes, one table for the asymptotic

methods is listed. The endpoints under H0 have a random treatment effect as described

in the beginning of this section.

θ−1
lower = θupper

ni σ ρijj′
weak strong

side one two one two

1 10 10 0.1 6.10 5.23 6.08 5.23

1.5 10 10 0.1 0.95 0.51 0.86 0.47

5 10 10 0.1 0.29 0.12 0.21 0.09

1 30 10 0.1 5.39 5.14 5.51 4.89

1.5 30 10 0.1 0.56 0.28 1.96 0.38

5 30 10 0.1 0.11 0.05 0.76 0.06

1 10 10 0.9 5.03 5.13 5.36 5.09

1.5 10 10 0.9 2.01 1.66 1.96 1.65

5 10 10 0.9 0.87 0.58 0.76 0.49

1 30 10 0.9 5.20 5.13 5.25 5.04

1.5 30 10 0.9 1.16 0.76 1.22 0.78

5 30 10 0.9 0.26 0.17 0.27 0.18

1 30 5 0.1 5.44 5.11 5.50 4.92

1.5 30 5 0.1 0.57 0.29 0.58 0.36

5 30 5 0.1 0.08 0.03 0.11 0.06

1 30 15 0.1 5.36 5.09 5.65 4.90

1.5 30 15 0.1 0.61 0.32 0.63 0.38

5 30 15 0.1 0.16 0.05 0.16 0.08

If the sample sizes are not too small the behavior of the empirical error rate is similar to

the former sections: only if tested one-sided and θlower = θupper = 1 slight exceeds appear.
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Table D3: Nonparametric for relevant ratios - exact

The same behavior of the empirical FWER is observed for smaller sample sizes and the

exact version:

θ−1
lower = θupper

ni σ ρijj′
weak strong

side one two one two

1 5 10 0.1 6.25 3.42 6.25 3.05

1.5 5 10 0.1 1.14 0.39 1.10 0.34

5 5 10 0.1 0.36 0.11 0.22 0.08

1 10 10 0.1 5.24 4.39 5.07 4.22

1.5 10 10 0.1 0.82 0.42 0.74 0.35

5 10 10 0.1 0.25 0.10 0.17 0.07

1 5 10 0.9 4.75 3.12 4.83 3.13

1.5 5 10 0.9 2.35 1.40 2.33 1.17

5 5 10 0.9 1.16 0.58 1.17 0.42

1 10 10 0.9 4.55 4.27 4.66 4.27

1.5 10 10 0.9 1.77 1.41 1.68 1.45

5 10 10 0.9 0.76 0.50 0.66 0.41

1 5 5 0.1 6.30 3.43 6.29 3.14

1.5 5 5 0.1 0.95 0.34 0.98 0.31

5 5 5 0.1 0.22 0.06 0.14 0.01

1 5 15 0.1 6.27 3.40 5.84 2.52

1.5 5 15 0.1 1.34 0.46 1.16 0.31

5 5 15 0.1 0.50 0.16 0.39 0.12
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Table D4: Nonparametric for relevant ratios - weak and strong control for α =

1% and 10%

The next table gives results for the nominal FWER of 1% and 10%. All tested scenarios

are two-sided and - as for all following simulations - only exact versions are used. For

endpoints under H0 the true ratio of means are a random value.

θ−1
lower = θupper

ni σ ρijj′
α = 1% α = 10%

control weak strong weak strong

1 5 10 0.1 0.86 0.62 9.76 9.50

1.5 5 10 0.1 0.11 0.05 1.30 1.14

5 5 10 0.1 0.01 0.01 0.35 0.30

1 10 10 0.1 0.91 0.89 8.92 8.91

1.5 10 10 0.1 0.07 0.09 0.82 0.81

5 10 10 0.1 0.03 0 0.21 0.16

1 5 10 0.9 0.86 0.64 9.65 9.68

1.5 5 10 0.9 0.47 0.28 3.57 3.39

5 5 10 0.9 0.18 0.16 1.55 1.52

1 5 15 0.1 0.88 0.33 9.78 9.00

1.5 5 15 0.1 0.11 0.07 1.52 1.32

5 5 15 0.1 0.02 0.02 0.52 0.43
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Table D5: Nonparametric for relevant ratios - varying number of endpoints under

H0

This table list the empirical FWER for varying a number of endpoints under H0. It is

basically the same as C5 but for the np-θ-shift procedure. Again all settings are two-sided.

relevance number of endpoints
empirical FWE

thresholds under H0 (out of 50)

1 / 1 1 2.49

1 / 1 25 3.04

1 / 1 50 3.42

0.2 / 5 1 0

0.2 / 5 25 0.02

0.2 / 5 50 0.11
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Table D6: Nonparametric for relevant ratios - ratio under H0 equal to θlower, θupper

In the following table the data conditions vary. Three conditions are tested: in I the mean

level of the data is as usual 100 and the variance is constant. In condition II the design

proposed by Attoor et al. (2004) is used: the mean level is exponentially distributed

and the coefficient of variation is set to a constant value among the endpoints; the data

of the individual endpoints follow a multivariate normal distribution. Condition III shows

the results for scenarios where the data is taken from a skewed distribution, with skewness

2 and kurtosis 7. Here the mean level of the data is 100 and the variance is constant.

In all settings the endpoints under H0 have a true ratio of means equal to either θlower or

θupper and it is tested two-sided.

θ−1
lower = θupper ni σ / ρijj′ condition I condition II condition III

control cv weak strong weak strong weak strong

1 5 10 / 0.1 0.1 3.42 3.05 2.93 3.22 3.31 2.87

1.5 5 10 / 0.1 0.1 2.53 1.98 1.98 2.18 2.40 1.57

5 5 10 / 0.1 0.1 2.53 1.87 1.98 2.03 2.40 1.78

1 10 10 / 0.1 0.1 4.39 4.22 4.36 4.43 4.15 4.32

1.5 10 10 / 0.1 0.1 2.70 2.81 2.73 2.66 2.48 2.64

5 10 10 / 0.1 0.1 2.70 2.48 2.73 2.33 2.48 2.37

1 5 10 / 0.1 0.9 3.12 3.13 3.28 3.09 3.19 2.96

1.5 5 10 / 0.1 0.9 2.83 2.61 2.90 2.46 2.78 2.45

5 5 10 / 0.1 0.9 2.83 2.80 2.90 2.65 2.78 2.64

1 5 15 / 0.15 0.1 3.40 2.52 2.97 2.66 3.27 2.41

1.5 5 15 / 0.15 0.1 2.48 1.73 1.98 1.91 2.40 1.50

5 5 15 / 0.15 0.1 2.48 1.98 1.98 2.12 2.40 1.83
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Table D7: Nonparametric for relevant ratios - varying correlation of endpoints

under H0

The table is based on the tables of C8, where 47 endpoints have a true correlation of 0.3 and

for the remaining three variables the correlation is set to a different value. The expected

values of the endpoints under H1 (strong control) are chosen as given in the introduction

of this section and the endpoints under H0 have a true ratio of means equal to one of the

relevance thresholds. All settings are two-sided.

θ−1
lower = θupper

ni σ ρijj′
ρijj′ = 0.01 ρijj′ = −0.3

control weak strong weak strong

1 5 10 0.3 3.18 3.19 3.36 3.17

1.5 5 10 0.3 2.56 2.14 2.50 2.09

5 5 10 0.3 2.56 2.00 2.50 1.98

1 10 10 0.3 4.18 4.50 4.12 4.29

1.5 10 10 0.3 2.86 2.78 2.66 2.98

5 10 10 0.3 2.86 2.53 2.66 2.66

1 5 15 0.3 3.14 2.71 3.34 2.61

1.5 5 15 0.3 2.47 1.94 2.50 1.90

5 5 15 0.3 2.47 2.07 2.50 2.08



186 Simulations

Table D8: Nonparametric for relevant ratios - unbalanced design

In the following table results of the empirical FWER for unbalanced designs are given. All

scenarios are tested two-sided and the endpoints under H0 receive a true ratio of means

equal to one of the relevance thresholds.

θ−1
lower = θupper n1 n2 σ ρijj′ weak strong

1 15 5 10 0.1 4.18 4.12

1.5 15 5 10 0.1 2.81 2.54

5 15 5 10 0.1 2.81 2.54

1 5 15 10 0.1 4.30 4.31

1.5 5 15 10 0.1 2.75 2.67

5 5 15 10 0.1 2.75 2.28

1 15 5 10 0.9 4.17 4.35

1.5 15 5 10 0.9 3.60 3.47

5 15 5 10 0.9 3.60 3.44

1 5 15 10 0.9 4.05 4.00

1.5 5 15 10 0.9 3.47 3.39

5 5 15 10 0.9 3.47 3.37
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A.4.2 Relevance-shifted permutation algorithm

Table D9: minP - FWER for various condition using Gaussian distributed data

The first table of the FWER results corresponding to the relevance-shifted permutation

algorithm shows scenarios for various conditions by use of Gaussian distributed data. All

settings of the parameters are listed in table. Results are given for the weak and the strong

control of the FWER. For half of the scenarios the expected values are set as described in

the introduction. Simulation results for this random ratio of the means are printed in the

first two columns including empirical FWEs. In the last two columns the ratio of means

is set to one of the margins of the null hypothesis. That is, the ratio is equal to one of the

thresholds. All scenarios in this table and the further ones are analyzed with two-sided

tests. If not stated otherwise, an error rate of 5% is chosen.

θ−1
lower = θupper

ni σ ρijj′
random margin

control weak strong weak strong

1 5 10 0.1 0 0 0 0

1.5 5 10 0.1 0 0 0 0

5 5 10 0.1 0.05 0.08 0 0

1 10 10 0.1 4.65 4.12 4.65 4.12

1.5 10 10 0.1 0.53 0.56 3.30 3.14

5 10 10 0.1 0.15 0.11 3.30 3.01

1 5 10 0.9 1.42 0.91 1.42 0.91

1.5 5 10 0.9 0.02 0 1.37 1.45

5 5 10 0.9 0.22 0.16 1.37 1.44

1 10 10 0.9 4.77 3.97 4.77 3.97

1.5 10 10 0.9 0.92 0.87 3.37 3.13

5 10 10 0.9 0.35 0.35 3.37 3.13

1 5 5 0.9 1.42 1.01 1.42 1.01

1.5 5 5 0.9 0.16 0.27 1.37 1.45

5 5 5 0.9 0.29 0.28 1.37 1.45

1 5 15 0.9 1.42 0.66 1.42 0.66

1.5 5 15 0.9 0 0 1.27 1.35

5 5 15 0.9 0.06 0.01 1.37 1.43
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Table D10: minP - FWER for various condition using skewed distributed data

This table gives empirical FWERs for scenarios with random numbers taken from a skewed

distribution with a skewness of 2 and a kurtosis of 7. Beside the non-normal distributed

data, the tested experiments are exactly the same as the ones analyzed in the last two

columns of the former table.

θ−1
lower = θupper ni σ ρijj′ weak control strong control

1 5 10 0.1 0 0

1.5 5 10 0.1 0 0

5 5 10 0.1 0 0

1 10 10 0.1 4.88 4.18

1.5 10 10 0.1 3.46 3.42

5 10 10 0.1 3.46 3.15

1 5 10 0.9 0.80 0.39

1.5 5 10 0.9 0.83 1.12

5 5 10 0.9 0.84 1.07

1 10 10 0.9 4.65 4.25

1.5 10 10 0.9 3.26 0.33

5 10 10 0.9 3.26 0.33

1 5 5 0.9 0.80 0.46

1.5 5 5 0.9 0.84 1.12

5 5 5 0.9 0.84 1.12

1 5 15 0.9 0.80 0.31

1.5 5 15 0.9 0.80 1.09

5 5 15 0.9 0.84 1.03
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Table D11: minP - unbalanced design, large sample size, varying α

In the last table various scenarios, such as unbalanced data, larger sample sizes and the

nominal FWER levels of 1% and 10% are tested. All ratio of medians corresponding to

endpoints under H0 are set to one margin of the null hypothesis.

nominal FWER [%] θ−1
lower = θupper n1 n2 σ ρijj′ weak control strong control

5 1 15 5 10 0.9 4.94 3.82

5 1.5 15 5 10 0.9 2.92 2.91

5 5 15 5 10 0.9 2.92 2.84

5 1 5 15 10 0.9 4.64 3.79

5 1.5 5 15 10 0.9 2.70 2.69

5 5 5 15 10 0.9 2.70 2.58

5 1 10 10 10 0.5 4.74 4.61

5 1.5 10 10 10 0.5 3.36 3.71

5 5 10 10 10 0.5 3.36 3.59

1 1 10 10 10 0.9 0.89 0.79

1 1.5 10 10 10 0.9 0.66 0.59

1 5 10 10 10 0.9 0.66 0.59

10 1 10 10 10 0.9 9.96 8.13

10 1.5 10 10 10 0.9 6.37 6.48

10 5 10 10 10 0.9 6.37 6.48

5 1 20 20 10 0.9 4.90 4.58

5 1.5 20 20 10 0.9 3.29 3.64

5 5 20 20 10 0.9 3.29 3.64

In all tables corresponding to the minP algorithm the empirical FWER is less than the

nominal error rate.
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