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ABSTRACT

This thesis deals with methods of the detection of entanglement. After recalling
some facts and definitions concerning entanglement and separability, we investigate
two methods of the detection of entanglement.

In the first part of this thesis we consider so-called entanglement witnesses,
mainly in view of the detection of multipartite entanglement. Entanglement wit-
nesses are observables for which a negative expectation value indicates entanglement.
We first present a simple method to construct these witnesses. Since witnesses are
nonlocal observables, they are not easy to measure in a real experiment. However,
as we will show, one can circumvent this problem by decomposing the witness into
several local observables which can be measured separately. We calculate the local
decompositions for several interesting witnesses for two, three and four qubits. Local
decompositions can be optimized in the number of measurement settings which are
needed for an experimental implementation. We present a method to prove that
a given local decomposition is optimal and discuss with this the optimality of our
decompositions. Then we present another method of designing witnesses which are
by construction measurable with local measurements. Finally, we shortly report on
experiments where some of the witnesses derived in this part have been used to
detect three- and four-partite entanglement of polarized photons.

The second part of this thesis deals with separability criteria which are written
in terms of uncertainty relations. There are two different formulations of uncertainty
relations since one can measure the uncertainty of an observable by its variance as
well as by entropic quantities. We show that both formulations are useful tools for
the derivation of separability criteria for finite-dimensional systems and investigate
the resulting criteria. Our results in this part exhibit also some more fundamental
properties of entanglement: We show how known separability criteria for infinite-
dimensional systems can be translated to finite-dimensional systems. Furthermore,
we prove that any entropic uncertainty relation on one part of the system gives rise
to a separability criterion on the composite system.

Keywords: Entanglement, Entanglement witnesses, Uncertainty relations






Z USAMMENFASSUNG

Diese Arbeit behandelt Methoden zum Nachweis von Verschrinkung. Nach
einer kurzen Einfiihrung der wichtigsten Definitionen und Resultate des Separa-
bilitatsproblems werden zwei Moglichkeiten zum Nachweis von Verschrankung un-
tersucht.

Im ersten Teil der Arbeit behandeln wir sogenannte Verschrinkungszeugen,
hauptséchlich im Hinblick auf den Nachweis von Mehrparteienverschrankung. Ver-
schrinkungszeugen sind Observable, bei denen ein negativer Erwartungswert ein
Angzeichen fiir Verschréinkung ist. Wir stellen zuerst eine einfache Methode zur
Konstruktion solcher Verschrankungszeugen vor. Da die so konstruierten Obser-
vablen nichtlokal sind, sind sie experimentell nicht leicht zugéngig. Wie wir dann
zeigen, 143t sich diese Problem jedoch durch eine Zerlegung des Zeugen in mehrere
lokale Observable 16sen, diese lokalen Observablen kénnen dann einzeln gemessen
werden. Wir berechnen die lokalen Zerlegungen verschiedener Verschrankungszeu-
gen flir interessante Zustdnde von zwei, drei und vier Qubits. Diese Zerlegungen
konnen in dem Sinne, dafl sie moglichst wenige lokale Messungen erfordern, opti-
miert werden. Wir geben ein Verfahren an, mit dem man fiir eine gegebene Zer-
legung untersuchen kann, ob sie optimal ist und untersuchen die vorher berechneten
Zerlegungen damit. Dann wird noch ein anderes Verfahren zur Konstruktion von
Zeugenoperatoren eingefiihrt, bei dem die Zeugen automatisch lokal mef3bar sind.
Schliefllich wird noch von Experimenten berichtet, in denen einige der in dieser Ar-
beit berechneten Zeugen zum Nachweis von Polarisationsverschrankung in Systemen
von drei und vier Photonen benutzt wurden.

Der zweite Teil dieser Arbeit behandelt den Nachweis von Verschréankung mithilfe
von Kriterien, die auf Unschérferelationen basieren. Es gibt zwei verschiedene For-
mulierungen von Unschérferelationen, entweder wird die Varianz oder eine Entropie
als Ma#B fiir die Unschérfe einer Observable genommen. Wir zeigen, dafl beide For-
mulierungen zur Herleitung von Separabilitatskriterien fiir endlichdimensionale Sys-
teme geeignet sind und untersuchen die sich ergebenden Kriterien. Ferner zeigen
die Resultate dieses Teils der Arbeit einige grundlegende Zusammenhénge auf. So
zeigen wir, wie einige bekannte Separabilitatskriterien fiir unendlichdimensionale
Systeme auf endlichdimensionale Systeme tibertragen werden kénnen. Auflerdem
zeigen wir, dafl aus jeder entropischen Unschérferelation fiir ein Teilsystem ein Se-
parabilitatskriterium fiir das Gesamtsystem folgt.

Schlagworte: Verschriankung, Verschrankungszeugen, Unscharferelationen



Es gibt nicht Odes, nichts Unfruchtbares, nichts Totes in der Welt;
kein Chaos, keine Verwirrung, aufler einer scheinbaren;

ungefahr wie sie in einem Teiche zu herrschen schiene,

wenn man aus einiger Entfernung eine verworrene Bewegung

und sozusagen ein Gewimmel von Fischen sdhe,

ohne die Fische selbst zu unterscheiden.

Gottfried Wilhelm Leibniz
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INTRODUCTION

The study of the phenonemon of entanglement goes back to the thirties of the
last century. Albert Einstein, Boris Podolski and Nathan Rosen were the first
who studied the counterintuitive features of quantum mechanical correlations in
composite systems [1]. Inspired by this, Erwin Schrodinger coined the term ., Ver-
schrankung® (translated as “entanglement”) to describe these correlations [2]. How-
ever, all these authors wanted to express their disapproval with the consequences of
quantum theory. They viewed entanglement as a property of quantum theory con-
tradicting the intuition so much that they concluded that quantum theory cannot
be a fundamental and complete theory.

In the following years the physicists did not pay much attention to the study
of entanglement. It was known to be a bizarre phenomenon, but to the majority
of physicists it did not seem to be an interesting or useful topic for research. This
situation changed dramatically in the last twenty years, mainly for two reasons.

One of the reasons is of theoretical nature. It has turned out that quantum me-
chanics enables to perform tasks which are not possible within classical mechanics.
These new possibilities concern mainly computational tasks [3—6], quantum cryp-
tography [7, 8] and quantum teleportation [9]. It has also become more and more
clear that with respect to these new possibilities entanglement plays a crucial role.

The other reason lies in the experimental progress in the last decades. Entan-
glement is not a purely theoretical concept anymore, it has been produced and
investigated in many experimental situations [10, 11]. The experimental progress
also allowed to realize some of the new protocols mentioned above [12, 13].

Although there has been a lot of effort to characterize entanglement in the last
years, it is still not fully understood. For instance, for the simple question whether
a given state of a bipartite system is entangled or not, no general answer is known.
The situation gets even more complicated when more then two parties are involved.

The goal of this thesis is to characterize entanglement under a certain perspective,
namely the perspective of the detection of entanglement. All the results presented
here can be viewed as attempts to answer the question: What shall we measure to
prove that a given state is entangled? To this aim we develop criteria for entangle-
ment which are directly related to measurement data. Our results will, however, as
a byproduct also establish some facts on a fundamental level. For instance, we will
investigate the connection between entanglement and uncertainty relations.



2 Introduction

This thesis is structured as follows. In the first chapter we will give a brief
introduction into the notions of entanglement and separability. It is not our aim to
give a complete overview there, we only want to introduce the facts that are needed
for the understanding of the rest of this thesis. After this introduction, this thesis
is divided into two parts. As we will see, there are connections between them, but
the main ideas are completely different.

The first part, in the Chapter 2, investigates the possibility of detecting entan-
glement using the method of entanglement witnesses. These are special observables
which are designed for the detection of entanglement. We will mainly study their
application to multipartite systems. We will first provide methods to construct
them. Since they are nonlocal observables, it seems on the first view that they are
difficult to implement experimentally. However, we will show that this difficulty
can be circumvented by using local decompositions of witnesses. We will calculate
these local decompositions for several types of witnesses and investigate the ques-
tion whether these decompositions are optimal in a sense to be defined. Finally, we
will also shortly report on recent experiments performed by Mohamed Bourennane
and coworkers in the group of Harald Weinfurter in Garching, where some of the
witnesses presented in this chapter have been implemented in order to detect true
multipartite entanglement. The results presented in Chapter 2 are based on the
Refs. [I, ITT, TV, VI, VII]!.

The second part, the Chapter 3, investigates whether criteria based on uncer-
tainty relations can be used for the detection of entanglement. There are two dif-
ferent formulations of the uncertainty principle. The first one uses variances as the
measure of the uncertainty and the second one uses entropies for this task. We will
consider both formulations and show that both can be used to detect entanglement.
We will also establish some fundamental connections between uncertainty relations
and entanglement. For instance we will show how any entropic uncertainty rela-
tion on on part of the system can be used to derive a separability criteria on the
composite system. The results in this chapter origin from the Refs. [V, VIII].

1References in Roman numerals refer to the publication list on page 89.



CHAPTER 1

ENTANGLEMENT

In this chapter we want to give a short introduction into the notions of entangle-
ment, separability, and the so-called separability problem. Again, we want to remind
the reader that we do not aim to give a complete overview of the subject, we only
want to introduce the concepts and definitions which are necessary for the under-
standing of the further course of this thesis. This approach implies that concerning
proofs we mostly refer to the literature. We also want to keep this introduction as
non-technical as possible. Some more technical facts are introduced in the following
chapters at the place where they are needed. Overviews of the topics presented here
can be found in Refs. [14-17].

1.1 Bipartite entanglement

In this section, we want to introduce some facts about bipartite entanglement. We
only look at finite-dimensional systems here. The properties of infinite-dimensional
subsystems will be discussed later in Section 3.7. Let us start our discussion with
pure states.

1.1.1 Pure states

Let us assume that we have given two quantum systems. The first one is owned
by one physicist, called Alice, and the second one by another one, called Bob. The
physical states of Alice’s system may be described by states in a Hilbert space H 4
of dimension N, and in Bob’s system in a Hilbert space Hp of dimension M. The
composite system of both parties is then described by vectors in the tensor-product
of the two spaces H = H4 ® Hp. This is defined as follows: Let |a;) be a basis of
Alice’s space and |b;) be a basis of Bob’s space. Then H4 ® Hp is the set of all
linear combinations of the states |a;) ® |b;). Thus any vector in Hy ® Hp can be

written as
N,M

|v) = Z cijlai) @ |bj) € Ha @ Hp, (1.1)

1,j=1
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with a complex N x M matrix C' = (c¢;;). From this it directly follows that the
dimension of H equals N - M. To keep the notation short, we often write tensor
products of vectors as |a) ® |b) = |a)|b) = |ab).

The measurement of observables! can be defined in a similar way: If A is
an observable on Alice’s space and B on Bob’s space, the expectation value
of A® B is defined for the basis vectors by Tr((A ® B)(|a;){(ai| ® |bj)(b;|)) =
Tr(Ala;)(a;|)Tr(B|bj)(bj]). This definition is extended by linearity to other observ-
ables and states. We often write the expectation value of an observable M in the
state o as Tr(Mp) = (M),. Now we can define separability and entanglement for
pure states.

Definition 1.1. A pure state 1)) € H is called a product state or separable if we
can find states |¢?) € Ha and |¢®) € Hp such that

[4) = o) ® [¢") (1.2)
holds. Otherwise the state |¢)) is called entangled.

Physically, the definition of product states means that the state is uncorrelated.
A product state can thus easily be prepared in a local way: Alice produces the state
|¢4) and Bob produces independently |¢5). If Alice measures any observable A and
Bob measures B, then the probabilities of the different outcomes factorize. Thus,
the measurement outcomes for Alice do not depend on the outcomes on Bob’s side.

The question, whether a given pure state is entangled or not, is easy to decide:
|4) is a product state, if and only if the rank of the matrix C' = (¢;;) in Eq. (1.1)
equals one. This is due to the fact that a matrix C' is of rank one, if and only
if there exist two vectors a and b such that c¢;; = a;b;. In this case one can write
[y = (32; ailai)) ® (32 bj[bs)), which proves the claim.

Before proceeding to the definition of entanglement for mixed states we shall
mention a very useful tool in the description of entanglement for bipartite systems.
This is the so-called Schmidt decomposition. Some of its properties will play an
outstanding role in this thesis thus we will give a proof of it and its important
properties later in Section 2.6.

Lemma 1.2. Let |¢)) = vaji/[l cijlaibj) € Ha ® Hp be a vector in the tensor
product of two Hilbert spaces. Then there exist an orthonormal basis |a;) of Ha

and an orthonormal basis |3;) of Hp such that

R
) = MelawBe) (1.3)
k=1

holds, with positive real coefficients Ax. The A are uniquely determined as the
square roots of the eigenvalues of the matrix CCT, where C' = (¢;;). The number R
is called the Schmidt rank of |¢). If the A\ are pairwise different, also the |ay) and
|Bk) are unique up to a phase.

!By the term “observables” we denote Hermitean operators acting in a Hilbert space H. We also
denote the set of all bounded linear operators by B(H).
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Note that the pure product states correspond to the states of Schmidt rank one.
In this sense, the Schmidt rank of a state can be used to extend the notion of product
states and to measure the entanglement of a non-separable state.

1.1.2 Mixed states

In a more general situation we do not know the exact state of a quantum system.
We only know that it is, with some probabilities p;, in one of some states |¢;) € H.
This situation is described by a density matrix

0= pilgi)(el, with > p=1. (1.4)

The density matrix is an element of B(H). In a given basis this density matrix or
state is represented by a complex matrix. This matrix is positive semidefinite? and
thus Hermitean, since all the operators |¢;)(¢;| are positive and Hermitean. Due to
the condition on the p; also Tr(¢) = 1 holds. Conversely, any positive semidefinite
operator of trace one can be interpreted as a density matrix of some state. This
leads to a geometrical picture of the set of all states as a convex set. By this we
mean that given two states g1 and pg, their convex combination ¢ = ap + (1 — a) 02
with « € [0;1] is again a state. This property holds also for combinations of more
than two states. Given some p; > 0 with ), p; = 1 then the convex combination
>, pioi of some states is again a state. We call coefficients p; > 0 with the property
>_;pi = 1 often convex weights. Now we can define separability and entanglement
for mixed states according to Ref. [18].

Definition 1.3. Let p € B(Ha ® Hp) be a density matrix for a composite
system. We say that o is a product state if there exist states o for Alice and o for
Bob such that

0=0"®o". (1.5)

The state is called separable, if there are convex weights p; and product states Qf@gf
such that

0= pioj @ o (1.6)
[

holds. Otherwise the state is called entangled.

Physically, this definition discriminates between three scenarios: A product state
is an uncorrelated state, where Alice and Bob own each a separate state. For non-
product states there are two different kinds of correlations: Separable states are
classically correlated: This means that for the production of a separable state only
local operations and classical communication (LOCC) are necessary. Alice and Bob
can, by classical communication, share a random number generator which produces
the outcomes ¢ with probabilities p;. For each of the outcomes, they can agree
to produce the state Qf‘ ® QiB locally. By this procedure they produce the state

2A matrix C = (c¢;;) is called positive semidefinite, written as C' > 0, if for all vectors a and b
the relation ), 5 @iCij b; > 0 holds.
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entangled

Figure 1.1.  Schematic picture of the set of all states as a convex set
and the set of separable states as a convexr subset.

0= > pigf‘ ® QZ-B . This procedure is by no means specific for quantum theory,
which justifies the terminology. Otherwise, if a state is entangled, the correlations
cannot origin from the classical procedure described above. In this sense entangled
states are a typical feature of quantum mechanics.

For the theme of this thesis it is very important to note that the set of separable
states is a convex set. This is clear from the definition of separability, obviously
a convex combination of two separable states is again separable. Furthermore, the
definition of separability implies that any separable state can be written as a convex
combination of pure product states. Thus the set of separable states is the so called
convex hull of the pure product states. This scheme is also shown in Figure 1.1.

Given the definition of entanglement and separability, it is very natural to ask
whether a given density matrix is separable or entangled. This is the so-called
separability problem. There are several criteria known, which imply separability or
entanglement of a state. However, up to now, no general solution for the separability
problem is known. It is one of the main aims of this thesis to develop criteria
for entanglement, which are directly related to measurement data, and are thus
implementable in experiments.

Before proceeding with the presentation of different separability criteria, it is
useful to define some notations for the simplest bipartite quantum system. Let us
assume that Alice owns a two-level quantum system, called a qubit, with the basis
vectors |0) and [1)3. If Bob owns also a qubit the whole space is four-dimensional, a
basis is given by {]|00), |01), |10),|11)}. An important set of entangled states are the

3We always denote by [0) = |2z%) (resp. |1) = |27)) the eigenvectors of the Pauli matrix o,
corresponding to the eigenvalue +1 (—1). The eigenvectors of the other Pauli matrices, o, and oy,
are denoted by [z%) = (]0) +[1))/v/2 and |yT) = (|0) £1i|1))/V2.
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so-called Bell states. They form an orthonormal basis and are given by

%) = S5 (0 +10). 17 = —=(01) = 10},
6F) = —=(j00) + [11)),  [67) = —=(00) — [11)). (L.7)

5

2 V2

These states are maximally entangled, in the sense that any other entangled state
can be produced from each of them by local means. The state |1)7) is also often
called the singlet state. An important separable state it the maximally mixed state
0 = 1/4, which represents white noise.

1.1.3 Criteria for entanglement

Here we want to give some criteria for entanglement or separability, which play a
crucial role in this thesis.

Let us start with the criterion of the partial transposition. We can expand any
density matrix of a composite quantum system in a chosen product basis:

N M
0=3"" puuliy (Gl K () (18)

1,7 k,l

Given this decomposition, we can define the partial transposition of ¢ as the trans-
position with respect to one subsystem. Thus we have two partial transpositions.
The partial transposition with respect to Alice is given by

N M
o =3 piiali) (il @ k)Y (1.9)

ij kil

and similarly we can define o2 by exchanging k and [ instead of the i and j. Note
that the partial transposition is related to the usual transposition by o = (QTA)TB
and thus '8 = (p™")T.

It is also worth mentioning that the partial transposition depends on the product
basis in which it is performed. But one can show that its spectrum does not depend
on the basis®. We say a density matrix o has a positive partial transpose (or: the
matrix is PPT) if

04 >0 0" >0 (1.10)

holds. If a matrix is not PPT, we call it NPT. Now we can formulate the PPT
criterion, originally introduced in Ref. [19].

Theorem 1.4 (PPT Criterion). Let o be a bipartite separable state. Then the
partial transposition with respect to each subsystem is positive.

4Note that this also holds for the normal transposition. The transpose of a matrix depends on
the basis, in which it is transposed, but the spectrum of the transpose does not.



8 Entanglement

Proof. This fact follows directly from the definition of separability in Eq. (1.6).
O

This theorem endows us with a very strong criterion for the detection of entan-
glement. For a given density matrix we can easily calculate the partial transpose
and compute its spectrum. If we find negative eigenvalues we can conclude that
the state is entangled. Given this result, the question arises if this criterion is also
sufficient for separability, 4.e., whether o’ > 0 implies separability. As it was shown
already shortly after the discovery of the PPT criterion, this is the case only in low
dimensional systems:

Theorem 1.5. If g is a state in a 2 x 2 or 2 x 3 system, then ¢’ > 0 implies
that o is separable. In other dimensions this is not the case.

Proof. For the proof of the 2x2 or 2x 3 case, see [20]. For the first counterexample
in an 2 x 4 system see [21]. We will discuss this in the context of bound entanglement
later in Section 1.1.5. O

Now we can mention two other criteria, which play a role in this thesis. The first
one is the range criterion:

Theorem 1.6 (Range criterion). A state g is entangled if there is no family of
product vectors |a;b;) such that the set {|a;b;)} spans the range of ¢ as well as the
set {|afb;)}® spans the range of o’4.

Proof. 1t is easy to see that for separable states such a basis by definition exists.
See also Ref. [21]. O

Another important criterion is the majorization criterion:

Theorem 1.7 (Majorization criterion). Let o be separable and let p4 = Trp(p)
be the reduced state with respect to Alice. Denote by P = (p1,p2,...) the de-
creasingly ordered eigenvalues of o and by Q = (q1, g2, ...) the decreasingly ordered
eigenvalues of g4. Then

k k
Yoni< a (1.11)
=1 =1

holds for all k. The same inequality holds, when ¢ 4 is replaced by the reduced density
matrix of the second system op = T7r4(0).

Proof. This fact was proven in Ref. [22]. O

Later in this thesis we will discuss how this criterion can be extended if not
the eigenvalues of the density matrix, but the probabilities of the outcomes of a
measurement are taken into account.

Of course, there are much more entanglement criteria than the three presented
here. But they do not play such an important role in the present thesis. However,
many of them are worth to be mentioned: For two qubits also the reduction criterion
is necessary and sufficient for separability [23]. It is also possible to characterize

5The symbol |a*) denotes the vector resulting when all coefficients of |a) in a certain basis are
complex conjugated. Note that |a*)(a*| = |a){a| .
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separability completely in terms of positive, but not completely positive maps [20].
However, the characterization of all positive, but not completely positive maps is
still an open problem in mathematics [17]. For the detection of bound entanglement
the so-called cross norm or realignment criterion has turned out to be useful [24,
25]. Recently, there have been several approaches to detect entanglement with an
algorithmic approach, using the technique of semidefinite programming [26, 27].

Other approaches to detect entanglement use special observables, they are called
either Bell inequalities, or entanglement witnesses. Bell inequalities will be discussed
in Section 1.3. Entanglement witnesses will be discussed now.

1.1.4 Entanglement witnesses

The criteria from the previous section have all something in common: they all
assume that the density matrix is already known. They all require applying certain
operations to a density matrix, to decide whether the state is entangled or notS.
There is, however, a necessary and sufficient entanglement criterion in terms of
directly measurable observables. These are the so called entanglement witnesses
[20, 29], which we introduce now.

Definition 1.8. An observable W is called an entanglement witness (or witness
for short), if

Tr(Wos) > 0 for all separable o4
Tr(Wp.) < 0 for at least one entangled g (1.12)

holds. Thus, if we measure Tr(Wp) < 0 we know for sure that the state o is
entangled. We call a state with Tr(Wp) < 0 to be detected by W.

This definition has a clear geometrical meaning. The expectation value of an
observable depends linearly on the state. Thus, the set of states where Tr(Wp) = 0
holds is a hyperplane in the set of all states, cutting this set into two parts. In
the part with Tr(Wpg) > 0 lies the set of all separable states, the other part (with
Tr(Wp) < 0) is the set of state detected by W. This scheme is depicted in Figure
1.2.

From this geometrical interpretation it follows that all entangled states can be
detected by witnesses:

Theorem 1.9. For each entangled state g, there exist an entanglement witness
detecting it.

Proof. This theorem was proved in [20]. The idea for the proof relies on the fact
that the set of separable states is a convex and closed. Thus, for a point outside this
set, there is a hyperplane separating this point from the convex set’. O

5But note that in principle one can decide whether a state violates the PPT criterion or not
without knowing the state completely. For a scheme to do that see Ref. [28].

"For finite-dimensional spaces with a scalar product this is easy to derive. The statement holds
also for infinite-dimensional Banach spaces, where the proof requires the Hahn-Banach-theorem
[30].
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entangled

separable

Figure 1.2. Schematic picture of the set of all states and the set
of separable states as nested convex sets and two witnesses, W) and
W), The red lines represent the hyperplanes, where Tr(Wp) =0. The
witness W) is finer than the witness W®.

Although this theorem ensures us that any state can be detected with an en-
tanglement witness, the task remains to construct witnesses. This is not an easy
task, and the characterization of all witnesses is, in general, a very demanding and
unsolved problem. Solving this problem would also solve the separability problem.

To give an example how a witness can be constructed in a special case, let us
take a state g, which is NPT. Then there is a negative eigenvalue A < 0 of gl4
and a corresponding eigenvector |n). Now W = |n)(n|T4 is a witness, detecting g, :
We have Tr(Woe) = Tr(|n)(n|"™ee) = Tr(ln)(nle*) = A= < 0 and Tr(Wes) =
Tr(In)(nlel4) > 0 for all separable gs, since they are PPT.

Every entanglement witness can, by definition, detect some entangled states.
However, some witnesses are better in this task, 7.e., one can optimize entanglement
witnesses: A witness W) is called finer than another witness W@ if W) detects
all the states detected by W(?) and also some states in addition [31]. A witness W)
is called optimal, if there is no other witness finer than W), The fact that a witness
can be finer then another one has again a geometrical meaning, illustrated in Figure
1.2. Note that a necessary condition for a witness to be optimal is that it “touches”
the set of separable states, i.e., there exist a separable state o with Tr(Wp) = 0. To
optimize a given witness is, in general, a formidable task.

Entanglement witnesses provide us with an entanglement criterion, which is di-
rectly related to expectation values of observables. Thus they are good tools to
detect entanglement in real experimental situations. Since they are nonlocal observ-
ables, some modifications are necessary, before they can be implemented in an real
experiment. To close this gap between the witnesses as theoretical constructs and
as observables measured in a laboratory is one of the main topics of this thesis.
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1.1.5 Bound entanglement

For many tasks in quantum information theory like teleportation or cryptography
one needs maximally entangled two-qubit states, i.e., singlets. In the real world,
however, noise is unavoidable, thus only mixed states are available. So one has to
deal with the question, if and how one can create a singlet state out of some given
mixed state. This leads to the problem of the so-called distillation of entanglement.
It can be posed a follows: Assume that there is an arbitrary, but finite, number of
copies of an entangled quantum state ¢ distributed between Alice and Bob. Can
they perform local operations on the states, assisted by classical communication,
such that at the end they share a singlet state? If this is the case, we call the state
o distillable, otherwise we call it undistillable or bound entangled.

It is not clear from the beginning that one can distill quantum states at all.
However, the first distillation protocols were derived in [32, 33|, showing that it is
in principle possible. The question whether a given state is distillable is of course
difficult to decide, since there is no restriction to a specific kind of local operations,
as well as to the number of copies. The failure of a special protocol is not enough
to conclude that a state is undistillable. However, some simple criteria is known:

Theorem 1.10. If a bipartite state is PPT, then the state is undistillable. If a
state violates the majorization criterion, then the state is distillable.

Proof. For the sufficient condition to be undistillable, see Ref. [34]. For the
sufficient condition to be distillable, see Ref. [35]. O

Although this gives a simple necessary criterion for distillability, it leaves two
questions: First, the question arises, if the property of a state to be NPT already
suffices to be distillable. This problem is note finally decided. However, it has been
conjectured that this is not the case. Some evidence for this conjecture has given in
[36, 37].

The other interesting question lies in the characterization of PPT entanglement.
We know already, that PPT entangled states cannot exist in 2 x 2 and 2 x 3 systems.
But in other dimensions they exists, the first example of them has been given in
[21], for further examples see Refs. [38, 39]. Physically, the Theorem 1.10 states
that PPT entangled states represent a weak form of entanglement, since bound
entangled states are useless for certain tasks. However, for some tasks they can be
used: In Ref. [40] an example has been given how bound entangled states can be
used for establishing a secret key in quantum cryptography.

Nevertheless, all these results indicate that bound entangled states are a in-
teresting object of study. Their construction, characterization and detection is a
challenging and important task.

1.2 Multipartite entanglement

Here, we want to discuss the structure of entanglement when more than two parties
are involved. It will turn out that this structure is much more rich than the structure
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of entanglement in the bipartite case. Especially, the difference between genuine
multipartite entanglement and lower classes of entanglement becomes important.
We first discuss the case of three qubits and then the case of general multipartite
systems.

1.2.1 Three qubits

Let us first consider pure states. There are two classes of pure states which are not
genuinely tripartite entangled: The fully separable states, which can be written as

65 a0 = l)a @ 18)8 @ [y, (1.13)

and the biseparable states which can be written as a product state in the bipartite
system, which is created, if two of the three qubits are grouped together to one
party. There are three possibilities of grouping two qubits together, hence there are
three classes of biseparable states. One example is

6°) A1pe = o) 4 @ |0) Be- (1.14)

The other possibilities read [¢"%) gjac = |8) B ®[0)ac and [¢™)c1ap = [)c ®6) B
Here, |0) denotes a two party state, which might be entangled. The genuine tripartite
entangled states are the states which are neither fully separable nor biseparable. But
still these states can be divided into two inequivalent classes in the following way:

Given two three-qubit states, |¢) and [¢)), one can ask whether it is possible to
transform |¢) into [¢) with local operations and classical communication, without
requiring that this can be done with unit probability. These operations are called
stochastic local operations and classical communication (SLOCC). It turns out [41]
that |¢) can be transformed into |¢) iff there exist invertible operators A, B, C,
acting on the space of one qubit with

) = A® B®C|). (1.15)

Since the operators A, B, C are invertible, this defines an equivalence relation with
a clear physical meaning. Surprisingly, it was proved in [41] that there are two
different equivalence classes of genuine tripartite entangled states which cannot be
transformed into another by SLOCC. One class, the class of GHZ states is repre-
sented by the GHZ state

1
7

the other class, the class of W states can be transformed via SLOCC into

\GHZs) = —(]000) + |111)), (1.16)

_ b
V3

In this sense there are two different classes of tripartite entanglement. There are
much more pure GHZ class states than W class states: By local unitary operations

W) (|100) + |010) + |001). (1.17)
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one can transform any pure three-qubit state into®
1) = Xo|000) 4 A1e|100) + Ag|101) + A3]110) + \g[111), (1.18)

where \; > 0,Y, A7 = 1 and 6 € [0;7], see Ref. [43]. Thus, six real parameters are
necessary to characterize the nonlocal properties of a pure state. For th W class
states, however, § = A4 = 0 holds, which shows that they are a set of measure zero
in the set of all pure states.

Physically, there are also differences between the two classes: On the one hand,
the GHZ state |G H Z3) is maximally entangled and a generalization of the Bell states
of two qubits. For instance, for the most known Bell inequalities the violation is
maximal for GHZ states [44]. On the other hand, the entanglement of the W state
|W) is more robust against particle losses: If one particle is lost in the GHZ state,
the state oap = Tro(|GH Z3)(GH Z3|) is separable, for the W state the resulting
reduced density matrix pap = Tro(|W)(W]) is entangled.

Before turning to mixed states, it is important to note that the definition of
true tripartite entanglement has again a physical interpretation: For the creation
of pure true tripartite entangled states the participation and common interaction of
all three parties is necessary. This is not true for biseparable states, there only two
parties have to interact.

The classification of mixed states according to Refs. [45, 46] is similar to the
definition of bipartite entanglement via convex combinations. We define a mixed
state of as fully separable if o' can be written as a convex combination of fully
separable pure states, i.e. if there are convex weights p; and fully separable states
|$%) such that we can write

o™= piloP) (el (1.19)

A state ¢ which is not fully separable is called biseparable if it can be written as
a convex combination of biseparable pure states:

o = 3 lo) b (1.20)

Note that the biseparable states |¢>?S> might be biseparable with respect to different
partitions. Of course, one can define three classes of biseparable mixed states which
are biseparable with respect to a fixed partition.

Finally, g is fully entangled if it is neither biseparable nor fully separable. There
are again two classes of fully entangled mixed states: As fully entangled state belongs
to the W class if it can be written as a convex combination of W-type pure states

-~ Zm!@vﬂﬁl, (1.21)

otherwise it belongs to the GHZ class. One can show that the W class forms a
convex set inside the GHZ class. Also, in contrast to the case of pure states, the set
of mixed W class states is not of measure zero compared to the GHZ class [46].

8This is a generalization of the Schmidt decomposition to three qubits, see [42] for generalizations
to more than three parties.
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Figure 1.3. Schematic picture of the structure of mized states for
three qubits. The convex set of all fully separable states (fs) is a subset
of the set of all biseparable states (bs). The biseparable states are the
convex combinations of the biseparable states with respect to fived parti-
tions, adumbrated by the three different leafs. Outside are the tripartite
entangled states, the W class and the GHZ class. See text for further
details.

Again, this classification can be drawn in a schematic picture of nested convex
sets, see Figure 1.3. Here, it is important to note that this picture is, of course,
only a schematic picture which does not take all properties into account. For in-
stance, it has been shown that there exist states which are biseparable with respect
to each fixed partition, however, they are not fully separable [38, 47]. This counter-
intuitive behavior leads also to some surprising applications, like the possibility of
“distributing entanglement using separable states” [48].

The question to which class a given mixed state belongs, is, as the separability
problem for the bipartite case, not easy to decide. Necessary criteria for a state
to be biseparable have been given in Refs. [45, 49, 50]. Methods to distinguish
between the mixed W class and GHZ class are, however, very rare. As we will see
later, witnesses give the possibility to prove that a state belongs to the GHZ class.
However, it is not clear how one can show that a state is tripartite entangled and
belongs to the W class. This can not be done with witnesses, since they are designed
to show that a state lies outside a convex set, they fail to prove that a state is inside
a convex set.

Let us finally mention that it is also possible to define distillability for three and
more qubits. In this case, one aims at the distillation of the GHZ state |GH Z3).
Criteria and protocols for distillation have been given in Refs. [45, 49-51].

1.2.2 General classes

Let us turn to the classification of entanglement for general multipartite systems.
The way to identify different classes is similar to the three-qubit case: First, we
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distinguish different types of entanglement for pure states. Then we extend this
definition to mixed states by considering convex combinations of pure states.

Let us assume that a pure n-partite state |¢) is given. We call this state fully
separable if it is a product state of all parties, i.e., if

) = &) li) (1.22)

holds. A mixed state is called fully separable if it can be written as a convex
combination of pure fully separable states. If a pure state is not fully separable, it
contains some entanglement. Again, as in the three-qubit case, this does not have
to be true n-partite entanglement. Thus we call a pure state m-separable, with
1 < m < n, if there exist a splitting of the n parties into m parts P; such that

) = Q) 16i)p, (1.23)
1=1

holds. Note that an m-separable state still may contain some entanglement. Again,
we call mixed states m-separable, if they can be written as convex combinations of
pure m-separable states, which might belong to different partitions. Finally, we call
a state truly n-partite entangled when it is neither fully separable, nor m-separable,
for any m > 1. Here it it worth mentioning that a further classification of the pure
truly n-partite entangled states like in the three-qubit case is not straightforward.
At least a classification via equivalence classes under SLOCC is not very useful, since
it has been shown that already for four qubits there are infinitely many equivalence
classes under SLOCC [52]. Another approach tries to identify different classes via
a generalization of the Schmidt rank, but here is is difficult to determine in which
class a pure state lies [53].

1.2.3 Witnesses for detection problems

Here, we want to emphasize that witnesses are again good tools to distinguish the
different classes of multipartite entanglement. This is due to the fact that all the
classes defined above are defined via convex combinations, thus they are convex sets.

Let us explain these construction in the case of three qubits, the generalization
to more parties is straightforward. In the case of three qubits on can define witnesses
for several detection problems. There are GHZ class witnesses Wg gz which allow
to detect mixed states belonging of the GHZ class. Thus their expectation value is
positive on all fully separable, biseparable, and W-type states:

TrWeuzo) < 0 = pisin the GHZ class.
Tr(Weauzo) > 0 = pis not detected. (1.24)

Also other witnesses can be defined: Witnesses for tripartite entanglement, denoted
by Ws, have a positive expectation value on all biseparable states thus a negative
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Figure 1.4. Schematic picture of the set of mized three-qubit states
with three witnesses: The witness Wapz detects GHZ-type states, the
witness Ws detects three-qubit entanglement, and the witness W, rules
out full separability.

mean value indicates the presence of true tripartite entanglement. Witnesses for
biseparable entanglement W, have a positive mean value on all fully separable states,
thus a negative expectation value is still a signature of entanglement, which might
be only biseparable entanglement. All the types of witnesses can be cast into a
schematic picture, this is shown in Figure 1.4. Finally, it is worth to stress that the
interesting case in experiments is, of course, to detect true tripartite and GHZ class
entanglement. Thus the construction of witnesses for this task is the main problem
this thesis deals with.

1.3 Bell inequalities

Finally, we want to recall some facts about Bell inequalities, since formal similar,
but conceptual different inequalities play an important role in the course of this
thesis. For reviews on this subject see [54-56]

First, it is important to stress that Bell inequalities do not rely on the formalism
and the physical content of quantum theory. They are independent of quantum
mechanics. Bell inequalities are inequalities for the probabilities of the outcomes
of some measurements, which have to be obeyed when the physical processes are
describable by a local realistic or, synonymously, by a local hidden variable model.
Let us discuss the assumptions which underly these models.

Consider that we have a system of two parties shared by Alice and Bob. We
assume that these systems are space-like separated. Alice and Bob can perform
some measurements 1211, 1212, s A N, respectively, Bl, BQ, e By. Each of these mea-
surements may have M different outcomes A?, respectively, Bf . A physical theory

has to predict the probabilities P(fl;“) and P(B]k) of these outcomes, as well as the
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probabilities P(A?,Bfl) of the correlated outcomes, if Alice and Bob measure si-
multaneously. These probabilities depend, of course, on the state, which is shared
by Alice and Bob. Now there are three assumptions on these predictions, which
characterize a local realistic theory:

1. Realism: The system Alice and Bob share contains the full information about
the results of all possible experiments that can be performed on it. Thus, the
system can be described by some hidden variables which determines the mea-
surement results. The values of the hidden variables may be unknown, or only
some probability distribution of them may be known. Then the predictions
of the measurement results are only probabilistic. However, in principle the
information about all results is contained in the system.

2. Locality: The probabilities of the outcomes of a measurement on Alice’s side
do not depend on the measurement Bob chooses. Of course, there might be
correlations between the subsystems, i.e., the outcomes of Alice may depend
on the outcomes of Bob, if he has chosen one certain measurement. But the
probabilities of the outcomes for Alice should not change, when Bob chooses
a different measurement.

3. Free will: Alice and Bob can choose their measurements randomly and in an
arbitrary manner. The physical theory does not determine the experiments
they choose.

Under these assumptions, on can derive inequalities for the probabilities of the
outcomes of the measurements. These are the so called Bell inequalities. The first
equation of this type was derived in 1964 [57]. Nowadays, other formulations than the
original ones are used?. To give an example, let us assume two measurements Ay, Ay
resp. Bi, By on each party, with two outcomes +1 and —1 for each measurement.
If we denote E(A; B) = P(A*,B*) 4+ P(A~,B~) — P(At,B~) — P(A~, B*), then
the so-called Clauser-Horne-Shimony-Holt inequality (CHSH inequality)

|E(Ay; By) + E(Ag; By) + E(Ay; By) — E(Ag; By)| < 2 (1.25)

has to hold for all local realistic theories [58]. This inequality can be translated into
quantum theory as follows: A measurement A; can be realized by a measurement of
a spin in some direction @;. This is represented by the observable A; = @; - . Thus
the CHSH inequality reads:

|<A1 X Bl>g + <A2 ® B1>Q + <A1 & B2>Q — <A2 ® B2>Q’ < 2. (1.26)

One interesting fact is, that quantum theory violates this inequality: There are
quantum states, like the two-qubit singlet state, where this inequality is violated

9The original Bell inequality assumes that a special quantum mechanical state, the singlet, is
given and that this state allows a local hidden variable model. This leads to the Bell inequality,
imposing a constraint on the correlations, which turns out to be violated by the singlet. However,
this inequality is difficult to test in experiments, since one would have to be sure that one has
produced a perfect singlet state. For other states, a violation of the original Bell inequality does
not say anything about the existence or non-existence of a local hidden variable model.
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for an appropriate choice of the measurement directions A; and B;. Even more
interesting is the fact that nature itself violates this inequality: the probabilities
occurring in Eq. (1.25) are directly measurable quantities and violations of the CHSH
inequality have been found for photonic systems [10, 59] as well as for atomic systems
[60]. Thus, even if quantum theory is replaced by another theory, this can not be a
local realistic theory.

What are the connections between Bell inequalities and entanglement? One
can show that all separable states obey all Bell inequalities. Thus, a violation
of a Bell inequality implies that the state is entangled. However, violation of a
Bell inequality and entanglement are not the equivalent. It has been shown that
there exist entangled states, which admit a local hidden variable model [18]. Thus,
these states do not violate any Bell inequality. Also, it is not clear, whether Bell
inequalities can detect bipartite bound entanglement, as a typical form of weak
entanglement. No Bell inequality for these states is known up to now, and it has
even been conjectured that these states always admit a local hidden variable model
[54]. In a certain sense, Bell inequalities can be viewed as non optimal entanglement
witnesses: they can detect entanglement, but they fail to detect all states.

In the multipartite case the discussion of Bell inequalities is more involved, but
also for this case Bell inequalities are known. One example, for three parties is the
Mermin inequality [61], which reads in its quantum mechanical formulation

(A1@B1®Ca)+ (A1 @B @C1) o+ (A2 @ B1 ® C1)p — (A2 @ Ba ® Ca), < 2 (1.27)

where the A;, B; and C; are again observables with two different outcomes +1, e.g.
spin measurements in a three-qubit system. This inequality has to be obeyed for
all states allowing a local hidden variable model, where the locality conditions hold
with respect to all three parties. Thus, a violation of this inequality implies that the
state is not fully separable.

One could, however, weaken the locality requirement by assuming only locality
with respect to a bipartite partition of the three parties. This is of course a weaker
condition then full locality, thus the bounds on the correlation get weaker [62]: For
this case, the right hand side of Eq. (1.27) is in general bounded only by 2v/2. Thus
this bound has to be violated, in order to prove that a state carries true tripartite
entanglement. This makes it very difficult to detect true n-partite entanglement
with Bell inequalities [63].



CHAPTER 2

WITNESSING MULTIPARTITE ENTANGLEMENT

2.1 Overview

In this part of the thesis we want to show that entanglement witnesses are useful tools
for the detection of true multipartite entanglement. To this aim we will construct
witnesses and decompose them in a way that allows to measure them easily with
the present technology. We will also report on the experimental implementation of
witnesses for multipartite systems.

Before we start our discussion of witnesses, let us discuss what we understand
by detecting entanglement. In the most general case we have many copies of an
unknown composite quantum system with several parties in laboratory. By per-
forming measurements on these systems we gain some information about the state
given. From this information we want to conclude that the state is entangled. Thus,
an entanglement detection scheme has to tell us the measurements which we should
perform, as well as how to decide from the measured data whether the state is en-
tangled or not. Since many experiments aim at the generation of entanglement and
not at the production of separable states, we allow some asymmetry: We want to
detect entanglement, not separability. Thus the main task is to give conditions on
the measurement data which imply that the state was entangled.

There are some natural properties a scheme for the detection of entanglement
should have. So let us start with listing them:

1. The scheme should allow to detect entanglement unambiguously. By this we
mean that the conclusion that a given state is entangled does not rely in any
sense on assumptions on the state given. Only measurement results are taken
into account.

2. The scheme should be adaptable to special detection problems. In a real
experiment one usually does not produce an arbitrary state. Typically, one
tries to produce a special state, but this state will be affected by some unknown
and unavoidable noise. Thus the measurements on has to perform should be
suited for the special state one intends to produce.
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3. The scheme should allow to detect even weakly entangled states. This implies
that it should also be robust against noise.

4. The scheme should also be able to detect true multipartite entanglement and
to distinguish between the different classes of multipartite entanglement.

5. For an experimental demonstration the scheme should be implementable with
simple means. It should require as few measurements as possible.

This list is by no means exhaustive and only a small collection of natural require-
ments. Other conditions may be added, e.g. in experiments when only a restricted
set of measurements can be performed. Let us discuss some often used schemes for
the detection of entanglement in view of these conditions.

The simplest idea to detect the entanglement for an unknown state, is, of course,
to determine the state via state tomography completely. Then one can try to apply
the already known separability criteria. The tomography can be done with local
measurements on each party, thus there is no limitation of this method in principle.
But it is not very flexible: It does not take into account the requirement (2), i.e.,
that an experimentalist has some clue about the state which is prepared. State
tomography is also not economic: It requires a lot of measurements. For instance
to determine a four-qubit state requires 81 correlated measurements which needs a
huge experimental effort.

Bell inequalities are widely used to detect entanglement [11, 64]. But, as we
have discussed already in the previous chapter, violation of a Bell inequality and
entanglement are not the same. Especially there are entangled states which can be
described by a local hidden variable model and can thus never be detected with a Bell
inequality [18]. We also mentioned that Bell inequalities for multipartite states are
not very robust against noise: For states affected with some noise, they are often only
capable of detecting bipartite entanglement, but not true multipartite entanglement
[63]. Even worse, there exist some pure, true multipartite entangled states for which
no Bell inequality is known so far, which can prove the multipartite entanglement.
Thus, in experiments which are aimed to produce these states, Bell inequalities
are unable to show that one really produced the desired class of entanglement.
Another disadvantage of Bell inequalities is that up to now there is no canonical
way to construct a Bell inequality for a given state. All these facts clearly indicate
that Bell inequalities have problems to fulfill the requirements (2), (3) and (4). A
clear advantage of Bell inequalities lies in the fact that they are relatively easy to
implement. Only local measurements are needed. Thus they fulfill requirement (5).

Another method for detecting entanglement is the so called entanglement visi-
bility, which is also sometimes used in experiments [65, 66]. Here, the visibility of
two or more particle interferences is measured, in order to check whether a state is
a coherent superposition or a mixture of two terms. If this visibility is high enough,
one one can conclude that the state is entangled [67]. However, it is not clear that
this methods can be applied to all entangled states. Also, the proofs that a certain
visibility guarantees entanglement, usually rely on the assumption that only white
noise is mixed to the state under consideration and, again, on Bell inequalities [67].
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Recently, there have been several proposals for the detection of entanglement
without estimating the whole density matrix [28, 68]. These proposals are very
attractive from a theoretical point of view, nevertheless, they are very difficult to
realize experimentally. Their implementation requires collective measurements on
several qubits or the construction of quantum gates and networks. This is not easy
to fulfill with the present experimental techniques.

As already mentioned, the main purpose of this chapter is to show that entangle-
ment witnesses are good tools for the detection of entanglement in the multipartite
case. Thus, we have to argue that entanglement witnesses fulfill all the require-
ments from above. It is clear from the definition of an entanglement witness that
a measured negative expectation value guarantees that the state is entangled, thus
requirement (1) is fulfilled. Also, witnesses are very flexible and obey condition (2),
since one can construct them for a given state. We will provide a method for this
in the following. Then we will also see that the conditions (3) and (4) are satisfied.

At the first view, the last condition seems to be problematic. Witnesses are in
general nonlocal observables, thus it seems that they are not easy to implement.
But, as we will show, this problem can be solved by decomposing them into local
observables. These local observables can be measured individually, and from these
results the mean value of the witnesses can be calculated.

We proceed as follows:

In the first section we develop a simple method to construct an entanglement
witness detecting the genuine multipartite entanglement of a given pure state. This
is not the only method of constructing witnesses, but, as we will see, it is very well
suited in many situations.

In the second section we describe how a given entanglement witness can be
implemented with local measurements. The core of our idea is the decomposition of
a nonlocal observable into local observables. We state the problem of decomposing
an witness into an optimal local decomposition.

The third section deals with explicit examples of witnesses. We construct wit-
nesses for interesting states of two, three and four qubits. We also calculate their
local decompositions. Since the emphasis of this chapter lies in the detection of
multipartite entanglement, we mainly discuss three- and four-qubit witnesses.

As already mentioned, the local decompositions can be optimized in the number
of measurement settings. To prove that a given decomposition is optimal is, in
general, very demanding. In Section 2.5 we introduce a general technique for these
optimality proofs. With this we can prove the optimality for our two- and three-
qubit witnesses.

The following Section 2.6 is of a technical nature. There, we discuss the singular
value decomposition, the Schmidt decomposition and its usefulness for the calcula-
tion of overlaps. These results are needed for the construction of the witnesses as
well as in the derivation of uncertainty relations in the next chapter.

In Section 2.7 we present a different method of constructing entanglement wit-
nesses. These witnesses are by construction implementable with local measurements,



22 Witnessing multipartite entanglement

thus no decomposition is needed. They also have the advantage that they usually
require only two measurements for an implementation. They are, however, usually
not so robust against noise as the other witnesses.

In the last Section 2.8 we shortly report on experiments performed by M. Bouren-
nane and coworkers in the group of H. Weinfurter in Garching, where some witnesses
of this chapter have been implemented. In these experiments three- and four-photon
entanglement has been detected using entanglement witnesses.

Finally, in the conclusion of this chapter, we summarize our results and discuss
further problems and directions for future research which are, in our opinion, worth
to address.

2.2 Constructing witnesses

Let |1)) be a pure n-partite quantum state which is truly n-partite entangled. We
propose to take as a witness operator detecting the entanglement of |¢)) an observable
of the form

W= al — [)(¢]. (2.1)

Since W should be a witness detecting |¢/), we have to guarantee that Tr(WW|¢) (y]) <
0 as well as Tr(WoP) < 0 for all biseparable o". This is fulfilled, if 1 > a >
supeps 17(|1) (1] 0). Here, “bs” denoted the set of all biseparable states. Of course,
the witness gets better if « is as small as possible. Thus we take o as the supremum
from above. Since the pure biseparable states are the extremal points of the set
of all biseparable states it suffices to take the supremum over all biseparable pure
states:

o= sup [(gl). (2.2)
|¢)E€bs
In order to calculate the value of o we first fix a bipartite splitting, and consider
only states |¢) € bs; which are product vectors with respect to this partition. We
can write [¢) in the Schmidt decomposition for this fixed partition, let A\; be the
biggest Schmidt coefficient in this decomposition. Then it follows that

A= sup (|| (2.3)
|¢)Ebs1

The proof is in a more general setting given in Section 2.6. Therefore, « is given
by the square of the Schmidt coefficient which is maximal over all possible bipartite
partitions of [t))!.

In a more general case, one might wish to construct a witness which allows to
detect states outside a general convex set, which has not to be the set of biseparable
states. This can be done in the same manner, although the calculation of the overlap

!Note that in the case of several qubits this overlap cannot be smaller than 1/2 for the following
reason: There are bipartite splittings which separate one qubit from the others. In this case only
two Schmidt coefficients occur and they cannot be both smaller than 1/v/2.
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is in general not as easy as for the biseparable states. We can summarize the results
of this section:

Proposition 2.1. Let C'S be a convex set and let [¢) (1| ¢ C'S be a state outside
this set. Then a witness allowing the verification of |1)(¢)| ¢ C'S is given by

W = B1 = [¢){(¢[ with 3 := sup T'r(e|¢){]). (2.4)

oeCS

If C'S is the set of biseparable states, we can compute 3 by computing the Schmidt
decompositions of [¢) for all biseparable partitions and taking [ as the squared
maximal Schmidt coefficient appearing in all these decompositions.

2.3 Decomposing witnesses

A witness is always a nonlocal observable, since it has always an entangled eigenstate.
This comes from the fact that a witness must have a negative eigenvalue and since
the witness should be positive on all product states, the corresponding eigenvector
cannot be a product vector. In the most general case we have a witness on a tensor
product H = Ha @ Hp ® ... ® Hz of two or more finite-dimensional Hilbert spaces.
In order to slenderize the notation we look here at the case that we have a bipartite
N x N-system: H = Ha ® Hp with dim(H4) = dim(Hp) = N. But all definitions
in this section can be extended to more parties in an obvious manner.

In order to measure the expectation value of the witness locally, we have to
decompose it into a sum of tensor products of operators acting on only one system,
or, equivalently, we have to decompose it into a sum of projectors onto product
vectors:

W=> 408 =) cle)ed ®|fi){fil (2.5)
=1 =1

By measuring the expectation value of the projectors |e;)(e;|®|fi)(fi| and adding the
results with the weights ¢; this decomposition (2.5) can be measured locally. There
are, of course, many possibilities of finding a decomposition like (2.5). So we have
to optimize the decomposition in a certain sense. But there are several possibilities
of defining an optimized decomposition.

At first sight one might try to minimize the number of product vectors corre-
sponding to minimizing n in (2.5). This optimization procedure is already known
from the literature, it was considered in [69]. There it was shown that for a general
operator acting on two qubits one needs five product vectors and also a constructive
way of computing these product vectors was given.

However, since we want to construct an experimentally accessible scheme for
entanglement detection it is natural to look for a decomposition where Alice and Bob
have to perform the smallest number of measurements possible. By “measurements”
we understand here von Neumann (or projective) measurements, since they can be
easily implemented. Such a measurement for Alice corresponds to a choice of an
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orthonormal basis of H 4, and Bob has to choose an orthonormal basis Hp, too. So
any operator of the form

N
M =" culer)(ex] @ |f)(fil (2.6)

k=1

with (esles) = (fs|ft) = dst and real ¢x; can be measured with only one collective
setting of measurement devices of Alice and Bob. Alice and Bob can distinguish
the states |eg fi), measure the probabilities of these states and add their results with
the weights cj; to measure M. We call an operator which can be measured with

one measurement setting (like M in Eq. (2.6)) a local von Neumann measurement
(LvNM).

Having understood what can be realized with one measurement setting, we can
state another optimization strategy. We want to find a decomposition of the form

K N
W=3_ > cule)leil @ [F){f] (2.7)
i=1 k=1
with (ellel) = (f!|ff) = dst and a minimal K. This K is the number of collective
measurement settings Alice and Bob have to use in order to measure W. This op-
timization strategy is the aim we are considering in this thesis when we talk about
“optimized” decompositions.

The reader should note that minimizing m in (2.5) is not the same as our opti-
mization strategy. Also minimizing the number of product vectors, i.e., minimizing
n in (2.5) is not the same. This will become clear already in the next section, when
we give a simple two-qubit example.

Also, it is important to note that with one local measurement setting one can
never detect entanglement. This is due to the fact that any probability distribution
for the measurement of one LvNM in the form of Eq. (2.6) can be caused by mixture
of the eigenstates |ey f;), which is a separable state.

2.4 Examples of witnesses

2.4.1 Two qubits

In this section we want to discuss shortly the application of the concept from above
to two-qubit systems. It is not our aim to give a complete discussion here, this is
done in Ref. [70, I, III]. Let

“v.— Lo -
¥ )-—\/5(|01> 10)) (2.8)

be a maximally entangled two-qubit singlet state. Then, following the lines of the
previous sections one can easily compute that

Wy 1= 21— ) (2.9)
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is an entanglement witness, detecting the entanglement of the state [¢). In fact,
one can show that for this special choice of [¢) this is even an optimal entangle-
ment witness [70], if |¢)) is not an maximally entangled state, the construction of
Section 2.2 does not yield an optimal entanglement witness. Applying now the de-
composition into a minimal set of product vectors according to Ref. [69] yields a
decomposition of Ws into a sum of five product vectors [LIII]. These vectors belong
to four orthonormal product bases, thus four measurement settings are needed. But
one can measure Wh also with three settings: Using different spin directions defined
by |=+) = [0); =) = |15 |o) = (10) 1)) /vZ: [y=) = ([0) £ i[1))/v/2 we have the
decomposition

1
Wy = 3 (et 2t + 2727 ) (2727 | + |z ta ) (@t |+
e A T A T el R AR TR )
1
= Z(Il@Il+0z®az+ax®crx+ay®ay). (2.10)

In the calculation of this decomposition the formula

1

A®B+C@®D=-((A+C)®(B+D)+(A-C)® (B - D)) (2.11)

O |

is of great help, with this we can easily see that
P = 5 (101){01] +[10)10] ~ 01) (10] — [10){01])
= %(!Z+2_><Z+2_| + 272 ) (72T = [0)(1] @ [1)(0] — [1){0] @ |0)(1])
= ) N ) — (e B ot oy By (212)
Using now the fact that 1 ®@ 1 = |2tz (e 2| + [2T27) (et 27| + |27 2T ) (22T | +

|z727)(z7 27| we arrive at (2.10).

In Eq. (2.10) the witness is decomposed into six product vectors, but it requires
only spin measurements into three directions: Alice and Bob have only to set up
their Stern-Gerlach devices in the z-, y- and z-direction to measure Ws. One can
show that this decomposition is optimal:

Proposition 2.2. In a two-qubit system a decomposition of W of the form (2.7)
requires at least three measurements, thus the decomposition (2.10) is optimal.

Proof. Since the optimality proofs are technical and similar for all witnesses we
have relegated them to Section 2.5. a

2.4.2 Three qubits

As we have seen in the introduction there are several types of witnesses which
are of interest in the three-qubit case. We will give now examples of them and
discuss their properties. We will also compute local decompositions and address the
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question whether they are optimal or not. The proofs of optimality are relegated to
Section 2.5.

Let us start with witnesses for the GHZ class. For this case a witness operator
was already constructed in [46]. It is given by

3
Weiz = 11— |GHZs)(GHZ). (2.13)

Thus, if o is a mixed state with Tr(oWgnz) < 0 the state o belongs to the GHZ class.
The construction of this witness follows Proposition 2.1 in Section 2.2. The value 3/4
corresponds to the maximal squared overlap between the state |GH Z3) and all pure
W class states. This witness detects states of the type o(p) = p|GHZ3){(GH Z3| +
(1 —p)1/8 for p > 5/7 ~ 0.714 as belonging to the GHZ class.

A decomposition of Wgpz can be computed with similar methods as for the
two-qubit case, it yields

1
Werz = §<5'Il®1l®]l—]l®oz®az—az®]l®az—az®oz®]1—
1 1
20804 5 (0w + )% 4 5 - (0 — ). (2.14)

This witness can be measured with four collective measurement settings, namely
the settings 0©3,0%% and ((0, & 0)/v/2)®3. Note that the last two settings are
just measurements of a spin in the direction between the x and y directions. This

decomposition is optimal:

Proposition 2.3. The witness (2.13) can not be measured with three LvNMs,
i.e., the decomposition (2.14) is optimal.

Proof. See Section 2.5. O

Now we turn to witnesses for detecting true tripartite entanglement. These
witnesses are, of course designed for a special state. We focus on three interesting
pure states, which one might want to detect.

Let us first assume that we want to detect tripartite entanglement for a three-
qubit GHZ state. In this case, a good choice for a witness would be
(ghz) _ L
Wa=" = 5]1 — |GHZ3){(GH Zs)|. (2.15)
The construction of this witness is similar as above, here 1/2 is the maximal squared
overlap between the state |GH Z3) and all pure biseparable states. With this witness
one can prove that the states o(p) = p|GH Z3)(GH Z3|+ (1 —p)1/8 are for p > 3/7 ~
0.429 true tripartite entangled. Of course, this witness can be measured with the
same measurements from (2.14) and this decomposition is also optimal.

In case one wants to detect states in the vicinity of a W state, a witness would
be:

w 2
Wy = S1— W) (W (2.16)
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This witness detects tripartite entanglement in states of the form o(p) = p|W)(W |+
(1 —p)1/8 for p > 13/21 ~ 0.619. Its local decomposition is given by

Wi = i(l?-ﬂ@ﬂ@ﬂ—i—?a??’
+3(0,2101+1®0,®1+101Q0,)+
45 (0, ®0, @140, 01R0,+1R0,R0,)+
—(L+0.40,)% = (1+0, —0,)®

~(1+0,+0,)® —(1+0, - ay)®3>. (2.17)

Here, only five correlated measurement settings are necessary, namely 023 and ((o,+
0i)/Vv2)®3:i = x,y. This decomposition is also optimal:

Proposition 2.4. The witness W?EW) can not be measured with four measure-
ment settings, i.e., the decomposition (2.17) is optimal.

Proof. See Section 2.5. a

Another interesting three-qubit state is the state

0C) = \/§|oo1> - \/g|o1o> - \/;100). (2.18)

This state is of interest for the following reason: One can perform universal cloning
by teleportation using a tripartite entangled state. The state which is needed for
optimal cloning is just the state |OC) [71].

The state |OC) contains true tripartite entanglement and the squared overlap
with the biseparable states can be calculated as described above, the result is 5/6.
So we arrive at the witness

ocC 5
W = sL-looyoc

- %(38'H®ﬂ®l+10-02®az®az+6']l®]1®az+
420,00, ®1+8-0,01R0,+8-1®0,Q0,+
—(1+o0,4+0,)@(1 40, —0;) R (140, —20,)

(1+0.+0.) (140, +20,)

(I4+0.,—0y) @ (140, —20y)

( )®(]l—|—az+2ay)>. (2.19)

) ®
—(1+o0,—0,)®
—(1+o0,4+0y)®
—( ) ®

1+o0,— 0y 1+o0,+o0y
This witness requires five measurement settings, and again it can be shown to be
optimal:

Proposition 2.5. The witness WZ,EOC) can not be measured with four measure-

ment settings, thus the decomposition (2.19) is optimal.
Proof. See Section 2.5. ]

Finally, let us mention that with similar methods as above one can also construct
witnesses which detect just some entanglement, which might be only biseparable
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entanglement. For this purpose, one has to calculate the maximal squared overlap
between a given state and the fully separable states. This in general a hard task, but
for some states it has been done [72]. For instance, one can show that the maximal
squared overlap between the state |IW) and the fully separable states is 4/9. Thus,

the observable 4
W = gl- W)W, (2.20)

is a witness, ruling out full separability.

2.4.3 Four qubits

Since there is not a classification like the GHZ class and the W class for four qubits,
the main task in this case is just to detect true four-partite entanglement. Again,
there are several interesting states. We focus here on three states, namely the four-
qubit GHZ state, the so-called four-qubit singlet state and the four-qubit cluster
state.

The four-qubit GHZ state
€
V2

plays a similar distinguished role in the discussion of local hidden variable theories
for four parties as the three-qubit GHZ state for three parties. So it natural to start
the discussion with this state. A witness for the four-qubit GHZ state is given by

\GHZ4) = —(]0000) + [1111)) (2.21)

z 1
wiehe) — 51— |GHZ))(GHZ|, (2.22)

and its local decomposition is

1
wiEr)  — 33(16.]1®]1®11®11—(1+0z)®4—(1—0z>®4
+(op +0y) % + (0, —0y)® —4. 05" — 4 054) (2.23)

This witness only requires five measurement settings. This is only one more than
the three qubit GHZ witness, thus it is probably the optimal decomposition. But
we have no rigorous proof of it. We will explain the main difficulty in Section 2.5.

Another very interesting four qubit state is the so called four-qubit singlet state
[73]:

1

V3

Let us briefly mention some of its remarkable properties: First, note that the state
\\II(4)> can be viewed as a superposition of a four-qubit GHZ state of the type
|GHZ,) = (]0011) + |1100))/v/2 and a product of two singlet states, one singlet
between the first two parties and another between the third and the fourth party.
The name “four-qubit singlet state” comes from the fact that |¥*) is form invariant

) (10011) + 1100) — %(|0110> + 11001) + 0101) + [1010)) ). (2.24)
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when the same change of basis is applied to all four qubits simultaneously, i.e., un-
der U ® U ® U ® U transformations. From an experimental point of view, it is
also remarkable that the state |\I'(4)> is relatively easy to produce by a second order
process in spontaneous parametric down conversion. We will discuss this later in
Section 2.8. Another fact is that [¥®) violates some Bell inequalities, but up to
now no Bell inequality is known, which can prove that the state |\I/(4)) contains true
four-partite entanglement, one can only prove that the state is not fully separable
[73, 74].

The last two properties indicate that the state |[¥(4) is an ideal test bed for
the experimental implementation of witness operators. In fact, the experimental
demonstration of four-partite entanglement has been performed, we will shortly
report on these experiments in Section 2.8. Here we only want to calculate the
witness, it is given by:

Wi = 1 e )

1
= 4—8(33~Il®4— Z [Uz‘®0i®l®]}.+]}.®]}.®0’i®0i—dz®4

-2 (010l +0,101®0;+
—|—]l®o'i®0i®ﬂ+]1®0'i®]l®0i)])'

13- (0, R0, Ry R0y + 0y, ®0y R0, R0y +0, V0, R0, X0,
40, R0, R0, Q0 +0y R0y R0, Q0,4+ 0, R0, Doy & 0oy)

— (02 + Jy)®4 — (02 — Uy)®4 — (00 +0,)®"

—(0p — 0)%* — (04 + 0.)% — (0 — 7). (2.25)

Although this decomposition is a little bit longer, it requires only fifteen measure-
ment settings.

i:xayzz

The last four-qubit state we want to deal with is the so-called four-qubit cluster
state [75]. In Section 2.7 we will give a brief introduction into the formalism and
physical meaning of the cluster states, here we only write down the state. The
four-qubit cluster state is given by

[0g1) = 5 (10000) + [0011) + [1100) — [1111)). (2.26)

One can calculate that the maximized squared overlap between the cluster state and
the biseparable states equals 1/2, thus we arrive at the witness

cl 1
Wit = Lo
1
= (1% -0 0000101 -10180. 00

“-1®0,®0, R0, -0, Q1Q0, R0, +1R®0, oy X0y

+0,R®1RQ0y R0y —0, 00,10, -0, R0, 0,1

+oy ®oyR1I®o,+0y®oy®0o, Q1 -0, oy Q0o @ oy

—0, W0y ROy R0y — 0y R0, Q0 R0y — 0y @ 0y ® 0y Q 0y).
(2.27)
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This decomposition requires nine correlated measurement settings.

2.5 Optimality proofs

In this section we present a method to prove that a given decomposition of a nonlocal
observable into local measurements is optimal. Let us start with the simple case of
two qubits:

Proposition 2.2. In a two-qubit system a decomposition of Wy = 1/2 -1 —
|¢p7) (™| into local measurements of the form (2.7) requires at least three measure-
ment settings.

Proof. Consider a decomposition requiring two measurements:

2 2
We= ) cijlADNAG| @ [BI)(Bj| + Y A (A7 @ | BI)(Bj|. (2.28)

3,j=1 i,7=1

We expand the right hand side as well as the left hand side of this equation in a
product basis of the operator space. We write Wy = Z?,j:O Aij 0; ® oj and have,
according to (2.10), (\;;) = 1/4.

On the right hand side, we expand the first sum as Z?J:l il AP (Af] @
\BJI><B]1\ = Z?,jzo wij 0; ® oj. To do this, we write any projector as a vec-
tor in the Bloch sphere: |A})(A}l] = Y27 sfo; is represented by the vector
Sa = (1/2,s7, 55, 54) = (1/2,5Y) and |AL)(A}|, since |A}) and |A}) are orthogo-
nal, by 541 = (1/2, —sit, —s4, —s4) = (1/2,—5Y); | B1)(B1| can be written similarly.

From this it follows that if we look at the 4 x 3 sub-matrix "¢ we have

red .__
2 = Hi=0,...,3;j=1,...,3
12 T A 1 (2 T = 1 (2 T =1 1 (2 \T =1
= cn(Sa)" -Sp—calSa1)” - 8p +01(Say) -5 —cn(5a1)” -5p
= (- §A} — 1y §A} + g1 §A; — 3 §A;)T 5. (2:29)
Thus, the reduced matrix can be written as Mffd = a;b;. In other words, it is of rank

one. The corresponding sub-matrix from the second sum on the right hand side of
(2.28) is for the same reasons also of rank one. But then we arrive at a contradiction:
The corresponding sub-matrix from (\;;) = 1/4 is of rank three and no matrix of
rank three can be written as a sum of two matrices of rank one. O

Having realized that the proof relied on the special structure of a sub-matrix for
one LvINM, we can generalize it to multi-qubit systems. This leads to the notion of
the tensor rank which we will introduce now.

Definition 2.6. Let 7 = (7;;...»,) be an n-dimensional tensor over some field F.
If we can find vectors a, b, ...,n such that

Tijmn = G - bj -y (2.30)
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holds, we call 7 a tensor of rank one. If 7 is not of rank one, we write 7 as a sum of
rank one tensors 7;:

R
=Y (2.31)
r=1

with a minimal R. Then R is called the tensor rank of 7, we write Rp(7) := R.

Note that this definition coincides with the rank of a matrix, if we consider
matrices as two-dimensional tensors. We will discuss more properties of the tensor
rank later. Then we will also argue, why the field F' is important in this definition.
First, we can state:

Theorem 2.7. Let VW be an n-qubit witness, expressed in the basis of the Pauli
matrices as

3
W = Z )\zgn 0;iR®0; Q... 8 0op. (2.32)

%750, =0

Define the 4 X 3 x ... x 3 tensor A"*? by
Aol = Nio 3 m=1,..3- (2.33)

Then a local measurement of W requires at least R (A"*?) LvNMs?2.

Proof. We only have to show that the reduced tensor coming from a single LvNM
has rank one. This follows directly from a calculation as in Eq. (2.29). O

Please note that this theorem only gives a lower bound of the number of LvINMs.
It is not clear whether we can always find a decomposition into Rg(\"*?) LvNMs.
Now we can state some general properties of the tensor rank. For the proofs we have
to refer to the literature.

Proposition 2.8. The tensor rank has the following properties:
(a) It depends on the underlying field, especially we have for a general real tensor:

fRR(T) > %@(7‘). (2.34)

(b) Up to now there is no canonical way to compute the tensor rank for a given
tensor. In fact, one can prove that over finite fields the computation of the rank of
a general three-dimensional tensor is NP complete, over @ it is NP hard.

(c) Define r(k,l,...,n) as the maximal rank over R which can appear for real k x [ x
... x n tensors. The following facts are known:

r(2,2,2) = 3, (2.35)
T(Sa 37 3) = ’ (236)
T(47 37 3) = ’ (237)
Hn:1 ks
n) > ! . 2.
T(kb >k ) Z?:l kz —n+1 ( 38)

20f course, one can also define \"*? with respect to another than the first subsystem, e.g. by
taking the 3 X 4 x ... X 3 tensor.
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Proof. For a discussion of property (a) see Ref. [76]. Property (b) was shown in
[77]. Egs. (2.35, 2.36, 2.37) were proved in [78], and Eq. (2.38) in [79]. O

In property (a) an important difference between matrices and tensors becomes
manifest: For a given real matrix the rank does not change, if it is considered as
a complex matrix. This is not the case for tensors. Although property (b) is in
a certain sense disappointing, we will now prove the optimality of our three-qubit
decompositions. Later we will discuss the problems in the four-qubit and in the
general case.

Proposition 2.3. The witness Wapz = 3/4 -1 — |GHZ3)(GH Zs3| can not be
measured with three LvNMs, i.e., the decomposition (2.14) is optimal.

Proof. We write the witness as: Wgpz = 1/8 - Zf’] 0 Nijk0i @ 05 & o, and
from (2.14) we can compute \;j;. Then we look as proposed at the 4 x 3 x 3 tensor
Ae Tts components are given by

0 0 O -1 0 0
Aoij = 00 0 = A0, A1ij = 0 1 0 |:=A40,
0 0 —1 0 0O
010 0 00
Aojj = 100 |:=A®, Asij=1 0 0 0 — AB)
0 00 0 00

To show that Wgrz can not be measured with three settings we have to show that
the tensor rank of A is bigger than three. Let us assume the contrary, i.e., we have

3
red _ Z az(r) b;r) cl(:)

ijk

1
= aVBY) +d? B + VB (2.39)
This equation implies that the three 3 x 3 matrices B™) r e {1...3} are of rank
one and that 4@, AM and A® can be represented as linear combinations of the
B, (A®) does not matter here, since it is the null matrix.) Since the A®) span a
three-dimensional subspace in the space of all 3 x 3 matrices, the B") have to be
linearly independent (as matrices) and have to span the same space. If this is true,
any of the B") can be written as a linear combination of the A®. But a general
linear combination of the A® is of the form
—a B 0
A= 6 o 0 ]. (2.40)
0 0 «v

This is of rank one if and only if & = § = 0. Thus, we arrive at a contradiction, the
B() cannot be linear independent. |

Similarly, we can prove the other cases:

Proposition 2.4. The witness Wéw) can not be measured with four measure-
ment settings, i.e., the decomposition (2.17) is optimal.
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Proof. The proof is similar to the proof from above. We compute W3(W) =

1/24 - Z?,j,k:o \ijk0; ® 05 ® oy, take the 4 x 3 x 3 tensor A€l and arrive at

-2 0 0 0 0 —2
Noij = 0 =2 0 | =49 xy=| 0 0 0 |:=4a®,
0 0 1 -2 0 0
0 0 0 -2 0 0
Nij = [0 0 2 ]=4®  Ny=[ 0 -2 0 |:=40.
0 -2 0 0 0 3

Again, it suffices to show that we cannot find four matrices B, r € {1,...,4} of rank
one such that A®, AM A and A®) can be represented as linear combinations of
the B("). Here, the assumption that we have four B(") fails due to similar reasons as
above: As above, the B(") have to be linearly independent and is must be possible
to write any of the B(") as a linear combination of the A®). And a general linear
combination of the A® is of the form

a 0 O
A=10 o v |, (2.41)

By o
and this is of rank one if and only if @« = 3 =« = 0. Thus, we arrive at a contradic-
tion. O

Proposition 2.5. The witness W:EOC) can not be measured with four measure-
ment settings, i.e. the decomposition (2.19) is optimal.
Proof. The proof is more ore less the same as for the witness W:gw). One computes
the four A®, they span again a four-dimensional space. A linear combination of

them is again of the form (2.41). So one arrives at the same contradiction. O

Note that the proofs given here are quite similar to a way of determining the
tensor rank given in [80]. Note also, that the scheme presented here, can due to Eq.
(2.37) only prove the optimality for less that seven LvNMs.

Now we turn to the discussion of the case of four or more qubits. The main
difficulty for this case lies in the fact that for the corresponding tensors the rank
over C and R seem to be different. To give an example, let us look at the four-qubit
GHZ witness Wighz) =1/2-1— |GHZ4)(GHZ4|. This witness can be decomposed
into five LvNMs and this decomposition is probably optimal. Thus we have to
prove that for the corresponding reduced tensor A™? the relation Ry (\¢) = 5
holds. But over the complex numbers we have R (A"?) < 4. This can be seen as
follows: We have |GH Z4)(GH Z4| = (|0)(0|®*+[1)(0]®*4]0)(1|®*+1]0)(0|®%) /2. This
is a decomposition into four “local measurements with non-Hermitean operators.”
Writing the operators |0)(1| and |1)(0| in the basis of the Pauli matrices (with
complex coefficients) yields a decomposition of A% as a sum of four complex tensors
of rank one, thus R (A\"?) < 4. From this it also follows that the strategy of our
proofs for the three-qubit case cannot be applied to this witness: In our proofs, we
did not take into account that we are determining the tensor rank over R, thus we
can never prove Ry (A\"*?) = 5 with this method.
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There are, however, some general conclusions which can be drawn from the
general results on the tensor rank:

Corollary 2.9. (a) To measure a general observable of an n-qubit system one
needs at least 2-3"71/(n + 1) LvNMs.
(b) To decompose a general observable into a sum of projectors onto product vectors,
one needs at least 4" /(3n + 1) product vectors.

Proof. Part (a) follows directly from Theorem 2.7 and equation (2.38), since
7(4,3,...,3) =2-3""1/(n+1). Part (b) follows from a reformulation of Theorem 2.7:
When trying to decompose into product vectors, the whole 4 x 4 x ... x 4 tensor A
has to be taken into account not only A"*?. Then again Eq. (2.38) can be applied. O

Note that for state tomography 3™ measurement settings are required. This is
only to a factor of 3(n + 1)/2 more than the method of decomposing an general ob-
servable into LvNMs. Thus, the statement (a) ensures us that there are observables,
which are difficult to measure by local measurements. This means that to measure
them nearly as much LvNMs as for state tomography are required. In this sense
they exhibit a strong non-locality. Identifying these observables and clarifying their
physical properties would be a nice field for further study.

2.6 Calculation of overlaps

In this more technical section we first want to recall some facts about the singular
value decomposition of matrices and the Schmidt decomposition. Then we show
how one can use these insights to calculate easily the maximal overlap between an
n-partite pure quantum state and the biseparable states. Our results allow also to
calculate the maximal overlap between a pure state and pure states of lower Schmidt
rank. Let us start by recalling some facts about the singular value decomposition.

Theorem 2.10 (Singular value decomposition). Let A be a complex N x M
matrix of rank k. Then there exist an N x M matrix D, a unitary N x N matrix U
and a unitary M x M matrix V such that

A=UDV (2.42)

holds, where D has the following properties: (a) The off-diagonal terms of D vanish,
i.e., Dijj = 0 for i # j. (b) The diagonal terms obey D11 > Doy > ... > Dy >
Diti1k+1 = Digopt2 = ... = 0. (¢c) The Dy; are for 1 < i < k the positive square
roots of the eigenvalues of AAT.

The numbers D;; are thus uniquely determined and are called the singular values of
A. We often write them decreasingly ordered as 0;(A) = Dy;,i = 1,..., k. If A is real,
then U and V can also be chosen to be real.

Proof. This statement is included in many textbooks, for a discussion of it and
its implications see [81] and especially [82, Chapter 3]. O

The given formulation of the singular value decomposition may sound quite tech-
nical, however, it has a clear interpretation: The singular value decomposition is a
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generalization of the spectral decomposition to non-Hermitean matrices. For in-
stance, if A is a quadratic matrix, D is a diagonal matrices, and if A is Hermitean
and has positive eigenvalues, then we can choose U and V such that U = V. From
the singular value decomposition one can directly derive the Schmidt decomposition:

Theorem 2.11. Let [¢)) = Ef\;fl cijlaibj) € Ha ® Hp be a pure state. Then
there exist an orthonormal basis |a;) of H4 and an orthonormal basis |3;) of Hp

such that n
¥) = AelowB) (2.43)

holds, with positive real coefficients A;. The A are uniquely determined by the
coefficient matrix C' = (¢;5). They are the square roots of the eigenvalues of the
matrix CCT, i.e., \p, = o1(O).

Proof. This follows directly from the singular value decomposition of the ma-
trix C' :

) = chlaz :ZUikalVlj’aib'>

ijkl

= ZDkk ZUM‘QZ kaj\b (2.44)

which proves the claim, if we set A\, = Djy. The vectors o) = (>, Uf;las)) are
orthogonal, since U is unitary and the |a;) are orthogonal. Also the vectors |G;) =
(25 Vijlbj)) are orthogonal. O

Now we can formulate the main result of this section. We can derive a formula
for the calculation of the maximal overlap between a given pure state and the states
of a fixed lower Schmidt rank. Especially, if we look at states of Schmidt rank one,
we can calculate the maximal overlap between a given state and the product states.
Let us first formulate our main result:

Theorem 2.12. Let |¢)) be a pure bipartite state with Schmidt rank n and
decreasingly ordered Schmidt coefficients o;. Then the maximal overlap between |1))
and the states with Schmidt rank k < n is given by

k

sup [(p)* = o7 (2.45)

|$) €Sk i=1
where we denoted by Sj the set of pure states with Schmidt rank k.

To prove this result, we need two lemmata:

Lemma 2.13. Let W be an n-dimensional complex vector space, A be an n X n-
matrix. Fix a k£ < n and let U,V be k-dimensional subspaces of W. Denote by |¢;)
(respectively, |¢;)) any orthonormal basis of U (respectively, V). Then

max max]Z bl Ay _Z oi(A) (2.46)

Uléa) Vilabs) —
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holds. The maxima in (2.46) are taken over all possible subspaces and over all
possible orthonormal bases of these subspaces.

Proof. For a proof of this fact see [82, Theorem 3.4.1]. Note that this is a
generalization of the Rayleigh-Ritz theorem from the spectral decomposition to the
singular value decomposition. Note also, that the estimation “>” in (2.46) is clear,
since we can chose the |¢;) and |1);) to be the vectors corresponding to the biggest
singular values. O

Lemma 2.14. Let s;,7 = 1,...,k be some positive, decreasingly ordered coeffi-
cients. Then in the situation of Lemma 2.13

max max E si{oilAlvi)| = E sioi(A 2.47
R ‘ ‘ |Alyi)| = ( )
holds.

Proof. The estimation “>” is clear, as in Lemma 2.13. In order to show the
“<”-part we can choose t; > 0,7 = 1,...,k such that s; = Zf:l t;, i.e., we have
tr = S, tp_1 = Sp—1 — Sk, etc. Then we have, with the help of Lemma 2.13:

k
IS sl = |Zzt1 Bl Al = |Ztlz Gl Al
=1 =1 =1
k
< Ztl|2<¢i|A|wi>| < thzaim)
I= i=1 I=1 =1
k:l k k 1
= Zztldi(A) = ZSZUZ(A) (2.48)
i=1 =i i=1
This proves the Lemma 2.14. |

After these preliminaries we can prove the theorem:

Proof of the Theorem 2.12. We can express [¢)) = > ,; Aj;lij) and similarly
|p) = >_,; Cijlijg). Then we have o; = 0;(A). We can further perform a Schmidt
decomposition of |¢) as a singular value decomposition of C' which can be written
as

Znaz it (2.49)

where 7, = 0;(C') are the singular Values, al is the I-th column of U in Eq. 2.42, and
b! is the I-th row of V in Eq. 2.42. The vectors a' and b’ are pairwise orthogonal:
(al|a™) = &, and (b!|6™) = ;.. So it suffices to maximize

sup [(dlv)] = sup|Y_ CfAyl
|#) €Sk c ij
k
= Supsupsup]ZTl (al|AJ6"™)|
Tl b =1

= supZTiaz-(A), (2.50)
Ti =1
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where we have used Lemma 2.14. So all in all we are left with a linear optimization
problem with the constraint Y, 72 = 1, which has to hold since |¢) should be
normalized. This can be solved with Lagrange multipliers, and the result is (2.45). O

Corollary 2.15. Let |¢)) be a pure state. Then the maximal squared overlap be-
tween |¢) and the product states is given by the biggest squared Schmidt coefficient
o?,

sup |(a,b|y)|* = o2, (2.51)
|a),[b)

This is just a simple consequence of the fact that the pure product states are just
the states of Schmidt rank one. This is also the fact that has been used to calculate
the constants for the witnesses. It will again be used in the next chapter.

Finally, it is important to note that due to Theorem 2.12 many of the criteria
in this thesis can be straightforwardly extended to the detection of states of a given
high Schmidt rank. By this we mean that one may define other convex sets besides
the set of separable states by convex combinations: A mixed state is of Schmidt
number k iff it can be written as a convex combination of pure states of Schmidt
rank k or smaller. This is a natural generalization of the concept of the separable
states, which are in this scheme the mixed states of Schmidt number one [83, 84].
One can define witnesses in a similar way, as observables which can detect that the
Schmidt number of some state exceeds some number [85]. Thus, the bound on the
overlap in Eq. (2.45) enables us to derive criteria for the detection of high Schmidt
number in the same manner as for the detection of entanglement.

2.7 Stabilizer witnesses

In the preceding sections we dealt with witnesses for a given state |¢) of the form
W=0C-1— )Yl (2.52)

where C' is a constant chosen in such a way that the witness is positive on some
set of states. Here, we want to introduce a new way of of construction witnesses,
namely of the form

W=C"1-) 5 (2.53)

where C’ is again a constant and the S; are the so-called stabilizing operators of the
state, i.e., they obey

Silw) = 4. (2.54)

Note that |¢)(¢)| is also a stabilizing operator of the state |i). But the main idea
is to take stabilizers which are local observables. The usefulness of the stabilizer
formalism for the detection of entanglement has been first demonstrated in [86]. In
this way we can construct witnesses which are by definition measurable with local
measurements. As we will see, for many states this idea turns out to be useful.
We will discuss three classes of states, for which witnesses based on the stabilizer
formalism are easy to construct.
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The first class we want to discuss are the so-called cluster states [75, 87]. They are
good candidates for our approach since their definition relies on stabilizer equations
of the type (2.54): The n-qubit cluster state, |C'L,), is uniquely defined by the
following equations®:

o?|CL,) = |CL,),
Uékil)axk gkﬂ |CL,) = |CLy); fork=2,3,...,n—1,
o VeM|CL,) = |CL,). (2.55)

In the more general definition, also eigenvalues —1 are allowed in Eq. (2.55). For
simplicity, however, we will concentrate on cluster states with the eigenvalue +1. In
the following we denote the stabilizing operators from Eq. (2.55) as SiCL" ,i=1,...n

Let us not some properties of these states: First, we note that one can prove
that the state |C'L,) is uniquely determined by the equations (2.55). Nevertheless,
the class of all cluster states is big enough to contain many interesting states: For
two qubits the cluster state is a Bell state, and for three qubits the cluster state is
up to a local change of the basis a GHZ state. There is also an explicit formula for
the cluster state:

|CLy) ® 10);0 0 4 11),). (2.56)

From this one can calculate |CL,,) by multlplymg out the right hand side and ap-
plying o, to the consecutive qubit. Two further properties of the cluster states are
important: An n-qubit cluster state is alway truly n-partite entangled. Furthermore,
this entanglement is robust: n/2 measurements on different qubits are required to
disentangle the state [75]. Physically, a cluster state can be created by applying the
Ising-type time evolution U = exp (iTr/4 Dok agk)agkﬂ)) to the fully separable state
|zt 2t ...,2"). Now we can formulate our main result concerning cluster states:

Theorem 2.16. Let SZ.C Ln be the stabilizing operators of an n qubit cluster
state, defined in (2.55). Then

WD = (n— 1)1 Z §CEn (2.57)

is an entanglement witness detecting true n-qubit entanglement. )//\V/,(Ld) detects the
state |C'Ly) and, more general, it detects states of the form o(p) = p|C'Ly,)(CL,| +
(1-p)1/2" for p > (n—1)/n.

Before proving this theorem let us discuss its implications. First, note that the
witness (2.57) cannot be improved by choosing a smaller constant than (n—1). This
is due to the fact that for the biseparable state |¢) = |C'L,—_1)|0) fulfills already

TrWs o) (¢]) =

The remarkable fact is that a measurement of the witness W,y

(c)

requires only

two measurement settings: From the coincidence probabilities of Ug(c ) gg) g(c ). and

30,@ denotes a measurement of ¢, on the i-th qubit. To keep the notation short, throughout
this section we omit the tensor product symbol “®”.
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021)03(52)09)... on can determine the expectation values of all stabilizing operators,

and thus the expectation value of the witness. This shows that in the case of cluster
states only two measurements are needed to detect the entanglement. On the other
hand, one has to admit that the witness Wﬁd) is not very robust against noise. The
value p > (n —1)/n needed for a detection is quite high. To prove Theorem 2.16 we
first calculate another witness:

Proposition 2.17. Let |CL,) be the n-qubit cluster state. Then

1
Wi — 51— CLu)(CLy| (2.58)

is an entanglement witness detecting true n-qubit entanglement. W,(Ld) detects the
state |C'Ly) and, more general, it detects states of the form o(p) = p|C'Ly,)(CL,| +
(1—p)1/2" for p > (2»1 —1)/(2" — 1).

This witness is not so sensitive to noise, but here one has to decompose
|CLy,)(CL,| into local measurements. This leads to a decomposition with many
settings, for n = 3 one needs four settings?, for n = 4 it seems that one needs nine
settings®. Now we can go to the proofs:

Proof of Proposition 2.17. In order to prove Proposition 2.17 we have to show
that the maximal Schmidt coefficient which appears if we expand |CL,) in the
Schmidt decomposition for an arbitrary, but fixed bipartite splitting is not bigger
than 1/4/2. In some cases this can be verified directly via Eq. (2.56), but for the
general case this is not straightforward. But we can prove it the following way: It
has been shown that from a given cluster state one can prepare a singlet state for an
arbitrary pair of qubits by local measurements only [75]. This implies that if we fix
a bipartite splitting and choose two qubits on each party, we can generate via LOCC
a singlet state for this two qubits from the cluster state. Thus we can generate a
state between the splittings for which the Schmidt coefficients are not bigger than
1/4/2. At this point we use the so-called Nielsen theorem on the behavior of Schmidt
coefficients under LOCC: A transformation |¢)) — |¢) is possible if and only if the
vector of Schmidt coefficients of |¢) majorizes the vector of Schmidt coefficients of
|1) [88]. But this implies here, that the biggest squared Schmidt coefficient of the
original state |C'L,) cannot exceed 1/v/2. O

Proof of Theorem 2.16. In order to prove that Wr(fl) is an entanglement witness,
we prove that detection via WT(LCD implies detection via Wéd), i.e., TT(QW,(ICD) <0=
Tr(gWr(Ld)) < 0. To show this let us look at the operator

n
X =W —2WD = (n—-2)1 = > 57" 4+ 2|CLp)(CLy|. (2.59)

i=1
We have to show X > 0 to complete the proof. To do this, let us look at the total
set of cluster states with eigenvalues £1 in Eq. (2.55). There are 2" different of

4We have computed this decomposition and proved its optimality, since the three-qubit cluster
state is up to local unitaries the GHZ state.

>This witness was presented in Eq. (2.27). Note that the state [1)§') given in Eq. (2.26) is the
cluster state |C'L,) up to local unitaries.
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them, let us denote them by |CL:),i = 1,...,2" and |CL}) = |CL,). The vectors
|CL%) are pairwise orthogonal since they are eigenvectors of the same observables
with different eigenvalues. Thus, they form an orthonormal basis of the total Hilbert
space. Due to the eigenvalue properties of the |C'LY,) the relations (CL%| X|CLL) > 0
and (CLi|X|CL}) = 0 for i # j hold. In other words, X is in the |CL!) basis
diagonal with positive entries on the diagonal. This implies X > 0. O

Sometimes the noise might be too large, so that the state under consideration
does not contain any true multipartite entanglement anymore. However, one might
be interested in detecting some entanglement, even if it is not multipartite entan-
glement. This can also be done, using the same measurements.

Theorem 2.18. The following entanglement witness detects entanglement
which might be only biseparable entanglement for states close to an n-qubit cluster
state

n—1
Qcp, = (n—1)-1— 8" —23 " 57kn — gn, (2.60)
k=2

Proof. We need the Cauchy-Schwarz inequality @ - b < |@||b| and the fact that
<J§k)>2 + (ng))2 < 1. This bound follows directly from the geometry of the Bloch
sphere, we will give another proof in a more general setting in the next chapter. Then
we can estimate for product states qk : <SCL” + S,?fﬁ = (o (kfl))<a§k)>< (k+1)> +

(Y oy (o) < (68 (oY 4 (6P (6 FTD)] < 1. To keep the notation

short, we denoted here for the end of the chain 0( ) = (n+1) = 1. Thus we have

(Qcr,) = (n—1) — Zk:l gr > 0. Due to the convexity this holds also all fully
separable states. The constant term in Eq. (2.60) is the smallest possible, since the
separable state [z 7)|z1)|zT)|2T)... gives (Qcr,) = 0. 0

Another class where the stabilizer formalism turns out to be useful is the class
of GHZ states. It is easy to see that wigha) .= 1/2 — |GHZ,){GHZ,| detects
genuine n-qubit entanglement in the vicinity of the n-qubit state |GH Z,,) = (|0...0)+

11..1))/V2.

Again, for the state |GHZ,) a witness for the detection of genuine n-qubit en-
tanglement can be constructed based on the stabilizer formalism. It reads:

n —

Wéghz) =Mn-1)-1- H o3 Z o, (2.61)

k=1 k=1

The proof is essentially the same as the one for the cluster state: one looks at
X = Wflghz) — 2W,(Lghz) and shows that X > 0. This can be easily done in a basis of
GHZ states.

The observables appearing in the right hand side of Eq. (2.61) are again stabiliz-
ing operators of the GHZ state. Also, only two measurement settings are necessary.
For the detection of biseparable entanglement a similar witness can be constructed.
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Theorem 2.19. The following entanglement witness detects biseparable entan-
glement for states close to the n-qubit GHZ state

n—1
) 3 o®g D), (2.62)
k=1

::

Qcuz, = (n—1) <
k=1

Proof. For product states we can estimate as before with the Cauchy—Schwarz
inequality (IT, o) + (o1 al™ D) < [(aI™)] - (o™ )] + (o)) - (ol V)] <
1. The constant in Eq. (2.62) is the smallest possible since the separable state
|27 27 27...) gives (Qamzy) = 0. O

Finally, we want to show that the previous results can straightforwardly be
generalized for graph states [89, 90]. These states are defined in the following way:
One takes a graph, i.e., a set of n vertices, where some of the vertices are connected
by edges. These connections can be described by an adjacency matrix I' of the
graph: T'y; = 1 (0) if the vertices k and [ are connected (not connected). From this
one defines an n-qubit state as an eigenstate with eigenvalue 1 of the stabilizing
operators

S,?” = ok H(Jg))r’“. (2.63)
I#k

Physically, I'y; = 1 (0) means that the spins k and [ interact (or not) by an Ising-
type interaction. We can assume, that the graph does not decay into two separate
subgraphs, otherwise the graph state would be biseparable. The following entangle-
ment witness detects biseparable entanglement for states close to an n-qubit graph

state ]
Qc, = 5(27%) 1> mgsG, (2.64)
k k

where ng, = >, 'y is the number of neighbors of spin k. A witness detecting genuine
n-party entanglement can be defined as

WE = (n—1)-1-Y_ S (2.65)

The proofs are essentially the same as before: For Q¢,, one estimates each connection

using the Cauchy-Schwarz inequality and for W(g) one uses the fact that one can
produce from a graph state by local means a singlet between an arbitrary pair of
qubits [90].

2.8 Experiments

Now we turn to the description of recent experiments, performed by Mohamed
Bourennane, Manfred Eibl, Christian Kurtsiefer, Sascha Gaertner, and Harald We-
infurter in Munich and Garching. These were the first experiments where witnesses
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Figure 2.1.  Setup for the generation of the three-photon W state. See
text for details.

were used for the detection of genuine multipartite entanglement®. To be precise, the
witnesses for the three-qubit W state and the four-qubit U(*) state were measured.
These experiments used polarized photons as qubits. So let us start our section by
discussing the generation of entangled states.

One possibility to generate entangled states of polarized photons in a laboratory
uses the so called type-II spontaneous parametric down conversion (SPDC) [92]. In
this process, an ultraviolet (UV) laser pumps a nonlinear beta-Barium-borate (BBO)
crystal. Multiple emission events during one pump pulse lead to the emission of the
state

[t) ~ exp(—ia(aafhbafv + a(}tvb&h))|0> (2.66)

distributed onto two modes, ag and by. Here, ag ;, denotes a creation operator, cre-

ating a horizontal polarized photon in mode ag, and ba , creates a vertical polarized
photon in mode by. In the second order of this process only the quadratic terms are
relevant, leading to

[9) ~ (ag s + ag,bg ) 10)- (2.67)

This results in the state
”¢> ~ ’2h>a0‘2v>b0 + ’2’U>a0’2h>bo + ylh’ 1v>a0’1ha 1'U>b0, (2'68)
where |2h),, denotes a state of two horizontal polarized photons in mode ag, and
|1h, 1v)p, denotes one horizontal and one vertical polarized photon in mode by, etc.”

The production of a W state from the four-photon state (2.68) is based on the
idea to take one photon as a trigger [93, 94] (see Figure 2.1)%. Let us assume that in
all the modes a, b, c as well as in the trigger mode ¢ a photon is are detected. Then

5The experimental detection of two-qubit entanglement using witnesses has been first reported
in Ref. [91]

"Note that in first order the two-qubit Bell state |R)ag |[0)by + |)ag|h)bo is produced.

8We thank M. Bourennane for the abandonment of the Figures 2.1 — 2.4.
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Three photon detection
probability

[‘L"zm
| -y
lyl=1,1,1 ... -1-1,1

Figure 2.2.  Threefold coincidence probabilities for the six measurement
settings, needed for the detection of the three-qubit W state. See text for
further details.

the photon in the mode ¢ must be vertically polarized, due to the polarizing beam
splitter PBS. Thus two of the three photons in the modes a, b, ¢ must be horizontally
polarized, and one vertically polarized. To distribute these photons with the correct
probability over the three modes, a polarization dependent beam splitter (PDBS)
in arm a (with transmissions tg = 2ty) is used. The remaining two photons are
distributed into the two arms by two other 50-50 beamsplitters (BS).

For the detection of the tripartite entanglement of the W state two different
witnesses were used. The first one is

2

Wyl = S = (W) (W (2.69)
which is known from Egs. (2.16) and (2.17). The second one is
WD = L1 [GHZ)(GHZ|
= é(S-]L@IL@IL—ﬂ®ay®ay—ay®l®ay—ay®ay®l—
42093 — é (0, 4 0,)% — % (o, — ax)®3). (2.70)
where |GHZ) = (ly*yTyT)—|y~y~y~))/v/2. This witness is also known from Section
2.4.2, here it is only written in a different basis. Note that W?Ew’2) can also serve for a

detection of GHZ-type entanglement, when T’ T(Wéw’mg) < —1/4 the state o belongs

to the GHZ class. Only six local measurement settings are required, to measure the
expectation value of the two witnesses. Theoretically, if the W state were produced
perfectly, one would expect

w 1
Tr VW) W) = 2,
w 1
TrWs" I IWywD) = —1. (2.71)

In the experiments, each measurement setting corresponds to a special setting of half-
and quarter- wave plates (HWP and QWP) and the beam splitter in the detector of
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UV pulses
BBO D,

S

Figure 2.3. Setup for the generation of the four-photon U™ state.
See text for details.

each of the three modes. This results in coincidence probabilities for a given setting
for the eight possible outcomes. These coincidence probabilities for the six required
measurements are shown in Figure 2.2. From these probabilities, the mean values
of the six settings and thus the expectation value of the witnesses can be calculated.
The result is:

TrOVS Y pw)eap = —0.197 +0.018,
TrV? py)eap = —0.139 % 0.030. (2.72)

which proves that the state produced in the experiment was truly tripartite entan-
gled.

It is remarkable that the mean value of the witness WéW’Z) is not smaller than

—1/4. As already mentioned, a mean value smaller than that would indicate GHZ en-
tanglement. Thus the result is in agreement with the assumption that the produced
state is indeed in the W class of mixed states.

The question whether Bell inequalities could also serve for a detection of tri-
partite entanglement in this case is not easy to decide. In the first experiments to
produce W states, Bell inequalities failed to detect the tripartite entanglement [94].
However, with a better choice of the settings this might be possible [95].

The production of the four-qubit singlet state is conceptually simpler (see Fig-
ure 2.3) than the production of the W state [73, 74]. After preparing the state
[¢) ~ (a&hb&v + a&vbah)z\m in the modes ag and by two beam-splitters are used
to distribute the photons in the four modes a,b,c and d. Using the fact that
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Figure 2.4.  Fourfold coincidence probabilities for the fifteen measure-
ment settings, needed for the detection of the four-qubit U™ state. See
text for further details.

these beam-splitters transform the creation operators as asrh = (az + b;) /V/2 and

bar h= (CZ + d;) /V/2, etc. one can directly calculate that fourfold coincidences in all
the four modes a, b, ¢, and d can only occur when the state

) ~ | lv)clv)a + [v)alv)plh)elh)a +

h)alh

1

+5 ([0)alh)s + [R)alv)s) ([0)elh}a + [B)e|v)a) (2.73)
is produced. This state is, up to a sign which can be removed by a local change of
the basis the four qubit singlet state |¥(4), introduced in Eq. (2.24). The witness
for this state, calculated in Section 2.4.3, is given by W‘PM) =3/4-1— W)y (T
Theoretically one would expect

1
Trw e W) (30]) = 2. (2.74)
The measurement of the witness requires fifteen measurement settings. These mea-
surement data for these are shown in Figure 2.4. From these data one can conclude

that the expectation value of the witness is given by

(4)

TrOVY " py@ )eap = —0.151 £ 0.01, (2.75)
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which confirms the genuine four-partite entanglement beyond any doubt.

For the U™ state the possible detection with a Bell inequality is even more
problematic: Up to now there is no Bell inequality known which could prove that
the state U™ is truly four-partite entangled. Thus witnesses are the only possibility
nowadays to prove the entanglement in this case.

Finally, note that in the reported experiments the production of the entangled
states used post selection: One can conclude that the desired state was produced,
when coincidences on all modes occur, but in many cases only two photons or dif-
ferent four photon states are produced. This is a typical drawback of multi-photon
experiments. A different approach which allows to produce entangled states directly
without post selection uses ions in ion traps. Also in these systems, W states have
been produced recently [96].

2.9 Conclusion

In conclusion, we have demonstrated in this part of the thesis that witnesses are
useful tools for the detection of multipartite entanglement.

First, we have provided a simple method to construct witnesses for the detection
of true multipartite entanglement. This method can be applied to all pure multipar-
tite entangled states and is based on the calculation of the maximal overlap. Then,
we have introduced the method of local decompositions of witnesses which makes the
measurement of witnesses and other nonlocal observables feasible in a laboratory.
We calculated local decompositions for several interesting three- and four-qubit wit-
nesses. We developed a method based on the formalism of the tensor rank to show
that a given local decomposition is optimal. With this method we were able to show
that our decompositions are in many cases optimal. We also developed a different
method of construction witnesses based on the stabilizer formalism. This offers the
possibility to detect cluster and GHZ states of an arbitrary number of qubits with
only two measurements settings. Finally, we reported about experiments, where
some of the witnesses presented in this chapter have been implemented to detect
three- and four-photon entanglement.

There are several interesting topics which should be addressed further. One
challenging task, is of course, to develop other techniques for the construction of
witnesses. The two methods presented here, the one based on the overlap and the
one based on the stabilizer formalism, are quite simple, however it is unlikely that
they are able to detect all multipartite entangled states. Constructing new witnesses
with a high robustness against noise would be of great interest.

Another interesting question lies in the investigation of the payoff between the
number of measurements needed and the robustness against noise of the witness. In
calculations for the stabilizer witnesses, it turned out that they are easy to measure,
but fragile against disturbance of the state to be detected. This can be viewed
as a property of the states: Highly entangled pure states can be detected with
only few measurement settings. If noise is added, the entanglement in the state
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decreases and more settings are necessary. Thus the question arises, whether the
number of measurement settings needed for the detection of a state can be used as
an entanglement measure to quantify the entanglement.

The last interesting topic we want to mention is the development of new separa-
bility criteria, which are easy to implement. Witnesses are always linear in the state,
but maybe the convex set of the separable states can be better approximated with
nonlinear criteria. To make these criteria applicable in experiments, they should
rely on directly measurable quantities, state reconstruction should be avoided. In
the next chapter, we present some steps towards nonlinear entanglement witnesses.
There we use variances and entropies to detect entanglement. These criteria also
exhibit some relations between uncertainty relations and entanglement.
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CHAPTER 3

UNCERTAINTY RELATIONS AND ENTANGLEMENT

3.1 Overview

The uncertainty principle is, besides entanglement, another aspect of quantum the-
ory, which departs from the classical intuition. The fact that for certain pairs of
observables the outcomes of a measurement cannot both be fixed with an arbitrary
precision has led to many physical and philosophical discussions. However, the un-
certainty principle is, like entanglement, still not fully understood.

In this part of the thesis, we want to address the natural question whether there
are any relationships between the uncertainty principle and entanglement. This
question has been posed before mainly for infinite-dimensional composite systems.
In these cases it turned out that one can formulate many separability criteria in
terms of uncertainty relations [97-101]. For finite-dimensional systems this was not
so clear, in, fact the first separability criteria in terms of uncertainty relations have
been established in Refs. [102, 103].

When talking about uncertainty relations, one has to keep in mind that there
are different mathematical formulations for the same physical fact. Besides the
standard formulation in terms of variances [104-106] there is another formulation
in terms of entropies, the so-called entropic uncertainty relations [107, 108]. The
main difference between these formulations lies in the fact that entropic uncertainty
relations only take the probabilities of the different outcomes of a measurement into
account. Variance based uncertainty relations depend also on the measured values
(i.e., the eigenvalues of the observable) itself.

As already mentioned, we establish connections between uncertainty relations
and entanglement, but for finite-dimensional systems. For this we will use variance
based uncertainty relations as well as entropic uncertainty relations. Thus, this
chapter is divided into two parts: In the Sections 3.3 - 3.7 we explore the connections
between variance based uncertainty relations and entanglement. In the Sections 3.8
- 3.10 we consider the entropic formulation of the uncertainty principle. In detail,
we proceed as follows:

In the first section we recall some facts about the uncertainty principle in general.
In the following sections we want to derive separability criteria in terms of variances.
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After explaining the main idea (Section 3.3) we start with the discussion of the
so-called local uncertainty relations (LURs) [102]. We recall the main idea of the
LURs and discuss their drawbacks, e.g. the problems to extend them to multipartite
systems. These problems can be solved by considering nonlocal observables, as we
will show then. We derive a collection of nonlocal uncertainty relations which can
serve for the detection of entanglement in various situations.

In Section 3.6 we discuss the relationship between our criteria and entanglement
witnesses. As it will turn out, the variance based criteria are not stronger than
witnesses, there are, however, sometimes easier to construct.

A very interesting feature of the variance criteria is that they allow to connect
finite-dimensional systems with infinite-dimensional systems. We will recall some
facts about infinite-dimensional systems in Section 3.7 and explain this connection.
This will enable us to translate separability criteria known from infinite-dimensional
systems to finite-dimensional systems.

In Section 3.8 we start our discussion of the relationship between entropic uncer-
tainty relations and entanglement by recalling some facts about entropies, entropic
uncertainty relations and related topics.

Finally, we present two different ways to obtain separability criteria in terms of
entropic uncertainty relations. In Section 3.9 we develop a method based on the
calculation of overlaps. In Section 3.10 we derive another method, which shows how
any entropic uncertainty relation on one part of the system gives rise to a separability
criterion on the composite quantum system.

3.2 The uncertainty principle

Let us start by recalling some facts about the uncertainty principle in quantum me-
chanics. The uncertainty principle, in its verbal formulation states the following.
For certain pairs of observables the measurement results, when both observables are
measured, can not both be fixed with an arbitrary precision. There are states, where
the results for the measurement of one observable are certain with arbitrary preci-
sion, but then the other observable is inevitable afflicted with a nonzero uncertainty.

For a mathematical formulation of this physical fact one has to define what the
uncertainty of an observable should be in mathematical terms. There are mainly
two ways of measuring the uncertainty of an observable, thus, there are two different
approaches to derive uncertainty relations.

The first of these ways uses the variance of an observable as a measure of the
uncertainty. The variance of an observable M is defined by

52(M)Q = ((M — <M>Q)2>Q = <M2>Q - <M>§ (3.1)

and the standard deviation § = v/62 by its positive square root. We often suppress

the dependence on p in our notation, when there is no risk of confusion. Note
that if ¢ is a pure state the variance is zero iff ¢ is an eigenstate of M. If we have
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two observables which do not share a common eigenstate, the variances of both
observables cannot both equal zero. Historically, the first uncertainty relation was
derived for the observables position (X) and momentum (P) of a particle [104]. It
reads’:

5(P)5(X) > —. (3.2)

[N~

This relation has been later generalized to arbitrary observables [105], then it reads
d(A)o(B) > [([A, B])|/2. Also a generalization to more than two observables has
been provided [106]. One may express the fact that some observables A; do not
share a common eigenstate also as

> 8 (4) = C > 0. (3.3)

Here, the calculation of the constant C is in general not straightforward. However,
as we will show in the later sections of this chapter, this formulation will be useful
to derive separability criteria in terms of uncertainty relations.

The second formulation of the uncertainty principle uses entropies as measures of
the uncertainty [107]. Measuring an observable M yields a probability distribution
of the outcomes. Now one can measure the uncertainty of the observable by the
entropy S(M) of this probability distribution. If two observables M; and Ms do not
share common eigenstate, there must be a constant such that

S(My) + S(My) > C > 0 (3.4)

holds. Equations of this type can also serve as a formulation of the uncertainty
principle. Since their discussion presupposes a discussion of possible entropies, we
will discuss these so called entropic uncertainty relations later in Section 3.8.

Finally, we want to stress that the validity of uncertainty relations does not rely
on the disturbance of the system during the measurement process. In their deriva-
tion no reference is made to the collapse of the wave function or similar concepts.
Uncertainty relations express simply the mathematical fact that some observables
do not share a common eigenstate. Thus, their validity is not restricted to single
systems. If many copies of a particle in the same quantum state are given, we may
measure on some of them the position and on the others the momentum. However,
for the variances of these measurements still Eq. (3.2) is valid.

3.3 Variance based criteria

The idea to detect entanglement with variances is based on the following concavity
property of the variance.

INote that in the older literature the standard deviation is often defined with a different factor
Sota := V/26.
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Lemma 3.1. The variance of an observable is concave in the state. Technically
speaking: Let M; be some observables and o = ), pror be a convex combination
of some states pr. Then

252(Mi)g > ZPkZ‘SQ(Mi)Qk (3.5)
7 k %

holds.

Proof. This fact can be proven by a simple calculation. The inequality holds
for each Mi: 0*(Mi)y = S0, pk{(Mi = (M)o)?)or = Lo P(6% (Mo, + ((Mi)o, —
(Mi)o)?) = 2 4 Pr6™(M;) g - O

Note that this lemma has a clear physical meaning: One cannot decrease the
uncertainty of an observable by mixing several states.

To detect entanglement with this property, we first have to chose some observ-
ables M; and look at the sum of the variances of these observables. Then, we
compute a lower bound of this quantity for the pure product states. Due to the
lemma from above, the bound will also hold for all separable states. If we find a
state which violates this bound, the state must be entangled. For simplicity, we
introduce the following definition for these entangled states:

Definition 3.2. We call a state g violating the variance criterion if there exist
M; and a constant C' > 0 such that

D 82 (My), < C, (3.6)
while for all separable states o,
> (M), > C (3.7)

holds.

A state which violates the variance criterion has to be entangled, and the entan-
glement of this state can be detected by measuring the variances of the observables
M;. The violation of this criterion can be viewed as a violation of some uncertainty
relation of the type (3.3), since the condition (3.7) is nothing but such a uncertainty
relation with a special bound for the separable states. This bound on the variances
of observables can also be interpreted as a nonlinear entanglement witness.

The problem in this approach is twofold: First, one has to identify the appropri-
ate M; for a given state which one want to detect. Second, one has to compute the
lower bound for the product states.

3.4 Local uncertainty relations

The first work in which variances were used to detect entanglement in finite-
dimensional systems was, to our knowledge, done by Holger Hofmann and Shigeki
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Takeuchi [102]. They called their approach the local uncertainty relations (LURs).
We will discuss it now.

Let A; be observables on Alice’s space of a bipartite system. If the A; do not
share a common eigenstate, there exists, as already mentioned, a number Uaq > 0
such that

S 3 ( Ao = Ua (33)

holds for all states 94 on Alice’s space. Hofmann and Takeuchi showed that uncer-
tainty relations of this type are useful tools for the detection of entanglement:

Proposition 3.3. Let ¢ be separable and let A;, B;,i = 1,...,n be oper-

ators on Alice’s (respectively, Bob’s) space, fulfilling > I, 6%(4i),, > Ua and
S 6%(Bi)oy > Up. We define M; := A; ® 1+ 1 ® B;. Then
> *(Mi)g > Ua + Up (3.9)
i=1

holds.

Proof. Their proof used the fact that for all product states 62(M;)o, 005 =
62(Ai)o, + 0%(B;),, holds. Then the concavity property of the variance proves the
claim. O

Let us discuss now the applications of this method. We start with bipartite
system, for simplicity we consider only two qubits. Then we investigate whether it
is possible to extend the LURs to multipartite systems.

For a single-qubit system is has been shown in [102] that for the Pauli matrices
the uncertainty relation

> 6%(0i) =2 (3.10)

holds. We give a proof differing from the one in Ref. [102] later in this section.
Defining M; = 0; ® 1 4+ 1 ® o; this yields the LUR

> 8(M;) > 4. (3.11)

1=T,Y,2

A short calculation shows that from this equation it follows that for all separable
states

1
(I1®l+0, @0 +0y, R0y +0.Q0,) — =

5 Y (i@l+1®0)’>0 (3.12)

1=x,Y,2

has to hold. This is a quite remarkable equation for the following reason: The first
part which is linear in the expectation values is known to be an optimal entangle-
ment witness (see Section 2.4.1 and Eq. (2.10)). From this witness some quadratic
terms are subtracted. Thus, in this case, the LUR can be viewed as a nonlinear
entanglement witness which improves the linear entanglement witness.
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Figure 3.1. A comparison between the LUR in Eq. (3.12), the witness
from Eq. (2.10), and the PPT criterion for states of the type (3.138) with
d = 0.2. In dependence on p the fraction of states which are detected
via the different criteria is shown.

It is natural to ask at this point how big the improvement by the subtraction is.
Let us investigate this issue numerically. To this aim, we look at states of the form

o(p,d) :==ply" ) (¥~ | + (1 = p)o, (3.13)

where? )
||0—Z]l|| <d. (3.14)

Physically, one can view these states as mixture of a singlet state and some separable
noise, the parameter p determines the fidelity of the singlet state, and the parameter
d the properties of the noise: For d = 0 the noise consists of white noise. The set of
matrices o(p, d) governs a ball in the space of all matrices. We take the value d = 0.2
and generate matrices of the form p(p, 0.2) randomly distributed in this ball, using
the methods of Ref. [109]. Then we investigate the separability properties of these
matrices: We determine the fraction of matrices which are detected by the witness,
the LUR, and the PPT criterion, which is necessary and sufficient for entanglement in
this case. Of course, these fractions depend on the value of p. The results are shown
in Figure 3.1. On can clearly see, that the LUR improves the witness significantly,
although it is not capable of detecting all states.

To discuss the possible extensions of LURs to multipartite systems, we will focus
on three qubits. As it will turn out, already there exist many problems in extending
them. We can first state a simple extension:

Proposition 3.4. Let A;, B; and C; be some operators on Alice’s, respectively,

*We use the Hilbert Schmidt norm in the space of all operators here, i.e., ||A|| = /Tr(AAT).
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Bob’s or Charlie’s Hilbert space fulfilling

252 ) > Uy, 25 ) > Ug, 252 ) > Ug, (3.15)

and define M; - = 4, ®1Q01+1®B;, 1+ 1®1®C;. Then for a fully separable
state p =, pkp,? ® pkB ® ka the LUR

252 ) >Ua+Up+ Uc. (3.16)

holds. For any biseparable state the LUR

252 ) > min{Uys, Ug, Ug} (3.17)

is valid.

Proof. These statements can be derived by writing p as a convex combination of
the appropriate (bi)separable states. Then the calculation is similar the the proof
of the LURs. O

Although these criteria are a straightforward extension of the LURs to multi-
partite systems, they have a big disadvantage: They seem to be quite weak. To
give an example, let us look at A; = B; = C; = 04,1 = z,y, 2. Then it is easy to
calculate that the states |IW) and |GHZ) violate neither Eq. (3.17), nor Eq. (3.16).
The bipartite entanglement in the biseparable state |¢) = (|]101) — [011))/v/2 is de-
tected via Eq. (3.16) and for this state also equality holds in (3.17). However, we
were unable to find any state which violates Eq. (3.17)3. Thus, the LURs in the
formulation of Proposition 3.4 seem to fail to detect true tripartite entanglement.

Another idea to investigate multipartite entanglement with LURs which was
already proposed in [102], is to investigate the bipartite splittings separately. One
has to stress that with this strategy one cannot prove true multipartite entanglement.
This is due to the fact that there are biseparable states which are not separable if
one looks at a fixed bipartite splitting.

The investigation of this bipartite splittings is, however, interesting, since it
leads again to the improvement of already known witnesses by subtracting quadratic
terms. We give here a simple three-qubit example, designed for the investigation of
a GHZ state.

Lemma 3.5. The following uncertainty relations hold for one-, respectively,
two-qubit systems:

6*(—0oy) + 52( o,) +0%(—1) > (3.18)
63 (—0y) + 0%(—0,) + 6% (—0) > (3.19)
6% (0 ® o) + 6% (0, @ 1) + 52(02 ®0.) > 1, (3.20)
60y ® o) + 60, @ 1) + 6% (1 ® ;) > 1. (3.21)

3To this aim we generated numerically randomly distributed mixed states as described in [109]
and we also generated randomly pure states, but no violation of Eq. (3.17) was found.
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Since the proof is a little bit technical, we will present it later. First, we can state:

Proposition 3.6. Let ¢ be a three-qubit state. If p is biseparable with respect
to the A|BC partition, then

2— (0, ®0,R0;) —(0,R0,01)—(1R0, Ro,) —

1
—5(<a$®ﬂ®]1—]l®ax®ax)2+<UZ®H®H—I[®UZ®]1>2+
HI®lel-1®0,®0,)%) >0 (3.22)

holds. If p is biseparable with respect to the B|AC' partition, then

2— (0, R0, ®0,)— (0.0, 01) —(1®0,R0,) —

1
—5((]l@az@l—Jx®ﬂ®crx)2+<az®ﬂ®ﬂ—ﬂ®az®]l>2+
HI®1l®o, —10,®1)%) >0 (3.23)
is valid. Finally, if o is biseparable with respect to the C|AB partition, then

2— (0, R0, R04) —(0,R0,01)— (1R, R0,) —

1
—§(<]l®]l®a$—ax®ax®]l)2+(]l®]l®]l—az®az®]l>2+
Hl®o,®1-101®0,)%) >0 (3.24)

holds.

It is remarkable that the linear part of these inequalities is again a witness, al-
ready known from Section 2.7. It is the witness for the GHZ state given in Eq. (2.61)
for the three-qubit case. This witness is improved by subtracting quadratic terms.
Thus, it detects some states in addition.

Proof of Lemma 8.5. The proofs of these inequalities are the following. We
write all variances as §2(M) = (M?) — (M)2. To prove then (3.18) we only have to
show that (0,)2 + (0.)2 < 1 holds for all one-qubit states. This is clear from the
geometry of the Bloch sphere, but we will give another proof which can be extended
to the other cases. Let A\ = (A1, A2) be a real vector of length one and define
A = Moz + A0, It is easy to see that the maximal eigenvalue of A equals one, thus
A1{oz) + A2(o,) <1 for all A. This implies that the length of the vector ({(04), (02))
is smaller than one, from which (0,)2+ (0,)? < 1 follows. Eq. (3.19) follows directly
from Eq. (3.18) and the fact that the variance is positive. Eq. (3.20) is proven similar
as Eq. (3.18): We have to show that (0, ® 0,)2 + (0. ® 1)2 + (1 ® 0,)? < 2. Again,
we take a vector A = (A1, A2, A3) of length one and look at A = Mo, ® 0, + Ao, ®
1 + A3l ® o,. The largest eigenvalue of A equals v/I + 2XoA3 < v/2. As before this
implies that the length of ({0, ® 04), (0. ® 1), (1 ® 0.,)) is smaller than v/2 which
proves the claim. Eq. (3.21) can be proven similarly. Note that the uncertainty
relation (3.10) can also be proved in this way. O

Proof of Proposition 3.6. The inequalities follow directly from the scheme of the
LUR applied to the corresponding partitions and the Lemma 3.5. a
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To conclude, we have seen that LURs are strong criteria to detect bipartite
entanglement. Nevertheless the extension to multipartite systems is not so clear: It is
not known up to now whether they are able to detect true multipartite entanglement.
They have some further disadvantages: it is not clear which operators A; and B; one
should choose to detect a given entangled state. Also, LURs can by construction
characterize separable states only; they do not apply for other convex sets. In order
to overcome these disadvantages, we introduce in the next section a more general
approach which is dealing with variances of nonlocal observables.

3.5 Nonlocal uncertainty relations

A way to overcome the disadvantages of the local uncertainty relations is to consider
nonlocal observables. For an experimental implementation one can decompose any
nonlocal observable into local operators, as described in the previous chapter. The
main idea to construct these nonlocal observables, is, to take them as projectors
onto entangled states. With this we can also design uncertainty relations allowing
the detection of a given state. Let us start with explaining this idea in the case of
two qubits:

Proposition 3.7. Let [¢1) = a|00) + b|11) be an entangled two-qubit state
written in the Schmidt decomposition, with a > b. Then, there exist M; such that
for [1h1), 2; 62(M;)yy)(wy) = 0 holds, while for separable states

> 82 (M;) > 2% (3.25)

is fulfilled. Thus, |¢)1) violates the variance criterion. The M; are explicitly given
(see below).

Proof. We define [¢p2) = a|01)+b[10); |13) = b|01) —a|10); |¢4) = b|00) —a|ll),
and further M; := [¢);) (v],i = 1,...,4. Then Y, 6*(M;)y,)(py) = 0. We only need to
prove the bound (3.25) for a pure product vector |¢). We have Z?Zl 6% (M) )00 =
1= > ({¢]vi)|*)?. Now, we use the fact that |(¢[1;)|* < a*. This bound on the
maximal squared overlap follows from the properties of the Schmidt decomposition,
it has been proved in Section 2.6. With this bound we have >, (|{¢[1;)[*)? < (a?)?+
(1 —a?)? and finally 6%(M;)|4)(g > 2a2b°. O

Note that Eq. (3.25) allows to detect a mixed state of the form o(p) = pli1) (Y1 |+
(1 —p)1/4 for p > /1 — 8a?b?/3. These are not all states of this family, since the
states are entangled for p > 1/(1 4 4ab). We will discuss this in more detail in
Section 3.6.

This two-qubit example reveals already a main idea for the construction of the
M; : We take one M; as the projector onto the range of g, and the others as projectors
onto a basis of the kernel of p. This basis should contain only entangled vectors. As
we will see now, this concept suffices to detect all pure entangled states, a family of
bound entangled states and multipartite entanglement.
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Proposition 3.8. Let |¢1) be an entangled pure state in a bipartite N x M-
system. Then [i) violates the variance criterion for properly chosen M.

Proof. Let U be the space orthogonal to |¢1). It is clear that U contains at
least one entangled vector [i).). We can choose a basis [¢;),i = 2,..., NM of U
which consists only of entangled vectors. (To do this, we choose an arbitrary, not
necessarily orthogonal, basis. If it contains product vectors, we perturb them by
adding £|1e)). Then we take M; = |¢;)(1;|. The only possible common eigenstates
of the M; are the |1);). So for product states the sum over all uncertainties is bounded
from below, while it is zero for |i)1). O

The class of bound entangled states which we want to consider are those arising
from an unextendible product basis (UPB) [38]. They can be constructed as follows:
Let {|¢:;) = |ei)|fi),i = 1,...,n} aset of product vectors in a bipartite N x M-system,
where all |¢;) be pairwise orthogonal, and do not span the whole space. If there is
no other product vector orthogonal to all |¢;) they are said to form an unextendible
product basis?. Then the state

1
= —_ — i i 2
up = (1= 216 (0d) (3.26)
is a bound entangled state: It is clear that gy pp is PPT since we have
1
Ty *\ [ N
elbs = 3 (1= Sl @ 1) = 0. (3.27)

Furthermore, they are entangled. They violate the range criterion, introduced in
Section 1.1.3 in an extreme manner. There is no product vector in the range of
oUPB, thus there is no set of product vectors spanning this range. However, all the
UPB states can also be detected with our variance based method.

Proposition 3.9. Let gypp be a bound entangled state, constructed from a
UPB. Then gy pp violates the variance criterion for appropriate M;.

Proof. Let U be the subspace spanned by the UPB. Then U must contain
at least one entangled vector. To see this, note that subspaces containing only
product vectors are of the form {|v) = |a)|b)} with a fixed |a) (or |b)) for all |v).
But then there would be product vectors orthogonal to U. Due to the existence
of an entangled vector in U, there is, according to the proof of Proposition 3.8,
an entangled basis [1;);i = 1,...,n of U. We take M; = |¢;)(¢s];4 = 1,...,n and
M1 =1-3",|¢i)(¢i|. The common eigenstates of the M; are not product vectors,
and we have Y, 62(M;) = 0. O

QUPB

Now we demonstrate that one can also detect true multipartite entanglement
with uncertainties. We give a three-qubit example, allowing the detection of GHZ
states. The inequalities are formulated so, that they can be checked with local
measurements:

4This terminology is a little bit sloppy, since they do not form a basis of the whole space.
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Proposition 3.10. Let g be a three-qubit state. We define a sum of variances
as

ool 3

1
—g(<ﬂ®az®az>2+<az®1®az>2+<oz®az®l>2+

0y ® 05 @ 04)2 + (0, ® 0y @ 7)) + {0y ® 0y @ 7)% +
+{oy ® 0, @ 7y)?) . (3.28)

E(o) =

If E < 1/2, the state g is fully tripartite entangled. If F < 3/8, the state ¢ belongs
even to the GHZ class. For the GHZ state |GHZ) = 1/4/2(|000) 4 |111)) we have
E=0.

Proof. We define the eight states [t /5) = (|000) & [111))/v/2; [thg/6) = (]100) +
011))/V/3; [iiyz) = (1010) % [101))/v/2; [tha/s) = (1001) % |110))/v/2 and as usual
M; = [)(il,i = 1,...,8 and E = Y, §%(M;). Then the proof is quite similar to
the proof of Proposition 3.7. One only needs the maximal squared overlaps, which
we know from the previous chapter: We have max|geps |(GHZ|¢)|* = 1/2, and
max iy ew (GHZ|¢)|* = 3/4 [46]. By decomposing the M; similar to the preceding
chapter one gets E in the form of Eq. (3.28). a

Let us compare the inequality (3.28) with the witness Wéghz) =1/2-1—
|GHZ)(GHZ| and Wgpz = 3/4 -1 — |GHZ)(GHZ|. Assuming states of the
type o(p) = p|GHZ)(GHZ| + (1 — p)1/8 the inequality (3.28) detects them for
p > m ~ 0.65 as tripartite entangled, and for p > /4/7 =~ 0.76 as GHZ
states. The witnesses detect them for p > 3/7 ~ 0.43 as tripartite entangled and
for p > 5/7 ~ 0.71 as belonging to the GHZ class. Thus, inequality (3.28) seems to
be slightly weaker. We will discuss the relationship between the witnesses and the
variances in more detail in the next section.

The method presented here can be extended to more parties. For four qubits

one can write down 16 orthogonal GHZ states of the type |¢;) = (]a:&l)x§2)x§3)xg4)> +

‘mgl)ng)xg3)x§4)>)/\/§ with xl(k) € {0,1} and ng) # xgk). If we then define M; =
[1i) (14| it follows as in the proof of Proposition 3.10 that for all biseparable states
>, 6%(M;) > 1/2 holds. The same idea can be used to construct uncertainty relations
for an arbitrary number of qubits, but the number of M; increases exponentially.

3.6 Comparison with witnesses

In this section, we want to compare the variance based criteria with entanglement
witnesses. We also want to give some geometrical picture of the states which are
detected by uncertainty relations. Let us first derive a very general uncertainty
relation:

Proposition 3.11. Let |¢;) be an orthonormal basis of a bipartite Hilbert space.
Let ¢ < 1 be an upper bound for all the squared Schmidt coefficients of all |1;). Then

252(!wi><¢il) >1—[1/e]e® = (1= [1/c]e)? (3.29)
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holds for all separable states®.

Proof. The proof is a straightforward extension of the propositions from the
last section. The bound on the squared Schmidt coefficients gives a bound on the
overlaps. First, we have >, 6%(|¢:)(i]) = 1 — >, (wilo|v:)?. The sum >, (] o|bi)?
is maximal, when the single terms are as big as possible, i.e. [1/c] of the (1;|o|1;)
satisfy the bound (v;|g|1;) = ¢, while one other (v;|o|1);) is as big as possible. This
proves the claim. We will give a proof of more general estimates based on convexity
arguments later, see Theorem 3.21. O

The estimate of this proposition may be refined, if individual bounds on the
Schmidt coefficients of each |¢;) are known. Also, the bound is in general not
sharp. The proof of this proposition implies that the separability criterion given in
Eq. (3.29) is not stronger than the witnesses W = ¢ 1 — |¢;)(1;]. This is easy to
see: If a state p cannot be detected by these witnesses we have (;|o|1;) < ¢ for all
i. Thus, ¢ does also not violate the condition (3.29).

To give a simple example of the geometrical interpretation of the uncertainty
based separability criteria, let us look at two qubits. We take |11) in Proposition 3.7
as the Bell state [1) = (|01) —|10))/v/2, and the other |¢);) as the other Bell states.
Let us denote them by |BS;) = (|00) + [11))/v/2,|BS2) = (|00) — [11))/+/2,|BS3) =
(|01) + [10))/v/2,|BSs) = (]01) — |10))/+/2. Proposition 3.7 ensures now that for
separable states the quadratic inequality

(3.30)

N | =

1= Tr(|BS;)(BSi|)* >

holds. We can write this inequality in the language of local measurement settings:
If we define i = Tr(po; ® o;) for i = z,y,z, we find (BS1|o|BS1) = (1+2z—y+
2)/4; (BS2|0|BS2) = (1—x+y+z)/4; (BS3]0|BS3) = (1+x+y—2)/4; (BS4|0|BSs) =
(1—z—y—=z)/4. A straightforward calculation proves that in this notation, Eq. (3.30)
reads

2?42+ 22 <1 (3.31)

This is the equation of a three-dimensional sphere. To compare this with the wit-
nesses, let us look at the witnesses W) = 1/2 .1 — |BS;)(BS;| for i = 1,...,4. A
separable state has to fulfill Tr(oW®) > 0,i = 1, ..., 4. Following the lines of Section
2.4.1 one can calculate that this requires

r+y+z<1, —zr—-y+z<1,
r—y—z<l1, —r+y—2z2<1. (3.32)

These inequalities describe a tetrahedron in the three-dimensional space. Further-
more a physical state has to be positive, which implies that Tr(o|BS;)(BS;|) > 0
holds, for ¢ =1, ...,4. This requires

r—y+2z<1, —zr+y+z<1,
r+y—z<1, —r—y—2z<l1. (3.33)

®The bracket |z| denotes the integer part of x.
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Figure 3.2.  Geometrical picture for the uncertainty based criteria for
two qubits. The criteria from the Eqs. (3.81, 3.32, 3.33) are depicted in
dependence on the coordinates x,y, and z. One tetrahedron (blue, solid
lines) is the set of all states (3.33), the other tetrahedron (green, dotted
lines) is the set of not necessarily positive matrices, which obey (3.32).
The octahedron (red, dashed lines) is the intersection of these tetrahedra,
it corresponds to the set of separable states. The ball represents the
states which obey (3.31), all the states outside this ball are detected by
the uncertainty relation.

This is again a description of a tetrahedron. Egs. (3.32, 3.33) together describe an
octahedron as the intersection of two tetrahedraS. The proof of the Proposition 3.11
implies that if a state obeys (3.32) as well as (3.33), it also fulfills (3.31). Thus,
the uncertainty criterion does not detect any states which are not detected by the
witnesses W . This is also depicted in Figure 3.2. Later, in Section 3.9 we will
develop criteria, which interpolate between the inequalities (3.31) and (3.32). See
also Figure 3.3.

When making a more sophisticated comparison between the general uncertainty
relations and the witnesses, one has to be careful which questions one likes to pose.
Since witnesses are capable of detecting all states, the uncertainty based methods
can never be better in the sense that they detect more states.

5This geometrical picture was also studied in Refs. [110, 111].
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A more interesting question is, if variances allow to detect more states than
witnesses, if only a restricted set of measurements is available. Again, on has to
be careful: A variance can be measured in different ways. To determine §2(M) one
can setup an apparatus for the measurement of M and calculate the variance of this
observable from the fluctuations of the outcomes. One might also measure only the
expectation values from the two observables M and M? and calculate then §%(M).
Note that for some cases these ways are equivalent. This happens, e.g. for Pauli
matrices and projectors, since o7 = 1 and |¢)(¥|* = [¢) (1]

In our cases, we usually have nonlocal observables. Thus, the first way of mea-
suring 62(M) is not easy to perform, since we cannot setup the apparatus for the
nonlocal observable. One has to measure M and M? separately with the help of
local decompositions.

Now we want to answer the question whether uncertainty relations can improve
the detection of entanglement, when only a restricted set of observables is accessible
and when the variance is measured via determining (M?) and (M). Let A;,i = 1,...,n
be the observables which one can measure. Without loosing generality, we can
assume that they are linearly independent. Otherwise, they would be redundant
and some of them could be omitted. Measurement of the observables gives rise to a
map

A:BH) = R, o A(0) = ((A1) g, ... (A1),), (3.34)

which maps a state onto the set of expectation values. This map is linear and not
injective. It maps the set S of separable states onto the set S := 2((S). An entangled
state o with the property (o) € S’ can not be detected with this reduced set of
observables: There is a separable state g5 having the same 2A(gs), thus ¢ and g, are
indistinguishable. We can state:

Proposition 3.12. If a state p. can be detected via the measurements of the
(A;), then there is a witness W = ). w;A; which detects the state.

Proof. Since 2 is linear, the set S’ is also convex. We have 2(g.) # S’, otherwise
the state could not be detected. Now we can the usual construction of witnesses:
There must exist a hyper-plane separating 2(g.) from S’. This means that there is
a vector w = (wy, ..., wy) with (w|A(g.)) < 0 while (w|A(ps)) > 0 for all separable
0s". The observable W = >, wiA; is now the desired entanglement witness, since
Tr(oW) = (wl2(0)). 0

This proposition states that even when only a restricted set of measurements is
available, the uncertainty relations cannot detect more states. Even other nonlinear
criteria can not be better than the witness.

To end with an example, let us look at the LUR in Eq. (3.12) again. At first
sight it seemed that this inequality improves the witness. This is of course true, but
in view of Proposition 3.12 we can conclude that there must be witnesses using the
same measurement settings which detect all states which are detected by the LUR.
But these witnesses are not easy to construct. Thus we finally arrive at the following

"(w|A(0)) denotes here the scalar product in R™.
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conclusion: in principle the witnesses are better than the variance based methods,
but the latter are sometimes much easier to construct.

3.7 Connection with Gaussian states

In this section we first formulate a criterion for separability in terms of so-called
covariance matrices. Then we show that it is equivalent to the criterion given in
Definition 3.2. However, as we will see, this new covariance matrix criterion has the
advantage that it allows us to connect the separability problem for finite-dimensional
systems with the separability problem for infinite-dimensional systems.

Let o = kakgf ® QE be a separable state and let M;, for i = 1,...,n be
some observables. We can define two functionals Z(p)[X]| and W (p)[X] with X =
(1, .y ) € R™ by:

Z(0)[X] = (eXimamith),
W()X] = In(Z(e)[X]). (3.35)

Similar constructions are known from Quantum Field Theory, there Z is called
the generating functional of the moments and W the generating functional of the
cumulants [112]. Due to the linearity of Z we have Z(o) = 3", prZ (04 ® 0P), and
due to the concavity of the logarithm it follows that

W(e) = > mWl(ai @ o) >0 (3.36)
k

holds. For X = 0 equality holds in this equation. Thus, for this value of X the left
hand side of Eq. (3.36) has a minimum. This implies that the matrix of the second
derivatives with respect to X of this left hand side is positive semidefinite at X =0 :

<3iaj (W) = > oW (ei ® oF)] \x:o) >0, (3.37)
k

where we have denoted 0; := 0/0z;. In this matrix inequality the matrix of the sec-
ond derivatives of W occurs. This is the so-called covariance matrix (CM) (o, M;).
Its entries are:

v(0, Mi)p = O,OW X (3.38)

HXzO'
We will mention some properties of the CM later. First, we can state:

Lemma 3.13. Let g be separable, and let M; be observables. Then there exist
product states g,‘? ® QE and pg such that

Yo M) =" pry(oft ® of , M;) (3.39)
k

holds. We call a state wviolating the covariance matriz criterion for the observables
M iff there are no product states Q?@QkB and convex weights py, such that Eq. (3.39)
can be fulfilled.
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Proposition 3.14. The matrix v has the following properties:
(a) The entries are given by

(M M) + (M My,)
2
(b) We have for an arbitrary (x1,...,z,) € R"

Z TiYij Ty = (52(2 {L‘ZMz) Z 0. (3.41)
i=1

ij=1

In particular we have v > 0.
(¢) The commutation relations of the M; require:

10) 2 9p) ol = (M, M) (342

We have also y(p) > —Q(p).

Proof. (a) can be directly calculated from the definition with the help of the
formula [113]
1
D) = /dseSA(8tA)e_5AeA (3.43)
0
and the power expansion of the logarithm. (b) can be proven by a direct calculation
of 62(3°1, xiM;). To show (c), consider the matrix ©;; = (M;M;) — (M;)(M;).
As in (b) also for © one can prove » 1. | ,0;;r; = 23" @ M;), thus © > 0.
Furthermore, we have © = v + Q and ©7 = v — Q, which proves the claim. Note
that (c) is exactly the formulation of the uncertainty principle for several variables
established in Ref. [106]. O

Armed with these insights, we can prove now the main result of this section:
The variance criterion and the covariance matrix criterion are equivalent.

Theorem 3.15. A state p violates the variance criterion if and only if it violates
also the covariance matrix criterion. The observables leading to a violation may
differ.

Proof. A state violating the variance criterion violates also the covariance matrix
criterion with the same M;, since the sum of all variances is the trace of 7. To show
the other direction, let us assume that v violates the covariance matrix criterion and
look at the set of symmetric matrices of the form T := {>, p;ﬂ(gl‘? ® 0P, M;) + P}
where P > 0 is positive. T is convex and closed. We have due to our assumption
v ¢ T. As in the construction of entanglement witnesses there exists a symmet-
ric matrix W and a number C' > 0 such that Tr(W+v) < C while Tr(Wu) > C
for all 4 € T. Since Tr(Wpu) > C for all p € T we have Tr(WP) > 0 for
all P > 0. This implies W > 0. Now we use the spectral decomposition and
write Wi; = >, )\laéaé with A, > 0. Let us define N; = /A, aéMi. Then
Tr(Wy) = 3,8%(N;) < C according to Eq. (3.41), while for all convex combi-
nations of product states >, pr >_; 62(NV;) 5 > C holds. This is a violation of

i e of ®of
the variance criterion for the IV;. O



3.7 Connection with Gaussian states 65

The criterion in terms of covariance matrices gives us the possibility to relate the
separability problem for finite-dimensional systems with the separability problem for
infinite-dimensional systems. Infinite-dimensional systems occur when the Hilbert
spaces of Alice and Bob are not finite-dimensional, e.g. if they own a harmonic
oscillator, or a free particle. These can happen for instance in quantum optical
systems, where the harmonic oscillators can be represented by different modes of
light. In these situations one can, of course, ask again, whether the state they share
is entangled or not. In many experimental situations one deals with a special kind
of infinite-dimensional states, the so-called Gaussian states. Let us recall some of
their properties. A good introduction in this subject is given in Ref. [114].

Let us assume that n harmonic oscillators (modes) are given, where the first m
belong to Alice and the last n — m to Bob. To each of the modes belongs a pair of
canonical conjugate observables X, P;, corresponding to position and momentum.
These can be written as a vector R = (X1, P1, X2, Py, ..., X5, P,,), and then the Weyl
operators for x = (z1, ..., 2,) € R?" are defined as

W(x) = e LnThle, (3.44)
A state ¢ can be described by a characteristic function, which is defined as
x(x) :=Tr(oW(z)). (3.45)

Gaussian states are defined by the property that the characteristic function is a
Gaussian distribution, i.e., we can write

1 - :
x(x) = exp (- 1 E YR Tk + 1 g dry). (3.46)
Kkl k

Here, the vector d is the so-called displacement of the state and 4 = (y;) is a real,
positive 2n X 2n matrix, the covariance-, or correlation matrix. This is nothing but
the CM of the observables X; and P;. It has to obey®

y>i€PJ where J:((l) _01> (3.47)

i=1

to be a proper CM. This is nothing but the incorporation of the Heisenberg uncer-
tainty relation as in Eq. (3.42). One can show that the displacement can be set to
zero by local transformations, thus all nonlocal properties of a Gaussian state are
encoded in the CM 7.

The important fact for our approach is that the separability problem for Gaussian
states is essentially solved. Namely the following facts are known.

In Ref. [115] it was shown that a Gaussian state described by 7 is separable if
and only if there exist two CMs 44 and 4p for Alice and Bob such that

5> 7408 (3.48)
8The symbol A& B denotes a block diagonal matrix with the matrices A and B on the diagonal
and zero matrices elsewhere: A ® B = ( A0 ) .

0 B
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holds. However, these 44 and 4p are in general not easy to find. The separability
problem was the finally solved in [116] where a map

=2 (3.49)

of one CM onto another CM was defined, which preserves the separability properties,
i.e., 1 is separable if and only if 45 is separable, too. By iterating this map one gets
a CM for which separability is easy to check.

Now we can derive separability criteria similar to these for finite-dimensional
systems. Let us first formulate a criterion similar to (3.48):

Proposition 3.16. Let ¢ be separable and let A;,i=1,...,nand B;,i=1,...,m
be observables on Alice’s, respectively, Bob’s space. Define M; = A; ® 1,i=1,....,n
and M; =1® B;,i=n+1,...,n+ m. Then there are states g’,? and ng and convex
weights pp such that if we define

RA = Zpk’Y(Q?aAz)a
k
kp = Y pry(er, Bi), (3.50)
k
the inequality
v(0, M;) =2 kA ® KB (3.51)

holds.

Proof. This inequality follows from Lemma 3.13 and the fact that for these
special choice of the M; for product states: y(o? ® o, M;) = v(0?, A;) ® v(0B, B;)
holds. a

The algorithm for the solution of the separability problem of Gaussian states [116]
relies heavily on a equation of the type (3.48,3.51). Thus it is not very surprising
that we can now also perform one step of this algorithm.

Proposition 3.17. Let g be separable and let M; be defined as in the preceding
Proposition. We write v(g, M;) in a block structure:

V(0. M;) = ( ;T Jg > : (3.52)

where A = (0, 4;) ( B =(p,B;)) is an n X n- (m x m)-matrix. Then there exist
x4 and kp as in the previous proposition with?:
A-CB'ct
B-CcTaA™lc

KA (3.53)

>
> Kp. (3.54)

To prove this fact requires a lemma about positive matrices, which is known
from the literature:

9Here, and for the rest of this section X ~* denotes the pseudo-inverse of the matrix X, i.e., the
inversion on the range.
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Lemma 3.18. Let v be matrix with a block structure as in (3.52). Equivalent
are:
(a) v is positive: v > 0;
(b) We have ker(B) C ker(C) and A — CB~'CT > 0;
(c) We have ker(A4) C ker(CT) and B - CTA~1C > 0.

Proof. This is proved in [116]. Similar statements are known in the context of
the so-called Schur complement, see, e.g. [81, Theorem 7.7.6]. O

Proof of Proposition 3.17. These inequalities arise from the first step of the
algorithm of [116]. We arrived already after the first step at a block diagonal matrix
and thus at a fixed point. We prove it as in [116] with the help of Lemma 3.18.
Applying the equivalence (a)-(b) to Egs. (3.51, 3.52) yields with Proposition 3.14
A—C(B - kp)tCT > k4 > 0. With the equivalence (b)-(c) we get B — kp —
CTA='C > 0, which proves Eq. (3.54). The proof of (3.53) is similar. ]

In view of the previous sections we can state that any pure entangled state
and any bound entangled UPB state violates also the covariance matrix criterion.
Identifying more general classes of states which allow a detection leads to the difficult
problem of characterizing the possible ), p;ﬂ(g? ® 0P, M;) in Eq. (3.39), resp.
the k4/p in Eqgs. (3.53, 3.54). This is for finite-dimensional systems not as simple
as for Gaussian states, since the condition (3.42) is weaker and more difficult to
handle than the condition (3.47). We only know some properties of the r4,p :
Taking A; = B; = 04,1 = x,y, 2 for two qubits, we know that ), §2(A;) > 2. thus
Tr(ka) > 2 holds. Applying this to the Werner states o(p) = p|¢)(¥| + (1 — p)1/4
with [1) = (]01) — [10))/v/2 one can calculate that they are detected via Eq. (3.53)
forp>1/ V3.

Of course, we also cannot expect Propositions 3.16 and 3.17 to be sufficient for
separability, since we could have chosen the operators M; in an inconvenient way.
But a remarkable property of Eq. (3.53) is that the restriction imposed by k4 is
independent of the choice of the B;. So, it might be a good tool to investigate
entanglement in an asymmetric situation, e.g. when Alice owns a qubit and Bob’s
space is a high-dimensional one.

3.8 Entropic uncertainty relations

In this section we want to recall some facts we will need for the investigation of
entropic uncertainty relations and their relationship to entanglement. We start by
noting some properties of different types of entropies.

For a general probability distribution P = (py, ..., pn) there are several possibili-
ties to define an entropy. We will focus on some entropies, which are used often in
the literature. We will use the Shannon entropy [117]

S¥(P) == prln(ps), (3.55)
k
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and the so-called Tsallis entropy [118, 119]

ST(P) = W, g1 (3.56)

Another entropy used in physics is the Rényi entropy [120], which is given by

SE(P) = W, g1 (3.57)

Let us state some of their properties.

Proposition 3.19. The entropies S°, Sg, Sf have the following properties:
(a) They are positive and they are zero if and only if the probability distribution is
concentrated at one j, i.e., p; = 5z‘j~
(b) For ¢ — 1 the Tsallis and the Rényi entropy coincide with the Shannon entropy:

lim SE(P) = lim ST(P) = S¥(P). (3.58)
g—1 1 g—1 1

Thus we often write ST := 5.

(c) S%(P) and SI(P) are concave functions in P, i.e., they obey S(APy + (1 —
A)P2) > AS(P1)+(1—X)S(P2). The Rényi entropy SE(P) is not concave. SF(P) and
ST(P) both decrease monotonically in . Further, S¥(P) is a monotonous function
of ST (P):

In(1+(1-¢)S; (P))

R(py _
S, (P) = - (3.59)
(d) In the limit ¢ — oo we have
lim SF(P) = — Inmax(p;). (3.60)
g—00 j

Proof. Property (a) is easy to see. Property (b) is shown in [119, 120]. For a
discussion of (c) see [121]. Eq. 3.59 is given in [119] and (d) is proved in [120]. O

Now we can introduce more general entropic functions and note some facts about
their relationship to majorization. Let P = (p1,...,pn) and Q = (¢, ...,¢n) be two
probability distributions. We can write them decreasingly ordered, i.e., we have
p1 > p2 > ... > p,. We say that P majorizes Q or Q is more mized than P and
write it as

P=Q or Q<P (3.61)

iff for all k
k k
Zpk > Z Tk (3.62)
=1 =1

holds'?. If the probability distributions have a different number of entries, we can
append zeroes in this definition. We can characterize majorization completely, if we
look at functions of a special type, namely functions S(P) of the form

S(P) = s(p) (3.63)

i

!ONote that the sign “~” is sometimes defined the other way round in the literature.
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where s : [0;1] — R is a concave function. Such functions are by definition concave
in P and obey several natural requirements for information measures [121-123]. We
will call them entropic functions and reserve the notion S(P) for such functions.
Note that the Shannon and the Tsallis entropy are of the type (3.63), while the
Rényi entropy is not. The following connection between entropic functions and
majorization will become important in the following.

Lemma 3.20. We have P > Q if and only if for all entropic functions S(P) <
S(Q) holds.

Proof. See [121] and references therein. O

It is a natural question to ask for a small set of concave functions {s;} such that
if >, s(pi) < >, 85(¢;) holds for all sj, this already implies P > Q. Here, we only
point out that the set of all Tsallis entropies is not big enough for this task, but
there is two parameter family of {s;} which is sufficient for this task [124]. We will
discuss this in more detail later.

Now we turn to entropic uncertainty relations. Let us assume that we have a
non-degenerate observable M with a spectral decomposition M = ). p;|m;) (my).
A measurement of this observable in a quantum state o gives rise to a probability
distribution of the different outcomes:

P(M)o = (p1,--,pn); pi = Tr(|Imi)(malo). (3.64)

Given this probability distribution, we can look at its entropy S(P(M)),. We will
often write for short S(M) := S(P(M)),, when there is no risk of confusion.

If we have another observable N = . v;n;)(n;| we can define P(N), in the
same manner. Now, if M and N do not share a common eigenstate, it is clear that
there must exist a strictly positive constant C' such that

SS(M) + S%(N) > C (3.65)

holds. Estimating C' is not easy, after early works [107, 125, 126] on this problem,
it was shown by Maassen and Uffink [108, 127] that one could take

C = —2n(max | (mln;))). (3.66)
Z?J

There are generalizations of this bound to degenerate observables [128], more than

two observables [129], or other entropies than the Shannon entropy [130]. Also one

can sharpen this bound in many cases [131, 132].

A few remarks about the entropic uncertainty relations are in order at this point.
First, a remarkable fact is that the bound in Eq. (3.65) does not depend on the
state p. This is in contrast to the usual Heisenberg uncertainty relation for finite
dimensional systems. Second, as already mentioned, the Maassen-Uffink bound
(3.66) is not optimal in general. Third, it is very difficult to obtain an optimal bound
even for simple cases. For instance, for the case of two qubits, the determination of
the optimal bound for arbitrary observables relies on numerical calculations at some
point [132].
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Let us finally mention that there are other ways of associating an entropy with
the measurement of an observable. Given an observable M one may decompose it
as

M =" niles) eil (3.67)
i
where a weighted sum of the |e;)(e;| forms a partition of the unity:

D Aleel =1, x>0 (3.68)

Here the |e;)(e;| are not necessarily orthogonal, i.e., the decomposition (3.67) is
not necessarily the spectral decomposition. The expression (3.68) corresponds
to a POVM, and by performing this POVM one could measure the probabilities
gi = Tr(oXilei)(ei|) and determine the expectation value of M. This gives rise to a
probability distribution @ = (q1, g2, ...) and thus to an entropy for the measurement
via

S(M, 77, X), = S(Q). (3.69)
This construction of an entropy depends on the choice of the decompositions in
Egs. (3.67, 3.68) which makes it more difficult to handle. Thus we will mostly
consider the entropy defined by the spectral decomposition as in Eq. (3.64) in the
following.

3.9 Entropies and entanglement I

What are the relations between entropic functions and entanglement? First, note
that the majorization criterion introduced in Section 1.1.3 in nothing but a ma-
jorization relation as defined in Egs. (3.61, 3.62). Thus, Lemma 3.20 can be applied,
yielding inequalities for the entropies of the state and the reduced state. This ap-
proach is not new, is has been considered before in [133-136]!!. However, an experi-
mental implementation of the resulting criteria requires always state reconstruction
and then the computation of the eigenvalues of the total and the reduced state.

Another possibility lies in the entropy of a measurement S(P(M)),. One may
ask, whether this quantity can be used to say something about the entanglement
properties of a state. S(P(M)), is an experimentally direct accessible quantity, thus
no state reconstruction is needed.

The first work which raised the question whether the entropy of a measurement
and entanglement are somehow connected was to our knowledge done in Ref. [137].
Recently, in Ref. [138], some separability criteria for bipartite systems in terms of
entropic uncertainty relations were derived. However, their derivation relied at a
crucial point on a numerical optimization.

The scheme we want to use for the detection of entanglement is similar to the
idea for the variances: We take one or several observables M; and look at the sum

"Note, however, that the papers [133-135] were written before the majorization criterion was
established.
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of the entropies ), S(M;),. For product states we derive lower bounds for this sum,
which by concavity also hold for separable states. Violation of this bound for a
state ¢ thus implies that g is entangled. The difficulty of this scheme lies in the
determination of the lower bound'2.

We will present two methods for obtaining such a bound here. In this section
we will derive the first method based on the calculation of overlaps. Then we will
investigate the resulting criteria for two and three qubits. In the next section we
will derive and investigate the second method. There we will show how any entropic
uncertainty relation can be translated into a necessary separability criterion.

The first of our methods applies if we look only at one M. If the set of the
eigenvectors of M does not contain any product vector, it is clear that there must
be a C > 0 such that S;F(P(M)) > C holds for all separable states. From the
Schmidt coefficients of the eigenvectors of M we can determine C.

Theorem 3.21. Let M = > u;|/m;)(m;| be a non degenerate observable. Let
¢ < 1 be an upper bound for all the squared Schmidt coefficients of all |m;). Then

ST(M) > 1- Ll/CJqu—_(i — [1/c]e)? (3.70)

holds for all separable states.

Proof. The maximal Schmidt coeflicient of an entangled state is just the maximal
overlap between this state an the product states, as proved in Section 2.6. Now, let
P(M), = (p1,p2,...pn). Then all the probabilities p; appearing there are bounded
by ¢, if p is a projector onto a product vector. Furthermore, if there are two p;,
say p1 and p2, with 0 < p; < p2 < ¢ we can still decrease S:{, by increasing py and
decreasing p1, since then

Sg(pl —&,p2 +¢€,p3, :pn) < Sg(p17p27p37 7p’rl) (371)

Thus, SqT is minimized, when P(M), is as peaked as possible, i.e., |1/c| of the
p; satisfy the bound p; = ¢, while one other p; is as big as possible. This proves
(3.70). Note that for ¢ = 2 this is equivalent to Proposition 3.11. Note also that
this Theorem can easily be extended to arbitrary entropic functions. O

Of course, for this approach due to Eq. (3.59) the Tsallis and the Rényi entropy
are equivalent. The Rényi entropy will later be used to discuss the limit ¢ — oo.
Note also that a similar statement for the entropy defined via the corresponding
POVM as in Eq. (3.69) can be derived, provided that a bound on the probabilities
for the outcomes of the POVM is known.

To investigate Theorem 3.21, let us start with two qubits. Assume that we have
a non-degenerate observable, which is Bell diagonal

M = pi|BS;)(BS;| (3.72)

7

!2This scheme was also applied in [138], however, the determination of the lower bound was
performed only numerically, by a minimization over all pure product states.
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with [BS1) = (|00) + [11))/v2,|BSy) = (|00) — [11))/v2,|BS5) = (|01) +
|10))/v/2,|BSs) = (|01) — [10))/v/2. Since the maximal squared overlap between
the Bell states and and the separable states equals 1/2, we can state:

Corollary 3.22. If p is separable, then for every ¢ > 1

1 —2t-¢

— (3.73)

Sq (M),

holds.

For the Rényi entropy the bound reads Sf(M )o = In(2), thus this criterion
becomes stronger when ¢ increases.

To investigate the power of this criterion, first note that Eq. (3.73) is for the
case ¢ = 2 equivalent to the variance based criterion >, 82(|BS;)(BS;|) > 1/2
in Proposition 3.11. For other values of ¢ we can, as in Section 3.6 determine
the expectation values of the |BS;)(BS;| by measuring three combinations of Pauli
matrices. Again, we define i = Tr(po; ® 0;) for i = x,y, z. Then we arrive as before
at a geometrical picture, see Figure 3.3.(a).

One can depict the border of the states which are not detected (for different q)
in this three dimensional space. This has also been done in Figure 3.3. One can
directly observe, that in the limit ¢ — oo the Corollary 3.22 enables one to detect
all states, which are outside the octahedron. This is not by chance and can also be
proven analytically: In the limit ¢ — co Corollary 3.22 requires

masx{p; € P(M),) < % (3.74)

from a state to escape the detection. This condition is equivalent, to a set of four
witnesses: The observables

Wi =1~ BS)(BS (3.75)

are all optimal witnesses, imposing the same condition on p.

The results of Theorem 3.21 can also easily be applied to multipartite systems,
e.g. three qubits.

Corollary 3.23. Let M = ), u;]1;)(¢;| be an observable which is GHZ-
diagonal, i.e. the [1);) are of the form [i/5) = (|000) + 1111))/v/2; [V2/6) =
(1100) £ 1011))/v2;  |o3/7) = (|010) + [101))/V2;  [thyys) = (/001) £ [110))/v2.
Then for all biseparable states
1—2-4

T

(3.76)

holds. For states belonging to the W class the entropy is bounded by Sg(M )o
(1= /4 + (1/4)9)/(q - 1).

Proof. Due to the concavity of the entropy we have to show the bound only
for pure biseparable states. Then the proof follows directly from the fact that the

v
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Figure 3.3.  Inwvestigation of the criterion from Eq. (3.73) for different
values of q: (a): The tetrahedron (blue, solid lines) of all states and
the octahedron (red, dashed lines) which contains the separable states.
(b): The subset of states which are not detected by Eq. (3.73) for q = 2.
(c): As (b) but for ¢ = 4. (d): As (b) but for ¢ = 15.

maximal overlap between the states [1;) and the biseparable (resp. W class) states
is 1/2 and 3/4, respectively (see Section 2.4.2). O

Again, as in the two qubit case, for ¢ = 2 the criterion is equivalent to a criterion
in terms of variances (see Proposition 3.10). Also one can show that this criterion
becomes stronger, when ¢ increases, and in the limit ¢ — oo it is equivalent to a set of
eight witnesses of the type W; = 1/2-1—|v;) (1| (respectively, W; = 3/4-1— 1) (14]).

3.10 Entropies and entanglement II

The second method for deriving lower bounds of the entropy for separable states,
deals with product observables, which might be degenerate. If an observable M is
degenerate, the definition of P(M) is not unique, since the spectral decomposition
is not unique. By combining eigenvectors with the same eigenvalue one arrives,
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however, at a unique decomposition of the form
M=) nX (3.77)
i

with n; # n; for ¢ # j and the X; are orthogonal projectors of maximal rank. Thus
we can define for degenerate observables P(M), by p; = Tr(oX;). To proceed, we
need the following Lemma.

Lemma 3.24. Let p = p4 ® op be a product state on a bipartite Hilbert space

H = Ha® Hp. Let A (resp. B) be observables with nonzero eigenvalues on H 4
(resp. Hp). Then

PA® B)y < P(A)o, (3.78)

holds. Also P(A® B), < P(B),, is valid.

oB

Proof. To prove the bound we use the fact that for two probability distributions
P =pand Q = ¢ we have P > Q if and only if there is a doubly stochastic matrix
D (i.e. a matrix where all column and row sums equal one) such that ¢ = Dp holds
[139]. We will construct this matrix D.

Define P = P(A),, = {pi} and Q@ = P(B),, = {g;}. Without loosing generality
we can assume that A and B are non-degenerate and have both n different outcomes.
We only have to distinguish the cases where A ® B is degenerate or non-degenerate.

If A® B is non-degenerate we have R = 7 := P(A® B), = {piq;}. Let us look

at the n2 x n2-matrix

Ao = (Aij);  Aij = Lag((i+j—1) modn)- (3.79)

Ag is an n x n block matrix, the blocks are itself n x n matrices, the A;;. It is now
clear, that
7= Aop (3.80)

and Ay is also doubly stochastic. To give an example, for two qubits Eq. (3.80) may
look like

P11 g1 0 ¢ O 1
P2q1 0 1 0 @ P2

= . 3.81
P1q2 @2 0 ¢ O 0 ( )
DP2G2 0 g 0 ¢ 0

Thus the claim is proved for the case that A ® B is non-degenerate.

If A® B is degenerate, some of the ¢;p; are grouped together since they belong
to the same eigenvalue. This grouping can be achieved by successive contracting
two probabilities:

{pigj , Piam} — pigj + P1gm- (3.82)

Since A and B have nonzero eigenvalues we have here ¢ # [ and j # m. We can now
construct a new matrix A from Ay which is generates this contraction: Set

(All)il = gdm; ()\ml)ll = 0; (Alm)u = 0; (Amm)lz = dm- (383)
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This corresponds to shifting the entry ¢, in the first block column up A from block
Am1 to A11 to obtain p;g; + pigm. Then in the m-th block column of A this index is
shifted downwards to keep the resulting matrix doubly stochastic. Again, for two
qubits this may look like

P1q1 g 0 g O D1

pai+pige | _ | @2 @u 0 0 | | p2
0 = 0 0 o 0 ) (3.84)

D2q2 0 ¢ 0 @ 0

By iterating this procedure one can generate any contraction, which is compatible
with the fact that A and B have nonzero eigenvalues. The resulting A is clearly
doubly stochastic. |

With the help of this lemma we can derive separability criteria from entropic
uncertainty relations:

Theorem 3.25. Let A;, As, By, By be observables with nonzero eigenvalues on
Alice’s resp. Bob’s space obeying an entropic uncertainty relation of the type

S(A1)+ S(A2) > C (3.85)
or the same bound for Bi, Bsy. If p is separable, then
S(A1 ® B1),+ S(A2® By), > C (3.86)
holds.

Proof. We can write o = >, o, g?@gf as a convex combination of product states
and with the help of Lemmata 3.20 and 3.24 we have: S(A4; ® By),+ S(A2® Ba), >
2k k[S(AL ® Bi)yag,s + S(A2 @ Ba)yagen] 2 2o ar[S(A1)es + 5(A2)p,] 2 C.
This proves the claim. Of course, the same result holds, if we look at three or more
A;. O

For entangled states this bound can be violated, since A; ® By and As ® Bo
might be degenerate and have a common (entangled) eigenstate. Note that the
precondition on the observables to have nonzero eigenvalues is more a technical
condition. It is needed to set some restriction on the degree of degeneracy of the
combined observables. Given an entropic uncertainty relation, this requirement can
always be achieved simply by altering the eigenvalues, since the entropic uncertainty
relation does not depend on them.

This corollary shows how any entropic uncertainty relation can be transformed
into a necessary separability criterion. On the other hand, if one is interested in
numerical calculations, one can calculate bounds on S(A4; ® By), + S(A2 ® Bs) for
separable states easily, since one only has to minimize the entropy for one party of
the system.

To investigate the consequences of Theorem 3.25 for two qubits, we focus on the
case that the observables for Alice and Bob are spin measurements in the z,y, or
z-direction. First note that due to the Maassen-Uffink relation

S?(Ux)g + SlT(Uy)Q > In(2) (3.87)
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holds. This implies that for all separable states
ST (02 ©04)p + 51 (0 @ ), > In(2) (3.88)

has to hold, too. This is just the bound which was numerically confirmed in
Ref. [138]. In the same reference, also the separability criterion S{ (0, ® 04), +
ST (oy®0y) o+ ST (0.®0,), > 21n(2) for has been asserted. In view of Theorem 3.25
this follows from the entropic uncertainty relation SY (04), + ST (o), + ST (02), >
21n(2), proved in [129].

It is now interesting to take the Tsallis entropy and vary the parameter q. We
do this mainly numerically. We first compute entropic uncertainty relations by
minimizing over all pure single-qubit states

Sey(q) = mgn(SqT(am)Q + SlT(Uy)g)

Sey=la) = min(SE (92)y + ST (o) + 5L (02),) (359
The results are shown in Figure 3.4. Some of the numerical results can, however,
also be proved analytically:

Remark 3.26. For ¢ € [2n — 1,2n],n € N we have:

1—21-
Say(q) = e (3.90)
Numerically, this seems to be valid also for other values of ¢, except ¢ € (2;3).

Proof. Tt is clear that the minimum of X = Sg(UI) + SqT(Jy) is obtained for a
state in the z-y plane. Calculating X for a pure state in this plane one recognizes
that minimizing X is equivalent to maximizing ¥ = cos??(a) + cos?¥(a + 7/4) +
cos®(a + 7/2)% + cos?¥(a + 37 /4). Using now the formula

s 1 I'(s+1) 1
cos’(z) = T (T(s/2 1 1))° {2 + P cos(2x)+
s(s —2)

(see Ref. [140, p. 263]) one can rewrite Y as a series of the form Y =
C > apcos(8ka). Then it is easy to show that if ¢ € [2n — 1,2n],n € N for all
k the coeflicients aj, are positive, thus Y is maximized if & = 0. This proves that X
is minimized for an eigenstate of o, which yields (3.90). O
Having derived these entropic uncertainty relations we can look at the corre-
sponding separability criteria:
Sa (02 ®0z) + ) (0y ® 7)) > Say(q), (3.92)
Sg(ax ® o)+ SqT(oy ® oy) + Sg(az ®0;) > Suy:(q). (3.93)
To investigate the power of this criteria, let us look at Werner states p(p) =
Pl ) (™| + (1 — p)1/4. We can make the following estimation: There are sin-
gle qubit states with P(0,) = P(0,) = {(2 — v2)/4, (2 + v/2)/4}. The lower bound
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Figure 3.4. Numerical lower bounds in Eq. (3.89) depending on q.

Szy(q) must therefore obey S;y(q) < 25’3({(2 —/2)/4,(2++/2)/4}). For the Werner
states we have P(o, ® 0,) = P(o, @ 0y) = {(1+p)/2, (1 —p)/2}. From this one can
easily calculate that Eq. (3.92) cannot detect them for p < 1/v/2 &~ 0.707. A similar
argumentation shows that Eq. (3.93) has to fail for p < 1/v/3 ~ 0.577. The numer-
ical results are shown in Figure 3.5. They show that indeed the Tsallis entropy for
q € [2;3] can reach this bound.

Here, it is important to note that Werner states are already entangled for p > 1/3.
The criteria from Egs. (3.92, 3.93) therefore fail to detect all Werner states, while
the criterion from Eq. (3.74) is strong enough to detect all of them.

As already mentioned, the Tsallis entropy is not the only entropic function. A
more general function is of the type:

SEEP) =Y 1lpi), (3.91)
where a € [0;1], and ¢ € [0;00), and f is defined as
fl@) =gz —a)— (1 —x)gt(—a) — xg(1 — a), (3.95)
where | .
9t(y) = —n(cozt(ty)). (3.96)

One can show that P = Q iff SC(Q) < SEC(P) for all a and ¢ [124]. This is a
property which does not hold for the Tsallis entropy. But this does not mean that
criteria based on Sff are stronger than criteria based on the SqT. With the use of
the entropy Sﬁf one can, of course, better use the property of Lemma 3.24. But
since for the proof of Theorem 3.25 also the concavity of the entropy was used, one
might loose this advantage there. In fact, by numerical calculations one can easily
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Figure 3.5. Values of pmin depending on q such that for p > Pmin
Werner states of the form p(p) = pl ™)~ |+ (1 — p)1/4. are detected
via Egs. (3.92, 3.93). The curve pyy refers to the separability criterion
in Eq. (3.92) and pay. to Eq. (3.93). Note that Werner states are
entangled for p > 1/3.

show that for a = 1/2 and ¢ large the criterion using Sﬁf and the measurements
0r @ 0y and oy ® 0y (resp. 0, ® 04,0, @ 0y and 0, ® 0,) reaches, as the Tsallis
entropy, the best possible value p = 1/v/2. (resp. p = 1/v/3).

In order to show that Theorem 3.25 can be also applied for the detection of
multipartite entanglement, we give an example which allows to detect the three-
qubit GHZ state.

Corollary 3.27. Let o be a biseparable three-qubit state. Then for the Shannon
entropy as well as for the Tsallis entropy for ¢ € {2,3,4,...} the following bounds
hold:

ST (0, ®0:®04)p+ ST (0,00, 01),+57(1®0,®0,), > In(2)
(3.97)
1—2-4
qg—1
(3.98)

For the GHZ state |GHZ) = (]000) + |111))/v/2 the left hand side of Eqs. (3.97,
3.98) is zero.

Proof. Again, we only have to prove the bound for pure biseparable states. If a
state is A-BC biseparable, the bounds in Eq. (3.97) follows directly from Theorem
3.25 and the Maassen Uffink uncertainty relation, which guarantees that for the first
qubit ST (o) + ST (0.) + ST (1) > In(2) holds. Eq. (3.98) follows similarly, using the
fact that ST (0,) +S7 (0.) > (1 —2'7%)/(q — 1), see Remark 3.26. The proof for the
other bipartite splittings is similar. |

SqT(ax ® 0y @ 0y)p + SqT(az ®o,® 1)+ Sg(ll ®0,®0;),

v
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Note that the observables used in Corollary 3.27 are so-called stabilizers of the
GHZ state, which we already met in Section 2.7. The stabilizer formalism may again
be useful to derive criteria in terms of entropic uncertainty relations.

Let us finally investigate, how robust against noise these criteria are. One can
easily calculate that a state of the type o(p) = p|GHZ)(GHZ| + (1 — p)1/8 can be
detected by Eq. (3.97) if p > 0.877. Eq. (3.98) seems to detect the most states for
q € {2, 3}, then they detect o(p) for p > \/% ~ (0.816.

3.11 Conclusion

In conclusion, we have shown that uncertainty relations provide powerful tools for
the detection of entanglement. This holds for the variance based formulations as
well as for the entropic uncertainty relations. Our search for separability criteria
in terms of uncertainty relations has, moreover, exhibited interesting facts about
entanglement and the connection between uncertainty relations and entanglement
on a fundamental level. One of these fact is that separability criteria for infinite-
dimensional systems can be transferred to finite-dimensional systems. Another one
is that any entropic uncertainty relation one one part of the system gives rise to a
separability criterion on the composite system.

This leaves us with several questions which might be addressed further. One
interesting question is whether there are entangled states, which do not violate
the variance criterion. Finding an example for such states would surely lead to a
better understanding of this criterion. Also the transfer of separability criteria from
Gaussian states to finite-dimensional systems should be studied further. Especially a
characterization of the states which are detected by the translation of the algorithm
presented in Proposition 3.17 is of great interest.

Also for the entropic uncertainty relations many unsolved problems remain. One
interesting question is, which entropies are best suited for special detection problems.
We have seen that in some of our examples the Tsallis entropies with g € [2; 3] seemed
to be the best. Clarifying the physical meaning of the parameter ¢ might help to
understand this property.

Another important task is to find good (i.e. sharp) entropic uncertainty relations,
especially for more than two observables. One the one hand, this is an interesting
field of study for itself, on the other hand, this might help to explore the full power
of the methods presented here.

Finally, one might speculate that there are connections between violation of
entropic criteria and violation of local realism. It is remarkable that for the for-
mulation of Bell inequalities as well as for the entropic uncertainty relations always
non-commuting observables are required. Also, a violation of Theorem 3.25 can
be viewed in the following way: Due to the quantum correlations the sum of the
entropies of the total measurement is smaller than the sum of the entropies when
only one party measures. This might be a violation of the locality condition needed
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in the derivation of Bell inequalities. There is, however, still a lot of work to do to
justify these speculations.
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