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Abstract

The description of few-nucleon systems in terms of a two-nucleon potential and a corresponding electroweak
current of one- and two-nucleon nature has been quite successful in general. Disagreements remain in detail.
They are indicators for necessary corrections of the employed dynamics. The standard hypothesis for resolving
those disagreements is the addition of a three-nucleon potential to the Hamiltonian and of corresponding parts to
the electroweak exchange current. This thesis follows that idea in a particular way: Beside nucléeiss bz

degree of freedom is considered explicitly in the description, i.e., in the Hilbert space and by use of a two-baryon
coupled-channel potential and of a coupled-channel electroweak currert.iddtear is the lowest resonance of

the nucleon; it has spin and isos@nit shows up in a pronounced way in pion-nucleon scattering. In the three-
nucleon system thaA isobar mediates an effective three-nucleon force beside two-nucleon effects and yields
effective two- and three-nucleon contributions to the current. The thesis investigates to what extent mechanisms
due to the virtual excitation of A-isobar are able to remove the discrepancies existing between the standard
purely nucleonic description and experimental data. Three-nucleon hadronic reactions, i.e., elastic nucleon-
deuteron scattering and nucleon-deuteron breakup, and three-nucleon electromagnetic reactions, i.e., nucleon-
deuteron radiative capture and two- and three-body photo and electro disintegration of the three-nucleon bound
state, are considered. The available reaction energy remains below pion-production threshold.

A new realistic coupled-channel potential CD Bonm\4s constructed; it is an extension of the purely
nucleonic charge-dependent CD Bonn potentialyftédatum= 1.02 is as good as for the best existing purely
nucleonic potentials. The employed electroweak current is adapted to the coupled-channel potential as much
as possible. In contrast to traditional irreducible three-nucleon forces and to irreducible two- and three-nucleon
contributions to the electroweak current, based solely on pion exchange, the effective nucleonic forces and
the effective nucleonic electroweak currents arising from the coupled-channel potential take exchanges of pion,
rho, omega and sigma mesons into account; the coupled-channel potential and the coupled-channel electroweak
current make all those effective nucleonic contributions mutually consistent.

A novel momentum-space technique for solving the three-baryon bound-state and scattering equations
exactly is developed. The technique is applicable to any two-baryon potential, however, not to Coulomb with
its long range. It is based on the expansion of the two-baryon transition matrix and of the deuteron wave
function in terms of Chebyshev polynomials. The Chebyshev expansion is found to be highly efficient, reliable
when used for interpolation and systematic.

The new coupled-channel potential and the new technique for solving three-particle equations are the theo-
retical backbone of the thesis. Selected results of calculations are compared with the available experimental data
of the three-nucleon bound state and of the considered three-nucleon reactions. The coupled-channel potential
yields additional binding in the three-nucleon bound state, but it remains unable to account for its binding in
full. In all reactionsA-isobar effects are very small at low energies, except for observables scaling with three-
nucleon binding. Thus, long-standing discrepancies likeARpuzzle of elastic nucleon-deuteron scattering
around 10 MeV nucleon lab energy and the space star anomaly in nucleon-deuteron breakup around 13 MeV nu-
cleon lab energy cannot be resolved. Thisobar effects become more visible at higher energies; they are often
beneficial for a satisfactory description of the experimental data, e.g., they significantly reduce the discrepan-
cies for the differential cross section and for the nucleon analyzing power of elastic nucleon-deuteron scattering
above 100 MeV nucleon lab energy, though their success is not a general one for all measured observables.

Keywords: Three-nucleon system, baryon-baryon interactfeisobar excitation






Kurzzusammenfassung

Die Beschreibung von Wenignukleonen Systemen, basierend auf einem Zweinukleonen Potential und einem
entsprechenden elektroschwachen Strom von Ein- und Zweinukleonen Natur, ist im allgemeinen ziemlich er-
folgreich. Es gibt aber auch einige Ausnahmen, die auf die Notwendigkeit fiir Korrekturen in der benutzten
Dynamik hinweisen. Die Ubliche Korrektur ist die Erganzung des Hamiltonoperators durch eine Dreinuk-
leonen Kraft und die Hinzunahme eines entsprechenden Strombeitrags. Diese Arbeit folgt dieser Idee auf
eine besondere Weise: Neben Nukleonen wird auch\dasbar explizit beriicksichtigt, d.h. im Hilbertraum,

durch Benutzung eines Zweibaryonen-Potentials mit Kanalkopplung und eines elektroschwachen Stroms mit
Kanalkopplung. Da#\-Isobar ist die niedrigste Resonanz des Nukleons; es hat Spin und @)Sﬂ'mwird
besonders in der Pion-Nukleon Streuung sichtbar. Im Dreinukleonen System liefektldalkar eine ef-

fektive Dreinukleonen Kraft neben Zweinukleonen Effekten und effektive Zwei- und Dreinukleonen Beitréage
zum Strom. Diese Arbeit untersucht, inwieweit die existierenden Diskrepanzen zwischen der rein nukleoni-
schen Standardbeschreibung und experimentellen Daten durch die vof-timar vermittelten effektiven

Krafte und Stréme behoben werden kdnnen. Hadronische Dreinukleonen Reaktionen, d.h., elastische Nuk-
leon-Deuteron Streuung und Nukleon-Deuteron Aufbruch, sowie elektromagnetische Dreinukleonen Reaktio-
nen, d.h., Nukleon-Deuteron Strahlungseinfang und Zwei- und Dreikérper Photo- und Elektrodisintegration
des Dreinukleonen Bindungszustandes, werden betrachtet. Die Reaktionsenergien verbleiben unterhalb der
Pionenproduktionsschwelle.

Ein neues realistisches Potential mit Kanalkopplung CD BoAristin dieser Arbeit konstruiert; es ist eine
Erweiterung des rein nukleonischen ladungsabhangigen CD Bonn Potentials; sein Fehleydyddtam=
1.02 ist so gut wie bei den besten rein nukleonischen Potentialen. Wahrend die traditionellen irreduziblen
Dreinukleonen Krafte und irreduziblen Zwei- und Dreinukleonen Strome gewéhnlich auf den Austausch des
Pions beschrankt sind, berlcksichtigen die von dem neuen Potential Adscibar Anregung vermittelten
effektiven nukleonischen Kréafte und die effektiven nukleonischen elektroschwachen Strdme den Austausch
von Pion, Rho, Omega und Sigma Mesonen. Das Potential mit Kanalkopplung und der elektroschwache Strom
mit Kanalkopplung machen alle effektiven nukleonischen Beitrdge gegenseitig konsistent.

Ein neues Verfahren zur exakten Lésung der Dreibaryonen Gleichungen im Impulsraum ist in der vorliegen-
den Arbeit entwickelt. Das Verfahren ist anwendbar auf beliebige Zweibaryonen Potentiale, aber nicht auf das
langreichweitige Coulomb Potential. Das Verfahren basiert auf der Darstellung der Zweibaryonen Ubergangs-
matrix und der Deuteron Wellenfunktion durch Chebyshev Polynome. Diese Darstellung erlaubt eine effiziente
und verlaBliche Interpolation, und sie ist systematisch.

Das neue Potential mit Kanalkopplung und das neue Verfahren zur Losung der Dreiteilchen Gleichungen
bilden das theoretische Ruckgrat der Arbeit. Ausgewéhlte Ergebnisse der Rechnungen werden mit den experi-
mentellen Daten fiir Dreinukleonen Observable verglichen. Das Potential mit Kanalkopplung liefert zusatzliche
Bindung im Dreinukleonen Bindungszustand, kann aber trotzdem den experimentellen Wert der Bindungs-
energie nicht exakt reproduzieren. In allen Reaktionen sind-d#bar Effekte sehr klein bei niedrigen Ener-
gien, bis auf die Observablen, die mit der Bindungsenergie skalieren. Somit kdnnen die schon seit langem beste-
henden Diskrepanzen, wie die sogenaigtpuzzldan der elastischen Nukleon-Deuteron Streuung bei 10 MeV
Nukleon Laborenergie und digpace StaAnomalie im Nukleon-Deuteron Aufbruch bei 13 MeV Nukleon La-
borenergie, nicht behoben werden. Ridsobar Effekte werden groRRer bei hdheren Energien; sie verbessern
oft die Ubereinstimmung zwischen den theoretischen Vorhersagen und den experimentellen Daten, z.B., sie
verringern merklich die Diskrepanz im differentiellen Wirkungsquerschnitt und in der Nukleon Analysierstérke
der elastischen Nukleon-Deuteron Streuung oberhalb 100 MeV Laborenergie des Nukleons. Es gibt jedoch
auch einige Observable, fur die dadsobar keine Verbesserung der Beschreibung liefert.

Schlagwoérter: Dreinukleonen System, Baryon-Baryon Wechselwirkukdsobar Anregung
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1
Introduction

The three-nucleon system has played and still plays an important role in the development of under-
standing the forces between nucleons. Though from a present point of view quarks and gluons are the
elementary strongly-interacting particles which build mesons, nucleons and other baryons and though
the nuclear forces are believed to be effective interactions resulting from the fundamental quark-gluon
interaction, the underlying theory, i.e., quantum chromodynamics, has not yet been successfully ap-
plied for a quantitative explanation of low-energy nuclear phenomena in general and of nuclear forces
in particular. Instead, the construction of nuclear forces is based on effective non-fundamental inter-
actions, i.e., on meson exchange between the nucleons, supplemented by phenomenological assump-
tions. The resulting potential models for the nucleon-nuclé®N) force contain a number of free
parameters which are fitted to the two-nucleon data; the three-nucleon system, being simple enough
to be solved exactly and at the same time being rich physicswise, provides an excellent field to test
such semi-phenomenological interaction models in a nontrivial way.

A mathematically rigorous three-particle quantum scattering theory was developed in 1960 by
L. D. Faddeev [1], who proposed a set of coupled integral equations with a compact kernel which
have an unique solution in contrast to earlier formulations based on the Lippmann-Schwinger formal-
ism; in addition, the Faddeev equations simplified also the solution of the three-particle bound-state
problem. Since then, a lot of calculations for the three-nucleon system have been carried out. Whereas
the first of them still involved various approximations, later on, with the advent of more advanced com-
puters, it has become possible to gain numerically exact solutions of the Faddeev or their equivalent
Alt-Grassberger-Sandhas (AGS) equations [2] both for the three-nucleon bound-state and recently
also for the three-nucleon continuum problem.

At the same time, more and more realigfi®N-potential models have been developed; the most
refined of them, the so-called new-generation potentials [3-5], describe the two-nucleon data up to the
pion-production threshold almost perfectly, i.e., their valueg?gtiatum are close to one. Together
with the advanced numerical methods for solving few-particle equations, those potentials form a solid
basis to study few-nucleon systems. It was found that a nuclear Hamiltonian withNizgeten-
tials describes few-nucleon systems rather well. However, there are disagreements in detail which are
indicators for corrections of such a simple nuclear Hamiltonian. E.g., none dfithgotentials can
reproduce the experimental value of the three-nucleon binding energy; furthermore, all light nuclei
beyond the deuteron are systematically underbound [6]. With respect to low-energy nucleon-deuteron
(Nd) scattering, the theoretical description in terms of realistic two-nucleon potentials has been gen-
erally quite successful with few exceptions, i.e., some very-low-energy observables are correlated
with the underbinding of the three-nucleon bound-state and there are also long-standing discrepancies
in the nucleon and deuteron vector analyzing powers around 10 MeV nucleon lab energy [7, 8]. In
recent years experimental efforts have been made in getting high-precision data of nucleon-deuteron
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scattering at intermediate energies [9—13]. There, also clear discrepancies between the theoretical pre-
dictions and experimental data for a number of observables were found; the most famous one is the
underestimation of the differential cross section of elastic hucleon-deuteron scattering in the diffrac-
tion minimum region, the so-callédlagara discrepancyAn additional test of the nuclear Hamiltonian

and of the corresponding nuclear current can be done by investigating electroweak processes in the
three-nucleon system. Though the experimental data for electroweak reactions are much scarcer, some
of them also indicate possible discrepancies between theory and experiment.

One hypothesis for resolving those problems for hadronic processes is the addition of a three-nucle-
on force (3NF) to the nuclear Hamiltonian. The dominant part of most three-nucleon forces is based on
two-pion exchange with intermediafeisobar excitation, the so-called Fujita-Miyazawa force [14].
However, strictly speaking, most irreducible three-nucleon forces are an artefact of the theory; they
are created by freezing out degrees of freedom contained in a richer Hamiltonian of the same problem
under consideration. This fact suggests how one may learn some more physics from few-nucleon
systems: When beside the nucleon a new degree of freedom is introduced, i.e., it is allowed to become
active, it should be taken into account consistently in the two- and three-nucleon problem; in this
way, an irreducible three-nucleon force mediated by that new degree of freedom gets resolved into a
reducible effective one. That idea carries over to the exchange current in a corresponding way.

The work of this thesis follows that coupled-channel idea in a particular way: Beside the nucleon,
it considers also tha isobar explicitly in the Hilbert space, in a two-baryon coupled-channel potential
and in a coupled-channel current. Thésobar makes the dominant contribution to the pion-nucleon
resonance at 1232 MeV in th3 partial wave. In a quark-model description, it has an internal
structure comparable to that of the nucleon: Thé&sobar has the same spatial quark distribution
with the same quark flavors as the nucleon, though its flavor-spin distribution is different, i.e., it has
spin and isospirg. Thus, theA isobar is a baryon which in the nuclear medium should be treated
on the same footing as the nucleon. Even at low energies it can virtually be excited by interactions.
In the three-nucleon system tieisobar mediates an effective three-nucleon force and contributes
to the effective two- and three-nucleon electroweak exchange current; they have different properties
compared to the corresponding irreducible ones. At intermediate energidsisobar yields, in
principle, a mechanism for pion production and absorption. A non-covariant Hamiltonian with a
two-baryon coupled-channel potential allowing thesobar a further coupling to pion-nucleon states
can therefore provide a common unifying basis [15] for nuclear phenomena at low and intermediate
energies. However, the description in this thesis is confined to processes below the pion-production
threshold; the coupling of th& isobar to pion-nucleon states is therefore omitted, andtisebar is
considered a stable baryon of mass 1232 MeV.

Thus, the objective of this thesis is to investigate to what extent mechanisms duisdbar
excitation, i.e., the effective three-nucleon force and the effective two- and three-nucleon exchange
current, are able to remove the existing discrepancies between theoretical description and experimental
data for elastic nucleon-deuteron scattering and for nucleon-deuteron breakup, i.e., for

N+d— N-+d, (1.1a)
N+d—N+N+N, (1.1b)

for nucleon-deuteron radiative capture and for photo disintegration of the three-nucleon bound state,



i.e., for
N+d—3He(®H) +v, (1.2a)
y+°3He(®H) — N +d, (1.2b)
y+3He(®H) = N+N+N, (1.2¢)

and for inelastic electron scattering from the three-nucleon bound state, i.e., for

e+°He(®H) —» € +N+d, (1.3a)
e+°3He(®*H) —» € +N+N+N. (1.3b)

The Coulomb interaction between two protons is not taken into account; integral equations in mo-
mentum space are not suited for the long-range Coulomb interaction. The predictions of this thesis
were therefore without flaw for neutron-deutergmd) scattering and for electromagnetic (e.m.) re-
actions or°H. However, the comparison with data has mostly to be carried out with the much more
abundant and much more accurate data of proton-deutgnscattering and of e.m. reactions on
3He; thus, the charge-dependent description ofrthe system uses the proper proton-protgp)

and neutron-protofinp) potentials, though without Coulomb.

The A-isobar effects in the three-nucleon system have been already investigated in the past. The
properties of the three-nucleon bound state were described in Ref. [16], elastic nucleon-deuteron
scattering and breakup in Refs. [17—-19] and some inelastic e.m. reactions of the three-nucleon system
in Refs. [20, 21]. However, compared with those earlier calculations the present description is with
respect to the dynamic input and with respect to the scope of applications a substantial improvement:

¢ A new technique [22] for solving three-particle equations is developed; it is based Ghely-
shev expansioaf the two-baryon transition matrix; it is found highly reliable and efficient. The
new technique replaces the old one of Refs. [17-21] requirisgparable expansioof the
two-baryon transition matrix; though also quite reliable, at least at low energies, the need for
a separable expansion made the old technique rather inflexible in applications. In contrast, the
new one allows to use directly any two-nucleon potential and any coupled-channel extension of
it as dynamic input for the description of the three-nucleon bound state and of the three-nucleon
continuum. Thus, whereas the results of Refs. [16—21] were limited to the rather old Paris
potential [23], the present calculations will use modern new-generbitidpotentials [3-5].

¢ The old construction of the two-baryon coupled-channel potential A+idobar excitation, us-
ing the simple subtraction technique of Ref. [16], has a serious defect: It ensures phase equiv-
alence with the nucleonic reference potential at zero two-nucleon kinetic energy only; phase
inequivalence arises in general and increases with increasing two-nucleon scattering energy,
making the potential not a realistic one. That fact has been known for long [24], but was consid-
ered tolerable as long as only the properties of the three-nucleon bound state and of low-energy
three-nucleon reactions were in focus. However, that phase inequivalence becomes unaccept-
able, once three-nucleon processes at moderate energies up to the pion-production threshold are
discussed. This thesis repairs the coupled-channel part of the dynamic input for the description
of the three-nucleon hadronic and e.m. reactions; it develops a new, well-fitted coupled-channel
potential [25], corresponding to a given nucleonic reference potential fully in its realistic nature.

e The description of the considered reactions is extended to energies up to the pion-production
threshold, whereas the results of Refs. [16—21] were limited mostly to rather low energies.
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Furthermore, the description of three-body photo and electro disintegration of the three-nucleon
bound state witl\-isobar excitation and full final-state interaction is given for the first time.

Chapter 2 describes the three-baryon Hilbert space and the dynamics employed, i.e., the newly
developed two-baryon coupled-channel potential and the one- and two-baryon coupled-channel e.m.
current. Chapter 3 recalls the basic three-particle equations with channel coupling on which the theory
of this thesis rests; it indicates the calculational apparatus, relegating technical details to the appen-
dices. Chapter 4 presents the results for the three-nucleon bound state, Chapter 5 for elastic and
inelastic nucleon-deuteron scattering, Chapter 6 for three-nucleon photo reactions, and Chapter 7 for
three-nucleon electro disintegration. Chapter 8 discusses perturbation theory for nucleon-deuteron
scattering as a tool which may help to facilitate the physics understanding of three-nucleon processes.
Conclusions are given in Chapter 9.



2

Three-Nucleon Dynamics withA-Isobar
Excitation

For notational convenience | use a system of units in wiieh c = 1; if needed, the expressions
containingh andc can easily be recovered by dimensional analysis.

2.1 Hilbert Space

In the description of three-nucleon reactions | take Ahisobar explicitly into account. Thus, the
three-baryon Hilbert space should be extended to contain beside the purely nucleonitl gesitbr

three nucleons also a sectors in which nucleons are excitédigobars. Furthermore, th& iso-

bar makes the dominant contribution to the pion-nucleon resonance at 1232 MeVRs thartial

wave and it yields, in principle, a mechanism for pion production and absorption. A non-covariant
Hamiltonian with a two-baryon coupled-channel potential allowingAkeobar further coupling to
pion-nucleon states can therefore provide a common unifying basis [15] for nuclear phenomena at
low and intermediate energies. In this case the Hilbert space should include even a sectors with pi-
ons. However, since the inelasticities of two-nucleon scattering remain very small in isospin singlet
two-nucleon partial waves up to about 500 MeV center of mass (c.m.) energy and since the inelas-
ticities in the isospin triplet partial waves are in the same energy regime mostly due to single-pion
production, though energies may be well above two-pion threshold, the inelastic two-baryon chan-
nels are assumed to have singlsisobar excitation at most [26]. Furthermore, the description is
confined at present to procesdredowthe pion-production threshold. | therefore omit in this thesis,

as in Refs. [16-21], the coupling of tieisobar to pion-nucleon states and considerdhsobar a

stable baryon of mass 1232 MeV with spin and isos}aiﬁ'hus, the considered Hilbert space has two
sectors, i.e., the purely nucleonic oHg and the sectoH, in which one nucleon is turned into/a

isobar as displayed in Fig. 2.1.

The physical three-nucleon states have to be totally antisymmetric under the permutations of the
particles. In contrast, the Hilbert sectdr contains states without any symmetry requirement for the
A isobar, since it is a baryon distinct from the nucleon. However, states vlitisabar do not have
life on their own; they couple to purely nucleonic, hence totally antisymmetric configurations. Since
the excitation of a nucleon to&isobar is symmetric in the nucleons, only the totally antisymmetric
states with &\ isobar couple and therefore need to be considered for the calculations of this thesis.

In the framework of the nonrelativistic quantum mechanics the c.m. and the internal motion can
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Hn Ha

Figure 2.1: Hilbert space considered. It consists of a purely nucleonic ddgtand a sectoH, in
which one nucleon is turned intafsisobar, indicated by a thick vertical line.

be trivially separated by introducing Jacobi momenta

_ MyKp — Meky 2 1a
p(X rTb—f—rny ’ ( . )
g = Melkptky) — (Mg + Myka 2.1b)

My + Mg+ my
K =Kkq +kg+kKy, (2.1¢)

with (afy) being cyclic permutations of (123%, are the individual momentayy the particle
masses, withm, standing either for the averaged nucleon mags= 9389 MeV or for the mass

mp = 1232 MeV of theA isobar. The definition of Jacobi momenta (2.1) singles out bagyaich

is the spectator to th@y) particle pair. For the internal motion the partial-wave basis is employed,
ie.,

[pav(l]))a = A; [P(LS)IM TMrB)a|g(ls) jm;jtmb)q
m; MTmy (2.2)
X <||\/|| jmj|J MJ><TMTU’T1|T MT >

The quantum numbers of the basis states are indicated in Fig. 2.2. The basis states (2.2) obviously do
not satisfy the full symmetry requirements of the physical states. They are antisymmetrized only in
the pair(By), i.e.,

[P(LS)IM| TMrB)q = é(l— Poy)[PIL(s38/)SIM (tty) TMr)a|D)g[b)y.  (2.3)

2(1+B?)

Py being the permutation operator of the particRandy. The subscripti at quantum numbers
is omitted, unless ambiguities could arise. Thg) coupling scheme is used. The orbital angular
momenta of the paik and of the spectatdrare first coupled with their respective spiisnds to
total pair and spectator angular momehégand j which are then combined to total angular momentum
J with projectionMj; the parity quantum number can be derived according te (—)(—)'. The
isospin coupling of the pair isospih and of the spectator isospiris done correspondingly for total
isospinT with projectionMy . The additional quantum numbefBb) give the baryon characteris-
tics of the pair and of the spectator baryoBsz 1(0) standing for a two-nucleon (nucledy-pair,
b= %(—%) for a spectator nucleorf; baryon characteristics could be read off from the individ-
ual spin and isospin quantum numbsrandt; the additional quantum numberBl) are introduced
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Figure 2.2: Three-baryon Jacobi momenta and discrete quantum numbers. The spectator baryon
is labeleda, the pair is made up of baryorfsandy. The Jacobi momenta are denoted fpyand

g. The abbreviatiorv(lj) for the employed partial-wave basis statpsv(lj))q Stands for the set
{{[L(sss,)SI (Is) j}I My [(tgt,) Tt]T M7 Bb} of discrete quantum numbers.

for convenience. In Eq. (2.2) the sum is over the projection quantum nurivhers;, Mt andm
of the pair and spectator total angular momentum and of the pair and spectator isospin. The dis-
crete quantum numbers, distinct from the continuous Jacobi monpeatal g, are abbreviated by

= {{[L(sss,)SI (Is) I My [(tat,) Tt]T M Bb}. The practical calculations may suggest other
coupllng schemes in intermediate steps, e.g., for the description of the trinucleon bound-state wave
function the(L S )-coupling scheme will be used in which the orbital angular momenta of the_pair
and of the spectatdrand their respective spirg&andsare coupled to the total orbital angular momen-
tum L and to the total spi, respectively, and are then combined to total angular momeatura.,

= {{(L1L[(sps,)S$S }I M [(tgt,) Tt]T My Bb}. Another possibility is the channel-spin cou-

pImg scheme in which the spectator orbital angular momentiswcoupled with the channel spif,
consisting of the total pair angular momentlirand the spectator spaj to total angular momentum
J,i.e.,v(IK) = { (I{[L(ss))SIs}K)JI My [(tgt,) Tt]T My Bb}. All those coupling schemes are related
to each other by unitary transformations.

2.2 Hamiltonian

The basis states (2.2) are the eigenstates of the free Hamiltbigiavhich contains the rest mass
differencedm, = my — my and kinetic energy operators of single baryons, i.e.,

3
Ho= % ho(a). (2.4a)
a=1

It can be split up into the sum of kinetic energy operators of the three-baryon c.m. rhigtibrand
of the internal motion, i.e.,

Ho = H§™ +his"(By) +h§™ (By) + hE(a1), (2.4b)

with the internal motion contributions®(By), hs™ (By) andh!(a) referring to the relative motion
of the pair(By), to the motion of the c.m. of the paify) and to the motion of the spectatar
in the three-baryon c.m. system, respectively. The rest mass differences are attabffé@yto
andh#'(a). TheHo eigenvalue corresponding to the eigenstagy(lj))q|K) is M + p?/2uq +
0?/2Mq + K2/2M with the reduced mass of the paig = mgmy/(mg +m,) and of the spectator
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Mg = My (mg +my) /(my + mg +my) and with the full three-particle ma$d = mq +mg+m,, M =
M — 3my being the full rest mass difference.

Assuming only pairwise interactions between the baryons the interactioH pafrthe full Hamil-
tonianH = Hp + H, takes the form

H=YS v (2.5)

with the potentiakyy acting between the paify). In contrast to the free Hamiltoniaty, H,; couples
the two Hilbert sectorély andH,. Since the interaction Hamiltonidty acts on relative coordinates
only, the eigenstates of the full Hamiltoni&hare products of states referring to the internal and c.m.

motion, i.e., the fully correlated three-nucleon bound st#eK ) and scattering stat¢§’&i)(q)qu>
and|ngi)(pq)voK> have the form

|WeK) = |B)IK), (2.6a)
We (q)vaK) = W5 (@)va) K), (2.6b)
W5E) (pa)voK) = W5 (pa)vo) K). (2.6c)

The internal parts of the states (2.6) and their quantum numbeend v will be discussed in
Chapter 3.

2.3 Coupled-Channel Potential

The two-baryon coupled-channel potential is graphically defined in Fig. 2.3. In isospin-singlet partial
waves it is purely nucleonic. In addition, in isospin-triplet partial waves it has a transition poten-
tial from nucleonic to nucleoik states and a diagonal potential between the latter ones. The cou-
pled-channel potential provides additional attraction between two nucleons by the virtual excitation
of a nucleon to a\ isobar. Characteristic effective two-nucleon processes are shown in Fig. 2.4. An
instantaneous two-nucleon potential incorporates them, in an implicit average way, in its intermedi-
ate-range attraction, often modeled as sigojeekchange by one-boson exchange (OBE) potentials.
Thus, the previous strategy [16, 27] for achieving approximate phase equivalence with an underlying
nucleonic reference potential, the so-called subtraction technique, amounted to taking these processes
out from the intermediate-range attraction inemergy-independemay: The processes which the

(@ (b) (© (d)

Figure 2.3: Two-baryon coupled-channel potential. A thin vertical line denotes a nucleon, a thick ver-
tical line aA isobar and a dashed horizontal line the instantaneous potential. The Hermitian-conjugate
of the transition process (b) is not shown.
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Figure 2.4: Contributions to the effective two-nucleon interaction. The processes up to third order in
the potential are shown.

explicit channel coupling provides in @mergy-dependentay, are subtracted at a physically impor-

tant reference energy, for which zero kinetic energy was chosen; at that energy, phase equivalence is
assured by construction. However, there is phase inequivalence at higher energies [24], it increases
with increasing energy, and that phase inequivalence renders a potential, constructed in this way, not
a realistic one. Changing the reference energy to higher values does not help much. Furthermore, |
notice a dependence of calculated three-nucleon scattering observables on the choice of that reference
energy. | therefore felt forced to create a new, this time well-fitted, coupled-channel potential, corre-
sponding to a given nucleonic reference potential. This section describes the chosen procedure and
the resulting interaction.

2.3.1 Fit of New Realistic Coupled-Channel Potential

| choose as underlying purely nucleonic reference potential the charge-dependent CD-Bonn poten-
tial [3]; it is an OBE model which includes single pidm), rho (p) and omeggw) exchanges; it
assumes vanishing coupling of the étg meson to the nucleon. In addition, the OBE model typi-
cally introduces a scalar isoscaameson which has to simulate multimeson exchanges, in particular
1ot and T exchanges with an intermedialeisobar; those multimeson exchanges are, however, not

of purely scalar isoscalar nature. Furthermore, the contributionstahdp exchanges cover rather
broad range that cannot be reproduced well by a single boson mass. The CD-Bonn potential therefore
introduces two effective scalar isoscatamesons, denoted ly; ando,, whose parameters are par-
tial-wave dependent. The potential form, meson parameters and regularizing hadronic form factors
of CD Bonn are given in Ref. [3]. | choose the isospin triplet components of its coupled-channel
extension in close correspondence to CD Bonn. The nucleonic part is taken over in form.

The transition potential of Fig. 2.3(b) from two-nucleon to nucldostates is based amandp
exchange and is taken to have the contributions

_ Froun Frva My o1-PeSe-PE 2 2
2memg "V T2 EE)Z p2 e Fuv(ph) Fra(pi),  (2.70)

fonn f m o1 X Pe)- (S xp
pNN3‘;:‘2)A E/ENl/Z ( - p§)+(n% E) FPN(pﬁﬁ) FPA(pﬁ’])
m

(2.7b)

(p'lv(NN — NA, ) |p) =

(p'lv(NN— NA, p)|p) = 71 T2
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with the initial and final two-baryon relative momemgandp’,

E = (m{ +p?)*?, (2.8a)
E'=(m§ +p*)Y2, (2.8b)
Pm=p —p, (2.8¢)
!
pe = [(E+m)(E+m)] " (G~ g (2.80)
and the hadronic form factors
N —mé
Fa(Pd) = ——— 2.8e
EB(pm) /\EZB_i_p%‘ ( )

o (t) andS (T) being the nucleonic spin (isospin) operator and transition spin (isospin) operator
from nucleonic taA-isobar states with the reduced matrix elemégtéo||3) = (3||7]|3) = V6 and
(3119/12) = (3||T||3) = 2. The nonlocality of the potential forms (2.7) arises from the factphag
Pm and from the factomy/(E’E)Y2. In Egs. (2.7) the second nucleon is turned intA &sobar;
of course, the symmetrized transition contribution is added. The form factor (2.8e) acts at purely
nucleonic vertices and at vertices with at least Arigobar; the subscri@ beingN or A distinguishes
the two cases.

The exchange nucledhpotential of Fig. 2.3(c) is based arandp exchange and is taken to have
the contributions

ST'pE S PE

™A 1T 1 MmN il 2,2

Cneng V2 EE)E2  poemg  ePm)

ThT, my  (S]xpe)- (S2 % pe)
b (EE)2 phH+m3

(p'|v(AN — NA, )|p) = — (2.9a)

f2
. pNA
(2r)3mg

The direct nucleo potential of Fig. 2.3(d) is based an p, w andonec exchange and is taken to
have the contributions

(p'|v(AN — NA, p)|p) = FA(PR).  (2.9b)

f f m o1-PE OA2-
(p|v(NA — NA, T |p) = — 7&:‘);?‘2 1 Th (E’E,\)ll/Z : %‘fﬁ% PE E N (P2) Fra(p2), (2.10a)
f f m o1 X -(opo X
(/v (N8 = NAP)Ip) == Grsr m o e - p;% fmfzf PE) (58 Foa(P2)
OoNNGpaA FpN(pﬁw) FpA(pﬁw)
+ =7 T , 2.10b
mE T 021 ( )
JoNNGoaa FGN(pZ)FoA(pZ)
'lo(NA = NA, 6)|p) = — m m), 2.10c
(P'lv( )|p) CE 02, + T2 ( )
goNNOwra  MN (01 X Pe) - (a2 X PE)
gonnGana Fan(pZ) Foa(p3)
n , 2.10d
e pgemg (2109

op (Ta) being theA-isobar spin (isospin) operator with the reduced matrix eleni@fra||3) =
(%HTAH%) = 21/15. The spin-independent terms are local, they do not inymdvand the correspond-
ing factormy/(E'E)Y2.



2.3 Coupled-Channel Potential 11

As in Refs. [16-21] the potential forms (2.7), (2.9) and (2.10) are not derived cleanly from field
theory, but postulated [28] by substituting spin and isospin operators in hucleonic OBE potentials with
the corresponding transition and diagofaisobar operators. However, the potential forms relating
to theA isobar differ from those [16—21, 28] used previously in several respects:

(1) They are made to have the same relativistic factors as CD Bonn, which is based upon the
relativistic Feynman amplitudes for meson exchange;pgreplacedm, in the spin-dependent
vertex terms and the factons*.,\|/(E’E)1/2 are added appropriately; for simplicity no distinction
between nucleon antisobar masses is made in those factors. Their nonlocal relativistic forms
are especially important for the tensor force; their local approximations change them drastically
off shell: Locality makes the tensor-force part substantially stronger off shell [29].

(2) The regularizing hadronic form factors are dipole ones for each meson exchange as in CD Bonn.

(3) The diagonal hadronic nuclednpotential (2.9) — (2.10) is taken to be nonzero, in contrast to
the assumptions in Refs. [16-21].

The fit of the isospin triplet part of the two-baryon coupled-channel potential proceeds as follows
and thereby vyields the following characteristics for the resulting potential:

1. The CD-Bonn potential form is adopted as nucleonic part. The parameters @f trel o,
exchanges are retuned. However, in tRg and3P; partial waves the readjustment of thg
anda, parameters alone is not enough; there, alsatparameters have to be retuned slightly.
Thus, the readjustment of tllg, o, andw exchanges is partial-wave dependent. The resulting
parameters are given in Table A.1 of Appendix A. | remind,dheo, andw parameters of the
purely nucleonic CD Bonn are also partial-wave dependent.

2. Inthe potential parts referring to tdsobar the parameters, except for theoupling strength,
are chosen according to empirical values or quark counting rules; they are summarized in Ta-
ble A.2 of Appendix A. Since these parameters are not subjected to the fit, the fit is not allowed
to return to the purely nucleonic reference potential, i.e., to choose these parameters to vanish.
The coupling strength af, in fact, the combinatiogonnGoan /4T is the real fit parameter; it is
allowed to be partial-wave dependent as in CD Bonn; the resulting parameteesdfange are
given in Table A.3 of Appendix A. The coupled-channel potential is charge dependent. How-
ever, the potential contributions related to thésobar are chosen as charge independent; the
charge dependence of the complete coupled-channel potential results from its purely nucleonic
part.

3. The CD-Bonn potential can be considered to provide a very reliable energy-dependent phase-shift
analysis of nucleon-nucleon scattering data below 350 MeV, known up to the year 2000. It can
be considered an update of the corresponding Nijmegen phase-shift analysis [30] which is based
on data up to 1993. The coupled-channel potential is therefore tuned to the phase shifts of CD
Bonn; however, the resulting® values are calculated with respect to the proper data as in
Ref. [3]. Furthermore, the actual fit sequence for the different charge states is the same as in
Ref. [3].

4. The point Coulomb interaction is added in the partial waves with two charged baryons, i.e., in
the coupled proton-protofpp) andpA™ partial waves and in thpA~ partial waves coupled to
the neutron-neutrofnn) partial waves. The long range Coulomb potential is cut off at a radius
R, outside the range of the hadronic potentials. In pipepartial waves the proper Coulomb
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boundary conditions are exactly restored from the cut-off ones; with respect to the cut off in
NA partial waves, the independence of results from that cut off for valud® »f10 fm is
numerically established.

5. The fit aims first at thgp potential with channel coupling, since thpgp data are the most
accurate ones. Thep potential is fitted to the CD Bonpp phase shifts, using the Nijmegen
pperror matrix [31] for determining an intermedig{é. The subsequent direct comparison with
all experimentalpp data below 350 MeV, available in the year 2000, yietdgdatum= 1.01,
very close to that of the original CD Bonn. Thus, there is no need for any further tuning of
parameters in the comparison with the properdata.

6. The coupled-channel potential is charge dependent as CD Bonn. Its parameters in isospin
triplet partial waves with isospin projectiodt = 1, fitted in step 5., are transcribed to the
neutron-proton(np), i.e., Mt =0, and to thenn, i.e., Mt = —1, parts in the same way as for
CD Bonn, i.e., omitting Coulomb, except in tipA~ channel coupled tan, correspondingly
replacing the masses of the nucleons and adjusting the coupling constantsogfahd o,
mesons such that the phase shift differences, predicted by the charge-independence and the
charge-symmetry breaking of CD Bonn, are reproduced. The subsequent direct comparison
with experimentahp data below 350 MeV, available in the year 2000, yigtdgdatum= 1.02,
again very close to that of the original CD Bonn. Thus, there is no need for any further tuning
of parameters in the comparison with the properdata. Furthermore, the resultif§o nn
scattering length, i.e+18.95 fm, agrees well with the experimental one of Ref. [32], i.e., with
—18.9+ 0.4 fm, within the experimental error bars.

The meson parameters resulting from the fit are collected in the tables of Appendix A. The overall
fit yields ax?/datum= 1.02. Thus, the new coupled-channel potential is as realistic as any of the
modern nucleonic potentials; it is phase equivalent with CD Bonn as nucleonic reference potential in
the limits of the fit. Nevertheless, a word of caution is appropriate: The fitis based on nucleon-nucleon
scattering data below pion-production threshold, whereas the nuflebannel is the remainder of
the description of inelasticity yielding single-pion production. Thus, those physics data, for which the
nucleonA channel is most important, are not used yet for determining its properties. The developed
coupled-channel potential is applicable only for phenomena below pion-production threshold in the
same way as the nucleonic reference potential CD Bonn; both are unrealistic beyond pion-production
threshold. Of course, this fact is unfortunate, but its repair is far beyond the scope of this thesis; only
for reasons of curiosity, Appendix A also discusses characteristic predictions of the coupled-channel
potential for the energy domain, where single-pion inelasticity is important.

In the Chapters 4 to 7 | present results for the three-nucleon bound state, for nucleon-deuteron
scattering and for three-nucleon e.m. reactions derived from the new realistic coupled-channel poten-
tial with A-isobar excitation, denoted in the following as CD BonA.+l shall give three additional
results for comparison. | shall give results for the nucleonic reference potential CD Bonn in order to
isolateA-isobar effects. | shall also give results for coupled-channel potentials constructed according
to the old subtraction technique [16, 28] without fit; both are phase-equivalent at zero kinetic energy
only. One version, denoted in the following as CD BonA (subl), is based on the contributions (2.7)

- (2.10) with the parameters of Appendix A; it$/datum= 6.34 is poor compared to the new cou-
pled-channel potential. The other version is the one employed in Ref. [22]; it will be denoted as CD
Bonn +A (sub2); it is based on a local transition potential without diagonal nuaeoortributions;

its x?/datum= 13.8 is even poorer. The partial and the completevalues of all coupled-channel
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x?/datum(pp) x?/datum(np) x2/datum(pp+ np)

CD Bonn 1.01 1.02 1.02
CD Bonn +A 1.01 1.02 1.02
CD Bonn +A (subl) 10.5 2.36 6.34
CD Bonn +A (sub2) 23.8 4.11 13.8

Table 2.1:x? values for the potentials used in this thesis. The coupled-channel potential CD Bonn +
A'is the fitted one. The other coupled-channel potentials are constructed without fit.

potentials, used in this thesis, and of the nucleonic reference potential CD Bonn are collected in Ta-
ble 2.1.

2.3.2 Effective Phenomena in Three-Nucleon System

A virtual A-isobar excitation in the three-nucleon system yields an effective three-nucleon force which
simulates traditional irreducible three-nucleon forces in a reducible energy-dependent way. In lowest
order, i.e., in second order of the two-baryon interaction,Aksobar contribution to the effective
three-nucleon force displayed in Fig. 2.5 is of the Fujita-Miyazawa force [14] type; in contrast to that
irreducible three-nucleon force based solely on the two-pion exchange, the effective three-nucleon
force due toA-isobar excitation takes alsgp and pp exchanges into account. In higher order the
coupled-channel potential simulates, among other processes, the three-pion ring parts of the lllinois
force [6] as shown in Fig. 2.6. Again, the effective three-nucleon force divédobar excitation takes

Figure 2.5: Contribution to the effective three-nucleon force arising from the coupled-channel poten-
tial in second order of the two-baryon interaction. It is of Fujita-Miyazawa force type.

(@) (b) () (d) (e) (f)

Figure 2.6: Contributions to the effective three-nucleon force arising from the coupled-channel poten-
tial in third order of the two-baryon interaction. The parts (a) and (b) are of the pion-ring type in the
lllinois three-nucleon force.



14 2. Three-Nucleon Dynamics witkilsobar Excitation

into account the exchanges of all mesons included in the coupled-channel potentialpi.exando.

The coupled-channel potential makes all contributions to the three-nucleon force mutually consistent,
what is not the case in Ref. [6]. However, there are some other processes included in irreducible
three-nucleon forces, e.g., the Tucson-Melbourne (TM) force [33], which are not accounted for by the
coupled-channel potential, e.g., pion-nuclébwave scattering.

2.4 Electromagnetic Interaction

The basic building block for the description of e.m. nuclear reactions is the e.m. Hamiltonian
em _ g / A F)AX)] o (2.11)

which couples baryonic states to the photgh (e, is the positive elementary charge, |e§,z

1/137.036. The operators in Eq. (2.11) depend on space-tineit are to be used as Schrddinger
operators at timeg = 0; the e.m. field operatdk,(x) is parametrized in the form

1/2 3 _ _
A = (5 | 2igkz/2 an (yeulk e 4 (ke A

The polarizations\ = £1 correspond to those of a real transverse phatg)) are the polarization
vectors, constrained be, (k,A) = 0. A single-photon state of definite momentigand polarization

A, &-function normalized, iskyA) = ax( v)|0). The polarizationd\ # 41 correspond to polarizations

of virtual photon needed for the description of electron scattering, i.e., to a photon with longitudinal
polarization and to a scalar photon. In that description the e.m. interaction is used in one-photon ex-
change, i.e., the Hamiltoniga®™ of Eq. (2.11) is to be supplemented by a coupling of the e.m. field

to electron currenit!(x) and it is then applied in second order resulting in the standard current-current
coupling between charged patrticles. Thus, for electron scattering from hadrons the effective e.m.
interaction

. 2.12
PEE

d*Q 4me iR (x-y)
Hiett :_ez/dstu [/d4 2m* Q2+i0 I“(y)]
has to be used.

The e.m. current operatd¥(x) acts in the baryonic Hilbert space with two sectblg and Ha
displayed in Fig. 2.1. | use the current operator in its Fourier-transformed form, i.e.,

(2.13)

Xo=0

HQ) = / d®x d9*H(x)| . (2.14)

and employ — specializing to a three-baryon system — a momentum-space representation, based on
the three-particle Jacobi momenta (2.1), i.e.,

(P'd’K'[IMQ)[paK) = d(K' = Q — K)(p'q'| i*(Q,K ) |pa). (2.15)

In Eq. (2.15)Q is the three-momentum transfer by the photon; it will take on particular values de-
pending on the considered reaction, e.g., in the photo reactions it is given by the monkgratm

the real photon. A total momentum conservidunction is split off; the remaining current operator
i*(Q,K ) only acts on the internal momenta of the three-baryon system with a parametric dependence
on the combinatiok . = K’ + K of total momenta.
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2.4.1 Coupled-Channel One-Baryon and Two-Baryon Current

The current operator has one-baryon and two-baryon piecesJi(@) = JIUH(Q) + J@H(Q), the

latter term being called meson-exchange current (MEC). It arises — as does the baryon-baryon inter-
action itself — as a consequence of the elimination of mesonic degrees of freedom in the considered
Hamiltonian. In the underlying field theory mesons as well as baryons couple to the photons, i.e., carry
the e.m. current. However, in the restricted purely baryonic Hilbert space of Fig. 2.1 only the nucleon
and theA isobar couple explicitly to the photon by the one-body current. The frozen mesonic degrees
of freedom manifest themselves in many-baryon operators for charge and spatial current. The neces-
sity to introduce the MEC follows also from the continuity equation, which in the Fourier-transformed
form of the e.m. current reads

Q-J(Q) = [Ho+Hi,p(Q)]. (2.16)

Accepting Siegert’s hypothesis [34], i.e., assuming the charge op@@0r= J°(Q) in nonrelativis-
tic approximation to be composed of one-baryon operaﬂBf&Q) only, the continuity equation for
the e.m. current splits up into two parts, i.e.,

Q-JY(Q) = [Ho,p™ (Q)], (2.17a)
Q-J4(Q) =[Hi,pM(Q)]. (2.17b)

Since the isospin-dependent or nonlocal potertialdoes not commute with the charge density
p(Q), a nonvanishing two-baryon spatial curréf(Q) is required in order to fulfill current con-
servation. Beside the standard nucleonic current part there are additional parts invohdnigabar

which then make effective two- and three-nucleon contributions to the exchange current, the contribu-
tions being consistent with each other. | take one-baryon and two-baryon contributions into account,
shown in Figs. 2.7 - 2.9 and described in detail in the respective figure captions. The explicit ana-
lytic forms of the considered contributions are collected in Appendix B. The horizontal lines in the
diagrams indicate that the meson exchanges are instantaneous. The dominant meson-exchange contri-
butions arise frommandp exchanges; note, that those are the only contributions of two-baryon nature
taken into account in the calculations of Refs. [35—-37]. In my calculations also the meson-nondiagonal
pmy andwrty contributions are taken into account for the currents of Figs. 2.7 and 2.8. The current of
Fig. 2.8 couples purely nucleonic states with states containing\asebar. In contrast to Ref. [20],

the contributions betweel-isobar states of one- and two-baryon nature are kept as shown in Fig. 2.9,
though the corresponding two-baryon contributions will turn out to be quantitatively entirely irrele-
vant; | therefore take only the diagormatontribution into account. The e.m. current is derived by the
extendedS-matrix method of Refs. [38—41], which is based on the comparis@roétrix elements
resulting from relativistic quantum field theory and from the corresponding quantum-mechanical de-
scription. However, the e.m. current, as given in Appendix B, satisfies current conservation only
approximately with the correspondingandp exchanges in the employed two-baryon interactipn

of CD Bonn and CD Bonn A. The employed spatial current is systematically expanded up to first
order ink/my;, k being a characteristic baryon momentum. The charge density is used in zeroth order
in k/my in the standard calculations.

In the photo reactions, i.e., in the reactions with real transverse photons, the photon couples only
to the transverse part of the spatial current. However, assuming current conservation, the dominant
contribution of the spatial current is replaced by the charge density which is less affected by two-body
effects according to Siegert’s hypothesis. This assumption results in the so-called Siegert form of the
current. In contrast, in the electron scattering from the trinucleon bound state the exchanged photon
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Figure 2.7: One- and two-baryon processes contained in the used e.m. current. In this figure only the
purely nucleonic processes are depicted. In nonrelativistic order the one-nucleon process contributes
to the charge density and to the spatial current, the two-nucleon processes only to the spatial current.
The meson-diagonal isovectarandp exchanges are taken into account in the two-nucleon processes
as well as the meson-nondiagomady and wrty contributions.

1

Figure 2.8: One- and two-baryon processes contained in the used e.m. current. In this figure pro-
cesses are depicted in which one nucleon is turned ikdsabar. The Hermitian-adjoint processes

are taken into account, but are not diagrammatically shown. In nonrelativistic order the one-baryon
and two-baryon processes contribute only to the spatial current. In the one-baryon current only the
magnetic dipole transition is kept. The meson-diagonal isovatemdp exchanges are taken into
account in the two-baryon processes as well as the meson-nondigggyraaid wry contributions.

1-H it

Figure 2.9: One- and two-baryon processes contained in the used e.m. current. In this figure processes
are depicted which connect states witlh asobar. In nonrelativistic order the one-baryon process
contributes to charge density and spatial current, the two-baryon processes only to the spatial current.
Only the meson-diagonal isovectmexchange is taken into account in the two-baryon processes.

is virtual and couples to all components of the e.m. current which in addition has to carry e.m. form
factors. In this case, current conservation may be used in order to replace the longitudinal part of the

spatial current by the charge density.
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2.4.2 Effective Nucleonic Currents

In the same way as the coupled-channel potential yields the effective two-nucleon and three-nucleon
forces of Figs. 2.4 — 2.6, the coupled-channel current yields effective currents which are of two-nucleon
and of three-nucleon nature; the lowest order contributions are shown in Figs. 2.10 and 2.11, re-
spectively. Since the effective nucleonic forces and currents are built from the same two-baryon
coupled-channel potential and from the corresponding one-baryon and two-baryon coupled-channel
current, they are consistent with each other. The meson exchanges included in the coupled-channel
potential and in the coupled-channel current are contained also in the effective nucleonic forces and
in the effective nucleonic currents.

B I e I I B §I

Figure 2.10: Contributions to the effective two-nucleon current arising from the coupled-channel
potential and the coupled-channel current at lowest order.

e

Figure 2.11: Contributions to the effective three-nucleon current arising from the coupled-channel
potential and the coupled-channel current at lowest orders.







3
Three-Particle Equations: Nucleons and Single
A-1sobar Excitation

Since the c.m. and internal motion can be separated as described in Chapter 2.2, | consider in the
following only the internal motion, i.e., | consider the free Hamiltonian (2.4b) without the contribution
Hg™ from the three-particle c.m. motion.

3.1 Three-Nucleon Bound State

The three-nucleon internal bound stge, already introduced in Eg. (2.6a), with the binding energy
Eg satisfies the Schrddinger equation

(H0+H|)|B>:EB|B>; (3.1&)

its integral form is
3
IB) = Go(Es) ) valB) (3.1b)
d=1

with the free resolver®y(Z) = (Z—Ho) 1, Z being a general complex number which for physical am-
plitudes becomes the energy of the three-nucleon system. The kernel of Eq. (3.1b) is non-connected.
In principle, it is possible to solve Eg. (3.1b) numerically, since the solution of the bound-state prob-
lem is well-behaved and square-integrable. However, it is much more advantageous to follow the
Faddeev procedure which leads to an integral equation with a kernel connected after iteration and
compact for short-ranged forces. | therefore decompose the bound-state wave fiBEtiot its
Faddeev componentdq) = Go(Eg)vy|B), i.e.,

3

B) = z |Wa)- (3.2)
d=1
The Faddeev components obey the following equations, i.e.,

3
|Pa) =Go(Es)va Z |Wg)s (3.39)

B=1
|We) =[1— Go(Es)va] 'Go(Eg)va > W), (3.3b)

p#a

|Wa) =Go(Es) Ta(Es) z |Wg)- (3.3¢c)

BAa
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In the last equation the two-baryon interaction between the pgitis summed up into the two-baryon
transition matrix

Ta(Z) = vg +vaGo(Z2)Ta(Z) (3.4)

in the three-particle Hilbert space. Since the bound $Bitdas to be totally antisymmetric under the
exchange of the three baryons, the relation between Faddeev components is

|L|J[3> = PO(BPBVNJG>7 (3-5)

Pup being the permutation operator of the partideandp. It is therefore sufficient to determine only
one of the Faddeev components according to

|Wa) = Go(Es) Ta(Es)P|Wa), (3.6)

where the permutation operatBris defined to beé® = P,pPgy + PayPgy; in fact, P is the sum of the
cyclic and anticyclic permutations of three particles. The bound-state wave function is given by

B) = (1+P)|wa). (3.7)

It has to be normalized explicitly such thd@|B) = 1.

3.2 Three-Nucleon Scattering

Nucleon-deuteron scattering is considered. In the initial nucleon-deuteron channel state

|Pu () Vo) = |dloM; ToM1, ) o |gSoMstombo) o (3.8)

the pair(Py) of nucleons is bound as deuteron in the stdtgM, ToMr,)q With the quantum numbers
lo =1 andTp = My, = 0; the third nucleon is in a plane-wave state with definite spin and isospin
specification, the quantum numbegsty andbg being%; Vo abbreviates all discrete quantum numbers.
The statd@, (q)vq) is an eigenstate of the channel Hamiltonkg= Ho + vy with the eigenvalue
RE
Eq = — 3.9
o ed + 2Mq ’ ( )

ey being the deuteron binding energy; since all three particles are nuclélgns,2my/3. Due to
their identity any pair of nucleons could be bound; | cho@®g as representative pair. The scattering
can be elastic, the deuteron bound state may get rearranged to another pair, unobservable for identical
particles, or it may break up into a state of three free nucleons, i.e.,

[@o(Pa)vo) = %(1— Poy) [P} |SsMs;tamy, ) [ sy, tymy, by) [gsmtmeb) (3.10)

The three particles in the final state are nucleons, i.es;ai=b = % All discrete quantum numbers
are summarized byy. TheHg eigenvalue corresponding to the breakup Stas€pq)Vvo) is

p2 ¢
= 11
"= o T 2Mg (3.11)
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with pg = my/2 andMqy = 2my /3. Any set of Jacobi momenta could be used; | choose as represen-
tative states those which have the bary(By as pair and the baryom as spectator. Both types of
channel statesg, (q)va) and|@(pg)vo), are antisymmetrized with respect to the pgy).

The stationary scattering states [42, 43] corresponding to the channel states (3.8) and (3.10) are
eigenstates of the full Hamiltoniad = Hg + H;; they are obtained from the channel states using the
full resolventG(Z) = (Z—Ho—H) 1, i.e.,

Wi (Q)Va) =+ i0G(Eq £i0)|¢h (q)Va), (3.12a)
W5 (pq)vo) = +10G(Eo +0)|go(pa)Vo): (3.12b)

they are not totally antisymmetric as required for physical states. Using the decomposition of the full
resolventG(Z) into channel resolvenGg(Z) = (Z—Ho—vg) 7%, ie.,

G(Z) = Gg(Z) + Gg(Z)(Hi — vg)G(Z), (3.13)
Egs. (3.12) can be written as triads of Lippmann-Schwinger equations
Wi (@)Va) = Bpal@(a)Va) + Gp(Ea £i0) (H —vp)[We™ (@)Va), (3.143)
W5 (pa)vo) = [1+ GolEo+i0)Tg(Eo %i0)] |@u(pa)vo) + Gp(Eo =i0) (Hy — vg) W5 (Pa)vo)
(3.14b)

with a being fixed and3 = 1,2, 3; they are necessary and sufficient to define the stewéé%(q)v@

and |ngi)(pq)vo> uniquely. However, in scattering problems it is more convenient to work with
the multichannel transition matridg, (Z) whose on-shell elements parametrize 8wnatrix. The
calculations of this thesis are based on the AGS version [2] of three-particle scattering theory. It
defines the multichannel transition matti, (Z) between two-body channels by the decomposition

of the full resolveniG(Z) into channel resolventSy(Z) according to

G(Z) = 833 Ga(Z) + Gp(Z)Up4 (Z)Ga(2). (3.15)

The multichannel transition matrlig, (Z) describes elastic or rearrangement scattering; it is derived
from the integral equation

Upa(Z) = (1 - 864)Go ' (Z) + 5 (1~ 8p,) Ty(Z)Go(Z)Uya (2).- (3.16a)
Y

The transition matrixJoy (Z) to final states with three free particles is obtained from the one between
two-body channels by quadrature, i.e.,

Uoa(Z) = Go(Z) + 5 Ty(Z)Go(Z)Uya(2)- (3.16b)
Y

Equation (3.16b) follows from the decomposition of the full resolvVé(Z) in the form (3.15) for
B=0anda =1,23.

The physical nucleon-deuteron and three-free-nucleon scattering states of Egs. (2.6) are obtained
from the states (3.12) by explicit antisymmetrization with respect to all baryons and by normalization,
ie.,

w5 (@)va) =%<l+ P (@)va). (3.17a)

1

\/§(1+ P)lws” (Pa)vo)- (3.17b)

WS (pg)vo) =
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The corresponding symmetrized multichannel transition matrices for elastic nucleon-deuteron scat-
tering and nucleon-deuteron breakup are given by

U(2)|@u(a)Va) = > Uay(Z)|@,(a)vy), (3.184a)
Y

Uo(Z)| @ (Q)Va) :ZUOV(Z)|(W(Q)VV>- (3.18b)
Y

The symmetrized multichannel transition mattxZ) satisfies the integral equation
U(Z) =PGy*(Z) + PTa(Z)Go(Z)U (Z) (3.192)

with a kernel connected after iteration and compact for short-ranged forces. The transition matrix
Uo(Z), as its non-symmetrized version, is obtained from the one between two-body cHa(ngelsy
quadrature

Uo(Z) = (14 P)GyX(Z) + (1+ P)Ta(2)Go(2)U (Z); (3.19b)

the term(1+ P)G,*(Z) does not contribute to the on-energy-shell matrix elementsy() needed

for the calculation of observables. Though one ends up with one integral equation (3.19a), the geo-

metrical complexity of the three-nucleon problem is of course still present in the permutation operator

P, defined in Sec. 3.1. The solution of the integral equation (3.19a) is described in Appendix C.
TheSmatrix for elastic nucleon-deuteron scattering and nucleon-deuteron breakup is given by the

symmetrized on-shell transition matridd$Z) andUy(Z2), i.e.,

(o (01 )Var, |9 (0)Vai ) =B(A — i) Bug v,
— 211 6(Eq; — Eq;) (@ (91)Vay U (Ea; +10) @ (9i)Var ) (3.209)
(@o(P1af)Voy [Sl@u (0i)Ve;) = — 21 8(Eo; — Ea) (@0(P1G1)Vo; |Uo(Eq; +10)|@u(Gi)Ve;).  (3.20b)
When determining th& matrix, the initial and final states are fully antisymmetrized and normalized
through(1+4 P)/v/3 as in Egs. (3.17); however, those symmetrization operators are incorporated into
the definition of the symmetrized transition matri¢&&Z) andUy(Z) according to Egs. (3.18); they

are defined to act between the channel states which are antisymmetrized only with respect to the pair
(By). The basis states (2.2) have the same symmetry properties as the channel states.

3.3 Three-Nucleon Electromagnetic Reactions

The dynamical quantities needed for the description of the three-nucleon e.m. processes are the matrix
elements of the e.m. nuclear current operator (2.15) between the three-nucleon bound and scattering
states, i.e.(l{J&_)(q)vGU“(Q,K+)|B> and(LIJé,_)(pq)voU”(Q,K+)|B>. The bound state is calculated
explicitly from the Faddeev amplitudes in Eqg. (3.7). The nucleon-deuteron and the three-free-nucleon
scattering states (3.17) can be given formally in terms of the multichannel transition bhefrixi.e.,

W5 (G)Va) = = (14 P)[1+ GolEq = 10)Ta (Eq +10) Go(Ea = 10)U (Eq % 10)] | (0)Va),

3
(3.21a)
1
V3
x [1+ Go(Eo +i0) T (Eo % i0)] |@o(pg)Vo)- (3.21b)

W5 (pg)Vo) = —=(1+P) [1+ Go(Eo % i0) Ta(Eg % i0) Go(Ep % i0)U (Eo % 0)]
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The calculation of the nucleon-deuteron scattering state according to Eqg. (3.21a) is possible and was
carried out tentatively in Ref. [20]. In contrast, Eq. (3.21b) needs highly singular off-shell elements
of U (Z) and therefore is unsuitable for the calculation of the scattering state with three free nucleons.
It is much more advantageous to calculate the scattering states (3.17) only implicitly when forming
the matrix elements of the e.m. current operator. For that purpose the multichannel transition matrix
(3.19a) is used in the form of its Neumann series

00

U(z) = ;[PTG<Z>GO<Z>]”PGal<Z>7 (3.22)

yielding the corresponding Neumann series for the matrix elements of the e.m. current operator, i.e.,
(Wo(@)val MQ.K+)[B)
~ @@l 5 3 [PT(Eo+i0/Go(Es +10]"(1+PIHQKB).  (3233)
(W (pa)vol j(Q.K+)IB)
= (go(pd)Vo| [1+ Ta(Eo +i0)Go(Eo +i0)

« L
V3

The matrix elements (3.23) are calculated in two steps. First, | introduce the|Btgf¢) whose
Neumann series is in close correspondence with Egs. (3.23), i.e.,

i [PTa(Eo+i0)Go(Eo +i0)] "(1+ P)j*(Q.K ;) B). (3.23b)

00

3(2)) = %{PMZ)G&Z)}”(H P)j*(Q.K)[B); (3.24a)

n—

that Neumann series results from the following integral equatiofJfgz )), i.e.,
4(2)) = (14 P) Q. K )|B) + PTa(2)Go(2)[34(2)); (3.24b)

the dependence ¢8%(Z)) on Q andK ; is suppressed in the notation for compactness. The integral
equation (3.24b) fofJ¥(Z)) is analogous to (3.19a) for the symmetrized multichannel transition ma-
trix U (Z): Both equations have the same kernel, only their driving terms are different. Thus, they are
solved using the same numerical techniques as described in Appendix C|J&(Zo¢ is calculated,

the current matrix elements required for the description of two- and three-body photo and electro
disintegration of the trinucleon bound state are obtained according to

(W (a)val (*(Q,K+)IB) = J5 (G (q)Va|IH(Ea +i0)), (3.252)

(W5 (pa)vol IM(Q.K 1)[B) = L (@(pa)vol 1+ P) [{(Q.K)|B)
+ Ta(Eo +i0)Go(Eg +i0)|J*(Eg +10))]. (3.25b)
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3.4 Charge-Dependent Two-Baryon Transition Matrix

Assuming charge independence, the trinucleon bound state and nucleon-deuteron scattering states are
pure states with total isospih = %; the three-free-nucleon scattering states have total iséfspiﬂ%

andT = % but those parts are not dynamically coupled. If charge dependence is allowed for as

in the calculations of this thesis, the two-baryon transition magiZ) becomes dependent on the
projectionM+ of the pair isospiril. Thus, its matrix elements in the three-particle bégtw(lj))q

couple states of total isospin = % andT = %’ i.e., with respect to the total isospInthe two-baryon
transition matrixT(Z) in the isospin-triplet partial waves has the general structure

T(2)= > IT "MT)aTor 21 oMy (2)olT M1 | (3.26a)
T M;
with the components
T111(2) = ngp(Z) + %Tnp(z), (3.26b)
T31(2) = Y Tool2) ~ Tol2) (3.260)
T131(Z) = g[Tpp(Z) —Tnp(2)], (3.26d)
T331(Z2) = %Tpp(z) + ngp(Z) (3.26¢e)

for theM; = % i.e., for thenppsystem, and

T 1(Z) = %Tnn(z) + %Tnp(z)a (3.26f)
Ta1 1(Z) = gﬁnp(z) —Tnn(2)], (3.269)
Tis 1(2) = %Tnp@ —Tan(2)], (3.26h)
Ts3-1(Z2) = %Tnn(z) + ;Tnp(z) (3.260)
for the Mt = —%, i.e., for thennp system. The calculation based on the full forms of Egs. (3.26)

is calledexacttreatment of the charge dependence; it is especially important fSgheartial wave.

For higher isospin-triplet partial waves approximativetreatment of charge dependence without
coupling between the total isospln= 3 andT = 3 states, i.e., Witil3; s, (Z) = Ty3m, (Z) =0,

is usually sufficient. In hadronic reactions tretproximativetreatment neglects alsb = % com-
ponents, i.e.Tz3om, (Z) = 0. In contrast, the calculations of e.m. reactions require the total isospin
T= % components of scattering stateslhconsidered isospin-triplet two-baryon partial waves, since
the e.m. current couples tle= % andT = % components strongly.
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Hadronic Properties of Three-Nucleon Bound
State

The calculation is done separately firte and®H since the dynamic input is charge dependent. Fur-
thermore, | include the point Coulomb interaction by cutting off its technically dangerous long tail
and adding that cutoff Coulomb to the hadronic potential; the independence of the results from the
cutoff radiusR for sufficiently large values is established; | fiRd= 12 fm large enough. The point
Coulomb interaction has to be included between the two protodbién but also in channels with

a A isobar, i.e., in thexpAt channel ofHe and in theppA~ channel of*H. Partial waves up to

total two-baryon angular momentuim= 6 in purely nucleonic channels and uplte 4 in nucleonA
channels are taken into account. The charge dependence of the nucleon-nucleon and the Coulomb po-
tentials is treated exactly in partial waves ug te 2, yielding total isospil = % channels; in other
two-baryon isospin-triplet partial waves the charge dependence is treated approximately as explained
in Sec. 3.4, i.e., without coupling b = % states; in those higher partial waves the coupling te %’

states was checked to be quantitatively irrelevant. The results appear fully converged with all those
truncations on partial waves.

Results on binding energy contributions are collected in Table 4.1. One notices, as observed
and discussed already long ago [16], two sizablisobar effects on binding which partially cancel
each other, i.e., the repulsive two-nucleon disperdiga and the attractive three-nucleon force ef-
fect AE3 proper; since the diagonal nuclednpotential is strong, it contributes substantially to the
three-nucleon binding; only about 75%4A&; is due to the contribution of the Fujita-Miyazawa type,
arising solely from the transition potential according to Fig. 2.5. Though the purely nucleonic ref-
erence potential CD Bonn misses the three-nucleon binding by rather little addisbbar effects
arising from the new coupled-channel potential are beneficial, still, they are unable to account for the
missing binding in full. The experimentdHe - *H binding-energy difference is 0.764 MeV; most of
it is due to the Coulomb interaction fiHe. When calculatingH with a charge symmetric hadronic
interaction, i.e., with the same hadronic part fgy andnn, Coulomb alone yields a binding energy
difference of 0.685 MeV. The charge asymmetry of the coupled-channel potential makes an additional
contribution of 0.059 MeV and the kinematic effects due to phe mass difference add additional
0.012 MeV, yielding a total binding-energy difference of 0.756 MeV. That theoretical value agrees
quite well with the experimental one of 0.764 MeV.

The two constructions of coupled-channel potentials without fit, CD Bodn(subl) and CD
Bonn +A (sub2), are unable to account for the three-nucleon binding energywstbbar effects,
obtained for the well-fitted coupled-channel potential CD BonA,+accurately enough; both fail
especially with respect to the two-nucleon dispersive repuligs CD Bonn +A (sub2) also with
respect to wave function probabiliB, and to the momentum distribution of thdsobar as displayed
in Fig. 4.1 for®H, together with the nucleonic momentum distribution.
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Egs AE,  AE3 Ps Py Pe Po P32 Pa

CD Bonn -8.004 91.621 1.307 0.047 7.020 0.0048

CD Bonn +A -8.297 0.513 -0.806 89.922 1.301 0.064 7.216 0.0045 1.493
CD Bonn +A (subl) -8.515 0.353 -0.864 89.911 1.173 0.067 7.293 0.0047 1.552
CD Bonn +A (sub2) -8.271 0.648 -0.915 88.799 1.207 0.073 7.237 0.0045 2.680

Experiment -8.482
CD Bonn -7.258 91.403 1.538 0.046 7.002 0.0111
CD Bonn +A -7.541 0.483 -0.766 89.776 1.515 0.063 7.197 0.0104 1.439

CD Bonn +A(subl) -7.752 0.328 -0.822 89.781 1.370 0.066 7.274 0.0105 1.499
CDBonn +A(sub2) -7.521 0.601 -0.864 88.711 1.412 0.072 7.216 0.0102 2.579
Experiment -7.718

Table 4.1: Hadronic properties 8H (top) and®He (bottom). TheA-isobar effect on the binding
energyEg is split into the two-nucleon dispersiakE, and the effective three-nucleon force effect
AE3. The probabilityP , L beingS, S, P or D, refers to purely nucleonid = % wave function
components with definite total three-nucleon orbital angular momehtuand definite permutation
symmetry according to Refs. [44, 48}, to theT = % wave function component arising from charge
dependence, arg, to the wave function components wifhisobar configurations. All energies are
given in MeV, all probabilities are given in percent; always three digits are quoted, only for the very
small quantityPs/, four digits are quoted; they appear converged.

Momentum Distribution (fm3)

k (fm™)

Figure 4.1: 3H nucleon andA-isobar momentum distributionsy (k) and na(k) as functions of

the magnitude of the single-particle momentkm The distributions are normalized such that

s dkk[ny (k) + na(k)] = 3. Compared are predictions of the different coupled-channel potentials,
i.e., CD Bonn +A (solid curves), CD Bonn A (subl) (dashed-dotted curves), CD Bonh {sub?2)

(dotted curves). The solid and dashed-dotted curves are almost indistinguishable in the plot. Results
for ny(k) based on the nucleonic CD Bonn potential withduisobar excitation are given by the
dashed curve.
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Nucleon-Deuteron Scattering

The description of the hadronic dynamics in this thesis is nonrelativistic. Nevertheless, | like to
make the step to observables by starting out from the relativistic form of the cross section, since
other particles, i.e., electrons and photons, involved in the e.m. reactions to be described in the next
chapters, are relativistic; the nonrelativistic reduction of the relativistic form of the cross section for
hadrons can be easily done. Furthermore, the relativistic form of the cross section may enable me to
estimate the theoretical error bars due to the use of the nonrelativistic description.

5.1 Spin-Averaged and Spin-Dependent Cross Sections

| consider the general scattering process
i1 +io— f1+...+ fn. (5.1)

The differential cross section has the general form
> dLips(ki, +ki,, {k; | ] = 1,...,n})
SICRL A AUA

where the Lorentz-invariant singularity-free matrix eleméfiiM |i) parametrizes the relativisti®
matrix, i.e.,

doi ¢ = [(fIM]i)] ; (5.2a)

Nl

: _3 A 1
(£IS]i) = (f]i) —i(2m*8Y Z ki, — ki, —ki,) (F[M i) (2m) 2(n42) [0 0 I_L(Zk?j)] 2, (5.2b)
J:
dLips(ki, +ki,, {ks; | ] = 1,...,n}) is the Lorentz-invariant phase-space element, i.e.,

el ke L oS (ke ke k) [
dLips(k, +ki,, {ks; | j = 1,...,n}) = (2m)*> (J;kfj ki, — ki) D 2n32k°’ (5.2¢)

and the factor {l(k. -ki,)? n}z n'gz] contains the incoming flux, the target density and projectile and
target normalization factors the, with h=i (f) are the relativistic four momenta of the involved
particles in the initial (final) states, |ekf1’ mﬁ +k2

Since the relativistic description of ‘hadronic dynamlcs is not available, the Lorentz-invariant ma-
trix element(f|M |i) is calculated from nonrelativistic quantum mechanics. The quantum-mechanical
Smatrix can be written in the form

(f[Sfi) = (f|i) —2m 8 (Pr — P)3(Et — Ei) (st|M(Eikt)|s) (5.3)
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with P; (Ps) andE; (E¢) being the total initial (final) momentum and the total initial (final) energy.
(siIM(Eik¢)|s) is the quantum-mechanical transition amplitude; its dependence on the spin projec-
tions of the patrticles in the initial and final states, collectively describes agds¢, on the available

initial energyE; and on the final particle momenta, collectively described byis indicated explic-

itly. Equating the relativistic and nonrelativist® matrices (5.2b) and (5.3) as in Refs. [20, 21], the
resulting matrix element

Nl

(FM i) = (20 2"(sr M (Ek )]s [26026 ﬁl<2k%>]
=

(5.4)

loses the property of being a Lorentz scalar. In contrast, the kinematical factors in Eqg. (5.2a) can be
easily calculated relativistically; such a split calculational strategy, based on nonrelativistic dynamics
and on relativistic kinematics, was used in Refs. [20, 21] for e.m. reactions.

However, | use a different strategy for the standard calculations of this thesis: Since the quan-
tum-mechanicat matrix (5.3) represents the lowest order nonrelativistic reduction of the relativistic
Smatrix (5.2b), | consistently perform a corresponding nonrelativistic reductioallf@uantities in
Egs. (5.2) and (5.4), i.e.,

¢ the hadron energy factorskf?j are replaced by their rest masses,2 and

¢ nonrelativistic hadron energidaq%j =My, + kﬁj /2my, are used for the energy conservidgunc-

tion and for the factor f{k;, - ki,)? — mgmé | 2

The obtained expressions for cross sections are identical to the ones, derived from quantum mechanics
directly, e.qg., for reactions with hadrons only

(29%|(stM(Eikp)|s) |
|ki1/mi1 - kiz/m2|

The form of the cross section (5.5) is consistent with the fit of the underlying baryonic potentials,
whereas the one based on Egs. (5.2) and (5.4) is not. Furthermore, when total cross sections in
hadronic and e.m. reactions or inelastic response functions in electron scattering are calculated by
implicit integration over final states as described in Sec. 6.1.4 for the total photo cross section and
in Sec. 7.1.3 for inelastic response functions in electron scattering, the energy consdtuiatjon

is rewritten as imaginary part of the full resolvent and has to be made consistent with the employed
nonrelativistic dynamics. Thus, the split calculational strategy of Refs. [20, 21] cannot be carried
through for total cross sections of all reactions and later on for inelastic structure functions in e.m.
reactions.

doj_ ¢ =

33 (P; —P,)3(E; — E) - dks, (5.5)
f f ﬂ f

5.1.1 Elastic Nucleon-Deuteron Scattering

Elastic nucleon-deuteron scattering is considered in the c.m. system. The nucleon-beam direction is
taken to define the-axis, i.e.z2 = —§;, q; being the Jacobi momentum defined in Eqg. (2.1). The avail-
able scattering energl = ey + 3g?/4my determines the magnitude of the final nucleon-deuteron
momentumg; by energy conservation, i.egs = g. The only independent continuous variable is

the direction—@+ of the scattered nucleon (or the directigpof the scattered deuteron). The quan-
tum-mechanical amplitude for the elastic nucleon-deuteron scattering can easily be read off from
Eqg. (3.20a), i.e.,

(stIM(Eiar)[s) = (@u(ar)Vo, |U (Ei +10) | (0 )Vay); (5.6)
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the matrix element is calculated — by definition — in the c.m. system, since it refers to the internal
motion only and it is independent of the total momeRtandPs. In Eq. (5.6) the initial and final

spin projections of nucleon and deuteron gre- {msM, } ands; = {ms,M, }. The spin-dependent
differential c.m. cross section (5.5) for the elastic nucleon-deuteron scattering takes the compact form

d?0i_, ¢
d?q¢

= ‘<Sf|M(Eiqf)|S>‘2fpS (5.7a)
with the phase-space factor
fps= (2m)*(2my/3)2. (5.7b)

The spin-averaged differential c.m. cross section is

% 1 dZO'i%f

= AR 5.8a
24 65% d2qs (5.8a)
do 1 ;
dz—qf = éTr[M(EMf)M (Eiqt)]fps, (5.8b)

whereM(Eiqy) is treated as an operator in spin space. In the figures the spin-averaged differential
cross section is denoted by /dQ, the traditional notation.

The calculation of the spin-dependent cross sections and of various spin observables is described
in Appendix D.

5.1.2 Nucleon-Deuteron Breakup

Nucleon-deuteron breakup is considered in the lab system. The target deuteron is at rest, i.e., its
momentunky = 0, the impinging nucleon has momentiky), which defines the-axis, i.e.,z = Rai.

The changes which arise when the deuteron impinges on a nucleon target are obvious. The nucleon
momentunky, determines also the initial nucleon-deuteron momerguea —%kqi and the available

initial energy in the c.m. syster = ey + 3g?/4my. The quantum-mechanical amplitude for the
nucleon-deuteron breakup according to Eq. (3.20b) is

(stIM(Eiptat)|s) = (@(ptas)Vo, [Uo(Ei +i0)|@u (0l )Va; ), (5.9)

the matrix element again being calculated — by definition — in the c.m. system, since it refers to
the internal motion only and it is independent of the total moméhtand P;. In Eq. (5.9) the

initial and final spin projections arg = {msM;,} ands; = {ms,;ms,ms,}. The neutron and proton
nature of the nucleon&l23) in the final state is notationally not indicated, but always determined by
experiment. The final-state Jacobi momemtaandq; are determined from the final single-nucleon
momenteak s, ko, k3 according to Egs. (2.1). Due to momentum conservekips ko, — ki1 —Kp, thus,

ps = %(kl —kp) andqs = (k1 +kz) — %kai. Furthermore, energy conservation puts an additional
constraintg; = p? /my + 397 /4my, keeping only five independent continuous variables. For example,

if the momenturk; and the directiork, were measured, all three nucleon momenta are determined
in the final state, although not always uniquely. In practice, the two nucleon scattering angles with
respect to the beam directidf, §1) and(62,2), usually notationally shortened t61,6,, > — 1),

and their kinetic energies without rest masBe&ndE, are measured. Those energies are related by
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momentum and energy conservation and therefore lie on a fixed kinematical curve. The observables
are therefore given as function of the arcleng#ong that curve, i.e.,

S
s:/o ds (5.10)

with dS= ,/dE? + dE? andE; being considered a function & or vice versa depending on numer-
ical convenience; the arclength is always taken counterclockwise along the kinematical curve. The
normalization of the arclength value zero is chosen differently in different kinematical situations.

The spin-dependent fivefold differential lab cross section takes the compact form

d°0i_ 1
dSckq d2k,

with the phase-space factor

= |(stIM(Eiprqr)[s)|*fps (5.11a)

m ~ ~ -1/2
fps:&ﬂ)“ﬁ mﬁ.kikg{ki [2lka] — Kz (ko —k1)]* +K3[2lke| — K1 - (ke —K2)] 2} . (5.11b)

The spin-averaged fivefold differential lab cross section is

5
ﬁ;% = %TY[M(EinQf)MT(EinQf)]fPS- (5.12)
In the figures the spin-averaged fivefold differential cross section is denotdeblig Sd2:dQ5, the
traditional notation.

The calculation of the spin-dependent cross sections and of various spin observables is described
in Appendix D. A problem in the comparison of theoretical predictions and experimental data arising
in the case when the latter are analyzed using relativistic kinematics is discussed in Sec. D.2 of the
same appendix.

5.2 Calculational Advances

This section describes technical and physics improvements this thesis was able to achieve. First, it dis-
cusses the Chebyshev technique for expanding the dynamic input in form of the two-baryon transition
matrix and the deuteron wave function and compares it with alternative techniques. Second, it dis-
cusses the solution of three-particle equations without using separable potentials. Third, it discusses
the importance of a realistic dynamic input, i.e., of well-fitted purely nucleonic and coupled-channel
potentials, for reliable physics predictions.

5.2.1 Chebyshev Expansion

The two-baryon transition matrix and the deuteron wave function are expanded in terms of Cheby-
shev polynomials as motivated and described in Appendix C.1. The Chebyshev expansion for the
two-baryon transition matrix is given in Egs. (C.4) and for the deuteron wave function in Egs. (C.9).

It works equally well for both quantities. Figure 5.1 displays examples of the Chebyshev coefficients
T‘r;‘,n (x9,2) of the two-baryon transition matrix and of the Chebyshev coefficighisf vy|daXd)a;

their fast decrease with increasing order of the polynomial is impressive; the convergence appears
subgeometric as described in Appendix C.1.3; the expansion converges therefore rapidly as shown in
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Figure 5.1: Chebyshev coefficient%’,’,}l’(xq,Z) of the 1S (NN) — °Dg(NA) two-baryon transition
matrix forr = 1,q= 0 andZ = 100 MeV and Chebyshev coefficiemisof the deuteron wave function
as functions of the ordef or r of the Chebyshev polynomials.
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Figure 5.2: Convergence of the Chebyshev expansion. On the left side the real part of the
1$5(NN) —5Dg(NA) two-baryon transition matrix is shown as function of the final momenfum

The transitiontS — °Dg atq = 0 with the available energg = 100 MeV for the initial pair momen-

tum p; = 1 fm~1 is plotted. On the right side the = 0 component of the deuteron wave function
YL(p) = (p(LS)IoM, ToM1,B|dIoM, ToMT,) is shown. The dot-dashed, dotted, dashed and solid curves
correspond to Chebyshev interpolation using 12, 16, 24 and 48 polynomials, respectively. All curves
are indistinguishable in the resolution adopted for momenta up to I8.fiifferences can only be

seen for momenta beyond 10 fhwith an especially fine resolution. The standard of reference is
spline interpolation with 48 spline functions. Most curves, based on much fewer Chebyshev polyno-
mials, turn out to be indistinguishable from those reference curves.

Fig. 5.2. Thus, the truncation of the Chebyshev expansion at the rather small orders 16 or 24 is well
justified, except for very large momenta, unimportant for three-nucleon scattering at the rather mod-
est available energies considered in this thesis. The Chebyshev expansion is systematic and efficient;
in contrast, when using spline interpolation for the same quantities all spline functions are of same
importance; there is no way for a corresponding systematic truncation of the spline expansion.
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5.2.2 Solution of Three-Particle Equations

| use the Chebyshev expansion of the two-baryon transition matrix and of the deuteron wave function
as interpolation scheme for solving the three-particle equations without further approximations with

respect to the dynamic input. | performed the following tests, in order to assure its technical reliability.

The numerical apparatus is described in Appendix C.1.

1. References [17-19, 46] employed the coupled-channel potential A2 [16] and the Paris poten-

d°0/dS dQ, dQ, (mb MeV'sr?)

0.02 ; . . . . 0.8

tial [23] as its nucleonic reference potential in separable forms as dynamic input for calcula-
tions. | take those separable forms now as numerical test cases, but do not exploit their separable
structure. Instead, | apply a Chebyshev expansion for their separable forms and interpolate them
accordingly when solving integral equation (3.19a) with the technique of Appendix C.1. The
agreement with results derived from the explicit use of the separable expansion is so excellent
that differences cannot be documented in any plot. This fact is one indication that the new
technique of Appendix C.1.1 is reliable.

Figure 5.3 studies the convergence of sample physics observables with the number of Cheby-
shev polynomials employed. The convergence is impressively rapid. Understandably it is faster
for lower energies. Nevertheless, as an alternative, also spline interpolation is used, as usually
adopted in few-body numerics when solving the integral equation (3.19a). In both interpolation
schemes the basic integral (C.13) has the same general structure as discussed in Appendix C.3.
The results provided by both interpolation schemes are indistinguishable; however, spline inter-
polation reaches the same quality of results only with a considerably larger number of functions
than the corresponding Chebyshev expansion. The results of Fig. 5.3 confirm my previous con-
clusion: The Chebyshev expansion is systematic and efficient and thereby superior to spline
interpolation. All results given in the following are obtained with 24 Chebyshev polynomials.

2
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Figure 5.3: Fivefold differential cross section Mfi breakup at 190 MeV nucleon lab energy in the
collinear configuratior{59.8°,59.8°,180.0°) and nucleon to nucleon polarization transfer coefficient
K§(N N) of elasticNd scattering at 190 MeV nucleon lab energy. The convergence of the Chebyshev
expansion is studied. The dotted and dashed curves are results obtained with 8 and 12 Chebyshev
polynomials, respectively, the solid curve corresponds to the indistinguishable results obtained with
16, 24 and 48 Chebyshev polynomials and with 48 spline functions; always more than 24 spline
functions are needed to reproduce the solid curve very well.



5.2 Calculational Advances 33

0.20 . . . . . 0.2
3t
0.15 by
L]
= /0 1 =
2 1 3
~. 010 r ~
N
< K3 !x
¥
0.05
0.00 - L L L L L -0.2 L L L L L
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Scattering Angle (deg) Scattering Angle (deg)

Figure 5.4: Nucleon analyzing powa&y(N) of elasticNd scattering at 10 MeV nucleon lab energy and
deuteron to nucleon polarization transfer coeffici€atdN) of elasticNd scattering at 135 MeV nu-

cleon lab energy as function of the c.m. scattering angle. The separable expansion of the two-baryon
potential A2 withA-isobar excitation is tested. The dashed curves are results of the separably ex-
panded potential form, the solid curves of the unexpanded form. The experimental data are from
Ref. [47].

3. The quality of the separable expansion employed in Refs. [17-19, 46] is well established for the
purely nucleonic Paris potential; for the two-baryon coupled-channel potential the separable ex-
pansion could be tested in the two-nucleon system and for the three-nucleon bound state and was
found to be quite accurate [46]. | am now able to complete the latter tests also for three-nucleon
scattering. Sample results based on the coupled-channel potential A2 of Refs. [17-19, 46] and
obtained with the technique of Appendix C.1 are compared in Fig. 5.4 with corresponding re-
sults for the separably expanded form of A2 derived either by the technique of Appendix C.1
or by the technique of Ref. [19]. Differences of results obtained for the separably expanded and
the unexpanded forms of A2 are discernible, but the separable expansion is again proven to be
quite reliable, enforcing the conclusions of Ref. [46].

5.2.3 Comparison of Different Potentials

Compared to the results of Refs. [17-19, 46] based on the Paris potential [23] and its coupled-channel
extension, most observables of elastic nucleon-deuteron scattering and of breakup get changed in
predictions based on modern potentials and their extensions. Two typical examples are shown in
Fig. 5.5, where predictions of CD Bonn [3], AV18 [5] and the Nijmegen potentials [4] are compared to
that of the Paris potential. The results of the modern potentials are very close to each other, but differ
markedly in detail from those of the Paris potential. The modern potentials incorporate the charge
dependence of the two-nucleon interaction and are fitted to the new and precise data, unavailable
when the Paris potential was created. Since the difference in fits is responsible for the difference
in predictions, Fig. 5.5 only shows results with purely nucleonic potentials. The difference in the
sample prediction for nucleon-deuteron breakup at 13 MeV nucleon lab energy reflects the charge
dependence of the modern potentials which is not taken into account in the Paris potential. The
difference in the sample prediction for elastic nucleon-deuteron scattering at 135 MeV nucleon lab
energy reflects the improved fit of the modern potentials to more recent data for spin observables of
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Figure 5.5: Comparison of observables derived from various purely nucleonic potentials, i.e.,
CD-Bonn (solid), AvV18 (long-dashed), Nijmegen | (short-dashed), Nijmegen Il (dotted) and Paris
(dashed-dotted). Differential cross sectiorNaf breakup at 13 MeV nucleon lab energy as function

of the arclengthS along the kinematical curve in collinear configurati(8®.0°,75.5°,1800°) and
deuteron analyzing powey,(d) of elasticNd scattering at 135 MeV nucleon lab energy as function

of the c.m. scattering angle are shown. The results of the modern potentials cluster around each
other and are hardly distinguishable from each other in the plots. The experimental data are from
Refs. [11, 48].

two-nucleon scattering. Thus, the use of well-fitted potentials is important. This conclusion is also
confirmed by the comparison of the predictions based on the well-fitted coupled-channel potential CD
Bonn +A and on the two constructions without fit, i.e., CD BonA fsubl) and CD Bonn A (sub2).

At low energies, i.e., up to about 30 MeV nucleon lab enefgisobar effects remain small; they

are at least qualitatively the same for all coupled-channel potentials discussed in the past and in this
thesis. However, at higher energiegsobar effects become more visible and there the realistic nature

of the employed coupled-channel potential becomes important. Figure 5.6 gives examples. There, the
coupled-channel potentials constructed according to the old subtraction scheme can overestimate the
A-isobar effects sizably.

5.3 Results

This section presents results for spin-averaged and spin-dependent observables of elastic nucleon-deu-
teron scattering and breakup using the developed coupled-channel potential. The definitions of
spin-dependent observables are given in Appendix D. The calculations omit the Coulomb poten-
tial between charged baryons. However, the theoretical description is charge dependeptd For
processes thpp andnp parts of the interaction are used, faf processes thenandnp parts; except

for very low energies, where the omission of Coulomb is fatal anyhow, and except for some breakup
observables, both calculations yield results, indistinguishable in plots. The charge dependence of the
nucleon-nucleon interaction is treated exactly in 1Bg partial wave, yielding total isospifi = %
channels; in the other two-baryon isospin-triplet partial waves up=tat} the charge dependence is
treated approximately as described in Sec. 3.4, i.e., without coupll’ﬁg:tog states; in those higher

partial waves the coupling tb = g states was checked to be quantitatively irrelevant. Partial waves

up to total two-baryon angular momenturs 5 in purely nucleonic channels, uplte= 4 in nucleonA
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Figure 5.6: Differential cross section dfd breakup at 65 MeV nucleon lab energy as function of
the arclengtt along the kinematical curve in the space star configura@r0°,54.0°,1200°) and
differential cross section and deuteron analyzing pagd) of elasticNd scattering at 190 MeV
nucleon lab energy as function of the c.m. scattering angle. Compared are predictions of different
coupled-channel potentials, i.e., CD BonmAsolid curves), CD Bonn A (subl) (dashed-dotted
curves), and CD Bonn A (sub2) (dotted curves). Results for the nucleonic CD Bonn potential
without A-isobar excitation (dashed curves) are given as reference for an indication of the complete
A-isobar effects.

channels and up to total three-baryon angular momeldtl;usn%1 are taken into account. The results
appear fully converged with respect to higher two-baryon angular morhewith respect to higher
three-baryon angular momentaand with respect tA-isobar coupling on the scale of accuracy which
present-day experimental data require with only one exception: Some breakup observables at 135 and
200 MeV nucleon lab energy still show, in some kinematical regimes, a residual dependence on the
cut off in 1 andJ; the results presented in figures for breakup observables at those higher energies are
therefore based on the extended cut bffs 6 andJ = 571 Though the technical apparatus enables

me to calculate all observables in the considered energy regime, | concentrate on few most interesting
cases only; furthermore, | focus on thésobar effects in observables.
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5.3.1 Elastic Nucleon-Deuteron Scattering

The theoretical description of elastic nucleon-deuteron scattering up to about 100 MeV nucleon lab
energy in terms of realistic two-nucleon potentials has been generally quite successful [7] with few
exceptions.

At very low energies some scattering observables and bound-state properties are correlated; thus,
an appropriate three-nucleon force has to be added to account for trinucleon binding and for those
scattering observables in full. Since thésobar effects on the three-nucleon bound state are already
described in Chapter 4, | do not discuss anymore tlsoaéingeffects, which the\ isobar yields due
to the resulting additional binding.

The description of proton-deuteron scattering at very low energies for most angles and at higher
energies predominantly in forward direction requires the inclusion of the Coulomb interaction be-
tween the protons; this has not yet been done in the momentum-space calculations based on realistic
potentials [7, 17-19], and it is not done in this thesis.

There are long-standing discrepancies in the nucleon and deuteron vector analyzingyoWers
andAy(d) around 10 MeV nucleon lab energy, the so-callgepuzzle All calculations based on re-
alistic two-nucleon potentials and complemented by a three-nucleon force, either by an irreducible
one or by an effective one as duefd@sobar excitation, are unable to account for the experimental
height of the peak. Reference [49] discusses a three-nucleon force as possible remedy which has a phe-
nomenological spin-orbit component with rather long range. | therefore test an effective three-nucleon
force which obtains a microscopically motivated spin-orbit component arising from the spin-orbit part
of the p-meson exchange mediating sindiésobar excitation; that spin-orbit component is of rather
short range, its strength and range being predetermined lgypgheameters used in the other parts of
transition potential from two-nucleon to nuclefnstates. The predictions for the neutron analyzing
powerAy(n) of elastic neutron-deuteron scattering at 10 MeV nucleon lab energy are given in Fig. 5.7.
The obtained results are disappointing: The inclusion of the spin-orbit mechangsaxohange does
not significantly decrease the long-standing discrepancy. Although the three-nucleon force effect is
quite significant, it is canceled by the dispersive effect, leaving théfidbbar effect small. A similar
small effect is found for the deuteron vector analyzing poigd). The spin-orbit contribution to
A-isobar effects is negligible for other observables.

In general, thé\-isobar effects in elastic nucleon-deuteron scattering at nucleon lab energies up to
about 100 MeV remain small and rather unimportant, and the overall agreement with the experimental
data is pretty good — with the few exceptions mentioned above.

| therefore concentrate on observables above 100 MeV nucleon lab energy; this is an energy
regime in which a number observables shows discrepancies between the experimental data and the
theoretical predictions based on two-nucleon potentials only and in which notideédmbar effects
are expected, in contrast to lower energies. Figures 5.8 and 5.9 study the evolutiom\eé&thzr
effects on the spin-averaged differential cross section and on the nucleon analyzing power at 108,
120, 135, 150, 170 and 190 MeV nucleon lab energy. There is a clear disagreement in the diffraction
minima of the spin-averaged differential cross section between experiment and theory based on the
purely nucleonic CD-Bonn potential, ttf®&agara discrepancythe inclusion of theA isobar reduces
that discrepancy significantly, though it is unable to remove it in full. The discrepancy between the
different sets [10, 11] of experimental data is not understood yet. A corresponding berdeftmbbar
effects are also seen for the nucleon analyzing power.

Figure 5.10 shows deuteron vector and tensor analyzing powers at 100 and 135 MeV nucleon
lab energy, corresponding to 200 and 270 MeV deuteron lab energy in the real experiments with
a deuteron beam [11]. Th&-isobar effects are not always beneficial, e.g., for the deuteron tensor
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Figure 5.7: Neutron analyzing powdy(n) of elasticnd scattering at 10 MeV neutron lab energy as
function of the c.m. scattering angle. Results of the coupled-channel potenti&i-igithar excitation

CD Bonn +A (sub2) including the spin-orbit interaction (solid curve) are compared with reference
results of the purely nucleonic CD-Bonn potential (dashed curve). On the right side the peak is shown
in finer resolution; there also the results foisobar excitation without spin-orbit interaction (dotted)

are shown. The partial three-nucleon force effect arising fromtismbar excitation is also given for
comparison (dashed-dotted). The experimental data are from Ref. [47].

analyzing poweAy at intermediate scattering angles.

Recently, a complete set of proton spin observablép ihelastic scattering at 250 MeV nucleon
lab energy has been measured [13]. Though the energy is already slightly above the pion-production
threshold, | apply the theory without pion production nevertheless, since the inelasticity remains small.
In Fig. 5.11 | show theoretical predictions for the differential cross section and for the nucleon to
nucleon polarization transfer coefficients. As in Fig. 5.8, the inclusion oftismbar significantly
reduces the Sagara discrepancy in the differential cross section. The polarization transfer coefficient
K§,/ (NN) also shows rather largeisobar effects, whereas other coefficients are affected only by little.
Nevertheless, even at this comparatively high energy the inclusion Afifedar improves the general
agreement between theory and experiment rather significantly.

Figure 5.12 compares theoretical predictions with the preliminary experimental data [12] for
deuteron to nucleon polarization transfer coefficients. Atigobar effects are rather insignificant.

With respect to spin correlation coefficients, experimental data exist onlg,fpat 197 MeV
nucleon lab energy [51]; simultaneously also the deuteron vector analyzing pgvebrhas been
measured. Figure 5.13 compares that data with theoretical predictionsA-iBobar effects are
especially important foAy(d).

Instead of letting thé\ isobar yield an effective three-nucleon force beside offiobar effects
asldo, Refs. [9, 11, 13, 52] add an irreducible three-nucleon force to the purely nucleonic two-nucleon
interaction. The two-pion exchange Tucson-Melbourne potential TM’ with revised parameters [53]
repairing a substantial violation of chiral symmetry, and the Urbana IX force [54] are the favorable
choices; their parameters are fitted to the trinucleon binding energy. When comparing the results of
this thesis with the predictions of Refs. [9, 11, 13, 52] for the observables of Figs. 5.8 - 5.13, | observe
an encouraging qualitative agreement for most of them. The agreement is almost quantitative for the
differential cross sections of Fig. 5.8. The most remarkable qualitative disagreement is found for the
deuteron analyzing poweky of Fig. 5.10; there the fulh-isobar effect and the effect of TM’ or
Urbana IX go into opposite directions; | observe thatMisobar effect is beneficial.
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Figure 5.8: Differential cross section of eladiid scattering at 108, 120, 135, 150, 170 and 190 MeV
nucleon lab energy as function of the c.m. scattering angle. Results of the coupled-channel potential
with A-isobar excitation (solid curves) are compared with reference results of the purely nucleonic
CD-Bonn potential (dashed curves). The experimental data are from Refe[1®hd from Ref. [11]

(O) and refer topd scattering.
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Figure 5.9: Nucleon analyzing powdy(N) of elasticNd scattering at 108, 120, 135, 150, 170 and
190 MeV nucleon lab energy as function of the c.m. scattering angle. Results of the coupled-channel
potential withA-isobar excitation (solid curves) are compared with reference results of the purely
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nucleonic CD-Bonn potential (dashed curves). The experimental data are from Ref. §id from
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Figure 5.10: Deuteron analyzing powexgd), Ay, A andAy; of elasticNd scattering at 100 MeV

(left side) and 135 MeV (right side) nucleon lab energy as functions of the c.m. scattering angle.
Results of the coupled-channel potential withisobar excitation (solid curves) are compared with
reference results of the purely nucleonic CD-Bonn potential (dashed curves). The experimental data
are from Ref. [11] and refer tpd scattering.
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Figure 5.12: Deuteron to nucleon polarization transfer coefficilﬁﬁt(sj N), Kﬁ/y(d N), K?{X(d N) and

K?{z(d N) of elasticNd scattering at 135 MeV nucleon lab energy as functions of the c.m. scattering
angle. Results of the coupled-channel potential Witisobar excitation (solid curves) are compared
with reference results of the purely nucleonic CD-Bonn potential (dashed curves). The preliminary
experimental data are from Ref. [12] and refeiptbscattering.
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Figure 5.13: Deuteron analyzing pow&y(d) and nucleon-deuteron spin correlation coefficiépf

of elasticNd scattering at 197 MeV nucleon lab energy as function of the c.m. scattering angle.
Results of the coupled-channel potential withsobar excitation (solid curves) are compared with
reference results of the purely nucleonic CD-Bonn potential (dashed curves). The experimental data
are from Ref. [51] and refer tpd scattering.
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5.3.2 Nucleon-Deuteron Breakup

Experimental data for breakup in nucleon-deuteron scattering are scarcer than for elastic scattering.
All theoretical predictions and all experimental data refer to the situations in which the two detected
nucleons 1 and 2 have the same isospin projection, i.e., both detected nucleons 1 and 2 are protons in
the proton-deuteron breakup and neutrons in the neutron-deuteron breakup.

Results for spin-averaged and spin-dependent observables at 13 MeV nucleon lab energy are given
in Fig. 5.14. The disagreement between the theoretical predictions and the experimental data is most
striking for the differential cross section in the space star configuration of Fig. 5.14; the experimental
data for proton-deuteron and neutron-deuteron breakup are surprisingly far apart; neither data set is
accounted for by theory as has already been observed in previous calculations [7, 19]. The calculations
of Ref. [19] failed also in accounting for the differential cross section in the vicinity of final state
interaction (FSI) points; the correct treatment of charge dependence in the calculations of this thesis
resolves that problem. Examples are the collinear configurations of Figs. 5.5 and 5.14, where the
peaks aroun& = 8 MeV andS= 10 MeV are not far from the FSI points, and the FSI configuration
of Fig. 8.2 where the effect of the charge dependence is discussed in more detail in the context of
perturbation theory. In the studied low-energy observables the effects Afislobar are irrelevant.

Results for deuteron analyzing powers of deuteron-proton scattering at 52 MeV deuteron lab en-
ergy are given in Fig. 5.15. The experimental data are still preliminary; they are given as function
of S/Snax Snax being the full arclength of the kinematical curve; | follow that procedure also for the
theoretical predictions. Thi-isobar effects on the considered observables remain very small.

Results for spin-averaged and spin-dependent observables at 65 MeV nucleon lab energy are given
in Figs. 5.16 and 5.17. All experimental data refer to proton-deuteron scattering. The agreement
between theoretical predictions and experimental data is satisfaftisgbar effects are small; they
appear to be most pronounced in space star and collinearity configurations, as already pointed out in
Ref. [19]. In contrast to Ref. [19], there are almost&sobar effects in coplanar star and quasi-free
scattering (QFS) configurations; this is typical also for higher energies; | do not document the results
on that finding.

Though sizable effects, arising from the three-nucleon force and therefore giving information on
it, are hoped to be seen in nucleon-deuteron breakup [61], | am not able to confirm that expectation
using the coupled-channel potential as a theoretical tool. | do not repeat the impressive search for
three-nucleon force effects carried out in Ref. [61], where dramatic effects were seen in particular
kinematics regions. However, they were based on a Tucson-Melbourne potential violating chiral
symmetry; results obtained for CD Bonn together with the modified TM’ three-nucleon force and
for AV18 together with the Urbana IX three-nucleon force show much milder effects Adikebar
effects of this thesis are pretty consistent with the latter ones. Examples of observables, likely to show
three-nucleon force effects according to Ref. [61] and showing rather mAessbar effects, are
given in Fig. 5.18.
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Figure 5.14: Differential cross section and nucleon analyzing péy/@t) of Nd breakup at 13 MeV
nucleon lab energy as function of the arclen@lalong the kinematical curve for various con-
figurations: space star configuratigs0.5°,50.5°,1200°) on the top, collinearity configuration
(50.5°,62.5°,1800°) in the middle, and QFS configurati¢89.0°,39.0°,180.0°) on the bottom. Re-

sults of the coupled-channel potential witkisobar excitation (solid curves) are compared with ref-
erence results of the purely nucleonic CD Bonn potential (dashed curves). The experimental data are
from Ref. [48](0O) referring tond scattering and from Ref. [55] referring fud scattering(e).
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Figure 5.15: Deuteron analyzing poweks(d), Ayy andAy, of Nd breakup at 52 MeV deuteron lab
energy as function of the fractional arclen@fSyax along the kinematical curve for the configuration
(325°,325°,1800°) on the left and for the configuratiai38.7°,38.7°,1800°) on the right. Results

of the coupled-channel potential wifttisobar excitation (solid curves) are compared with reference

results of the purely nucleonic CD Bonn potential (dashed curves). The preliminary experimental data
are from Ref. [56] and refer tpd scattering.
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Figure 5.16: Differential cross section and nucleon analyzing péw@t) of Nd breakup at 65 MeV
nucleon lab energy as function of the arclengthlong the kinematical curve for collinear configura-
tions (from top to bottom)20.0°,1162°,1800°), (30.0°,98.0°,1800°), (45.0°,75.6°,1800°), and
(59.5°,59.5°,1800°). Results of the coupled-channel potential witisobar excitation (solid curves)

are compared with reference results of the purely nucleonic CD-Bonn potential (dashed curves). The
experimental data are from Ref. [57] and refeiptbscattering.
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Figure 5.17: Differential cross section and nucleon analyzing péy/@t) of Nd breakup at 65 MeV
nucleon lab energy as function of the arclen§thlong the kinematical curve for various configu-
rations (from top to bottom): Space star configurat{éd.0°,54.0°,120.0°), coplanar star configu-

ration (35.2°,35.2°,180.0°), QFS configuratior{44.0°,44.0°,180.0°), and nonspecific configuration
(20.0°,45.0°,180.0°). Results of the coupled-channel potential witisobar excitation (solid curves)

are compared with reference results of the purely nucleonic CD-Bonn potential (dashed curves). The
experimental data are from Refs. [58—60] and refgpdscattering.
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Figure 5.18: Left side: Nucleon analyzing pow&y(N) of Nd breakup as function of the ar-
clengthSalong the kinematical curve for three different nucleon lab energies: 65 MeV, configuration
(20°,20°,40°) on the top, 135 MeV, configuratiof25°,25°,0°) in the middle, and 200 MeV, configu-
ration (25°,25°,0°) on the bottom. Right side: Deuteron analyzing pogrof Nd breakup as func-

tion of the arclengtts along the kinematical curve for three different nucleon lab energies: 65 MeV,
configuration(40°,30°,140°) on the top, 135 MeV, configuratiofil5’,15°,20°) in the middle, and

200 MeV, configuration45°,45°,0°) on the bottom. Results of the coupled-channel potential with
A-isobar excitation (solid curve) are compared with reference results of the purely nucleonic CD-Bonn
potential (dashed curve).



6
Three-Nucleon Photo Reactions

The considered photo reactions are schematically shown in Fig. 6.1.

6.1 Spin-Averaged and Spin-Dependent Cross Sections

The starting point for calculating the cross sections of three-nucleon photo reactions is the general
form (5.2). The required matrix elemefit|M |i) is calculated from the quantum-mechanical model.

In the perturbative spirit for the evolution of photo processes, the e.m. interadfin(2.11) acts

only once, whereas the hadronic interactiénhas to be taken into account exactly up to all orders.
Thus, the matrix elements of the e.m. interaction require fully correlated hadronic states (2.6). The
guantum-mechanic&@ matrix for photo reactions is parametrized in the form

1/2
(1]8l) = —2ri5®)(Pr — P)B(E: —E) =0 (siIMy(Ek)ls).  (6.1)

(2372 (2)

It is slightly different from the general form (5.3): The kinematical factors of the photon are taken
out from(s¢|My(Eik¢)|s) explicitly. (sf|My(Eikt)|s) is then determined by the matrix element of the

e.m. nuclear current operator (2.15) between the three-nucleon bound and scattering states without
any additional factors and is given explicitly in the following subsections for all considered photo
reactions. | calculate that matrix element in the c.m. system using the following computational
strategy. The strategy is nonunique, since, according to Table 4.1, the model calculations, due to
dynamic limitations, miss the trinucleon binding energy; the necessary correction for that miss has
arbitrary features.

Ky Kn kg ky ks ky

Figure 6.1: Schematic illustration of all considered three-nucleon photo reactions. The lines for the
two-baryon and three-baryon patrticles are drawn in a special form to indicate their compositeness.
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1. The experimental lab energy + k,,,/2mn for radiative capture with nucleon beam and
|kyiab| + Eg for photo disintegration determines the available internal energy, i.e., for radia-
tive captureE; = eq +3g?/4my as for nucleon-deuteron scattering, and for photo disintegration
Ei = |Kylan| + EB — kf,lab/GmN; this step is done using the experimental trinucleon binding en-
ergy Eg. l.e., the available internal energy is the true experimental one, and the experimental
two-body and three-body breakup thresholds are exactly reproduced.

2. The matrix elemertss [My(Eikt)|s) is calculated in the c.m. systemas-energy-shell element
under nonrelativistic model assumptions. Under those assumptions the internal Energy
ky| + Eg + ky?/6my determines the c.m. photon momentdpto be used for the current
matrix element in the c.m. system, i.e., the momentum trar@ferk, andK_ = —ky, since
the trinucleon bound state is moving with momentkg= —ky. This step uses the computed
trinucleon model binding enerdys. Since the model binding enery is not the experimental
one, neither foPHe nor for3H, and since the c.m. contribution to the total three-nucleon energy
is assumed to be nonrelativistic with mase3 that photon momenturk, does not have the
experimental value.

Performing consistently a nonrelativistic reduction in Egs. (5.2) for hadrons as described in
Sec. 5.1, | obtain the differential cross sections analytically given in the following subsections for
all considered photo reactions. In contrast to the matrix elert®@i¥(Eik¢)|s), the phase-space
factors are calculated using the experimental photon momentum.

6.1.1 Nucleon-Deuteron Radiative Capture

The initial state with spin characterizatignis the same as in nucleon-deuteron scattering of Sec. 5.1.1
and does not need to be discussed anymore. The final state is characterized by the photon polarization
A, by the spin projectioMg of the three-nucleon bound state, i®.= {AMg}, and by the direction

of the photon momentum, since its magnitude is determined by momentum and energy conservation
as described above. The resulting spin-dependent differential cross section in the c.m. system is

d?0i_,

o, IMy(Eiky)|s)|*fps (6.2a)
with the amplitude
(stIMy(Eiky)ls) = en (B *(—ky, —ky) | Wa™ (a)va,) E4(kA) (6.2b)
and the phase-space factor
fps = (2m)2 2% % (6.2¢)

The spin-averaged differential cross section, in the figures traditionally denotd/f2, is

dz—"—}Tr[M (Eiky )M (Eiky)] fps (6.3)
a2k, 6 LNy (EETIPS -
Since the radiative capture is time reversed reaction of two-body photo disintegration, the matrix
element (6.2b) is obtained from the one for two-body photo disintegration, defined later in Eq. (6.4b),
by time reversal as described in Ref. [20]. With respect to spin observables, | consider polarization in
the initial nucleon-deuteron system only; those spin observables are defined in Sec. D.1.3.
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6.1.2 Two-Body Photo Disintegration of Trinucleon Bound State

The photon momenturk, defines the-axis, i.e..2 = ky and determines the internal three-nucleon en-

ergy as described above. The considered reaction is inverse to the nucleon-deuteron radiative capture;
thus, the initial and final states of Sec. 6.1.1 are just interchanged, i.e., the spin quantum numbers are
s = {AMg} ands; = {ms; M, }. The magnitude of the final nucleon-deuteron momerduns deter-

mined by momentum and energy conservation, Eg= eg + 397 /4my. The resulting spin-dependent
differential cross section in the c.m. system is

d?c:
g, = |sIMy(Eanls)[fps (6.42)
with the amplitude

(stIMy(Eig)|s) = € (Wa ' (af)Va, |i*(Ky, —ky)[B) €u(kyA) (6.4b)

and the phase-space factor

2my |y
fps= (2m)? —= . (6.4c)
0 ky
The spin-averaged differential cross section is
d2c 1 +
a = 21Tr[My(Eiqf)My(Eiqf)]fps. (6.5)

6.1.3 Three-Body Photo Disintegration of Trinucleon Bound State

Since two-body photo disintegration is the time reversed reaction of radiative capture, it is also dis-
cussed in the c.m. system. In contrast, three-body photo disintegration is considered in the lab system,
i.e., in the rest system of the initial trinucleon bound state.

The photon momentunkyiay defines thez-axis, i.e.,z = Rwab and determines the internal
three-nucleon energy as described above. The initial and final states are already discussed in the
context of two-body photo disintegration and hadronic nucleon-deuteron breakup, i.e., the spin quan-
tum numbers arg = {AMg} ands; = {ms,;ms,ms,}. The neutron and proton nature of the nu-
cleons(123) in the final state is notationally not indicated, but always determined by experiment.
The final-state Jacobi momenga and s are determined from the final single-particle momenta
k1, K2, k3 according to Egs. (2.1). Due to momentum conservakgr= Kyiap — k1 — k2, thus,
ps = %(kl —kp) andqs = (k1 + ko) — %kwab. Furthermore, energy conservation puts an additional
constraintg; = p?/my + 397 /4my, keeping only five independent continuous variables as in hadronic
nucleon-deuteron breakup. Again, the scattering angles of two nucleons with respect to the beam di-
rection, i.e.{(01,91) and(62,$>), notationally shortened t®1,6,,¢>—¢1), and the arclengtBalong
that kinematical curve (5.10) are chosen as independent variables. The resulting spin-dependent five-
fold differential lab cross section takes the compact form

dooi_, 1 2
m = ‘<Sf|My(Eiprf)|S>‘ fps (6.6a)

with the amplitude

(stIMy(Eiprar)ls) = e (W5 (prar)vo, [i*(Ky, —Ky)|B) u(kA) (6.6b)
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and the phase-space factor

R ~1/2
fos = . kzkz{k2[2|k2| (ky.ab—kl)]2+k§[2|k1|—kl-(ky|ab—k2)]2} . (6.6c)

l@Iab

The spin-averaged fivefold differential cross section is
d5o 1

——— = = —Tr{M\(Ej MT E f S 6.7

deZklekz 4 [ V( Ipqu) y( |prf)] p ( )

in the figures it is denoted hy’o/dSdR;dQ>, the traditional notation.
The current matrix elements determining the amplitudes (6.4b) and (6.6b) for the two- and
three-body photo disintegration of the trinucleon bound state are calculated as described in Sec. 3.3.

6.1.4 Total Photo Disintegration Cross Section

The total photo disintegration cross section can be calculated performing the integration over all final
states implicitly, i.e.,

2m)
& o %Z (kyN) (B[ (Ky, K )] T8(Ei — Ho — Hy) j#(Ky, K1) [B) gu(kyA), (6.8a)
MgA
22
":—(4;(3%%' { v (KA) (B[} (ky, K1)] G(Ei+io)ju(kva+)|B>€p(ky)\)}. (6.8b)

The auxiliary stateG(E; +i0) j#(ky,K1)|B) of Eq. (6.8b) is related t¢J*(E; +i0)) of Egs. (3.24)
according to

GIE +10)j*(ky. K ) B) =3 (1+ P)Go(E +10) [ (ky,K . |B)

+ To(Ei +i0)Go(E; +i0)|I*(E; +i0)>]. (6.8¢)

The total cross section is then obtained in the form
(2m)2el
12nkf;

x [ (ky,K+)|B>+Tu(Ei+iO)Go(Ei+iO)|J“(Ei+i0)>]su(ky)\)}. (6.8d)

o=-

> im{ 3 (M) (BII (ky, K )] (1+ P)Go(; +i0)

| note that Eqgs. (6.8) perform the integration over all final states implicitly using the nonrelativistic
Hamiltonian. This is in contrast to the strategy of Ref. [20] which keeps the final state phase space
relativistic and therefore in principle does not allow to calculate the total cross section as described
above.
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6.2 Results

This section presents results for spin-averaged and spin-dependent observables of nucleon-deuteron
radiative capture and of three-nucleon photo disintegration; results of two-nucleon photo disintegra-
tion are transformed to corresponding ones of radiative capture. The results are derived from cal-
culations based on the purely nucleonic CD-Bonn potential [3] and its coupled-channel extension
constructed in Sec. 2.3. | describe first gtandard calculational procedure

6.2.1 Standard Calculational Procedure

The hadronic interaction in purely nucleonic and in nucléopartial waves is taken into account up
to the total two-baryon angular momentuma= 4. The calculations omit the Coulomb potential be-
tween charged baryons. Nevertheless, the theoretical description is charge dependent as described in
Sec. 3.4. The charge dependence is treated it&hgartial wave exactly, and in all other partial waves
approximately. In contrast to hadronic reactions, that approximative treatment in e.m. reactions re-
guires total isospid = % components of the hadronic scattering statedlinonsidered isospin-triplet
two-baryon partial waves, since the e.m. current couple3 the% andT = % components strongly.

The three-particle equations for the trinucleon bound $Bitend for the corresponding scattering
states are solved as described in Chapter 3; in fact, the scattering states need to be calculated only
implicitly according to Sec. 3.3. The resulting binding energiedhé are -7.941 and -8.225 MeV
for CD Bonn and CD Bonn A, respectively. If the Coulomb interaction were taken into account, as
proper for*He, the binding energies shift to -7.261 and -7.544 MeV, whereas the experimental value is
-7.718 MeV. Nevertheless, | use the purely hadronic energy values and bound-state wave functions for
consistency when calculating the current matrix elements, since | am unable to include the Coulomb
interaction in the scattering states.

Whereas the hadronic interaction is considered up+o4, the e.m. current is allowed to act
between partial waves up te= 6, the higher partial waves being created by the geometry of antisym-
metrization. The e.m. current is taken over from Refs. [38, 62] with some necessary modifications:

1. The e.m. current is richer than the one used in Refs. [20, 38, 62]; diagonal two-baryon current
connecting states with isobar is taken into account.

2. More recent values for the e.m. couplings of fhisobar are used according to Refs. [63, 64].

3. Meson coupling constants, meson masses and hadronic form factors used in meson-exchange
currents are chosen consistently with the employed hadronic interactions CD Bonn and CD
Bonn +A,; they are listed in Appendix A.

The employed contributions to the e.m. current are collected in Appendix B. The current is ex-
panded in electric and magnetic multipoles as described in Appendix E. The technique for calculating
multipole matrix elements is described in Ref. [62]; a special stability problem [20] arising in the
calculation requires some modifications of that technique as discussed in Appendix E. The magnetic
multipoles are calculated from the one- and two-baryon parts of the spatial current. The electric mul-
tipoles use the Siegert form of the currevithoutlong-wavelength approximation; assuming current
conservation, the dominant parts of the one-baryon convection current and of the dimgandl
p-exchange current are taken into account implicitly in the Siegert part of the electric multipoles by
the Coulomb multipoles of the charge density; the remaining non-Siegert part of the electric multi-
poles not accounted for by the charge density is calculated using explicit one- and two-baryon spatial
currents. The charge density contributing to the Siegert term has diagonal single-nucleon aml single-
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contributions only; the nucleoA-transition contribution as well as two-baryon contributions are of
relativistic order and are therefore omitted in the charge-density operator when calculating Coulomb
multipoles.

The number of considered current multipoles is limited by the maximal total three-baryon angu-
lar momentumlpmay = 1—25 taken into account for the hadronic scattering states. The results for the
considered photo reactions up to pion-production threshold appear fully converged with respect to
higher two-baryon angular momentawith respect taA-isobar coupling and with respect to higher
three-baryon angular momeniaon the scale of accuracy which present-day experimental data re-
quire.

That is the standard calculational procedureSection 6.3 discusses the shortcomings of that
standard description. In the rest of this section | focudéasobar effects in sample observables.

6.2.2 Nucleon-Deuteron Radiative Capture

Low-energy photo reactions with two-body initial and final states have been investigated in Ref. [20];
the effects of the\ isobar were found to be small. My control calculations at low energies indicate
that the results of Ref. [20] do not get essential physics changes though the hadronic interaction and
the e.m. current are improved. The results therefore are not shown here; an example for low-energy
observable is given in Sec. 6.3.2 which discusses shortcomings of the standard description. | concen-
trate on energies well above those of Ref. [20], but still below pion-production threshold. Figures 6.2
and 6.3 present results for spin-averaged and spin-dependent observables of nucleon-deuteron radia-
tive capture at 100, 150 and 200 MeV nucleon lab energy. There are notide#ubar effects on
some of the considered observables, e.g., on differential cross section and nucleon analyzing power.
There is a disagreement between old [65] and new, still preliminary [66] differential cross section
data, especially in the maximum region; the new preliminary data are in good agreement with my
results including thé\ isobar. The nucleon and deuteron vector analyzing powgid) and Ay(d)
are quite well described with the inclusion of thésobar, whereas deuteron tensor analyzing powers,
especiallyA«, indicate a possible sizable discrepancy between theoretical predictions and experimen-
tal data; on the scale of that discrepancyAhisobar effects for deuteron tensor analyzing powers are
small.

The results of this thesis are qualitatively rather consistent with those of Refs. [35, 36], though the
calculations of Refs. [35, 36] are based a on different strategy, on a different hadronic potential with
explicit irreducible three-nucleon force and on a somehow different e.m. current operators.



6.2 Results 55
0.4 0.2
5
Q
E z
>
% <
[S)
©
0.0 L L L L L -0.3 L L L L E
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Scattering Angle (deg) Scattering Angle (deg)
0.2 0.2
) 2
< <
[
1 3
iy [
_0_1 L L L L L _0_4 L L ﬁ L ﬁ L L
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Scattering Angle (deg) Scattering Angle (deg)
0.2 0.8
} X
< <
-04 1 [ 3 i 1
[ 73
-0.6 L L L L L
0 30 60 90 120 150 180 0 30 60 90 120 150 180

Scattering Angle (deg)

Scattering Angle (deg)

Figure 6.2: Differential cross section and analyzing powerpafradiative capture at 100 MeV

nucleon lab energy as functions of the c.m. nucleon-photon scattering angle. Results of the cou-
pled-channel potential with-isobar excitation (solid curves) are compared with reference results of
the purely nucleonic CD-Bonn potential (dashed curves). The experimental data are from Ref. [65]

(e) and from Ref. [66]0); the latter data are still preliminary.



6. Three-Nucleon Photo Reactions

56
0.3 0.2
Enap = 150 MeV
)
LS ~—
2 £
>

g <
B

©

0.0 L L L L L -0.4 L L L
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Scattering Angle (deg) Scattering Angle (deg)
0.2
Enjab = 200 MeV

)

o

e z

=

g <

B

©

0.0 L L L L L -0.4 L L L L L
0 30 60 90 120 150 180 0 30 60 90 120 150 180

Scattering Angle (deg) Scattering Angle (deg)

Figure 6.3: Differential cross section and nucleon analyzing p@yeM) of pd radiative capture at

150 and 200 MeV nucleon lab energy as function of the c.m. nucleon-photon scattering angle. Results
of the coupled-channel potential witliisobar excitation (solid curves) are compared with reference
results of the purely nucleonic CD-Bonn potential (dashed curves). The experimental data are from

Ref. [65].
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6.2.3 Three-Body Photo Disintegration of Three-Nucleon Bound State

Experimental data for three-nucleon breakup are much scarcer than for two-body photo disintegration
or radiative capture. To the best of my knowledge, there are no fully exclusive experimental data
in the considered energy regime; | therefore show in Figs. 6.4 — 6.6 predictions for inclusive and
semi-exclusive observables and compare them with existing experimental data. Figure 6.4 shows
results for the totatH three-nucleon photo disintegration cross section in the low energy region; there

is no significantA-isobar effect. In contrast, Ref. [37] sees a larger three-nucleon force effect for this
observable; this discrepancy is partly due to a larger three-nucleon force effect on trinucleon binding
and subsequent scaling and partly due to a different computational strategy when choosing kinematics
for a theoretically underbound three-nucleon bound state as discussed in Sec. 6.3.2. Figures 6.5 - 6.6
show semi-exclusive fourfold differential cross sectiorfleé photo disintegration at higher energies;

it is obtained from the fivefold differential cross section (6.7) by integrating over the kinematical curve

S. Again, theA-isobar effects for those particular observables appear rather small, smaller than the
experimental error bars. There is also disagreement between theoretical predictions and experimental
data in some kinematical regimes which in part may be caused by experimental conditions, e.g., by
finite geometry, not taken into account in my calculations.
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Figure 6.6: The fourfold differential cross section of tRe(y, pp)n reaction as function of

the photon lab energyE, in various kinematical configurations:(81.0°,81.3°,1800°) (left),
(92.2°,91.4°,1800°) (middle), and average o0f815°,90.8°,1800°) and (91.7°,80.9°,1800°)

(right). Results of the coupled-channel potential witisobar excitation (solid curve) are compared
with reference results of the purely nucleonic CD-Bonn potential (dashed curve). The experimental
data are from Ref. [69].
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Figure 6.7: The fivefold differential cross section of three-nucleon photo disintegration at 120 MeV
photon lab energy as function of the arclen@halong the kinematical curve for configuration
(92.2°,91.4°,1800°) on the left and(815°,90.8°,1800°) on the right. Results of the cou-
pled-channel potential with-isobar excitation (solid curve) are compared with reference results of
the purely nucleonic CD-Bonn potential (dashed curve).

Finally, in Fig. 6.7 | show fully exclusive sample fivefold differential cross section of three-nucleon
photo disintegration at 120 MeV photon lab energy for two kinematical configurations which were
shown semi-exclusively in Fig. 6.6; even at that higher energyttsmbar effects are rather mild.
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6.3 Shortcomings of the Description

The present description of photo reactions is with respect to the dynamic input, i.e., with respect to the
hadronic interaction and to the e.m. current, and with respect to the scope of applications a substantial
improvement compared with Ref. [20]. But it is still not a unique and in itself consistent description.

| am unable to repair the existing deficiencies. However, this section points those shortcomings out
and tries at least to estimate their size. | identify three different problem areas.

6.3.1 Shortcomings of the Theoretical Form of the Cross Section

The standard strategy uses the nonrelativistic form (6.2) — (6.7) for cross sections; this choice appears
to be consistent with the underlying two-baryon dynamics, though inconsistent with the experimental
relativistic kinematics. | therefore compare results obtained from Eqs. (6.2) — (6.7) with correspond-
ing ones obtained from the relativistic form of the cross section (5.2) which uses relativistic kinetic
energies for the Lorentz-invariant phase space element and the kinematic locus (5.10) combined with
the matrix element obtained according to the strategy of Eq. (5.4) without further nonrelativistic re-
duction, i.e.,

3

(FIM i) = (203D (s My (Eik)|s) (2k$>2 [2K0 240 |'|1(2k0 )12, 6.9)

The comparison is possible for observables in fully exclusive reactions. The difference between those
aspects of relativistic and nonrelativistic kinematics is minor for all considered observables of radia-
tive capture, i.e., less than 1%, but more significant, i.e., up to order of 10%, for three-nucleon photo
disintegration as shown in Fig. 6.8. Of course, the indicated effect does not represent the true dif-
ference between nonrelativistic guantum-mechanical and fully relativistic quantum-field-theoretical
results, but it may indicate the order of magnitude of the shortcomings of nonrelativistic calculations.
In the light of the accuracy of present-day data of photo reactions, this shortcoming of the theoretical
description is rather inconsequential.

Figure 6.8: Differential cross sec-
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6.3.2 Shortcomings of the Dynamics
Nonunique Choice of Kinematics

The computational strategy in choosing the kinematics for the matrix ele(sgM,(Ek¢)|s) is
described in Sec. 6.1. In thigst option, suggested theréss|M(Eik¢)|s) is calculated in the c.m.
system. | opt to let the experimental beam energy determine the energy of hadronic nucleon-deuteron
state in radiative capture and the energy of the hadronic two-body and three-body final states in photo
disintegration exactly. Since the trinucleon model binding energy is not the experimental one and the
kinematics is nonrelativistic for hadrons when calculatisgMy(Eik+)|s ), the energy of the photon

does not have the experimental value when assuming energy conservation. At very low energies,
i.e., at the two-body photo-disintegration threshold, the deviation of the photon energy can get as
large as 10%, whereas at higher energies considered in this thesis it remains around 1 - 2%. In
contrast, in ssecondoption one could let the experimental beam energy determine the c.m. photon
energy exactly; then the energies of the hadronic nucleon-deuteron and three-nucleon states are not
experimental ones. &ird option may use experimental energies for both initial and final states, but
then the matrix element determining physical amplitudes is slightly off-shell; this is the computational
strategy of Refs. [36, 37]. The difference in results between those three choices is minor at higher
energies, i.e., above 100 MeV nucleon lab energy, for all considered observables in all considered
kinematical regimes. However, there are differences up to 10% for observables at low energies. There,
the observead-isobar effects depend strongly on the choice of computational strategy. An example is
shown in Fig. 6.9.

do/dQ (pb/sr)

0 30 60 90 120 150 180
Scattering Angle (deg)

Figure 6.9: Differential cross section @i radiative capture at 19.8 MeV deuteron lab energy as
function of the c.m. nucleon-photon scattering angle. Results of the coupled-channel potential with
A-isobar excitation derived from the standard approach (solid curve) are compared with results of
option three which uses experimental energies for both initial and final states, but the matrix ele-
ment (6.2b) is off-shell (dashed-dotted curve). The results of option two are rather close to the solid
curve. In order to appreciate the effect of the nonunigue choice of kinematics in relation to the size of
the A-isobar effect, results of a standard calculation with the purely nucleonic reference potential are
also given as dashed curve. The experimental data are from Ref. [70].
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Omission of Coulomb Interaction between Protons

| am unable to include the Coulomb interaction in the calculation of the three-nucleon scattering
states. In contrast, the selected inclusion of the Coulomb interaction in the trinucleon bound state
is easily possible, as discussed in Chapter 4, but this inclusion creates an additional inconsistency:
Initial and final hadronic states become eigenstates of different Hamiltonians, and, strictly speaking,
the Siegert form of the current operator is not applicable. Nevertheless, | do such an inconsistent
calculation which Refs. [36, 37] chooses to do as their standard calculation, in order to estimate the
effect of the omitted Coulomb interaction at least partially. The inclusion of the Coulomb interaction

in the trinucleon bound state systematically reduces the spin-averaged cross sections; in contrast,
spin observables appear to be almost unaffected. A characteristic result is shown in Fig. 6.10. Even
at higher energies the observed Coulomb effect may be of the same order of magnitude as the full
A-isobar effect; however, it is not clear in how far the indicated effect represents a true Coulomb
effect or in how far it just reflects the dynamic incompatibility between bound and scattering states.
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Figure 6.10: Differential cross section and deuteron analyzing péweof pd radiative capture at

95 MeV deuteron lab energy as function of the c.m. nucleon-photon scattering angle. Results of the
coupled-channel potential with-isobar excitation derived from the standard approach (solid curve)
are compared with results including the Coulomb interaction in the three-nucleon bound state (dashed

curve). The experimental data are from Ref. [71].

6.3.3 Shortcomings of the e.m. Current
Lack of Current Conservation

The potentials CD Bonn and CD BonnAtused in this thesis have nonlocal structures, whereas the
e.m. current, given explicitly in Appendix B, is employed in a local nonrelativistic form. Thus, the
continuity equation is not fulfilled for the current. As measure for this deficiency predictions are
compared based on two different approaches for the electric multipoles, i.e.,

(1) the standard calculation with the Siegert operator accounting for the two-baryon current implic-
itly by assumed current conservation, and

(2) the explicit use of the meson-exchange current also for all of the electric multipoles.
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Figure 6.11: Differential cross section pfl radiative capture at 190 MeV nucleon lab energy as
function of the c.m. nucleon-photon scattering angle. Results of the coupled-channel potential with
A-isobar excitation derived from the Siegert approach for electric multipoles (solid curve) are com-
pared with results based on the explicit use of meson-exchange current (dashed curve). In order
to appreciate the size of the two-baryon current contribution, the results of non-Siegert calculation
with one-baryon current only are also given as dashed-dotted curve. The experimental data are from
Ref. [72].

The discrepancy between those two calculations measures the importance of the existing lack of cur-
rent conservation; indeed, the violation can be significant as Fig. 6.11 proves. | believe that calcu-
lations with the Siegert form of the current operator repair the violation of current conservation in
part; | therefore employ the Siegert form of the current operator in the standard calculational strategy.
However, at this stage it is useful to discuss the lack of current conservation in more detail:

1. Theo, p andw exchanges yield a spin-orbit interaction. That spin-orbit interaction makes, even
in local approximation and even for isoscalar-meson exchanges, a contribution to the continuity
equation (2.17b). Thus, there is a corresponding contribution to the exchange current; it is
used in local form [73]. There are also additional contributions tgpteschange current [39]
not listed in Appendix B and therefore not taken into account in standard calculations. All
those contributions are implicitly contained in the Siegert-part of the electric multipoles. In the
tentative calculations described in this paragraph they are used explicitly for the non-Siegert part
of the electric multipoles and for the magnetic multipoles. There, those additional contributions
yield only small corrections, of the order of 2% at most, for observables considered in this
thesis. | therefore conclude that spin-orbit contributions and additipreadchange currents
can quite safely be neglected in the Siegert form of the current operator when calculating the
photo reactions of this thesis. However, they are more important for calculations based fully
and explicitly on the exchange current and they therefore make a non-negligible contribution to
the difference seen in Fig. 6.11.

2. The employed potentials have explicit nonlocal structures. That explicit nonlocality makes a
contribution to the two-baryon exchange current.

| compared the results of the following models for the purely nucleonic potential. The models
are based om, p andw exchanges and on a scalar isoscalar agchéar isovectoio exchange;
one model uses the nonlocal structures of CD-Bonn type and the other their local approxima-
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tions. Both models are tuned to deuteron binding antScand3S; — 3D, phase shifts only.
Though non realistic models, both usually predict observables in qualitative agreement with the
realistic descriptions. When employing the local potential model | obtain very good agreement
between the results based on the Siegert form of the current operator and the results based on
explicit exchange-current contributions to all multipoles. However, when employing the non-
local potential model, the results can differ substantially; the difference can be as large as seen
in Fig. 6.11 for the coupled-channel potential CD Bonh.+I conclude: The explicit nonlo-

cality of the employed potentials is a significant source for current nonconservation. Future
calculations should attempt to design nonlocal exchange-current contributions consistent with
the nonlocality of the underlying baryon-baryon potentials.

3. The employed potentials have an implicit nonlocality and isospin dependence due to the general
partial-wave dependence of the meson exchanges. That partial-wave dependence is slight for
the 1, p and w exchanges, but substantial for ttheexchange. That implicit nonlocality and
isospin dependence make a contributions to the two-baryon exchange current.

The nucleonic CD Bonn as well as CD BonnAtshow a small partial-wave dependence in
tand inp exchange. Fitting CD Bonn with partial-wave-independer@nd p exchanges de-
creases the quality of the fit to data only by very littyg;/datum increases from 1.02 to 1.03.
When comparing observables of the hadronic processes and of the photo reactions of this thesis
for both potentials, no distinguishable difference is found in plots. | conclude: The implicit
nonlocality arising from the partial-wave dependenca andp exchange of CD Bonn and CD

Bonn +Ais of no consequence for the prediction of observables.

The local model used for the discussion of problem 2. is modified to simulate the partial-wave
dependence ab exchange in the nucleonic CD Bonn, it is retuned as under 2uldwchange

is taken to be without hadronic cut off in tAB; partial wave as in CD Bonn; this partial-wave
dependence violates current conservation. However, the observed difference between calcu-
lations based on the Siegert form of the current operator and calculations based on explicit
exchange-current contributions to all multipoles is much smaller than that shown in Fig. 6.11. |
conclude: The implicit nonlocality arising from the partial-wave dependence iw-#change

of CD Bonn and CD Bonn A is of no real consequence for the prediction of observables.

With respect to the partial-wave dependence ekchange the local model used for the discus-
sion of problem 2. is studied. | concentrate on the difference ekchange between isospin
singlet and triplet partial waves, i.e., on the effective isovector nature of timeson intro-

duced in the model and in CD Bonn and CD Bon#.+Furthermore, even if the exchange

were truly an isoscalar one in the purely nucleonic potential, the explicit treatment &f the
isobar in the coupled-channel extension introduces an isovector correction: The employed cou-
pled-channel potential CD Bonn4; acting in isospin-triplet partial waves, has a weakeoed
exchange compared to the purely nucleonic CD Bonn; part of the intermediate-range attraction
simulated byo exchange is taken over ldyisobar excitation in the coupled-channel approach.
Thus, theA-isobar current has to be supplemented by chamgedchange current. Omitting

the c-meson contribution to the exchange current, quite significant differences, comparable to
that of Fig. 6.11, arise for observables of the photo reactions in this thesis between calculations
based on the Siegert form of the current and on the full explicit exchange-current contributions.
In contrast, the explicib-meson exchange-current contributions to the non-Siegert part of the
electric multipoles and to the magnetic multipoles remain small. | arrive to qualitatively the
same results when including tleemeson exchange-current for CD Bonn and CD Bonf +
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with the o-meson parameters &waves. | conclude: Though the partial-wave dependence of
the o-meson exchange is a significant source of current nonconservation, the standard calcula-
tion based on the Siegert form of the current for part of the electric multipoles and on explicit
exchange-current contributions to all other multipoles appears to be quite a reliable calculational
scheme.

4. The employed potentials are charge dependent. The charge dependence of the interaction is
due to the charge dependence of the parameters of exchangeand o mesons in the nu-
cleonic part of the potentials and due to the charge dependence of the nucleonic masses. The
isospin structure of the charge-dependent potential contributions is given in terms of the bary-
onic isospin projections; thus, that isospin dependence, giving rise to charge dependence, does
not require an exchange current by itself; it only does so, if its potential forms are nonlocal.

In the case of the employed potentials it is so indeed, but that explicit nonlocality was already
discussed in problem 2. The diagomalandp-exchange contributions to the exchange current
should be built from the charged-meson parameters. The nondiag@mal p exchanges are

carried by the mesons of all charges. However, the standard calculation uses averaged meson
parameters and an averaged nucleon masses for all meson-exchange currents; it was checked
that both calculational simplifications are without any consequence for the observables of this
thesis.

From this lengthy, but | think necessary discussion of the problems 1. to 4. | conclude for the cal-
culations of this thesis: When the Siegert form of the current is used for part of the electric multipoles
and explicit exchange-current contributions to all other multipoles in the operator form of Appendix B,
the implicit nonlocality of CD Bonn and CD Bonn A arising from the partial-wave dependence of
the meson exchanges is without consequences for prediction. In contrast, the explicit nonlocality of
CD Bonn and CD Bonn A, also responsible for current nonconservation, is of serious concern; its
consequence on the non-Siegert parts of the current could not be estimated yet by any of the models.
Still, | believe that the standard calculation, based on the Siegert form of the current, effectively cor-
rects the current nonconservation and is therefore quite reliable for the observables of photo reactions
considered in this thesis.

Lack of Covariance

If a fully covariant description of dynamics were available, the matrix elerigiM |i) of Eq. (6.9)

were a Lorentz scalar and could therefore be calculated in any frame with identical results. However,
the description of hadron dynamics is nonrelativistic, and the results therefore are frame-dependent.
| investigate that frame dependence calculating the same matrix ele(agMg(Eik¢)|s) in lab and

in c.m. frames, i.e., in the rest frames of the initial and final three-nucleon systems. The two frames
differ by the sumK .. of three-nucleon total momenta and by the photon momerkyunA typical

result is shown in Fig. 6.12; | conclude that the frame dependence is minor and at present of no real
theoretical concern.

Higher Order Contributions to the Current Operator in (k/my) Expansion

In the standard calculational scheme the Siegert form of the current operator is used together with
explicit meson-exchange contributions not accounted for by the Siegert part. The charge-density op-
erator in the Siegert part is of one-baryon nature and is taken to be nonrelativistic in the standard
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Figure 6.12: Differential cross section
of three-nucleon photo disintegration
at 142 MeV photon lab energy as
function of the arclengtts along the
kinematical curve for configuration
(823°,82.3°,1800°). Results based
on matrix elements(st|My(Eik¢)|s)
calculated in c.m. (solid curve) and
in lab system (dashed curve) are
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calculations. However, the one-baryon purely nucleonic charge-density operator has relativistic cor-
rections of orderk/my)2. Leading contributions to the nucledntransition charge density and to

the two-nucleon charge density, used in Ref. [41] for the calculation of trinucleon elastic charge form
factors, are both of the relativistic ordék/my)?; they are included in additional calculations test-

ing relativistic operator corrections. The resulting corrections reduce the cross sections; they appear
beneficial; a characteristic results are shown in Fig. 6.13. The effect shown there is dominated by
the one-nucleon charge-density correction; the two-nucleon charge-density, quite important for the
elastic trinucleon charge form factors [41], shows noticeable effects only in some spin observables,
whereas the nucleofd-transition charge appears to be insignificant for all calculated observables of
this thesis. Correspondly large corrections of the same origin were also found in photo reactions on
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Figure 6.13: Differential cross section and nucleon analyzing péyt) of pd radiative capture at

150 MeV nucleon lab energy as function of the c.m. nucleon-photon scattering angle. Results of the
coupled-channel potential with-isobar excitation derived from the standard approach (solid curves)
are compared with results including relativistic one-nucleon charge corrections (dashed curves) and
with results including relativistic one- and two-baryon charge corrections (dotted curves). The exper-
imental data are from Ref. [65].
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the deuteron [74]. Thus, the results of this subsection are not surprising. The current corrections of
this subsection should be included in future calculations of photo reactions.



7
Electron Scattering from Trinucleon Bound State

The considered reactions of inelastic electron scattering are schematically shown in Fig. 7.1.

7.1 Spin-Averaged and Spin-Dependent Cross Sections

| start the cross section calculation from the general form (5.2); the matrix elérijdhii) is obtained

with the help the quantum-mechanical model for hadronic interaction. The effective e.m. interaction
(2.13) is taken into account perturbatively, whereas the hadronic interatitioas exactly to be taken

into account up to all orders. Thus, the matrix elements of the e.m. interaction require fully correlated
hadronic states (2.6). The quantum-mechan®alatrix for the considered processes, i.e., for the
two- and three-body electro disintegration of the trinucleon bound state is parametrized in the general
form

|y 4TS
(FISli) = —i8% (P — Py) 8(E; — (Zka2k8)2 2 (st|Me(Eikr)ls), (7.1a)
(stIMe(Eiki)|s) = Olke, S )Vii(ke S ) (W 11" (Q K4)B), (7.1b)

|‘P({ ) standing for the fully correlated statha (qf Vo) or|LIJ (pqu)vof> defined in Egs. (3.17).
The initial and final electron four-momenka andke, determine the four-momentum transfer to the

Key Ky Kd Key ki ko ks

Ke ke ke ke

Figure 7.1: Schematic illustration of all considered reactions in inelastic electron scattering from the
trinucleon bound state. The lines for the two-baryon and three-baryon particles are drawn in a special
form to indicate their compositeness.
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three-nucleon syster® = kg — k. The spin quantum numbers of individual particles are collec-
tively denoted bys = {s; Mg} for the initial electron and the trinucleon bound state andbfpr all

spin projections of the final stateg’ are the Dirac matrices andks) is the electron Dirac spinor
with the normalizatioru(ks')u(ks) = mgdys, With me being the electron mass. The matrix element
(st|Me(Eikt)|s) is build up from the leptonic and hadronic e.m. currents and is given explicitly in the
following subsections for the considered reactions.

The inelastic electron scattering from the trinucleon bound state is considered in the lab frame,
i.e., in the rest frame of the initial three-nucleon system. The spatial components of the initial and
final electron momenta and the three-momentum traggterkg — ke, determine the coordinate axes,
i.e.,2=Q, ¥ =Kkg xke /|Ke X Ke, |, andk = § x 2. The strategy for calculating the matrix element
of e.m. current operator is slightly different compared to photo reactions.

1. The experimental four-momentum transfzdetermines the available internal energy of the fi-
nal three-nucleon system with total lab momentQmi.e.,E; = Qo+ Eg — Q2/6mN; this step is
done using the experimental trinucleon binding endtgyl.e., the energy of the three-nucleon
system is the true experimental one; the experimental two-body and three-body breakup thresh-
olds are exactly reproduced.

2. The current matrix element is calculated in the lab systemnasnergy-shell elemeninder
nonrelativistic model assumptions. Under those assumptions the internal dherg§o +
Eg — Q?/6my and the experimentad? determine the momentum transf@rand the energy
transferQo to be used for the current matrix element in the lab system. This step uses the
computed trinucleon model binding energy. Since the model binding enerdsg is not the
experimental one, neither f8He nor for®H, the components of the four-momentum tran§Jer
do not have the experimental values; howe@rhas the experimental value by construction.

Performing consistently a nonrelativistic reduction in Eqgs. (5.2) for hadrons as described in Sec. 5.1, |
obtain the differential cross sections analytically given in the following subsections for all considered
reactions. In contrast to the matrix elemést|Mc(Eikt)|s), the phase-space factors are calculated
using the experimental four-momentum transfer. The electron will always be highly relativistic, i.e.,
k3 =~ |kg | > me andkd ~ |Ke | > Me.

7.1.1 Two-Body Electro Disintegration of Trinucleon Bound State

The initial state is already discussed above. The final electron, nucleon and deuteron state is character-
ized by the respective spin quantum numisers: {se, ms, My, } and by the respective particle momenta

Ke, kn andky; due to momentum and energy conservation they are not all independent. Usually, the
experiment determines the final energy of the eledtgpand its scattering angl = arcco:élzef : Ra ).
Measuring the direction of one momentum of the final two hadrons fixekalsmdky, although not

always uniquely. | chose they as independent variable. The matrix elem&itMc(Eik)|s) of

Eq. (7.1) is

<sf|Me<Eikeka>|s> = UlKe; Se >vuu<kasa><wé‘)<qf>vm IM(Q.K4)[B), (7.2a)
(st|Me(Eike kn)[s) = 3 (—1)*UKe; Ser )y U(ke Sa &5 (QN) (Wo ™ (a1)Var | JM(Q, K 1)[B) £y(QM)
A
(7.2b)

with the relative nucleon-deuteron momentam= (kq — 2ky)/3. In Eq. (7.2b) the contraction of
the leptonic and hadronic currents is carried out by projecting them on the polarization e€€ys
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with A = 0, £1 andQ"e,,(QA) = 0; they are given explicitly in Appendix E. The hadronic e.m. current
in Eq. (7.2b) formally has the same structure as used in the photo reactions and is calculated according
to Appendix E. The resulting fivefold differential cross section is

d°0i_, ¢ _ OMott
diQ d2ke d2ky — 4KkJKY, coF(Be/2)

|(st|Me(Eike, kn)|s |* fps (7.3a)

with the Mott cross section

2c090e/2) \°
p €
OMott = | =————~— 7.3b
Mot <2kg Sir(6e/2) (7.30)
and the phase-space factor
2mN|kN|3
fps= —5———. 7.3c
PS= 320 kn (7.3¢)

The spin averaged differential cross section is

ddo d°ci_, ¢
_ 7.4
dkQ, d2ke, d2ky 45% dkQ, d2ke, d2ky (7.4)

In the figures it is denoted by’ /dE.dQ.dQy, the traditional notation. The spin-dependent observ-
ables are discussed in Sec. D.1.3.

7.1.2 Three-Body Electro Disintegration of Trinucleon Bound State

The final scattering state, composed of the electron and three free nucleons, is characterized by
the respective particle momenkag,, ki, ko andksz and by the respective spin quantum numbers
St = {Se;Ms,Ms,Ms, }; due to momentum and energy conservation the momenta are not all indepen-
dent. The final energy of the eIectr(bagf and its scattering anglé. = arccos{lzef -Ra) are usu-
ally determined by the experiment. As in hadronic nucleon-deuteron breakup and in three-nucleon
photo disintegration, the two nucleon scattering angles with respect to the beam dif@ctéor and
(62,92) and the arclengtl® along the kinematical curve (5.10) are chosen as independent hadronic
variables. However, since the coordinate axes are already determined by the electron kinematics, all
four angles(61,¢1,62,¢2) are required in order to specify the kinematical configuration of hadrons.
The neutron and proton nature of the nucle@t3) in the final state is notationally not indicated, but
also determined by the experiment.

The matrix elements; [Me(Eik1)|s) of Egs. (7.1) is calculated in close analogy with the one (7.2)
for two-body electro disintegration, i.e.,

(st|Me(Eike,Prar)|s) = UlKe; Ser )Yuli(Ka Sa ) (W5 (Prar)Vo, [I*(Q, K1) [B), (7.5a)

(st|Me(Eike p1a1)ls) = ¥ (—1) Ulke, Se; )y u(Ke Ss &5 (QM(W, (prar)Vo, [1#(Q, K 1)[B) £u( Q).
A

(7.5b)

The final-state Jacobi momenga and s are determined from the final single-particle momenta
k1, ko, k3 according to Egs. (2.1). Due to momentum conservakigr= Q — k; — k>, thus,ps =
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%(kl —kz) andqs = (k1 +k2) — :%Q. Furthermore, energy conservation puts an additional constraint
E = p%/mN + 3q%/4mN. The resulting eightfold differential cross section is

dBoi_, ¢ _ OMott
diQ d2ke dSPk1d?k,  4k3KS, cOF(Be/2)

with the Mott cross section (7.3b) and the phase-space factor

|(st|Me(Eike,Pra1)[s)| *fps (7.6a)

A A -1/
fos = mRIGKE{K3[2lke| ~ k- (Q-kn)? +K2[2lkal ~ k- (Q—k2)]?} . (7.6b)

The spin averaged differential cross section is

% d 0-|_)f
dkQ d%ke, dSPkyd2k, 4 Z 5 diQ d2ke, dS P12k,

(7.7)
In the figures it is denoted bjﬁo/d E.dQ.dSd2:dQ,, the traditional notation.

7.1.3 Inclusive Electron Scattering from Trinucleon Bound State

When in the final state only the energy and scattering angle of the electron are measured, the in-
clusive spin averaged threefold differential cross section is obtained by integration of the differential
cross sections (7.4) and (7.7) over all final hadronic states. Usually it is parametrized in terms of the
longitudinal and transverse inclusive response functions [75], i.e.,

% B QZ 2 QZ
m = OMott [(@) R(Q) + < 202 +tarf > (Q)] : (7.8)

The integration over all final states can be performed either explicitly or implicitly. The former option
for numerical convenience uses the Jacobi momenta as integration variables instead of single-particle
momenta, and the latter option uses the strategy of Sec. 6.1.4 for calculating the total cross section of
photo disintegration.

The longitudinal response functidR (Q) is determined by the longitudinal component of the
spatial current and by the charge density. However, using the explicit expression for the longitudinal
polarization vectore,(Q0) given in Eq. (E.4) and assuming current conservation, the longitudinal
component of the spatial current is usually replaced by the charge density, i.e.,

(o (ar)va, [1(Q.K+)[B) 4(QO) = (- Q/Q%) (Wi (@r)va | I(Q.K 1)) (7.92)
(W (praar)vo, |M(Q.K4)[B) a(Q0) = (- @/Q%) "*(W5 (prarvo [ °(@Q.K4)IB).  (7.9b)

The longitudinal response function is then calculated from the charge density only, i.e.,

22 (BI[}°(Q,K)]"8(E — Ho— H1)j%(Q,K)|B), (7.10a)
zlm{ BI[1%(Q. K )J'G(E +i0)]°(Q.K.)[B) }. (7.10b)
:——Zlm{ B|[i%(Q,K)]T(1+ P)Go(E; +i0)

x (] (Q7K+)|B>+Ta(Ei+|O)Go(Ei+iO)|J°(Ei+i0)>]}. (7.10c)



7.2 Results 71

The transverse response functi®f(Q) is determined by the transverse components of the spatial
current; it is calculated according to

Q=30 > S(QUEIL(Q.KI'S(E —Ho—Hi) QK+ )[B) el QM) (7.112)
Rr(Q) =~ o S 3 m{s(@EBIIQK.CE+HOMQ K BIGQN} (7110
Rr(Q) = o > 3 m{E(QUBIIQ K 1+ PIG(E +i0

% [IM(Q.K4)|B) + Ta (Ei +i0)Go(E; +i0)|J*(E; +i0))]eu(QM) }. (7.11¢)

7.2 Results

This section presents results for observables of two- and three-body electro disintegration of the tri-
nucleon bound state. The results are derived from calculations based on the purely nucleonic CD-Bonn
potential [3] and its coupled-channel extension constructed in Sec. 2.3stdigard calculational
procedureis taken over from Sec. 6.2.1 for the description of photo reaction with the following nec-
essary changes:

1. The e.m. current has to carry form factors, since the exchanged photon is virtual. The e.m. form
factors of the nucleon are parametrized according to Ref. [76]; the form factors thwisiabar
current are given explicitly in Appendix B.

2. The electric multipoles are calculated from the one- and two-baryon parts of the spatial current,
in contrast to the photo reactions where the Siegert form is employed. Current conservation is
assumed and always used for replacing the longitudinal component of the spatial current by the
charge, i.e., for replacing the longitudinal multipoles by the Coulomb multipoles.

3. The number of considered current multipoles is limited by the maximal total three-baryon an-
gular momentumlpay = 275 taken into account for the hadronic scattering stalggy = 1—25
used for photo reactions is not sufficient for the full convergence of the results for exclusive
observables in electron scatterinkj;ax = 275 is checked to be sufficient. However, some ob-
servables, not presented in the figures, show rather poor convergence with respect to the total
three-baryon angular momentum, indicating the need for calculating the first term of the series

(3.24a)without partial-wave decomposition of the final hadronic state [77].

In contrast to the hadronic and photo reactions, the electron scattering from the trinucleon bound
state is not studied in all its details; | still see a number of possible extensions. However, the few exam-
ples given in this section demonstrate the potential of the developed technical apparatus. Furthermore,
the A-isobar effects on the calculated sample observables are also discussed.

Figure 7.2 shows results for the spin-averaged fivefold differential cross section of the two-body
electro disintegration ofHe with momentum and energy transf@®| = 2502 MeV and Qp =
113 MeV; the agreement with the experimental data is quite satisfactory; on the scale of the ex-
perimental error bars thi-isobar effects are rather insignificant.

Figure 7.3 presents results for the spin-averaged eightfold differential cross section of the three-bo-
dy electro disintegration ofHe with the electron kinematics of Fig. 7.2. In the shown kinematical
configurations thé-isobar effects become more significant.
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Figure 7.2: Fivefold differential cross section of two-body electro disintegraticiiefat 390 MeV
electron lab energy as a function of the nucleon lab scattering angle with respect to the direction of
the incoming electron. The electron scattering angle, the momentum and energy tran$ferare
39.7°, |Q| =2502 MeV and Qo = 113 MeV, respectively. Results of the coupled-channel potential
with A-isobar excitation (solid curves) are compared with reference results of the purely nucleonic
CD-Bonn potential (dashed curves). The experimental data are from Ref. [78].
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Figure 7.3: Eightfold differential cross section of three-body electro disintegratiotHef i.e.,
3He(e, €pp)n, at 390 MeV electron lab energy as a function of the arclertidong the kine-
matical curve. The electron scattering angle, the momentum and energy transér=af9.7°,

|Q| = 2502 MeV and Qp = 113 MeV, respectively. The observables refer to the configuration
(30°,180°,45°,180°) on the left side and to the configurati¢80’,0°,120°,180°) on the right side,

the angles are given with respect to the direction of the incoming electron. Results of the cou-
pled-channel potential withh-isobar excitation (solid curves) are compared with reference results
of the purely nucleonic CD-Bonn potential (dashed curves).
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Figure 7.4:3He and3H inclusive longitudinal and transverse response functRnandRy for the
momentum transfer|Q| = 300 MeV as functions of the energy transf@s. Results of the cou-
pled-channel potential with-isobar excitation (solid curves) are compared with reference results of
the purely nucleonic CD-Bonn potential (dashed curves). The experimental data are from Ref. [79]
(e) and from Ref. [80]O).

Finally, Fig. 7.4 presents sample results for inclusive longitudinal and transverse response func-
tions of2He and®H. The overall agreement with the experimental data is rather goodA¥éebar
effects are visible around the maximum of the longitudinal respBpé®); in the transverse response
Rt (Q) theA-isobar effects are about 5% abd@e= 100 MeV, but they are not discernible in Fig. 7.4.
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7.3 Shortcomings of the Description

The theoretical shortcomings discussed in Sec. 6.3 for three-nucleon photo reactions are characteristic
also for inelastic electron scattering from the trinucleon bound state. | do not repeat the study of
Sec. 6.3 in full; | present only two examples.

TheA-isobar effects are small for the observables of Fig. 7.4. Figure 7.5 studies therefore the im-
portance of MEC and of the existing lack of current conservation in the purely nucleonic calculations;
it compares three theoretical predictions for the transverse response fuRgetiQiy first predictions
derived from the standard calculations, i.e., based on the explicit use of the one- and two-baryon cur-
rent, second predictions derived from calculations using the Siegert form of the electric multipoles,
and third predictions derived from calculations based on the one-nucleon current only. The effect of
MEC is visible, though quantitatively it is far less important than for some photo reactions as shown
in Fig. 6.11. The lack of current conservation is inconsequential for the considered observable.

Also Fig. 7.6 presents a purely nucleonic calculation. In analogy to the rather sizable relativistic
effect of the one-nucleon charge in Fig. 6.13 for radiative capture, a corresponding effect is seen for
the longitudinal response functid (Q); the two-nucleon charge contributes only a little also in this
case.

Figure 7.5: °H inclusive transverse re-
0.01 ‘ ‘ sponse functionRy for the momentum
transfer |Q| = 300 MeV as function of
the energy transfe®y. Results based on
the explicit use of MEC (solid curve) are
compared with results based on the Siegert
form of the electric multipoles (dashed
curve) and with results based on the
one-baryon current only (dashed-dotted
curve). Solid and dashed curves are almost
indistinguishable. All results use purely
0.00 ‘ : nucleonic CD Bonn potential. The experi-

50 100 150
Qp (MeV) mental data are from Ref. [79].
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0.01

Figure 7.6: 3H inclusive longitudinal
response functiorR_ for the momentum
transfer |Q| = 300 MeV as function
of the energy transfeQy. Results of
the purely nucleonic CD Bonn potential
derived from the standard approach
(solid curves) are compared with results
including relativistic one- and two-baryon
charge corrections (dashed curve). The
experimental data are from Ref. [79].
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8
Perturbation Theory

The calculational achievements reported in the previous chapters of this thesis are quite encouraging:
The developed theoretical apparatus is based on realistic interactions; the computations are technically
sound; the account of the existing experimental data is rather good. However, in one respect the given
description of three-nucleon reactions is a bit disappointing: The description does not allow for an
immediate physics understanding of the predictions, since the steps from the baryonic interaction, the
calculational input, to the details of observables with and without polarization is clouded by highly
complicated and intransparent numerics.

| admit, | am unable to change that situation of theoretical intransparency; this situation is not par-
ticular for my calculational scheme; it appears to be the fate of the physics of few-nucleon systems.
However, this chapter is meant to supply a tool which may help to facilitate the physics understanding
of three-nucleon reactions, at least in part and at least for particular situations. The tool is perturbation
theory [81] of high calculational accuracy. Years ago, Ref. [82] developed a perturbative approach for
studying properties of the three-nucleon bound state. The approach helped to understand effects aris-
ing from A-isobar excitation better; it also clarified how the perturbative calculation of wave function
components with & isobar and of exchange-current effects arising fromAlgobar should be car-
ried out in a reliable fashion. This chapter extends and generalizes that approach to nucleon-deuteron
scattering; it will be used foA-isobar coupling, for charge dependence and for the interaction in
the higher two-baryon partial waves. Though developed in this chapter only for nucleon-deuteron
scattering, | believe the approach can also be used for the description of e.m. reactions.

8.1 General Formalism of Perturbation Theory

Note: | leave out the dependence of operators on the three-particle available &nanglythe pair
subscript of the two-baryon transition matrix in the notation of this chapter, since they are not essential
for the considerations and the equations become more compact by that omission.

In the following, a perturbative approach is developed which takes into account one part of the
interaction exactly and the other part approximately. The two-baryon and three-baryon transition
matrices are decomposed into two parts, i.e., in Egs. (F18)replaced byl + AT, U by U + AU
andUg by Ug + AUg. Here,U andUy are defined to be exact solutions of the three-particle scattering
equations (3.19) with the unperturbed parbof the two-baryon transition matrix. The remaining
correctionsAU andAUg obey the following exact equations

AU = PT GoAU + PAT Go(U +AU), (8.1a)
AUg = (14 P)[T GoAAU + AT Go(U + AU)]. (8.1b)

The decompositions (8.1) can provide meaningful approximations, when the contribufidri@the
full multi-channel transition matrices is small compared to thak ofn this case one can expect that
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AU andAUg will be small and already their lowest-order approximations will account quite well for
the required corrections td andUg, respectively. Equations (8.1) therefore are solved approximately
by iteration, i.e.,

AU™ = PTGoAU ™ + PAT Go(U +AU (™Y), (8.2a)
AU = UGoAT Go(U +AU (1)), (8.2b)
AU = (14 P)[T GoAU M + AT Go(U + AU (D) (8.2c)

with AU = AUC(,O) = 0. The exact solutions of Egs. (8.1) are recovered in the lilt=

liMmn_e AU ™ and AU = Iimn_mAUé”). | admit | do not give the termsmall and large, used in
connection with the operatossT , AU andAUy, a rigorous mathematical meaning.

Equation (8.2a) is an integral equation fdd (", analogous to that fdd : Both equations have the
same kernel, containing the unperturbed fadf the two-baryon transition matrix, only the driving
terms being different. That integral equation should be solved, when the half-shell elemadts)of
are used to compute the corresponding breakup transition rmné& according to Eq. (8.2¢c). If one
is interested in the on-shell elements/d (" only, needed for elastic nucleon-deuteron scattering,
the quadrature (8.2b) is more convenient. The numerical solution of Egs. (8.2) uses the Chebyshev
expansion of the perturbatidxT in the same way as the solution of the full scattering equation uses the
Chebyshev expansion of the unperturbed transition matrbadmit, the Egs. (8.2) are not simpler to
solve than those for the corresponding exact dynamics; nevertheless, | hope the perturbative approach
to enable me in future to isolate important physics mechanisms better.

The perturbative approach developed in this section will be applied in the following to particular
physics cases. Always the lowest approximation ordeiill be used in which the studied physics
effect shows up.

8.2 \Validity of Perturbation Theory

In order to check the reliability of the developed perturbative approach | compare results for nu-
cleon-deuteron scattering observables obtained with the technique of this chapter to the corresponding
results of an exact calculation. | do so for both elastic and inelastic nucleon-deuteron scattering. The
step from the calculated perturbed transition matri¢esAU andUg + AUg to the respective observ-

ables is done without any further approximation as in the full calculations. Of course, the predominant
perturbative corrections of observables are linedklnandAUp; those linear relations are most use-

ful for a qualitative understanding, as discussed in Sec. 8.2.2. In general, however, | choose to keep
also the quadratic contributions AtJ and AU to the observables; this choice turns out to improve

the reliability of the perturbative approach. Though this choice appears to be somehow inconsistent
with respect to the orders of perturbation, it seems to minimize a violation of the optical theorem: The
optical theorem connects linear and quadratic terms of scattering amplitudes in a delicate form, and a
violation of it is inherent in most perturbative approaches.

8.2.1 A-lsobar Degrees of Freedom

The effects of theA isobar on observables of elastic and inelastic nucleon-deuteron scattering are
studied in Chapter 5 exactly. This section investigates to what extent they can be accounted for using
the perturbative approach of Sec. 8.1.
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The employed two-baryon coupled-channel potential displayed in Fig. 2.3 yields a corresponding
transition matrix whose componeriigy andTya couple the two Hilbert sectors in an obvious notation
or act in the additional Hilbert sectéts throughTaa. But it also modifies the two-nucleon transition
matrix within the purely nucleonic Hilbert sector By compared withily, the two-nucleon tran-
sition matrix derived from the purely nucleonic reference potential. In the notation of Sec. 8.1 the full
coupled-channel two-baryon transition matffix- AT is written as

T+ AT = Tyn+ATun+ Tan + Tna + Taa. (8.3)

I identify Ty with the unperturbed transition matrTx the corresponding multichannel three-nucleon
transition matrices being

Unn = PGy + PTunGoUnn, (8.4a)
Uonn = (l+ P)Gal-f—(l—i- P)TNNGoUNN. (8.4b)

The additional components of the two-baryon transition matfign, Tan, Tna andTaa are generated
by A-isobar excitation and are therefore containedin | note that the componen®y, Tna and
Taa are in general not small quantities in comparison Witfy; this fact is borne out in Fig. 5 of
Ref. [46]; it is not surprising, since the corresponding components of the coupled-channel potential
have comparable structure and are quantities of the same order of magnitude. Hdwe\ard
Tna enter the expressions for physical amplitudes together with the free res@yentA-isobar
channels, which suppresses the contribution offsobar at the considered scattering energies quite
strongly, i.e., the dimensionless operat@gian and TyaGp can be treated as small quantities in
comparison withTynGo; on those small quantities the perturbative approach is basgdshows up
in the combinationGyTanGo and therefore formally contributes in higher order only. In contrast to
Tna, Tan @andTaa, the additional componeidiTyy of the coupled-channel transition matrix is small in
comparison withfyy according to Ref. [81].

In order to calculate the observables of elastic and inelastic nucleon-deuteron scattering in the
lowest physically relevant order, only the componeﬂsltl{,z), AUéZN)N and as an intermediate quantity

AUEN) are needed, i.e.,

AU Y = PTanGoUnn, (8.5a)
AULR, = PTunGoAU o + PATuNGoUn + PTuaGoAUAN (8.5b)
AU\ = UNnGo(ATan + TnaGoP Tan) GoUnn, (8.5¢)
AUS = (14 P)(TanGoAUR, + ATanGoUnn + TnaGolAULY), (8.5d)
AUSR N = (14 P)[TanGoAUyp + (AT + TnaGoP Tan) GoUnn]. (8.5e)

When deriving Egs. (8.5) iteratively according to Egs. (8.2), the MTNNGOAU&,\),
= PATNNGoUNNGoATNNGoUNN IS neglected as being of second order in the small quaiity; all
remaining terms in Egs. (8.5b) — (8.5e) are of first order in the corresponding small quantities; the
used labeh = 2 is technical in the iterative spirit of Egs. (8.2), it does not reflect the order of small
quantities.

In Egs. (8.5) one can clearly see two differéntsobar effects, i.e., the two-nucleon dispersion
and the effective three-nucleon force, described by the first and second terms proportifsfial to
and toTnaGoPTan in Eq. (8.5¢). The corresponding characteristic processes are shown in Figs. 2.4
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Figure 8.1: Differential cross section and nucleon analyzing pdyg\) of elasticNd scattering at

135 MeV nucleon lab energy as function of the c.m. scattering angle. On the left side the results of
the perturbative treatment of tideisobar (dash-dotted curves) are compared with results of the exact
calculation with theA isobar (solid curves). In order to appreciate the size offtheobar effects

to be perturbatively accounted for, the reference results of the purely nucleonic CD-Bonn potential
are also given as dashed curves. On the right side the separated full two-nucleon (three-nucleon)
force effects of theA isobar are shown by the dotted (solid) curve around the horizontal zero line;
they are obtained forming differences of the results of full calculations. They are compared to the
corresponding perturbative results, calculated according to Eq. (8.5¢). The perturbative two-nucleon
effect almost coincides with the exact one and is not shown separately. The perturbative three-nucleon
force effect is shown by dashed-dotted curves. The experimental data are from Refs. [9, 10] and refer

to pd scattering.

and 2.5. Sample results are presented in Fig. 8.1; the perturbative approach reprodieissitae
effects qualitatively rather well.

The right side of Fig. 8.1 studies tieisobar effects in more detail; it demonstrates the general
competition between th&-isobar effects of the two-nucleon and of the three-nucleon nature, clearly
seen also in three-nucleon binding in Chapter 4. Aisobar effect of two-nucleon nature is perfectly
given by perturbation theory. In contrast, theésobar effect of three-nucleon nature is described
qualitatively well, but not quantitatively accurate. This fact is right away understandable, since the
coupled-channel potential CD Bonn/A-has a strong diagonal nuclednpart which perturbation
theory in the lowest order does not account for properly; for its effect, perturbation theory has to be
carried to one order higher. | note that the perturbative calculations (8.5c) carried out in Ref. [81] with
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less realistic coupled-channel potential CD BonA(sub2) which has vanishing diagonal nucledn-
part, yield a perfect account for theisobar effects of the two-nucleaand of the three-nucleon
nature.

8.2.2 Charge Dependence of Hadronic Interaction

The effect of charge dependence in the two-baryon interaction on observables of nucleon-deuteron
scattering is calculated exactly in this thesis; it is quite small, except in special kinematic situations
of breakup; this finding is consistent with other works, e.g., Ref. [7]. | therefore expect that it can be
accounted for well using the perturbative approach as discussed in Sec. 8.1.

Older force models for the two-nucleon interaction assume charge independence, i.e., in the
isospin-triplet partial wavepp, np and nn potentials are taken to be the same. The three-nucleon
bound state and the nucleon-deuteron scattering states, described without Coulomb interaction, only
have wave function components with total isospin= % Charge dependence, allowed for in modern
potentials as CD Bonn, changes the wave function components with total isTos—pié and devel-
ops additional components with total isospin= %’ This section tries to study those changes due to
charge dependence perturbatively.

Neutron-deuteron scattering is considered. The two-baryon transition riatnixhree-particle
Hilbert space has components (3.26) with respect to total isdspitenoted byT,t /o7 in this sec-
tion. The charge-independent starting point does not couple total isospin, i.e., the only nonvanishing
components aré;; andTss; | assume thgpinteraction to be representative for the complete isospin
triplets, and thereforé;; = Taz = Tpp. | take theppinteraction as charge-independent reference, since
most charge-independent potentials were based on agi ttata, the exception being the family of
original Bonn potentials [83] which were tunednp data. Of course, the actual intermediate effects
of charge dependence are different whenrthénteraction is used as charge-independent reference.

The coupled-channel potential CD Boniis taken as example for a charge-dependent potential,
its full charge-dependent transition matrix has the form

T+AT= 5 TM)Trar (TMr[+ Y [T'M7)AToror (T Mr|. (8.6)
™ T W

The unperturbed transition matfxhas only the diagonal componefitg andTz3 with T3z = Ty1, the
corresponding multi-channel transition matrices being

Uy =PGy '+ PT11GoUas, (8.78)
Ug11= (1+ P)Go_l + (l+ P)T11G0U11. (8.7b)
The notationUot /o1 andUg,r o1 makes the possible couplings of total isospin explicit. The initial
nucleon-deuteron channel state has total iso$pia %; the charge-independent interaction cannot
couple to another total isospin component.

Charge dependence introduces isospin coupling into the two-baryon transition matrix as indicated
by AT,t.51 in EQ. (8.6). The arising perturbing components have the following explicit forms

2 1

ATy = §Tnn+ §Tnp_Tpp, (8.8a)
V2

AT31 = ?(Tnp - Tnn)a (8-8b)

ATi3= AT?,]_, (88C)
1 2

ATzz= S Tant+ —Tnp—Tpp (8.8d)

3 3
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for neutron-deuteron scattering. The perturbing compon&is.,t can be considered to be small
quantities compared with the unperturb&d In order to calculate the observables of elastic and
inelastic neutron-deuteron scattering in the lowest physically relevant order, only the components
Auﬁ) for elastic scatteringAUc(,;)T,1 for breakup and&Uéi) as an intermediate quantity are needed,
ie.,

AU = PT11GoAU.T + PAT11GoUny, (8.9a)
MUY = U11GoAT11GoU1s, (8.9b)
AU = PTa3GoAUYY + PAT1GoUss, (8.9c)
AUC()lz)T 1= (1+P)(Tar a1 ’GOAUZ(':II:)’]_ +ATo111GoU11). (8.9d)

It is best to use Eg. (8.9b) for the on-shell correctmnﬁ) of elastic neutron-deuteron scattering.
The on-shell breakup correction has transitions to total isobpia g; the quadrature (8.9d) for that

correction requires half-shell elements of the two componAUtZ%),l; they are best calculated from

the integral equations (8.9a) and (8.9c). The effect of charge dependence is most pronounced at low
energies; there the simultanedmssobar effects are negligible and will not be discussed in this section
anymore.

Observables of elastic scattering are not documented in plots. For them the effect of charge de-
pendence is very small, also for the sensitive neutron analyzing payer at 10 MeV neutron lab
energy. The effect of charge dependence is perfectly accounted for by perturbation theory and de-
creases with increasing energy. Furthermore, according to Eq. (8.9b) only total iiosp%states
contribute to corrections of elastic scattering in lowest order of perturbation theory.

Observables of breakup at 13 MeV nucleon lab energy are shown in Fig. 8.2. Even on the fine
scale of the moderate effect of charge dependence the perturbative treatment of charge dependence is
highly reliable. The full treatment of charge dependence is crucial for the differential cross sections
in the vicinity of FSI peaks, as already pointed out in Ref. [7]. As illustrated in detail in Fig. 8.3, left
side, about% of the effect of charge dependence in theFSI peak is due to the coupling to total
isospinT = % only % due to changes iAT;1; the effect arises almost exclusively from the charge
dependence in thk, two-baryon partial wave. The effect of charge dependence in the isospin triplet
P waves is negligible for the differential cross section; it contributes only to the much smaller effects
in characteristic spin observables.

The ratio% X % can be explained in the following way: Thgp FSI should be described rather
well — and, in fact, it is — using thap potential for all two-nucleon interactions without any charge
dependence. Thus, when starting out witp@potential for all, the correctiofi,, — Tpp has to be
applied. However, allowing for charge dependence but keeping charge symmetry, Eg. (8.8a) yields

ATy = %(Tnp—Tpp); according to Egs. (8.9a) and (8.9d) the correct:lb]g[ll)1 is proportional taATy .
Thus, assuming predominant Iinearityﬁhlc(,ll)1 for the corrections to observables, the changes in the

T = % component yield onIy% of the full charge dependent effect; the= % componemﬁUé?1 has
to yield the remaining part, i.e%,. Of course, the above consideration is valid only in the vicinity of
thenp FSI peak.

Depending on the assumed charge-independent reference, a model-dependent choice, the individ-
ual charge-dependent effects are of course different. If, in contrast to the strategy of this section, the
np interaction is taken as charge-independent representative for all isospin-triplet components, the
complete effect of charge dependence on the differential breakup cross sectionjirFBekinemat-
ics of Fig. 8.2 is almost zero; thgp FSI is well described by a charge-independent reference based on
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Figure 8.2: Differential cross section and nucleon analyzing péyeM) of Nd breakup at 13 MeV
nucleon lab energy as function of the arclen§hlong the kinematical curve in thep FSI con-
figuration (39.0°,62.5°,1800°). Results of the perturbative treatment of the charge dependence
(dashed-dotted curves) are compared with results of the exact treatment of charge dependence (solid
curves); they are not distinguishable in both plots. In order to appreciate the size of the effect to
be perturbatively accounted for, results of a calculation without charge dependence, i.e., with the
interaction in all components of the isospin-triplet two-baryon partial waves, are also given as dashed
curves. The experimental data are from Ref. [48] referringdscattering(0) and from Ref. [55]
referring topd scattering(e).
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Figure 8.3: Model dependence of the charge-dependent effects on the assumed charge-independent
reference. The effects on the differential cross sectioN dforeakup at 13 MeV nucleon lab en-

ergy in thenp FSI configuration(39.0°,62.5°,1800°), which arise from the non-standaild = g
component in the transition matrix (solid curves) and from changes in the sta'ﬁdaﬁ% com-

ponent (dotted curves), are shown. The left (right) figure corresponds tpphep) interaction

as charge-independent reference. Full results of the perturbative treatment of charge dependence
(dashed-dotted curves) and results of a calculation without charge dependence (dashed curves) are
also given; they almost coincide in the right figure. The experimental data are from Ref. [48] referring

to nd scatteringd) and from Ref. [55] referring t@d scattering(e).
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annppotential [7]. The effect due to the changes in the stanﬁlaﬁd% component and the effect due

to the nonstandardl = g component almost cancel each other, though being sizable individually; this
fact is borne out in Fig. 8.3, right side. In fact, the theoretical explanation is the same as the reasoning
in the previous paragraph for the previous charge-independent choice, hoﬁ?&yer,—%(Tnp—Tpp)

in contrast to Eq. (8.8a); this is why the effect dueﬁtd)éll)l is of doubled magnitude and opposite in

sign compared to that of the previous paragraph as shown in Fig. 8.3, left side. Correspondlgnin the

FSI regions the complete effect of charge dependence is large, whep ithteraction is the assumed
reference; it was small before, when the interaction was the assumed reference [7]. Of course,
irrespectively how the charge-independent reference is chosen, the full charge-dependent results are
always the same; this fact can also be read off from Fig. 8.3.

8.2.3 Higher Two-Baryon Partial Waves

The contribution to the scattering amplitudes arising from the two-baryon interaction in higher partial
waves gets increasingly small. | therefore expect that a perturbative treatment of sufficiently high
partial waves is a reliable approximation.

The two-baryon interaction is split into two parts according to the total two-baryon angular mo-
mentuml: The interaction in the lower two-baryon partial waves consists of thoselwitly, and
the interaction in the higher two-baryon partial waves of those ithl < I, I being large enough
to accommodate all significant dynamic aspects of the considered reaction. The additional condi-
tion I > 1 guarantees that the interaction in the asymptotic nucleon-deuteron states belongs to the
lower partial waves. The components of the two-baryon transition matrix in lower and higher partial
waves arél; andTy, respectively. In the perturbative approach of Egs. (8.2) | choose the unperturbed
transition matrixT to beT, and the perturbing pafAT to beTy, i.e.,

T+AT =T +Th. (8.10)

The solutions of the scattering equations (3.19) for the three-baryon transition matrices with the
two-baryon interactior; in lower two-baryon partial waves only are

U =PGyt+PTiGoU, (8.11a)
Uol = (1+P)Gy* + (1+P) TGy (8.11b)

The permutation operatd? couples three-baryon states with lower and higher two-baryon quantum
numberd. Thus, the three-baryon transition matritksndUg, also have non-vanishing components
with lower and higher two-baryon angular momehtarhe components af; in partial waves with
lower | are obtained from the integral equation (8.11a), the components describing the transitions
to partial waves with higher are derived from the same equation (8.11a) by quadrature. The latter
components are needed for the perturbative approach.

The perturbing part of the two-baryon transition matriXys T, is considered small compared to
Ti. Thus, the approximations fédJ andAUg up to first order inl}, are

AU = PTGeAU Y + PTHGoU), (8.12a)
AU = U GeThGoU, (8.12b)
AUY = (14 P)(TiGoAU ™Y + ThGoU) ). (8.12¢c)

With respect to observables of elastic and inelastic nucleon-deuteron scattering, it is obviously suf-
ficient to calculate the components AU only between three-particle partial waves with low
two-baryon angular momentum
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Figure 8.4: Deuteron analyzing poway, of Nd scattering at 135 MeV nucleon lab energy for elastic
scattering on the left and for breakup in configuratjdé,10°,50°) on the right; it is given as function

of the c.m. scattering angle and of the arclerfg#tiong the kinematical curve, respectively. Results of

the perturbative treatment of the two-baryon partial waves withI3< 5 (dashed-dotted curves) are
compared with results of the exact calculation including two-baryon partial waveslup #(solid
curves); differences are only discernible for breakup observable. In order to appreciate the size of the
effect to be perturbatively accounted for, results of an exact reference calculationh gPtare also

given as dashed curves. The experimental data are from Ref. [11] and refiéstattering.

| emphasize that in this section the transition matrieand T, may refer to a purely nucleonic
potential or to a coupled-channel potential. Compared with Sec. 8.2.1 the perturbative treatment of the
Aisobar is in the latter case slightly different: In Sec. 8.2.1 terms of theTyp@&oPTan may contain
transition matrices of the higher included partial waves twice, in this section the perturbatively treated
transition matriceSan or Tya Of higher partial waves are included in first order only; furthermore,
alsoTaa in higher partial waves contributes.

The contributionsAU and AUy to three-baryon transition matrices arising from the two-baryon
interaction in higher partial waves increase with increasing energy. | therefore present a comparison
for observables at higher energies only, i.e., at 135 MeV nucleon lab energy. The comparison is based
on a nonvanishing two-baryon interaction in partial waves up=td, the isospin triplet partial waves
up tol = 4 being coupled to tha& isobar. Beside the full calculation, a perturbative one is carried
out, the unperturbed interaction being the coupled-channel interaction in two-baryon partial waves up
to I} = 2, the coupled-channel interaction in partial waves Witk | < I, = 5 being considered the
perturbation. Selected results are compared in Fig. 8.4. The shown agreement between full and per-
turbative calculations is characteristic for all calculated observables; thus, the perturbative treatment
of the interaction in higher two-baryon partial waves is highly reliable.
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8.3 Use of Perturbation Theory

Though perturbation theory in lowest order cannot simulate all features Afigwbar effects of a full
calculation correctly, nevertheless it appears quite useful for a qualitative understanding of reaction
mechanisms mediated by tieisobar. It is highly accurate for other dynamic features, i.e., charge
dependence and higher partial waves. It can clearly be extended to higher orders, if need arises, and
also to e.m. processes.

As an example for application of perturbation theory, the convergence of theoretical predictions
with respect to the higher two-baryon partial waves is studied in Fig. 8.5 for going beyond the standard
approach. Perturbatively, also partial waves up+d are included. That study is done for the highest
energy reaction considered in this thesis, i.e., for the elastic nucleon-deuteron scattering at 250 MeV
nucleon lab energy. On the scale of accuracy required by present-day data the effect of partial waves
with | > 5 is small enough to be safely neglected. | found only few exceptions, e.g., the differential
cross section at very small angles and the nucleon to nucleon polarization transfer cot@’i(ﬂéht).

A sample result for the rapid convergence with respect to higher partial waves is given in Fig. 8.5; it
is characteristic for most studied observables; the one exceptional case is also given in Fig. 8.5.
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K,”(NN)
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Figure 8.5: Nucleon analyzing powéy(N) and nucleon to nucleon polarization transfer coefficient
K§,/(N N) of elasticNd scattering at 250 MeV nucleon lab energy as function of the c.m. scattering
angle. Results including the interaction in partial waves up to two-baryon total angular momentum
| =8 (solid curves)| =7 (dashed curves),= 6 (dashed-dotted curves), ahg 5 (dotted curves) are
shown; differences are only discernible for the observtﬂgl(al\l N). The experimental data are from
Ref. [13] and refer tqpd scattering.
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Conclusions

This thesis describes three-nucleon hadronic and e.m. reactions. The description alltwisofwar
excitation and therefore contains an effective three-nucleon force and an effective two- and three-nucle-
on exchange current. Compared to previous works [16—21], the description of this thesis has a number
of significant improvements.

There argechnicalimprovements. They are very important for the applicability of coupled-chan-
nel dynamics, though their description in this thesis is mostly hidden in Appendix C: The ease of
reading the physics evolution of this thesis should not be endangered. The technical improvements
are:

¢ Exact solution of three-particle equations:
The most important technical improvement is a novel momentum-space technique for solving
the three-baryon bound-state and scattering equations as described in Appendix C.1. The tech-
nique is applicable to any two-baryon potential. It is based on the expansion of the two-baryon
transition matrix and of the deuteron wave function in terms of Chebyshev polynomials. The
Chebyshev expansion is found to be highly efficient and reliable when used for interpolation
and is found to be systematic in contrast to the separable expansion technique of Refs. [17-21].

e Treatment of singularities:
Other technical developments, important for the efficiency and reliability of the practical cal-
culations as described in Appendix C.2, refer to the real-axis integration method when dealing
with the singularities arising in the kernel of the three-particle scattering equations.

e Perturbation theory:
As a complement to the full calculations a perturbative approach for nucleon-deuteron scatter-
ing is developed in Chapter 8; it can easily be extended to the e.m. reactions. The perturba-
tive approach may help to isolate the effects of individual reaction mechanisms present in the
various observables and to facilitate the physics understanding of the three-nucleon reactions.
Furthermore, in particular situations it may even be a reliable and efficient substitute for full
calculations.

Due to the results of this thesis, there is an improphgsicsunderstanding of the few-nucleon
systems. | have the following aspects of my thesis in mind:

¢ Improved dynamic description:
Whereas the results of Refs. [17-21], due to the need for a separable expansion, are derived
from rather outdated potential models, the Chebyshev-expansion technique allows to use di-
rectly any two-nucleon potential and any coupled-channel extension of it as dynamic input for
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the description of the three-nucleon system; the use of a well-fitted realistic potentials is im-
portant for quantitative predictions. The charge-dependent CD-Bonn potential [3] is chosen as
a purely nucleonic reference in the present calculations. Furthermore, a new coupled-channel
potential with singleA-isobar excitation [25] is developed in the present work. The new cou-
pled-channel potential CD BonnAis based on the exchangemfp, w ando mesons as CD
Bonn. It is fitted to the two-nucleon scattering data up to 350 MeV nucleon lab energy. Since
scattering energies just touch the pion-production thresholdAtisebar is considered a sta-

ble baryon. The(?/datum resulting from the fit of the new coupled-channel potential is with
1.02 as good as for the best new-generation purely nucleonic potentials; within the limits of the
givenx? the potentials CD Bonn and CD BonnArare phase equivalent. The developed new
coupled-channel potential is a substantial advance, compared with the traditional construction
of coupled-channel potentials with rather limited phase equivalence.

Included dynamic processes:

In the three-nucleon system tideisobar mediates effective two-nucleon and three-nucleon
forces. The effective three-nucleon force, beside other contributions, simulates the two-pion
exchange Fujita-Miyazawa force [14] of Fig. 2.5 and the three-pion ring parts in the lllinois
forces [6] of Fig. 2.6 in a reducible energy-dependent form. In contrast to those irreducible
three-nucleon forces based solely mrexchange employed by other groups [6,52,61] for
few-nucleon systems, the effective three-nucleon force arising from the coupled-channel po-
tential takesrt, p, w ando exchanges into account. The coupled-channel potential makes all
contributions to the three-nucleon fongritually consistent

The one-baryon and two-baryon coupled-channel current employed for the description of the
e.m. processes correspond to the hadronic interaction, though full current conservation could
not be achieved yet. Thi isobar mediates contributions to the exchange current of effective
two-nucleon and three-nucleon nature; theysdracturally consistentvith the corresponding
hadronic contributions.

A-isobar effects in three-nucleon bound state — beneficial or not?

The coupled-channel potential yields additional binding, but it remains unable to account for
three-nucleon binding in full. The competition betweenfhisobar effects of two-nucleon and
three-nucleon nature, observed already long ago [16], is confirmed.

A-isobar effects in three-nucleon scattering — beneficial or not?

With respect to three-nucleon scatteridgisobar effects are very small at low energies. The
Ay-puzzle of elastic nucleon-deuteron scattering around 10 MeV nucleon lab energy cannot be
resolved by the inclusion of tieisobar, even if thé&-mediated three-nucleon force has a micro-
scopically motivated spin-orbit contribution; according to Ref. [49] a three-nucleon force with
phenomenological spin-orbit component of rather long range can resol¥g-{hezzle. How-

ever, the considered spin-orbit contribution dudtisobar excitation is of short range, since it
arises from the exchange of tpemeson. Also the space star anomaly in the nucleon-deuteron
breakup cross section around 13 MeV nucleon lab energy cannot be resolved.

The A-isobar effects become more visible at higher energies; they are often beneficial for a
satisfactory description of the experimental data, e.g., they significantly reduce the discrepan-
cies for the differential cross section and nucleon analyzing power of elastic nucleon-deuteron
scattering above 100 MeV nucleon lab energy, though their success is not a general one for all
measured observables.
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¢ A-isobar effects in three-nucleon photo reactions — beneficial or not?
The A-isobar effects in three-nucleon photo reactions are also more pronounced at higher en-
ergies. It is found that other theoretical ingredients neglected in conventional calculations of
nuclear phenomena, e.g., the relativistic corrections of the e.m. current operator, may be even
more important than thA-isobar contributions. In general, quite a satisfactory description of
photo reactions emerges given the scarcity of data, often still carrying large error bars.

¢ A-isobar effects in inelastic electron scattering from trinucleon bound state — beneficial or not?
This thesis presents only few results for the inelastic electron scattering from the trinucleon
bound state; the given examples demonstrate the potential of the developed technical appara-
tus also for electron scattering\-isobar effects appear not very important at the considered
kinematics for the few measured observables. Elastic form factors are not revisited. Moderate
A-isobar effects are predicted for the exclusive differential cross section in particular kinemati-
cal regimes, which are not yet measured experimentally.

e A-isobar effects versus effects of irreducible three-nucleon force:
The theoretical predictions given in Refs. [9, 11,13, 36, 37,52, 61, 84] use several irreducible
three-nucleon forces, whose effects for some observables strongly disagree with each other.
They often used outdated forces; accepted standard are now the modified Tucson-Melbourne
TM’ and Urbana IX forces. Thé-isobar effects seen in this thesis quite often agree with the
effects of the latter three-nucleon forces qualitatively.

Compared to the results of Refs. [16—21] based on a coupled-channel potential with deficiencies,
the A-isobar effects seen in the results of this thesis based on a well-fitted coupled-channel
potential are qualitatively rather similar at low energies, but there are also cases with important
guantitative and even qualitative updates at higher energies.

Thus, | believe that the theoretical description of three-nucleon hadronic and e.m. reactions as
given in this thesis is numerically highly reliable and physically realistic. The explicit treatment of the
Aisobar is important for three-nucleon bound state and for three-nucleon reactions at higher energies
and should remain to be included in future calculations of few-nucleon systems. However, at the end
of the thesis | also see clearly what my present calculations still miss and where further improvements
and developments are highly desirable.

¢ Model dependence study:
Various new-generation purely nucleonic potentials [3-5], i.e., CD Bonn, AV 18, Nijmegen |
and Il, differ in their predictions for three-nucleon bound state properties and for some sensitive
spin observables. Coupled-channel extensions should be constructed for all of them as realisti-
cally as done in this thesis for CD Bonn in order to study the model dependence/ofdhbar
effects.

e Dynamic improvements:
An irreducible three-nucleon force should be added in order to account for those processes not
contained in the effective three-nucleon force dué-isobar excitation and in order to at least
cure the three-nucleon underbinding. Furthermore, the used e.m. current should be improved
in order to satisfy the requirement of current conservation.

e Inclusion of pion production:
Though the quality of the fit of the new coupled-channel potential is gratifying, the low-energy
elastic nucleon-nucleon scattering data do not form a stringent physics basis to constrain special



88

9. Conclusions

properties of the nucleoA-channel. The coupled-channel potential and the nucleonic reference
potential CD Bonn therefore are both only applicable to phenomena below pion-production
threshold. In future, the explicih-isobar coupling to the pion-nucleon states should be in-
cluded and the fit at intermediate energies should be improved by tuning simultaneously to
T-production data. This is a necessary step, since experimentalists move with their study of
hadronic and e.m. processes far above the pion-production threshold.

Inclusion of Coulomb interaction:

Experimentalists prefer to work with charged particles; the experimental datep fosystem,

i.e., for pd scattering and for e.m. reactions dHe are more abundant and much more ac-
curate than the corresponding data for timgp system. Comparison of thepp data to theo-

retical predictions without the Coulomb force leaves an uncomfortable uncertainty, though the
Coulomb effects are believed to be very small at higher energies, except for some special kine-
matical regimes. Nevertheless, the inclusion of the Coulomb force in the description of the
three-nucleon continuum with two charged particles would be very welcome.

Extension to weak processes:

The weak processes in the three-nucleon system, e.g., the faueapture by*He, should

also be studied. The developments of this thesis form a solid basis for the description of weak
processes, the only missing ingredient is the axial weak current.

Extension to relativistic quantum mechanics:

At intermediate energies relativistic effects become nonnegligible. First, they are clearly seen
in the kinematics of the considered reactions. Second, | found that the relativistic corrections
of the e.m. current operator are important for a successful description of some three-nucleon
e.m. processes. Howevael relativistic effects have to be taken into account consistently; this
calls for a formulation of the three-particle equations in the framework of relativistic quantum
mechanics, quite formidable undertaking.



A
Parameters and Special Properties of the
Coupled-Channel Potential

The force parameters of the fitted coupled-channel potential are collected in this appendix. They are
quoted with different accuracies. This fact is standard: The fit determines some parameters more
sensitively than others. For reasons of reproducibility, the parameters are given with all digits, used in
the practical calculations.

Table A.1 collects the retuned parameters of the nucleonic part of the coupled-channel potential;
the retuning is done for two exchangesando, and, in the’Py and3P; partial waves, also for the@
exchange. The exchange is phenomenological; CD Bonn uses it in a partial-wave dependent form;
its partial-wave dependent retuning is justified. The retuning ofileschange is only minor; never-
theless, the retuneadh, 0, andw exchanges have more partial-wave dependence than the underlying
CD-Bonn potential. The force parameters determining the potential parts connected wtisdhar
are given in Tables A.2 and A.3. Table A.2 contains all parameters clie$erethe coupled-channel
potential is subjected to the fit. Table A.3 contains the only fit parametedsygoan /4TS it refers
exclusively toc meson exchange in the potential parts connected with thebar.

6%, (PR %, (PP} 95,0 G, g5, () gg,(n) g

NN, 2 41 4m 4m 41 4m 41 9 4n
lS) 458 1225 1.92084 48.903 1.60887 55.844 1.93591 48.847 2000 20 1500
3P0 589 6.2318 6.1004 6.2528 1500 20 1800

8P, 376 1225 0.48685 0.0 0.50895 12.337 0.49778 2.6990 1500 22 2000
D, 371 793 0.62970 8.8426 0.63628 8.9343 0.64134 8.8944 2500 20 1500
3P, 452 1225  2.8093 79.198 2.8354 78.622 2.8218 79.035 1600 20 1500
3F, 452 793 1.0511 51.447 1.1464 50.720 1.0755 51.406 1600 20 1500
8F3 600 793 6.9214 21.972 7.2132 21.697 7.2333 20.957 2500 20 1500

16, 415 1.4793 1.4993 1.5019 2500 20 1500
Sk, 431 2.4451 2.4544 2.4518 2500 20 1500
3H, 461 3.5415 3.5977 3.5736 2500 20 1500

Table A.1: Retuned, 0, andw parameters in the nucleonic part of the coupled-channel potential. A
blank indicates that the meson contribution is not considered. Meson nmags&®l cut-off parame-
ters\g = N\g, = \g, and/\, are given in MeV; they and,, are chosen in a charge-independent form;
the coupling constanty;, are charge-dependent. The mass ofilraeson remains with 781.94 MeV

the physical one.
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4T 4m : 4T 4m
T 138.03 0.07348 13.6 1720 0.35 0.002939 1900
p 769.9 7.112 0.84 1310 33.786 0.2845 1500
w 78194 20.0 1500 1500

/\EA

Table A.2: Meson parameters employed in the potential parts referring foifodar. Meson masses
me and cut off parameter8,g are given in MeV. All parameters of this table are kept fixed during
the fit. The meson masses and the other meson parametdggn, g:nn and Agy are taken over
from CD Bonn;genn andAgy are identical tag, and A\ of Ref. [3], whereasfyn = (My/2mMy)On
and fonn = (Mp/2mMy)gp (14 Kp) With K, = fp/gy = 6.1 being the ratio of tensor/vector coupling
constants of th@ meson in CD Bonn. The coupling strenglfa is taken over from Ref. [16], the
others are chosen according to the quark counting rulesfie,= fonn frina/ frun, fean = %szN,
andgan = Genn- The cut off parameter&g, are assumed, they are also not subjected to the fit.

2 2
NA Mg 904:[,\‘ /\GN gz?[A /\GA chZlS[GAA
5Dy, 5P; — 3F3 — 5F4,°D4 — 5G4, 5F4 — °F, 500 5.0 1500 5.0 1500 5.0
3P, 3P — °P; — 5F41, 3P, — 5P, 500 0.0 1500 0.0 1500 0.0
53, — 5D, —5G, 500 8.7 1500 8.7 1500 8.7

Table A.3: Retuned exchange in the direct nuclednpart of the coupled-channel potential. Note

that only the quantitygsnngona/4TUiS fitted. The massn,; and the cut off parametersy;y andAga

are chosen beforehand and are kept fixed during the fit, the other columns are only shown separately
for reasons of correspondence to Table A.1.

The coupled-channel potential has an inelastic channel, the nuslebannel. Thus, the poten-
tial yields inelasticities; they are not realistic, since they are not pionic. Nevertheless, for reasons
of curiosity, Fig. A.1 shows the resultindD, and3F; phase shifts and inelasticities also in the en-
ergy domain beyond the pion-production threshold not used for the fit. As expected, the produced
inelasticities do not account for the inelastic data. First, due to the neglect of the coupling to pion
states the inelastic threshold is wrong. Second!enucleon-nucleon channel is coupled to s
nucleonA channel; without that coupling the nucle@npotential supports a bound state; this is the
reason for the sharp phase shift increase which the coupling to pion states would efficiently smear out.
In contrast to'D, the predictions for théF; phase shifts show some realistic features qualitatively.
In the energy domain of inelasticity the nucleonic CD-Bonn potential is also unrealistic.
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Figure A.1: 1D, and3F; np phase shift® and inelasticitie as functions of nucleon lab energy.
Results of the coupled-channel potential withsobar excitation (solid curves) are compared with
results of the CD-Bonn potential (dashed curves), for which the inelaspagyexactly zero. The

dots are the results of the partial-wave analysis of Ref. [85] without error bars. In the fit of this
thesis only the phase shifts below 350 MeV nucleon lab energy are considered; the pion-production
threshold is at 280 MeV.






B
Coupled-Channel Current Operators

Equation (2.15) defines the general momentum space form of the e.m. cf@nt= (p(Q),J(Q))

in the Jacobi coordinates of the three-particle basis. In contrast, this appendix gives its employed
one-baryon and two-baryon parts, i.8%Q) = JU(Q) + J@Z¥(Q), in respective one-particle and
two-patrticle bases. | keep the three-momentum trar@fand not the four-momentum transi@ras
independent variable since usuaﬂhs is determined by the three-momenta of the involved baryons.
Despite that strategR? = Q% — Q3 = —Q?is used in all e.m. form factors; for photo reacti@= 0.

The step from the single-particle representation of the current contributions to the three-particle Jacobi
momenta is straightforward [62] and not repeated here. The objective of this appendix is the definition
of the used input for the current. Since the e.m. coupling constant, i.e., the positive elementary charge
€p, is explicitly introduced in the e.m. Hamiltonians (2.11) and (2.13), the e.m. cul*¢Qy is given

in units ofey,.

B.1 One-Baryon Operators in Nonrelativistic Order

The momentum-space matrix elements of the one-baryon current operator have the general form

(K'D'|JITH(Q) kb) = 3(K' — Q — k) jEH(Q,K k) (B.1)

with k’ (k) andQ being the final (initial) single-baryon momentum and the three-momentum trans-
fer by the photon, respectively, amd (b) beingN or A depending on the baryonic content of the

final (initial) state. All components ojm“ Q,k’,k) are still operators in spin and isospin space; the
spin (isospin) operators of the nuclednisobar and the nucleaf-transition are denoted by (),

A (Ta) andS (T), respectively. The one-baryon charge density and spatial current operators, dia-
grammatically defined in Figs. 2.7 - 2.9 and used in the calculations of this thesis, are listed below:

PRN(Q.K' k) = &(Q?), (B.2a)
IRN(QK'K) = 5 {S(@)K + K]+ [o(@?) + k(@i x Q). (B.20)
i QK k) = ﬁg&%@%[ﬁx QT (B.2¢)
Pha(Q.K' k) = g§°(Q?), (B.2d)

i (Q.K K :—{g QYK +K]+ g (Q?)[ioa x Q]}. (B.2¢)
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The nucleonic e.m. form factors of Eqgs. (B.2) are parametrized as linear combinations of the
isospin-dependent Dirac and Pauli form factér$Q?) and f2(Q?), which at zero four-momentum
transferQ? are the charge and the anomalous magnetic moment of the nucleon, i.e.,

(Q?) = %[fF(Q% Q). (8.32)

K(Q?) = [f'S(QZ) 2/ (Q%)1y], (B.3b)

the superscripts IS and IV denote their isoscalar and isovector parts, respectively. For electron scatter-
ing four-momentum transfe®? > 0 and the nucleonic e.m. form factors are parametrized according
to Ref. [76]. The e.m. form factors related to thésobar are parameterized [16, 63, 64] by

M1/A2y — M MaN
(@) = My (14 Q%/AZy 1)2(1+ Q2/ A3y 2)Y? (B.42)
9r(Q%) = 5{ f15(Q%) + 1Y (Q%) — Q%/(4mR)[°(Q%) + 2/ (Q%)]} %(1+TAz), (B.4b)
M (Q?) = M Ha 1(1+TAZ) (B.4c)

6my (1+ QZ/AZ)2 2

The values of the parameters gwg = 3N, Pa = 4.35UN, U being the nuclear magnetofian 1 =
NAp = 0.84 GeV and/\ANz =12 GeV.

B.2 Two-Baryon Operators in Nonrelativistic Order

The matrix elements of the two-baryon current operator have the general form
(KiKoB | JPH(Q)[k1kB) = 8(Kq kb — Q — k1 —ko) [ (Q.KL —kuky—kz)  (B.5)

with ki (ki) being the final (initial) single-baryon momentagenotes the exchanged meson (or the
two mesons in case of nondiagonal currents); the baryonic coreatwlB beingN (A) correspond

to the two-nucleon (nucleof-isobar) states. All componenjg,‘é(Q, k] —k1,k5 —k2) are still op-

erators in spin and isospin space. The two-baryon spatial current operators, diagrammatically defined
in Figs. 2.7 - 2.9, based am p andw exchange and used in the standard calculations of this thesis,
are listed below:

Qz){ [iT1 X 127 con (pz)(pg o2)o1+ (1< 2)}
Q?)[iTy x 727 TT\IeI\?(pla p3)(p1-o1)(P2-02)(P1— P2), (B.6a)
Q%) {[iT1 x T2l Fsun(P3)[(02 X p2) x o1] + (14> 2)}

BN(Q.p1p2) = — 1Y(
1
A
(QZ)['Tl X Tol P (P5: P3)[(P1 X 01) - (P2 X 072)] (P1 — P2)
1
A
f15(

(Q P1,P2) =

mes

Q?)[im1 x 7, pNNl(pla p2)(P1—P2)
Q?)[iT1 X T2l P (P5: P3)Q X [(p1 x 01) X (P2 % 02)], (B.6b)
2

Jorn(Q.P1,p2) = Q) {(t1- 72 F&'&N(pbpz)(pz a2)[ipy x p2)+ (145 2)}, (B.6c)
Jarn(Q.p1.p2) = — 1Y (Q?){TaFdsn (p3.P3) (P2 o2) iy x P2l + (1 2) ). (B.6d)
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PN(Q.p1.p2) = — fY(Q¥) {liT x T2FSN(P3) (P2~ Sp)os + (14 2)}
- fllv(Q ){['Tl X T2z MN(PZ)(F’Z 02)S1+ (L 2)}
+ 1Y (Q) {[iL X T2l Fanipd,p3) (P1- 01) (P2 S2) (P1— P2) + (14> 2) },

(B.7a)
J2n(Q.p1,P2) = — (1Y (Q){[im1 x T2l FER(PR)I(S2 % P2) x o] + (143 2)}
— HY(QO){[iT1 x T2l PR (P3)[(02 X p2) x Si] + (145 2)}
+ 11V (Q) {lim x T2 F P2, p3)[(P1 X 1) - (P2 X S2)](P1— P2) + (1 4+ 2)}
— V(@) {fiT x T2 FRSP2.p3)Q x [(p1 X 1) (P2 x Sp)] + (143 2) },
(B.7b)
A (Q.p1.p2) = — f'3<Q2>{<n-T2>F£,L2N<p§,p%><pz-sz>[ip1 x P2l + (142}, (B.7¢)
JQmAN(Q p1,P2) = — f1¥ (Q%){ ToFI5 (P2, P3) (P2~ S2)[ip1 X p2] + (13 2) }, (B.7d)
J%A(Q,pl,pz)z — 1Y (@) {[im1 x a2l Fian (P3)(P2- oa2)o1 + (145 2)}
— £1Y(Q){[iTa1 x T2l; F°°“d<p%><pz a2)onr+ (14 2)}
+ 1Y (Q){[im1 x TazlFapa “(P3.03)(P1- 1) (P2 oa2) (P1—P2) + (1> 2) }
— (Y (Q){[iIT] x T2l P “(P3) (P2 S2)S] + (143 2)}
— (1Y (Q){[iT1 x T Fran S(P3)(P2- SHS1+ (1 4+ 2)}
+ 1Y (QA){[IT] x T2lFaa (2, p3) (P2~ S (P2 S2)(p1—P2) + (1> 2) }.

(B.8)

| note: The contribution to the two-nucleoprexchange current, proportional E?) esj(pl,p2
Eq. (B.6b) is not contained in the standard collection of exchange currents of Refs. [20, 38, 41, 62],
used till now in the context of other potentials; it is necessitated in this thesis by the full form of the
p exchange implemented in the CD-Bonn potential. Other contributions arising from the dxH
change [39] are of higher order compared:me,\ﬁl(pf, p2) and are therefore neglected in the standard
calculations; however, their effect is discussed in Sec. 6.3.3.

The F functions used in the above expressions are potential-dependent. For meson-exchange
potentials they are built from meson-baryon coupling constants, hadronic form factors and meson
propagators. For contact currents thdéunctions have the following forms:

1 &G Fau(p?)

con /2y TNN ' 1N

Frun(P%) = e R (B.9a)

Fcon( )_ 1 ggNN(l"H(D)Z szl\l(pz)

PNN p 8T[2m,2\, 47T n%+p27

1 ohn fva Fav(P?)Fra(p?)

Fcon 2 — TINN B.

(P°) = Gen?, am T ME4p2 (8.9¢)

Fcon(pZ) _ 1 ggNN(l+ Kp)z fona FpN (pZ)FPA(pZ)
pAN 8rent, 4m fon  M2+pz

(B.9b)

(B.9d)
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1 &un fraa Fan(p?)Fra(p?)
peond 2y NN B.9
ma (P gremy 4 fawn mME4+p2 (B:9¢)
FCOH e(pZ) _ 1 g12'INN fTZINA FTzﬂ(pz) (Bgf)

8y, 4m f3, ma+p?’

For meson in flight currents the corresponding expressions are

1
FEE(PT,P3) = T 5 [F&5(p3) — F&R(p2)], (B.10a)
1 2
4mg
FANN (PT,p3) = (1T<N)2 (P2, p3), (B.10b)
Fraa  (PE:P3) = = 55 [Fran * (PD) —~ Fraa “ * (P3)]. (B.10¢)
1 2

Finally, the functions for nondiagonal meson-exchange currents (also called dispersion currents) are
defined to be

Fds (p2.pd) — ONNDE NN @g _Fan(pf) Fen(p))
g/NNAM1, M2 4n2m2 AT EEvaz_{_p% mzzl_{_p%a

Fds (p2,p2) = 1 gnngenn frva mNg Fan(pD) Fea(p3)
EE’AN 1, M2 4-,-[2m2 41 fraun Mg £Eyl’néz—+—I31 miz+p2

(B.11a)

(B.11b)

All hadronic parameters are collected in Table A.2. The hadronic form faBtg(g?) are defined in
Eq. (2.8e). The e.m. meson-photon coupling constants have the wglyjes 0.56 andgm, = 0.68
according to Ref. [86].

B.3 Operator Corrections of Lowest Relativistic Order

Operator corrections of relativistic order are given for the charge density. They are of one-baryon and
of two-baryon nature:

2 2
PRNC(Q.K' k) = — (Q);TZKQ{Q +io x (K' +K)]-Q}, (B.12a)

1
Amyma

15(Q%) - 1o+ £V (Q) T2 FSN(P3) (01- Q) (02-p2) + (1 ++ 2) (B.12c)

pRe(Q,K' k) = — MH(Q)[iSx (K +K)]-QT,, (B.12b)

Pan (Q,p1,p2) = m[
The contributions (B.12) are the Darwin-Foldy and spin-orbit corrections of the one-nucleon charge
density, the one-baryon correction due to nucl&dransition and the two-nucleon correction duetto
exchange, respectively; the two-nucleon contribution (B.12c¢) is local and therefore often exclusively
used; there are, however, other nonlocal two-nucleon contributions of the same order. The contribu-
tions (B.12) are used in this thesis in Sec. 6.3.3 for the Siegert form of the current. Since they are
relativistic corrections, they violate current conservation in the considered order. However, the cal-
culated trinucleon elastic charge form factors need all three contributions in order to become almost
guantitatively consistent with the experimental data [41].



C
Numerical Solution of Three-Particle Equations

The integral equations to be solved are (3.6) for the Faddeev compjamenof the bound state,
(3.19a) for the multichannel transition mattiXZ) of elastic nucleon-deuteron scattering and (3.24b)

for the auxiliary statéJ*(Z)) of e.m. reactions. In contrast to the Schrddinger equation (3.1a) and the
Lippmann-Schwinger equations (3.14), they are suitable for numerical solution, since their kernels get
connected after iteration and are compact for short-range potentials. In the following | concentrate on
the equations (3.19a) and (3.24b). The breakup transition ni&jfi&) and the nuclear current matrix
elements of e.m. reactions follow then by quadrature.

C.1 Chebyshev Interpolation

References [17-19] solved the three-nucleon equations Avitiobar excitation by a separable ex-
pansion of the two-baryon transition matrix; the separable expansion made the dependence on the
continuous variable, the relative pair momentum, discrete in an efficient way. Though the validity
of the separable expansion was checked in Ref. [46] and was confirmed to be quite reliable in the
context of the three-nucleon bound state and of low energy nucleon-deuteron scattering, the need for
a separable expansion made the calculational technique of Refs. [17-19] inflexible in applications.
In contrast, an alternative technique based on the Chebyshev expansion of the two-baryon transition
matrix [22] and allowing to use directly any two-nucleon potential and any coupled-channel exten-
sion of it as dynamic input for the description of the three-nucleon system is proposed and used in
calculations of this thesis.

| solve Eq. (3.19a) in the momentum-space partial-wave basis (2.2). The channel-states (3.8) and
(3.10) are expanded into the partial-wave coupled states according to

@ (9)Va) = > |da{[lo(Iso) j]J M3 (Toto) T Mt bo}t)a (oM jm;j|J My)
JMJTMijjIm|
x (Imysoms| jm; ) (ToM,tomy [T M )Y (6), (C.1a)
= LS)I (I iJJM; (Tty)T M1 Bb)g
|¢o(pa)Vo) JM;MT LMLSNEM.TMT Imgmjlm[( )1 (Isq) j]Jd M3 (Tta)T My Bb)

x (IMy jm;|J My ) (LMLSMS|IM )Y (D) {S3me, S,ms, [SMs) (Imy sam, | im;) Yoy ()
x (T Mrtamy, [T My ) (tgmytymy | T Mr) V2 (C.1b)

with the abbreviatioldgyq)q for the partial-wave projected nucleon-deuteron state, i.e.,

|dqxd>a = |dq~{[|o(|So)j]\] MJ (Toto)T MT b0}>q. (ClC)
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In the notationddxq)q Of the coupled state the symbygj stands for the setploTolso jtobp) of quan-

tum numbers withp = 1; there are two (three) distinct coupled states for each set of three-particle
quantum number@1JM;Mr ) with J = 3 (J > 3); those three-particle quantum numbers are nota-
tionally suppressed ifdqxq)q. The factory/2 arises in Eq. (C.1b), since the basis stagep(lj))q

are antisymmetrized in the papy) by (1—Pg,)/2, whereasg(pq)vo) in Eq. (3.10) by(1- PBV)/\/Z

According to the properties of the operators acting in the assumed Hilbert space | introduce the
following abbreviations for the sets of the discrete quantum numbers. Among them, three-particle
parity 1, total angular momenturh with projectionM; and, if charge independence of the interac-
tion is assumed, total isospin with projectionMy , are conserved and can be fixed for the operators
once and for all; due to rotational symmetry all operators, except for the current opg@&oK . ),
are even independent M;j, in case of charge independence even independédvit ofl will therefore
often omit those quantum numbe€i3J M; T Mt ) in my explicit notation. The two-baryon transition
matrix in three-baryon spack (Z) which carries the dynamics is — due to geometric reasons — diag-
onal with respect to all discretpectatorqguantum numbers, indicated in Fig. 2.2, i.e., orbital angular
momentur, spins, total angular momenturji isospint and baryon charactéx With respect to pair
quantum numbersly (Z) is — due to dynamic reasons — diagonal in the pair parity (—)", in the
total pair angular momentumand in the total pair isospif, but it can couple states with different
pair orbital angular momentuin, spinSand baryonic conter. The abbreviatiom = (LSB) stands
for all nonconserved quantum numbers, the abbrevigtione., x = (TdTIsjtb), for all conserved
ones. Thus, there are three sets of discrete three-particle quantum numbers, which the notation will
distinguish, i.e.y(1j) = [n,x, (MIM; T Mt )]. However, in contrast to the two-baryon transition ma-
trix To(Z) and to the free resolvei@q(Z), the permutation operatd couples not only the quantum
numbers, but also the dynamically conserved quantum numpers

If charge dependence is allowed for as in the calculations of this thesis, the two-baryon transition
matrix Tq(Z) couples states of total isospln= % andT = %’ as described in Sec. 3.4. Thus, for the
case of charge dependence the discrete three-particle quantum numbers are therefore to be split up
into different sets, i.ey(1j) = [n,x, (MNJM;Mr )], compared with charge independence. The total
isospinT has to be included among the nonconserved quantum numberd SBI ). Otherwise,
the formalism to be developed remains entirely unchanged.

The solutions of the integral equations (3.19a) and (3.24b) are constructed from the corresponding
Neumann series (3.22) and (3.24a) of finite order using the method of Padé approximants described
in Sec. C.4. Because of the permutation operBtcat each iteration step in Egs. (3.22) and (3.24a)
interpolation is required in at least two continuous variables, depending on the used representation of
P. The most convenient one is

. . 1 3(p - p(d,9,%x)) &(p— p(d,q,Xx
o(PQV (1] Plpav(1]))a = [ P REAXIAR=EEAN 6, (. a0;  (c2)

the functionsp(d',q,x), p'(q,9,x) andG,(d,q,x) are given in Appendix A of Ref. [17]. Because

of the & functions, the quantities to be interpolated in the context of Egs. (3.22) and (3.24a) are the
two-baryon transition matriff (Z) with respect to both the initigh and finalp’ relative momenta of

the interacting pair and the deuteron wave functibigM, ToM1,)q. Traditionally, cubic spline inter-
polation is used. However, in this work | present an alternative and, as | think, superior interpolation
technique in terms of Chebyshev polynomials. That novel interpolation technique will then yield a
novel technique for solving the three-particle equations.
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C.1.1 Two-Baryon Transition Matrix and Deuteron Wave Function

The two-baryon transition matrik, (Z) in three-particle space is calculated using the full form of the
two-baryon potentiaby, but for further application3,(Z) is rewritten in an approximate Chebyshev
representation, employed later on for an efficient interpolafigfiZ) is of the general structure

Ta(Z) = vg +v4Go(2)Ta(Z), (C.3a)
Ta(z)—va+UaGa( Va, (C.3b)
Z/p’zdd/q’zdd/pzdp/qqu
X 1AV (') aal PV (I'])[Ta(Z) [pav (1 ]))aalPav(l])]. (C.3c)

According to Eq. (C.3b) the dependenceTgiZ) on the final and initial pair momentg and p
arises from the momentum dependence of the potemtighat dependence is represented in terms of
Chebyshev polynomials as follows:

Z)%Vzv/qqu/p’zdrf/pzdp

< |plav'(1'] Z t0 (1) Syx Ty (X0 2)tL () ol PV (1), (C.4a)
r’r 0
)=y [ dad / S [0 (A TaZla)alta],  (Cab)
r’r 0
Ta(Z) = [ta) Ta(Z)(tal- (C.4c)

The representation (C.4a) of the two-baryon transition matrix is only approximate, since the expansion
is in a finite numben, of polynomials. The employed momentum functions
pt

(Prap)
are related to the Chebyshev polynomidj$x) = coqrarccox), defined in the interval—1,1].
x(p) = (p? — a?)/(p? + &) is the function which maps the intervf, ) of the physical values
of momentump to the interval—1,1]. The form of the mapping functiox.(p) and the parametees
anda,_ are chosen beforehand by experience. The properties of the Chebyshev polynomials are dis-
cussed in detail in Sec. C.1.3. The parameseasda, are taken to be the same for all polynomials.
Separating out factors of tyndr/(p2+aE)L/2 makes the remaining function, which is to be repre-
sented by Chebyshev polynomials, smoother and ensures correct asymptotic behavior of the expansion
for small momenta of the interacting pair. The expansion parameters are the Chebyshev coefficients
Tr n(Xa,Z). They are independent of the pair laloel They are calculated fair',r) =0,...,N—1,
N > ne in Sec. C.1.3 from the exact matrix elementsTgfZ) at the pair momentg, and px cor-
responding to all th& zeros ofTy(x), i.e., Tn(X(px)) = 0. The representation (C.4a) is exact for
all those momentg, and pi, providedn; is chosen as; = N for the number of Chebyshev polyno-
mials [87]; in this case the representation (C.4a) is a true interpolation between the mgnanta
Pk If nc < N, the representation (C.4a) is an approximation also for the monperatad py; | shall
usually choos@. < N, but nevertheless | shall call representation (C.4a) an interpolation scheme.

In Eq. (C.4b) the states

tL(p) = Tr (%e(P)) (C.5)

Yav)a = [ PPdplpav(i))a t(p) (C6)
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are introduced for compact notation. They arise, when interchanging the order of the summation on
the Chebyshev labeland the corresponding integration on the momenpyitnat interchange has to

be done with care; however, | note, that in all calculations only the compog@itsv’(1'j') |t qv)q

of those states together with well-behaved operators will be needed. In Eq. (C.4c) thét'sfaigs

are collected into the vectd,) whose components are to be differentiated by the Chebyshew|abel

by the continuous variablgand by the discrete three-particle quantum numbets the same spirit,

a matrix-element form is introduced in Eq. (C.4b) for the Chebyshev coefficients, i.e.,

/
(Fqv'[Ta(Z)lrq) = 5(qq2 D g T (X0 2) (€7)

Those matrix elements are collected into the oper&tdZ). Thus, Eq. (C.4c) is a concisely abbrevi-
ated form of the two-baryon transition matrix used for developing the integral equation to be solved in
practice; then, the operator dependence on the continuous vagiabteon the discrete three-particle
guantum numbers has to be recovered.

A similar expansion can be given for the nucleon-deuteron sfdtgg)q; the most advantageous
formis

Gal(E+io)|dQXd>a = vg|ddXd)a, (C.8a)

Gy (E+i0)/daxa)a = Y [ pPdp [ a*ddIpdvili)aalpdvili)valdakala  (C.8D)

with E = eg + g%/2My. The resulting expansion corresponding to the expansion of the two-baryon
transition matrix (C.4) is

nc—1
Gy (E+i0)/daaha = Y. [ pPdplpav(li))adoq 3 (PIA, (C.92)
nc—1
Gy H(E+O)|daxa)a = Y 2 [t"QV) oSy AL (C.9b)
(|dqxd>q> ~ Go(E+i0)tg)d. (C.9¢)

The calculation of the Chebyshev coefficiedfsis also described in Appendix C.1.3. In Eq. (C.9c)

the compact notation of Eq. (C.4c) is taken over; the round brackets on the left hand side indicate that
all distinct coupled statdslgxq)q are considered together; the matiiabbreviates thé, ,d/ for all

those states.

The expansion (C.9) represents the dependenceylofaxy)a on the pair momentum in the
same way as the corresponding expansion of the two-baryon transition Mg#ix Furthermore,
vq|daXd)aa{dOXd|va builds up the residue ofy(Z) at the deuteron pole; at that pole the singular
factor is separated out analytically and the residue is expanded according to Egs. (C.8) and (C.9), i.e.,
the Chebyshev coefficients of the two-baryon transition matrix (C.4a) at the deuteron pole are

, drdr
r'r _ L’ ML
Toyn(Xd9,2) = 7 er— /Mg (C.10)
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C.1.2 Three-Particle Equations
Three-Nucleon Continuum

Using the Chebyshev representation of the two baryon-transition matrix (C.4) both Neumann series
(3.22) and (3.24a) can be written as

00

IX(Ej+i0)) = ZO[GO(Ei+i0)P|ta>Ta(Ei+i0)<ta”n|XO(Ei+i0)> (C.11a)
with

IX(Ej+i0)) = Go(Ei+i0)U (Ei+i0)|d G X ) o (C.11b)

[Xo(Ei+i0)) = PldgXd )a (C.110c)
for nucleon-deuteron scattering with the available en&gy eg + 397 /4my, and with

IX(Ei+i0)) = Go(E;+i0)|I*(E+i0)), (C.11d)

[Xo(Ei+i0)) = Go(E +i0) (1+ P) j#(Q,K ;) |B) (C.11e)

for e.m. reactions with the same available endfgyThe dependence OX(E;+i0)) and|Xo(E;+i0))
on the initial state parameters is suppressed in my notation. THXgH-i0)) is singular, the calcu-
lation of all observables in hadronic and e.m. reactions requires it in the regulagtbgmX (E;+i0))
only. Thus, the Neumann series to be calculated igtfgiX (E;+10)), i.e.,

00

(ta|X(Ei+i0)) = Z)<ta|Xn(Ei+io)>, (C.12a)

n=

(ta|Xn(Ei+i0)) = (tq|Go(Ei+i0)P|tq) T o (Ei+i0)(tq|Xn_1(Ei+i0)). (C.12b)

| note, that the structure of Eq. (C.12b) is formally the same as Eq. (A4) of Ref. [19]; it arises
there from the separable expansion of the two-baryon transition mairifact, any discretization
of the two-baryon transition matrix4{Z), i.e., any interpolation scheme which assumg&T to
be calculated for a finite set of initial and final momenta and which then interpolate®) To any
desired momenta with the help of an expansion into a set of analytic functions, can formally be treated
as a separable expansiorHowever, in practical calculations the difference between the separable
expansion of Ref. [19] and the Chebyshev expansion of this thesis is enormous.

I now explain the technique for practically calculating the Neumann series (C.12); | make all
integrations and summations, hidden in the compact form (C.12b), explicit, i.e.,

ot V| X (E; +i0))

0 1 tr’, g /, X G/ /, X tr (ol /, X
— Z Z/ quq/ dx L_(/B (q, q )) ' vv(q q ) _ / LELp(q/ q )) (C.l3)
& /o -1 PH(d,a%) E+i0-8M — L — & 49y pH(d,0,%)

X By T (X G Ei +i0) ot” V" [Xn_1(Ei+i0))

for n> 1. The total baryon conterd + b is the same in the channelsandVv’. The integral (C.13)

contains singularities. The terfi; +i0— oM — % - 2‘1—% - %x)—l, arising from the free resolvent
Go(Ei+i0), develops so-callechovingsingularities of kinematical origin above breakup threshold,
whereas the matrix of the Chebyshev coefﬁcierﬁ#,(l’x g,Ei+i0) shows the deuteron bound state

pole (C.10). The treatment of those singularities is described in Sec. C.2. The first term in the
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Neumann series (C.12), i.g{f" ofV'|Xo(E;i+i0)), is calculated according to

a<tf’q’v’|xo<a+io>> = o(t" V'|P|dGXg, )
_ d th(P(d,a,X)  Guw(d,q,%)  t(pld,q,x) d (C.14)
= X _,|_ 2 2 . AL A 6XXdi L

G/1 0 pr(g.g.%) E- 9% _day PH(d,G,X)

for nucleon-deuteron scattering and according to

at” 4V Xo(Ei+i0)) = o(t” GV [Go(Ei+i0) 1+ P) JH(Q,K 4)[B)

t, .
- [Moras L avaiiQk. By
0 E+i0— M’ — B — 2
» (C.15)
+Z/ qu/ ax L t (P (d,0,%)) Gyv(d,9,X)
P (d,0X) E+i0-8M — o — £ — 495 PH(d,aX)

X0(<5(q7q7 ) ( )|JM(Q K+)|B>

for e.m. processes. The integrand of Eq. (C.14) is regular, whereas the one of Eq. (C.15) contains
integrable singularities; the first term of (C.15) is calculated using the standard subtraction technique,
and the singularities of the second term in (C.15) arentloeingsingularities of Eq. (C.13). Ma-

trix elements of the e.m. curreptp'd'v'(1j)|j*(Q,K)|B) are calculated according to Appendix E.
Equation (C.15) needs interpolation of those matrix elements in the same way as the iteration step
(C.13) needs interpolation of the two-baryon transition matrix; in contrast to Eq. (C.13) | use in
Eg. (C.15) the spline interpolation described in Sec. C.3. Otherwise, compared to the iteration step
(C.13), Egs. (C.14) and (C.15) in principle does not yield any new difficulties and therefore will not
be discussed separately.

The iterative calculation of(t” ofV'|Xn(E;+i0)) requires many matrix multiplications. Two op-
tions for this task are discussed in Ref. [22]. Thst optionwhich follows the strategy of Refs. [17,
19] for a separable expansion of the two-baryon transition matrix and which — after use of the sep-
arable expansion — keeps only thee-dimensionaintegration ong in Eqg. (C.13), is very uneco-
nomical in case of a substantial number of Chebyshev polynomials in the adopted interpolation
scheme; that number is usually much larger than the corresponding ranks of the separable expan-
sion in Refs. [17-19, 46]. | therefore propose a different technique, csdieohd optionn Ref. [22].
The integrations and summations in Eq. (C.13) are carried out, whenever they arise, starting from
right to left. Though | am left withtwo-dimensionalntegrations, this is the natural order of matrix
multiplications taking advantage of the block-diagonal structure of the quantities entering Eq. (C.13).
This procedure reduces the number of required floating point operations considerably. Furthermore,
the actual computer time for the new technique depends only weakly on the number of Chebyshev
polynomials employed. That important logistic change constitutes the new technique of this thesis for
solving the three-particle equations, compared with the technique of separable expansion used before
in Refs. [17-19, 46].

Finally, the partial-wave projected matrix elements of Egs. (3.19) needed for the calculation of the
observables of elastic and inelastic nucleon-deuteron scattering follow,ftogr|X (E;+i0)) in the
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forms
o{dG X |U (Ei+i0)|dGXa)a = Syxy, AL oft' GVIX(Ei+i0)), (C.16a)
v

a{PV(1])|Ta (Ei+i0)Go(Ei+i0)U (Ei+i0)|dG Xg )«
—ZIL Zéxx T (X Ei+i0)o(t” v/ [X(Ei+i0)).  (C.16b)

The on-shell elements of the symmetrized multichannel transition nitEx+i0) between two-body
channels (3.8) are obtained from the result (C.16a). The on-shell elements of the full symmetrized
breakup transition matrikdo(E;+i0) are obtained from the result (C.16b) according to Eq. (3.19b); it
is advantageous to transform the matrix elements (C.16b) first to plane-wave basis and then to apply
also the permutation operatBrof the part(1+ P) according to Eq. (3.19b) in that plane-wave basis.

The partial-wave projected matrix elements (3.25) needed for the calculation of the observables
of e.m. reactions, i.eq(ddsXq,|I*(Ei+i0)) andq(pav(l]j)|Ta(Ei+i0)Go(Ei+i0)I¥(Ei+i0)), follow
from (t"qv|X(E;+10)) in close correspondence with Egs. (C.16).

Three-Nucleon Bound-State

| solve the homogeneous integral equation for the Faddeev amplitude (3.6) using Lanczos method [88].
With respect to the permutation operafyrl face the same problem as for three-particle scattering,
i.e., at each Lanczos-iteration step interpolation in two continuous variables is required. Again, |
use the Chebyshev representation (C.4a) of the two-baryon transition matrix. This immediately im-
plies that also the dependence of the Faddeev amplitude on the pair momeiguspresented by
