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Zusammenfassung
Selbstorganisierende Systeme wie beispielsweise offene, verteilte Rechen- oder Routingsys-

teme führen ihre Aufgabe verteilt und ohne zentrale Kontrolle aus. Allerdings sind verteilte
Systeme mit autonomen Agenten verwundbar für gezielte oder unbeabsichtigte Angriffe von
bösartigen oder defekten Instanzen, da das Verhalten anderer Instanzen nicht vorhersehbar
ist. Bestehende Lösungen wie implizite Trust Communities reduzieren diese Unsicherheit,
indem sie Vertrauen und Reputation als Konzepte einführen, um Angreifer zu isolieren.
Zusätzlich können sich Agenten organisieren und explizite Trust Communities bilden, um
Geschwindigkeit und Robustheit zu erhöhen. Jedoch entsteht mit bisherigen Ansätzen häufig
negativ emergentes Verhalten, wenn sich die Umgebung verändert oder Störungen auftreten.
Während eines so genannten Trust Breakdowns treten mehrere Angreifer dem System bei
und verursachen zeitweise Überlast. In diesem Fall nehmen Agenten keine Aufträge von
anderen Agenten mehr an, da sie alle Partner als unkooperativ einschätzen und versuchen, sie
zu isolieren. Somit verhalten sich nach kurzer Zeit alle Agenten unkooperativ und jeder Agent
arbeitet nur noch für sich selbst. Das System erholt sich in der Regel nicht mehr selbstständig
von diesem Zustand.

In dieser Arbeit wird eine Methode entwickelt, um Selbstorganisation in offenen, verteilten
Systemen zu lenken. Agenten wählen einen Norm Manager (NM), welcher fortan das System
überwacht und beeinflusst, indem er Normen erlässt. Der NM beobachtet Interaktionen und
Bewertungen zwischen Agenten und konstruiert daraus einen Graphen. Anschließend erstellt
er mittels Graphanalysen und Clustering eine abstrahierte Situationsbeschreibung. Wenn die
aktuelle Situation vom Ziel abweicht, werden Normen erlassen, um das System zu lenken.
Außerdem optimiert der NM das System je nach Situation entweder auf Robustheit oder
Geschwindigkeit.

Der entwickelte Mechanismus wird in drei Szenarien evaluiert: Verteilte Sensornetz-
werke, offene Grid Computing-Systeme und verteilte Renderingsysteme. Im Sensornetzwerk-
Szenario ermöglicht der Ansatz eine Erholung von Angriffen durch bösartige Knoten und
erreicht eine Paketzustellungsrate von 95% unter Störung verglichen mit 30% im Referenzex-
periment. Allerdings verursacht der Ansatz einen vernachlässigbar geringen Mehraufwand im
ungestörten System. Im zweiten Szenario zeigen wir anhand offener Grid Computing-Systeme,
dass der NM dauerhafte Bedrohungen wie sich bzgl. ihrer Reputation strategisch verhaltende
Agenten erkennen kann. Durch Normänderungen fördert der NM konsistentes Verhalten,
um die Angreifer zu isolieren, und das System erholt sich in Folge. Außerdem zeigen wir,
dass der NM das System abhängig von der aktuellen Bedrohungslage auf Geschwindigkeit
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oder Robustheit optimiert. Die Integration von neuen Agenten wird beschleunigt, wenn
keine Angriffe beobachtet werden, oder verlangsamt, um Angriffe zu erschweren. Im dritten
Szenario zeigen wir anhand verteilter Renderingsysteme, dass unser Ansatz den Stand der
Technik übertrifft. Im ungestörten Fall reduziert der NM die Replikation und erhöht den
Durchsatz um 90%. Wenn unabhängige Angreifer im System sind, erhöht unser Ansatz den
Durchsatz und erreicht eine höhere Korrektheit der Ergebnisse. Kommen konspirierende
Angreifer ins System, erreicht der Mechanismus weiterhin höhere Korrektheit und Durchsatz,
solange weniger als 50% der Agenten im System Angreifer sind. Erst wenn die Mehrheit der
Agenten Angreifer sind, verhält sich die Referenz minimal besser.

Insgesamt ermöglicht unser Ansatz den Entwurf robuster Systeme, welche unter Störungen
höhere Leistung erbringen. Im ungestörten Fall impliziert dies einen geringen Mehraufwand,
der meist durch Laufzeitoptimierungen kompensiert wird. Zusätzlich schützt der Mechanis-
mus Systeme gegen permanente Angriffe, konspirierende Angreifer und Angriffe auf das
Reputationssystem. Wenn negativ emergentes Verhalten auftritt, kann der NM das System
durch Normen lenken und eine Erholung herbeiführen.

Schlagworte: Selbstorganisation, Offene verteile Systeme, Multi-Agenten-Systeme
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Abstract
Self-organising systems such as Open Distributed Computing or Routing Systems perform

their tasks without central control in a distributed manner. However, distributed systems con-
taining autonomous agents are vulnerable to intentional or unintentional attacks by malicious
or defective entities because of uncertainty about the behaviour of other entities. Previous
solutions such as implicit Trust Communities reduced this uncertainty by introducing trust
and reputation to isolate attackers. Furthermore, explicit Trust Communities allow agents to
organise to increase robustness and performance. However, due to disturbances or environ-
mental changes, negative emergent behaviour may occur during self-organisation. During a
so-called trust breakdown, multiple attackers join the system and cause a temporary overload.
Agents will stop accepting jobs from their peers (including the attackers) which in turn will
believe that their peers are uncooperative and try to isolate them. As a result, all agents stop
to cooperate and every agent is only working on its own. Systems usually do not recover from
this state.

In this thesis, a method is introduced to guide self-organisation in Open Distributed Systems.
Agents elect a Norm Manager (NM) which monitors the system and guides the system by
issuing norms. The NM observes interactions and ratings between agents, performs graph
analysis and clustering to gather a high-level situation description. If that situation diverges
from the goal function, it will issue norms to guide the system. Furthermore, it can tune the
system for either robustness or performance depending on current threats.

The mechanism is evaluated in three application scenarios: distributed sensor networks,
open grid computing systems and distributed rendering systems. In the sensor network
scenario, the mechanism can recover from attacks by malicious nodes and achieves a packet
delivery rate of over 95% during the disturbances compared to 30% in the reference. However,
the approach causes a small but neglectable overhead in an undisturbed system. In the open
grid computing systems scenario, we show that the NM can identify of permanent threats
such as agents which behave strategically regarding their reputation. By changing norms,
the NM guides isolation of attackers by enforcing consistent behaviour and, as a result, the
system can recover in a distributed manner. Furthermore, we demonstrate that depending
on current threats, the NM can tune the system for performance or robustness. Integration
of new agents can be facilitated when no attackers are observed or complicated to prevent
attacks. In the distributed rendering scenario, we show that our approach outperforms a
state-of-the-art solution (BURP). When undisturbed, the NM reduces the replication and
thereby improves throughput by about 90%. With independent attackers, our approach always
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outperforms the throughput of BURP while maintaining better correctness. Furthermore,
when colluding attackers join the system, it also outperforms BURP by a large factor in
throughput and maintains nearly perfect correctness for up to 50% of attackers. Only when
colluding attackers win majority voting (more than 50% of agents are attackers), BURP
performs slightly better.

Overall, the approach enables us to build more robust systems which perform better under
disturbance. Some overhead occurs when the system is undisturbed but due to runtime
optimisations the systems often even achieve higher performance. Furthermore, the approach
counters permanent threads, colluding attackers and attacks to the reputation system. In case
negative emergent behaviour occurs, the NM guides the system to recovery.

Keywords: Self-Organisation, Open Distributed System, Multi-Agent Systems
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1 INTRODUCTION

1. Introduction

In this chapter, we introduce our system model and application scenarios. Furthermore, we
analyse the key challenges and motivate the objectives and success criteria for this thesis.

1.1. Open Distributed Systems and Agents

Distributed Systems (DS) are systems consisting of multiple independent nodes which are
represented as a single system to the user [43]. Since components such as shared memory
or storage are not universally available between nodes, they have to communicate using
messages. Not all kinds of applications perform well on DS [44]. In general, DS belong to
one authoritative domain and follow the goal of a single user. Furthermore, all nodes follow
the same goal.

Open Distributed Systems (ODS) specifically describe DS consisting of nodes which
belong to different authoritative domains. This class of systems is commonly researched in the
discipline of Organic Computing (OC) [45]. In contrast to DS, in ODS nodes are autonomous
which means that there is no external control over their behaviour. Nodes can, therefore, join
or leave the system at any time. We assume at least one distinct user per authoritative domain
which sets the goal for the nodes in this domain. Furthermore, nodes can behave incorrectly,
intentionally or by error. The technical implementation of a node is up to its user which
cannot be punished for malicious behaviour. Generally, nodes will cheat if it is beneficial to
reach their goals. As a consequence, there cannot be any assumption of benevolence, and we
must consider nodes as rational agents which act on behalf of their user to reach their goal in
the best possible way [46]. Since agents act selfishly, high uncertainty about their behaviour
exists (when observed externally). Furthermore, agents are considered as black boxes where
no introspection is possible.

In ODS, we define a utility function U which measures the utility per node. This value is
evaluated locally and ranges from 0 (no utility) to Umax (more is better). The upper limit Umax

may be unknown and might depend on the system goal or the environment.

1.1.1. Open Distributed Computing Systems

In Open Distributed Computing System (ODCS), the key requirement for an application
running on ODS is that its jobs have to be parallelisable as multiple work units (WUs). In
general, there may be dependencies between WUs or jobs. However, in this work, we consider
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bag-of-tasks applications which contain only independent WUs but the general approach can
be extended to include dependencies as well [47].

Reliability is a concern because the probability that at least one component is broken
increases with the size of the system. Most traditional algorithms are not designed to deal with
node failures. Therefore, jobs are usually separated into multiple idempotent WUs. When all
WUs are finished, one of the following approaches is usually applied in DS and ODS (which
are both considered in this thesis):

• Verifying applications – Results are verified after calculation. This only works with
certain applications where validation is significantly cheaper than recalculation.

• Replicating applications – Results are calculated multiple times and only accepted
when the results match. Since this leads to overhead, the previous approach is usually
preferred.

1.1.2. Open Distributed Routing Systems

As another application scenario, Open Distributed Routing Systems (ODRS) consist of
multiple nodes which forward data for their peers. Usually, those networks contain a few data
sources which are called root. The radio range of the autonomous nodes is limited and they
decide locally to which peer they forward packets [48–50].

1.2. Challenges of Open Distributed Systems

In this section, we discuss the main challenges when dealing with ODS from a system
perspective. A detailed threat model can be found in [C13, 51].

1.2.1. System Openness

The system is considered as open because agents are free to join or leave an ODS at any time.
Therefore, we cannot assume that they fear future punishment because they could misbehave
and then leave the system before any punishment is enforced. For example, an agent may join
the system, exploit it until it is detected, and leave after that. In some application scenarios, an
attacker can leave after it was isolated and join with a new identity to regain initial advantages
which might be given to new agents.
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1.2.2. Black Boxes

In general, the implementation of agents cannot be controlled or introspected. Both the agent
and environment executing its code have to be considered as black boxes which can (and will)
misbehave, lie about their state and behave selfishly. Therefore, no assumption of benevolence
can be made.

1.2.3. Uncertainty and No Assumption of Benevolence

Agents, just like humans, can change their behaviour as a reaction to changing environmental
conditions in order to fulfil their goals. This behaviour change leads to uncertainty since it
is not predictable. For example, a perfectly behaving agent may start to cheat at any time if
this appears advantageous. Similarly, a misbehaving agent may rehabilitate when detected.
Furthermore, agents may act as groups and behave differently when dealing with different
partners. As a consequence, we cannot assume any benevolence.

1.3. Assumptions

In this work, the following key assumptions are made:

• System Openness – Agents can join or leave at any time.

• Black boxes – Implementations of agents are unknown and cannot be observed. Also,
it is not possible to watch the memory or any internals from the outside.

• Uncertainty/No assumption of benevolence – Agents may be broken or malicious.
They exploit the system if it aids their goal.

• Bag-of-Tasks applications – All work units of one job can be calculated in parallel.

• Known communication protocol – All agents know and follow the communication
protocol. It is assumed the protocol is deadlock-free and there is a timeout in every
state in case an agent leaves the system.

• Local goal – Every agent has a local goal. This goal may be unknown to other agents.

• Global goal – There is a global goal for an ODS which is usually different from the
local agent goals. It is not unusual that local and global goals are contradicting, thus
leading to changing/unpredictable agent behaviour.
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1.4. Trust and Reputation

As one mechanism to overcome those challenges in ODS, previous works introduced trust
and reputation (e.g. [51]). In a first step, nodes rate each other after each interaction and store
those experience ratings locally. If a node receives a request from a previously unknown node,
it asks trusted peers for their ratings for this particular node and calculates a reputation value
for the unknown node. Only cooperative nodes will reach a high reputation, and nodes prefer
those over nodes with low reputation. Thereby, attackers are isolated.

Furthermore, after agents made sufficient experience, well-behaving nodes can decide to
form a Trust Community (TC) with their trusted peers. Within this organisation, agents agree
to cooperate with all other members. If they fail to work for other members of the TC, they
will be expelled by the community. Overall, agents gain lower cooperation overhead, higher
efficiency and higher robustness when in a TC.

1.4.1. Incentives and Sanctions

To overcome the inherent problems of an open system where no particular behaviour can be
assumed, a trust metric was introduced to calculate the reputation. Agents receive ratings for
all their actions from their particular interaction partners. This allows others to estimate the
future behaviour of a certain agent based on its previous actions. To perform this reasoning, a
series of ratings for a certain agent can be accumulated to a single reputation value using the
trust metric.

Autonomous agents need to become aware of the expected behaviour in the system. There-
fore, we influence the desired actions by norms. These norms are valid for an Action in
a certain Context and, thereby, guide the agents. To enforce the behaviour, they impose a
Sanction if violated or offer an Incentive if fulfilled.

In this scenario, good trust ratings are used as an Incentive and, bad trust ratings impose a
Sanction (agents with higher reputation values have a higher chance to get their work units
computed). Based on the norms, agents receive a good rating if they work for other agents and
a bad rating if they reject or cancel work requests. As a result, the society isolates malevolent
agents and maintains a good system utility in most cases.
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1.5. Negative Emergent Behaviour (NEB)

Emergent behaviour as a consequence of self-organised interactions among distributed agents
can result in positive and negative effects [C8, W30, W32]. Establishing implicit Trust
Communities (iTCs) (see Section 1.7.1) by increasing cooperation with other well-trusted
agents and consequently isolating malicious agents to a certain degree is considered as
positive emergent behaviour in this context. In contrast, Negative Emergent Behaviour (NEB)
typically impacts the overall system performance and consequently needs to be countered. In
the following, we describe two scenarios to illustrate the impact of such effects.

1.5.1. Trust Breakdown

As mentioned in Section 1.3, agents are free to join ODS at any time. In case of a potentially
large group of malicious agents joining the system simultaneously, we can observe a negative
emergent effect with respect to the actual trust level of currently participating agents. For
instance, a group of colluding Freeriders (see Section 1.6.2 for a definition of this stereotypical
behaviour) will load the system with additional work packages while simultaneously rejecting
to work for others. Consequently, benevolent agents will also reject work packages issued
by the Freeriders (following a tit-for-tat concept known from game theory, where an agent
first cooperates and then replicates the opponent’s previous action [52]). As a result, we can
observe numerous bad ratings for both benevolent and uncooperative agents. In sum and
on average, the trust levels will drop drastically resulting in a system state where agents do
not trust each other any more. We consider such a situation as a disturbed system state; this
emergent situation is called trust breakdown [53, 54].

Under normal conditions, i.e. when a limited set of Freeriders without synchronised and
colluding behaviour is part of the system, detection is fast and does not impact the functioning
of the trust system. When agents estimate that an interaction partner is uncooperative, i.e. a
Freerider, they simply stop to cooperate (neither submitting work to nor accepting it from
this agent). In contrast, the emergent trust breakdown behaviour is the aggregated result of
many simultaneous and synchronised interactions – which is not apparent from the single
interaction itself.

1.5.2. Overload Situations

A second negative emergent behaviour can be observed in overload situations. In case of high
resource demands, agents might distribute significantly more work packages to the system

5



1 INTRODUCTION

than can be processed in parallel. Consequently, queues fill quickly and agents experience
very long waiting times until results are available. Since agents will receive no benefit from
participating in the grid any more, they might leave the system and process their work on their
own. Hence, we observe negative emergent behaviour that disturbs the grid or even prohibits
it from functioning as desired.

A possible strategy to counter such a situation is to restrict the submit ratio, i.e. urging
agents to submit less work packages than they process on their own for a certain period. This
is assumed to balance the load during operations and therefore avoid peak conditions that
motivate benevolent agents to leave the system.

1.6. Application Scenarios

As exemplary ODS, we consider three application scenarios which are introduced in the
following. All three application match our assumptions (see Section 1.3) and expose different
types of NEB (see Section 1.5). We will use those applications later in the evaluation.

1.6.1. Distributed Low-Power Sensor Networks

Sensor networks consist of numerous distributed nodes which can only communicate locally.
Nodes sense locally and send data to a central root node which only few nodes can reach
directly because the radio range is limited (i.e., IEEE 802.15.4 [55]). Therefore, data is
forwarded by peers to the next node. “The Routing Protocol for lousy and Low-power
networks” (RPL; [56]), an IPv6 Routing Protocol, is used to find the best path to the root

node. “The best path” is defined using an objective function and generally tries to minimise
energy consumption (minimal number of transmissions) and to maximise the Packet Delivery
Rate (PDR) of data packets. Exemplary applications running on top of sensor networks are
described in [48–50].

In Figure 1, we show a sensor network consisting of 27 nodes. If the attacking nodes
just failed, RPL would choose the depicted blue paths. However, if they misbehaved, the
surrounding nodes would still send them data which would never reach root.

Standard protocols from the domain of mobile ad-hoc networks (i.e., AODV [57] or
OLSR [58]) are not applicable due to the limitations of the nodes mentioned above. RPL is a
distance vector routing protocol designed for the limitations given by the hardware and the
special environmental challenges in Wireless Sensor Networks (WSNs). To route packets,
RPL constructs a DODAG. A DODAG is an appropriate routing assumption for WSNs,
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Figure 1: An exemplary sensor network consisting of 27 nodes which includes one root (1; grey) and
two attackers (26, 27; red). All other nodes behave well. The radio range of root is shown in
green (Nodes 2, 3, 26 and 27 will receive the signal at 100% strength). Other nodes have a
similar range. An exemplary routing path is shown in blue.

because most of the traffic is directed to the sink node. In RPL, this node is called root. A
network can contain more than one RPL instance; each instance has its own goal and may
consist of more than one DODAG to fulfil this goal. There is only one root per DODAG.
The process of adding a node to a DODAG is shown in Figure 2. To route a packet to the
root, all intermediate nodes forward the packet to their parent nodes until the root is reached.
Nodes periodically communicate their rank by sending DODAG Information Object (DIO)
messages. Although most packets are sent to the sink, some packets need to be sent from the
sink to another node. To be able to handle these cases, RPL has the ability to gather all nodes
forwarding a packet to the root. Using this information, RPL is able to store the routing path
into a packet and route it down to the desired node. However, this mode is optional and may
be disabled to save memory on the nodes.

Choosing a parent in the DODAG is a task performed by each node on its own. The
decision is influenced by different metrics, i.e. the required energy to transmit a packet to the
next node. Furthermore, constraints such as the maximum number of forwards can influence
the structure of the resulting DODAG. From all this information, the Objective Function (OF)
generates the rank of a node. The rank influences the position of a node in the DODAG.
Thereby, the root always has a rank of 0. Only nodes with a lower rank can be parents of a
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Figure 2: The process of adding a node to a RPL DODAG. The new node (gray) has an initial rank of
unlimited. It sends an announcement message. The neighbouring nodes answer with a DIO
containing their rank and routing information. Based on that, the new node will choose its
rank. The root node is shown in black on top with rank 0.
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node. To forward a packet, a node does not necessarily take the parent with the lowest rank.
This decision is left to the OF as well. The ability to construct an application-specific routing
graph is a big advantage of RPL compared to AODV [57] or OLSR [58].

Due to the openness of distributed sensor networks numerous attacks are possible. Besides
failures, nodes can misbehave and act as blackholes or sinkholes. RPL can only cope with
failing nodes, and the sender will not notice this failure because acknowledgement packets are
not sent in RPL. Even a single malicious node can blackhole most of the network and every
other node has to recognize it which will rarely happen. Furthermore, groups of collaborating
attackers can sinkhole the complete network without much effort and the network will never
recover.

1.6.2. Open Grid Systems (OGS)

OGS consist of numerous heterogeneous nodes which can join or leave at any time. Every
node is considered as an agent which acts on behalf of its user and participates in the
cooperative network to get its jobs calculated faster. Agents act as submitter to distribute their
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work and as worker to reciprocally work for other submitting agents. As utility function U,
open grid systems use the speed-up σ (1) which captures the gain from distributing work
into the grid. τself is the time which the agent would need to perform the work on its own.
Similarly, τdistributed is the time needed when distributing the work which is determined by
the slowest peer p in the list of parterns P because all work units are distributed at the same
time (2).

σ B
τself

τdistributed
(1)

τdistributed B max
p∈P

{
tcommunication,p + tcomputation,p

}
(2)

Consequently, agents will leave the system if they do not gain sufficient speed-up from
participating (i.e. their speedup falls below 1). We consider the following five stereotypic
agent-behaviours in our system:

1. Adaptive Agents – These agents are cooperative. They work for other agents who
earned high reputation in the system. How high the reputation value has to be generally
depends on the estimated current system load and how much the input queue of the
agent is filled up.

2. Freeriders – Such agents do not work for other agents and reject all work requests.
However, they ask other agents to work for them. This increases the overall system
load and decreases the utility for well-behaving agents.

3. Egoists – These agents only pretend to work for other agents. They accept all work
requests but return fake results, which wastes the time of other agents. If results are not
validated, this may lead to errors. In any case it lowers the utility of the system.

4. Cunning Agents – These agents behave well in the beginning but may change their
behaviour later. Periodically, randomly, or under certain conditions they behave like
Freeriders or Egoists. This is hard to detect and may lower the overall system utility.

5. Altruistic Agents – Such agents will accept every job. In general, this behaviour is
not malicious and increases the system performance. However, it hinders isolation
of bad-behaving agents and impacts the system goals because Altruistic Agents will
continue to work for attackers even when those are known.

In OGS certain threats arise (as described in Section 1.6.2): Freeriders do not work for others
but try to submit their work anyway. Furthermore, Egoists only pretend to work for others
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and return fake results. Additionally, colluding attackers pretend to work for each other and
issue fake ratings. Finally, Cunning Agents change their behaviour over time.

Adaptive Agents are referred to as well-behaving (WB) agents. Freeriders and Egoists are
considered as bad-behaving (BB) agents. Cunning Agents alternate between both behaviours
and, therefore, cannot be clearly classified. Altruistic Agents can be seen as well-behaving,
but they also work for bad-behaving agents. Thereby, they decrease the fairness in the system
and in that context may also be considered as bad-behaving. Finally, bad-behaving agents
might collude to further exploit the system. This means, they implicitly avoid assigning work
to each other since they are mutually aware of their exploitation strategy.

To cope with those attackers, we consider the TDG which is an open grid system imple-
mentation using trust and reputation as introduced above. For more details see [51]. The
TDG supports Verifying applications and Replicating applications. However, for simulation
purposes it can be run with pure virtual applications.

Attacks can happen when malicious agents join the system at startup or during runtime.
In this scenario, malicious agents distribute their work, and as a consequence the utility for
well-behaving agents decreases since they had no previous experiences with the new agents
and are consequently not aware of their malicious behaviour. However, those agents quickly
receive bad ratings such that their reputation in the system is reduced. At this point, other
agents stop to cooperate with these increasingly isolated agents. Thus, we try to minimise the
impact and duration of these disturbances, but they still decrease the system utility [59]. This
often leads to NEB such as a trust breakdown (see Section 1.5).

1.6.3. Distributed Rendering

A

B C

Figure 3: Three studios (A,B,C) with multiple workers

Another application scenario is a distributed rendering application as payload on top of a
volunteer-based, self-organised grid system (Figure 3). The file size of an uncompressed film
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is usually very large. To estimate the required network bandwidth and computing power for
distributed rendering, we analysed the raw 4K footage of the motion picture Big Buck Bunny

from the Blender Foundation, which is publicly available. The film has a frame rate of 60
frames per second due to stereoscopic 3D and consists of 79781 frames [60]. Despite the
size of the whole film project, each raw frame has a size between 10 and 20 MB, which has
to be transmitted to the participants of the network. The workers also need the rendering
environment, which differs among every scene in the film. For example, Big Buck Bunny

is divided into 120 scenes, and the compressed scene rendering environments have a size
between 1 MB and 60 MB. However, the submitter can restrict the worker to only render
frames from one scene. Therefore, the worker only needs to load this one scene to be able to
render all frames from it. This leaves the requirements on bandwidth to be small compared
to the computational requirements. These are ranging “from a few hours to several weeks
of CPU time” per frame [60]. For comparison: Another animation studio claims, that they
require 11.5 hours to render a frame on average for their animated films [61].

Figure 3 shows the concept of multiple film studios which participate in the system and
provide multiple workers each. Agents working on behalf of a studio act as a proxy to the
internal workers in the worker role. We call them Proxy Worker, which behave like a single,
fast worker to the grid. In the submitter role, agents can simply send jobs to the Proxy Worker

without knowing about the internal workers. This scenario runs as Replicating application on
top of the TDG mentioned in Section 1.1.1.

1.7. Agent Organisations

Agents in ODS can cooperate and form implicit or explicit organisations to defend against
attacks. We introduce two types of Trust Communities (TCs) in the following.

1.7.1. Implicit Trust Communities (iTCs)

Implicit Trust Communities (iTCs), as developed by Klejnowski [51], are the simplest form of
organisation in ODS. In this section, we present the mechanism and the resulting behaviour.
Then, we describe potential application scenarios and limitations which apply to this approach.

Agents locally rate each other after every interaction and calculate the reputation based on
the aggregated ratings for all other agents. Therefore, iTCs constitute a fully decentralised
solution. Ratings can have values between -1 for a very bad experience and 1 for a very good
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Figure 4: A trust graph with agents as nodes and trust relationships as edges. The size of a node
corresponds to the reputation of an agent and the thickness of an edge to the trust value. The
graph is clustered using a Force Algorithm [62] which pushes nodes apart and contracts
by the thickness of edges. Visually, nodes with high reputation form the centre and are
considered to be within the iTC. Attackers with low reputation are isolated at the perimeter.
Groups of agents are coloured (not relevant here) [O42].

Figure 5: The local trust values for all peers of an agent ranked by their reputation (Rep; PL and
WL are not important here). All agents above TTsub are considered as cooperative agents.
Agents below TTsub and above zero are undecided and agents below zero are considered
untrustworthy. Agents will prefer to work with other cooperative agents [63].
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experience. Consequently, the aggregated reputation ranges from -1 for very low to 1 for
very high. Agents then sort their peers by reputation and consider all agents above a certain
threshold TTsub to be in the iTC. They may also cooperate with agents with a reputation
smaller than TTsub but higher than zero if no other cooperation partners can be found. However,
they will refuse to work for agents with negative reputation and, thereby, isolate those attackers
(see Figure 5). Consequently, agents have a strong incentive to cooperate with WB peers
because those peers will reciprocally work for them, too [59].

Using iTCs, various attacking behaviours can be counteracted. In general, all non-
cooperative behaviour which results in bad experience ratings can be detected. After an
attack by a group of agents the system starts a self-organised recovery process and isolates
the attackers once their reputation decreased. This especially includes Freeriders and Egoists

(see Section 1.6.2) because their behaviour directly results in a low reputation. Furthermore,
Cunning Agents are temporarily detected and isolated.

In Figure 4, we depict an agent community as a graph. Edge thickness represents aggregated
trust, and node size corresponds to the reputation of the agent. WB agents form the centre of
the graph, and attackers are isolated at the border. In practice, iTCs perform very well in the
sensor networks application scenario (see Section 1.6.1). Nodes can only communicate locally
with a small number of peers. Therefore, distributed self-organised iTCs isolate attackers
without much overhead. Furthermore, iTCs are used in OGS and protect them against most
non-colluding attackers.

Since iTCs organise themselves in a fully distributed way, an attacker has to be detected
by each agent separately which may take a while. Therefore, recovery speed is low when
dealing with larger groups of attackers. Another limitation is posed by collusion attacks where
multiple agents agree to exploit the system as a group. Those agents may only pretend to work
for each other, assign fake ratings and gain a fake positive reputation. When this attack is
organised correctly, it cannot be detected in a decentralised way by an iTC because attackers
can permanently generate more good ratings than they receive bad ratings which are given by
non-attackers.

1.7.2. Explicit Trust Communities (eTCs)

To overcome some limitations of iTCs, we allow agents to form temporary organisations
called explicit Trust Communities (eTCs). They elect a manager which monitors compliance
to the rules within the community.
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To counteract the limitations of iTCs, we add an explicit membership function in eTCs.
Agents within an iTC can decide to form an eTC with trusted peers and ask those peers
if they want to join. If a sufficient number of members is found, they elect an temporary
Trust Community Manager (TCM) as master which manages membership. Within an eTC,
agents can omit additional safety mechanisms such as replication of jobs which decreases the
overhead necessary in ODS. Agents agree to work for any other member in the eTC when
joining. If an agent misbehaves, other members can complain and the TCM will expel it from
the community. During the lifetime of an eTC, the TCM might ask other agents to join if they
proved sufficiently trustworthy to maintain an adequate member count. If the eTC becomes
too small, it will eventually dissolve because maintaining the TCM would induce too much
overhead while creating little value.

In Figure 6, we show the overall system structure of an eTC within an ODS. Agents on
the left form an iTC (red and blue) while some agents decide to join the eTC on the right
(yellow and orange). The TC members elect a TCM (orange) and prefer to work within the
community because of lower overhead. Additionally, in Figure 7, we show a graph from the
OGS scenario with four eTCs marked with different colours. Agents prefer to work within
the eTCs and maintain a high reputation.

Figure 6: System structure of a system consisting of an iTC on the left (red and blue) and an eTC
on the right (yellow and orange). The TCM is depicted in orange and eTC members in
yellow. Agents prefer to work within the eTC but are also free to work with agents outside
the eTC [51].
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Figure 7: Graph from an experiment in an OGS scenario. The size of a node corresponds to the
reputation of an agent and the thickness of an edge to the trust value. The graph is clustered
using a Force-Algorithm [62] which pushes nodes apart and contracts by the thickness of
edges. Four eTCs have formed (coloured nodes), and an iTC is shown in the center. Attackers
are located between the eTCs as very small nodes (gray) with low reputation [O41].

When an attack starts after agents formed an eTC, they are mostly not affected by the attack
as long as the attacker is not inside the eTC. If attackers are mostly outside of the eTCs, the
impact will be much lower than with only iTCs. Even when attackers are within eTCs, they
will be expelled, and the self-organised recovery is much faster. In general, the robustness
of the ODS increases and the system can deal with larger attacks. Futhermore, overhead is
reduced by skipping safety measures within the eTC. To minimise organisation overhead,
the TCM adjusts the member count to be large enough to provide less safety overhead but
sufficiently small to keep communication overhead at a minimum.

In the OGS scenario, eTCs provide advantages when large-scale attacks occur or when
attackers are colluding to exploit the system (see Section 1.6.2). We do not apply eTCs to
sensor networks because their nodes have too few peers to benefit from eTCs.

Generally, an agent society gains robustness and performance from eTCs. However, eTCs
can only form in relatively friendly environments. Especially, in the presence of NEB (see
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Section 1.5), agent do not mutually trust each others and eTCs cannot form.

Similarly, during collusion attacks, where attackers coordinate and issue fake positive
ratings to each other, attackers will be able to join eTCs. As a consequence, those eTCs will
usually dissolve quickly. Another limitation surfaces when overload or saturation occurs
because agents are no longer able to accept any work from their peers within the eTC.

1.8. Problem Statement

To cope with NEB in ODS, we extract the core objectives for this thesis and define success
criteria to measure the effectiveness of different techniques.

1.8.1. Objectives

In ODS, certain situations (such as NEB or a trust breakdown) cannot be detected with local
knowledge only. However, to maintain a stable and robust system agents need to detect
long-term threats (e.g. posed by colluding agents) and take countermeasures as a collective.
Therefore, the goal of the work is to develop a mechanism for a collective of agents in an
ODS to detect and mitigate NEB. Thus, the mechanism should allow agents to keep their
autonomy. Instead, we are searching for new mechanisms which are able to and influence the
behaviour of the (semi-autonomous) nodes through indirect guidance only because agents
cannot be forced to perform an action in open systems. We want to use norms as a basic
mechanism for this purpose.

More specifically, the overall goal is to maximise the utility of the well-behaving agents in
the system and the system in general. This especially applies during and after disturbances.
However, the cost of the mechanism (in terms of utility) should also be minimal in case of no
disturbances. Furthermore, we aim to generally increase the active robustness of the system
by introducing active mechanisms which are only activated when a certain disturbance occurs
and was detected. Long-term or permanent disturbances are particularly interesting because
recovering from those will largely benefit our main goal.

1.8.2. Success Criteria/Metrics

To measure success we observe the utility of a system which is application-specific. Generally,
the overall goal should be to maximise the utility. When disturbances do not occur, reasonable
optimisation should be performed and overhead for security measurements should be reduced.
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In general, we want to see only minimal (or no) overhead (measured in terms of utility
decrease) when the system is operating normally.

When a disturbance occurs, we expect the system to detect this event and start an active
recovery mechanism if needed. Later, it should disable the mechanism if no longer necessary.
Thereby, we should observe a smaller utility degradation when compared to a reference
experiment without the developed mechanism. Furthermore, if no suitable active recovery
mechanism is available we expect the utility to not become worse.

Specifically, we expect the system to recover from permanent attacks which are not ob-
servable from a local perspective of an agent. Those attacks, which can be detected from the
system-level only, should be identified and security measurements should be enabled. This
includes special tailored attacks to the reputation system and secondary effects such as NEB.
Colluding attackers may attack the reputation system by assigning fake ratings and trigger
NEB when successful. Ideally, we can prevent the attack to the reputation system. However,
if that succeeds, we should be still able to recover from the resulting trust breakdown.

To summarise this section, we aim at:

• Utility Maximisation – Utility should be maximal when no attacks occur. Thereby,
the overhead introduced by the measures should be minimal when no attacks occur and
optimisations should be triggered.

• Fast Recovery from Attacks – When attacks occur, they should be detected and
security measurements should be enabled. This should accelerate recovery from such
events.

• Detection and Mitigation of Permanent Threats – The mechanism should be able
to detect and mitigate permanent threats without much overhead when those do not
appear.

• Detection and Recovery from Attacks to the Reputation System – Attacks to the
reputation system are generally possible but should be detected and mitigated.

• Recovery from NEB – The system should be able to recover from NEB by encouraging
cooperation and, if necessary, relaxing constraints.

1.9. Outline of this Thesis

This thesis is structured as follows: In Chapter 1, we motivated the challenge of ODS and
introduced our three application scenarios. Additionally, we defined the objectives and success
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criteria. Afterwards, in Chapter 2, we investigate related work and discuss previous work.
We introduce previous work from the area of trust and reputation, ODS and normative multi
agent systems. Furthermore, we review approaches from all application scenarios and rate
them according to our criteria. Then, we present our approach to introduce a higher-level
Norm Manager in Chapter 3 which observes and guides the system during runtime. First,
we introduce the observer part which monitors the network structure, communication and
trust relationships. Based on this it builds and analyses graphs to assess agent behaviour
and find groups of colluding agents. Afterwards, the controller compares the system state to
thresholds and changes norms to defend or optimise the system. We evaluate our approach
in all three application scenarios in Chapter 4 and show that it outperforms state-of-the-art
systems. Thereafter, in Chapter 5, we discuss the results regarding our success criteria and
goals. Finally, we conclude and give an overview about future work.
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2. Previous and Related Work

In this section, we discuss previous and related work. First, we describe the state-of-the art
for the techniques used. Afterwards, we analyse if related approaches could be used to solve
our challenge. Finally, we present an overview and show that the state-of-the-art systems do
not meet our criteria.

2.1. Previous Work

Our approach uses or extends the following techniques. However, on their own they are not
suited to solve our challenge.

2.1.1. Open Grid Computing Systems

OGS are used to share resources between multiple administrative authorities. The ShareGrid

Project in Northern Italy is an example for a peer-to-peer-based system [64]. A second
approach is the Organic Grid, which is peer-to-peer-based, but with decentralised schedul-
ing [65]. Compared to our approach, these approaches assume that there are no malicious
parties involved and each node behaves well. Another implementation with a central tracker
is the Berkeley Open Infrastructure for Network Computing project (BOINC) [66].

All those systems solve a distributed resource allocation problem. Since work units can
be computed faster when agents cooperate, they reward and, thus, maximise cooperation.
Additionally, a high fairness value ensures equal resource distribution (cf. [67–69]).

We model our grid nodes as agents. Agents follow a local goal which differs from the
global system goal [70]. We consider agents as black boxes which means that we cannot
observe their internal state. Thus, their actions and behaviour cannot be predicted [71]. Our
Trusted Desktop Grid supports Bag-of-Tasks applications [72].

A classification of Desktop Grid Systems (DGSs) can be found in [73]. A taxonomy can be
found in [74]. It is emphasised there that there has to be some mechanism to detect failures
and malicious behaviour in large-scale systems. Nodes cannot be expected to be unselfish and
well-behaving.
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2.1.2. Trust and Reputation

In contrast to other state-of-the-art works, we do not assume the benevolence of the agents [46].
To cope with this information uncertainty, we introduced a trust metric. Trust has been
discussed in the domain of philosophy [75], psychology [76] or sociology [77]. A review
about computational trust can be found in [78]. A general overview about trust in Multi-Agent
Systems can be found in [53].

Ramchurn et al. [79] described an early trust metric. Another implementation of trust in
a DGS was evaluated in [80]. More recently, Klejnowski [51] proposed a trust metric and
reputation system for ODS. However, the metric has some short-coming when rational agents
use it for reasoning. In some cases, agents will not perform desired actions because it would
decrease their reputation. We will extend this metric in Section 3.2.

2.1.3. Norms

Norms are similar to laws and can be expressed in deontic logic and argumentation. Individuals
can reason based on these norms. Since there are multiple actions available, they may use
additional factors or preferences [81]. Other approaches use Defeasible Logic (DL) to
efficiently model [82] and reason [83] about norms. They separate facts and rules, which
can be strict rules, defeasible rules, and exceptions from defeasible rules (called defeaters).
To resolve conflicts between two rules reasoning about the same action, priorities can be
specified [84]. All reasoning can be performed in linear time and is stable even when norms
are not consistent [85].

We base our norm format on Urzică and Gratie [86]. The authors developed a model for
representing norms using context-aware policies with sanctions. They consider reputation
when making decisions based on norms. We use a conditional norm structure as described
in Balke et al. [87]. Most of our norms can be characterised as “prescriptions” based on [88],
because they regulate actions. Our norms are generated by a centrally elected component
representing all agents which classifies them as an “r-norm” according to Tuomela and
Bonnevier-Tuomela [89]. By using norms, our agents can reach agreements and express
commitments [89]. However, the agents can still violate such commitments and risk a
sanction. Thereby, the agents stay autonomous. In Hollander and Wu [90], the authors present
a norm lifecycle including norm creation, enforcement, and adaption which is revisited in our
approach.
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2.1.4. Normative Multi-Agent Systems

This work is part of wider research in the area of norms in Multi-Agent Systems (MAS).
However, we focus more on improving system performance by using norms than researching
the characteristics of norms [91]. Normative Multi-Agent Systems (NMAS) are used in
multiple fields: e.g. Governatori and Rotolo [92] focus on so-called policy-based intentions in
the domain of business process design. Agents plan consecutive actions based on obligations,
intentions, beliefs, and desires. Based on DL, social agents reason about norms and intentions.

In Artikis and Pitt [93], the authors present a generic approach to form organisations using
norms. They assign a role to agents in a normative system. This system defines a goal,
a process to reach the goal, required skills, and policies constraining the process. Agents
directly or indirectly commit to certain actions using a predefined protocol. Agents may join
or form an organisation with additional rules.

The normchange definition [94] describes attributes, which are required for NMAS. Ten
guidelines for implementation of norms to MAS are given. We follow those rules in our
system.

When norms are involved, agents need to make decisions based on these norms. Conte
et al. [95] argue that agents have to be able to violate norms to maintain autonomy. However,
the utility of certain actions may be lower due to sanctions.

According to Savarimuthu and Cranefield [96], NMAS can be divided into five categories:
norm creation, norm identification, norm spreading, norm enforcement, and network topology.
We use a leadership mechanism for norm creation and norm spreading. For norm identification,
we use data mining and machine learning. For norm enforcement, we use sanctioning and
reputation. Our network topology is static.

Related approaches use NMAS for governance or task delegation in distributed systems [97].
However, we focus on improving technical systems and their approach is not directly applica-
ble.

2.1.5. Tragedy of the Commons

Our scenario is similar to management of Common Pool Resources (CPRs). According to
game theory, this leads to a tragedy of the commons [98]. However, Ostrom [99] observed
cases where this did not occur. She presented eight design principles for successful self-
management of decentralised Enduring Institutions. Pitt et al. [100] adapted these to NMAS:
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1. Clearly defined boundaries: those who have rights or entitlement to appropriate

resources from the CPR are clearly defined, as are its boundaries. This means that
ownership for all resources must be clearly defined.

2. Congruence between appropriation and provision rules and the state of the prevailing

local environment. Norms or rules should discourage over-usage by imposing sanctions
and encourage cooperation/sharing of those resources.

3. Collective choice arrangements: in particular, those affected by the operational rules

participate in the selection and modification of those rules. Agents participating in the
system should have an influence on the rules.

4. Monitoring, of both state conditions and appropriator behaviour, is by appointed

agencies, who are either accountable to the resource appropriators or are appropriators

themselves. The monitoring instance should be elected/selected by the users of the CPR
which could be one of the users.

5. A flexible scale of graduated sanctions for resource appropriators who violate commu-

nal rules. Sanctions should be gradual and users should not instantly be expelled (or
death sentenced) to maintain a healthy community.

6. Access to fast, cheap conflict resolution mechanisms. In case of conflicts there should
be a fast and cheap resolution mechanism. The mechanism can either decide about
sanctions or change rules.

7. Existence of and control over their own institutions is not challenged by external

authorities. Outside institutions should fully delegate the authority for the CPRs and
not intervene.

8. Systems of systems: layered or encapsulated CPRs, with local CPRs at the base level.

Hierarchical systems or institutions should be used and authority should be delegated
to reduce overhead.

Klejnowski [51] implemented most of those principles in the previously mentioned TDG
scenario with eTCs. However, Collective choice arrangements, Monitoring and Graduated

Sanctions are very limited. In this dissertation, we will extend those implementations.

2.1.6. Robustness

The term robustness in literature is widely used with different meanings, mostly depending
on the particular context or underlying research initiative. Typical definitions include the
ability of a system to maintain its functionality even in the presence of changes in their
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internal structure or external environment (sometimes also called resilient or dependable

systems) [101], or the degree to which a system is insensitive to effects that have not been
explicitly considered in the design [102].

Especially when considering engineering of information and communication technology-
driven solutions, the term “robust” typically refers to a basic design concept that allows the
system to function correctly (or, at the very minimum, not failing completely) under a large
range of conditions or disturbances. This also includes dealing with manufacturing tolerances.
Due to this wide scope of related work, the corresponding literature is immense, which is e.g.
expressed by detailed reports that range back to the 1990s [103]. For instance, in the context
of scheduling systems, robustness of a schedule refers to its capability to be executable – and
leading to satisfying results despite changes in the environment conditions [104]. In contrast,
the systems we are interested in (i.e. self-adaptive and self-organising OC systems [45])
typically define robustness in terms of fault tolerance (e.g. [105]).

In computer networks, robustness is often used as a concept to describe how well a set of
service level agreements are satisfied. For instance, Menasce et al. explicitly investigate the
robustness of a web server controller in terms of workloads that exhibit some sort of high
variability in their intensity and/or service demands at the different resources [106].

More specifically and beyond these general definitions of the notion of robustness, we shift
the focus towards quantification attempts. Only a few approaches known in literature aim at a
generalised method to quantify robustness; in a majority of cases, self-organised systems are
either shown to perform better (i.e. achieve a better system-inherent utility function) or react
better in specific cases (or in the presence of certain disturbances), see e.g. [107, 108]. In the
following, we discuss the most important approaches to robustness quantification.

In the context of OC, a first concept for a classification method has been presented
in Schmeck et al. [109]. Here, the idea is (as in our approach) to take the system utility
into account. Based on a pre-defined separation of different classes of goal achievement (i.e.
distinguishing between target, acceptance, survival, and dead spaces in a state space model
of the system S ), the corresponding states are assigned to different degrees of robustness.
Consequently, different systems are either strongly robust (i.e. not leaving the target space),
robust (i.e. not leaving the acceptance space), or weakly robust (i.e. returning from the
survival space in a defined interval). In contrast to our method, a quantitative comparison is
not possible. In particular, this robustness classification does not take the recovery time into
account.

Closely related is the approach by Nafz et al. presented in [110], where the internal self-
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adaptation mechanism of each element in a superior self-organising system has the goal to
keep the element’s behaviour within a pre-defined corridor of acceptable states. Using this
formal idea, robustness can be estimated by the resulting goal violations at runtime. Given
that system elements have to obey the same corridors, this would also result in a comparable
metric. Recently, the underlying concept has been taken up again to develop a generalised
approach for testing self-organised systems, where the behaviour of the system under test has
to be expressable quantitatively [111]. However, this depends on the underlying state variables
and invariants that are considered – which might be more difficult to assess at application
level (compared to considering the utility function in our approach).

In contrast, Holzer et al. consider a node in a network as a stochastic automaton and model
the nodes’ configuration as a random variable [112]. Based on this approach, they compute
the level of resilience (the term is used similarly to robustness in the following) depending
on the network’s correct functioning in the presence of malfunctioning nodes that are again
modelled as stochastic automatons [113]. In contrast to our approach, this does not result in
a comparable metric and limits the scope of applicability due to the underlying modelling
technique.

From a multi-agent perspective, Di Marzo Serugendo et al. approached a quantification of
robustness using the accessible system properties [114]. In general, properties are assumed
to consist of invariants, robustness attributes, and dependability attributes. By counting or
estimating the configuration variability of the robustness attributes, systems can be compared
with respect to robustness. Albeit the authors discuss an interesting general idea, a detailed
metric is still open.

Also in the context of MAS, Nimis and Lockemann presented an approach based on
transactions [115]. They model a MAS as a layered architecture (i.e. seven layers from
communication at the bottom layer to the user at the top layer). The key idea of their approach
is to treat agent conversations as distributed transactions. The system is then assumed to be
robust, if guarantees regarding these transactions can be formulated. This requires technical
prerequisites, i.e. that the states of the participating agents and the environment must be
stored in a database – this serves as basis for formulating the guarantees. Obviously, such a
concept assumes hard requirements that are seldom fulfilled, especially not in open, distributed
systems where system elements are not under control of a centralised element and might
behave unpredictably.
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2.2. Related Approaches

In this section, we analyse state-of-the-art approaches according to our criteria (see Sec-
tion 1.8.2). We structure this section along our application scenarios and discuss related
solutions. Afterwards, we present a matrix which rates all techniques according to our criteria.

2.2.1. Low-Power Sensor Networks

Low-power sensor networks (as described in Section 1.6.1) try to optimise two metrics: PDR
should be maximal as primary utility and power consumption as secondary utility (which is
measured as the number of transmission) should be minimal. RPL [56] achieves this goal for
undisturbed networks. It can handle node failures and will route around them. However, it
has no means to handle intentional or unintentional misbehaviour. Therefore, attackers can
easily create a sinkhole to drop the complete traffic of the network.

Ganeriwal et al. [116] implemented reputation in sensor networks. Every node rates
its neighbours and malfunctioning nodes can be avoided. This allows identifying simple
misbehaviour and isolating those attackers. However, relay or wormhole attacks cannot be
prevented. Furthermore, colluding attackers might easily trick the system and could probably
cause NEB which cannot be covered. Also, attacks to the reputation system are possible by
colluding attackers.

Another approach was presented by Leligou et al. [117]: They propose to use active traffic
sniffing to defend against attacks and integrate encryption to fight most attacks. However,
active sniffing costs a lot of energy, because the CPU has to read all packets send over the air.
Additionally, this approach only ensures that packets are forwarded. It cannot assure that the
next hop actually exists and, thereby, those packets may not be delivered to the root.

Zhan et al. [118] presented a Trust Aware Routing Framework (TARF), which can fight
most attacks without much overhead. They use a very simple trust metric, but no reputation.
However, their routing is only partly energy-aware and mostly optimises for PDR. There-
fore, after temporary disturbances, TARF will stick with suboptimal routes. Furthermore,
permanent threats such as periodic attacks cannot be successfully mitigated.

2.2.2. Open Grid Systems

OGS try to optimise either throughput or speedup. Traditional cluster managers (such as
TORQUE [119]) only consider closed systems in a single administrative domain. TORQUE
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will optimise the throughput or speedup (depending on job settings) and can handle simple
node failures. However, misbehaving nodes can easily trick the system and will not be detected
or become isolated. Furthermore, the scheduler is a single point of failure and does not scale
for large distributed systems. Therefore, TORQUE is not usable in open distributed systems.
HTCondor [120] is a scheduler for open grid systems which is decentralised. However,
HTCondor assumes a trust relation between users and the workers. Therefore, all kinds of
attacks by the worker are possible because HTCondor does not try to mitigate those. Similarly,
JoSchKa [121] is another approach for desktop grid systems. It runs a central tracker which
distributes work and schedules retries on failed nodes. However, it does not perform any
validation of results and can be attacked easily. Additionally, the tracker poses a single-point
of failure.

The Trusted Desktop Grid (TDG) [51] is a system which implements trust and reputation
(as described in Section 1.6.2). It supports multiple types of applications which can be
either verifying or replicating. Agents within the system can decide to join an explicit Trust
Community (as described in Section 1.7.2), which shields them from certain attacks. The
TDG is robust against attacks once eTCs have formed and can even recover from a limited
amount of NEB it that case. However, when the system is constantly under disturbance, no
eTCs will form. In this case, it cannot recover from NEB and shows poor robustness.

Another approach is the Berkeley Open Infrastructure for Network Computing project
(BOINC) [66, 122] which aims to distribute work among volunteers running a client on their
desktop. They specifically expect users to cheat and, therefore, implement replication with
a fixed replication factor and majority voting. Thereby, there is always a large overhead
because of duplicate processing. Additionally, colluding attackers might also trick this
replication by returning the same fake results. Famous applications running on top of
BOINC are SETI@home [123] or Einstein@home [124]. The Big and Ugly Rending Project
(BURP [125]) performs distributed rendering (see Section 1.6.3) on top of BOINC. In
practical cases, they claim that they had to reprocess significant portions of the films because
of incorrect results (see [60]).

2.2.3. Comparison

In Figure 8, we list all related approaches and rate them according to our criteria (see
Section 1.8.2). None of the approaches fulfils all of them. The TDG is the most promising
approach since it matches the criteria best. Thus, we decided to extend it to fit our requirements
in the next chapter.
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Figure 8: Comparison of related work according to our criteria.. 3= criterion fulfilled, (3)= partially
fulfilled, 7= not fulfilled or does not apply (i.e. no reputation system exists)
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RPL [56] 3 7 7 7 7

Ganeriwal et al. [116] 3 (3) (3) 7 7

Leligou et al. [117] 7 (3) (3) 7 7

TARF [118] 3 3 (3) 7 7

TORQUE [119] 3 7 7 7 7

TDG [51] 3 3 (3) (3) (3)
HTCondor [120] 3 7 7 7 7

JoSchKa [121] 3 7 7 7 7

BOINC [66, 122] 7 (3) (3) 7 7

27



3 APPROACH

3. Approach

In this chapter, we present our solution concept in more detail. We introduce details of the
trust/reputation system and our norm implementation. Then, we describe our higher-level
Norm Manager (NM) and its components.

3.1. Solution Concept

To detect NEB and permanent threats in ODS, we propose a higher-level Observer-Controller
(O/C; see [45]) which guides the system out of the situation. Those situations are usually not
locally observable from an agent’s perspective. Therefore, the observer constantly observes
interactions in the system to detect NEB such as a trust breakdown or colluding attacks. When
such a situation is recognised, the controller will take actions to guide the system out if it.
However, because of the openness in ODS, the controller cannot rely on compliance when it
commands a black box agent to perform a certain action. Nevertheless, it can issue norms
which are enforced in a distributed manner by the agents as long as the majority adheres to
them.

In Figure 9, we show the overall solution concept of the higher-level O/C. The System under
Observation and Control (SuOC) on the bottom consists of autonomous agents which interact.
Most agents cooperate but some also might participate in an attack. The community elects a
higher-level O/C which observes the interactions between agents. Based on communication
patterns and statistics, it assesses the current situation and creates a situation description. If
NEB or permanent attacks are detected, the observer issues or changes norms to guide the
SuOC out of the situation. Norms are enforced among the agents in a distributed manner.

In the remainder of this chapter, we present the solution concept: First, we introduce trust,
reputation and norms into the SuOC to allow autonomous but guided decision making. Norms
are used to define current desirable behaviour. Outside of attacks, they guide agents to optimal
global system performance and they discourage actions which might be harmful during NEB.
To enforce norms in a distributed manner, agents rate transactions using a trust metric and use
reputation to choose cooperation partners.

Afterwards, we present an approach to monitor an ODS which consists of black box agents
by observing communication and utility. We introduce a formal robustness definition to
assess the global utility for the system before, during, and after disturbances. To evaluate the
behaviour inside the system, we gather observable information from the reputation system,
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Figure 9: A System under Observation and Control (SuOC) consisting of autonomous agents is
observed by the Norm Manager. The observer aggregates externally observable information
about the system and passes a situation description to the controller which changes norms
accordingly.
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sample ongoing communication and represent them as graphs. Using those graphs, we present
a solution to estimate the level of self-organisation in the system which is used in the O/C
to determine if a disturbance is happening. Furthermore, the observer applies clustering
to find similar-behaving and cooperating agents. The former ones are used to determine
the composition of the system which is exploited later when choosing norm changes in the
controller. Additionally, this information can be used to detect non-colluding attackers. The
latter identifies groups of agents which are then rated to decide if they are groups of colluding
attackers or groups of cooperating agents (e.g. eTCs; see [51]).
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Finally, we focus on the controller part of the O/C which selects norms when an attack
or disturbance was detected and quantified by the observer. In general, the controller can
increase sanctions to discourage actions or intensify incentives to encourage certain other
actions. We analyse which strategy is preferable and what the limits of both approaches are.
Furthermore, we discuss the trade-off between performance and robustness which occurs in
most situations and elaborate how and when agents are limited in their autonomy when using
this approach.

3.2. Trust and Reputation

To overcome problems of ODS where no particular behaviour can be assumed, we introduce
a trust metric. Agents receive ratings for all their actions from their particular interaction
partners. This allows others to estimate the future behaviour of a certain agent based on its
previous actions. To perform this reasoning, a series of ratings for a certain agent can be
accumulated to a single reputation value using the trust metric.

To use trust in ODS, the represented ratings should have a well-defined semantic. In
general, a rating r is either good or bad. Neutral ratings have no impact and, therefore, can be
omitted. In the following, we consider a rating with a value above/below 0 as good/bad rating
and define r+/r− as a set of all good/bad ratings (4, 5). In all cases, T(R) = 0 is considered as
a neutral reputation.

An obvious implementation would be to store all ratings r which are received by an agent
in a First In First Out (FIFO) queue called Rn (with n as the generation), containing up to k

elements (R0 will be empty in the beginning; as proposed by [51]). The trust metric T(R)
calculates the reputation τ based on Rn (3). In the FIFO queue Rn, recent ratings are in the
end of the queue and move to the front when more ratings are added. Formally, a function
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A(Rn) is defined to add an entry r to Rn (6).

r ∈ R, Rn ∈ R
k, n, k ∈ N (3)

R+ B {r : r > 0 ∧ r ∈ R} (4)

R− B {r : r < 0 ∧ r ∈ R} (5)

Rn+1 B A(Rn, r) (6)

T : Rk → [−1, 1] (7)

τ B T(Rn) (8)

(9)

If one agent performs an action A which is preferred, it receives a more positive rating. E.g.,
A may have a value of 0.9 while a less desirable action B may get a value of 0.45 assigned.
If an agent performed some unwanted action C with a value of −0.9, it would either need to
perform A once or B twice to gain a neutral reputation of 0.

Unfortunately, this only works for combinations of negative and positive ratings. Intuitively,
we would assume that an agent may gain the maximal reputation by either performing a few
very desirable actions or several positive, but less desirable actions. However, this is not the
case for Tc(Rc

n):

Rc
1 B (1, 1, 1) (10)

T
c(Rc

1) B
1 + 1 + 1

3
= 1 (11)

Rc
2 B (1, 1, 1, 0.5, 0.5, 0.5) (12)

T
c(Rc

2) B
3 · 1 + 3 · 0.5

6
= 0.75 (13)

In Rc
1 (10), we consider an agent which received three perfect ratings. In Rc

2 (12), the same
agent received three additional medium positive ratings which were added using Equation (6)
(considering k ≥ 6). As expected, Rc

1 results in a perfect reputation Tc of 1 (11). We would
assume that this is also valid for Rc

2. Additional positive ratings should not decrease the
reputation. Unfortunately, this is happening with Tc and the reputation decreases to 0.75 (13).

Thus, we consider a rational agent which gained a perfect reputation of 1. Since it behaves
rationally, it will not select any action which will decrease its reputation. Unfortunately, with
the previous metric Tc, it can no longer select any action with a rating other than 1. However,
all ratings with a value higher than 0 are considered as good and, thus, desirable. Therefore,
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we require a metric which will not decrease the reputation if an agent receives a good rating.

To allow fully rational agents, a representation of trust should be able to handle ratings of
different intensities. I.e., if an agent has to choose from two possible desirable actions where
one is favoured, we want to represent this fact in the resulting trust ratings r1 and r2. If r1 is
more favourable than r2, we expect the resulting reputation to increase more after receiving r1

than after r2 unless the reputation is already maximised (R1). The same should symmetrically
apply to negative ratings. Additionally, we expect the reputation to increase for every positive
rating until it reaches its maximum (R2). Again, the exact opposite should apply for negative
ratings.

Our main motivation for R2 is a scenario where an agent can mandate to perform a desirable
action which has a low priority (e.g., it is not required to do something). Based on previous
metrics, if the agent already has a high reputation (i.e., received many good ratings), its
reputation would suffer. Therefore, the agent will choose not to accept the job.

∀r1, r2 ∈ R+ : T(A(Rn, r1)) > T(A(Rn, r2))∨

T(A(Rn, r2)) = 1,

r1 > r2 ⇒ |R+| > 1 (R1)

∀r ∈ r+ : T(A(Rn, r)) > T(Rn) ∨ T(Rn) = 1 (R2)

In [C15], we developed a trust metric which leverages Simple Exponential Smooth-

ing (SES) [126]. This method can be seen as an advanced version of a rolling average,
but it does not have to remember historic values. Therefore, Rs is no longer considered as
a FIFO queue (15). As a side effect, newer ratings have more impact to the resulting value,
which is desirable for many applications (i.e., this implements some kind of forgiveness [127]).

Those properties allow us to create an advanced metric based on Rw
n , which (i) fulfils our

requirements and (ii) requires less memory. Obviously, SES can be used to reduce the memory
usage of Rc

n down to just one float value. However, to use it on Rw
n , we need to store the weight

of positive p1 and negative p2 ratings separately as a tuple (p1, P2). Based on the principle
of SES, we also define As(Rs

n, r) to modify the weight of either positive or negative ratings.
However, both sums are multiplied by α or (1 − α) to keep the values proportional (16). The
value of α controls the influence of a new rating. A typical value for α would be between 0.95
and 0.999, depending on how many old values should influence the trust value (similar to k in
the previous metrics). Calculating the trust values works by subtracting the negative weight
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from the positive weight and normalise the result by the total weight (see Equation (17);
similar to Tw(Rw

n ) with the difference that the sums for positive and negative ratings are already
precomputed).

R
s B [−1, 1], rs ∈ Rw (14)

Rs B [0, 1]2 (15)

Rs
n+1 B A

s(Rs
n, r)

B


(p1 · α + (1 − α) · r, p2 · α) r > 0, (p1, p2) ∈ Rs

n

(p1 · α, p2 · α − (1 − α) · r) r < 0, (p1, p2) ∈ Rs
n

Rs
n otherwise

(16)

τs B Ts(Rs
n) B

p1 − p2

p1 + p2
, (p1, p2) ∈ Rs

n (17)

We will use this metric throughout this thesis because it allows rational behaviour in all
situations and additionally uses very little memory. As part of this thesis, we evaluated more
metrics which can be found in Appendix A.

3.3. Norms

Since agents are considered as black boxes they cannot be controlled directly from the outside.
Each agent behaves autonomously and selfishly. However, we want to influence the system to
optimise and make it more robust. Therefore, we introduce norms to change the incentives
and sanctions for all agents.

In ODS, different attacks by malevolent agents can occur (for instance, the aforementioned
trust breakdown). We implemented various counter and security measures to maintain a
good utility for well-behaving agents. However, most of these measures appear with some
attached costs. Although we do not benefit from those mechanisms under normal conditions,
they are essential under attack or at least lead to a significantly faster recovery from attacks.
Additionally, we can configure our reputation system and change the effect of ratings. This
may increase or decrease robustness, but it also influences how fast new agents are integrated
into the system. Offering larger incentives leads to a faster system start-up and a better
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speedup when well-behaving agents join the system. However, it also gets easier to exploit
the system for malevolent agents.

In ODS, a variety of different parameters exist which influence the system behaviour. They
must be set before system start. For example, they enable or disable security measures or
change the influence of a rating to the reputation system. Some settings result in a better
utility when no attacks occur, but lead to a higher impact on the performance in case of the
system being under attack. There is no global optimal value for most of these scenarios. The
ideal value or setting depends on the current situation.

To obtain the best overall performance, we need to change these parameters and settings
during runtime according to the current situation. However, we cannot detect global system
states, such as the trust breakdown or overload situations from the local viewpoint of an agent.
It is also not possible to influence agents directly since they are autonomous. There needs to
be a higher-level instance which can detect the current system state and consequently guide
the agent’s behaviour through indirect influences. The assessment of the current situation is
presented in the remainder. Guiding agents is realised by norm-based control, which is briefly
outlined in the following.

A norm is a rule with a sanction (such as laws in a society) or an incentive if certain
conditions are met or violated. We formalise a norm as a triple:

Norm B 〈Evaluator,Action, (Policy1 . . . Policyn)〉

Policy B 〈Context,Sanction〉

Norm B 〈Evaluator,Action, (〈Context,Sanction〉, 〈Context,Sanction〉 . . . )〉

The Evaluator is either the worker or submitter part of an agent. Both have different Actions

they can perform. The following list names example actions from the TDG scenario for both
components.

1. Worker

a) AcceptJob(Aw, As): Agent Aw accepts a job from agent As

b) RejectJob(Aw, As): Aw rejects a job from As

c) ReturnJob(Aw, As): Aw returns the correct calculation for job to As

d) CancelJob(Aw, As): Aw cancels job of As

2. Submitter

a) AskForDeadline(As, Aw): As asks worker Aw for the deadline for a job
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b) GiveJobTo(As, Aw): As asks worker Aw to do a job

c) CancelJob(As, Aw): As cancels a job Aw is working on

d) ReplicateJob(copies): Copies a job multiple times and distributes them via
GiveJobTo()

A norm may contain multiple Policies that consist of a Context and a Sanction, which can also
be an incentive. The Context contains one or multiple conditions which must be true to trigger
a certain Sanction. Since all agents want to achieve a maximal speedup, it is not possible to
give a direct reward to an agent. We can only increase or decrease the speedup indirectly by
varying the reputation of an agent. The Sanction may also influence more indirect values,
which can influence the success of an agent. The following list summarises the possible
interventions in terms of sanctions and incentives:

1. Incentive

a) Reputation is increased

b) Monetary incentives

2. Sanction

a) Reputation is decreased

b) Loss of monetary incentives

Figure 10 shows an exemplary norm which is used in the TDG in extended Object Constraint
Language (OCL) format [128]. In this example, the norm formulates that a Worker should
always finish a job and will receive an incentive which is stronger when the requester has a
low reputation. Otherwise, the working agent will receive a sanction.

Agents in the ODS need to be able to understand the currently valid norms, which enables
them to consider sanctions and incentives in their decision making. This allows them to follow
short- or long-term strategies based on these norms. Since the agents are autonomous and
free to obey or ignore these norms, the system still needs to enforce the sanctions and give
incentives to agents [86]. To resolve conflicts which can arise when agents get falsely accused
of norm violations, a mechanism based on Ostroms’s eight principles for building enduring
institutions is used [100] (see Section 2.1.5). Additionally, our reputation system implements
forgiveness which allows the system to tolerate certain amounts of incorrect ratings caused by
wrong accusations [129]. Furthermore, agents can get accused of norm violation when they
are overloaded. To overcome this issue, we use the following conflict resolution mechanism:
If challenged, the agent needs to prove that it is working by naming the submitters (to a third
party) for which it is actually working.

35



3 APPROACH

Figure 10: Norm used in the evaluation constructed as invariant in extended OCL syntax [W38] which
contains three sections: condition, incentive and sanction. The condition section describes
the context and how the agent is supposed to behave. If the condition holds, the agent
may receive an incentive as imposed by the incentive section which can contain multiple
conditional statements. In the opposite case, the sanction section imposes sanctions. In
this case, it only contains one entry which always applies but it can also contain multiple
conditional entries. The norm sanctions cancelling work and rewards completing work. In
addition, working for submitters with lower reputation generates a stronger positive rating.

context
Target/Role︷                   ︸︸                   ︷

Worker::returnJob() inv:
self.returnJob(job, requester) = true︸                                                     ︷︷                                                     ︸

Postcondition

Condition section

incentivised
if requester.reputation < highReputationThreshold︸                                                                   ︷︷                                                                   ︸

Sanction Condition
then self.reputation += highWorkDoneIncentive︸                                                    ︷︷                                                    ︸

Incentive
if requester.reputation ≥ highReputationThreshold︸                                                                   ︷︷                                                                   ︸

Sanction Condition
then self.reputation += lowWorkDoneIncentive︸                                                   ︷︷                                                   ︸

Incentive


Incentive section

sanctioned
self.reputation += -cancelSanction︸                                        ︷︷                                        ︸

Sanction

Sanction section

3.4. Higher-Level Observer

As discussed in Sections 1.5 and 3.1, ODS can suffer from NEB. We exemplify such an
unwanted system state with the trust breakdown scenario in Section 1.5. To counter the
negative effects in these situations and to further guide the self-organised system behaviour,
we propose to establish a system-wide normative control loop. This control loop consists of
an observer and a controller part. The observer derives a situation description from monitoring
interactions among agents, while the controller issues norms as response to conditions where
actions are required to prevent NEB.

In Figure 9, we present our concept of the NM, which uses the common O/C pattern [45].
The complete control loop implemented by the O/C component helps to mitigate effects of
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attacks to the TDG and allows a better fulfilment of the system goals. Thereby, it defines an
intelligent control mechanism working at system level. However, if the additional NM fails,
the system itself is still operational and can continue to run (this refers to the desired OC
characteristic of non-critical complexity [130]). When the system has recovered, the NM can
start to optimise the system again. Agents will elect a leader which runs the NM in a process
similar to the election of a TCM (see Section 1.7.2).

3.5. Attacks, Recovery and Robustness

We assume that it is generally feasible to measure the utility over time (at least from the
point of view of an external observer). However, it is often hard to quantify the strength of a
disturbance z. Therefore, depending on the application, an estimation of z is required for our
model. Furthermore, the system has to know a target utility value Utarget (maybe the highest
possible utility) and an acceptable utility value Uacc (a minimal value where the system is still
useful to the user). The goal of the robustness model is to quantify the response of a system
to a certain disturbance in terms of its utility and compare it to other disturbances or systems.

Figure 11: Utility degradation over time. At tz a disturbance with strength z occurs. The utility U
drops. When it reaches Uacc (i.e. the system state vector leaves the acceptance space, see
[109]), a control mechanism (CM) is activated for (1) which only decreases to Ulow,cm. At
trec, recovery starts and (1) passes Uacc at tacc. For (2) no CM is activated and utility drops
to Ulow,perm and no recovery occurs. When the attack ends (a), the utility recovers Utarget
eventually. If the attack prevails or did permanent damage to the system (b), utility may
stay at a lower value.

Ulow,perm

Ulow,cm

Utarget

Uacc

tz tcm tlow trec tacc tz̄ ttarget

U z

t

z

1a

1b

2a

2b
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In Figure 11, we exemplarily show a typical utility function U(t). In the beginning, U

equals the target value Utarget. At time tz, a disturbance of strength z occurs (displayed in
green) and the utility (red) decreases. Once it drops below the acceptance threshold Uacc at tcm,
a control mechanism (CM) starts to intervene. At tlow, U reaches Ulow,perm without an effective
recovery mechanism and Ulow,cm if a CM is acting against the impact of the disturbance. With
a CM, U starts to recover at trec and passes Uacc at tacc. However, without a CM, U does not
recover.

We can differentiate between two classes of behaviour during an attack:

1) An effective CM is started and the system recovers to at least Uacc.

2) The system does not recover during attack (or during a disturbance).

These two classes are represented by the curves marked as 1a and 1b for class 1, and with
2a and 2b for class 2 in Figure 11. Furthermore, we observe two different types of behaviour
when the attack ends at tz. Either (a) the utility reaches the same value as before the attack
(here Utarget at ttarget; solid red line in Figure 11), or (b) it stays at the same level as during the
attack (dashed line). In total, this results in four different stereotypes of behaviour:

1a) The system S recovers during the attack to U ≥ Uacc and returns to U ≥ Utarget when
the attack ends. This is a strongly robust system.

1b) S recovers during the attack to U ≥ Uacc and stays there when the attack ends. This is a
weakly robust system.

2a) S does not recover during the attack but returns to the previous value after the attack
ends. Such a system shows just a certain ”elasticity”, we call it partially robust.

2b) S does not recover during the attack, it stays at the low utility level Ulow,perm. Such a
system is not robust at all.

While important, this only serves as a classification of different typical behaviours. However,
to compare the effect of different disturbances z or different CMs, we have to quantify the
utility degradation. We define the utility degradation DU as the area between a baseline utility
(Ubaseline) and U(t) for the time when U ≤ Uacc (see Equation (18)):

DU B

∫ tz

tz
(Ubaseline(t) − U(t)) dt (18)

First, we need to define a baseline Ubaseline for the measurement. This can be either hypothetical
by using Utarget or Uacc (in Figure 11) or we can run a reference experiment (as we will show
later in Scenario 2, see Section 1.6.2). In order to maximise the system robustness, we have to
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minimise DU . A system which never drops below Ubaseline apparently has maximal robustness.
We define the robustness during attack Ra as when Utarget is reached at ttarget:

Ra B

∫ tz
tz

U(t) dt∫ tz
tz

Ubaseline(t) dt

For each CM to be compared, we measure a utility degradation DU . This allows comparing
the behaviour of two CMs during an attack (such as cases (1) and (2) from above) or the
effectiveness of one CM for different attacks.

Furthermore, when the attack ended, we can measure the long-term utility degradation
DU,long term which is the area between Ubaseline and the actual U for the time after tz. This allows
us to compare the cases (1a/2a) and (1b/2b) from above. Hence, the long-term robustness Rl

is defined as:

Rl B

∫ ttarget

z
U(t) dt∫ ttarget

z
Ubaseline(t) dt

In cases where U(t) never reaches Utarget again, ttarget is∞ (also UD is∞) but we can calculate
the open integral:

ttarget = ∞ → Rl B

∫ ttarget

z
U(t) dt∫ ttarget

z
Ubaseline(t) dt

= lim
t→∞

U(∞)
Ubaseline(∞)

See 2b in Figure 11 for an example. For instance, a permanent trust breakdown can cause
such a disturbance in the TDG.

In all normal cases, R is assumed to be in the interval [0, 1]. It can never be negative and
will only be larger than 1 if U(t) improves through the disturbance which occurs only under
very specific conditions (i.e. the system settled in a local optimum before the disturbance
occurs, and is able to leave this local optimum as a result of the CM’s intervention). Even if
the utility U(t) never recovers, we get an asymptotic robustness value. However, values of Rl

with ttarget = ∞ are not comparable to values for Rl with ttarget , ∞ because the open integral
would be always 1 in this case. In [B5, C7], we validated this approach against different
application scenarios.

39



3 APPROACH

Figure 12: Concept of observer component as a work flow.
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3.6. Observer – Assessing the Situation

In Figure 12, we present our concept for the observer. Several observable sources exist in
ODS: i) the reputation system is available to all nodes and can be queried at very low costs
(see Section 3.8); ii) the structure of the network is generally known (e.g. fully-meshed for
OGS) or can be easily observed (e.g. in the sensor networks example, it is part of the routing
information) (see Section 3.7.1); iii) furthermore, communication can be observed, although
with some overhead (see Section 3.7).

In a first step, we create graphs based on those observations. In all cases nodes are agents.
In Section 3.7.1, we describe the Structure Graph which is based on the network structure.
Then, we introduce the Communication Graph as the subset of the Structure Graph where
communication happened in a certain period (see Section 3.7.2). Furthermore, we define the
Work/Cooperation Graph containing edges between agents which cooperate or work for each
other (see Section 3.7.3). In Section 3.8, we depict the Trust Graph where edges represent
trust relationships between agents.

Next, the NM calculates common graph metrics (see Section 3.9) for every node in the
Trust Graph. Using statistics, the global system state is determined. Based on this metric, we
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use clustering algorithms to find groups of similar-behaving agents (see Section 3.14). By
further classifying these groups, the Observer achieves an even better understanding about
potentially happening attacks. Similarly, graph clustering is performed on the Trust Graph and
Work/Cooperation Graph to find groups of colluding agents (see Section 3.13). Those groups
can be TCs or groups of attackers which is determined using graph metrics and statistics.
Furthermore, in Section 3.10.3, we perform a time-series analysis over Communication Graph,
Structure Graph and Work/Cooperation Graph to assess the degree of self-organisation in the
system In the end, the observer is able to classify whether the system is under attack, categorise
the type of the attack, and rank attacks according to their severity. This is accompanied by an
estimation of how accurate this information is.

3.7. Observing Communication

In order to measure the degree of self-organisation, three different Communication Graphs

Gi(p) = (V, Ei) are built. Each graph is generated for a period p between t1 and t2. In all
graphs, the set of vertices V represents the same set of agents in the system (i.e. each agent
represents an autonomous subsystem). However, the edges Ei describe different kinds of
communication in the system. In Gp, they represent possible communication paths. In Gc,
edges are actual communication, and in Ga, edges describe cooperation or work. We will use
those graphs in Section 3.10.3 to measure the degree of self-organisation.

3.7.1. Building a Network Structure Graph

In the first graph Gp, each possible communication path represents an edge in Ep. The
existence of a possible path requires a pair of agents a and b to reach each other directly
without any relaying of third parties. A communication path exists when a could send a
message and b would receive it with a very high probability. It is important to note that a

initiates this transmission. In the same way b should be able to send a a reply.

In general, the existence of a communication path between a pair of agents is not observable.
However, this fact is known for most systems or can be very accurately approximated. There
exist two major types of Gp: the easiest one is fully-meshed where every pair of agents can
communicate directly. This is typically known at design-time and constant over the runtime;
the other case are types of Gp where communication is defined by locality. In some cases,
the agents may also change their location and, thereby, the communication paths in Ep also
change.
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We consider Gp to be an undirected graph since most communication paths are bidirectional
by their nature. However, this may not hold for all possible distributed systems and, therefore,
can be considered as a limitation of this approach.

3.7.2. Building a Communication Graph

The second graph Gc represents the observed communication. The edges Ec in graph Gc rep-
resent a subset of Ep, because when a message was received there has to be a communication
path in Ep. Obviously, Gc contains directed edges. Additionally, edges are also weighted
by the number of messages sent from agent a to b. It is assumed that communication is
confined to the necessary messages, i.e information is not transmitted redundantly. Moreover,
broadcasts are generally omitted unless they contain specific information for the receiver, e.g.
in wireless systems all messages are broadcasts but contain a receiver field and, thereby, are
irrelevant for all agents but the receiver. Also, we consider communication to be only control
information and not payload (i.e. in a self-organising routing system the actual payload traffic
is not interpreted as communication).

3.7.3. Building a Cooperation and Work Graph

In the third graph Ga, edges in Ea represent mutual stable relationships between two agents.
In general, relationships are temporary. They are initiated by negotiation over communication
messages. E.g. agent a may ask b to cooperate for a certain task. If b agrees (and expresses
this via a message) a mutual relationship or agreement was created. Afterwards, both partners
may cancel this relationship by sending messages. Additionally, a relationship can also end
at a certain time known to both parties or when certain conditions are met (e.g. the task is
finished).

Edges in Ea are undirected since relationships are required to be mutual. We assume it to
be irrelevant to measure multiple concurrent relationships between a pair of agents. Therefore,
either one or none edges exist. Ea(p) is not exactly a subset of Ec(p) for every period p: A
relationship between a and b may have been negotiated in a previous period p−1, therefore,
edges in Ec(p−1) and Ea(p−1) exist. In the next period p0, those relationships may still be in
place and, therefore, the edges in Ea(p0) exist. However, a and b may not communicate in
period p0 and, hence, there may be no edges in Ec(po). Thus, when considering Ea and Ec for
the whole runtime of the system, Ea is a subset of Ec. Accordingly, relationships negotiated
outside the system boundaries or defined at design-time cannot be taken into account.
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In this thesis, we consider a relationship to be undirected. Nevertheless, cases exist where
agent a agrees to help b with a certain task but b does not help a (i.e. because currently a has
no task). Therefore, those relationships would be directed. However, we assume that b would
also work for a in most cases (see [J2] for a validation against multiple scenarios).

3.8. Observing the Reputation System and Building a Trust Graph

To analyse the system state, we build a Trust Graph G = (V, E). We add all agents as nodes
V . Afterwards, we fetch the trust relationships T (a, b) between the agents a and b from
the reputation system and add them as edges E to the graph. A trust relation defines how
trustworthy agents rate each other within an interval between 0 (not trustworthy at all) and 1
(fully trustworthy). Agents fully trust themselves and, therefore, T (a, a) is always 1 (self-trust).
The weight of the edge ei j which connects vi and v j represents the amount of trust between
the connected agents ai and a j.

Figure 13 illustrates an exemplary Trust Graph from one TDG scenario. It has been
graphically arranged using a Force Algorithm [62]. During the layout nodes push apart and
edges between nodes attract nodes. Since edges represent trust, agents trusting each other are
place next to each others.

Thereby, in the centre of the graph, agents trust each other and work together. We call this
the core of the network. All isolated agents are located at the border of the graph and are
only weakly connected. The graph is a complete graph, because there exists a trust relation
between every pair of agents. However, we omit all weak edges below a certain threshold
to improve performance and to allow for a better visualisation. This also allows us to apply
algorithms which ignore the edge weight.

We decided to create directed and undirected Trust Graphs to be able to use more metrics.
In general, trust is not necessarily mutual. For instance in the TDG scenario, a Freerider F
may trust an Adaptive Agent A, because F had initial reputation and A worked for F. But most
certainly, later on A does not trust F, because F refuses all work requests of A. This leads to a
directed graph with two edges between every pair of nodes. However, after filtering out weak
edges, there may only be zero or one edge left.

However, some algorithms only work on undirected graphs. Since trust is not mutual,
we need to combine both edges for those algorithms. We decided to use the minimum of
weights, because only two well-behaving agents mutually trust each other. However, with this
approach, we loose asymmetrical trust relationships. Therefore, the undirected graph can be
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Figure 13: Simple Trust Graph in TDG arranged by Force Algorithm [62]. Nodes are agents and edges
are trust relationships. The size of a node represents its reputation.

used to differentiate between well-behaving and not well-behaving agents. In contrast, the
observer can distinguish between different types of misbehaviour using the directed graph.

3.9. Graph Metrics

To evaluate how an agent behaved in the past, we analyse incoming and outgoing edges in the
Trust Graph. For instance, Freeriders will have very few incoming connections because they
did not work for others. In contrast, Adaptive agents will have similar incoming and outgoing
trust edges. Therefore, we apply metrics from graph theory to the problem. We select a subset
of metrics based on [131] from the literature.

3.9.1. Prestige

The Prestige allows us to rate how altruistic an agent behaves. As shown in Figure 14,
Altruistic agents get the highest value followed by Adaptive Agents and Cunning Agents. The
values for Freeriders and Egoists are near zero. This metric counts the incoming edges for a
node in a directed graph (see Equation (19) and Figure 15a). In our system, every incoming
edge represents trust by another agent which causes the effect above.

Prestigei B |{v j : e ji ∈ E}| (19)
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Figure 14: Metrics over time for the TDG scenario [J3].

(a) Prestige over time (b) Actor Centrality over time

(c) Degree Centrality over time (d) Clustering Coefficient over time

(e) Authorities over time (f) Hubs over time
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3.9.2. Actor Centrality

This metric counts the outgoing edges for a node in a directed graph (see Equation (20))
and allows us to distinguish cooperative from non-cooperative agents. In general, one of
these edges expresses that the agent gave some positive rating to another agent for successful
cooperation. Actor Centrality (see Figure 15b) behaves inversely to Prestige because it
considers outgoing instead of incoming edges.

ActorCentralityi B |{v j : ei j ∈ E}| (20)

3.9.3. Degree Centrality

This metrics counts all edges for a node in an undirected graph (see Equation (21)). Since
we use the minimum function to unify edges in the undirected graph, it is more than a
combination of Prestige and Actor Centrality. In ODS, Degree Centrality will count mutual
trust relationships which can be used to identify Adaptive Agents. In Figure 15c, we show the
Degree Centrality of the agent groups.

deg(i) B Ni B {v j : ei j ∈ E ∧ e ji ∈ E},Di B |Ni| (21)

3.9.4. Clustering Coefficient

This is a metric to measure the degree to which nodes tend to form a cluster in an undirected
graph (see Equation (22) and Figure 15d). This can be used to identify cooperative agents
and distinguish them from colluding agents which issue fake ratings because those are less
central in the general graph. It helps to find groups of connected nodes with a high density of
edges [132].

Ci B
|{e jk : v j, vk ∈ Ni, e jk ∈ E}|

Di(Di − 1)
(22)

3.9.5. Authorities and Hubs

auth and hub values allow us to categorise agents into a cooperative and a non-cooperative
group. This metrics is calculated by the Hypertext-Induced Topic Selection (HITS) algo-
rithm [133] to rate the importance of a node in the graph. Nodes with a high Authority auth
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value have numerous incoming edges from nodes with a high Hub hub value. Similarly, nodes
have a high hub value when they have numerous outgoing edges to nodes with a high auth

value. Since this metric is defined recursively, they have to be calculated iteratively. At the
beginning, all values get initialised by 1 (see Equation (23)). In the next step, the value of
auth is updated for every node (see Equation (24) and Figure 15e). Then, the value of hub

is determined (see Equation (25) and Figure 15f). Originally, after that step, all values get
normalised but we skipped that because it would change absolute values when new nodes
appear. Afterwards, the previous two steps are repeated until the algorithm converges.

∀p : auth(p) = 1, hub(p) = 1 (23)

auth(p) B
n∑

i=1

hub(i) (24)

hub(p) B
n∑

i=1

auth(i) (25)

3.9.6. PageRank

The PageRank [134] is calculated by a ranking algorithm used by Google (see Equation (26)).
It is similar to HITS and ranks nodes by their importance in the graph. However, the accuracy
is better than HITS and it does not calculate hubs. Values range from 0 to 1 and can be
computed iteratively.

PageRanki =
1 − d

n
+ d

∑
j∈{1,...,n}

PageRank j

c j
(26)

3.10. Measuring Self-Organisation Activity

In the previous section, we introduced metrics which can be applied to single vertices
(representing agents) in our graphs resulting in a set of values. In this step, we introduce
statistical methods to unify and evaluate the set of values.

3.10.1. Analysing the Network Structure Graph

This technique measures the amount of communication. We measure the number of possible
communication partners in the Structure Graph (see Section 3.7.1). We use Degree Centrality
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deg(i) on Gp and apply a 20%-percentile (30) to filter out the edges of the network.

Ds(G) B (deg(i) : vi ∈ V) (27)

Ds,i(G) ∈ D : Ds,i−1(G) ≤ Ds,i(G) ≤ Ds,i+1(G), i ∈ N (28)

n B
⌊

20
100
· |Ds(G)|

⌋
(29)

Partners(G) B Ds,n(G) (30)

Partners(G) ≥ ρ ≥ 3 (31)

In general, we require every agent to have a sufficient number of communication partners ρ.
Effectively, this value is at least three because reputation systems do not work well in very
sparse networks. However, some nodes may (at least temporarily) have fewer partners (i.e. in
wireless systems), therefore, we take the percentile and allow 20% of the nodes to have fewer
partners (31).

3.10.2. Communication Graph

We expect agents to communicate less when there are no disturbances and, therefore, no
self-organisation is occurring. The amount of communication can be calculated by counting
the number of edges |Ec| in Gc. However, when we compare communication for two differ-
ent periods, communication paths may have changed. Therefore, we normalise the actual
communication using the number of paths in Gp in the period (32). This results in a density
metric C and allows comparing different periods. Since C compares the undirected Structure

Graph with the directed Communication Graph, the number of edges in the Structure Graph

are multiplied by two.

C(Gc) B
|Ec|

|Ep| · 2
(32)

3.10.3. Degree of Self-Organisation

We define a function D(G) to quantify the structure of a graph. Therefore, we present a
function which is based on Shannon’s entropy with p as the probability of an element x in
X (33). We define a set Du(G) containing all distinct values for Degree Centrality deg(i) (34).
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We also need a probability mass function pD(x) which counts occurrences of a certain Di

value (35). Afterwards, we can easily calculate D(G) for a graph G = (V, E) (36).

H(X) B −
∑
x∈X

p(x) · ln2(p(x)) (33)

Du(G) B {deg(i) : vi ∈ V} (34)

pD(x) B
|{vi : deg(i) = x ∧ vi ∈ V}|

|V |
(35)

D(G) B H(Du(G)) B −
∑

x∈Du(G)

pD(x) · ld(pD(x)) (36)

Other variants based on metrics from Section 4.3.7 and stochastic kernels are possible and
discussed in [C8].

3.10.4. Changes in Structure

Measuring the change of structure in a graph is a non-trivial problem. Therefore, we define
a very basic function S(G1,G2) for initial evaluations which counts the number of changed
edges between two graphs G1 and G2 (37). We normalise the metric by the number of agents
in the system to allow limited comparisons of absolute values.

S(G1,G2) B
|{ei j : ei j ∈ E1 ⊕ ei j ∈ E2}|

0.5 · (|V1| + |V2|)
(37)

3.11. Measurement Periods

To compare and quantify self-organisation in a system, the effect of this mechanism has to
be measured. Therefore, we use the function S(G) (see Equation (37)) which quantifies
the structure of a certain graph and use it to compare time intervals. We propose to use the
following two situations where this effect is observable in ODS.

3.11.1. Situation 1: Building Structure

In the first situation, we measure the emergence of structure in the system. Therefore, we
define three contiguous measurement periods: ps,unstructured is the time where the system did
not build the structure yet (38); ps,emergence defines the period where structure emerges (39);
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ps,structured is the time frame when structure is steady and settled (40).

ps,unstructured B [tu, te) (38)

ps,emergence B [te, ts1) (39)

ps,structured B [ts1, ts2) (40)

We expect to observe an increase in the structure in Ga from ps,unstructured to ps,structured (41).
Obviously, we expect to recognise structure changes afterwards (42). Additionally, we expect
to see more communication during ps,emergence than before and afterwards (43, 44).

D(Ga(ps,unstructured)) < D(Ga(ps,structured)) (41)

S(Ga(ps,unstructured),Ga(ps,structured)) ≥ δ, δ > 0 (42)

C(Gc(ps,emergence)) > C(Gc(ps,structured)) (43)

C(Gc(ps,emergence)) ≥ C(Gc(ps,unstructured)) (44)

We have shown in [W32] that this approach works well for all three scenarios mentioned in
Section 1.6. Tomforde et al. [C8] extended our approach using stochastic kernels to require
less knowledge about the internals of the system. This allows the same approach but does not
require minimal communication nor any knowledge about the communication. However, it
significantly increases the complexity, probably reduces the accuracy and has to be proven in
practical applications.

3.11.2. Situation 2: Disturbance and Recovery

Self-organising systems should be able to recover from failures or disturbances (see Figure 11).
Therefore, in situation two, we measure the change of structure during those incidents. Again,
we define three periods: pr,reference is a measurement period before any disturbance occurs.
However, we assume that emergence of structure is already completed (45). In the beginning
of pr,disturbance at td, the disturbance or failure occurs. Additionally, still within this period, the
system also recovers (46); afterwards, at the start of the last frame pr,recovered, the system is
recovered and working with undisturbed performance again (47). The length of pr,recovered

should be chosen similar to the length of pr,reference for comparison reasons.
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pr,reference B [ts, td) (45)

pr,disturbance B [td, tr1) (46)

pr,recovered B [tr1, tr2) (47)

In this situation, we expect the degree of structure of the system to be similar before the
disturbance and after recovery (48). Additionally, we expect some structures to change (49).
The exact value required for the degree of change σ depends on the application (see Equa-
tion (49)). In our scenarios, a value of 0.1 to 0.2 has proven optimal. Some small changes
constantly happen but during self-organisation those changes are huge compared. Moreover,
we expect to observe more communication during the recovery period (50, 51).

D(Ga(pr,reference)) ≈ D(Ga(pr,recovered)) (48)

S(Ga(pr,reference),Ga(pr,recovered)) ≥ σ,σ > 0 (49)

C(Gc(pr,disturbance)) > C(Gc(pr,recovered)) (50)

C(Gc(pr,disturbance)) > C(Gc(pr,reference)) (51)

3.11.3. Practical Observation

Understanding the different phases of self-organisation helps to analyse systems utility in
retrospect. However, the observer has to decide timely, and, thus, cannot wait until recovery
happened and was detected. Therefore, we implement a sliding window approach to detect
the current and previous degree of self-organisation (see [C8] for details).

3.12. Clustering of Groups and Aggregation

As a very simple yet effective way to detect groups in the directed Trust Graph (see Figure 13),
we calculate the global reputation τs of every node (see Equation (17)). This is similar but not
equal to the weight of all incoming edges of a node. If there are no interactions between two
agents, we assume a default weight, but we do not have a rating in that case.
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Using the reputation value, we build three buckets:

• High Reputation – Reputation τ value higher than 0.5. These agents are very trustwor-
thy.

• Suspicious – Reputation τ between 0 and 0.5. All newcomers are in this range. There
is no consensus whether these agents are trustworthy.

• Low Reputation – Reputation τ below 0. These agents are mostly isolated from the
system. Most other agents will refuse cooperation.

This approach uses domain knowledge about our reputation system to sort agents into
buckets. By assessing the size of the buckets, we can tell the general system state. If
Suspicious contains significant numbers of agents, there are likely attacks happening or
newcomers just joined the system. The NM will perform actions to increase the robustness of
the system if Suspicious becomes large. If a high percentage of agents ended in the High
Reputation bucket, the system is usually very stable and can be optimised for performance.
Agents in Low Reputation are usually uncooperative. If they already have been isolated they
the NM will mostly ignore them but make sure that the system is robust against free-riding.
Otherwise, it the NM will take actions to isolate them. If High Reputation and Suspicious
are very small compared to Low Reputation, a trust breakdown likely occurred. In this case,
recovering from this NEB is the first priority.

3.13. Clustering of Colluding Agents

Another way to find groups in a graph is to use clustering algorithms. In previous work [C24],
we use the approach presented by [135] and apply it to the directed Trust Graph. It finds
groups and merges them to maximise the modularity [136]. We call the largest group in the
graph core and all remaining agents non-core. In Figure 13, all well-connected agents in the
centre would be the core. However, this very simple approach did not work equally well for
all agent groups. For instance, not all Adaptive Agents joined the core. Additionally, often
some Altruistic Agents also joined the core.

The advantage of using clustering on the Trust or Work Graph is that it is not affected by
NEB such as a trust breakdown. During such a breakdown, agents will receive additional bad
ratings from attackers. This will decrease the reputation (Equation (17)) because it considers
all ratings. However, agents in one group still mutually trust each other and clustering still
works.
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To find colluding groups of agents, we need a graph clustering algorithm which fulfils the
following requirements:

• Weighted Cyclic Non-Symmetrical Graph – The algorithms has to work directly
on a weighted graph where distances are not symmetrical d(x, y) , d(y, x), cycles
may exist and, especially, the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) does not
hold [137].

• Semi-Deterministic/Order-Invariant – The clustering is performed periodically while
the underlying graph slightly changes. However, the resulting groups should not change
fundamentally. Some algorithms alternate between two different results when the input
changes only marginally. This often happened with our previous approach. Therefore,
we require a similar output when the input changes only slightly [138].

• Dynamic Group Count – Typically, we do not know the total number of different agent
groups in advance. Therefore, we require an algorithm which can find a dynamically
changing number of groups.

• Non-Connected Components – The graph is not necessarily always connected. Some
agents or even groups may be permanently disconnected from the other groups. The
algorithm has to be able to cope with this requirement.

Based on this analysis, we choose Markov Cluster Algorithm (MCL) [139] and Blondel [135]
as a suitable algorithm for graph clustering which uses flow simulation (see [C11] for more
details; [140] gives an overview over possible algorithms). MCL is deterministic, can handle
edge weights and can find a dynamic amount of groups. Therefore, it meets our requirements
and can be used with directed or undirected edges.

In the previous section, we only considered groups of colluding agents which can be either
well-behaving agents or some kind of attackers. However, not all attackers have to collude.
Therefore, in this section, we cluster similar-behaving agents which can be in different groups
or in no group at all.

We capture this behaviour using our previously defined metrics and omit all connections in
the graph. Therefore, every agent forms a data point in an n-dimensional space where n is
the number of metrics considered. This allows us to use algorithms known from traditional
clustering.

53



3 APPROACH

3.14. Clustering of Similar-Behaving Agents

To identify groups of similar-behaving agents, we apply our metrics to the Trust Graph and
evaluate them for every node (representing an agent) in the graph. Afterwards, we apply a
clustering algorithm to find similar-behaving agents (according to our metric). We capture
this behaviour using our previously defined metrics and omit all connections in the graph.
Therefore, every agent forms a data point in an n-dimensional space where n is the number of
metrics considered. This allows us to use algorithms known from traditional clustering.

To cluster similar-behaving agents, we need an algorithm which fulfils the following
requirements:

• Multi-Dimensional Input – We characterise every agent by multiple metrics, and the
algorithm should be able to take all of them into account. Therefore, it has to cluster an
n-dimensional vector for every agent.

• Semi-Deterministic/Order-Invariant – The clustering is performed periodically while
the underlying graph slightly changes. However, the resulting groups should not change
fundamentally.

• Dynamic Group Count – Typically, we do not know the number of different agent
groups in advance. Therefore, we require an algorithm which can find a dynamic
amount of groups.

• Robust Against Outliers/Noise – Single agents may behave differently from the rest
of a group and the algorithm has to be robust against those outliers. Outliers should
form a separate individual group or be ignored altogether.

Based on [141], we selected Balanced Iterative Reducing and Clustering using Hierarchies

(BIRCH) [142] as a suitable algorithm (see [J2, C14] for more details).

3.15. Controller – Changing Norms

The controller is responsible for guiding the overall system behaviour by applying norms.
Such a norm contains a rule and a sanction or an incentive (see Section 3.3). Agents are still
autonomous and can violate norms with the risk of being sanctioned.

Based on the information obtained by the observer, the controller decides whether the
system norms need to be changed. Norms cannot directly influence agents but modify their
actions. To be more specific, norms can impose sanctions or offer incentives to actions.
To defend against attacks, we can increase sanctions for certain actions. Under certain
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conditions we can allow agents to perform security measures, which would lead to sanctions
otherwise [87].

To keep the system scalable, the NM has to keep the number of norms limited. Therefore,
we try to keep the focus of a norm very narrow which simplifies to filter norms. This is
implemented using the context (see Figure 10 for an example norm) which specifies when
and to whom the norm applies. Additionally, the NM will always try to merge norms with the
same context to make parsing computationally faster [J3].

3.15.1. Incentives vs. Sanctions

Incentives can influence the utility in decision making of autonomous agents. Instead of
discouraging agents from making a bad decision, we try to encourage them to make a good
one. This also renders the bad decision less attractive but agents may still take it if they gain
a greater advantage from it. In our experience, the risk for NEB decreases when using this
method. Additionally, if agents do not change their behaviour despite a big incentive, the
action is probably highly undesirable from their local perspective and the controller should
find another way to guide the system towards the global goal.

One way to discourage a certain action is to impose sanctions in a norm. However, this
method often leads to NEB such as a trust breakdown when a majority of agents decides
to violate the norm. Additionally, it limits the autonomy of agents which may have a good
reason to choose the action. Therefore, this should be used carefully and selectively.

It can be a powerful tool to remove sanctions under certain conditions: For instance, the
controller may temporarily allow (i.e. not sanction) an agent to stop cooperating with agents
which did not prove to be trustworthy yet. This does not limit the agent’s autonomy and gives
them more options in their decisions. However, in this case, it may ban some agents from
participating and should, therefore, not be used permanently (see [C20] for more details).

3.15.2. Robustness vs. Performance

In most cases, the robustness of a system can be increased at the cost of performance. One
obvious example in the distributed rendering scenario is to increase the replication factor in
a system which creates a high overhead but might prevent certain attacks. More generally,
in most scenarios, when increasing incentives new agents will be integrated faster which
is desirable. However, at the same time, most attacks get more powerful. Therefore, the
controller needs to ensure a good balance based on the known groups in the system. In [C18],
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we performed a series of experiments to evaluate this trade-off for the TDG.

The system can be tuned for performance when no attacks occur, but as soon as increased
levels of self-organisation are observed or the utility drops, the controller needs to adjust the
system for robustness. This simple but powerful mechanism allows the NM to employ high-
overhead security measures during attacks to get a robust system and to increase performance
when no attacks occur.

3.15.3. Decision Making

The controller constantly receives updated situation descriptions from the observer and has
to make decisions based on them. The first challenge is when the controller should act.
Depending on the scenario this either occurs (i) when utility undershoots a known acceptance
threshold or (ii) when a lot of self-organisation is detected. However, it is often not feasible to
set or know the acceptance threshold and, therefore, one approximation is to detect drop in
the utility. Detecting self-organisation is more robust because is also observes changes which
do not immediately affect utility. This allows for certain optimisations such as tuning the
system for performance when attackers got isolated or improving robustness when malicious
agents are present but did not start an attack yet. Therefore, we use a combination of both
approaches to decide when to act.

The next challenge for the controller is how to act. Since we do not want to design
this in advance we use a learning algorithm for this purpose. However, norms certainly
offer a lot of flexibility to express conditions and actions which is, thus, hard to explore
completely. Additionally, the feedback loop between changing a norm and measuring the
result is long (see [C23]), so even advanced learning algorithms such as deep-learning [143]
are not feasible. Thus, we require norms with free parameters in either the condition or
action part (see Figure 10). In most cases, the values for all sanctions and incentives can
become variables and the same applies to thresholds for trust and reputation. Depending on
the applications, other variables are possible which are usually somehow tied to the utility
function. For instance in the distributed rendering scenario, we turn the reputation factor into
a variable in the norm. Using this approach, we reduce the number of parameters and apply
simple learning algorithms. Based on our evaluation in [C23], we use reinforcement learning
to learn based on the current situation. The output of the learning algorithm will influence
whether the norm is active and, if yes, which parameter is used.
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3.16. Normative Trust Communities (nTCs)

All agents are autonomous and can decide to adhere to the NM or not. Similar to an iTC, we
define the nTC as all agents which adhere to the norms issued by the NM. Multiple nTCs
can exist in a system but cooperation between those groups will be difficult when they issue
mutually exclusive norms. However, multiple nTCs can exist in the form of eTCs. In that
case, the TCM issues norms which are only valid for agents within the eTC. All other norms
should be still in place in the eTC (at least when communicating to agents outside of the eTC).
This can be also seen as a system of system approach and may be extended to more level
(see [W27] for details).
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4. Evaluation

To verify our approach, we apply it to the three initially mentioned application scenarios:
low-power sensor networks, the TDG and distributed rendering (see Section 1.6). For every
scenario, we explain the specifics needed to apply our method and show an evaluation
afterwards.

4.1. Sensor Networks

In RPL, nodes have only very limited knowledge about the topology to save power and mem-
ory. Since one of the main reasons for energy consumption is the use of radio, there should be
as little communication as possible. Because of this constraint to minimise communication,
there are no acknowledgements from the root about received packets. Unfortunately, this
means that nodes cannot know whether their packets were actually forwarded and delivered.

However, to detect malicious or broken nodes, we need to gain knowledge whether our
packets actually reached the root. Normally, most communication is one-way in such networks,
so, there is no feedback. Therefore, we introduce end-to-end trust as an effective low-overhead
measurement to fill the information gap about the delivery rate of a route. Our NM runs in
the root node which is usually not battery powered and has sufficient computing resources.

4.1.1. End-to-End Trust

To achieve end-to-end trust, we first add a sequence number to every packet from a node
to root. This allows the root to determine if it missed packets. However, it still cannot
tell whether it got the last packet and, more important, the sending node does not know.
Fortunately, the root periodically sends a DIO to all nodes (see Section 1.6.1 for details).
We add a header to all DIOs which contains the Trust Round (TR) (see Section 4.1.2) and
the count of all received packets in this round. Additionally, we also trigger a DIO when
the root sees a high count of missing packets. Nodes will receive a forwarded DIO from
each of their neighbours. However, according to RFC 6550 [56], they shall ignore it from
all but their parents. This ensures that every node knows about the last sequence number
seen by the root and the amount of missing packets. An attacker can only prevent a node
from receiving the correct DIO if it controls all neighbours of that node and in that case there
would not be a working route anyway. In theory, the attacker would only have to control the
parents. Fortunately, implementations (i.e. Contiki [144]) also consider DIO from non-parent
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neighbours which improves the robustness of the implementation because an attacker would
have to control all surrounding peers.

4.1.2. Trust Rounds

Previous approaches (such as [116] had problems to determine whether a packet was actually
sent before or after the DIO was generated since clocks were either not existent or not
synchronised in sensor networks. To solve this dilemma, we introduce so called Trust Round
which are used to synchronise packet counters. Nodes attach the TR and a sequence number
to every packet. When the root generates a DIO, it starts a new TR. After nodes receive the
DIO, they reset their sequence counter to zero and use the new round. The parent will only
be reselected when a new round starts or when the old parent becomes unavailable. At the
beginning of a TR nodes re-evaluate their parent selection and will select a better performing
parent if available. This optimisation helps to save memory on all nodes since they only need
to remember their sequence and the selected parent.

4.1.3. Trust Metric and Objective Function

With both sequence numbers and TRs, nodes will eventually know which packets reached
the root and which did not. Based on this knowledge, a node calculates the delivery rate for
the parent used in the last TR. This rate should be near to 100% in normal cases, because a
packet is retransmitted if no link level acknowledgement was received by the radio.

We use a simple trust metric T (n, p|r) to calculate the trust for all neighbours n ∈ Nodes

(see Equation (57)). In every round r, a node calculates the new direct trust value T (n, p|r) for
its selected parent P(n|r) (see Equation (52)) according to the new experiences based on the
PDR (see Equation (55)) and the previous trust value T (n, p|r − 1). The factor α decides how
strong the new experiences are weighted compared to the previous ones (see Equations (56)
and (57)). The initial trust value T (n, p|0) of every node is set to 0.5 which represents a neutral
reputation (see Equation (53)).

The set Nodes contains all nodes in our WSN. Additionally, we define N(n) ∈ Nodes to
contain all nodes which are located physically next to node n and can communicate with node
n using the Radio Frequency (RF) interface (i.e. we consider only neighbouring nodes of node
n). For simplicity, changes in physical location are neglected in the formulas.
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P(n|r) ∈ N(n) (52)

T (n, p|r) ∈ [0, 1],T (n, p|0) B 0.5 (53)

P(n|r) B p, p ∈ N(n) ∧ T (n, p|r − 1) = max
n2∈N(n)

T (n, n2|r − 1) (54)

τ B PDR B
#delivered

#sent
(55)

α ∈ [0, 1] (56)

T (n, p|r) B

α · T (n, p|r − 1) + (1 − α) · τ p = P(n|r − 1)

T (n, p|r − 1) otherwise
(57)

When a node receives a DIO which starts a new TR, it will update the trust value for the
current parent. We define an Objective Function (OF) which then uses this metric to select
suitable parents. Initially, all nodes are equally trustworthy and the behaviour is equal to
standard RPL with Objective Function Zero (OF0) according to RFC 6552 [145]. Each node
increases its rank to be higher than those of the suitable parents. It then selects the best parent.
If the trust value of the parent decreases, it will at some point no longer be considered as a
“good” parent. The OF will select a higher ranked parent. Eventually, the node needs to adjust
its rank to have more suitable parents available.

4.1.4. Overhead

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Option Type Opt Data Len

Flags RPLInstanceID SenderRank

Trust Seq Sender Seq (sub-TLVs)

Figure 15: RPL header extension for sender and trust-sequence in Type-Length-Value (TLV) format
according to RFC 6553 [146].

Sending additional information always causes overhead which also applies to our RPL
header extension (as shown in Figure 15). However, we try to minimise the impact on power
consumption. Therefore, we do not send additional packets to keep radio and CPU in power
save mode as long as possible. Instead, we use existing messages which are sent anyway
and add our data into the message. Additionally, we compress the data as much as possible:
Since sequence number and TR are only two bytes they should fit inside the padding of most
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Figure 16: Experiment setup with attackers coloured in red, normal nodes in white and root in gray.
Exemplary paths are shown in blue and the green circle represents the radio of a root. Nodes
do not move during the experiment. Attackers perform coordinated periodic attacks.

(a) Experiment A: One attacking node (b) Experiment B: Two attacking nodes

packets; in contrast, the DIOs which are sent by the root need an entry for every node in the
network such that the amount of data is not negligible. One main concern is the size of IPv6
addresses which are 16 bytes for every node. E.g. for a network with 400 nodes the DIO
would grow to about 7 kB. However, most sensor networks use a common prefix for all nodes
and we can exploit this to decrease the address size. We choose a prefix of 14 bytes, so, our
addresses contain two bytes. Adding the one byte counter for the received packets, we result
in a three byte entry per node. The resulting DIO for 300 nodes with about 1200 bytes still
fits inside the standard Message Transfer Unit (MTU)1.

To measure the effectiveness of our approach, we implemented our RPL extension in
Contiki [144] and ran simulations in Cooja [148]. Cooja allows us to use the same code
which also runs on real hardware with similar restrictions to memory, CPU and radio. In
this experiment, we set up a multi-hop sensor network with 26/27 Tmote Sky nodes (see
Figure 16). Those sensor nodes run a Texas Instruments MSP430 microcontroller at 8 MHz.
They contain 10 kB of RAM and 48 kB of flash. Every node can reach its neighbours without
packet loss but radio interferences still occur. We use a single DODAG (see Section 1.6.1) in
which nodes periodically send data to the root. When simulating broken or malicious nodes,
we disable the forwarding of data packets. However, they still send out routing informations
(i.e. DIOs), so, they remain inside the network. Indeed, routing information may be stale or
wrong since RPL does not validate this information.

1According to RFC 2460 [147] every IPv6 link has to support a MTU of at least 1280.
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To compare our approach with state-of-the-art RPL, we consider three experiments: First,
we simulated an undisturbed case to compare our approach to standard RPL. This will be
considered as the reference experiment later on. Second, we construct an experiment with one
attacking node next to root (Experiment A). Only three nodes can reach root directly and one
of those is malicious (see Figure 17a). To increase the attack, we provide a third experiment
with two attackers next to root (Experiment B). They are two out of four nodes with direct
link to root (see Figure 17b).

4.1.5. Undisturbed Case

In the undisturbed experiment (setup is the same as in Experiment A but without the attacker),
we compare RAM, ROM and DIO size between our approach and the reference RPL imple-
mentation in Contiki. ROM and RAM usage is measured statically for the Tmote Sky build
(see Figure 18a). Our implementation uses about 1.2 kB of additional ROM, which brings this
particular sensor node to its limit. RAM is allocated at compile time and the usage increases
by 1.6 kB, which is surprisingly high because we only send very few additional bytes. The
reason for this increase it that a Contiki node stores the last received DIO for every direct
neighbour in RAM – even for neighbours which are not currently parents. Unfortunately,
Contiki preallocates memory for every possible neighbour (maximal neighbour count is
configurable; 20 is default for Tmote Sky) and we increased the size of DIOs by 65 bytes.
However, a node only needs to remember the latest metric container and the memory usage
could be reduced by optimising DIO storage.

We also compared the packet delivery rate between reference and our implementation.
As shown in Figure 18b, both behave similarly. Minimal packet loss is happening in both
experiments and the delivery rate is about 99%. However, in our implementation, the delivery
rate is slightly lower in simulation due to higher CPU usage and more radio interference due
to bigger DIOs. In [C10], we presented an approach to reduce the size of the DIOs to prevent
this effect.

4.1.6. Under Attack

To evaluate our approach under attack, we added one (Experiment A) or two (Experiment
B) malicious nodes to the network (see layout in Figure 16). Those malicious nodes do not
forward any data packets. However, they still send out RPL routing packets, so, other nodes
still may use them as parents. For both attacks, we compare standard RPL with rank as metric
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Figure 17: System in undisturbed case. The setup is the same as in Experiment A but without the
attacker. Our approach behaves similar to the reference experiment.

Trust Reference ∆

ROM 48796 B 47520 B 1276 B
RAM 9516 B 7834 B 1682 B
Metric 65 B 0 B 65 B

(a) Additional Memory Usage 0 200 400 600 800 1000
0

20

40

60

80

100

Time [Sequence]
Pa

ck
et

s
re

ce
iv

ed
[%

]

Trust
Reference

(b) Undisturbed system

and our implementation with trust as metric. We placed attackers next to root to maximise
their impact on the system.

In Experiment A with one attacker, the reference implementation only achieves a delivery
rate of constant 79% (see Figures 17a and 19a). This effect is caused by a single attacker
which is one out of three nodes which can directly reach root. In contrast, the performance
of our trust-enhanced RPL improves over time: At the beginning, it reaches 86% PDR, and
eventually, it recovers to over 99% PDR.

We add a second attacker in Experiment B and repeat our measurements (see Figures 17b
and 19b). In the reference experiment, the PDR dropped to an average of 38.5%. About
60% of the nodes are unable to communicate with root. In comparison, our approach reaches
a PDR of about 70% initially. After about 400 packets, it improves to nearly 100%. The
improvement happens quite abrupt because RPL requires nodes to change their rank if they do
not have any suitable parents. However, the rank also influences the topology of the network
and, thereby, the attackers move out of the routes for most nodes.

4.1.7. Minimising Transmissions and Energy Consumption

Focusing only on selecting optimal routes and maximise the PDR has one downside when
attacks or disturbances occur only temporarily because nodes will keep a longer route after
attacks (see [W29]). This causes additional radio transmission and, thereby, more energy usage
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Figure 18: System under attack.
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(a) Experiment A: One attacking node
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(b) Experiment B: Two attacking nodes

which is problematic on battery-powered sensor nodes. We account this overhead indirectly
because sending additional packets causes more collisions and therefore influences the PDR.
However, to account for minimal energy consumption, we add a second utility function: We
want to minimise the number of transmitted packets (#TX). However, maintaining a good
PDR is still a higher priority2.

In Figure 19, we show #TX before, during and after a temporary blackhole attack. In the
beginning, our approach (trust + ETX) chooses slightly longer paths and, therefore, uses on
average about five more packets than the reference metrics OF0 according to RFC 6552 [145]
and Expected Transmission count (ETX) [149]. PDR is nearly 100% for all metrics (see
Figure 20). When the attack starts, the number of packets drops because some of them are
dropped by the attackers. PDR drops to about 50% for all metrics. ETX and OF0 stay at that
level. Our trust metric recovers to nearly 100% within 100 sequences. However, the number
of packets sent increases by about 40%. After the attack ends, OF0 and ETX recover PDR
and #TX to the old level. Unfortunately, #TX for our metric stays at the same high level as
during the attack because the newly chosen routes still work well. However, the old routes are
available again and should be used.

2Dropping all packets at all nodes would result in a minimal number of packets transmitted but also in a very
low PDR.
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4.1.8. Second-Chance

The trust + ETX metric considers both utility functions. It selects a parent with a good
ETX (resulting in a low number of Transmitted Packets (#TX)) from the list of trustworthy
neighbours (to maintain a high PDR). However, when the best route is not in the list of
trustworthy neighbours, it will never be considered again as long as the list is not empty.
Therefore, we implement the social concept of forgiveness [129] to give nodes a second
chance. Otherwise, a node will never explore other paths as long as the current selected parent
is good enough. However, in a dynamically changing environment such as a sensor network,
this will cause problems when disturbances occur. Therefore, we employ the NM (located on
the root node) to monitor the network and only enable this measure selectively.

Our approach to implement forgiveness is called trust + ETX + Second-Chance. When a
node has a parent which delivers a PDR of 100% and another node with a better ETX exists
(58), it will route one or two packets through that node (see Equation (59)). If the PDR of
that TR is 100% again, the alternative node will receive a good rating and may be considered
as parent again. If PDR is less than 100%, no action will be taken and the node may try again
later.

S (n|r) Bs, s ∈ N(n) ∧ ETX(n, s|r − 1)

= max
n2∈N(n)

ETX(n, n2|r − 1) (58)

T (n, p|r) B


α · T (n, p|r − 1) + (1 − α) · PDR p = P(n|r − 1)

α · T (n, p|r − 1) + (1 − α) p = S (n|r) ∧ PDR = 1

T (n, p|r − 1) otherwise

(59)

This approach allows optimising the route, when the current parent is already very reliable.
Therefore, this is only triggered when the NM observes a stable PDR.

We evaluate Second-Chance as metric against our previous approach. Additionally, we
compare to OF0 and ETX as baseline.

4.1.9. Norm Manager

Constant retrying/forgiveness causes additional overhead and, thus, is only beneficial during
an attack (as discussed in [O40]). However, because of limited knowledge, nodes cannot
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Figure 19: Transmitted Packets (#TX) over sequences (time). An attack starts at sequence 160 and
ends at sequence 340. During the attack, #TX increases for the trust + ETX metric and
stays at that level after the attack. For OF0 and ETX, #TX drops during the attack and
recovers to the same level as before afterwards.
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detect this in a timely manner. To solve this challenge, we introduce a higher-level NM at
root which analyses the situation and sends advice to nodes in the network (see Figure 9).
In WSN, the root node typically is not battery powered and has significant computing and
memory resources which allow additional processing. Based on our work in [C19, W29], it
can also obtain an outline about the structure and disturbances occurring. By exploiting this
information, the root node can detect and assess NEB. Unfortunately, it cannot react directly
to malicious behaviour or prevent any attacks. However, it can issue norms to influence agents
indirectly which are distributed using DIO messages.

Thereby, nodes remain autonomous and still can make decisions locally but get guidance
from the NM to allow faster and more informed responses to attacks. In this experiment, we
adjust the rate to retry (i.e. forgive) a parent. This should be low during an attack to prevent
packet loss but high when the attack ended to recover the paths.
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Figure 20: Packet Delivery Rate (PDR) over sequences (time). An attack starts at sequence 160 and
ends at sequence 340. PDR drops to about 30% for OF0 and ETX during the attack and
recovers afterwards. Trust + ETX and trust + ETX + Second-Chance recover during the
attack and stay near 100% PDR until the end of the experiment.
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4.1.10. Experiment Settings

To evaluate our approach, we perform a simulation in Cooja [148] running Contiki nodes [144].
Each run is repeated 20 times and the result values are averaged. Each node sends 5.000
packets to root during the experiment. The attack starts at sequence 160 and ends at sequence
330.

4.1.11. Results and Discussion

In Figure 21, we show our results. In an undisturbed system, trust + ETX + Second-Chance

chooses very similar routes to ETX and #TX is slightly higher. When the attack starts at
sequence 160, #TX decreases for all metrics since attackers start to drop packets. As shown in
Figure 20, OF0 and ETX do not react to the attack and show a PDR of only 30%. Trust + ETX
+ Second-Chance reacts and recovers to a PDR of > 95% at sequence 220 (see Figure 19).
When the attack ends, #TX for trust + ETX + Second-Chance decreases back to its initial
level of about 80 while trust + ETX (without Second-Chance) remains at about 107.
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Figure 21: Transmitted Packets (#TX) over sequences (time). An attack starts at sequence 160 and ends
at sequence 340. During the attack #TX increases for the trust + ETX + Second-Chance
metric. For OF0 and ETX #TX drops during the attack and recovers to the same level as
before afterwards. Unlike in Figure 19, trust + ETX + Second-Chance recovers to a level
similar to before the attack.
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Using the NM and adding Second-Chance to our metric when the disturbance ends allows
self-improvement during runtime. Since the approach is only activated by nodes when they
observe a very high primary utility (PDR), it does not influence the behaviour during the
recovery of attacks. The NM detect the end of the disturbance around sequence 350 and
#TX recovery at sequence 360. If we assume that attacks only occur occasionally and that
the system is undisturbed most of the time, our approach is clearly beneficial. The overhead
during the attack (after recovery) is already small, but it can be decreased further. However,
this experiment shows that our approach is working for this scenario.

As a future improvement, the NM could also advise on the frequency of retries because
we currently retry in every TR with a constant frequency. To improve this, we could also
implement exponential back-off or similar methods. Additionally, nodes could passively
listen to the radio to check whether their parent node is actually forwarding messages as
suggested in [117]. However, since this is an energy-intense operation, this should only be
done selectively when advised be the NM.
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4.2. Trusted Desktop Grid

In this section, we apply our approach to the TDG scenario (see Section 1.6). We perform
an experiment with a persistent attack by colluding Cunning Agents and show how the NM
identifies and isolates those. Additionally, we evaluate how the NM can tune the integration of
new agents which can be used to allow faster integration of Adaptive Agents or faster isolation
of Freeriders and Egoists.

4.2.1. Detecting and Isolating Cunning Agents

Cunning Agents cannot be easily detected and isolated locally in a distributed system. There-
fore, they pose a permanent threat to the TDG. However, a higher-level NM can detect them
and then can change norms to isolate them.

To detect Cunning Agents in the NM we cluster groups using the MCL [139] and the
BIRCH [142] algorithms on the trust graph and classify them using a decision matrix. For
the purpose of this experiment, the matrix can only identify groups of Cunning Agents. The
metrics used for that purpose are shown in Section 4.3.7. In particular, we use the value of
Authorities and DegreeCentrality to detect groups of Cunning Agents.

Once the NM detects groups of Cunning Agents, it has to isolate them. Unfortunately, it
cannot influence agents directly but it can do this using norms. Therefore, it introduces a new
norm which allows agents to refuse work from Cunning Agents. We propose to detect them
based on their inconsistent behaviour.

4.2.2. Inconsistent Behaviour

In trust-based distributed systems such as the TDG, we condense a series of trust ratings R to
a single reputation value τ (see Equation (61)). However, this does not take the consistency of
those ratings into account. Normally, agents make their decisions based on the aggregated
value τ.

r ∈ [−1, 1]⇒ R ∈ [−1, 1]k (60)

τ B T(R) B
∑

r∈R r∑
r∈R |r|

(61)
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However, Cunning Agents behave strategically regarding their reputation value: They
behave well until they reach a certain threshold τupper and then stop to cooperate with other
agents until they fall below a threshold τlower. Therefore, their reputation τ is between
those two values most of the time and they adjust their τlower and τupper to be considered as
well-behaving by other agents based on the reputation (see Equation (62)).

τlower ≤ τ ≤ τupper ∧ τlower ≥ τwb (62)

Since those agents intentionally exploit the trust metric, they cannot get detected and isolated
using the reputation value. However, they receive very inconsistent ratings r because of
their changing behaviour and we can leverage that to detect them. Therefore, we define the
consistency κ based on the standard deviation:

κ B 1 −
∑

r∈R,r>0 r∑
r∈R |r|

· (τ − 1)2 +

∑
r∈R,r<0 r∑

r∈R |r|
· (τ + 1)2 (63)

We expect a very low value for Cunning Agents and a value close to one for Adaptive Agents.
Other agents such as Freeriders or Egoists also should get a value of approximately one since
they consistently behave maliciously.

4.2.3. Changing Norms

The NM cannot directly influence agents or force them to perform any actions. However, it
can change norms and, thereby, change incentives and sanctions for certain actions. To cope
with Cunning Agents while maintaining the autonomy of agents we choose to allow them to
reject jobs from inconsistently behaving agents. Therefore, agents can decide on their own if
they want to work for Cunning Agents since they will still receive an incentive for that.

In Figure 22, we show the changed norm. The threshold δ for the reputation τ is smaller than
τlower and the threshold γ for consistency is 0.8 in our experiment. requester.reputation
is calculated using the trust metric τ and requester.consistency is determined by κ. The
sanction results in a rating in R for the working agent.

4.2.4. Setup

The setup in the evaluation consists of 100 Adaptive Agents and additional 50 Cunning Agents

for all experiments with attackers. Each experiment ran for 300,000 ticks and was repeated
100 times. We performed three series of experiments: (E1) without attackers; (E2) with
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Figure 22: Changed norm used in the evaluation to isolate Cunning Agents. It allows agents to reject
jobs from inconsistently behaving agents.

context
Target/Role︷  ︸︸  ︷
Worker norm

Name︷      ︸︸      ︷
AcceptJob :

requester.consisteny > γ ∧

requester.reputation > δ︸                                    ︷︷                                    ︸
Pertinence Condition

implies acceptJob(requester, job) = true︸                                             ︷︷                                             ︸
Postcondition

sanctioned
if violated︸   ︷︷   ︸

Default Sanction Condition

then self.reputation += -rejectSanction︸                                       ︷︷                                       ︸
Sanction

attackers; (E3) with attackers and our norm changes.

4.2.5. Detection of Cunning Agents

The detection of Cunning Agents in (E2) by the NM can be observed between tick 15,000 and
50,000 and was successful in all experiments. On average, the NM detected the attackers at
tick 24,920 with a standard deviation of 15,301. The NM introduces the norm at this point.
However, to make the impact of the norm change more comparable, we set the time tchange to
100,000 for subsequent experiment in (E3).

4.2.6. Consistency Values

We measured the consistency values for Adaptive Agents and Cunning Agents in (E2) at the
end of the experiment. Both values turned out to be as expected: Adaptive Agents have a
value of 0.9999 ± 0.00053 which is very close to one. In contrast, Cunning Agents have a
value of 0.0611 ± 0.01337 which is next to zero.
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Figure 23: Exemplary simulation run with norm introduced at tick 100k by the Norm Manager. Cun-
ning Agents get isolated quickly and Adaptive Agents recover to an utility of about 7. A
speedup of less than one means that agents no longer have an advantage from participating
in the system.

4.2.7. Influence of Norm Changes

We measure the influence of the norm change using the speedup σ for Adaptive Agents and
Cunning Agents in experiments (E1), (E2) and (E3) (see Figure 24). In Figure 23, we show
one single exemplary experiment of (E3) with speedup over time. In the beginning, Adaptive

Agents and Cunning Agents achieve a similar but varying speedup. After the NM introduced
the norm change at tick 100,000 the speedup for Cunning Agents falls below one and those
agents no longer gain any advantage from participating in the system. In contrast, Adaptive

Agents gain a stable high speedup again. In the undisturbed experiment (E1), we measured
that Adaptive Agents can achieve a speedup of 11.74 ± 0.73 when there is no attack. When a
heavy attack of Cunning Agents is added in (E2), the speedup decreases to 5.29 ± 1.26. With
norm change by the NM, the speedup increases again to 6.75± 1.24 in (E3) which is less than
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Figure 24: Speedup for Adaptive Agents and Cunning Agents for every experiment series with 100
Experiments each. In (E3) the Norm Manager is active. All experiments lasted 300,000
ticks.
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at the end of the experiment (see Figure 23) because the value is averaged over the complete
experiment. Cunning Agents achieve a speedup of 5.23± 1.38 when they exploit the system in
(E1). At the same time, they work significantly less than Adaptive Agents. However, when the
NM changes the norm, the speedup of Cunning Agents decreases to 2.49 ± 0.33. Again, this
is averaged over 300,000 ticks and, as shown in Figure 23, the Cunning Agents are isolated
with a speedup below one at the end of all experiments.

4.2.8. Integration of New Agents

In Figure 25 and Table 1, we show another experiment where the NM modifies the value
of δ (see Figure 22) which influences how well new agents are integrated. If an agent has a
reputation below δ, other agents are free to reject a job without sanctions. Since they still
receive an incentive for completing jobs, they might still do the work in some cases, but can
decide autonomously. Usually, δ is set to the initial reputation of new agents, but the Norm
Manager can change δ depending on the situation. When the system is under disturbance δ is
increased and may be reduced afterwards.

We consider attacks by Freeriders and Egoists and evaluate both attacks by adding 100
attacker agents to a system of 200 Adaptive Agents. To measure the effect on well-behaving
agents we repeat the experiment with 100 Adaptive Agents entering the system. The described
norm change is performed at the beginning of the attack. Additionally, we run a reference
experiment without norm change for all agent types. Since isolation and integration of agents
is slower during low load situations, we added this as a scenario. Every experiment is repeated
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Figure 25: Duration of isolation/integration per agent group. Generally a lower duration is better. For
Adaptive Agents, we measure how fast they get integrated and for Freeriders and Egoists
how fast they get isolated.
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Table 1: Duration of isolation/integration per agent group. Generally less is better. For Adaptive
Agents, we measure how fast they get integrated and for Freeriders and Egoists how fast they
get isolated.

Agent
Low Load

high δ
High Load

low δ
Low Load

low δ
High Load

high δ
Adaptive Agents 6837.1±228.06 6722.1±568.1 18375.3±6099 8945.7±2585
Freerider 145000±0 8841.6±17597 8037.9±275.77 1930.8±57.37
Egoists 41178.4±64102 3034.1±14268 1600±0 1609.3±62.47

one thousand times, resulting in 12,000 experiments.

After the attack starts at tz, we periodically calculate the speedup σ (defined in Equation (1))
for the attacking agents. tend,isolation is defined to be the smallest value with tend > tz∧σ ≤ 1 (64).
The duration of isolation Tisolation is then determined as the difference of tend and tstart (65;
see Section 3.5 for more details).

tend,isolation B min{t : t > tz ∧ σ ≤ 1} (64)

Tisolation B tend,isolation − tz (65)
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For Adaptive Agents, we similarly calculate the duration of integration δintegration (67). In a
reference experiment without norm change, we determine the final speedup after integration
σref. Tend,integration is then defined to be the first time after attack where σ ≥ σacc (66).

tend,integration B min{t : t > tz ∧ σ ≥ σacc} (66)

Tintegration B tend,integration − tz (67)

In Figure 25, we present our results for the three agent types. For Freeriders and Egoists,
the graph shows Tisolation. In contrast, for Adaptive Agents, it illustrates Tintegration. Full results
with standard deviation are listed in Table 1. The results show that isolation of malicious
agents greatly improved when norms were changed, especially in low-load situations. For
Freeriders, the duration decreased by 78% under normal load. Under low load, Freeriders

were not fully isolated before. However, this changed with our approach: The system did
properly isolate the attackers in all experiments. Since isolation did not work in the reference
case, we limited the length of that experiment. Therefore, the value for low load without
norms in Table 1 has no variance at all and the relative gain cannot be calculated.

Our approach is very effective when dealing with Egoists. With changed norms during
attack, they get isolated after calculating their first job (duration of a job is 1600 ticks).
Without the change, they were not isolated in most cases under low load and it took about
twice as long under normal load. However, well-behaving agents are also affected by the
norm change: Adaptive Agents need 33% longer under normal load and 169% longer under
low load. Integration still worked in all experiments and can be considered stable. Our results
show that changing norms reduces the impact of attacks by Freeriders and Egoists. However,
this change cannot become the default because it also affects the integration of well-behaving
agents. Nevertheless, by using our NM we can change norms when the observer detects an
attack by Freeriders or Egoists. Critical for the success of this method is fast detection of such
attacks. However, it can be also useful when the system is in a critical state to prevent further
disturbances. After isolation of the attackers, the norm changes can be reversed since isolation
of those two groups remains permanently in the TDG. Isolation is performed using trust and
reputation mechanism of the TDG. We chose this approach to keep maximal autonomy for
the agents (see [C18] for more details).
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4.2.9. Discussion and Summary

In this section, we applied our approach to the TDG scenario to demonstrate its effectiveness.
First, we showed an experiment with Cunning Agents which pose a permanent threat to the
system stability. Using the NM which applied a norm to encourage consistent behaviour,
those attackers were isolated and the utility returned to a reasonable level. However, in
non-disturbed cases this measure causes monitoring overhead and it is, therefore, not well
suited to be always active. Nevertheless, with our approach it is only activated on demand.

The second experiment focused on sealing the system from new agents when the system
is either already in a critical state (e.g. in trust breakdown) or when attackers were detected.
Using the δ threshold in the norm, sanctions for rejecting jobs from newcomers are effectively
disabled but incentives for performing work stay in place. This gives agents more freedom
to make better decisions when under pressure (e.g. during an attack or disturbance). Thus,
attackers get isolated faster and cannot disturb the system further. However, this also reduces
the incentives to work for other new cooperative agents and it takes longer for those to be
integrated in the system. Therefore, this should be also enabled or disabled depending on the
situation by the NM.

4.3. Rendering

In this section, we evaluate distributed rendering as application on top of the TDG and compare
it to BURP (see Section 1.6.3). BURP is running on top of BOINC (see Section 2.1.1) which
distributes work using a central tracker. To make the TDG comparable, we limit it to a
single submitter3. We compare the success of the approach used in the TDG and BURP by
experimenting with four different scenarios and analysing the achieved results with a focus on
correctness and throughput as utility functions.

4.3.1. Distribution Strategies

First, we explore different distribution strategies which select (i) the replication factor, and (ii)
the worker for a given work unit. Work units are accepted by the submitter when the majority
of returned results matches (quorum). The NM can select the strategy and the corresponding
parameters.

3We also evaluated the TDG with multiple submitters and rendering as application in [C16].
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4.3.2. Static Random Distribution Strategy (BURP)

The strategy used by BURP is a static random distribution strategy with a static factor f of
2. Workers are chosen randomly without any consideration of reputation or trust. When the
returned results do not match, BURP discards them and chooses two new workers randomly.
Therefore, the practical replication factor can be larger than 2.

4.3.3. Dynamic Random Distribution Strategy (DRDS)

As a baseline we developed Dynamic Random Distribution Strategy (DRDS) which uses the
reputation to calculate the minimum reputation factor fmin for each worker. It defines limits
(in our case between 1.5 and 5.0) and interpolates using the reputation τ(R) of the worker.
Afterwards, fmin is rounded to the next integer using a roulette wheel random generator (see
Figure 26).

Figure 26: We calculate the minimum replication factor fmin for each worker. First, we interpolate fmin
based on the reputation τ between defined limits (here from the interval [1.5, 5]). Then, we
round fmin to the next integer using a roulette wheel random generator.
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DRDS starts with a random worker and continues to add workers until the replication
requirement for all of them is satisfied. Effectively, the largest fmin is used for all workers
even if most of them have much lower requirements. Therefore, we expect this pessimistic
strategy to show a very high correctness but slightly reduced throughput.

4.3.4. Dynamic Ordered Distribution Strategy (DODS)

To optimise the replication factor f , in Dynamic Ordered Distribution Strategy (DODS) we
order workers by their replication requirements fmin (which roughly also orders them by their
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reputation τ). Afterwards, the top fmin workers for the first work unit are selected. The next
fmin is applied for the second group etc. Since fmin depends on the worker, the group size
increases along the list.

DODS finds a solution for the minimal number of replicas. However, when selecting a
group of workers with very low reputation, it is very likely that the majority does not return
the correct results and no quorum can be reached. This will trigger additional replication or
may result in incorrect results.

4.3.5. Dynamic Grouping Distribution Strategy (DGDS)

To prevent potential problems with quorum, we developed Dynamic Grouping Distribution
Strategy (DGDS) which selects groups using heuristics. The goal of the strategy is to choose
at least as much “trusted” (τ > 0.7) as “untrusted” (τ ≤ 0.4) or “undecided” (0.4 < τ ≤ 0.7)
workers. At the same time, the replication requirement fmin for the group is minimised.

Figure 27: DGDS selects one “untrusted” (τ ≤ 0.4) worker in the first step. Afterwards, it adds two
“trusted” (τ > 0.7; green) workers and one “undecided” (0.4 < τ ≤ 0.7; yellow) worker to
make sure the “untrusted” workers (τ ≤ 0.4; red) do not form the majority.
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DGDS starts by selecting “untrusted” workers with similar replication requirements and
adds up to b fmin−1

2 c entities of this category to the group. Then, it adds the same amount of
“trusted” workers. Afterwards, it fills the group with “undecided” and “trusted” to reach fmin

(Figure 27 shows an example). If such combinations cannot be found, it also selects less
desirable groups as long as “untrusted” workers cannot form the majority. Depending on the
current situation, the NM sets the replication limits (as shown in Figure 26).
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4.3.6. Experimental Setup

We run our experiments on a cluster with 17 nodes and 204 CPU cores. 100 workers render
frames for one submitter (to make it comparable to BURP; TDG supports multiple submitters).
In each experiment, we render 30 films with 1,000 frames each. To render the experiments
fast enough, every frame was reduced to require only between 1 and 1.5s of computing time.
Every worker only works at one frame at a time. Every experiment is repeated ten times
and the results are averaged (with standard deviation). For DGDS, we set the replication
limits to 1.1 and 3 (chosen to be around 2 which BURP uses; other limits are investigated in
Experiment 3).

4.3.7. Metrics

During the evaluation, we measure the following metrics:

• Throughput: Completed and accepted work units. Measured at the submitter in work
units per second.

• Correctness: Measures the correctness of completed and accepted work units in percent.
Validation is performed using prior knowledge.

• Replication Factor: The average replication factor f among all workers. Replication
factor one means no replication. Only one worker computes the work unit and no
overhead is generated. With factor two, every frame is rendered twice which results in
100% additional overhead.

• Reputation: Average reputation of an agent group based on the reputation system as
introduced in Section 3.2.

4.3.8. Worker and Attacker Model

In our experiments, we use four types of worker implementations.

• Faithful Worker: The faithful worker behaves well and usually returns all work units
correctly. This type is the desired benevolent interaction partner.

• Incorrect Worker Independent: This worker is faulty or malicious and returns incor-
rect results all the time. The incorrect results of multiple workers look different.

• Incorrect Worker Colluding: This worker is malicious and returns incorrect results all
the time. However, the incorrect results of multiple workers look the same. Therefore,
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Table 2: Throughput in work units per second for all distribution strategies with (i) no attackers, (ii)
20% independent incorrect workers and (iii) 20% colluding incorrect workers.

Strategy no attackers 20% independent 20% colluding
BURP 39.88 ± 0.03 26.65 ± 0.08 27.92 ± 0.10
DRDS 68.89 ± 0.12 44.23 ± 0.11 46.05 ± 0.11
DODS 68.73 ± 0.07 45.30 ± 0.08 57.27 ± 0.29
DGDS 72.23 ± 0.05 56.80 ± 0.10 56.43 ± 0.25

Table 3: Distributed work units per second and worker for (ii) 20% colluding attackers. DODS
distributes equally to incorrect and faithful workers (observed using prior knowledge). DGDS
distributes significantly more work units to faithful workers and isolates attackers.

Strategy all incorrect workers faithful workers
DODS 0.79 ± 0 0.79 ± 0.002 0.79 ± 0.001
DGDS 0.70 ± 0 0.33 ± 0.024 0.80 ± 0.001

incorrect results may reach a quorum at the submitter and get accepted. This concept
resembles intentionally malicious behaviour of a group of cooperating agents.

• Periodic Worker: The periodic worker iterates between returning correct and incorrect
results. It can be both colluding or independent.

We refer to an attack when incorrect workers or periodic workers are in the system or enter the
system. The system always consists of 100 workers and the number of attackers is included
(i.e., 20% attackers means 20 incorrect/periodic workers and 80 faithful workers).

4.3.9. Experiment 1: Comparing Distribution Strategies

In the first experiment, we compare our distribution strategies according to the first metric,
see Section 4.3.7: the throughput. We consider three scenarios: (i) no attack, based on 100%
faithful workers, (ii) 20% independent incorrect workers, and (iii) 20% colluding incorrect
workers. We perform ten runs for every strategy and scenario combination.

In Table 2, we show the throughput. Additionally, we show the average replication factor
in Figure 28. Without an attack, all our dynamic distribution strategies perform similarly and
outperform BURP by about 80%. DGDS achieves a slightly larger throughput and a slightly
smaller replication factor. When adding 20% independent attackers, DRDS and DODS
outperform BURP by about 90% and DGDS outperforms BURP by over 100%. In both
scenarios, all strategies reach 100% correctness. It is notable that BURP shows a replication
factor f of 3 which is probably caused by frequent mismatches (about 50% of the time)
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Figure 28: Average replication factor f of strategies BURP, DRDS, DODS and DGDS for three
scenarios: (i) no attackers (100 faithful workers), (ii) 20% colluding incorrect workers
(80 faithful workers, 20 colluding incorrect workers), and (iii) 20% independent incorrect
workers (80 faithful workers, 20 independent incorrect workers). Standard deviation is too
small to be visible in this experiment.
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between the two results. This is further investigated in Experiment 2 (see Section 4.3.10).

However, when adding 20% colluding attackers, DODS and DGDS outperform BURP
by about 100% and only DGDS achieves 100% correctness (correctness is not shown in
the graph). DODS achieves a slightly higher throughput with a higher replication factor
which looks odd at first. However, DODS also does accept incorrect results and does not
achieve 100% correctness. In Table 3, we show the average number of distributed work units
per second for DODS and DGDS. It can be seen that DGDS distributes less work units to
attackers (observed using prior knowledge), which causes the lower replication factor, but also
a slightly lower throughput. However, accepting incorrect results to increase the throughput is
not desirable and will, thus, be investigated further in Experiment 3 (see Section 4.3.11).

Overall, we conclude that DGDS is the most promising algorithm, since it achieved 100%
correctness and the lowest replication factor in all scenarios. Thus, we further investigate the
performance of the DGDS algorithm with the NM in the next experiments.

4.3.10. Experiment 2: Independent Attackers

In the second experiment, we investigate the influence of different percentages of independent
attackers. An attacker will not return any correct results and the throughput will decrease
with increasing percentages of attackers. Therefore, we measure the replication factor which
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Figure 29: Average replication factor for BURP and DGDS when attacked by independent incorrect
workers. On the x-axis, increasing the percentage of attackers is shown. Standard deviation
is too small to be visible in this graph. A lower replication factor is better (i.e. less
overhead).

10% 20% 30% 40% 50% 60%
0

2

4

6

8

10

Percentage of independent attackers

R
ep

lic
at

io
n

fa
ct

or
f

BURP
DGDS

Table 4: Average number of distributed work units per second and per attacking worker for increasing
percentages of attackers for BURP and DGDS. BURP distributes a constant number of work
units to attackers. However, when using DGDS the number decreases as more attackers enter
the system because less “trusted” workers are available to form groups that are not dominated
by attackers.

Percentage of attackers BURP DGDS
10% 0.796 ± 0.001 0.653 ± 0.001
20% 0.794 ± 0.003 0.302 ± 0.001
30% 0.795 ± 0.001 0.183 ± 0.001
40% 0.795 ± 0.001 0.123 ± 0.001
50% 0.793 ± 0.002 0.083 ± 0.004
60% 0.794 ± 0.001 0.058 ± 0.000

represents the effort to get a correct work unit processed.

In Figure 29, we show the replication factor for BURP and DGDS under attacks ranging
from 10% to 60% of independent attackers. For BURP the replication factor f strongly
increases from 2 (no attackers) to nearly 10 for 60% of attackers. Therefore, with 60%
attackers, BURP retries every distribution nearly five times in average (always with two
random workers). Since results of independent attackers can be distinguished, the correctness
is always 100% for BURP.

DGDS stays at an average replication factor of 1.1 for all runs. This means that only every

82



4 EVALUATION

Figure 30: Average replication factor for BURP and DGDS, DGDS− and DGDS+ when being attacked
by colluding incorrect workers. The x-axis shows the percentage of attackers. For all
strategies, the replication factor f constantly increases. BURP starts at factor two and
saturates at factor 4 with 60% colluding attackers which is less than for independent
attackers because it accepts incorrect results. DGDS has a lower factor in all cases (i.e. less
overhead). DGDS− is the worst variant (however still less replication than BURP). DGDS+

is better with more attackers and the base DGDS with less attackers.
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tenth work unit got replicated and nine out of ten were not replicated at all. However, because
of the attack model, the correctness is still 100%. It is also possible to increase the minimum
replication factor limit for DGDS to two, which makes it at least as safe as BURP in this case.
This is further investigated in Experiment 4 (see Section 4.3.12). Similar to Experiment 1,
DGDS distributes less work to attackers compared to BURP, which happens when it is not
possible to form groups where “untrusted” workers do not form the majority (see Table 4).

Overall, DGDS with NM performs well in all our scenarios with independent attackers
containing great improvements for large percentages of attackers.

4.3.11. Experiment 3: Colluding Attackers

In this experiment, we investigate attacks by colluding attackers. Those attackers return
incorrect or fake results which look the same for a certain frame4. If a submitter receives a
quorum of incorrect results, it will accept them and award positive ratings to the attackers.

Initially, we set the limits for the NM with DGDS to [1.1, 3], which showed very high
throughputs in Experiments 1 and 2. However, it led to incorrect results, especially when

4This can be caused by broken software or malicious behaviour. The reason is not important for our approach.
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Figure 31: Average correctness for BURP, DGDS, DGDS− and DGDS+ when being attacked by
colluding incorrect workers. The x-axis shows the percentage of attackers. For BURP, the
correctness decreases monotonically. DGDS performs better (i.e. more correct results) as
long as 50% or less attackers are in the system. When more than 50% of attackers are in the
system, all DGDS variants collapse. DGDS+ with replication factor limits [1.1, 5] performs
best of all variants with nearly 100% correctness for up to 50% attackers.
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dealing with colluding attackers. Therefore, we investigate two additional variants of DGDS
with modified limits to give the NM more autonomy. In DGDS+, we increase the upper
replication limit from 3 to 5 (see Figure 26 for the calculation) which helps to identify
attackers in the beginning. Similarly, DGDS− increases the lower replication limit from 1.1 to
2 and, hence, will never trust a single worker and always replicate at least once.

In Figure 30, we show the replication factor f for BURP and our three variants of DGDS
for up to 60% of attackers. Additionally, in Figure 31, we show the correctness for the same
experiments. BURP has the highest replication factor in all cases. However, it is notable
that it replicates far less than when being attacked by independent incorrect workers (see
Figure 29) because it accepts work units when it selected two colluding attackers. For BURP,
the correctness decreases linearly with increasing percentages of attackers.

For DGDS, the replication factor slightly increases when more attackers join the system, but
even for 60% of attackers, the factor is still better than for 10% of attackers when using BURP.
For up to 50% attackers, DGDS shows better correctness than BURP. DGDS+ even shows
nearly 100% correctness. However, when attackers become the majority (more than 50% of
attackers), our approach fails and the correctness is worse compared to BURP. This happens
because the chance that the submitter accepts incorrect results in the quorum increases. At
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Figure 32: Reputation over time for faithful workers and incorrect workers when being attacked by
40% colluding attackers when using DGDS with replication limits [1.1, 3]. Faithful workers
use a small hit in the beginning and then slowly build up their positive reputation. Incorrect
workers are slowly isolated and receive a negative reputation.

Figure 33: Reputation over time for faithful workers and incorrect workers when being attacked by
40% colluding attackers and using DGDS+ with replication limits [1.1, 5]. Faithful workers
quickly build up their positive reputation. Incorrect workers are isolated nearly instantly
and receive a very negative reputation.
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Table 5: Average reputation of attackers for DGDS, DGDS− and DGDS+ with different percentages
of colluding attackers. Measured when steady state is reached. Attackers gain a positive
reputation when they form the majority (more than 50%). For 40% or fewer attackers,
incorrect workers receive negative reputation (less than 0.4).

Strategy 30% 40% 50% 60%
DGDS 0.16 ± 0.06 0,30 ± 0.12 0.56 ± 0.10 0.68 ± 0.06
DGDS− 0.05 ± 0.00 0.12 ± 0.02 0.22 ± 0.05 0.74 ± 0.07
DGDS+ 0.05 ± 0.00 0.08 ± 0.01 0.19 ± 0.04 0.76 ± 0.02

Table 6: Average reputation of faithful workers for DGDS, DGDS− and DGDS+ with different per-
centages of colluding attackers. Measured when steady state is reached. Faithful workers
maintain a good reputation as long as they form the majority (more than 50%). With more
than 50% of attackers, faithful workers can no longer maintain positive reputation.

Strategy 30% 40% 50% 60%
DGDS 0.93 ± 0.02 0.85 ± 0.07 0.66 ± 0.06 0.49 ± 0.14
DGDS− 1.00 ± 0.00 0.97 ± 0.02 0.90 ± 0.04 0.28 ± 0.16
DGDS+ 0.98 ± 0.00 0.98 ± 0.00 0.96 ± 0.04 0.24 ± 0.06

that point, attackers receive positive ratings and faithful workers receive negative ratings. A
so-called trust breakdown [53] occurs.

In Table 5 and Table 6, we show the average reputation for incorrect workers (attackers)
and faithful workers for different percentages of attackers. For up to 50% of attackers (for
initial DGDS only up to 40%), the incorrect workers get isolated (reputation smaller than 0.4)
and faithful workers maintain a positive reputation (larger than 0.7). However, with 60% or
more attackers, the aforementioned trust breakdown occurs and incorrect workers actually
gain a positive reputation. Similarly, faithful workers no longer maintain a positive reputation
or even drop to bad reputation.

In all cases, initial DGDS performs a bit worse than DGDS+ and DGDS−. Therefore,
we investigated the development of the reputation for DGDS and DGDS+ and plotted it in
Figures 32 and 33 for one exemplary run with 40% of attackers. DGDS shows a much worse
settling behaviour and it takes more time for faithful workers to gain reputation. At the
beginning, they even receive some negative ratings probably because of bad group selection.
Similarly, it takes a long time to isolate incorrect workers. In contrast, reputation settles
much faster when using DGDS+. Faithful workers quickly gain good reputation and incorrect
workers get isolated.

The initial choice of [1.1, 3] for the replication limits did not turn out to be optimal.
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Figure 34: Recovery behaviour of correctness when using BURP, DGDS and DGDS− over time when
being attacked by 20% incorrect workers. The attackers behave like faithful workers in the
beginning to build a positive reputation and start the attack after 60s. DGDS recovers after
1400s. DGDS− only needs 300s.

However, the NM handles the added autonomy very well and chooses an optimal balance
between throughput and correctness. It turned out to be fine to increase the upper replication
limit for the NM without any negative effects. The lower limit can be set to tune the system
between robustness and performance as discussed in Section 3.15.2. For a performance-
focused system, we would choose [1.1, 5] or [2, 5] for concentrating on robustness against
attacks.

4.3.12. Experiment 4: Dynamic Attackers

In the previous experiments, we only considered attackers which constantly attacked the
system. Therefore, in this experiment, we investigate attackers which behave like faithful
workers in the beginning and change their behaviour during the experiment. This allows
attackers to build a positive reputation and leverage it to maximise the damage. To simulate a
maximal disturbance, we consider colluding attackers. We consider two types of attacks: i) a
delayed attack which persists, and ii) a periodic attack which starts and stops in predefined
periods. To capture the complete effect of both attacks, we increased the number of jobs from
30 to 100 (each with 1000 frames). We compare BURP, DGDS and DGDS−. We decided to
omit DGDS+ because it has little effect once attackers reached a high reputation.

One exemplary run of the delayed attack (which starts after 60s) is shown in Figure 34.
When the attack starts, the correctness drops for DGDS and DGDS− to about 85%. However,
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Figure 35: Correctness of BURP, DGDS and DGDS− over time when attacked by 20% incorrect
workers. The attackers behave like faithful workers in the beginning to build a positive
reputation and start the attack after 60s. After another 60s, the attack stops and the attackers
regain reputation for 60s. This is repeated periodically. In this worst-case scenario, DGDS
and DGDS− cannot react to the attack fast enough and show a worse performance compared
to BURP.

DGDS− recovers much faster than DGDS which needs about 1,400s to reach 100% again.
This behaviour is consistent with Figures 32 and 33 from Experiment 3 (see Section 4.3.11).
BURP maintains an average correctness of 96%. Therefore, it depends on the frequency of
such attacks by colluding attackers, whether DGDS− or BURP show better correctness in the
long run. However, using DGDS with the NM, it may be possible to detect and rerun all work
units of periodic workers after an attack when all attackers are identified.

In Figure 35, we show a periodic attack of 20% colluding attackers which is tuned to exploit
the reputation system (as a simulation of a worst-case scenario). Attackers build a positive
reputation in the beginning and start an attack for 60s which is less time than the DGDS needs
to recognise the attack. After the attack, they behave correctly again, rebuild their reputation
and attack again. This way, they maximise the damage to the system. During the attack,
DGDS only reaches 80% to 85% correctness while BURP achieves 95% correctness. Again,
this may be mitigated by rerunning work units from later identified attackers (but not trivially).
This is a specially crafted attack which is intentionally designed to clearly show the limits of
our approach. While not shown here, this behaviour can be mitigated in the NM using the
approach presented in Section 4.2 by encouraging consistent behaviour.
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4.3.13. Discussion and Summary

In our evaluation, we showed that BURP in practise uses quite large replication factors even
when dealing with small percentages of independent attackers (e.g., factor 4 for 40% attackers).
Also, BURP has weaknesses when dealing with colluding attackers which led to incorrect
results in all experiments. On the other hand, the TDG using DGDS with NM handles
independent attackers with about half of the replication factor. Furthermore, it maintains
100% correctness for up to 50% of colluding attackers.
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5. Discussion and Conclusion

In this section, we discuss our results regarding the success criteria formulated in Section 1.8.2.
Then, we discuss open challenges and potential improvements. Afterwards, we summarise
and conclude this thesis.

5.1. Maximise Utility

In all three scenarios, our approach maximises the utility when no disturbance occurs. Es-
pecially in the rendering scenario, no measurable overhead can be observed and the system
performs better than a state-of-the-art system (according to the utility). This happens because
the NM tunes the built-in replication mechanism and reduces security measures outside of
attacks. Furthermore, even when disturbances happen, the NM selects a lower replication
factor (on average) and achieves a higher correctness and less overhead (i.e. replication)
compared to state-of-the-art. However, our approach shows increased performance here
because BURP is not well optimised. If state-of-the-art was carefully statically tuned, we
would expect that our approach exhibits a small measurable overhead when no disturbances
occur. Our approach would still perform better during disturbance and, thereby, achieve a
higher utility on average.

In the sensor network scenario, which represents an already well-tuned scenario, we observe
a small overhead (i.e. slightly lower PDR) when no disturbance occurs. We can measure
this overhead when running experiments in overload situations because our approach adds a
few extra bytes to the routing messages and, therefore, reaches the overload threshold earlier.
However, under normal load, the overhead of sending a few additional bytes is usually too
small to be noticeable. Under attack, our approach improves the utility in almost all cases.
Furthermore, after disturbances, the NM is able to optimise the secondary utility to consume
less energy per node. Again, this is achieved by activating security measures only when under
attack and enabling optimisation when the system is undisturbed.

Overall, a small monitoring overhead caused by the observer can be measured (which is
expected because our approach sends more bytes over the RF interface) but in all scenarios it
is reasonably small. In some cases where disturbances hardly occur (i.e. in closed systems
which are not the primary focus of this thesis), this approach might not be beneficial. However,
in all open systems and even in most very large closed systems, this overhead should be
neglectable because disturbances happen frequently (mostly non-intentionally caused by
broken components) and the advantages of a more robust system prevail. Furthermore, in
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some cases the benefit from runtime optimisations can outweigh the monitoring overhead (i.e.
in the rendering scenario).

5.2. Robustness Under Attack

Using the norms in ODS allows the NM to adjust expected behaviour during runtime. Since
agents are autonomous by definition (see Section 1.3), they can choose not to adhere to the
valid norms. However, other agents will assign them bad ratings as a consequence and they
become isolated if their reputation decreases too much. This mechanism is leveraged by the
NM to punish certain behaviours or to encourage a different behaviour depending on the type
of attackers. For example in the TDG, the NM punishes Egoists by increasing sanctions for
cancelling WUs which renders this behaviour unprofitable for the attacker. This allows an
ODS to deal with attackers as long as they do not become a majority (see Section 5.5 for a
discussion of this case).

In the TDG example, this works well and the system recovers even under very large attacks
for various attacker types and scenarios. Additionally, in some cases (see Section 4.2.8), the
TDG is able to become immune against attackers (i.e. achieving a perfect passive robustness).
Similarly, the rendering scenario becomes very robust against attackers using our approach
(again as long as they stay a minority).

While the state-of-the-art sensor network scenario is well-tuned for undisturbed operation,
it shows flaws under disturbance. This is mostly because additional safety measures cause
overhead which would reduce the utility in general. Therefore, we achieve huge improvements
with our approach because it only activates those measures when attacks occur. As an effect,
nodes route their traffic around disturbances which might be non-intentional and temporary.
However, when the disturbance ends, they stick with those longer routes. This causes more
radio transmissions which should be minimised as secondary utility. Therefore, the NM
activates another norm to have nodes retry shorter paths when it detects that the disturbance
no longer exists. This optimisation allows nodes to perform exploration for a better solution
to maximise the long-term utility.

In all scenarios, additional measures and optimisations exist but only selected measures
were available to the NM (based on best practises). This is a limitation of this approach
because the NM can only change norms which are known at design time. The NM will learn
to find the best possible norm for a certain situation but it cannot invent new measures if none
of the existing parameters or actions affect the type of attacker. For example, if an attacker
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physically destroys nodes in a sensor network, there is currently no way to recover from that
for the NM.

5.3. Permanent Threats and Attacks to the Reputation System

Another challenge in ODS are permanent threats, for example represented by agents which
cannot be easily isolated because they behave strategically. For example, in the TDG scenario,
Cunning Agents are such a threat (see Section 4.2). They behave well for a certain time and
start an attack once they have gained high reputation. The NM isolates them by issuing a
norm to enforce consistent behaviour which proved to work well (see Figure 23). Again,
this norm is not always beneficial since agents sometimes need to change their behaviour to
adapt to new situations. Therefore, the NM will only selectively activate this norm until such
attackers are isolated.

While Cunning Agents behave strategically regarding their reputation, more malicious
behaviour is possible. For example, agents can collude to exploit the system as Freeriders and
Egoists do in Experiment 2 (see Section 4.2.8). Furthermore, groups of agents can also issue
fake ratings among each other which gives them an incorrect high reputation. However, the
NM can detect such groups (as we have shown in [C11]) and mitigate their attacks by issuing
norms.

5.4. Recovery from NEB

NEB can occur as result of attacks or during disturbances such as overload. Ideally, the NM
can counter attacks early to prevent NEB such as in Section 4.2.8. Unfortunately, this is not
possible in most cases. Therefore, the system needs to be able to recover from NEB when
detected. Usually, this requires the NM to somehow identify and possibly mitigate the attack.
Additionally, it needs to encourage cooperation because NEB often leads to a trust breakdown

or overload which essentially stop agents from cooperating. Since the overload is caused
by the attack, one strategy in the NM is to loosen obligations in norms. This allows agents
to selectively accept WUs from trusted partners but spares them from sanctions when not
working for other agents. Furthermore, when a full trust breakdown occurred, reputation
limits are usually adapted as well.

This strategy proved successful in the TDG which recovers from attacks of large groups of
Freeriders that caused a trust breakdown. Furthermore, this also works for our distributed
rendering scenario on top of the TDG which constantly operates in saturation. The sensor
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networks scenario also recovers from groups of attackers but there is only a limited amount of
NEB occurring.

5.5. Attacker Majority

One challenge arises in the rendering and TDG scenario when attackers become the majority.
At this point, only a minority of agents adhere to the norms of the NM which renders the NM
and the reputation system useless. Instead of being purely malicious, the majority could as
well install another reputation system with another NM and, thereby, deprecate the old NM.
More generally, our approach requires a majority of agents to adhere to our NM, or it will
eventually fail. In some cases, the system might be still operational when more than 50% of
attackers join (if not all of them collude), but the system will no longer be robust.

A majority of (colluding) attackers also poses problems to most of our measures such
as replication. As shown in the rendering scenario (see Section 4.3), attackers will win a
majority quorum if they are in majority. The same applies to statistics which are used to
assess good behaviour in the systems. Eventually, the attackers will gain good reputation
and well-behaving agents will receive a bad reputation. Therefore, to use our approach, the
percentage of attackers has to stay below 50%.

5.6. Scaling Clustering

When observing the system, the observer builds the trust graph and performs clustering.
Unfortunately, most clustering algorithms have an exponential complexity which does not
scale for larger systems. For our system sizes in the evaluation with 50,000 or fewer agents,
the runtime is still reasonably short. However, there exists an upper limit where the runtime
becomes so large that we cannot add processing power nor increase the monitoring interval.
Fortunately, the underlying trust graph changes only slowly. Therefore, it should be certainly
possible to start with the previous graph and only perform a few clustering iterations every
time. This would reduce the average complexity and the clustering should improve over time
which should allow to scale our approach to very large systems.

5.7. Feedback Duration

To learn which norm performs well in a given situation, the controller has to get feedback after
selecting a given action. As known from control theory [150], the feedback is usually delayed
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for a certain time. However, using norms, delay time strongly depends on the parameter
or action, and that value is unknown to the NM. Therefore, we currently simply wait for a
system response with a very long timeout because in some cases there may be no reaction. To
improve this, we keep historic data to calculate the average response and adjust the timeout.
Nevertheless, this can probably still be improved to search the norm space more efficiently.

5.8. Conclusion

In this thesis, we presented an approach to guide self-organisation in ODS. We started by
defining ODS and describing our system model. Afterwards, we discussed challenges which
arise from the open nature of such systems and listed our assumptions about such systems. In
particular, agents in ODS have to be considered as black boxes and there is no assumption
of benevolence, leading to uncertainty about their behaviour and intention. To enforce a
desirable behaviour in a distributed manner, we introduced the concept of trust and reputation.
Furthermore, we defined technical norms to achieve desirable behaviour with corresponding
incentives and sanctions. Using these norms, agents can reason about actions during runtime
and derive consequences. This mechanism enables systems to self-organise and isolate single
attackers. However, if larger groups of colluding attackers enter the system, negative emergent
behaviour can occur, resulting in a trust breakdown. As a consequence, agents do not trust
any other agents and, therefore, are no longer willing to cooperate. This can also occur during
disturbances (i.e. broken components) or when the system experiences overload.

To further illustrate challenges in ODS, we introduced three application scenarios. First, we
described the distributed low-power sensor network scenario with geographically distributed
nodes which only communicate locally with their neighbours. To send data to the root node,
nodes have to forward packets for their peers. However, attackers can drop packets silently
and the sender will not notice. The second scenario are OGS where agents can join the
system voluntarily. Agents promise to work for other agents in the OGS and, therefore, may
also submit jobs into the system to gain a high speedup. However, we cannot control the
agent behaviour and agents may try to exploit the system. In the third scenario, as exemplary
application on top of the OGS, we introduce a distributed rendering scenario. In contrast to
the plain OGS, this application is constantly in overload, because there much more jobs than
workers exist. Therefore, agents try to optimise their throughput. At the same time, they try
to achieve a high correctness and, therefore, employ replication to ensure correct results.

In a next step, we introduced agent organisations in which agents organise in a decentralised
way. We defined an iTC, representing the group of agents with a high reputation in the system.
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This is a direct result of the trust and reputation system and leads to isolation of attackers.
However, when NEB happens, those iTCs quickly dissolve and isolation of attackers fails.
Therefore, we introduced eTC which implement an explicit membership functions. Inside an
eTC, agents have to comply to stricter rules and will get excluded from the community when
they break those rules.

Afterwards, we formulated the objectives and success criteria for this thesis. We defined cri-
teria for developing a low-overhead mechanism to improve the performance of ODS. It should
increase the robustness under attack and allow recovery from permanent threats. Furthermore,
it should impede attacks to the reputation system and NEB or, at least, allow recovery after
such disturbances occurred. Thereafter, we discussed related work and compared it to our
criteria.

Next, we presented our approach to implement a mechanism fulfilling the previously defined
criteria. Agents vote a higher-level NM which observes the system and reacts depending on
the situation. The NM consists of an observer and a controller using the well-known observer-
controller pattern. Depending on the situation, the NM influences the system by changing
norms. If the NM detects disturbances, it will activate safety measures and deactivate them
afterwards.

To monitor the system, the NM builds a trust graph based on the reputation system which
can be used to determine the system state. To achieve this, we defined requirements for a
suitable trust metric and developed such a metric. Furthermore, we formalised norms which
are used in ODS and described how they interact with the reputation system using incentives
and sanctions. In a next step, we discussed how the observer can quantify recovery after an
attack. This is leveraged by the NM to learn how the selected measure performed to counter
the observed type of disturbance. Additionally, we presented an approach to measure the
amount of self-organisation occurring in the system. This information is used by the NM to
assess whether the system is currently stable or if disturbances are taking place. Furthermore,
we introduced graph metrics to identify agent behaviour within the trust graph. Based on this
metrics, we defined requirements for suitable clustering algorithms to find groups in the trust

graph. We were able to identify groups of similar-behaving agents and groups of colluding
agents. On the one hand, groups of similar agents are used to classify the different types of
agents in the system (i.e. this allows optimisation if certain attackers are not present). On the
other hand, groups of colluding agents are used to detect colluding attackers and attacks to
the reputation system. Using this information, the controller changes norms when deemed
beneficial. However, it does not know the effect of the parameters in norms initially. It starts
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5 DISCUSSION AND CONCLUSION

Figure 36: Comparison of related work according to our criteria. Our approach is included in the last
row and fulfils all criteria. 3= criteria fulfilled, (3)= partially fulfilled, 7= not fulfilled or
does not apply (i.e. no reputation system exists)
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RPL [56] 3 7 7 7 7

Ganeriwal et al. [116] 3 (3) (3) 7 7

Leligou et al. [117] 7 (3) (3) 7 7

TARF [118] 3 3 (3) 7 7

TORQUE [119] 3 7 7 7 7

TDG [51] 3 3 (3) (3) (3)
HTCondor [120] 3 7 7 7 7

JoSchKa [121] 3 7 7 7 7

BOINC [66, 122] 7 (3) (3) 7 7

Our approach 3 3 3 3 3
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by randomly trying changes and measuring the robustness afterwards. When no recovery
occurred, it will try another action until recovery succeeded. After a few iterations, this
mechanism learns to select the correct action for certain situations.

To prove our approach, we performed experiments for each of the three application scenar-
ios. In the sensor network scenario, we presented an experiment with end-to-end trust which
increases the PDR when disturbances occur. Using this approach, nodes in a WSN detect
attackers and find an alternative route. However, after the disturbance ends, those routes still
prevail. Unfortunately, those alternative routes are typically longer and, thereby, require more
radio transmissions consuming more energy. Therefore, the NM triggers a second-chance
mechanism to retry previously broken (or malicious) nodes to recover from this (otherwise
permanent) NEB. With our approach, we achieved a higher PDR when attacks occurred and
the system recovered from NEB caused by those disturbances.

In the OGS scenario, we demonstrated that the NM can detect and isolate Cunning Agents

which behave inconsistently. Those are identified as a colluding group which is then classified
using our metrics. Afterwards, the NM issues a norm to encourage consistent behaviour in
the system. This allows full isolation of the attackers and the system recovers to full utility.
Furthermore, we showed an experiment where different agent types joined the system. On the
one hand, for Adaptive Agents, a fast integration is desired. On the other hand, for attackers
(such as Freeriders or Egoists), we aim for fast isolation. The NM can tune isolation and
integration time using the initial reputation parameter δ. This mechanism lead to quicker
isolation of attackers but also to slower integration of well-behaving agents. Thereby, the NM
can fence the system from new agents to become more robust when disturbances occur.

In the third scenario, we compared our approach to BURP, which is a state-of-the-art
rendering application. We first described the distribution strategies used in our approach
and then evaluated them against BURP. Using the NM, the overhead is reduced (i.e. less
replication) when no disturbance occurs. Furthermore, when attacks take place, the NM
ensures a higher correctness and less overhead.

Additionally, we investigated the limits of our approach. First, when attackers become
the majority, they win the quorum and our approach fails. Furthermore, when tuning the
system for performance (i.e. low replication factor), strategic attacks become feasible and
attackers can exploit the system. However, the NM can detect those cases and adjust the
limits accordingly. Overall, we have shown that our approach significantly outperforms
state-of-the-art approaches and fulfils the success criteria (see Figure 36).
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Appendices

A. Trust Metrics

To use trust in OC systems, the ratings represented should have a well-defined semantic. In
general, a rating r is either good or bad. Neutral ratings have no impact and, therefore, can be
omitted. In the following, we consider a rating with a value above/below 0 as good/bad rating
and define r+/r− as a set of all good/bad ratings (69, 70). In all cases, T(R) = 0 is considered
as a neutral reputation.

An agent receives multiple ratings over time which are stored in a FIFO queue called Rn,
containing up to k elements (R0 will be empty in the beginning). We also define a trust metric
T(R) to calculate the reputation τ based on Rn (68). In the FIFO queue Rn, recent ratings are
in the back and move to the front when more ratings are added. We define a function A(Rn) to
add an entry r to Rn (71).

r ∈ R, Rn ∈ R
k, n, k ∈ N (68)

R+ B {r : r > 0 ∧ r ∈ R} (69)

R− B {r : r < 0 ∧ r ∈ R} (70)

Rn+1 B A(Rn, r) (71)

T : Rk → [−1, 1] (72)

τ B T(Rn) (73)

(74)

To consider R over time, we add an iterator n which gets increased when new ratings are
added. For multiple reasons, a trust metric has to implement the concept of ageing values or
forgiveness in a social sense [127]. In most cases, recent behaviour is more relevant when
calculating a reputation value. Otherwise, agents will not be able to integrate into the system
after they changed their behaviour. Additionally, there is usually some kind of memory limit
k such that not all previous ratings can be stored forever (typically 500 ≤ k ≤ 1000 ratings). If
Rn already contains k elements, the first element of the list will be removed (FIFO behaviour;
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Equation (75)).

Rn+1 B A(Rn, r) =

(z1, . . . , zk, r) |Rn| ≥ k, z ∈ Rn

(z2, . . . , zi, r) |Rn| = i < k, z ∈ Rn

(75)

We will use this notation through the paper and add exponents for variants: Rb for a binary
metric; Rc for a continuous metric; Rw for a weighted metric; Rs for a weighted SES metric.
The exponent k is an exception and is used as Cartesian product.

A.1. Binary Metric

Depending on the semantics of a rating, different representations are possible. In the simplest
case, ratings are binary: Either good or bad. They can be implemented as a boolean type. If
the rating is bad, we clear the bit and set it otherwise. To aggregate binary ratings, we assign
a value of −1 to a bad rating, 1 to a good rating, and use a normalised sum function calculate
the reputation value τb (76, 77). Rb behaves similarly to a FIFO queue as above (78).

R
b B {−1, 1} , rb ∈ Rb,Rb

n ∈ R
bk

(76)

τb B Tb(Rb
n) B

∑
Rb

n

|Rb
n|

(77)

Rb
n+1 B A

b(Rb
n, r

b) (78)

A.2. Continuous Metric

The second case covers continuous ratings which are used, e.g., in TDG. In such systems,
ratings have a real value, where positive values represent good ratings and negative numbers
represent bad ones. This is useful when certain actions are more desirable than others.
Therefore, ratings are represented by numeric values between −1 for a very negative and 1 for
a very positive rating (79). To aggregate those ratings, systems like the TDG use a normalised
sum (80). Rc behaves similar to Rb (81).

R
c B [−1, 1] , rc ∈ Rc,Rc

n ∈ R
ck

(79)

τc B Tc(Rc
n) B

∑
Rc

n

|Rc
n|

(80)

Rc
n+1 B A

c(Rc
n, r

c) (81)
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A.3. Problems with Previous Metrics

If one agent performs an action A which is preferred, it receives a more positive rating. E.g.,
A may have a value of 0.9 while a less desirable action B may get a value of 0.45 assigned.
If an agent performed some unwanted action C with a value of −0.9, it would either need to
perform A once or B twice to gain a neutral reputation of 0.

Unfortunately, this only works for combinations of negative and positive ratings. Intuitively,
we would assume that an agent may gain the maximal reputation by either performing a few
very desirable actions or, numerous positive, but less desirable actions. However, this is not
the case for Tc(Rc

n):

Rc
1 B (1, 1, 1) (82)

T
c(Rc

1) B
1 + 1 + 1

3
= 1 (83)

Rc
2 B (1, 1, 1, 0.5, 0.5, 0.5) (84)

T
c(Rc

2) B
3 · 1 + 3 · 0.5

6
= 0.75 (85)

In Rc
1 (82), we consider an agent which received three perfect ratings. In Rc

2 (84) the same
agent received three additional medium positive ratings which were added using Equation (81)
(considering k ≥ 6). As expected, Rc

1 results in a perfect reputation Tc of 1 (83). We would
assume that this is also valid for Rc

2. Additional positive ratings should not decrease the
reputation. Unfortunately, this is happening with Tc and the reputation decreases to 0.75 (85).

Consider a rational agent which gained a perfect reputation of 1: Since it behaves rationally,
it will not select any action which will decrease its reputation. Unfortunately, with our
previous metric Tc, it can no longer select any action with a rating other than 1. However, all
ratings with a value higher than 0 are considered as good and, thus, desirable. Therefore, we
require a metric which will not decrease the reputation an agent receives a good rating.

A.4. Requirements for Trust Metric

In this section, we formalise our requirements that have to be fulfilled by the trust metric T
to calculate a reputation τ. Afterwards, we test previous work against the requirements and
introduce new improved metrics. To meet the challenges highlighted in the previous section,
a representation of trust should be able to handle ratings of different intensities. I.e., if an
agent has to choose from two possible desirable actions where one is favoured, we want to
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represent this fact in the resulting trust ratings r1 and r2. If r1 is more favourable than r2 we
expect the resulting reputation to increase more after receiving r1 than after r2 unless the
reputation is already maximised (R1). The same should symmetrically apply to negative
ratings. Additionally, we expect the reputation to increase for every positive rating until it
reaches its maximum (R2). Again, the exact opposite should apply for negative ratings.

Our main motivation for R2 is a scenario where an agent can mandate to perform a desirable
action which has a low priority (e.g., it is not required to do something). Based on previous
metrics, if the agent already has a high reputation (i.e., received many good ratings), its
reputation would suffer. Therefore, the agent will choose not to take the job. This could also
be circumvented using other external incentives (such as virtual currencies), but in this paper
we try to solve it without adding more unnecessary complexity.

∀r1, r2 ∈ R+ : T(A(Rn, r1)) > T(A(Rn, r2))∨

T(A(Rn, r2)) = 1,

r1 > r2 ⇒ |R+| > 1 (R1)

∀r ∈ r+ : T(A(Rn, r)) > T(Rn) ∨ T(Rn) = 1 (R2)

A.5. Previous Metrics

Unfortunately, both metrics mentioned in previous work are not fulfilling those requirements.
In case of Tb(Rb

n), ratings are binary and Rb
+ only contains one element (86). Therefore,

Equation (R1) cannot be fulfilled since we are unable to select two distinct elements r1 and r2

and Tb is not always 1.

R
b
+ B {1} ⇒ |R

b
+| = 1 ≯ 1  (86)

For Tc(Rc
n), we have more than two different positive ratings in Rc

+ and Equation (R1) holds.
Unfortunately, we can easily find an Rc and select an r out of Rc

+, such that Equation (R2)
breaks (90, 91):

R
c
+ B (0, 1]⇒ |Rc

+| > 1 (87)

Rc
1 B (0.5, 0.5) (88)

r B 0.1 ∈ Rc
+ (89)

101



A TRUST METRICS

T
c(Ac(Rc

1, 0.1))
?
> Tc(Rc

1) ∨ Tc(Rc
1) ?

= 1 (90)
0.5 + 0.5 + 0.1

3
≯

0.5 + 0.5
2

∨
0.5 + 0.5

2
, 1  (91)

A.6. Weighted Trust Metric

Our first proposal is a weighted trust metric: Ratings are still represented by a float in the
range between −1 and 1 and stored similarly (92). However, we change the trust function
Tw(Rw

n ) to aggregate positive and negative weighted ratings. We normalise trust value by the
sum of all ratings to account for the strength of ratings (93).

R
w B [−1, 1], rw ∈ Rw,Rw

n ∈ R
wk

(92)

τw B Tw(Rw
n ) B

∑
r∈Rw

n ,r>0 r −
∑

r∈Rw
n ,r<0 −r∑

r∈Rw
n ,r>0 r +

∑
r∈Rw

n ,r<0 −r

=

∑
r∈Rw

n
r∑

r∈Rw
n
|r|

(93)

A weighted trust metric generally fulfils our requirements from Equation (R1) when |Rw
n | < k.

We substitute Aw in Equation (96) and Tw in Equation (97). If Rw
n also contains negative

ratings, the first case of the equation holds. If it only contains positive ones, the second case
holds (97).

Rw
1 B (p1, · · · , pk−2), pi ∈ R

w (94)

∀r1, r2 ∈ R
w
+ : Tw(Aw(Rw

1 , r1))
?
> Tw(Aw(Rw

1 , r2))∨

T
w(Aw(Rw

1 , r2)) ?
= 1,

r1 > r2 ⇒ |R
w
+ | > 1 (95)

T
w((p1, · · · , pk−2, r1))

?
> Tw((p1, · · · , pk−2, r2))

∨ T((p1, · · · , pk−2, r2)) ?
= 1 (96)
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∑
p∈Rw

1

|p| >
∑
p∈Rw

1

p⇒
r1 +
∑

p∈Rw
1

p

r1 +
∑

p∈Rw
1
|p|

>
r2 +
∑

p∈Rw
1

p

r2 +
∑

p∈Rw
1
|p|
,

∑
p∈Rw

1

|p| =
∑
p∈Rw

1

p⇒
r2 +
∑

p∈Rw
1

p

r2 +
∑

p∈Rw
1
|p|

= 1 � (97)

Similarly, it can be shown that the requirements from Equation (R2) are always fulfilled:

∀r ∈ Rw
+ : Tw(Aw(Rw

n , r))
?
> Tw(Rw

n ) ∨ Tw(Rw
n ) ?

= 1 (98)∑
p∈Rw

1

|p| >
∑
p∈Rw

1

p⇒
r +
∑

p∈Rw
1

p

r +
∑

p∈Rw
1
|p|

>

∑
p∈Rw

1
p∑

p∈Rw
1
|p|
,

∑
p∈Rw

1

|p| =
∑
p∈Rw

1

p⇒

∑
p∈Rw

1
p∑

p∈Rw
1
|p|

= 1 � (99)

Unfortunately, this does not always hold, when |Rw
n | ≥ k. When adding a new rating to the

FIFO queue Rw
n (using Aw(Rw

n , r)) and the first rating p1 in Rw
n being smaller than r, the overall

reputation will drop even if r > 0. Thereby, Equation (R2) does not hold universally when
Rw

n has limited size. However, it would hold if we dropped the FIFO properties of Rw
n (which

would be require more memory).

Rw
2 B (p1, · · · , pk−1), pi ∈ R

w (100)

∀r ∈ Rw
+ : Tw(Aw(Rw

2 , r))
?
> Tw(Rw

2 ) ∨ Tw(Rw
2 ) ?

= 1 (101)

∑
p∈Rw

2

|p| >
∑
p∈Rw

2

p, r ∈ Rw
+, p1 > r ⇒

r − p1 +
∑

p∈Rw
2

p

r − |p1| +
∑

p∈Rw
2
|p|

≯

∑
p∈Rw

2
p∑

p∈Rw
2
|p|

∨

∑
p∈Rw

2
p∑

p∈Rw
2
|p|
, 1,  (102)

In reality, this is a border case with little impact and the metric is nevertheless very well suited,
but strictly speaking, it does not fulfil the requirements.
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A.7. Weighted Simple Exponential Smoothing Trust Metric

To further improve the trust metric, we leverage Simple Exponential Smoothing (SES) [126].
This method can be seen as an advanced version of a rolling average, but it does not have to
remember historic values. Therefore, Rs is no longer considered as a FIFO queue (104). As a
side effect, newer ratings have more impact to the resulting value, which is desirable for many
applications (i.e., this implements some kind of forgiveness [127]).

Those properties allow us to create an advanced metric based on Rw
n , which (I) fulfils

our requirements and (II) requires less memory. Obviously, SES can be used to reduce the
memory usage of Rc

n down to just one float value. However, to use it on Rw
n , we need to store

the weight of positive and negative ratings separately. Based on the principle of SES, we
also define As(Rs

n, r) to modify the weight of either positive or negative ratings. However,
both sums are multiplied by α to keep the values proportional (105). The value of α controls
how much influence a new rating has. A typical value for α would be between 0.95 and
0.999, depending on how many old values should influence the trust value (similar to k in the
previous metrics). Calculating the trust values works by subtracting the negative weight from
the positive weight and normalize is by the total weight (see Equation (106); similar to Tw(Rw

n )
with the difference that the sums for positive and negative ratings are already precomputed).

R
s B [−1, 1], rs ∈ Rw (103)

Rs B [0, 1]2 (104)

Rs
n+1 B A

s(Rs
n, r)

B


(p1 · α + (1 − α) · r, p2 · α) r > 0, (p1, p2) ∈ Rs

n

(p1 · α, p2 · α − (1 − α) · r) r < 0, (p1, p2) ∈ Rs
n

Rs
n otherwise

(105)

τs B Ts(Rs
n) B

p1 − p2

p1 + p2
, (p1, p2) ∈ Rs

n (106)
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For this metric, we can show that our requirements from Equation (R1) are always fulfilled:

Rs
1 B (p1, p2) (107)

∀r1, r2 ∈ R
s
+ : Ts(As(Rs

n, r1))
?
> T(As(Rs

n, r2))∨

T
s(As(Rs

n, r2)) ?
= 1,

r1 > r2 ⇒ |R
s
+| > 1 (108)

T
s(

 p1 · α + (1 − α) · r1

p2 · α

) ?
> Ts(

 p1 · α + (1 − α) · r2

p2 · α

)
∨Ts(

 p1 · α + (1 − α) · r2

p2 · α

) ?
= 1 (109)

0 < α < 1, r1 > r2,0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1⇒
p1 · α + (1 − α) · r1 − p2 · α

p1 · α + (1 − α) · r1 + p2 · α
>

p1 · α + (1 − α) · r2 − p2 · α

p1 · α + (1 − α) · r2 + p2 · α
,

∨
p1 · α + (1 − α) · r2 − p2 · α

p1 · α + (1 − α) · r2 + p2 · α
= 1 � (110)

Also, the requirements from Equation (R2) are always fulfilled:

∀r ∈ Rs
+ : Ts(As(Rs

n, r))
?
> Ts(Rs

n) ∨ Ts(Rs
n) ?

= 1 (111)

0 < α < 1⇒
1
α
> 1⇒ (

1
α
− 1) · r1 > 0,

0 < p1 ≤ 1,0 < p2 ≤ 1⇒
p1 · α + (1 − α) · r1 − p2 · α

p1 · α + (1 − α) · r1 + p2 · α

?
>

p1 − p2

p1 + p2
∨

p1 − p2

p1 + p2

?
= 1

p1 + ( 1
α
− 1) · r1 − p2

p1 + ( 1
α
− 1) · r1 + p2

>
p1 − p2

p1 + p2
∨

p1 − p2

p1 + p2
= 1 � (112)
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Figure 37: Reputation per metric. The system consists of 100 agents in the beginning and an attack
starts at tick 50.000 with 100 attackers.

(a) Reputation for metric Tc. 1 is the best and −1
the worst reputation.

(b) Reputation for metric Tw. 1 is the best and −1
the worst reputation.

(c) Reputation for metric Ts. 1 is the best and −1
the worst reputation.

Metric well-behaving agents attackers
Tc 0.59±0.017 -0.77±0.034
Tw 0.98±0.0083 -0.74±0.049
Ts 0.99±0.0044 -0.75±0.047

(d) Reputation averaged per metric.
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A.8. Evaluation and Discussion

In this section, we first compare the metrics according to their memory usage. Afterwards,
we perform an experimental evaluation to compare their behaviour when used in a Trusted
Desktop Grid.

A.8.1. Memory Requirements

To measure the memory usage of R, we define a functionM(R). Also, we aim at minimising
M because an agent typically needs to store a potentially large number of trust values (i.e. for
every other agent it knows). k ∈ N represents the number of remembered ratings (not used by
Rs). We assume single-precision 32-bit IEEE 754 floats which need 4 bytes of memory.

The binary metric Rb
n can be represented as boolean type and needs only one bit of memory

per rating (113):

M(Rb
n) B

⌈
k
8

⌉
[byte] (113)

For the continuous and weighted metric, each rating is represented by a float value and,
therefore, Rc and Rw need four bytes of memory multiplied by the amount of ratings k (114):

M(Rc
n) B M(Rw

n ) B 4 · k [byte] (114)

SES can be used to reduce the memory usage of a continuous metric Rc
n down to just one float

and four bytes of memory. However, to keep properties of the weighted metric Rw
n , we need to

store the weight of positive and negative ratings separately. Therefore, we need two times
four bytes of memory (115).

M(Rs
n) B 8 [byte] (115)

A.8.2. Experimental Evaluation

In our TDG we use norms to communicate incentives and sanctions, which typically results
in positive or negative ratings to the agents. Some actions are more desirable than others and,
therefore, should result in a more positive rating than others.

For our evaluation, we introduce a norm that encourages agents to work for other agents
with a lower reputation which is helpful to integrate newcomers into the system. A formalised
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Figure 38: Norm used in the evaluation. It sanctions cancelling work and rewards completing work. In
addition, working for submitters with lower reputation generates a stronger rating.

context
Target/Role︷  ︸︸  ︷
Worker norm

Name︷      ︸︸      ︷
ReturnJob :

always︸ ︷︷ ︸
Pertinence Condition

implies self.returnJob(job, requester) = true︸                                                     ︷︷                                                     ︸
Postcondition

sanctioned
if violated︸   ︷︷   ︸

Default Sanction Condition

then self.reputation += -cancelSanction︸                                        ︷︷                                        ︸
Sanction

incentivised
if requester.reputation < highReputationThreshold︸                                                                   ︷︷                                                                   ︸

Sanction Condition

then self.reputation += highWorkDoneIncentive︸                                                    ︷︷                                                    ︸
Incentive

if requester.reputation ≥ highReputationThreshold︸                                                                   ︷︷                                                                   ︸
Sanction Condition

then self.reputation += lowWorkDoneIncentive︸                                                   ︷︷                                                   ︸
Incentive
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version of the norm is shown in Figure 38. A worker will receive a rating for every completed
work unit. However, if the requester has a reputation below a certain threshold, the worker
receives a stronger rating. We then test how well the trust metrics Tc, Tw and Ts are suited.
Additionally, workers will receive a bad rating if they reject work from agents with high
reputation.

Each experiment is repeated 50 times and averaged. The initial system consists of 100
agents (Adaptive Agents) which are attacked by 100 malicious agents (Egoistic Agents) at
tick 50.000. The attackers accept work but will return bogus results or cancel the jobs close to
the deadline for 80% of the jobs. All results are shown in Figure 38d.

The reference experiment in Figure 38a shows reputation over the time for one exemplary
experiment of the reference metric Tn. Well-behaving agents reach a very good speedup.
When attackers join the system, the speedup for well-behaving agents decreases and malicious
agents reach a speedup of about two. Unfortunately, in this scenario attackers do not get
isolated (speedup stays significantly above a value of one). Additionally, well-behaving agents
(i.e., Adaptive Agents) do not reach a reputation of about one.

Figure 38b and Figure 38c show reputation of the same experiment using the metrics from
our approach. When applying Tw the reputation of well-behaving agents reaches a value of
nearly one as expected (see green line in Figure 38b). Additionally, the isolation of malicious
agents works much better and the speedup decreases to a value of about one (i.e., the attackers
no longer have any advantage from participating in the system). Agents get isolated when
they lose their reputation and other agents are no longer obliged to work for them.

Metric Ts behaves similarly but the values are significantly smoother (see Figure 38c).
Here, the reputation reaches one and the desired isolation of attackers works as expected.
Compared to Tw the reputation of Ts even grows closer to one (see Figure 38d).

In contrast to Tc, both Tw and Ts perform well in our scenario. The reputation of well-
behaving agents reaches a value of nearly one (see Figure 38d) and attackers get isolated with
a very low reputation value. Ts should be preferred because it has lower memory requirements
and fulfils our requirements unconditionally [C15].
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[86] Andreea Urzică and Cristian Gratie. “Policy-Based Instantiation of Norms in MAS”.
In: Intelligent Distributed Computing VI. Ed. by Giancarlo Fortino, Costin Badica,
Michele Malgeri, and Rainer Unland. Vol. 446. Studies in Computational Intelligence.
Calabria, Italy: Springer, 2013, pp. 287–296.

120



References
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