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abstract

Localizing an agent in 3D environment is a fundamental ability to enable spatial-
aware intelligent systems such as robot navigation and tracking, autonomous driving
and interactive Mixed Reality applications. We choose the path of visual localization
where we determine our locations in the form of camera poses based on visually perceived
images. In the past decades, the extremely rapid development of deep learning has
brought innovations to visual localization which has led to significant improvement of
the existing methods meanwhile opened up several new options for tackling localization.
However, one big challenge coming with deep neural networks is how to interpret the
behavior of a learned model when they are not reaching our expectations. Therefore, this
thesis focuses on investigating and understanding the potentials and limitations of the
existing learning-based localization as well as developing new data-driven solutions to
address the current challenges encountered by the state-of-the-art localization methods.

Purely data-driven relative pose regression has recently been proposed as an alternative
to the classical feature matching-based solution, yet it shows a large performance gap from
the non-learning-based methods. As our first contribution, we propose an essential matrix-
based localization framework to analyze the reason behind their limited generalization
and accuracy. Our experiments diagnose that the issue is coming from the pose regression
layers instead of the image feature extractor, which contributes important insights into
future work towards better relative pose-based localization.

Recently emerging correspondence networks learn end-to-end image matching inside a
single network but are suffering from low matching resolution due to the memory bottleneck.
As our second contribution, we present a new perspective to estimate correspondences
in a detect-to-refine manner, which aims to elegantly improve the matching resolution
to the pixel level. Our learned refinement network based on direct matches regression
significantly improves the performance of correspondence networks on image matching
and localization, and also generalizes across multiple matching methods and datasets.

The well-established structure-based localization relies on visual descriptors to estab-
lish matches between a query image and a 3D point cloud. While being highly accurate,
it encounters multiple challenges in storage demands, privacy concerns and long-term
maintenance. As our last contribution, we go beyond the classical visual descriptor match-
ing and match keypoints solely relying on its geometric information. Our experimental
evaluation confirms its potential and feasibility for real-world localization, which opens
the door to future efforts towards more general and scalable structure-based localization.

In addition to presenting our contributions, we also serve this thesis as a short
review on several topics of interest, covering image retrieval, image matching and visual
localization. In the exploding mass of literature, we briefly introduce the important works
of these topics since proposed, which hopefully makes their development trajectories more
traceable.
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Introduction and Background



1 Introduction

1.1 Visual Localization

1.1.1 Motivation

Localization refers to the task of determining where an agent is in a target map based on
the query data obtained from sensors. Global Positioning System (GPS) is one of the
most widely used localization systems, where the query data are GPS signals sent by an
agent (device) and the map is the whole earth described in the geographic coordinate
system, i.e., latitudes and longitudes. In fact, in our daily life, we already heavily rely on
GPS-enabled applications such as Google Maps1, to conveniently localize ourselves, share
locations with friends and navigate to a destination. Despite GPS being fairly mature
over decades of development, there are several well-known limitations. Since it requires
reliable signal transmission for localization, it is not applicable to or functioning well
in areas where GPS signals can not be properly sent and received, such as mountain
areas and underground stations. In the urban area, the localization accuracy of GPS is
typically in meters, e.g ., 5-10 meters [LaM+05], for outdoor regions and might not work
at all for indoor environments. Those issues have motivated the birth of other localization
techniques that rely on different types of sensors. For example, Wi-Fi Positioning System
(WPS) [LZP11; SLM14] is usually used for the indoor environment when GPS techniques
are not sufficient meanwhile Wi-Fi signals are available.

Different from GPS and WPS, visual localization [SLL02; RC04; Irs+09; SLK16;
Sar+19] uses digital cameras as sensors which are easily accessible from personal mobile
devices such as smartphones, tablet and laptops. Given a query image, a visual localization
system estimates the position and orientation of the camera capturing the query image
relative to a 3D scene map. In comparison to GPS, visual localization aims for higher
localization accuracy, e.g ., within a meter. However, it is not competitive but rather
complementary to GPS techniques. It can be combined with GPS to handle large-
scale scenes, where GPS determines world-widely a coarse location and then visual
localization refines the location with higher precision. Such high-precision localization
technique is especially required by many Mixed Reality applications [Art+09; CKM08;
Mid+14; Ven+14; Lyn+15; Art+11], where there are needs to overlay augmented contents
accurately to the real scene contents. In addition, visual localization is a vital component
in various vision-based intelligent systems such as autonomous driving [Hen+19] and
robot navigation [Don+09; Irs+09; WIB11; Lim+12], while being closely related to
other computer vision tasks such as Structure-from-Montion [Wu13; Wu+11; SF16] and
Simultaneous Localization And Mapping [SLL01; MMT15; Dav+07].

1https://www.google.com/maps
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1.1.2 A Brief History

One of the earliest works on this topic is proposed by Se et al . [SLL02], where they
directly match SIFT [Low99] features against a 3D model reconstructed with SLAM and
later estimate a geometry transformation inside a RANSAC scheme [FB81]. Another
early visual localization system proposed by Robertson & Cipolla [RC04] performs two-
view matching to identify a nearby view w.r.t. a query view and then estimates the
relative transformation between the query and its nearby reference view to finally recover
the query pose. Its follow-up work [ZK06] generalizes this prototype by eliminating
the requirement that each image needs to be dominant with a building facade. These
early works became the pioneers of structure-based [SLL02] (section 4.6) and relative
pose-based [RC04; ZK06] (section 4.5) localization respectively. Concurrently, with the
development in image retrieval (section 2.3) techniques [SZ03; Csu+04; NS06], several
works [SH+04; SBS07] propose image retrieval-based localization (section 4.5) where
they cast the localization problem as an image retrieval problem. Given a query and a
database of geo-tagged images, the location of the query is approximated by the location
of its top-similar retrieved database image. This formulation attracts a vast body of
follow-up work [JDS08; JDS09; Avr+10; ZS10; KSP10] due to its simplicity, efficiency and
scalability. Inspired by [GL06; SL04] that use Structure-from-Motion (SfM) model for
object pose estimation, Arnodl et al . [Irs+09] maintains a sparse SfM point cloud as a 3D
scene representation where each 3D point is associated with its descriptor that was used
for reconstruction. In fact, the emergence of stable large-scale SfM techniques [Fra+10;
SSS06; Aga+11] has also promoted the development of visual localization. It allows one
to conveniently build an image database with camera pose labels as well as reconstruct a
compact and informative scene representation in the form of a 3D point cloud, opening
up the possibility of large-scale localization. Nowadays, modern SfM softwares such as
colmap [SF16; Sch+16] have become the standard tools to build scene representation and
ground truth for visual localization.

When it comes to the rival of machine learning, mostly deep learning, tons of com-
puter vision tasks such as image classification [Den+09; Den+09], image retrieval [Bab+14;
Ara+16; Azi+15; RTC18], semantic segmentation [LSD15] and object recognition [Ren+15],
were reformulated into their learning-based versions, leading to the advanced state-of-the-
art in each topic. Similarly, visual localization also experienced a revolution with emerging
learning techniques. The first absolute pose regression (section 4.3) method, i.e., PoseNet,
was proposed by Kendall et al ., to directly regress camera pose from a single image, and
later was improved by numerous follow-up works [Wal+17; KC17; Bra+18; Xue+20;
SFK21]. Another novel formulation of scene coordinate regression (section 4.4) was
proposed by Shotton et al . [Sho+13] to implicitly match 2D pixels to their corresponding
3D scene points via regression, followed by a standard pose estimation from the 2D-3D
matches using PnP solvers [KSS11; Gao+03]. A large number of latter works have been
proposed to improve the accuracy [Guz+14; Bra+17], efficiency [Bra+16; BR21] and
adapt the formulation to work for large scenes [TZ00] or multiple scenes [Yan+19; Li+20a].
Building on top of the modern learned image retrieval [Ara+16; RTC18] and learned
image matching [DMR18; Sar+20; Sun+21], the latest structure-based localization sets
the state-of-the-art localization performance in the challenging long-term localization
benchmarks [Sat+18]. Compared to the most reliable and accurate structure-based

2



Introduction

localization, absolute pose regression and scene coordinate regression techniques have the
benefit of being relatively more efficient in runtime and memory. We leave more thorough
review of the existing visual localization methods in chapter 4 and its related topic image
matching in chapter 8.

1.2 Contributions and Outline

This cumulative thesis comprises three full-length first-author publications covering two
closely related topics image matching and visual localization. These publications are the
result of joint work with Torsten Sattler, Sérgio Agostinho, Aljoša Ošep, Prof. Marc
Pollefeys and Prof. Laura Leal-Taixé. In table 1, we show a complete summary of all
works published during the whole doctoral program, which includes three other second-
author publications covering the topics of visual localization, cross-view localization and
text-based localization. In all of our research works, one core interest for us is to explore
how to properly leverage deep learning techniques in those topics. We now brief the
motivation and conclusion of our works.

Research projects involved in this thesis. In EssNet [Zho+20], we developed an
essential matrix-based framework that supports fair comparison between various relative
pose estimation methods for visual localization. Within this framework, we compare
different ways of leveraging deep learning to estimate relative pose from an image pair.
From our experiments, we found that the popular purely data-driven method, relative
pose regression, struggles to generalize to unseen scenes, while using explicit matching
for relative pose estimation leads to better generalization and accuracy. Based on this
finding, we turn our attention from direct pose regression to explicit image matching via
deep learning and conducted our next project.

In Patch2Pix [ZSL21], we take inspiration from modern object detection methods and
propose to perform hierarchical image matching in a detect-to-refine paradigm, where we
first detect coarse matches at patch-level and then refine match accuracy within a matched
patch pair. We adopt the newly emerging correspondence network NCNet [Roc+18]
to densely search a match proposal within two images and develop a novel patch2pix
refinement network to directly regress pixel-level matches from multi-scale deep features.
The refinement network effectively improves multiple types of coarse match proposals,
showing the idea of detect-to-refine is a promising direction for achieving highly accurate
matches.

Despite the huge success of structure-based localization via visual descriptor matching,
we observe the challenges in storage, privacy, maintenance for real-world large-scale
localization, which all stem from the reliance on visual descriptors. In GoMatch [Zho+22],
we seek for geometric-based matching to bypass the need for visual descriptors, as an
orthogonal direction to address those challenges in visual localization. We build upon the
existing BPNPNet [Liu+20; CLG20] to boost its robustness and accuracy for realistic
visual localization, from almost not working on real-world data to similar competitive
performance compared to the state-of-the-art APR methods. Our work points out
an encouraging future direction to advance structure-based localization for real-world
large-scale scenes.
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Other research projects. In UnderstandAPR [Sat+19], we provide mathematical
theory for absolute pose regression based on which we analyze its limitations in performance
and use cases, we also draw conclusions for future research directions for APR techniques.
Despite not being included in this thesis, this project comprehends our understanding of
the popular pose regression techniques. We give more detailed introduction and discussion
about absolute pose regression in section 4.3.

In [Tok+21], we investigate the task of geo-localization in a cross-view setting, i.e.,
localizing a ground-view query image against an aerial-view satellite map. While closely
related to classical visual localization, the main different technical challenge in this scenario
is how to handle the extreme cross-view difference in appearance and viewpoints. In
Text2Pos [Kol+22], we take one bold step further and propose a new localization task, text-
based localization, where the user query data is a textual description of the surroundings
of the place of interest. We experimentally prove the feasibility of this new task with
a general coarse-to-fine text-based localization baseline. These two projects [Tok+21;
Kol+22] have broadened the author’s horizons and expanded the author’s knowledge of
different research potentials and challenges in the general topic of localization. We refer
the readers to full versions of the papers for more details.

Thesis outline. In the following contents of Part I of this thesis, we continue our
background introduction by first providing some fundamental knowledge in chapter 2.
Next, we dive into the core topics in this thesis which are image matching in chapter 8
and visual localization in chapter 4. We browse the historical development of these two
topics through a literature summary. After that, we go into Part II where we summarize
our main publications, i.e., EssNet in chapter 5, Patch2Pix in chapter 6 and GoMatch in
chapter 7. Finally, we summarize our works, propose open challenges that we identified
and sketch out interesting directions for future research.
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[Sat+19] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura Leal-Taixé.
Understanding the Limitations of CNN-based Absolute Camera Pose Regression.
In CVPR 2019.

[Zho+20] Qunjie Zhou, Torsten Sattler, Marc Pollefeys, and Laura Leal-Taixé.
To Learn or Not to Learn: Visual Localization from Essential Matrices.
In ICRA 2020.

[ZSL21] Qunjie Zhou, Torsten Sattler, and Laura Leal-Taixé.
Patch2pix: Epipolar-guided Pixel-level Correspondences. In CVPR 2021.

[Tok+21] Aysim Toker, Qunjie Zhou, Maxim Maximov, and Laura Leal-Taixé.
Coming Down to Earth: Satellite-to-street View Synthesis for Geo-localization.
In CVPR 2021.

[Kol+22] Manuel Kolmet, Qunjie Zhou, Aljoša Ošep, and Laura Leal-Taixé.
Text2Pos: Text-to-Point-Cloud Cross-Modal Localization.
In CVPR 2022.

[Zho+22] Qunjie Zhou*, Sérgio Agostinho*, Aljoša Ošep, and Laura Leal-Taixé.
Is Geometry Enough for Matching in Visual Localization? (*equal contribution)
In ECCV 2022.

Table 1: Publication Summary. For completeness, we state all of our works published during
the doctoral program while leaving those are not included as part of this thesis in gray.
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2 Foundations

In this chapter, we introduce fundamental background knowledge that helps to fully
understand the later contents in this thesis. In the first section 2.1, we present the concept
of camera model that defines the projective geometry between points in a 3D world
and pixels in a 2D image, followed by epipolar geometry in section 2.2 that defines the
geometrical relationship between two images observing common scene contents, which
serves as an important tool to solve relative camera motion between two images by
establishing 2D correspondences. Finally, in section 2.3 we introduce the topic of image
retrieval and briefly summarize its evolution since proposed. The image retrieval is highly
related to the next two chapters. While chapter 8 describes how to extract local features
for image matching, image retrieval shows how to use local features to globally represent
an image for content searching. On the other hand, image retrieval techniques have been
widely applied to visual localization in various manners, playing a significant role in
large-scale localization, which we will describe in detail in chapter 4.

2.1 Pinhole Camera Model

A camera model is an important mathematical tool to help understand and analyze
the working principles and properties of a real-world camera, which is one of the most
fundamental sensors in computer vision. In this thesis, we stick to the pinhole camera
model which is the simplest camera model and has been widely used in many computer
vision tasks including visual localization.

Camera coordinate system. The above fig. 1 is an illustration of a pinhole camera
model. For simplicity, we consider the (virtual) image plane which is positioned in front
of the camera center instead of the actual film plane located behind the camera center
with flipped x- and y-axis. Let’s now define the camera coordinate system in 3D, where
its origin is the camera center C and the line from the camera center perpendicular to the
image plane is the principal axis or depth axis. The intersection of the image plane and
the principal axis is the principal center (ox, oy)

T , which is also the center of the image
plane. In pinhole setting, the distance between the camera center and the image plane is
the focal length f .

Camera central projection. As shown in the fig. 1, a 3D point P = (X,Y, Z)T

defined w.r.t. the camera coordinate system captured by the pinhole camera is mapped
into a 2D point p = (x, y, f)T on the image plane. The two points are related by two
similar triangles, from which we can derive (x, y)T = (fX/Z, fY/Z)T . Thus we define

6
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Figure 1: Pinhole camera model illustration.

the central projection of the pinhole camera as a mapping:

π : R3 → R2 ; P 7→ p = π(P ) =

(
f X

Z

f Y
Z

)
. (1)

The eq. (1) can be written in the form of matrix multiplication with homogeneous
coordinates:



fX

fY

Z


 =



f 0 0 0

0 f 0 0

0 0 1 0







X

Y

Z

1




. (2)

Camera intrinsic matrix. In the above, we assume the principal point to be the
origin of the image plane. However, the origin of digital image coordinates is typically at
the lower-left corner of the image. In addition, digitalizing continuous image plane into
discrete pixels might leads to pixel units with different scales compared to the physical
unit. Taking those effects into account, we write eq. (3) in a more general form:

ph =



fsxX + Zox

fsyY + Zoy

Z


 =



fsx 0 ox

0 fsy oy

0 0 1



[
I 0

]




X

Y

Z

1




= K
[
I 0

]
Ph (3)

where sx, sy are the scaling factors along x- and y-axis and ∗h denotes a homogeneous
form of a vector. And K describes the internal setting of a camera model, thus usually
called the camera intrinsic matrix.
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Figure 2: Epipolar geometry illustration.

Camera extrinsic matrix. As the camera moves, the camera coordinate system
changes accordingly w.r.t. to a global world coordinate system. Therefore, to fully model
the mapping from a 3D point defined globally to a 2D image pixel, we still need to further
introduce the camera extrinsic matrix which is composed by a translation vector t ∈ R3

and a 3 × 3 rotation matrix R ∈ SO(3). It transforms a 3D point Pw from the world
coordinates to the camera coordinate system (P ) with the following equation:

P = RPw + t =
[
R t

](Pw

1

)
. (4)

Combining both the intrinsic and extrinsic matrices, we show a world 3D point Pw is
mapped to a 2D image pixel p by:

p = K
[
R t

](Pw

1

)
= H

(
Pw

1

)
. (5)

In the end, we obtain a 3× 4 camera projection matrix H that includes both the intrinsic
and extrinsic parameters of a pinhole camera model.

Camera pose. With the extrinsic parameters R and t, we can compute the position of
a camera center in the world coordinates by Cw = −R−1t. As R and t can describe the
camera orientation and position globally, they are also called (absolute) camera pose.

2.2 Epipolar Geometry

Epipolar geometry [HZ03; Sze22; FM90] describes the geometric relations between two
images and the scene structure, i.e., 3D points, commonly visible in both images, assuming
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the two views are captured with a pinhole camera. It establishes the most common solution
for relative camera motion estimate via image pair correspondences [HZ03; Nis04; LH06;
Kuk+17], and thus is also a fundamental step in SfM. Geometric distances defined based
on an essential matrix and a fundamental matrix are also used as objectives for learning
image matching [Wan+20b; Li+22]. For this thesis, we leveraged epipolar geometry in
both EssNet [Zho+20] (chapter 5) and Patch2Pix [ZSL21] (chapter 6). We now describe
in short the basic concepts in epipolar geometry.

Terminologies. The fig. 2 shows a minimal setup to illustrate the epipolar geometry
defined w.r.t. a 3D point X and the two images I1 and I2 with camera centers at C1 and
C2. The lines (C1, X) and (C2, X) connecting the two optical centers and the 3D points
intersect the two image planes at x1 and x2, the two corresponding projections of X in
the two images. The line connecting the camera centers C1 and C2 is called baseline,
which crosses the two image planes at two epipoles e1 and e2. The baseline and the 3D
point define the epipolar plane, which intersects the image planes in the two epipolar lines
l1 and l2.

Epipolar constraint. Given a known pixel x1 with unknown depth, its corresponding
3D point has to lie on the ray goes from C1 to x1. Therefore, with epipolar geometry,
we know the correspondent pixel x2 of x1 in the second image, has to lie on the epipolar
line l2. This allows one to examine whether a predicted correspondence is consistent with
epipolar geometry.

Now we present the mathematical derivation of epipolar geometry. For simplicity, we
assume the camera intrinsic matrix K for both images is known as an identity matrix.
By choosing the first frame as the reference frame, its camera pose is given by a rotation
R1 = I and a translation t1 = 0. Given the relative camera motion defined by a relative
rotation R12 and a translation t12 going from I1 to I2, the two projections x1, x2 can the
expressed as:

λ1x1 = X ,λ2x2 = RX + t =⇒ λ2x2 = λ1Rx1 + t (6)

where λ1 and λ2 are the depth of x1 and x2. We then get rid of t by applying a cross
product of t as t× t = 0. As a cross product can be represented in matrix multiplication,
a× b = [a]×b, where [a]× is the skew-symmetric matrix of the vector a, we multiply [t]×
to the whole equation:

λ2[t]×x2 = λ1[t]×Rx1 + [t]×t = λ1[t]×Rx1. (7)

As [t]×x2 represents the normal direction of the plane defined by t and x2, we project it
onto x2 and derive epipolar constraint [HZ03]:

xT2 λ2[t]×x2 = 0 = xT2 λ1[t]×Rx1 =⇒ xT2 [t]×Rx1 = xT2 Ex1 = 0 (8)

where E = [t]×R is the essential matrix that encodes the relative transformation between
the two cameras. We further extend eq. (8) for unknown camera intrinsic matrices denoted
as K1 and K2:

xT2 K
−T
2 [t]×RK−1

1 x1 = xT2 Fx1 = 0 (9)

9



Foundations

We call F = K−T
2 [t]×RK−1

1 the fundamental matrix that encodes both the camera
intrinsic and extrinsic parameters.

Applications. The fundamental matrix maps a point x1 in the one image I1 to its
corresponding epipolar line l2 in the other image I2 by l2 = Fx1. Similarly, we obtain
the epipolar line l1 of a point x2 as in l1 = F Tx2. According to the epipolar constraint,
if x1 and x2 are perfectly matched, they should exactly lie on l1 and l2. Therefore, the
distance between x1 and l1 and the distance between x2 and l2 can be used to measure
the quality of the correspondence (x1, x2).

On the other hand, given a set of correspondences matched from a pair of images, one
can estimate the essential matrix or the fundamental matrix using N-point solvers [Nis04;
LH06; Ste+08; HL12] from which one recovers the relative camera motion between the
image pair [HZ03]. Since the epipolar constraints are defined up to scale, the extracted
relative translation only tells the direction of the actual translation vector.

2.3 Image Retrieval

The general task of image retrieval (IR) is to search and identify relevant images from a
database according to query data in the form of a textual description or an image, which
describes the contents of interest for searching. Image retrieval is a long-standing task
that was naturally motivated by the need to efficiently find information of interest from
image collections [Hal+06]. The early solutions to image retrieval are based on textual
annotations where images are described with keywords or captions and retrieved based
on the text descriptions [CF80; RFS88]. However, due to the high cost of annotating
images with text descriptions, later researchers switch to exploiting visual cues for image
retrieval which is called content-based image retrieval (CBIR) [Hal+06].

A CBIR system extracts and stores visual features for all database images in advance
and then the same type of features are extracted from a query to compute similarity
against every database image based on the feature distances [SZ03; Ara+16; RTC18].
The retrieval candidates are those database images with top-ranked similarity to the
query. After the initial retrieval, then post-processing techniques such as spatial verifica-
tion [Phi+07; She+13; SAC19; Tei+19; RTC18; CAS20; Noh+17; TYO21; Lee+22] and
query expansion [Chu+07; Qin+11; TJ14; RTC18] can boost the accuracy.

To effectively represent an image is the core of a CBIR system. The common
image representations for retrieval either represent an image as a set of local descriptors
called Bag-of-Words (BoW) [SZ03; Csu+04] or as a compact global descriptor that
can be aggregated from handcrafted [JZ14; GKS13; Jég+11; Jég+10; PD07] or deep
features [Azi+15; BL15; KMO16; RTC18; TSJ15; Gor+16; Gor+17; Ara+16; Tor+15;
CAS20] or directly extracted from deep neural networks [Bab+14].

Bag-of-Words. The influential work from Sivic and Zisserman [SZ03] firstly presents
a complete system based on BoW representation for image retrieval, which latter has
become a common practice of the following BoW-based image retrieval methods [CPM09;
Chu+07; Phi+07; Mik+13; Cao+10; Zho+10]. A typical BoW representation for an
image is constructed in three steps: i) A set of keypoints are firstly identified from the

10



Foundations

image. ii) Local descriptors are then extracted at the keypoint locations. iii) Finally the
extracted descriptors are quantized by replacing each descriptor with its most similar
visual word from a codebook [SZ03]. A codebook is typically learned offline from a large
image database, where descriptors extracted from all images are quantized with K-means
clustering [SZ03] into K visual words that compose the codebook. The step i) and ii)
are normally done with handcrafted feature detection algorithms [Low04; AZ12; PCM09]
such as SIFT [Low04]. We will present more thorough introduction about local features
in chapter 8. To perform image retrieval with BoW representations, the main question is
how to compute the similarity between two images in BoW. Following the idea from the
document retrieval technique, a BoW image (analogy to a document) is represented by
a frequency vector computed based on the visual word occurrences and the database is
structured as an inverted file system to allow efficient comparison between BoWs [SZ03;
Phi+07; Jég+11].

Aggregating local features. Despite the usage of inverted list structure for search-
ing [SZ03], BoW-based image retrieval suffers from high memory requirement ( 32GB
for 1M images) [Per+10], decreasing searching accuracy and efficiency with increasing
vocabulary size [Jég+10; Jég+11; Per+10]. In order to make image retrieval practical
for large-scale database with millions of images, various aggregation techniques [JZ14;
GKS13; Jég+11; Jég+10; PD07] are proposed to condense a set of local features into
a compact vector representation. The concept of local feature aggregation for image
retrieval is also widely applied to later rising deep features which we introduce in the next
paragraph.

Deep features for retrieval. The revolution of deep learning, specifically Convolutional
Neural Networks (CNNs) has largely changed the state of image retrieval that was
dominated by BoW-based methods. CNNs show prominently powerful capability in
learning image representations that have surpassed classical hand-crafted features in
many computer vision tasks such as image classification, object detection and semantic
segmentation. The first works [Bab+14; Gon+14] that apply deep CNN features to image
retrieval simply take the output of a fully-connected layer as a global representation of an
image [Bab+14] or a region in the image [Gon+14]. The latter works improve the deep
representation by aggregating the feature map after a convolution layer into a single vector,
which is achieved using different pooling mechanisms [Azi+15; BL15; KMO16; RTC18;
TSJ15; Gor+16; Gor+17; Noh+17; CAS20; Wan+22] or more sophisticated aggregation
kernels [Ara+16; Tor+15; Hau+21; Tei+19]. There are several commonly used loss
functions to train deep features for image retrieval, including contrastive loss [CHL05],
triplet losse [SKP15; HA15], average precision loss [Rev+19a] and Arcface loss [Den+19].
It has also been investigated to learn features from other tasks such as classification [MC21;
Bab+14; BMC22; Noh+17] during training, and apply the learned features directly to
retrieval during inference.
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3 Image Matching

In this chapter, we introduce image matching which is one of the core topics this thesis
contributes to through our publication Patch2pix (c.f . chapter 6). This topic can better
prepare readers for the next visual localization topic whose development is highly related
to image matching. We start this chapter with an overview of the topic in section 3.1,
followed by two sections of literature review on the traditional handcrafted local features
in section 3.2 and the modern learning-based ones in section 3.3. In the last two sections,
we talk about the recently emerging research directions on learning descriptor matching
and correspondence filtering in section 3.4 and end-to-end learned matching pipeline in
section 3.5.

3.1 Overview

Image matching refers to the task of establishing pixel or patch correspondences between
two images. It is a fundamental step in a mass of downstream computer vision tasks such
as image registration and stitching, image retrieval, SfM, visual SLAM and image-based
localization. It is also a long-standing topic that researchers pay close attention to and have
achieved great progress in the past few decades, especially with the huge success of deep
learning. Among the massive literature on this rich topic, we focus more on learning-based
approaches to highlight the impact of deep learning on image matching, meanwhile we
still point out earlier influential works. We refer readers to several related reviews [MS05;
TM+08; GHT11; SQ17; CH18; Ma+21] for more systematic and comprehensive summary.

Pipeline. Given a pair of images, a typical image matching pipeline consists of the
following three key components: i) local feature extraction via keypoint detection and
description, ii) descriptor matching and iii) matching outlier filtering. We will introduce
each of the key components in detail in the following text.

Local feature. In the context of image matching, local feature extraction is usually
also termed keypoint detection and description. A local feature is an image pattern that
differs from its immediate neighborhood [TM+08]. It can be extracted or recognized from
image properties such as intensity, color and texture. A keypoint can be defined as the
geometric location where the local feature emerges. To localize a keypoint, one needs to
analyze its local neighborhood of pixels, which is a local region centered at the keypoint
location with a specific size and shape. Later, a vector representation of the keypoint is
computed from this region based on some measurements. The descriptor capturing the
local information of the keypoint is then used in downstream tasks such as local feature
matching and image retrieval.
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Good local features for matching. Depending on the applications, whether a type
of local feature is good can be evaluated from multiple aspects including repeatability,
distinctiveness, locality, quantity, accuracy and efficiency [TM+08]. It is widely recognized
that repeatability, accuracy and efficiency are the three most important criteria when
using the features for image matching. Repeatability indicates whether features detected
on the same scene contents can be repeatably found in images observing the scene taken
under different viewing conditions. Accuracy indicates whether two matched keypoints
accurately correspond to the same location in the scene. Efficiency is related to the time
required to compute keypoints and descriptors as well as the size of descriptors which
directly influences the computation speed and memory requirement of matching.

3.2 Handcrafted Local Feature

3.2.1 Handcrafted Detectors

Early handcrafted detectors commonly identify local features by searching corner features
defined by intersections of straight lines and straight corners [TM+08]. A corner can
be detected via exploring various low-level image statistics such as first-order intensity
derivatives [Mor77; HS+88; För94; Shi+94; Bau00], intensity comparison [SB97; TH98;
Rub+11] and second-order derivatives [Low99; MS01; MS04; Low04; BTG06] where
the core principle is to localize feature of high variance. In the early works, Harris
corner detector [HS+88] is the most famous one that has been extended in numerous
works [SM96; ZWT99; MS02; Bau00; Tri04; BTV11; BM22]. Among a vast body of
handcrafted detectors, SIFT [Low04] is still the most popular and widely recognized
one. Despite being relatively more expensive to compute than other detectors optimized
for speed [RD06; RPD08; BTG06; Rub+11], SIFT provides highly discriminative and
accurate keypoints that are commonly preferred by various matching-involved applications.
While most researchers opt for deep learning to devise better keypoint detectors (c.f .
section 3.3.1), HarrisZ+ [BM22], an upgraded HarrisZ corner detector [BTV11], is recently
presented to speak up for the potential of handcrafted detectors for image matching.
They show that the gap between handcrafted and deep learned detectors can be reduced
when adopting some modifications and used jointly with other learned descriptors, yet
still being relatively less accurate w.r.t. the state-of-the-art data-driven approaches.

3.2.2 Handcrafted Descriptors

Since keypoint detection only provides the geometrical representation of a local feature
which is simply a two-dimensional vector local to a specific viewpoint, it is not sufficient
to perform matching with that alone. A following description stage is required to provide
a more informative representation based on a local neighborhood of the keypoint, which
is expected to be compact, discriminative and invariant to image transformations for
robust matching. In a way analogous to handcrafted keypoint detection, classical keypoint
descriptors are commonly constructed by analyzing low-level image information through
various heuristic strategies based on gradient statistics [Low99; Low04; BTG06; MY09;
TW09; TLF09; DS15; AZ12], local binary pattern statistics [OPM02; HPS09; GPM10;
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Che+13], local intensity comparison [Cal+10; LCS11; Rub+11; AOV12] and local intensity
ordinal information [Tan+09; WFW11; Wan+15]. Among those categories, gradient-
based floating descriptors such as SIFT [Low04], its variants [AZ12; BTG06] are still
widely adopted nowadays in wide-baseline matching, while binary descriptors such as
BRIEF [Cal+10], FREAK [AOV12] and ORB [Rub+11], being relatively efficient yet less
distinctive, are used more for small-baseline matching.

3.3 Learning-based Local Feature

3.3.1 Learned Detectors

The first attempts of learning detection leverage machine learning techniques such as a
decision tree [LF06; Ozu+09; RD06], shallow neural networks [CR97; DKS95], where the
common idea is to learn classifiers to help to select accurate corners. FAST [RD06] is
usually considered as a representative of an early machine learning-based detector. It is
originally devised to speed up handcrafted detectors for better efficiency and has been
extended by its follow-up works FAST-ER [RPD08] and ORB [Rub+11]. Among the
early works, Šochman et al . is the first one to learn a whole process of interest point
detector design, showing the possibility of emulating handcrafted detectors via learning.
Richardson et al . [RO13] learn linear filters to compute detection response via convolution,
where the lack of non-linearity makes its generalization across applications unclear. While
the classical learning-based detectors show the potential of improving existing methods,
as shown in [TM+08], they are shown to be less accurate than the purely handcrafted
ones [HS+88; Mat+04; MS04].

Tilde [Ver+15] trains a linear regressor to predict a score for every patch in an image
and then detect keypoints by thresholding the score map. It is supervised with a robust
set of SIFT keypoints using classification loss. DetNet [LV16] proposes to train a CNN
for detection based on feature covariant constraints. QuadNet [Sav+17] trains a CNN
to produce keypoint response with an objective that enforces transformation-invariant
ranking up to quantiles. MagicPoint [DMR17] predicts a dense keypoint heatmap from
an image using a CNN, which is trained with synthetic corners obtained from rendered
shapes. Kcnn [Di +18] trains a compact CNN to emulate the keypoint response of
handcrafted detectors [ABD12; Low04]. [ZR18] shows a low ranking loss does not
necessarily imply high repeatability of the detector, yet this is data-dependent. They
then incorporate a peakness loss and increase receptive field in the network to enhance
the repeatability. D2d[Tia+20] uses pre-trained L2Net [TFW17] to perform detections
directly in its feature maps. Key.Net [Bar+19; LM22] combines handcrafted and learned
CNN features at different scale levels. Instead of training with GT keypoint annotations,
it follows DetNet [LV16] to learn keypoints with covariant constraints on a synthetic
dataset.

3.3.2 Learned Descriptors

Deep learning-based keypoint descriptors are normally formulated as a metric learning
problem, where the objective is to learn patch representation that is close to matching
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data and apart from non-matching data. With the advent of deep learning, convolution
neural network is becoming a common option for extracting descriptors from image and
image patches. A description network is typically trained by applying standard metric
learning loss functions such as contrastive [CHL05] or triplet loss [SKP15; HA15; Ara+16]
to the extracted descriptors. Data mining is also used to speed up the training and
improve discriminativeness such as hard negative mining [Sim+15; Bal+16; Mis+17;
Wei+18] and label mining via adding distractors [HLS18].

In the past years, learning-based descriptors have gained much attention and progress
with advances in loss functions, network architectures, data mining strategies and train-
ing regularization. MatchNet [Han+15] and DeepCompare [ZK15] jointly learn patch
representation via siamese deep CNNs and feature similarity comparison via shallow
linear layers. To maintain efficient computation, MatchNet applies the patch description
network and the metric network for matching separately during inference. DeepCompare
shows that the learned descriptors can be more accurately compared using the common
L2 distance. DeepDesc [Sim+15] also learns patch descriptors using a Siamese CNN
and is trained on patch similarity, yet directly with a L2 distance metric instead of a
learned metric. They further use hard positive and negative mining to learn discriminative
features.

Later works [Bal+16; KCR16; Wei+18; Mis+17; Zha+17; Tia+19; Ebe+19; Wan+20b;
Liu+19] leverage more advanced architecture, triplet loss and regularizers [Zha+17;
Tia+19] for performance improvement. GLoss [KCR16] uses the global loss to enlarge
the distance margin between positive and negative patch pairs. GOR [Zha+17] proposes
a global orthogonal regularization loss that spreads out the learned descriptors to fully
utilize the embedding space. HardNet [Mis+17] gains better performance via performing
hardest-within-batch mining. GeoDesc [Luo+18] integrates geometry constraints from SfM
during training. KSP [Wei+18] proposes a novel CNN subspace pooling method to learn
descriptors that are more invariant to geometric transformations, leading to improved
patch matching accuracy. SOSNet [Tia+19] shows that it is beneficial to incorporate a
second-order similarity regularization loss for descriptor learning. ContextDesc [Luo+19]
proposes to go beyond the local representation of a keypoint descriptor by aggregating
simultaneously its visual contextual feature from image patches and geometrical contextual
feature from keypoint locations. LogPolarDesc [Ebe+19] leverages polar representation
to learn scale-invariant descriptors.

Instead of triplet loss, DOAP [HLS18] proposes to learn descriptors by optimizing on
the matching average precision metric, which allows global descriptor comparison. To
get rid of the need for expensive correspondence labels, CAPS [Wan+20b] supervises
descriptors learning with an epipolar geometry-based loss that only requires ground
truth camera poses and camera intrinsics to compute. They further show their method
also outperforms most of the methods supervised with precise correspondences. Instead
of extracting a descriptor independently for each image, CoAM [WEZ21] proposes to
learn descriptors for a pair of visually overlapped images. Given an image pair, CoAM
conditions the descriptor of one image with the features extracted from the other image
via attention mechanism. The descriptors are trained with a hinge contrastive loss that
minimizes the distance between two matched descriptors. During testing, descriptors are
used to perform matching as usual. In this case, the descriptor of an image needs to be
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re-extracted for a new paired image, which makes it more expensive compared to other
learned descriptors. While this character is similar to end-to-end correspondence networks,
it differs from them in two aspects. A standard correspondence network performs an
exhaustive matching step inside the network, which leads to expensive runtime and
memory. Instead, it performs the matching outside the network to enable high-resolution
dense descriptors and also avoids the expensive exhaustive matching during training by
only backpropagating from a subset of correspondences.

3.3.3 Learned Joint Detection and Description

In the above paragraphs, we walked through both handcrafted and learning-based methods
for only keypoint detection or description. In addition, we also introduced several
handcrafted methods [Low04; BTG06; Rub+11; ABD12; AZ12] that do both duties, i.e.,
detection and description, in two stages. In this section, we focus on another line of
learned-based methods that opt for a single network to integrate detection and description
in a single forward pass. The main intuition behind is that simultaneously optimizing the
model parameters for these two inherently coupled tasks in an end-to-end manner leads to
improved knowledge propagation and task cooperation. The existing methods along this
line can be divided into three categories detect-then-describe [Yi+16; Ono+18], detect-
and-describe [DMR18; Rev+19b; Dus+19; Luo+20] and describe-then-detect [Li+22].

Detect-then-describe. The first unified pipeline for local feature extraction is proposed
in LIFT [Yi+16]. It combines the existing learning-based detector [Ver+15], orientation
estimator and descriptor [Sim+15] in an end-to-end differentiable manner. While every
component is differentiable, they show it is not possible to train the full pipeline from
scratch. In the end, they gradually add components into training from only the detector
to the full pipeline. Following a similar local feature pipeline as in LIFT, LFNet [Ono+18]
adopts more advanced CNN architecture for more scale-invariant detection and can be
trained end-to-end without the need for ground-truth keypoints generated by a hand-
crafted detector. Instead, they select keypoints from a score map using non-maximum
suppression.

Detect-and-describe. Instead of connecting detection and description in sequential
order, SuperPoint [DMR18] simultaneously outputs dense keypoints and descriptors. It
extends its previously developed detector MagicPoint [DMR17] with another description
branch to simultaneously generate a dense descriptor map. The detector and descriptor
branches share the same CNN backbone for image feature extraction. While the detector
outputs a heatmap at image resolution, every pixel-level descriptor is interpolated from the
raw patch-level descriptors. To train SuperPoint end-to-end in a self-supervised manner,
they leverage the pre-trained MagicPoint to generate pseudo ground-truth keypoint for
real-world images and create ground-truth correspondences by image warping. It is
shown to be very efficient in computation and has become one of the most popular
local feature that is widely used in various applications and tasks. While the previous
methods separate parameters for detection and description, D2Net [Dus+19] shares all
parameters to obtain a common feature representation that is simultaneously optimized

16



Image Matching

for both tasks. They show that the keypoints merge in the feature maps and can be
extracted by performing a non-local-maximum suppression on a feature map followed
by a non-maximum suppression across each descriptor. A similar conclusion has been
drawn in other works [Tia+20; SAC19], where they directly use features learned on
image classification. ASLFeat [Luo+20] further extends D2Net by fusing feature maps
at multiple scales within a more sophisticated deformable CNN, leading to improved
matching accuracy. Analogous to SuperPoint, R2D2 [Rev+19b] shares the backbone
features and uses two separate branches for detection based on reliability and repeatability
scores and dense description. By using L2Net [TFW17] as the backbone, it directly outputs
feature maps at image resolution at the cost of slow computation. DISK [TFT20] proposes
a probabilistic framework based on gradient policy for learning local features for image
matching, which tries to keep the training and inference regimes close. They show their
method outperforms other learned local features in image matching benchmark [Jin+21].

Describe-then-detect. PoSFeat [Li+22] reverses the traditional detect-then-describe
pipeline to describe-then-detect, where it first trains a dense description network and then
learns a detection network that predicts keypoint response from the dense descriptors.
The idea of describe-then-detect keypoints has previously been presented in D2D [Tia+20].
However, D2D directly extracts keypoints without an extra detection network and fo-
cuses on detection and is combined with other descriptors for matching. Similar to
CAPS [Wan+20b], PoSFeat is weakly supervised with camera poses. It outperforms other
local features in image matching (HPatches [Bal+17]) and visual localization under night
conditions (Aachen day and night [Sat+18]) while being competitive on SfM.

3.4 Robust Matching and Outlier Filtering

After obtaining a set of keypoints and their descriptors, the next stage is to establish
keypoint correspondences. It is typically done by performing Nearest Neighbour (NN)
search [ML14] based on the euclidean distance between every two descriptors. Afterward,
simple filtering mechanisms such as Lowe’s ratio test [Low04] and mutual consistency
check [Dus+19; ZSL21] are usually applied to the initial set of matches to filter the
unqualified ones.

Graph-based matching. Matching two sets of data points can also be considered
as a graph matching problem. Given a set of keypoints extracted from an image, an
attribute graph can be constructed where each keypoint is a node and an edge can be
defined with incorporated pairwise constraints. In general, solving graph matching is
normally formulated as Quadratic Assignment Problem (QAP) which is NP-hard and
requires expensive and complex solvers. Therefore, despite being a long-standing topic,
it is not widely applied to solve image matching in practice, as it is not affordable for
the downstream applications that people focus on, such as visual localization, SfM and
SLAM. While many relaxation strategies have been introduced in the literature to devise
more efficient solvers for graph matching, we consider them as less related to this section
and refer readers to other literature [Yan+16; Ma+21; SZF20] for detailed summary. In
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the following, we focus on visual descriptor-based keypoint association and mismatch
filtering that have been widely applied to image matching.

Learn match filtering. Given an initial set of matches, the task of finding the
set of inlier matches is typically solved jointly with the task of model estimation via
RANSAC [CMK03; FB81; CWM05; Bra+17]. The final inlier set is picked as the
maximum set of correspondences found by any of the randomly sampled model hypotheses
within specific iterations. Some work proposes to learn a deep network to regress a
probability score to directly weight matches inside a RANSAC loop [BR19b]. Another
types of recent works [Yi+18; Sun+20; Zha+19a; Zha+19b; CYT19; Liu+21] propose to
learn an extra filtering stage in data-driven manner to reject geometrically inconsistent
matches before performing task-specific filtering inside RANSAC loops. It is normally
formulated as a binary classification task where each match is assigned a probability score.
The inlier matches are identified by setting a filtering threshold.

Learned matching. The seminal work SuperGlue [Sar+20] formulates descriptor
matching as an optimal transport problem [PC+19] that can be efficiently solved with
a differentiable iterative Sinkhorn solver [SK67; Cut13]. The motivation for learning a
matching function is to learn the underlying structure of the problem, e.g ., not every
point having a match and each point having at most one match, in a data-driven manner.
SuperGlue leverages an attention-based Graph Neural Network (GNN) to explore and
propagate the contextual information within each set and across two sets. The network
is end-to-end trainable and can be trained with different types of local features. The
combination of SuperPoint [DMR18] and SuperGlue has achieved the top rank on multiple
matching and localization benchmarks since proposed and still being relatively competitive
nowadays. Its follow-up work SGMNet [Che+21] significantly reduces the computation and
memory cost of Superglue by constructing a sparsely connected seed graph neural network
that operates on a set of seed matches, which are selected from nearest neighbor searched
correspondences using non-maximum compression w.r.t. spatial coverage. Another similar
recent work, ClusterGNN [Shi+22] directly removes redundant connectivity in the graph by
progressively dividing keypoints into different sub-graphs, which leads to largely improved
efficiency in computation meanwhile sets the state-of-the-art of learned matching function.

3.5 End-to-End Image Matching

In the above, we mentioned the methods that focus on tackling only one or two parts of a
matching pipeline, while inheriting the remaining parts from other existing methods. While
deep learning allows us to migrate from handcrafted designs to data-driven knowledge,
there are still different levels of man-made assumptions involved in such a matching
pipeline composed of separately devised components. One common assumption made
to define a keypoint is that corners and conjunctions are resilient and invariant against
various image transformations. In addition, while the ultimate application of the identified
keypoints is to establish correspondences, they are not optimized directly on a matching
objective. The above methods relying on classic keypoint detection and description
perform sparse-to-sparse matching, since they first eliminate a set of pixels leading to
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sparse keypoints in each image. While the sparsity provides computation efficiency in
the next matching stage, it might remove important information helpful to the matching
step at the early stage, which is not recoverable anymore in the later stages. Therefore,
recently a newly emerging trend is to learn a full or close to the full matching pipeline in
end-to-end manner, which allows one to optimize directly on matching-based objectives.
Those methods perform either sparse-to-dense [GBL19; GBL20; Tan+22; Jia+21; GLB21]
or dense-to-dense [Hua+22; Roc+18; Li+20b; RAS20; Mao+22; Che+22a] matching as
we will introduce in the following.

3.5.1 Sparse-to-dense Matching

Sparse-to-dense matching is firstly proposed by Germain et al . [GBL19]. where they use
the VGG-based network trained on image retrieval losses to extract local features at a
given point location. Given a pair of images and a set of identified keypoints in one of the
images, S2DHM [GBL19] first extracts sparse descriptors at the keypoint locations for one
image and dense descriptors per-pixel (called hypercolumns) for the other image. For each
keypoint, its correspondence is obtained by exhaustively comparing the descriptor distance
against all descriptors of the other images and keeping the one with the nearest descriptor
distance. Its follow-up work S2DNet [GBL20] directly trains a network specifically for
sparse-to-dense matching by maximizing the matching log-likelihood at ground-truth
locations. They show by end-to-end training of the network on matching significantly
improves the performance compared to a network trained on image retrieval.

Recently, sparse-to-dense has been reformulated in COTR, where given an image pair
and a point of interest in one of the images, it outputs its matched point in the other
image instead of a matching score. Instead of performing an explicit matching step to
obtain the matching score, COTR considers a transformer [Vas+17] as a retrieval function
that searches the correspondence of a query interest point from a context map. The
map is constructed by concatenating CNN feature maps extracted from the image pair
and appending each feature with its corresponding positional information in the image.
One drawback of COTR is the significant computation requirement due to the use of a
transformer, which also limits its accuracy since the image resolution is limited to 256 to
avoid intractable runtime. ECO-TR [Tan+22] has been proposed recently to significantly
reduce the runtime through hierarchical searching and more optimized implementation.
Notice, one could also classify COTR and ECO-TR to dense-to-dense matching methods
as they utilize all dense features from both images for matching. Yet, we put it in this
category considering their need for pre-defined interest points.

3.5.2 Dense-to-dense Matching

While sparse-to-dense matching methods assume that the keypoints or query points are
provided for one of the images in a pair, dense-to-dense methods, also called detector-free
matching, directly forgo a keypoint detection stage. In this paradigm, image keypoints are
not explicitly defined from the beginning but they are revealed directly in the identified
matches. Fully end-to-end trainable dense-to-dense matching is firstly proposed in
NCNet [Roc+18] where given a pair of images, dense descriptors are firstly extracted
using a backbone network and then matched through a correlation layer [RAS17] to

19



Image Matching

output a 4D correlation score map. It further applies several 4D convolution operations
on the correlation tensor to obtain neighborhood consensus, which can be considered
as a learned match filtering function. The final matches are identified by applying
softmax from both matching directions and keeping the matches based on the highest
probability and mutual consistency. Following this formulation, the later correspondence
networks improve the matching accuracy by performing coarse-to-fine matching [Li+20b;
Sun+21], designing a transformer-based [Vas+17] architecture to help to exploit contextual
information [Sun+21]. Another set of methods focuses on making correspondence networks
more computationally efficient using sparse convolution [RAS20]. Among the dense
matching methods, LoFTR [Sun+21] achieves the best performance while being more
efficient in runtime. Its follow-up work AspanFormer [Che+22a] proposes an advanced
transformer architecture based on hierarchical attention showing improved performance
in some cases. Concurrently, 3DG-STFM [Mao+22] shows a teacher-student learning
strategy can be involved to improve the matching performance, where the teacher model
is trained for 3D-3D matching with the same architecture as the student model for 2D-2D
matching.
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4 Visual Localization

In this chapter, we dive into visual localization. We start with the task definition in
section 4.1 covering the task objective and the scene representation. Next, we classify the
existing localization approaches based on their scene representation and involved tech-
niques into five categories which include image retrieval-based localization (section 4.2),
absolute pose regression (APR) (section 4.3), scene coordinate regression (SCR) (sec-
tion 4.4), relative pose-based (RP-based) (section 4.5) and structure-based (section 4.6)
localization. For each category, we discuss the key idea and motivation behind, the
existing representative works, the current state and the remaining challenges.

4.1 Task Formulation

Objective and terminology. The goal of visual localization is to localize an agent
that can be a human, a car, a robot or a drone, in the 3D environment based on some
visual information provided by the target. The input visual information is commonly
in the form of a single query image captured using a digital camera by the agent, so
the task is also called image-based localization. Given a query image, a typical visual
localization system localizes the agent by estimating the camera pose at which the query
image has been captured w.r.t. the global coordinate system of the 3D environment.
Therefore, the task is also termed as camera localization based on its camera pose output.
As introduced in section 2.1) a camera pose involves a rotation and a translation, while
some localization methods might only predict the positional information. In addition, the
tasks are sometimes also called camera re-localization since we re-localize a new camera
against a scene map that is also typically pre-built by localizing cameras. In this work,
we stick to using visual localization.

Map representation. As the agent is localized w.r.t. a 3D environment, visual lo-
calization assumes that a map representation of the 3D environment has been built
in advance. In general, there are three options to represent a map: i) a collection of
images tagged with camera poses, ii) a sparse 3D point cloud and iii) a hybrid of i) and
ii). The existing methods typically rely on the image database to obtain scalability in
scene scale [Zho+20; Las+17; Sar+19], while leveraging a 3D model can lead to better
localization accuracy [Sar+19; SLK16]. With the development of deep learning techniques,
it becomes possible to encode the scene during training and then get rid of the explicit
representation of the map during inference, such as in absolute pose regression (section 4.3)
and scene coordinate regression (section 4.4).

Sparse map generation. A sparse scene map is commonly built by reconstruction
techniques such as Structure-from-Motion (SfM) [Wu+11; SF16] or simultaneous localiza-
tion and mapping (SLAM) [Dav+07; MT17]. SLAM reconstructs a 3D point cloud while
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taking images and localizing them in the target environment from scratch, while SfM
builds a scene point cloud from a collection of images captured in the target scene. Both
of the reconstruction techniques provide a sparse 3D point cloud, as well as a database of
images with their localized camera poses, where these images are called reference images.
Each 3D point in the 3D model has been triangulated from two or more image local
features (c.f . section 3.2 and section 3.3) such as SIFT [Low04]. In this way, each 3D
point cloud is associated with one or multiple local image descriptors. Compared to
a collection of images, a sparse 3D point cloud is more compact and more informative
representation, since points with redundant and ambiguous local features are already
eliminated during the reconstruction [Li+12]. It’s worth noting that a reconstructed map
algorithm only generates pseudo ground truth which also contains different levels of errors.
Recent study shows the choice of algorithm to generate reference map can influence the
ranking of localization methods on the same dataset [Bra+21].

Dense map generation. RGB depth SLAM is often used to build map for indoor
scenes where 3D structure is densely reconstructed from RGB-D images, i.e., images
with RGB and depth values [New+11; Sho+13; Val+16; Bra+21; Dai+17]. Different
from SfM which works with loosely captured scene images, depth SLAM requires video
sequence where images are captured at high frame rate. Another case is to directly scan
the whole scene and then register the images to a floor plan as was done for InLoc [Tai+18;
WF17] with handcrafted alignment. Some recent work also proposes to use a dense scene
representation in the form of neural radiance fields [Yen+21; Mil+21] or meshes [PKS22].

4.2 Image Retrieval-based Localization

End-to-end. Traditionally, visual localization can be cast into an image retrieval (IR)
task [SH+04; Hum+22; SBS07; KSP10; CS13; Tor+15; BMC22; Wan+22], when using a
database of geo-tagged images as the scene representation. As introduced in section 2.3,
given a query image, image retrieval searches the nearest neighbors that observe content
similar to the query from a reference database. Then the query location can be directly
approximated by the location of the nearest reference image. In the context of visual place
recognition [MC21], the reference tags are not constrained to precise camera poses, but
also can be GPS coordinates [HE08; Pra+22; WKP16]. In our previous work [Sat+19],
we show that compared to other methods that output a precise camera pose, end-to-end
localization via IR has the coarsest localization accuracy yet but generalizes well across
datasets.

Coarse-to-fine. While end-to-end localization via image retrieval is less accurate, it
allows one to efficiently provides candidate regions. This character is complementary to
feature-based methods that are more accurate but expensive to compute on large-scale.
Therefore, image retrieval is naturally used as a coarse searching step to first reduce
the localization space, followed by a fine localization step that is performed only in
the candidate space. Such a coarse-to-fine localization paradigm has been commonly
adopted since the early days until nowadays by structure-based localization [Irs+09;
Sar+19; Zho+22; Tai+18] (c.f . section 4.6) and relative pose-based localization [ZK06;
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Zho+20; Las+17] (c.f . section 4.5) methods. Recently the hierarchical structured-based
localization [Sar+19] has achieved the state-of-the-art performance in the challenging
long-term localization benchmark [Sat+18; Tof+20], either being more accurate or scaling
much better to larger scenes compared to other methods. Among the existing retrieval
methods, the VLAD-based ones such as NetVLAD [Ara+16] and DenseVLAD [Ara+16]
are the most widely applied ones to visual localization.

4.3 Absolute Pose Regression

Directly regressing a 6-DoF camera pose from a query image was firstly proposed by
Kendall et al . [KGC15] as a lightweight and real-time localization solution. The vanilla
PoseNet [KGC15] firstly uses a convolutional backbone, e.g ., GoogleNet [Sze+15], to
encode a query image as a global feature embedding, which is then fed into a series
of fully-connected layers to regress its camera pose. To train a PoseNet for the target
scene, one assumes a training database of images with ground truth (gt) camera poses
are known. The training loss is typically computed as a weighted combination of the
translation residual between the predicted and gt translations and the orientation residual
between the predicted and gt orientations. A bunch of latter works build upon the vanilla
PoseNet [KGC15] formulation and gradually improves its performance by designing more
sophisticated architecture [NB17; Mel+17a; Wan+20a; SFK21], reasoning about the
uncertainty of the estimations [KC16], introducing geometric constraints [KC17; Bra+18;
VRB18; RVB18] in losses, exploring temporal or geometric cues when using image se-
quences [Wal+17; Cla+17; VRB18; RVB18] or multiple non-consecutive images [Xue+20]
as inputs.

Novel view synthesis-aided APR. Recently, dense scene representation in the form
of mesh or neural radiance fields (Nerf) [Mil+21; Mar+21; Bar+22] are used to improve
absolute pose regression (APR). Novel views are densely rendered from a pre-trained
nerf [Mor+22] or a textured mesh [Sat+19] to enlarge the reference database used for
training. Direct-PoseNet [CWP21] enforces photometric consistency between the input
image and the rendered view using its predicted poses during training. This is later
extended by DFNet [Che+22b] to compute the consistency in feature space.

Multi-scene APR. While having the merit of simple end-to-end formulation and
constant runtime regardless of scene size, APR methods are scene-dependent by design
as they are trained to be dependent on the choice of the global world coordinate. To
empower an APR model to work under multiple scenes, MSPN [Bla+20] learns shared
feature extraction across multiple scenes and separates regression components for each
scene without loss in accuracy compared to training one full network per scene. The
recent work [SFK21] manages to train a single full APR network across multiple scenes by
leveraging transformers to learn general features for localization while embedding multiple
scenes in parallel.
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4.3.1 Challenges

Despite the years of development in absolute pose regression, this branch of methods are
still relatively less accurate compared to other approaches that explicitly compute camera
poses from keypoint correspondences between a query and the scene geometry [BR21;
Sar+19; Li+20a]. In order to investigate the inner workings of APR methods and to
understand the reason behind their lower performance compared to structure-based
methods, we proposed a theoretical model in our previous work [Sat+19] where we
interpret the weight parameters of the last linear layer that regresses image camera poses
as a set of base poses, while a predicted test pose is a linear combination of the base
poses. Those base poses can be viewed as the representation of the scene that an APR
network learned from training poses. This theory implies the sufficient condition for a
testing image to be successfully localized is its pose can be actually represented by a
linear combination of the base poses. However, in real-world applications the training
poses might be sparse or simply distributed distant from the testing cameras. To avoid
those cases one would need to densely sample more training cameras to improve viewpoint
coverage, however, it leads to more expensive data collection as well as longer training
time in general. In contrast, the structure-based localization methods are less constrained
by the scene coverage extent. As long as there exists sufficient scene structure visible to
both the query and some reference images, it is possible to localize the query image.

4.4 Scene Coordinate Regression

The original scene coordinate regression (SCR) framework for camera localization was
proposed by Shotton et al . [Sho+13] where instead of performing explicit 2D-3D sparse
feature matching, it regresses the matched 3D scene coordinate for each pixel in the query
image from its local patch feature using a random forest. Its follow-up works improve
the localization accuracy by using multiple camera pose predictors [Guz+14] or modeling
regression uncertainties [Val+15].

DSAC-based SCR. Unlike the previous work using random forests [Sho+13; Guz+14;
Val+15; Bra+16; Cav+17; Cav+19b] and handcrafted local patch features, Brachmann
et al . trained a CNN to densely regress scene coordinates from raw RGBs, meaning
feature extraction and feature-to-scene matching are jointly learned from training data.
Such modification significantly improves over prior works on 7 Scenes dataset [Sho+13].
They further proposed DSAC, a differentiable approximation of RANSAC [FB81] to
enable end-to-end training on pose estimation yet requiring initialization from pre-trained
components for stability. Its follow-up work DSAC++ [BR18] relaxed the need for
depth map for scene coordinate regression training with a depth prior and improved the
stability of end-to-end training by using a soft inlier count instead of a learnable CNN
for hypothesis scoring in DSAC, which led to improved localization accuracy for both
indoor and outdoor scenes. DSAC* [BR21] further simplified the training procedure and
extended to leverage sparse 3D scene model during training or dense depth maps for both
training and inference leading to increased accuracy.
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Large-scale SCR. While scene coordinate regression approaches achieve highly ac-
curate localization performance in benchmark with small to middle scale scenes, e.g .,
7 Scenes [Sho+13], 12 Scenes [Val+16] and Cambridge Landmarks [KGC15], directly
training them on larger scenes led to much worse performance [Bra+17; BR18; BR19a]. To
relieve this issue, Brachmann et al . proposed ESAC [BR19a] where they train a collection
of experts with each expert responsible for regressing scene coordinates for a sub-area in
a larger environment and an additional gating network for identifying which expert to
use for an input image. A recent follow-up work proposed a hierarchical classification
and regression network [Li+20a] that leads to improved accuracy on indoor scenarios. In
addition, they show they can significantly outperform ESAC on the challenging large-scale
Aachen Day and Night [Sat+12; Sat+18] dataset by coarse-to-fine classification without
regression with sparse feature instead of the raw image as inputs. Despite the improvement
made in the recent work [BR19a; Li+20a], scene coordinate regression / classification
methods are much less accurate than the state-of-the-art structure-based localization on
large-scale datasets such as in Aachen Day and Night.

Online-adaptation to new scenes. In parallel with advancing the accuracy and
run-time efficiency of SCR methods, some other works [Cav+17; Cav+19b; Cav+19a]
extend their application for interactive SLAM. The idea is to leverage a localizer trained
offline on one or some scenes (not the target scene) for online re-localization on a new
scene. More specifically, online adaption is the process of training the offline localizer
on new data obtained by a camera tracker in the target scene. Afterwards, the adapted
localizer can be used to recover the camera pose when the camera tracking fails.

Scene agnostic SCR. In order to overcome the scene-dependent constraint for SCR,
SANet [Yan+19] leverages the 3D model of the scene. Compared to structure-based
methods, the main difference is they do not perform explicit 2D-3D matching, instead
they explore feature correlation using MLP and then regress scene coordinates for the
query image. While they show the model generalizes to some extent, their performance
is still lower than explicit matching-based methods considering they now also need 3D
model for inference.

Relation to APR. Besides camera poses regression, scene coordinate regression is
another popular regression-based method for visual localization that has benefited largely
from deep learning in the past years. Different from absolute pose regression which learns
the whole localization pipeline in an end-to-end manner, scene coordinate regression only
learns to establish 2D-3D correspondences and still requires another pose estimation stage
as in structure-based localization.

4.5 Relative Pose-based Localization

In the previous section 4.3 and section 4.4, we have introduced methods that directly
predict camera poses from query images without the need for an explicit map during
the inference. Instead of learning to encode the scene representation inside the model
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parameters, relative-based localization relies on a database of reference images depicting
the scene to work.

Pipeline. A typical relative-based localization pipeline consists of three stages: 1) image
retrieval is used to identify a set of images that potentially depict the same part of the
scene as the query image, (2) for each retrieved image, its relative camera pose w.r.t. the
query is computed, and 3) relative poses from all retrieval images are used to estimate
the final absolute camera pose of the query. In recent years, deep learning has been
widely involved to improve both steps 1) image pair construction and step 2) relative
pose estimation. As image retrieval is the core technique used in step 1), we refer readers
to section 4.2 for detailed description of how it works and how deep learning has been
applied to advance it. For relative pose estimation, there are mainly the regression-based
methods and the matching-based ones. The former methods directly regress a relative
pose from a pair of images with visual overlapping, being purely learning-based. The
latter follows the classical keypoint matching paradigm to establish image correspondences
which are then used to compute relative poses using minimal solvers for relative pose
estimation such as 5-point solvers [LH06; Nis04] for known camera intrinsics and 6-point
solvers[Kuk+17; HL12; Ste+08] for unknown focal length.

From handcrafted to learning-based. The first relative pose-based localiza-
tion [RC04] system was matching-based. Given an available database of rectified images
of building facades, Robertson & Cipolla [RC04] perform wide-baseline matching between
a rectified query image and each database image. They then estimate the relative transfor-
mation, i.e., a scale and a translation, between the best matched image pair, from which
they finally recover the pose of the query given the pose label of the database image. The
latter work [ZK06] generalizes this prototype by eliminating the requirement that each
image needs to be dominant with a building facade. In addition, they use more viewpoint
and scale invariant SIFT [Low04] feature to perform wide-baseline matching and then
estimate relative motions between the query to its two best retrieved database images,
which finally are used to triangulate the global position of the query given the two GPS
coordinates of the database images. However, in the following many years, relative pose
estimation was not much investigated in the context of visual localization.

Until a few years ago, more and more researchers start to explore the potential of
using deep learning to tackle various geometric computer vision tasks in an end-to-end
manner, including camera localization [KGC15], visual odometry [KM15] and homography
estimation [DMR16]. Following the trend of deep regressing geometric transformations,
Melekhov et al . [Mel+17b] regress relative camera poses from image pairs using a siamese
network with a weighted sum of L2 loss on normalized predicted and ground truth relative
translations and quaternions. Laskar et al . [Las+17] is the first one that evaluates relative
pose regression (RPR) for the task of camera re-localization using a similar pipeline
to the one proposed in [ZK06] except for the RPR step. In addition, they show the
possibility to train a single RPR network on a set of scenes indicating that RPR-based
localization has the potential to be more general and scalable than the scene-dependent
APR. Balntas et al . [BLP18] train a network for joint image retrieval and relative pose
regression using a frustum-overlap-based loss. Instead of triangulating the query position,
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several other work [BLP18; ELJ18; ABI21] learn metric relative poses, i.e., rotation and
scaled translation, from which query poses can be directly recovered. RelocNet [BLP18]
shows that compared to training on the target dataset (7 Scenes [Sho+13]), training their
model on another similar dataset (ScanNet [Dai+17]) leads to an evident decrease in
performance, suggesting that the method has certain but limited generalization capability
across datasets. AnchorNet [SVJ18] exhaustively predicts xy-offset between a query and
a selected set of reference images called anchor points. For the other 4-DoF, it regresses
z-axis and orientation globally as in APR. While such a combination of APR and RPR
leads to performance improvement compared to its previous APR and RPR methods, it
needs to be trained per-scene.

4.5.1 Towards Generalized and Accurate RP-based Localization

Compared to relative pose estimation via explicit feature matching, the above mentioned
RPR formulation does not enforce the intrinsic structure of the problem. Instead, the
underlying belief is that implicit feature matching is performed within regression and it is
supposed to be competitive or even better than enforcing explicit feature matching in some
aspects such as simplicity, accuracy or generalization. If not, this also raises a question
that what is the proper way to leverage learning for relative pose estimation? To explore
the answer to this important question, we proposed EssNet [Zho+20] (chapter 5), an
essential matrix-based framework that supports fair comparison between various relative
pose estimation methods for visual localization. In our work, we compare three different
variants for computing essential matrices, ranging from purely hand-crafted to purely
data-driven. Through extensive experiments, we found purely data-driven RPR does not
generalize well across datasets, e.g ., from indoor to outdoor, which is not an issue for
matching-based variants.

A recent work ExReNet [WDT21] shows that it is possible and even beneficial to
generalize from unrelated data without retraining. Interestingly, they show significant
improvement in accuracy and generalization compared to previously proposed RPR
models, including EssNet [Zho+20]. This is achieved by enforcing a matching operation
via hierarchical correlation layers supervised with GT correspondences as well as increasing
the pose regression layers before pooling. They verified their model can train on a synthetic
indoor dataset SUNCG [Son+17] and generalize to the indoor 7 Scenes [Sho+13] dataset.
They further show leveraging learned translation scale and uncertainty information in
pose triangulation process significantly improves the translation error.

Another recent work [Arn+22] proposed to tackle map-free visual localization where
the goal is to localize the query against a single reference image that represents the scene.
The main motivation behind is to enable instant AR capabilities at new locations by getting
rid of a time-consuming mapping stage. They extensively evaluated the performance of
multiple localization methods against different types of scene representations, where they
gradually restrict the representation to only a single reference frame. When assuming
using all mapping frames (reference images) in 7 Scenes [Sho+13], as expected, structure-
based methods (section 4.6) relying on a 3D model achieve the best accuracy. The second
best performing method applies the state-of-the-art image matching to estimate relative
camera pose and then triangulates query pose. When assuming only 10 scene frames, the
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relative pose estimation with triangulation becomes the best performing as 3D model is
not available in this case.

In the extreme case of a single reference frame where triangulation is not possible, the
most accurate method relies on learned depth to recover the translation scale. However,
in any of the scenarios, one can see that relative pose regression with translation scale
prediction is always the least accurate method, while relative pose estimated via image
matching leads to significantly more accurate and robust performance. This observation
is consistent with what we concluded from EssNet [Zho+20] that pure relative regression
suffers from limited generalization issue and accuracy.

4.6 Structure-based Localization

In this section, we introduce structure-based localization which is currently the most
reliable and accurate localization for long-term localization benchmark2 [Sat+18]. They
are also the main branch of methods that generalize the best across both indoor and
outdoor datasets. In the following section 4.6.1, we first give an overview of the structure-
based localization approaches and their relations to some of the other approaches that we
have mentioned above. Next in section 4.6.2, we look into the heart of the structure-based
localization, i.e., how to establish 2D-3D correspondences in different paradigms. Finally,
we discuss the open challenges facing the structure-based localization in the long run and
draw conclusions from there.

4.6.1 Overview

Pipeline. Different from the other methods mentioned in the previous sections, structure-
based localization assumes the availability of a pre-built 3D map (c.f . section 4.1) of the
scene during inference. Given a query image and a 3D map, a structure-based localization
pipeline can be summarized into two steps: (i) establishing point correspondences between
2D pixels in a query image and 3D scene points and (ii) computing the camera pose
of the query using PnP solvers [Gao+03; KSS11; Lar+19]. Based on whether image
retrieval is leveraged in step (i), structure-based methods can be divided into direct and
indirect methods, which we detail in section 4.6.2. Once we obtain 2D-3D correspondences,
we apply Perspective-N-Point (PnP) solvers [KR17; KSS11; Gao+03] to compute the
final pose. With the modern data-driven image retrieval [Ara+16; RTC18] and image
matching [DMR18; Sar+19; Sun+21; ZSL21] techniques, indirect methods achieves the
current state-of-the-art localization performance.

Relation to scene coordinate regression. Scene coordinate regression (SCR) is
closely related to structure-based localization but they differ from each other in several
aspects. While SCR methods also establish 2D-3D correspondences for pose estimation,
their matching step is implicitly performed via regression. Moreover, there exists no
explicit representation of scene 3D structure in the inputs, instead, the network is the one
predicting the 3D coordinates that correspond to the image pixels. As such, we consider
the SCR formulation to be relatively different from the methods we want to discuss in this

2Long-term localization benchmark: https://www.visuallocalization.net/benchmark
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section. Therefore, to avoid abuse of the terminology in this thesis we use structure-based
only for methods that explicitly perform a matching step against a 3D scene model. We
leave SCR itself as another type of approaches and detail it in section 4.4.

Relation to relative pose-based approaches. The relative pose-based (RP-based)
localization methods are more similar to indirect structure-based localization when the
relative pose is estimated via visual feature matching [ZK06; Zho+20; Arn+22]. For
both types of methods, 2D-2D pixel correspondences are firstly established, however,
structure-based methods use them to further obtain 2D-3D correspondences given the 3D
scene model, leading to a different pose estimation stage. While RP-based methods are
more lightweight in terms of the scene representation requirement, recent study shows
they are less accurate than the structure-based localization even with the same feature
matching stage [Arn+22].

4.6.2 Establishing 2D-3D Matches

The existing 2D-3D matching methods for structure-based localization can be classified
into direct [SLL02; CS14; CN12; Gep+19; Li+12; LSH10; Lyn+15; SLK16; LLD17;
Svä+16; ZSP15; Che+19] and indirect [Irs+09; Sar+18; Sar+19; Tai+18; Zho+22; PKS22]
approaches. The main difference between the two categories is whether a method uses
image retrieval [SZ03; NS06; Ara+16; Tor+15]. Sometimes we also call indirect methods
hierarchical localization [Sar+18; Sar+19] as they firstly perform coarse localization via
image retrieval and then fine localization via feature matching.

Direct 2D-3D matching. Direct 2D-3D matching methods for localization estab-
lish 2D-3D correspondences by globally comparing visual features, i.e., keypoints and
descriptors, extracted from a query image with 3D scene points (associated visual de-
scriptors). In the early work, Se et al . [SLL02] show the feasibility of directly matching
query SIFT [Low99] features against a scene model build via SLAM [SLL01] for mobile
robot localization in a 10 × 10m2 area. They also devised a RANSAC algorithm to
efficiently filter the outlier matches. Later, the advances in Structure-from-Motion (SfM)
techniques [SSS06; Fra+10] make it possible to reconstruct 3D geometry of landmarks
from large collections of Internet photos, which motivates the research in larger city-scale
(landmark-scale) localization. Following [Irs+09], Li et al . [LSH10; SLK11] examine direct
2D-3D matching with prioritized searching from both directions, i.e., 2D-to-3D and 3D-to-
2D, for globally localizing against large-scale outdoor scene models reconstructed by SfM.
However, as the scene scale grows, localization methods based on direct 2D-3D matching
are faced with several challenges. A large fraction of the 3D point features can become
visually ambiguous due to repetitive structures, which leads to more wrong matches. In
addition, the memory footprint and computational requirements of performing matching
become prohibitive for many real-world applications. To tackle those challenges, a lot
of research effort has been devoted to making matching more efficient [Lim+12; Li+12;
CN12; SLK11; DS14; SLK16; LLD17; Che+19] as well as more accurate by devising more
robust outlier filtering schemes [Svä+16; Aig+19; Aig+21; ZSP15; Sva+14; Li+12].
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Indirect 2D-3D matching. With enormous progress made in image retrieval for place
recognition and SfM for accurate scene geometry reconstruction, Irschara et al . [Irs+09]
combines the two methods into a single pipeline for efficient large-scale localization.
Specifically, they first use a vocabulary tree to retrieve top-ranked relevant reference
images w.r.t. a query image [NS06], then perform tentative feature matching only between
the query and each of the retrieved images and finally estimate pose from the matches
using a PnP solver. They show such indirect structure-based localization delivers real-time
performance against large 3D models obtained from SfM. Following this pipeline, Sarlin
et al . [Sar+18] leverages a deep neural network for image retrieval and hand-crafted
local features for matching, which enables highly accurate real-time localization on a
mobile platform. Similarly, InLoc [Tai+18] shows that deep features are helpful to address
challenges of long-term indoor localization which contain lots of large textureless areas,
symmetric and repetitive elements and dynamic objects. Using NetVLAD [Ara+16] for
image retrieval, multi-scale VGG [SZ14] features for dense matching and a novel pose
verification step based on virtual view synthesis, they achieve significant improvements
compared to state-of-the-art localization methods for large-scale indoor localization. Sarlin
et al . [Sar+19] draws a consistent conclusion by jointly training a network for both global
and local feature matching for large-scale outdoor localization. Recent research [ZSL21;
Sun+21] shows that inserting the latest data-driven feature matching [DMR18; Sar+20;
Sun+21] inside such a hierarchical localization (HLoc3) framework leads to the state-of-
the-art performance in long-term localization benchmark for both indoor and outdoor
scenes [Sat+18].

4.6.3 Challenges

As presented in section 4.6.2, both direct and indirect structure-based localization rely on
visual descriptors to establish 2D-3D correspondences. While structure-based methods
based on visual descriptor matching are highly accurate and robust, they face multiple
challenges from storage efficiency, privacy perseverance and descriptor maintenance,
blocking the development of large-scale localization for real-life applications.

Storage / memory efficiency. Storing per-point visual descriptors for matching makes
a localization system demanding in storage when considering keeping those data on a
server, since a city-scale 3D model with descriptors can easily rise up to the magnitude
of TBs [Zho+22]. In the case of direct structure-based localization on mobile devices,
loading the whole 3D model with associated descriptors into memory is not even possible
for larger scenes, making this type of methods not feasible.

To keep memory footprint manageable, several works propose to directly compress
the scene model while maintaining the localization accuracy as much as possible. The
compression is typically done by keeping a more representative and compact subset
of the 3D points [Soo+13; LSH10; Cam+19; CS14; Lyn+15; MSF20; Cha+22] and
quantizing [Cam+19; Lyn+15; Sat+15] the descriptors associated with the 3D points.
The selection of a more representative subset of 3D points is usually modeled as a
K-Cover problem [Soo+13; LSH10; Cam+19; CS14; Lyn+15] such that each database

3HLoc official code release: https://github.com/cvg/Hierarchical-Localization
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image observes at least K points from the selected subset. In the recent work, Chang
et al . [Cha+22] propose to sparsify a SfM in a data-driven manner, where they train a
graph neural network to predict point importance scores based on the local appearance
and the spatial context in the map graph built from the SfM model.

Privacy perseverance. In the past years, feature inversion techniques have been
widely studied originally for visualization and interpretation purposes, where a network is
learned to reconstruct an image from the handcrafted [KH14; dAn+13; Von+13] or deep
features [MV15; DB16] extracted from that image. Recently Pittaluga et al . [Pit+19]
show their learned inversion network can remarkably reveal scene contents of a highly
sparse SfM point cloud from its associated descriptors.

The existence of those powerful inversion techniques has raised privacy concerns in sev-
eral related tasks such as visual localization [CKS21], SfM [Gep+20] and SLAM [Gep+21].
To defend against those inversion attack on a 3D scene map, Speciale et al . [CKS21]
lift the map representation from a 3D point cloud to a 3D line cloud to obfuscate the
geometry. However, its follow-up work [CKS21] shows that inversion attacks can still
be successfully conducted to such a line cloud map. In fact, for modern localization
systems following a server-client model, the inversion attack not only can happen on the
server storing the 3D map, but it can also happen to query descriptors exposed during
the transmission from client to server side. To mitigate this scenario, privacy-preserving
descriptors [Ng+22; Dus+21b] have been recently proposed.

Descriptor maintenance. The continuous development of modern visual descriptors
has significantly contributed to the increasing localization performance. To allow the
existing localization system to use more advanced descriptors, the 3D scene model needs
to first be updated such that the 3D points are also associated with the new type of
descriptors. However, this process typically requires firstly extracting local features from
all database images, exhaustively matching between every pair of images, and finally
re-triangulate the 3D points. As the bigger the scene size is the more expensive this
process costs, it becomes prohibitive to perform such an update for localization systems
deployed at city-scale.

Other than the above mentioned issue, Dusmanu et al . [Dus+21a] also points out
another challenging scenario where different feature extraction algorithms are running
on different devices, leading to incompatible matching across devices. To address those
challenges, they jointly train a set of encoder-decoder networks for descriptor conversion,
where each network is responsible for one descriptor algorithm. During inference, they
convert the 3D map descriptors to the target query descriptor type to perform matching.
However, their experiments demonstrate such conversion decreases the quality of modern
learning-based descriptors in general. While this method avoids the descriptor update, it
either needs to constantly convert on-the-fly which makes the localization slower, or keep
multiple versions of 3D model on the server which requires huge amount of storage for
larger scenes as mentioned previously. Furthermore, retraining all of the encoder-decoder
networks jointly every time a new type of descriptor emerges is another type of continuous
maintenance effort.
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A potential solution via geometric-based matching. As the three mentioned
challenges are all related to the use of visual descriptors to establish 2D-3D keypoint
correspondences, we wonder whether we can localize an image without relying on visual
descriptors ? This question motivated our work GoMatch to be presented in chapter 7.
Compared to other methods that aim to tackle one aspect of those challenges, it explores
an orthogonal path to address these challenges by performing geometric-based matching
which gets rid of the need for visual descriptors.

32



Part II

Publications

33



5 To Learn or Not to Learn: Vi-
sual Localization from Essen-
tial Matrices

5.1 Summary

A recent trend in leveraging deep learning for visual localization involves directly regressing
relative poses from image pairs. Unlike absolute pose estimation, which is specific to
a particular scene, predicting the relative pose between images is a task that should
generalize to unseen scenes.

By representing the scene as a database of reference images with known poses, one
can localize a query image by estimating its relative pose with respect to k reference
images. Relative-pose-based methods, in contrast to structure-based methods, do not
require storing a 3D scene model, which can be prohibitively expensive for large scenes.
However, they currently exhibit lower accuracy compared to state-of-the-art structure-
based approaches.

In this work, we aim to address two key questions regarding relative pose regression
techniques: (i) why they currently exhibit lower accuracy than explicit matching-based
methods, and (ii) whether they can generalize to new scenes. To this end, we propose a
novel and versatile framework for relative-pose-based visual localization.

Our pipeline comprises three stages: We employ image retrieval to identify a set of
images that potentially depict the same part of the scene as the query image. For each
retrieved image, we compute the essential matrix encoding its relative pose with respect
to the query image. Leveraging the known absolute poses of the retrieved images and the
essential matrices, we estimate the absolute pose of the query. Our framework is agnostic
to the method used for estimating relative poses in the form of essential matrices. This
flexibility enables us to analyze the impact of employing machine learning in various ways
for relative pose estimation on localization accuracy. We compare three approaches: (a) a
classical method based on SIFT features [41], (b) direct regression of an essential matrix
using a novel CNN-based approach proposed in this paper, and (c) a hybrid approach
that employs learned feature matching instead of SIFT.

In our detailed experiments, we make the following observations: 1) Despite its
simplicity, our SIFT-based approach proves to be competitive with significantly more
complex state-of-the-art methods, thereby validating our framework. 2) Our regression-
based approach, while surpassing previous work, still lags significantly behind the SIFT-
based variant. Furthermore, it does not generalize to unseen scenes due to limitations in
the ability of its regression layers to learn the fundamental concepts underlying relative
pose estimation. 3) While the regression layer plays a key role in the inaccurate pose
estimates of relative pose regression-based methods, it is not the sole aspect in need
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of improvement. Employing features learned by such methods in our hybrid approach
also yields less accurate results compared to the SIFT-based approach. In addition to
introducing a novel localization framework, this paper provides valuable insights for future
endeavors towards achieving truly generalizable learning-based visual localization.

5.2 Author Contributions

The author of this dissertation significantly contributed to

• developing the main concepts

• implementing the algorithm

• evaluating the numerical experiments

• writing the paper
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5.3 Preprint

©2020 IEEE. Reprinted with permission from

Qunjie Zhou, Torsten Sattler, Marc Pollefeys, and Laura Leal-Taixe. To learn
or not to learn: Visual localization from essential matrices. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 3319–3326

Following the IEEE reuse permissions, we include the accepted version of the
publication. The published version is available under: https://doi.org/10.1109/
ICRA40945.2020.9196607.
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To Learn or Not to Learn: Visual Localization from Essential Matrices

Qunjie Zhou1, Torsten Sattler2, Marc Pollefeys3,4, Laura Leal-Taixé1

Abstract— Visual localization is the problem of estimating a
camera within a scene and a key technology for autonomous
robots. State-of-the-art approaches for accurate visual localiza-
tion use scene-specific representations, resulting in the overhead
of constructing these models when applying the techniques to
new scenes. Recently, learned approaches based on relative
pose estimation have been proposed, carrying the promise of
easily adapting to new scenes. However, they are currently
significantly less accurate than state-of-the-art approaches. In
this paper, we are interested in analyzing this behavior. To
this end, we propose a novel framework for visual localization
from relative poses. Using a classical feature-based approach
within this framework, we show state-of-the-art performance.
Replacing the classical approach with learned alternatives at
various levels, we then identify the reasons for why deep learned
approaches do not perform well. Based on our analysis, we
make recommendations for future work.

I. INTRODUCTION

Given a query image, the goal of visual localization
algorithms is to estimate its camera pose, i.e., the position
and orientation from which the photo was taken. Visual
localization is a fundamental step in the perception system
of robots, e.g., autonomous vehicles [40], [42], and a core
technology for Augmented Reality applications [3], [12].

Current approaches to visual localization that achieve
state-of-the-art pose accuracy are based on 3D informa-
tion [6], [13], [45], [60], [63], [68], [73], [74]. They first
establish 2D-3D matches between 2D pixel positions in a
query image and 3D points in the scene. The resulting
correspondences are then used to estimate the camera pose
[21], [34]. The 3D scene geometry can either be represented
explicitly through a 3D point cloud or implicitly via the
weights of a convolutional neural network (CNN). Both types
of representations are scene-specific, i.e., they need to be
build per scene and do not generalize to unseen scenes.

A more flexible scene representation models a scene
through a set of database images with associated camera
poses [65]. Building such a scene representation is trivial
as it amounts to adding posed images to a database. The
pose of the query image can then either be approximated
by the pose of the most similar database image(s) [1], [75],
[76], [83], identified through image retrieval [50], [71], or
computed more accurately [65], [73], [86]. Multiple methods
based on deep learning have been proposed for estimating
the pose of the query relative to the database images [4],
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1Technical University of Munich
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[35], [44], [77], [87] rather than to compute it explicitly
from feature matches [86]. However, such approaches do not
consistently perform better than a simple retrieval approach
that only approximates the query pose [66].

Visual localization approaches based on relative poses
have desirable properties, namely simplicity and flexibility
of the scene representation [65] and easy adaption to new
scenes, compared to 3D-based approaches. Also, leveraging
modern machine learning techniques for relative pose estima-
tion seems natural. This leads to the question why learning-
based approaches do not perform well in this setting.

The goal of this paper is to analyze the impact of machine
learning on relative pose-based localization approaches. To
this end, we propose a novel and generic framework for
visual localization that uses essential matrices inside a
novel RANSAC scheme to recover absolute poses. Our
framework is agnostic to the way the essential matrices
are estimated. We thus use it to analyze the impact of
employing machine learning in various ways: We compare
(a) a classical approach based on SIFT features [41] to (b)
directly regressing an essential matrix (using a novel CNN-
based approach proposed in this paper) and (c) a hybrid
approach that uses learned feature matching instead of SIFT.
Through detailed experiments, we show that: 1) Our SIFT-
based approach (a), despite its simplicity, is competitive
with respect to significantly more complex state-of-the-art
approaches [6], [63], [73], thus validating our framework. 2)
Our regression-based approach (b), although outperforming
previous work, is still significantly worse than the SIFT-based
variant. Also, it does not generalize to unseen scenes due
to the inability of its regression layers to learn the general
concepts underlying relative pose estimation. 3) While the
regression layer is mainly responsible for the inaccurate pose
estimates of relative pose regression-based methods, it is
not the only part that needs improvements. Rather, using
features learned by such methods in our hybrid approach (c)
also leads to less accurate results compared to (a). Besides
proposing a novel localization framework, this paper thus
also contributes important insights into future work towards
truly generalizable learning-based visual localization.

II. RELATED WORK

Feature-based localization. Feature-based approaches to
visual localization can be classified into direct [11], [14],
[22], [37], [38], [42], [63], [72], [85] and indirect [2], [10],
[28], [60], [61], [75], [84], [86] approaches. The former
follow the strategy outlined above and obtain 2D-3D matches
by directly comparing feature descriptors extracted from
a query image with 3D points in the SfM model. While



producing accurate camera pose estimates, their scalability to
larger scenes is limited, partially due to memory consumption
and partially due to arising ambiguities [37]. The former can
be addressed by model compression [9], [11], [38], [42], [62]
at the price of fewer localized images [11], [42].

Indirect approaches first perform an image retrieval
step [29], [50], [71] against the database images used to
build the SfM model. An accurate pose estimate can then be
obtained by descriptor matching against the points visible
in the top-retrieved images [28], [62], [73], which can be
loaded from disc on demand. The retrieval step can be done
very efficiently using compact image-level descriptors [1],
[52], [75]. It is not strictly necessary to store a 3D scene
representation for accurate pose estimation: Given the known
poses of the database images, it is possible to compute the
query pose via computing a local SfM model online [65] or
by triangulating the position of the query image from relative
poses w.r.t. the database images [86]. While [86] is limited to
using only two database images, we propose a more general
RANSAC-based approach to use more database images.

Learning for visual localization. Retrieval methods [1],
[10], [23], [51] have benefitted greatly from deep learning.
For 3D structure-based localization, several works have pro-
posed to directly learn the 2D-3D matching function [5],
[6], [13], [19], [24], [70], [79], [81]. Their main drawback,
besides scaling to larger scenes [6], [69], is that they need
to be trained specifically per scene. Recent work has shown
the ability to adapt a model trained on one scene to new
scenes on-the-fly [13]. Yet, [13] considers the problem of
re-localization against a trajectory while we consider the
problem of localization from a single image.

Learning absolute pose estimation. An alternative to re-
gressing 2D-3D matches is to learn the complete localization
pipeline, either via classification [82] or camera pose re-
gression [30]–[32], [43], [47], [80]. These methods typically
only require images and their corresponding camera poses
as training data and minimize a loss on the predicted camera
poses [31], [32]. However, using 2D-3D matches as part
of the loss function can lead to more accurate results [31].
Similar to regressing 2D-3D matches, the learned representa-
tions are scene-specific and do not generalize. While methods
that operate on individual images are not significantly more
accurate than simple retrieval baselines [66], using image
sequences for pose regression can significantly improve
performance [54], [78]. In this paper, we however focus on
the single-image case.

Learning relative pose estimation. In contrast to absolute
pose estimation, which is a scene-specific task, learning to
predict the relative pose between images is a problem that
should generalize to unseen scenes. [77] propose a CNN that
jointly predicts a depth map for one image and the relative
pose w.r.t. a second image. In contrast to our approach, theirs
requires depth maps for training. [87] is trained purely on a
stream of images by using image synthesis as a supervisory
loss function. The method is tested in an autonomous driving
scenario that exhibits planar motion. Extending this method

to the 6DOF scenario with larger baselines considered in this
paper seems non-trivial.

[4] propose a network is jointly trained for the tasks of
image retrieval (based on a novel frustum overlap distance)
and relative camera pose regression. The latter is based on a
SE(3) parameterization. Yet, the ability of [4] to generalize
to new scenes is rather limited [66].

Most similar to our approach, [35] first identifies po-
tentially relevant database images via image retrieval. A
CNN is then used to regress the relative poses between the
query and the retrieved images, followed by triangulation to
estimate the query’s absolute camera pose inside a RANSAC
loop. [35] needs to find a weighting between the positional
and rotational parts of the pose loss during training, which
potentially needs to be adjusted per scene. We show that
regressing essential matrices is a better choice. We also
show how the resulting pose ambiguity can be handled via
a novel RANSAC scheme. We analyze which parts of the
localization pipeline fail when replaced by a data-driven
approach, showing that learning the whole pipeline as in [35]
is by far not the most accurate solution.

III. ESSENTIAL MATRIX BASED LOCALIZATION

In this section, we propose a scalable pipeline to estimate
the absolute pose of a query image w.r.t. a scene represented
by a database of images with known camera poses. Our
pipeline, shown in Fig. 1, consists of three stages: (1) we
use image retrieval to identify a set of images that potentially
depict the same part of the scene as the query image (c.f . Sec.
III-A). (2) for each retrieved image, we compute the essential
matrix that encodes its relative pose w.r.t. the query image
(c.f . Sec. III-B). (3) using the known absolute poses of the
retrieved images and the essential matrices, we estimate the
absolute pose of the query (c.f . Sec. III-C).

Why essential matrices? Since we are ultimately interested
in extracting relative poses, one might wonder why not
training a CNN to directly predict relative poses instead of
essential matrices. Several works [35], [59] propose a model
for relative pose prediction, with the main disadvantage of
needing a scene-dependent hyperparameter (c.f . Sec. IV-B).

We notice that directly regressing essential matrix auto-
matically resolves the scene-dependent weighting issue from
relative pose regression and also leads to more accurate
results. While directly decomposing the essential matrix into
relative poses results in ambiguities, Sec. III-C shows how
these ambiguities can be handled inside a RANSAC loop.

In the following, we describe our 3D model-free localiza-
tion pipeline based on essential matrices, which is oblivious
to the source of the essential matrices. Sec. IV then discusses
multiple approaches to essential matrix estimation.

Notation. The absolute camera pose (RI , tI ) of an image
I is defined by a rotation matrix RI and a translation tI
such that RI x+ tI transforms a 3D point x from a global
coordinate system into the local camera coordinate system
of I . Accordingly, the camera center cI of I in global
coordinates is given by cI =−RT

I tI . Notice that in practice,
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Fig. 1. Our localization pipeline: The pipeline first retrieves top-k
similar training images for a query image using DenseVLAD descriptors,
composing k input pairs. In the next stage, one of 3 approaches(Sec. IV)
is used to estimate k essential matrices, which are fed into our RANSAC
loop for relative pose extraction as well as the absolute pose computation.

we are representing the rotation RI by a quaternion qI . As
such, we will interchangeably use either a rotation matrix R

or a quaternion q to denote a (relative or absolute) rotation.

A. Retrieving Relevant Database Images

We perform image retrieval by representing each database
image by 4096-dimensional DenseVLAD descriptors [75],
which has been shown to work under challenging condi-
tions [64]. Compared to other learned pipelines for image
retrieval [52], [53], DenseVLAD shows better generalization
to unseen scenes, which fits well to our pipeline.

Pair selection. Simply picking top-k ranked retrieved
images for each query image is not sufficient to obtain good
performance. The top-k retrieved images are often taken from
very similar poses, which causes problems when we estimate
the camera position of the query via triangulation. We want to
ensure larger triangulation angles while still keeping enough
visual overlap for successful relative pose estimation. Start-
ing with the top retrieved image, we thus iteratively select
retrieved images to have certain minimal/maximal distances
to the previously selected ones. The resulting query-database
image pairs are then used for essential matrix estimation (c.f .
Sec. IV-B). We handle outlier pairs, i.e., database images
depicting a different part of the scene than the query, robustly
via RANSAC [21] as detailed in Sec. III-C.

B. Pairwise Relative Pose Estimation

For each image pair, we compute the essential matrix E

that encodes the relative pose between the query and database
image. Next, we extract the four relative poses (R, t), (R,−t),
(R′, t), (R′,−t) corresponding to E [25], where R and R′

are related by a 180◦ rotation around the baseline [25].
Traditionally, a cheirality test based on feature matches
is used to find the correct relative pose among the four
candidates [25]. However, methods that directly regress the
relative pose typically do not provide such matches.

We use triangulation based on the estimated relative poses
and the known absolute poses of the database images to
estimate the position from which the query image was taken.
We thus only need to disambiguate the two rotations, since
the position of a point triangulated from multiple directions
t1, . . . , tn does not change when flipping the signs of any
direction ti. Thus, the absolute position of the query image
can be uniquely determined by n≥ 2 images pairs.

Let Ri and R′i be the possible relative rotations that trans-
form from the local system of i-th retrieved image Ii to
the local of the query image Iq. Thus, the absolute rotation
part of the query image is either RiRIi or R′iRIi . Counting
also the relative rotations estimated from another image pair
(I j, Iq), we get four absolute rotation predictions RiRIi ,
R′iRIi , R jRI j , R

′
jRI j . In theory, two of them will be identical,

while the others differ largely from each other, since Ri
and R′i (also R j and R′j) are related by a 180◦ rotation.
In practice, we consider the relative rotations (from each
pair) that corresponds the two absolute pose predictions with
smallest angle difference to be true ones.

C. Absolute Pose Estimation via RANSAC

Consider a pair ((Ii, Iq), (I j, Iq)) of image pairs. Let Rq
be the absolute rotation of the query image estimated from
the two image pairs as described above. Let Ri and R j be the
relative rotations consistent with Rq. Using the two relative
translation directions ti and t j, we can determine the position
of the query image via triangulation from the two rays
cIi +λiR

T
Ii
Riti and cI j +λ jR

T
I j
R jt j, where λi, λ j ∈R define

point positions along the rays. The result of triangulation is
only defined if the three camera centers are not collinear. In
practice, we use more than two database images to compute
the final pose. Hence, this will only become a problem in
scenarios where all images are taken exactly on a line, e.g.,
a self-driving car is driving exactly the same route on a line.

As shown above, a hypothesis for the absolute pose of a
query image can be estimated from two pairs. To be robust
to outlier pairs, we use RANSAC [21]: In each iteration, we
sample two pairs (Ii, Iq), (I j, Iq) and use them to estimate
the absolute pose hypothesis (RIq , tIq ) of the query image.
Next, we determine which image pairs are inliers to that
pose hypothesis. For a pair (Ik, Iq) defining four relative
poses between Ik and Iq, we first determine the relative
rotation Rk that minimizes the angle between the absolute
rotations RIq and RkRIk . We then use Rk to measure how
consistent the predicted relative pose is with the absolute
pose hypothesis predicted by the image pair. The relative
translation from Iq to Ik predicted by the pose (RIq , tIq )
is given as tpred = RIk(cIq − cIk).

We measure the consistency with the pre-
dicted relative translation tk via the angle α =
cos−1(tT

k tpred/(||tk||2||tpred||2). If the angle between the
two predicted translation directions is below a given
threshold αmax, we consider the pair (Ik, Iq) as an inlier.

We use local optimization [36] inside RANSAC to better
account for noisy relative pose predictions. RANSAC finally
returns the pose with the largest number of inliers.

IV. ESSENTIAL MATRIX ESTIMATION

While Deep Learning has made huge advances in other
vision tasks such as image classification, in visual localia-
tion end-to-end trained methods are still far behind classic
methods in terms of accuracy [66]. We are highly interested
in understanding how to better leverage the power of data-
driven methods to build a robust, scalable, flexible and



generalizeable localization pipeline. To this end, we propose
different approaches for essential matrix estimation, ranging
from purely hand-crafted to purely data-driven models.

A. Feature-based: SIFT + 5-Point Solver

Assuming known camera intrinsics, a classical approach
uses local features (in our case SIFT [41]) to establish 2D-
2D matches between a query and a database image. These
matches are then used to estimate the essential matrix by
applying the 5-point solver [48] inside a RANSAC loop. This
approach, which does not need a 3D scene model, serves as
a baseline within our localization pipeline (c.f . Sec. III).

B. Learning-based: Direct Regression via EssNet

The modern alternative to the classical pipeline is to
train a CNN for relative pose regression. In the following,
we introduce our approach based on essential matrices and
discuss its advantages over existing methods.

Relative pose parametrization. Inspired by work on
absolute pose regression, [4], [35], [44] propose to directly
regress the relative poses with siamese neural networks. [35],
[44] parametrize the pose via a rotation and a translation and
use the following weighted loss during training

Lw(y∗, y) = ‖t− t∗‖2 +β ‖q−q∗‖2 . (1)

Here, y∗ = (q∗ , t∗) is the relative pose label, y = (q , t) is the
relative pose prediction, q is the relative rotation encoded
in a 4D quaternion, and t is the 3D translation. Notice,
the β in Lw is a hyperparameter to balance the learning
between translation and rotation, which is scene-dependent
(e.g., its values differ significantly for indoor and outdoor
scenes [32]). [44] performs grid search to find the optimal
β , following other absolute pose methods [30], [32], [80].
[35] note that setting β = 1.0 works well for indoor scenes.
Yet, they do not provide any results for outdoor scenes,
where finding a single suitable weighting factor is harder
due to larger variations in the distance of the camera to the
scene. [31] propose to learn the weighting parameter β from
training data, but are also restricted to a single parameter.

The need for the hyperparameter β arises as the rotation
(in degrees) and translation (in meters) are typically in differ-
ent units. We note that it can be eliminated through regress-
ing essential matrices, which implicitly define a weighting
between an orthonormal rotation matrix and a unit-norm
translation vector. Tab. II shows that our method based on
essential matrix outperforms [35], verifying our approach.

Network architecture. We use a siamese neural network
based on ResNet34 [27] (until the last average pooling layer)
as our backbone (as in [8], [35]). While [35], [44] directly
regress relative poses from the concatenated feature maps
using with the weighted loss function defined in Eq. 1,
we first involve a feature matching step that resembles the
process in classic feature-based localization methods. We
analyze two options for the matching step: 1) a simple
fixed matching layer [56] (EssNet), essentially a matrix dot
product between feature maps coming from the two images.

2) a learnable Neighbordhood Consensus (NC) matching
layer [57] (NC-EssNet), which enforces local geometric
consistency on the matches. Both matching versions combine
the two feature maps produced by ResNet into a single
feature tensor that can be seen as a matching score map.

The score map is fed to regression layers to predict the
essential matrix. The regression layers consist of two blocks
of convolutional layers followed by batch normalization
with ReLU, and finally a fully connected layer to regress
a 9D vector which approximates the essential matrix. This
approximation is then projected to a valid essential matrix by
replacing the first two singular values of the approximation
with their mean value and finally sets the smallest singu-
lar value to 0. We use standard functionality provided by
PyTorch [49] for SVD backpropagation.

Loss function. During training, we minimize the Euclidean
distance between the predicted E and the ground truth
essential matrix E∗:

Less(E
∗, E) = ‖e− e∗‖2 . (2)

Here, e ∈ R9 is the vectorized E ∈ R3×3. Given a relative
pose label (R∗ , t∗), the ground truth essential matrix is E∗ =
[t∗]×R∗, where [t∗]× is the skew-symmetric matrix of the
normalized translation label t∗, i.e., ||t∗||= 1.

C. Hybrid: Learnable Matching + 5-Point Solver

As a combination of the classical and the regression
approaches, we propose a hybrid method: Feature extraction
and matching are learned via neural networks, resulting in
a set of 2D-2D matches. The 5-point algorithm inside a
RANSAC loop is then used to compute the essential matrix.
In terms of architecture, this approach is equivalent to NC-
EssNet without the regression layers.

V. EXPERIMENTS

In the following, we evaluate our novel localization ap-
proach based on essential matrix estimation. In particular,
we are interested in using our approach to analyze why
methods based on relative pose regression do not generalize
as theoretically expected. To this end, we first demon-
strate that our approach, based on handcrafted features and
RANSAC-based essential matrix estimation, achieves state-
of-the-art performance (c.f . Sec. V-A). We then use learned
essential matrix estimation approaches inside our framework
to analyze their weaknesses (c.f . Sec. V-B). Finally, Sec. V-C
discusses our results and draws conclusions for future work.

Datasets and evaluation protocol. We follow common
practice and use the Cambridge Landmarks [32] and 7
Scenes [70] datasets for evaluation. For both datasets and
all methods, we report the median absolute position error
in meters and the median absolute rotation error in degrees,
averaged over all scenes within the dataset.

Implementation details. We split 1/6 of the training set
images as validation images to control the training process.
Training pairs are generated through image retrieval using
the CNN (resnet101-gem) proposed in [53].



TABLE I
RANSAC THRESHOLDS USED IN OUR EXPERIMENTS.

Method/Scenes (NC-)EssNet SIFT+5Pt Learnable Matching +5Pt

Indoor(t1/t2) -/5 0.5/15 5.5/20
Outdoor(t1/t2) -/5 0.5/5 4.0/15

EssNet and NC-EssNet are trained with exact the same
settings for fair comparison. We use a ResNet34 pre-trained
on ImageNet [17]. The regression network layers are initial-
ized with Kaiming initialization [26]. For each dataset, we
train the model on training pairs from all scenes and evaluate
per scene at test time. Note, that we use a single network to
test on all Cambridge Landmarks sequences, while absolute
pose methods [31], [32], [47], [80] train a separate network
per sequence. All training images are first rescaled so that
the shorter side has 480 pixels and then random cropped for
training and center cropped for testing to 448×448 pixels.
All models are trained using the AdamOptimizer [33] with
learning rate 1e−4 and weight decay 1e−6 in a batch size
of 16 for at most 200 epochs. We early stop training if
overfitting is observed and use the model with best validation
accuracy. The code is implemented using Pytorch [49] and
executed on NVidia TITAN Xp GPUs.

During testing, we use DenseVLAD [75] to identify the
top-5 most similar training images for each query. The
retrieved images have to satisfy the following condition
designed to avoid retrieving close-by views and thus acute
triangulation angles: Starting from the top-ranked image,
we select the next image that has a distance within [a,b]
meters to all previously selected images. For outdoor scenes
a = 3,b = 50 and for indoor scenes a = 0.05,b = 10. We
show the choice of RANSAC thresholds t1 in the 5-point
algorithm [48] to distinguish inliers and outliers and t2 in
our RANSAC algorithm (c.f . Sec. III-C) to remove outlier
pairs for absolute pose estimation in Tab. I. The thresholds
were chosen through grid-search.

A. Comparison with State-of-the-Art

To validate our pipeline based on essential matrices,
we compare results obtained when using SIFT features
and the 5-point solver for estimating the essential matri-
ces (c.f . Sec. IV-A) to state-of-the-art methods. We use
COLMAP [67] to extract and match features and the 5-
point RANSAC implementation provided in OpenCV [7].
We compare our approach to methods for absolute pose
regression (APR) [8], [30]–[32], [80], relative pose regres-
sion (RPR) [4], [35], [59], the two image retrieval (IR)
baselines based on DenseVLAD [75]1 used in [66], and two
state-of-the-art structure-based methods (3D) that explicitly
estimate 2D-3D matches [6], [63]. For two RPR methods, we
report results obtained when training on the 7 Scenes dataset
(7S) and when training on an unrelated dataset (University
(U) [35] or ScanNet (SN) [15]).

Tab. II shows that our approach (SIFT+5Pt) consistently
outperforms all IR, APR and RPR methods, validating the

1DenseVLAD + Inter. denotes interpolating between the top-ranked
database images. See [66] for details.

TABLE II
RESULTS ON CAMBRIDGE LANDMARKS [32] AND 7 SCENES [70]. WE

REPORT THE AVERAGE MEDIAN POSITION [M] / ORIENTATION [◦]
ERRORS. METHODS MARKED WITH A * BUILD A SCENE-SPECIFIC

REPRESENTATION AND DO NOT GENERALIZE TO UNSEEN SCENES.

Cambridge Landmarks 7 Scenes

IR

DenseVLAD [75] 2.56/7.12 0.26/13.11
DenseVLAD + Inter. [66] 1.67/4.87 0.24/11.72

3D

*Active Search [63] 0.29/0.63 0.05/2.46
*DSAC++ [6] 0.14/0.33 0.04/1.10

A
PR

*PoseNet (PN) [32] 2.09/6.84 0.44/10.44
*Learn. PN [31] 1.43/2.85 0.24/7.87
*Bay. PN [30] 1.92/6.28 0.47/9.81
*Geo. PN [31] 1.63/2.86 0.23/8.12
*LSTM PN [80] 1.30/5.52 0.31/9.85
*MapNet [8] 1.63/3.64 0.21/7.78
*MapNet+PGO [8] - 0.18/6.56

R
PR

Relative PN [35] (U) - 0.36/18.37
Relative PN [35] (7S) - 0.21/9.28
RelocNet [4] (SN) - 0.29/11.29
RelocNet [4] (7S) - 0.21/6.73
*AnchorNet [59] 0.84/2.10 0.09/6.74

O
ur

s

Sift+5Pt 0.47/0.88 0.08/1.99
EssNet 1.08/3.41 0.22/8.03
NC-EssNet 0.85/2.82 0.21/7.50
NC-EssNet(7S)+NCM+5Pt 0.89/1.39 0.19/4.28
Imagenet+NCM+5Pt 0.83/1.36 0.19/4.30
EssNet224(SN)+NCM+5Pt 0.90/1.37 0.19/4.35

effectiveness of our pipeline. Compared to structure-based
methods (3D), our approach performs competitively when
taking into account that both Active Search and DSAC++
need to build a scene-specific model. In contrast, our ap-
proach just operates on posed images without the need for
using any 3D structure. Note that DSAC++ requires two or
more days of training while our approach is light-weight and
does not require any training.

B. Analyzing Relative Pose Regression (RPR)

One motivation for our localization pipeline is to un-
derstand why RPR methods perform worse compared to
structure-based methods. In the following experiment, we use
(NC-)EssNet (c.f . Sec. IV-B) as the RPR method inside our
pipeline.

Comparison with state-of-the-art. Tab. II compares our ap-
proaches against the current state-of-the-art. For visibility, we
mark results that are less accurate than NC-EssNet in red. As
can be seen, NC-EssNet, our best regression model, performs
better than all APR approaches except for MapNet+PGO
which uses external GPS information. Also, our NC-EssNet
is competitive to RelocNet and outperforms Relative PN.
While NC-EssNet is less accurate than AnchorNet [59],
AnchorNet needs to be trained explicitly per scene as it
encodes training images in the network. The results show
that our methods achieve state-of-the-art performance among
pose regression methods.

Failure to generalize. Compared to absolute pose regres-
sion, the promise of relative pose regression is generalization
to new scenes [4], [35]: An absolute pose estimate is scene-
specific as it depends on the coordinate system used. In
contrast, a network that learns to regress a pose relative
to another image could learn general principles that are



TABLE III
GENERALIZATION STUDY OF REGRESSION MODELS. WE SHOW AVERAGE

MEDIAN POSITION (IN METERS) / ORIENTATION (IN DEGREES) ERRORS.

Essential Matrix Training Testing Data
Estimation Data Cambridge 7Scenes

EssNet Cambridge 1.08/3.41 0.57/80.06
NC-EssNet Cambridge 0.85/2.82 0.48/32.97
EssNet 7Scenes 10.36/85.75 0.22/8.03
NC-EssNet 7Scenes 7.98/24.35 0.21/7.50
SIFT+5Pt - 0.47/0.88 0.08/1.99

applicable to unseen scenes.
Tab. III analyzes the ability of EssNet and NC-EssNet to

generalize from indoor to outdoor scenes and vice versa,
where we mark failure cases in purple. As can be seen, there
is a substantial gap in pose accuracy compared to training
on the same scenes and especially compared to the classical
variant (SIFT+5Pt) of our pipeline. This clearly indicates that
EssNet and NC-EssNet fail to learn a general underlying
principle. As similar observation holds for [4], [35] in Tab. II,
based on the performance when trained on 7 Scenes (7S) and
on another dataset (U or SN).

Looking at Tab. III and Tab. II, the important question
to ask is why RPR methods fail to generalize: Do the
features extracted in their base networks fail to generalize,
is there a lack of generalization in the layer that regresses
the relative pose, or is it a combination of both? In order to
better understand the behavior of EssNet and NC-EssNet, we
consider the hybrid version of our pipeline (c.f . Sec. IV-C).

The hybrid variant always uses the NC matching layer
(NCM) trained on the unrelated ivd dataset [57] to extract
feature matches. To analyze the impact of the feature
extraction on the generalization performance, we compare
our ResNet34 backbones trained in different ways and on
multiple datasets, e.g., the pretrained model for the image
classification (IC) task on ImageNet [58] and our trained
models for the essential matrix regression (EMR) task on
MegaDepth(MD) [39] (outdoor), 7 Scenes(7S) [70] (indoor),
and Cambridge Landmarks(CL) [32] (outdoor) datasets. In
order to make training computationally feasible on large
datasets such as MegaDepth and ScanNet, we train EssNet
with reduced image resolution (224×224). We denote these
trained feature extractors with EssNet224. Note that for
our hybrid, we perform inference with the original high
resolution images.

Tab. IV evaluates the performance of the different train-
ing strategies on the localization accuracy of our hybrid
approach. As can be seen, there is little variation in per-
formance independently how the features are trained. This
clearly shows that the features themselves generalize well
and that the failure to generalize observed in Tab. III is
caused by the regression layers.

C. Discussion

In a classical approach [25], the relative pose between
two images is estimated by finding feature correspondences
in the image pair. When directly regressing the relative
pose/essential matrix from an image pair, we can only

TABLE IV
EVALUATING THE IMPACT OF TRAINED FEATURES ON LOCALIZATION

PERFORMANCE WHEN USING DIFFERENT TRAINING STRATEGIES.

Feature Matching Train Task Train Data Cambridge 7Scenes

ImageNet+NCM IC ImageNet [58] 0.83/1.36 0.19/4.30
NC-EssNet+NCM EMR 7S 0.89/1.39 0.19/4.28
NC-EssNet+NCM EMR CL 0.96/1.43 0.20/4.61
EssNet224+NCM EMR MD [39] 0.98/1.4 0.20/4.70
EssNet224+NCM EMR SN [15] 0.90/1.37 0.19/4.35
EssNet224+NCM EMR MD+7S+CL 0.96/1.48 0.23/4.89
SIFT+5Pt - - 0.47/0.88 0.08/1.99

assume that an implicit feature matching is performed within
regression. In contrast, our hybrid approach explicitly learns
the feature matching task and adopts the established multi-
view geometry knowledge to compute relative poses from
correspondences. The fact that the relative pose regression
layers fail to generalize to unseen scenes and to produce
accurate poses implies that the implicit matching cannot be
properly learned by a regression network. While explicitly
learning the matching task leads to better generalization, the
resulting poses are still not as accurate as the poses estimated
by SIFT+5pt, as can be seen in Tab. IV. Such inaccuracy is
related to the fact that the current CNN features are coarsely
localized on the images, that is, the features from later layers
are not mapped to a single pixel but rather an image patch.
One possible solution would be networks designed to obtain
better localized features [18], [20]. Another would be to
follow [16], [46], [55], where a network is trained to detect
outliers, and can be applied as a post-processing step for any
type of matches. However, integrating those methods into an
end-to-end pipeline going from image pairs to poses is not
straight-forward and will constitute interesting future work.

VI. CONCLUSION

In this paper, we have proposed a novel framework for
visual localization from essential matrices. Our approach
is light-weight and flexible in the sense that it does not
use information about the 3D scene structure model of the
scene and can thus easily be applied to new scenes. Our
results show that our framework can achieve state-of-the-
art results. We have evaluated our framework using three
different methods for computing essential matrices, ranging
from purely hand-crafted to purely data-driven. By compar-
ing their results, we have shown that the purely data-driven
approach does not generalize well and have identified the
reason for this failure as the relative pose regression layers.
Furthermore, we have shown that the features and matches
used by the data-driven approach themselves generalize quite
well. However, directly using them for pose estimation yields
less accurate results compared to the hand-crafted version of
our pipeline. Based on our analysis, it is clear that more
research is required before data-driven visual localization
methods perform accurately and easily generalize to new
scenes.
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6 Patch2Pix: Epipolar-Guided
Pixel-Level Correspondences

6.1 Summary

Finding accurate image correspondences is a crucial step in various computer vision
applications, including Structure-from-Motion (SfM), Simultaneous Localization and
Mapping (SLAM), and Visual Localization.

The conventional approach to visual localization involves three key stages: (i) local
feature detection and description, (ii) feature matching, and (iii) outlier rejection. However,
emerging correspondence networks attempt to integrate these steps into a single network,
albeit with reduced matching resolution due to memory constraints.

To overcome the memory limitations of dense matching correspondence networks, we
propose a novel perspective: a detect-to-refine strategy. This entails generating patch-level
match proposals initially, followed by a refinement process. Our contribution, Patch2Pix,
is a refinement network designed to enhance match proposals by regressing pixel-level
correspondences within the local regions defined by these proposals. Additionally, it
incorporates a joint outlier rejection mechanism based on confidence scores.

Patch2Pix is trained in a weakly supervised manner to ensure that the learned
correspondences align with the epipolar geometry of the input image pair. Experimental
results demonstrate a significant enhancement in the performance of correspondence
networks across tasks such as image matching, homography estimation, and localization.

Moreover, our findings indicate that the knowledge gained from the learned refinement
process can be applied to fully-supervised methods without requiring re-training. This
breakthrough leads to state-of-the-art localization performance.

6.2 Author Contributions

The author of this dissertation significantly contributed to

• developing the main concepts

• implementing the algorithm

• evaluating the numerical experiments

• writing the paper
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Abstract

The classical matching pipeline used for visual localiza-
tion typically involves three steps: (i) local feature detec-
tion and description, (ii) feature matching, and (iii) outlier
rejection. Recently emerged correspondence networks pro-
pose to perform those steps inside a single network but suf-
fer from low matching resolution due to the memory bottle-
neck. In this work, we propose a new perspective to esti-
mate correspondences in a detect-to-refine manner, where
we first predict patch-level match proposals and then re-
fine them. We present Patch2Pix, a novel refinement net-
work that refines match proposals by regressing pixel-level
matches from the local regions defined by those propos-
als and jointly rejecting outlier matches with confidence
scores. Patch2Pix is weakly supervised to learn correspon-
dences that are consistent with the epipolar geometry of
an input image pair. We show that our refinement net-
work significantly improves the performance of correspon-
dence networks on image matching, homography estima-
tion, and localization tasks. In addition, we show that our
learned refinement generalizes to fully-supervised methods
without re-training, which leads us to state-of-the-art lo-
calization performance. The code is available at https:
//github.com/GrumpyZhou/patch2pix.

1. Introduction

Finding image correspondences is a fundamental step
in several computer vision tasks such as Structure-from-
Motion (SfM) [36, 41] and Simultaneous Localization and
Mapping (SLAM) [8, 24]. Given a pair of images, pixel-
level correspondences are commonly established through a
local feature matching pipeline, which involves the follow-
ing three steps: i) detecting and describing local features,
ii) matching the nearest neighbors using the feature descrip-
tors, and iii) rejecting outlier matches.

Traditional hand-crafted local features such as SIFT [15]

∗This research was funded by the Humboldt Foundation through the
Sofja Kovalevskaya Award, the EU Horizon 2020 project RICAIP (grant
agreeement No. 857306), and the European Regional Development Fund
under project IMPACT (No. CZ.02.1.01/0.0/0.0/15 003/0000468).

Figure 1. An example of Patch2Pix correspondences. In the top
figure, the matches refined by Patch2Pix are coloured according
to the predicted confidence scores. The less confident matches (in
blue) appear mostly on the road or the blank wall. In the bottom
figure, we show that the inlier matches can well handle the large
viewpoint change. We show more quantitative results for handling
various challenging conditions in the supp. mat (c.f . Sec. D).

or SURF [2] are vulnerable to extreme illumination
changes, motion blur and repetitive and weakly textured
scenes. Therefore, recent works [5–7, 16, 17, 28, 40] pro-
pose to learn to detect and describe local features using neu-
ral networks, showing that learned features can be robustly
matched under challenging conditions [6, 17, 28, 40]. In-
stead of focusing on improving local features, [3,22,38,42]
suggest to learn a filtering function from sets of correspon-
dences to reject outlier matches. A recent method [33] fur-
ther proposes to jointly learn the matching function and out-
lier rejection via graph neural networks and the Sinkhorn
algorithm [4, 37]. Combining a learned feature [5] and
learned matcher [33] has set the state-of-the-art results on
several geometry tasks, showing a promising direction to-
wards a full learnable matching pipeline.

Learning the whole matching pipeline has already been
investigated in several works [13, 30, 31], where a single
network directly outputs correspondences from an input
image pair. The main challenge faced with those corre-
spondence networks is how to efficiently perform matching
while reaching pixel-level accuracy. In order to keep com-
putation speed and memory footprint manageable, [29] has
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to match at a rather low resolution, which is shown to be
less accurate in relative pose estimation [43]. While sparse
convolutions have been applied in [30] to match at higher
resolution, they still do not achieve pixel-level matching.
One advantage of the correspondences networks [30, 31] is
that they are weakly supervised to maximize the average
matching score for a matching pair and minimize it for a
non-matching pair, however, they learn less effectively in
pixel-level matching. This is in contrast to methods that
require full supervision from ground truth (GT) correspon-
dences [5, 6, 10, 17, 28, 33]. While the GT correspondences
provide very precise signals for training, they might also
add bias to the learning process. For example, using the
sparse keypoints generated by an SfM pipeline with a spe-
cific detector as supervision, a keypoint detector might sim-
ply learn to replicate these detections rather than learning
more general features [26]. To avoid such type of bias in
the supervision, a recent work [40] proposes to use relative
camera poses as weak supervision to learn local feature de-
scriptors. Compared to the mean matching score loss used
in [30,31], they are more precise by containing the geomet-
rical relations between the images pairs.

In this paper, we propose Patch2Pix, a new view for the
design of correspondence networks. Inspired by the suc-
cessful detect-to-refine practice in the object detection com-
munity [27], our network first obtains patch-level match
proposals and then refines them to pixel-level matches. See
an example of our matches in Fig. 1. Our novel refine-
ment network is weakly supervised by epipolar geometry
computed from relative camera poses, which are used to
regress geometrically consistent pixel-wise matches within
the patch proposal. Compared to [40], we optimize di-
rectly on match locations to learn matching, while they op-
timize through matching scores to learn feature descriptors.
Our method is extensively evaluated on a set of geometry
tasks, showing state-of-the-art results. We summarize our
contributions as: i) We present a novel view for finding
correspondences, where we first obtain patch-level match
proposals and then refine them to pixel-level matches. ii)
We develop a novel match refinement network that jointly
refines the matches via regression and rejects outlier pro-
posals. It is trained without the need for pixel-wise GT cor-
respondences. iii) We show that our model consistently im-
proves match accuracy of correspondence networks for im-
age matching, homography estimation and visual localiza-
tion. iv) Our model generalizes to fully supervised methods
without the need for retraining, and achieves state-of-the-art
results on indoor and outdoor long-term localization.

2. Related Work
Researchers have recently opted for leveraging deep

learning to detect robust and discriminative local features
[5–7, 17, 28, 40]. D2Net [6] detects keypoints by finding

local maxima on CNN features at a 4-times lower resolu-
tion w.r.t. the input images, resulting in less accurate de-
tections. Based on D2Net, ASLFeat [17] uses deformable
convolutional networks and extracts feature maps at multi-
ple levels to obtain pixel-level matches. R2D2 [28] uses di-
lated convolutions to preserve image resolution and predicts
per-pixel keypoints and descriptors, which gains accuracy at
the cost of computation and memory usage. Given the key-
points, CAPS [40] fuses features at several resolutions and
obtains per-pixel descriptors by interpolation. The above
methods are designed to learn local features and require a
further matching step to predict the correspondences.

Matching and Outlier Rejection. Once local features are
detected and described, correspondences can be obtained
using Nearest Neighbor (NN) search [23] based on the Eu-
clidean distance between the two feature representations.
Outliers are normally filtered based on mutual consistency
or matching scores. From a set of correspondences obtained
by NN search, recent works [3, 22, 38, 42] learn networks
to predict binary labels to identify outliers [22, 38, 42], or
probabilities that can be used by RANSAC [9] to weight
the input matches [3]. Notice, those methods do not learn
the local features for matching and the matching function
itself, thus they can only improve within the given set of
correspondences. Recent works further propose to learn
the whole matching function [10, 33]. SuperGlue [33]
learns to improve SuperPoint [5] descriptors for matching
using a graph neural network with attention and computes
the correspondences using the Sinkhorn algorithm [4, 37].
S2DNet [10] extracts sparse features at SuperPoint keypoint
locations for one image and matches them exhaustively to
the dense features extracted for the other image to compute
correspondences based on the peakness of similarity scores.
While those methods optimize feature descriptors at key-
point locations specifically for the matching process, they
do not solve the keypoint detection problem.

End-to-End Matching. Instead of solving feature detec-
tion, feature matching, and outlier rejection separately, re-
cently correspondences networks [13, 30, 31] have emerged
to accomplish all steps inside a single forward pass. NC-
Net uses a correlation layer [29] to perform the match-
ing operation inside a network and further improves the
matching scores by leveraging a neighborhood consistency
score, which is obtained by a 4D convolution layer. Limited
by the available memory, NCNet computes the correlation
scores on feature maps with 16-times downscaled resolu-
tion, which has been proven not accurate enough for cam-
era pose estimation [43]. SparseNCNet [30] uses a sparse
representation of the correlation tensor by storing the top-
10 similarity scores and replace dense 4D convolution with
sparse convolutions. This allows SparseNCNet to obtain
matches at 4-times downscaled resolution w.r.t. the origi-
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nal image. DualRC-Net [13], developed concurrently with
our approach, outperforms SparseNCNet by combining the
matching scores obtained from coarse-resolution and fine-
resolution feature maps. Instead of refining the matching
scores as in [13, 30], we use regression layers to refine the
match locations at image resolution.

Full versus Weak Supervision. We consider methods that
require information about exact correspondences to com-
pute their loss function as fully supervised and those that do
not need GT correspondences as weakly supervised. Most
local feature detectors and descriptors are trained on ex-
act correspondences either calculated using camera poses
and depth maps [6, 10, 17] or using synthetic homogra-
phy transformations [5, 28], except for CAPS [40] using
epipolar geometry as weak supervision. Both S2DNet [10]
and SuperGlue [33] requires GT correspondences to learn
feature description and matching. Outlier filtering meth-
ods [3,22,38,42] are normally weakly supervised by the ge-
ometry transformations between the pair. DualRC-Net [13]
is also fully supervised on exact correspondences, while the
other two correspondence networks [30, 31] are weakly-
supervised to optimize the mean matching score on the
level of image pairs instead of individual matches. We use
epipolar geometry as weak supervision to learn geometri-
cally consistent correspondences where the coordinates of
matches are directly regressed and optimize. In contrast,
CAPS [40] uses the same level of supervision to learn fea-
ture descriptors and their loss optimizes through the match-
ing scores whose indices give the match locations. We pro-
pose our two-stage matching network, based on the concept
of learned correspondences [30,31], which learns to predict
geometrically consistent matches at image resolution.

3. Patch2Pix: Match Refinement Network

A benefit of correspondence networks is the potential to
optimize the network directly for the feature matching ob-
jective without the need for explicitly defining keypoints.
The feature detection and description are implicitly per-
formed by the network and reflected in the found correspon-
dences. However, there are two main issues causing the in-
accuracy of the existing correspondence networks [30, 31]:
i) the use of downscaled feature maps due to the memory
bottleneck constrained by the size of the correlation map.
This leads to every match being uncertain within two local
patches. ii) Both NCNet [31] and SparseNCNet [30] have
been trained with a weakly supervised loss which simply
gives low scores for all matches of a non-matching pair and
high scores for matches of a matching pair. This does not
help identify good or bad matches, making the method un-
suitable to locate pixel-accurate correspondences.

In order to fix those two sources of inaccuracies, we pro-
pose to perform matching in a two-stage detect-to-refine

manner, which is inspired by two-step object detectors such
as Faster R-CNN [27]. In the first correspondence detec-
tion stage, we adopt a correspondence network, e.g., NC-
Net, to predict a set of patch-level match proposals. As in
Faster R-CNN, our second stage refines a match proposal
in two ways: (i) using classification to identify whether a
proposal is confident or not, and (ii) using regression to de-
tect a match at pixel resolution within the local patches cen-
tered by the proposed match. Our intuition is that the cor-
respondence network uses the high-level features to predict
semantic matches at a patch-level, while our refinement net-
work can focus on the details of the local structure to define
more accurate locations for the correspondences. Finally,
our network is trained with our weakly-supervised epipo-
lar loss which enforces our matches to fulfill this geometric
constraint defined by the relative camera pose. We name
our network Patch2Pix since it predicts pixel-level matches
from local patches, and the overview of the network archi-
tecture is depicted in Fig. 2. In the following, we take NC-
Net as our baseline to obtain match proposals, yet we are not
limited to correspondence networks to perform the match
detection. We show later in our experiments that our refine-
ment network also generalizes to other types of matching
methods (c.f . Sec. 5.3 & 5.4). The following sections de-
tail its architecture and training losses.

3.1. Refinement: Pixel-level Matching

Feature Extraction. Given a pair of images (IA, IB), a
CNN backbone with L layers extracts the feature maps from
each image. We consider {fA

1 }L
l=0 and {fB

l }L
l=0 to be the

activation maps at layer l for images IA and IB , respec-
tively. At the layer index l = 0, the feature map is the
input image itself, i.e., fA

0 = IA and fB
0 = IB . For an

image with spatial resolution H ×W , the spatial dimension
of feature map fl is H/2l × W/2l for l ∈ [0, L − 1]. For
the last layer, we set the convolution stride as 1 to prevent
losing too much resolution. The feature maps are extracted
once and used in both the correspondence detection and re-
finement stages. The detection stage uses only the last layer
features which contain more high-level information, while
the refinement stage uses the features before the last layer,
which contain more low-level details.

From match proposals to patches. Given a match pro-
posal mi = (pA

i , pB
i ) = (xA

i , yA
i , xB

i , yB
i ), the goal of our

refinement stage is to find accurate matches on the pixel
level by searching for a pixel-wise match inside local re-
gions. As the proposals were matched on a downscaled fea-
ture map, an error by one pixel in the feature map leads to
inaccuracy of 2L−1 pixels in the images. Therefore, we de-
fine the search region as the S ×S local patches centered at
pA

i and pB
i , where we consider S > 2L−1 to cover a larger

region than the original 2L−1 × 2L−1 local patches. Once
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Figure 2. Correspondence Refinement with Patch2Pix. Top: For a pair of images, features are first extracted using our adapted ResNet34
backbone and fed into a correspondence network, e.g., NC matching layer [31], to detect match proposals. Those proposals are then
refined by Patch2Pix, which re-uses the extracted feature maps. Bottom: We design two levels of regressors with the same architecture
to progressively refine the match proposals at image resolution. For a pair of S × S local patches centered at a match proposal mi, the
features of the patches are collected as the input to our mid-level regressor to output (i) a confidence score ĉi which indicates the quality of
the match proposal and (ii) a pixel-level local match δ̂i found within the local patches. The updated match proposal m̂i updates the search
space accordingly through a new pair of local patches. The fine-level regressor outputs the final confidence score c̃i and δ̃i to obtained the
final pixel-accurate match m̃i. The whole network is trained under weak supervision without the need for explicit GT correspondences.

Figure 3. Patch Expansion. Given a match proposal pA
i =

(xA
i , yA

i ) and pB
i = (xB

i , yB
i ), we move pA

i towards its four cor-
ners by moving along the x- and y-axes by d pixels, which are
matched to pB

i to compose 4 new match proposals. Repeating it
also from pB

i to pA
i , leads to 8 match proposals in total, which al-

lows us to search in two 2S × 2S local regions, compared to the
original S × S patches.

we obtain a set of local patch pairs for all match proposals,
the pixel-level matches are regressed by our network from
the feature maps of the local patch pairs. We describe each
component in detail below.

Local Patch Expansion. We further propose a patch ex-
pansion mechanism to expand the search region by includ-
ing the neighboring regions, as illustrated in Fig. 3. We first
move pA

i towards its four corners along the x- and y-axes,
each by d pixels. This gives us four anchor points for pA

i

that we match to pB
i to compose four new match proposals.

Similarly, we also expand pB
i to get its four corner anchors

and match them to pA
i , giving us another four new match

proposals. In the end, the expanded eight proposals iden-
tify eight pairs of S × S local patches. We set d = S/2
pixels so that the expanded search region defined by the ex-

panded patches has size 2S × 2S and still covers the orig-
inal S × S searching space. The patch expansion to the
patch proposals Mpatch is especially useful during training
since the network is forced to identify the correct proposal
among spatially close and similar features.We show in the
supp. mat (Sec. B) that our expansion mechanism can speed
up the learning process and also improves the model perfor-
mance. While one can also apply it during the inference to
increase the search region, it will lead to a higher computa-
tion overhead. We thus refrain from using it during testing.

Progressive Match Regression. In order to locate pixel-
level matches, we define the refinement task as finding a
good match inside the pair of local patches. We achieve
this using two regressors with the same architecture, i.e.,
the mid-level and the fine-level regressor, to progressively
identify the final match, which is shown in the lower part of
Fig. 2. Given a pair of S×S patches, we first collect the cor-
responding feature information from previously extracted
activation maps, i.e., {fA

l }, {fB
l }. For every point loca-

tion (x, y) on the patch, its corresponding location on the
l-layer feature map is (x/2l, y/2l). We select all features
from the layers {0, . . . , L − 1} and concatenate them into
a single feature vector. The two gathered feature patches
PFA

i and PFB
i are concatenated along the feature dimen-

sion and fed into our mid-level regressor. The regressor
first aggregates the input features with two convolutional
layers into a compact feature vector, which is then pro-
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cessed by two fully connected (fc) layers, and finally out-
puts our network predictions from two heads implemented
as two fc layers. The first head is a regression head, which
outputs a set of local matches M̂∆ := {δ̂i}N

i=1 ⊂ R4

inside the S × S local patches w.r.t. their center pixels,
where δ̂i = (δ̂xA

i , δ̂yA
i , δ̂xB

i , δ̂yB
i ). In the second head,

i.e., the classification head, we apply a sigmoid function to
the outputs of the fc layer to obtain the confidence scores
Ĉpixel = (ĉ1, . . . , ĉN ) ∈ RN , which express the validity
of the detected matches. This allows us to detect and dis-
card bad match proposals that cannot deliver a good pixel-
wise match. We obtain the mid-level matches M̂pixel :=
{m̂i}N

i=1 by adding the local matches to patch matches, i.e.,
m̂i = mi + δ̂i. Features are collected again for the new
set of local S × S patch pairs centered by the mid-level
matches and fed into the fine-level regressor, which follows
the same procedure as the mid-level regression to output the
final pixel-level matches M̃pixel := {m̃i}N

i=1 and the confi-
dence scores C̃pixel = (c̃1, . . . , c̃N ) ∈ RN .

3.2. Losses

Our pixel-level matching loss Lpixel involves two terms:
(i) a classification loss Lcls for the confidence scores,
trained to predict whether a match proposal contains a true
match or not, and (ii) a geometric loss Lgeo to judge the ac-
curacy of the regressed matches. The final loss is defined as
Lpixel = αLcls + Lgeo, where α is a weighting parameter
to balance the two losses. We empirically set α = 10 based
on the magnitude of the two losses during training.

Sampson distance. To identify pixel-level matches, we su-
pervise the network to find correspondences that agree with
the epipolar geometry between an image pair. It defines that
the two correctly matched points should lie on their corre-
sponding epipolar lines when being projected to the other
image using the relative camera pose transformation. How
much a match prediction fulfills the epipolar geometry can
be precisely measured by the Sampson distance. Given a
match mi and the fundamental matrix F ∈ R3×3 computed
by the relative camera pose of the image pair, its Sampson
distance φi measures the geometric error of the match w.r.t.
the fundamental matrix [11], which is defined as:

φi =
((PB

i )T FPA
i )2

(FPA
i )21 + (FPA

i )22 + (FT PB
i )21 + (FT PB

i )22
, (1)

where PA
i = (xA

i , yA
i , 1)T , PB

i = (xB
i , yB

i , 1)T and
(FPA

i )2k, (FPB
i )2k represent the square of the k-th entry of

the vector FPA
i , FPB

i .

Classification loss. Given a pair of patches obtained from
a match proposal mi = (xA

i , yA
i , xB

i , yB
i ), we label the pair

as positive, hence define its classification label as c∗
i = 1,

if φi < θcls. Here, θcls is our geometric distance threshold

for classification. All the others pairs are labeled as nega-
tive. Given the set of predicted confidence scores C and the
binary labels C∗, we use the weighted binary cross entropy
to measure the classification loss as

B(C, C∗) = − 1

N

N∑

i=1

wc∗
i log ci+(1−c∗

i ) log (1−ci) , (2)

where the weight w = |{c∗
i |c∗

i = 0}|/|{c∗
i |c∗

i = 1}| is the
factor to balance the amount of positive and negative patch
pairs. We have separate thresholds θ̂cls and θ̃cls used in the
mid-level and the fine-level classification loss, which are
summed to get the total classification loss Lcls.

Geometric loss. To avoid training our regressors to refine
matches within match proposals which are going to be clas-
sified as non-valid, for every refined match, we optimize its
geometric loss only if the Sampson distance of its parent
match proposal is within a certain threshold θgeo. Our geo-
metric loss is the average Sampson distance of the set of re-
fined matches that we want to optimize. We use thresholds
θ̂geo and θ̃geo for the mid-level and the fine-level geomet-
ric loss accordingly and the sum of the two losses gives the
total geometric loss Lgeo.

4. Implementation Details
We train Patch2Pix with match proposals detected by

our adapted NCNet, i.e., the pre-trained NC matching layer
from [31], to match features extracted from our backbone.
Our refinement network is trained on the large-scale out-
door dataset MegaDepth [14], where we construct 60661
matching pairs. We set the distance thresholds to compute
the training losses (c.f . Sec. 3.2) as θ̂cls = θ̂geo = 50 for
the mid-level regression and θ̃cls = θ̃geo = 5 for the fine-
level regression. We constantly set the local patch size to
S = 16 pixels at image resolution. The pixel-level match-
ing is optimized using Adam [12] with an initial learning
rate of 5e−4 for 5 epochs and then 1e−4 until it converges.
A mini-batch input contains 4 pairs of images with resolu-
tion 480 × 320. We present architecture details about our
regressor and our adapted NCNet [31], training data pro-
cessing, hyper-parameter ablation, and qualitatively results
of our matches in the supp. mat. (c.f . Sec. A & B).

5. Evaluation on Geometrical Tasks
5.1. Image Matching

As our first experiment, we evaluate Patch2Pix on the
HPatches [1] sequences under the image matching task,
where a method is supposed to detect correspondences
between an input image pair. We follow the setup pro-
posed in D2Net [6] and report the mean matching accuracy
(MMA) [19] under thresholds varying from 1 to 10 pixels,
together with the numbers of matches and features.
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SuperPoint [5] + NN 2.0K / 1.1K
D2Net [6] + NN 6.0K / 2.5K
R2D2 [28] + NN 5.0K / 1.6K
ASLFeat [17] + NN 4.0K / 2.0K
SuperPoint + SuperGlue [33] (c=0.2) 0.5K
SuperPoint + SuperGlue [33] (c=0.9) 0.4K
SuperPoint + CAPS [40] + NN 2.0K / 1.1K

SIFT [15] + CAPS + NN 4.4K / 1.5K
DELF [25] + NN 4.6K / 1.9K
SparseNCNet [30] (im3200, top2k) 2.0K
NCNet( [31] (Our Adapted) 1.5K
Patch2Pix(c=0.5) 1.1K
Patch2Pix(c=0.9) 0.7K

Figure 4. Image Matching on HPatches [1]. We denote weakly-supervised methods with dashed lines and methods based on full super-
vision with solid lines.

Experimental setup. We use the confidence scores pro-
duced by the fine-level regressor to filter out outliers and
study its performance under two settings, i.e., c = 0.5/0.9,
which present a trade-off between quantity and quality of
the matches. To show the effectiveness of our refinement
concept, we compare to our NCNet baseline, which pro-
vides our match proposals. For NCNet and Patch2Pix, we
resize images to have a larger side of 1024 to reduce run-
time. We also compare to SparseNCNet [30], which is the
most similar one to ours among related works, since it also
builds upon NCNet and aims to improve the accuracy of
its matches through a re-localization mechanism. Besides
comparing to several local feature methods that use NN
Search for matching, we further consider SuperPoint [5]
features matched with SuperGlue [33] and study its perfor-
mance under their default threshold c = 0.2 and a higher
threshold c = 0.9 for outlier rejection.

Results. As shown in Fig. 4, NCNet performs competi-
tively for illumination sequences with constant viewpoints,
which is a special case for NCNet since it uses fixed up-
sampling to bring patch matches to pixel correspondences.
While its performance under illumination changes reveals
its efficiency in patch-level matching, its accuracy under
viewpoint changes reveals its insufficient pixel-level match-
ing performance. Our refinement network brings patch-
level matches predicted by NCNet to pixel-level correspon-
dences, which drastically improves the matching accuracy
under viewpoint changes and further improves under illumi-
nation changes. When comparing Patch2Pix to all weakly
supervised methods, our model is the best at both thresh-
olds under illumination changes. For viewpoint changes,
our model with threshold c = 0.9 is the best and SparseNC-
Net performs similar to our model under threshold c = 0.5.
Compared to the methods trained with full supervision, our
model with threshold c = 0.9 outperforms all of them under
illumination variations. For viewpoint changes, we are less
accurate than SuperPoint + SuperGlue but still, we outper-
form all the other fully-supervised methods. Looking at the
curves and the table in Fig. 4 together, both SuperPoint +
SuperGlue and our method improve performance when us-

ing a higher threshold to remove less confident predictions.

5.2. Homography Estimation

Having accurate matches does not necessarily mean ac-
curate geometry relations can be estimated from them since
the distribution and number of matches are also important
when estimating geometric relations. Therefore, we next
evaluate Patch2Pix on the same HPatches [1] sequences for
homography estimation.

Experimental setup. We follow the corner correctness
metric used in [5, 33, 40] and report the percentage of cor-
rectly estimated homographies whose average corner error
distance is below 1/3/5 pixels. In the following experiments,
where geometrics relations are estimated using RANSAC-
based solvers, we use c = 0.25 as our default confidence
threshold, which overall gives us good performance across
tasks. The intuition of setting a lower threshold is to filter
out some very bad matches but leave as much information
as possible for RANSAC to do its own outlier rejection. We
compare to methods that are more competitive in the match-
ing task which are categorized based on their supervision
types: fully supervised (Full), weakly supervised (Weak),
and mixed (Mix) if both types are used. We run all methods
under our environment and measure the matching time from
the input images to the output matches. We provide more
experimental setup details in our supp. mat (c.f . Sec. C).

Results. From the results shown in Tab. 1, we ob-
serve again that NCNet performs extremely well under
illumination changes due to their fixed upsampling (c.f .
Sec. 5.2). Here, we verify that the improvement of matches
by Patch2Pix under viewpoint changes is also reflected in
the quality of the estimated homographies. Both SparseNC-
Net and our method are based on the concept of improv-
ing match accuracy by searching inside the matched local
patches to progressively re-locate a more accurate match in
higher resolution feature maps. While our method predicts
matches at the original resolution and is fully learnable,
their non-learning approach produces matches at a 4-times
downscaled resolution. As we show in Tab. 1, our refine-
ment network is more powerful than their re-localization
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Method Overall Illumination Viewpoint Supervision #Matches Time (s)Accuracy (%, ǫ < 1/3/5 px)

SuperPoint [5] + NN 0.46 / 0.78 / 0.85 0.57 / 0.92 / 0.97 0.35 / 0.65 / 0.74 Full 1.1K 0.12
D2Net [6] + NN 0.38 / 0.72 / 0.81 0.65 / 0.95 / 0.98 0.13 / 0.51 / 0.65 Full 2.5K 1.61
R2D2 [28] + NN 0.47 / 0.78 / 0.83 0.63 / 0.93 / 0.98 0.33 / 0.64 / 0.70 Full 1.6K 2.34
ASLFeat [17] + NN 0.48 / 0.81 / 0.88 0.63 / 0.94 / 0.98 0.34 / 0.69 / 0.78 Full 2.0K 0.66
SuperPoint + SuperGlue [33] 0.51 / 0.83 / 0.89 0.62 / 0.93 / 0.98 0.41/ 0.73/ 0.81 Full 0.5K 0.14
SuperPoint + CAPS [40] + NN 0.49 / 0.79 / 0.86 0.62 / 0.93 / 0.98 0.36 / 0.65 / 0.75 Mix 1.1K 0.36

SIFT + CAPS [40] + NN 0.36 / 0.76 / 0.85 0.48 / 0.89 / 0.95 0.26 / 0.65 / 0.76 Weak 1.5K 0.73
SparseNCNet [30] (im3200, top2k) 0.36 / 0.66 / 0.76 0.62 / 0.92 / 0.97 0.13 / 0.41 / 0.57 Weak 2.0K 5.83
NCNet [31] (Our Adapted) 0.48 / 0.61 / 0.71 0.98 / 0.98 / 0.98 0.02 / 0.28 / 0.46 Weak 1.5K 0.83
Patch2Pix 0.51 / 0.79 / 0.86 0.72 / 0.95 / 0.98 0.32 / 0.64 / 0.75 Weak 1.3K 1.24

Oracle 0.00 / 0.15 / 0.54 0.00 / 0.23 / 0.7 0.00 / 0.07 / 0.39 - 2.5K 0.04
Patch2Pix (w.Oracle) 0.55 / 0.85 / 0.92 0.68 / 0.95 / 0.99 0.43 / 0.76 / 0.82 Weak 2.5K 0.76

Table 1. Homography Estimation on Hpatches [1]. We report the percentage of correctly estimated homographies whose average corner
error distance is below 1/3/5 pixels. We denote the supervision type with ’Full’ for fully-supervised methods, ’Weak’ for weakly-supervised
ones, and ’Mix’ for those used both types. We mark the best accuracy in bold.

mechanism, improving the overall accuracy within 1 pixel
by 15 percent. For illumination changes, we are the second-
best after NCNet, but we are better than all fully super-
vised methods. Under viewpoint variations, we are the best
at 1-pixel error among weakly-supervised methods and we
achieve very close overall accuracy to the best fully super-
vised method SuperPoint + SuperGlue.

Oracle Investigation. Since our method can filter out bad
proposals but not generate new ones, our performance will
suffer if NCNet fails to produce enough valid proposals,
which might be the reason for our relatively lower perfor-
mance on viewpoint changes. In order to test our hypoth-
esis, we replace NCNet with an Oracle matcher to predict
match proposals. Given a pair of images, our Oracle first
random selects 2.5K matches from the GT correspondences
computed using the GT homography and then randomly
moves each point involved in a match within the 12 × 12
local patch centered at the GT location. In this way, we
obtain our synthetic match proposals where we know there
exists at least one GT correspondence inside the 16 × 16
local patches centered by those match proposals, which al-
lows us to measure the performance of our true contribu-
tion, the refinement network. As shown in Tab. 1, the low
accuracy of matches produced by our Oracle evidently veri-
fies that the matching task left for our refinement network is
still challenging. Our results are largely improved by using
the Oracle proposals, which means our current refinement
network is heavily limited by the performance of NCNet.
Therefore, in the following localization experiments, to see
the potential of our refinement network, we will also inves-
tigate the performance when using SuperPoint + SuperGlue
to generate match proposals.

5.3. Outdoor Localization on Aachen Day-Night

We further show the potential of our approach by eval-
uating Patch2Pix on the Aachen Day-Night benchmark
(v1.0) [34,35] for outdoor localization under day-night illu-

Method Supervision Localized Queries (%, 0.25m,2◦/0.5m,5◦/1.0m, 10◦)
Day Night

Local Feature Evaluation on Night-time Queries

SuperPoint [5] + NN Full - 73.5 / 79.6 / 88.8
D2Net [6] + NN Full - 74.5 / 86.7 / 100.0
R2D2 [28] + NN Full - 76.5 / 90.8 / 100.0
SuperPoint + S2DNet [10] Full - 74.5 / 84.7 / 100.0
ASLFeat [17] + NN Full - 77.6 / 89.8 / 100.0
SuperPoint + CAPS [40] + NN Mix - 82.7 / 87.8 / 100.0
DualRC-Net [13] Full - 79.6 / 88.8 / 100.0

SIFT + CAPS [40] + NN Weak - 77.6 / 86.7 / 99.0
SparseNCNet [30] Weak - 76.5 / 84.7 / 98.0
Patch2Pix Weak - 79.6 / 87.8 / 100.0

Full Localization with HLOC [32]

SuperPoint [5] + NN Full 85.4 / 93.3 / 97.2 75.5 / 86.7 / 92.9
SuperPoint + CAPS [40] + NN Mix 86.3 / 93.0 / 95.9 83.7 / 90.8 / 96.9
SuperPoint + SuperGlue [33] Full 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0
Patch2Pix Weak 84.6 / 92.1 / 96.5 82.7 / 92.9 / 99.0

Patch2Pix (w.CAPS) Mix 86.7 / 93.7 / 96.7 85.7 / 92.9 / 99.0
Patch2Pix (w.SuperGlue) Mix 89.2 / 95.5 / 98.5 87.8 / 94.9 / 100.0

Table 2. Evaluation on Aachen Day-Night Benchmark
(v1.0) [34, 35]. We report the percentage of correctly localized
queries under specific error thresholds. We follow the supervision
notations described in Tab. 1 and mark the best results in bold.

mination changes.

Experimental Setup. To localize Aachen night-time
queries, we follow the evaluation setup from the website1.
For evaluation on day-time and night-time images together,
we adopt the hierarchical localization pipeline (HLOC2)
proposed in [32]. Matching methods are then plugged into
the pipeline to estimate 2D correspondences. We report
the percentage of correctly localized queries under specific
error thresholds. We test our Patch2Pix model with NC-
Net proposals and SuperPoint [5] + SuperGlue [33] pro-
posals. Note, the model has been only trained on NCNet
proposals. Due to the triangulation stage inside the local-
ization pipeline, we quantize our matches by representing
keypoints that are closer than 4 pixels to each other with
their mean location. We provide a more detailed discussion
of the quantization inside our supp. mat (c.f . Sec. C).

Results. As shown in Tab. 2, for local feature evalua-

1https://github.com/tsattler/visuallocalizationbenchmark
2https://github.com/cvg/Hierarchical-Localization
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Method Supervision Localized Queries (%, 0.25m/0.5m/1.0m, 10◦)
DUC1 DUC2

SuperPoint [5] + NN Full 40.4 / 58.1 / 69.7 42.0 / 58.8 / 69.5
D2Net [6] + NN Full 38.4 / 56.1 / 71.2 37.4 / 55.0 / 64.9
R2D2 [28] + NN Full 36.4 / 57.6 / 74.2 45.0 / 60.3 / 67.9
SuperPoint + SuperGlue [33] Full 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4
SuperPoint + CAPS [40] + NN Mix 40.9 / 60.6 / 72.7 43.5 / 58.8 / 68.7

SIFT + CAPS [40] + NN Weak 38.4 / 56.6 / 70.7 35.1 / 48.9 / 58.8
SparseNCNet [30] Weak 41.9 / 62.1 / 72.7 35.1 / 48.1 / 55.0
Patch2Pix Weak 44.4 / 66.7 / 78.3 49.6 / 64.9 / 72.5

Patch2Pix (w.SuperPoint+CAPS) Mix 42.4 / 62.6 / 76.3 43.5 / 61.1 / 71.0
Patch2Pix (w.SuperGlue) Mix 50.0 / 68.2 / 81.8 57.3 / 77.9 / 80.2

Table 3. InLoc [39] Benchmark Results. We report the percent-
age of correctly localized queries under specific error thresholds.
Methods are evaluated inside the HLOC [32] pipeline to share the
same retrieval pairs, RANSAC threshold, etc. We use the supervi-
sion notation from Tab. 1 and mark the best results in bold.

tion on night-time queries, we outperform the other two
weakly-supervised methods. While being worse than Su-
perPoint [5] + CAPS [40], which involves both full and
weak supervision, we are on-par or better than all the
other fully-supervised methods. For full localization on all
queries using HLOC, we show we are better than Super-
Point + NN on night queries and competitively on day-time
images. By further substituting NCNet match proposals
with SuperGlue proposals, we are competitive to SuperGlue
on day-time images and outperform them slightly on night
queries. Our intuition is that we benefit from our epipolar
geometry supervision which learns potentially more gen-
eral features without having any bias from the training data,
which is further supported by our next experiment.

5.4. Indoor Localization on InLoc

Finally, we evaluate Patch2Pix on the InLoc benchmark
[39] for large-scale indoor localization. The large texture-
less areas and repetitive structures present in its scenes
makes this dataset very challenging.

Experimental Setup. Following SuperGlue [33], we eval-
uate a matching method by using their predicted correspon-
dences inside HLOC for localization. We report the per-
centage of correctly localized queries under specific error
thresholds. It is worth noting that compared to the evalua-
tion on Aachen Day-Night, where our method looses accu-
racy up to 4 pixels due to the quantization, we have a fairer
comparison on InLoc (where no triangulation is needed)
to other methods. The results directly reflect the effect of
our refinement when combined with other methods. Except
for SuperPoint+SuperGlue, we evaluate several configura-
tions of the other methods and compare to their best results.
Please see the supp. mat. for more details (c.f . Sec. C).

Results. As shown in Tab. 3, Patch2Pix is the best among
weakly supervised methods and outperforms all other meth-
ods except for SuperPoint + SuperGlue. Notice, we are 14.5
% better than SparseNCNet on DUC2 at the finest error,
which further highlights that our learned refinement net-
work is more effective than their hand-crafted relocalization

mechanism. Further looking at the last rows of Tab. 3, our
refinement network achieves the overall best performance
among all methods when we replace NCNet proposals with
more accurate proposals predicted by SuperPoint + Super-
Glue. By searching inside the local regions of SuperPoint
keypoints that are matched by SuperGlue, our network is
able to detect more accurate and robust matches to outper-
form SuperPoint + SuperGlue. This implies that epipolar
geometry is a promising type of supervision for the match-
ing task. While CAPS is also trained with epipolar loss,
its performance still largely relies on the keypoint detection
stage. In contrast, we bypass the keypoint detection errors
by working directly on the potential matches.

Generalization By evaluating Patch2Pix on image match-
ing (c.f . Sec. 5.1) and homography estimation (c.f .
Sec. 5.2), we validate our refinement concept by showing
dramatic improvements over NCNet matches. While our
network has been trained only on NCNet-type of propos-
als, we show that our refinement network provides distinct
improvements, on both indoor and outdoor localization, by
switching from the match proposals produced by NCNet to
SuperPoint + SuperGlue proposals without the need for re-
training. This highlights that our refinement network learns
the general task of predicting matches from a pair of local
patches, which works across different scene types and is in-
dependent of how the local patch pair has been obtained.
Such general matching capability can be used to further im-
prove the existing methods. As shown in Tab. 2 and Tab. 3,
both SuperPoint + SuperGlue and SuperPoint + CAPS get
improved by using our refinement network.

6. Conclusion
In this paper, we proposed a new paradigm to predict cor-

respondences in a two-stage detect-to-refine manner, where
the first stage focuses on capturing the semantic high-level
information and the second stage focuses on the detailed
structures inside local patches. To investigate the poten-
tial of this concept, we developed a novel refinement net-
work, which leverages regression to directly output the lo-
cations of matches from CNN features and jointly pre-
dict confidence scores for outlier rejection. Our network
was weakly supervised by epipolar geometry to detect geo-
metrically consistent correspondences.We showed that our
refinement network consistently improved our correspon-
dence network baseline on a variety of geometry tasks. We
further showed that our model trained with proposals pre-
dicted by a correspondence network generalizes well to
other types of proposals during testing. By applying our
refinement to the best fully-supervised method without re-
training, we achieved state-of-the-art results on challenging
long-term localization tasks.
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7 Is Geometry Enough for
Matching in Visual Local-
ization?

7.1 Summary

In this paper, we propose a departure from the established paradigm of vision-based
localization, which relies on the matching of visual descriptors between a query image and
a 3D point cloud. While this approach yields high localization accuracy, it poses challenges
in terms of storage requirements, privacy considerations, and long-term descriptor updates.

To elegantly address these practical concerns in large-scale localization, we introduce
GoMatch, a novel approach that relies exclusively on geometric information for matching
image keypoints to maps, represented as sets of bearing vectors. Our innovative represen-
tation of 3D points as bearing vectors significantly mitigates the cross-modal challenges
in geometric-based matching that have hindered previous efforts in realistic environments.

Through careful architectural design, GoMatch surpasses prior work in geometric-
based matching, achieving reductions of (10.67m, 95.7◦) and (1.43m, 34.7◦) in average
median pose errors on Cambridge Landmarks and 7-Scenes datasets, all while demanding
only 1.5/1.7% of the storage capacity required by the leading visual-based matching
methods.

Our findings affirm the potential and feasibility of real-world localization through
geometric-based matching. We view our work as a foundational step in this emerging
direction and anticipate that it will inspire further research in pursuit of even more
accurate and dependable geometric-based visual localization systems. This marks a
significant stride toward scalable, real-world visual localization solutions.

7.2 Author Contributions

The author of this dissertation significantly contributed to

• developing the main concepts

• implementing the algorithm

• evaluating the numerical experiments

• writing the paper
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Abstract. In this paper, we propose to go beyond the well-established
approach to vision-based localization that relies on visual descriptor
matching between a query image and a 3D point cloud. While match-
ing keypoints via visual descriptors makes localization highly accurate,
it has significant storage demands, raises privacy concerns and requires
update to the descriptors in the long-term. To elegantly address those
practical challenges for large-scale localization, we present GoMatch,
an alternative to visual-based matching that solely relies on geomet-
ric information for matching image keypoints to maps, represented as
sets of bearing vectors. Our novel bearing vectors representation of 3D
points, significantly relieves the cross-modal challenge in geometric-based
matching that prevented prior work to tackle localization in a realis-
tic environment. With additional careful architecture design, GoMatch
improves over prior geometric-based matching work with a reduction
of (10.67 m, 95.7◦) and (1.43 m, 34.7◦) in average median pose errors on
Cambridge Landmarks and 7-Scenes, while requiring as little as 1.5/1.7%
of storage capacity in comparison to the best visual-based matching
methods. This confirms its potential and feasibility for real-world local-
ization and opens the door to future efforts in advancing city-scale visual
localization methods that do not require storing visual descriptors.

1 Introduction

In this paper we tackle scalable, data-driven visual localization. The ability to
localize a query image within a 3D map based representation of the environ-
ment is vital in many applications, ranging from robotics to virtual and aug-
mented reality. In past years, researchers have made a significant progress in
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Fig. 1. In this work, we propose GoMatch to tackle visual localization w.r.t. a scene
represented as a 3D point cloud. By relying only on geometric information for matching,
GoMatch allows structure-based methods to achieve localization solely through the use
of keypoints, sidestepping the need to store visual descriptors for matching. Keeping
only the minimal representation of a 3D model, i.e., its coordinates, leads to a more
scalable pipeline towards large-scale localization that bypasses privacy concerns and is
easy to maintain.

vision-based localisation [20,25,30,42,46,51,54,65,72,74]. The majority of meth-
ods [25,51,65,67,72] rely on a pre-built 3D representation of the environment,
typically obtained using structure-from-motion (SfM) techniques [57,59]. Such
3D maps store 3D points and D-dimensional visual feature descriptors [55]. To
determine the pose of a query image, i.e., its 3D position and orientation, these
methods match visual descriptors, obtained from the query image, with the ones
stored in the point cloud. Once image-to-point-cloud matches are established,
a Perspective-n-Point (PnP) solver [27,36] is used to estimate the camera pose.
While working well in practice, this approach suffers from several drawbacks.
First, we need to explicitly store per-point visual descriptors for point clouds,
which hinders its applicability to large-scale environments due to the expensive
storage requirement. Second, this limits the applicability to point clouds with
specific descriptors, which increases the 3D map descriptor maintenance effort
– maps need to be re-built or updated to be used in conjunction with newly
developed descriptors [24]. Third, this approach in practice necessitates a visual
descriptor exchange between the server (storing the 3D model and descriptors)
and an online feature extractor. This is a point of privacy vulnerability, as human
identities and personal information can be recovered from visual descriptors
intercepted during the transmission [16,22,23,26,28,29,48,63]. The aforemen-
tioned issues lead to the main question we pose in this paper: can we localize an
image without relying on visual descriptors? This would significantly reduce the
map storage demands and get rid of descriptor maintenance. Recently, Camp-
bell et al. [10,40] showed that it is feasible to directly match 2D image keypoints
with a 3D point cloud using only geometrical cues. However, this is limited to
ideal scenarios where outliers are not present. This assumption does not hold
in real-world scenes and is not directly applicable to challenging visual localiza-
tion. This is not surprising, as relying only on geometrical cues is a significantly
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more challenging compared to matching visual descriptors. In contrast to a sin-
gle 2D/3D point coordinate, a visual descriptor provides a rich visual context,
since it is commonly extracted from the local image patch centered around a
keypoint [20,25,42,72] (Fig. 1).

In this paper, we achieve significant progress in making keypoints-to-point
cloud direct matching ready for real-world visual localization. To cope with noisy
images, point clouds, and inevitably keypoint outliers, we present GoMatch, a
novel neural network architecture that relies on Geometrical information only.
GoMatch leverages self- and cross- attention mechanisms to establish initial cor-
respondences between image keypoints and point clouds, and further improves
the matching robustness by filtering match outliers using a classifier. To the best
of our knowledge, GoMatch is the first approach that is applicable to visual local-
ization in the wild and does not rely on storage-demanding visual descriptors.
In particular, compared to its prior work on geometric matching-based local-
ization, GoMatch leads to a reduction of (10.67m, 95.7◦) and (1.43m, 34.7◦) in
average median pose errors on Cambridge Landmarks dataset [35] and 7-Scenes
dataset [61], confirming its potential in real-world visual localization.

We summarize our contributions as the following: (i) we develop a novel
method to match query keypoints to a point cloud relying only on geometri-
cal information; (ii) We bridge the difference in data modalities between a 2D
image keypoint to a 3D point by representing it with its bearing vectors pro-
jected into co-visible reference views and show this is remarkably more robust
compared to direct cross-modal matching; (iii) Our extensive evaluation shows
that our method significantly outperforms prior work, effectively enabling real-
world visual localization based on geometric-only matching; (iv) Finally, we thor-
oughly compare our method to the well-established visual localization baselines
and discuss advantages and disadvantages of each approach. With this analysis,
we hope to open the door for future progress towards more general and scalable
structure-based methods for visual localization, which do not critically rely on
storing visual descriptors, thereby reducing storage, relieving privacy concerns
and eliminating the need for descriptor maintenance.

2 Related Work

Structure-Based Localization. Methods of this kind [5,50,53,58,66] com-
monly establish explicit correspondences between the query image pixels and
the 3D points of the environment to compute the query image pose from the
established matches using PnP solvers [27,36]. Keypoint correspondences are
made by computing and matching visual descriptors for each keypoint from a
query and database images [20,25,30,42,51,65,72]. Another recent work [52]
iteratively optimizes a camera pose by minimizing visual descriptor distances
between the 3D points observed in the query and the reference images. While it
does not establish matches, it relies on visual descriptors extracted from a neural
network and requires 3D points. Structure-based localization methods achieve
impressive localization accuracy and state-of-the-art performance [20,50,51] in
the long-term localization benchmark [54,67].
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Table 1. On the challenges of large-scale structure-based localization. Analysis is per-
formed on the MegaDepth [39] composed of many landmarks (similar to city districts),
acting as an example of a city-scale dataset. We compare visual-based matching (VM)
and geometric-based matching (GM) methods by analysing their storage requirement
and considering whether a method requires to maintain map descriptors as well as
provides privacy protection (c.f. the supplementary for more details.) For structured-
based localization, scene coordinates (3D) and camera metadata (Cameras) are stored
to obtain 2D-3D correspondences. In contrast to VM methods that need to additionally
store visual descriptors or extract descriptors on-the-fly from the raw images, we show
that using GM instead of VM, significantly reduces storage requirements, safeguards
user privacy and bypasses the need for descriptor maintenance [24].

Method Desc.

Maintenance

Privacy Database Storage (GB, ↓) Total

Cameras (MB) 3D Raw Ims Descs

VM SIFT [41] ✗ ✗ 15.73 3.44 ✗ 130.10 (uint8) 133.33

SuperPoint [20] ✗ ✗ 15.73 3.44 ✗ 1040.76 (fp32) 1044.21

Extract on-the-fly ✗ ✗ 15.73 3.44 157.84 ✗ 161.29

Geometric-based Matching ✓ ✓ 15.73 3.44 ✗ ✗ 3.45

Practical Challenges in Structure-Based Localization. Despite being
highly accurate, modern localization solutions encounter practical challenges
when deployed onto real-life applications, spanning city-level scale. The chal-
lenges are threefold: i) Relying on visual descriptors [20,25,42,72] makes the
system demanding in storage1 as shown in Table 1. To reduce storage require-
ment of the 3D scene representation, compression can be done by keeping a
subset of the 3D points [13,14,43] and quantising [13,17,69] the descriptors
associated with the 3D points. HybridSC [13] stands out among the exist-
ing work, with its extreme compression rate and minimal accuracy loss. ii)
Localization methods following a server-client model need to transmit visual
descriptors between the server and client, which exposes the model to a risk
of a privacy breach [16,22,23,48]. To mitigate this issue, recent work [26,47]
developed descriptors that are more robust against privacy attacks with slightly
lower accuracy. iii) With the ongoing advancements in local features meth-
ods [20,25,26,42,47,72], continuously updating scene descriptors is a foresee-
able demand [24] for visual-based matching methods. However, such an update
requires either re-building the map with new descriptors or transforming the
existing descriptors [24] to new ones. In this paper, we propose an orthogonal
direction to address the storage, privacy and descriptor maintenance challenges
in structure-based localization by relying solely on more lightweight geometric
information for matching.

End-to-End Learned Localization. A recent trend of methods leverage data-
driven techniques to learn to localize in an end-to-end manner, without relying
on point clouds. This is achieved by either regressing scene coordinates, regress-
ing the camera’s absolute pose or regressing its relative pose w.r.t. to a database
image. Scene coordinate regression methods [3,5,6,8,15,38,73] directly regress

1 Storage as in non-volatile preservation of data, in contrast to volatile memory.
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dense 3D scene coordinates from 2D images. However, they need to be re-trained
for every new scene due to their lack of generalization [5–7,15]. In certain cases,
multiple instances of the same network are trained on sub-regions of the scene,
due to the limited capacity of a single network [7]. Therefore, it is unclear how to
scale these methods [3,5,6,8,15,38,73], that are traditionally evaluated only on
small indoor rooms, to large-scale scenes. Absolute pose regression (APR) meth-
ods implicitly encode the scene representation inside the network and directly
regress the pose from the query image [33–35,49,71]. While earlier methods
required training a model per scene and have been shown to overfit to the
viewpoints and appearance of the training images [56], recent work in multi-
scene APR [4,60] loosened the per-scene training requirements. Compared to
multi-scene APR, our method generalizes across scenes as other structure-based
localization methods (c.f. Sect. 5.5) while addressing its aforementioned practi-
cal challenges. Another related approach that sidesteps maintaining a 3D model
with visual descriptors, is to regress relative camera poses [2,21,37,75] from a
query image to its relevant database images. However, directly regressing the
geometric transformations in general leads to limited generalization [56,75].

Direct Geometric Keypoint Matching. Matching image keypoints directly
to 3D point clouds while jointly estimating pose has been widely investigated
under relatively constrained environments [9–12,19,40,45]. Some require pose
initialization [19] or pose distribution priors [45], while others, based on globally
optimal estimators, have prohibitive runtime requirements in order to produce
accurate estimates [9,11,12]. In contrast, the recent state-of-the-art, data-driven,
geometric matching approaches [10,40] strike a good compromise between pose
accuracy and time required to produce an accurate estimate. Despite not pro-
ducing globally optimal solutions, BPnPNet [10] is able to estimate a reliable
pose in a fraction of a second. Given a set of 2D keypoints in the query image
and a set of 3D points in the scene point cloud, BPnPNet jointly estimates
matches between these two sets purely based on geometric information. How-
ever, this approach was shown to work in idealistic scenarios assuming no outlier
keypoints and, as we experimentally demonstrate, the matching performance
degrades significantly once outliers are introduced. The outlier-free assumption
clearly does not hold for challenging real-world localization scenarios as map
building and keypoint detection are all challenging tasks, prone to errors and
noise. In our work, we build upon BPnPNet and design a geometric matching
module that is robust against keypoint outliers. We show in Sect. 5.3 that our
approach significantly outperforms BPnPNet in matching keypoints with noisy
outliers, effectively enabling the applicability of geometric-based matching to
real-world visual localization.

3 Task Definition

Structure-Based Localization Pipeline. Structure-based methods assume
as input a query image, a 3D point cloud of the scene, and database images
with known poses. These methods first retrieve a set of database images that
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Fig. 2. Co-visible views & keypoint representations. Retrieving co-visible reference
images (views) of a query image, narrows the matching against a full 3D point cloud
to a subset of points that are more likely to be visible to the query image. Each 3D
point can be represented differently by: 1) its 3D coordinate; 2) a visual descriptor that
incorporates local appearance; or 3) a bearing vector that represents the direction from
the reference camera origin to a 3D point in normalized coordinates. In this paper, we
explore keypoint matching using representations 1) and 3).

are co-visible with the query image, i.e., have a visual overlap, as illustrated
in Fig. 2. Next, after narrowing down the search space, they establish 2D-3D
correspondences between the query image keypoints and a (retrieved) subset of
the 3D point cloud. This set of correspondences can be used to estimate the
query image pose using a PnP solver [27,32]. The majority of prior work [20,
25,30,42,50,51,72] rely on storage-consuming visual descriptors, stored together
with the point cloud, to establish 2D-3D matches. The key challenge we address
is how to establish those correspondences without visual descriptors.

Problem Formulation. We assume two point sets, one with 2D keypoint coor-
dinates in the image plane pi ∈ R2, and the second containing 3D point coordi-
nates qj ∈ R3. We seek the matching set M := {(i, j)|pi = π(qj ; K, R, t)}, i.e.,
the set of index pairs i and j, for which if the j-th 3D keypoint is projected to
the image plane, it matches the coordinates specified by the corresponding i-th
2D point. The camera intrinsic matrix K ∈ R3×3 is assumed to be known, and
the operator π(·) represents the camera projection function, which transforms
3D points onto the camera’s frame of reference and projects them to the image
plane according to the camera’s intrinsics. Our goal is to find the correct 2D-3D
keypoint matches for accurate pose estimation.

Keypoint Representation. We represent 2D pixels using 2D coordinates
(u, v) ∈ R2 in the image plane. To learn a matching function that is agnostic to
different camera models, we uplift those 2D points into a bearing vector repre-
sentation b ∈ R2, effectively removing the effect of the camera intrinsics. Bearing
vectors encode the direction (or bearing) of points in a camera’s frame of refer-
ence. We compute bearing vectors from image pixels as: [b� 1]� ∝ K−1[u v 1]�.
For a 3D point, we consider two different representations (see Fig. 2): (i) as 3D
coordinates (x, y, z) ∈ R3 w.r.t. a 3D world reference/origin; and (ii) as a bear-
ing vector w.r.t. a reference database image. The bearing vector representation
allows bringing both 2D pixels and 3D points to the same data modality. Given
a 3D point p ∈ R3 and transformation (R, t) from the world to the database
image’s frame of reference, we compute the corresponding bearing vector as:
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Fig. 3. GoMatch components overview. The query image and database keypoints first
undergo a feature encoder E to generate per-point features. We share encoders in the
query and database branch when database points are represented as bearing vectors
otherwise not. These features are refined in the attention layer and then used in the
Sinkhorn matching stage to establish an initial set of candidate matches, from which
erroneous matches are filtered with an outlier rejection layer.

p′ = Rp + t, [b� 1]� = p′/p′
z, (1)

where p′ represents p in the camera’s frame of reference, and p′
z represents its

z coordinate. As shown in Table 1, these geometric-based point representations
require significantly lower storage compared to visual descriptor based ones, e.g.,
as low as 3% compared to the storage of modern descriptors.

4 Geometric-Only Matching

BPnPNet in a Nutshell. BPnPNet [10] made great progress towards estab-
lishing correspondence between the query keypoints and 3D point cloud in the
absence of visual descriptors. It proposes an end-to-end trainable, differentiable
matcher that performs 2D to 3D cross modal matching without relying on
appearance information. While this is a step in the right direction, we show
in Sect. 5.3 that it does not scale to the real-world visual localization scenarios
where outliers, i.e. points without a match, are pervasive. Direct 2D-3D matching
of sparse keypoints is a challenging problem due to low amount of discriminative
data, i.e. points no longer have a local visual appearance, and its cross-modal
nature. In a nutshell, BPnPNet (i) encodes points to obtain per point features,
(ii) establishes matches using the Sinkhorn algorithm [18,62], which finds the
optimal assignment between geometrical features, and finally, (iii) leverages a
differentiable PnP solver that imposes an additional pose supervision on the
network. In the following, we build on the observation that the lightweight geo-
metric feature encoder does not possess the necessary representational power to
produce features that generalize simultaneously to situations with and without
outliers.

4.1 GoMatch: Embracing Outliers

In GoMatch we (i) propose architectural changes that enable resilience to out-
liers and (ii) cast the cross-modal nature of 2D-3D matching to an intra-modal
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setting through the use of bearing vectors. Below, we explain the details of these
contributions, which are experimentally validated to be all necessary and critical
to outlier-robust geometric matching in Sect. 5.3. We refer to Fig. 3 for a visual
overview of the entire network. Furthermore, we add an outlier rejection layer to
retain only quality matches from the Sinkhorn outputs. While we introduce the
novel network components in the following paragraphs, we refer the reader to the
supplementary material for an in-depth description of all network components.

Feature Refinement Through Attention. In BPnPNet, each keypoint node
is processed in parallel with an MLP-style encoder to extract features directly
for matching, and information exchange happens only in the Sinkhorn match-
ing stage. This might lead to a learned feature representation which lacks con-
text information within each 2D/3D modality and cross modality. Based on
this assumption, we explore adding information exchange prior to matching. To
enhance the context information within each modality, we apply self-attention
to the raw encoded features where a graph neural network [31] refines features
of every keypoint by exchanging the information with a fixed number of closest
neighbors in coordinate space. This is followed by cross-attention [70], where
every keypoint from one modality will interact with all keypoints from the other
modality through a sequence of multi-head attention layers. By stacking sev-
eral blocks of such self-/cross-attention layers, we are able to learn more repre-
sentative features, which allows Sinkhorn to identify significantly better outlier
matches.

Outlier Rejection. After Sinkhorn matching, the estimated corresponding
pairs may still contain outlier matches. To filter those, we follow [44] and add a
classifier that takes in the concatenated geometric features from the query and
database keypoints, and predicts confidence scores for all matches. Estimated
correspondences with confidence below a threshold (0.5 in practice) are rejected.

Matching with Bearing Vectors. Directly matching 2D keypoints to cross-
modal 3D coordinates is challenging because it requires the network to learn fea-
tures that have to consider not only the relationship between keypoints, but also
the influence of different camera poses. Furthermore, the different distributions
of 3D point clouds between datasets, e.g., different scene sizes or different grav-
ity directions, are particularly challenging for a single encoder to learn. Based
on this observation, we propose to leverage the bearing vector representation of
the database points to sidestep the difference in data modalities. In addition to
nullifying the effects of the camera intrinsics, projecting 3D points as bearing
vectors onto a “covisible” frame that is closer to the query frame (compared
to the world reference frame), effectively mitigates the influence of the camera
pose (viewpoint changes) during matching, albeit dependent on the quality of
retrieval. Finally, bearing vectors provide a common modality between query and
database keypoints, eliminating the need for a separate encoder. As we demon-
strate in our experimental section, the change in input type has a substantial
positive effect.
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4.2 Training GoMatch

All of our models are trained to learn feature matching and outlier filtering
jointly, using a matching loss and an outlier rejection loss.

Matching Loss. The Sinkhorn matching layer is trained to output a discrete
joint probability distribution of two sets of keypoints being matched. We denote
this distribution as P̃ ∈ RM+1×N+1

+ , such that
∑M+1

i=1

∑N+1
j=1 P̃ij = 1, i.e., is a

valid probability distribution. Here, M and N denote the total number of query
and database keypoints considered during the matching. We include an extra row
and column to allow keypoints not to be matched. We employ a negative log loss
to the joint discrete probability distribution. Consider the set of all ground truth
matches M, as well as the set of unmatched query keypoints Uq and database
keypoints Ud. The matching loss is of the form:

Lmatch = − 1

Nm

( ∑

(i,j)∈M
log P̃ij +

∑

i∈Uq

log P̃i(N+1) +
∑

j∈Ud

log P̃(M+1)j

)
, (2)

where Nm = |M| + |Uq| + |Ud|.
Outlier Rejection Loss. For the outlier rejection layer we employ a mean
weighted binary cross-entropy loss:

Lor = − 1

Nc

Nc∑

i=1

wi (yi log pi + (1 − yi) log(1 − pi)) , (3)

where Nc denotes the total number of correspondences supplied to the outlier
rejection layer. The term pi denotes the classifier output probability for each
correspondence, while yi denotes the correspondence target label, and wi is the
weight balancing the negative and positive samples. Our final loss balances both
terms equally, i.e., Ltotal = Lmatch + Lor. We present implementation details
about training and testing process in our supplementary material.

5 Experimental Evaluation

In this section, we thoroughly study the potential of using our proposed
geometric-based matching for the task of real-world visual localization. We
start our experiments by testing the robustness of BPnPNet [10] and GoMatch
with keypoint outliers. Next, we verify our technical contribution of successfully
diagnosing the missing components leading to robust geometric matching and
enabling geometry-based visual localization. Furthermore, we position gemetric-
based localization among other state-of-the-art visual localization approaches
by comprehensively analysing each method in terms of localization accuracy,
descriptor maintenance effort [24], privacy risk, and storage demands (Sect. 5.4).
Finally, we present a generalization study (Sect. 5.5) to highlight that our pro-
posed method generalizes across different types of datasets and keypoint detec-
tors. We hope that our in-depth study serves as a starting point of this rarely
explored new direction, and inspires new work to advance scalable visual local-
ization through geometric-only matching in the future.
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5.1 Datasets

We use MegaDepth [39] for training and ablations, given its large scale. It con-
sists of images captured in-the-wild from 196 outdoor landmarks. We adopt the
original test set proposed in [39], and split the remaining sequences into training
and validation sets. After verifying our best models on Megadepth, we evaluate
them on the popular Cambridge Landmarks [35] (Cambridge) dataset which con-
sists of 4 outdoor scenes of different scales. It allows for convenient comparison
to other localization approaches. We use the reconstructions released by [52]. In
addition, we evaluate on the indoor 7-Scenes [61] dataset to further assess the
generalization capability of our method. 7-Scenes is composed of dense point
clouds captured by an RGB-D sensor, and thus provides an alternative envi-
ronment with different keypoint distributions, in both 2D images and 3D point
clouds. We perform evaluation on the official test splits released by the Cam-
bridge and 7-Scenes datasets. We provide detailed information about training
data generation using MegaDepth in the supplementary.

5.2 Experimental Setup

Keypoint Detection. For MegaDepth and Cambridge, we use respectively
SIFT [41] and SuperPoint [20], preserving the same keypoint detector used to
reconstruct their 3D models. For 7-Scenes, we use both SIFT and SuperPoint to
extract keypoints for both 2D images and 3D point cloud given RGB-D images.

Retrieval Pairs. We use ground truth to sample retrieval pairs that have at
least 35% visual overlap in MegaDepth to ensure enough matches are present
during training, as well as to isolate the side-effect of retrieval performance during
ablations. For evaluation and comparison to state-of-the-art localization meth-
ods, we follow [52] and use their top-10 pairs retrieved using NetVLAD [1] on
Cambridge and DenseVLAD [68] on 7-Scenes.

Matching Baselines. We consider BPnPNet [10] as our geometric-based
matching baseline. For a fair comparison, we re-train BPnPNet using our train-
ing data. Our visual-based matching baselines use SIFT [41] and SuperPoint [20]
(SP) as keypoint descriptors. To match visual descriptors, we use nearest neigh-
bor search [46] with mutual consistency by default and SuperGlue [51] (SG).

Localization Pipeline. Following the state-of-the-art structure-based localiza-
tion, e.g., HLoc [50], we first obtain up to k = 10 retrieval pairs between a query
and database images. Then we establish per-pair 2D to 3D matches using either a
geometric-based or a visual-based matching model, and then merge results from
k pairs based on their matching scores to estimate camera poses. For fairness,
all matching baselines use identical retrieval pairs and identical settings for the
PnP+RANSAC solver [32].

Evaluation Metrics. For MegaDepth, we follow BPnPNet [10] to report the
pose error quantiles at 25/50/75% for the translation and rotation (◦) errors as
evaluation metrics. However, as the scale unit of MegaDepth is undetermined and
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Fig. 4. Influence of keypoint outlier rate. In contrast to prior work BPnPnet [10],
GoMatch is significantly more robust against keypoint outliers thanks to the more
powerful attention-based architecture as well as our novel formulation of matching
bearing vectors instead of cross-modal features.

varies between scenes, the translation errors are not consistent between scenes.
Therefore, we propose a new metric based on pixel-level reprojection errors that
preserves scene consistency. For each query, we project its inlier 3D keypoints
using the predicted and the ground-truth poses. We then report the area under
the cumulative curve (AUC) of the mean reprojection error up to 1/5/10px,
inspired by the pose error based AUC metric used in [52,64]. We report the
commonly used median translation (m) and rotation (◦) errors [13,35,56] per-
scene on Cambridge and 7-Scenes.

5.3 Ablations

We perform ablation studies with MegaDepth’s [39] test split, where all retrieval
pairs have guaranteed 35% co-visibility, to focus purely on matching perfor-
mance. In addition, we study the effect of using a single co-visible reference view
(k = 1) as a minimal setting, as well as multiple views, e.g., k = 10, following the
common practice in hierarchical structure-based localization [52,56]. To better
understand the new AUC metric, we also present an Oracle that uses ground
truth matches as its prediction. It is used to show the upper-bound performance
that can be achieved using our metric and generated data.

Sensitivity to Keypoint Outliers. In a real-world localization setting, the
detected query image keypoints will often be noisy and will not have a direct
correspondence in the 3D point cloud. Keypoint matching methods thus need to
be able to cope with outliers. We first study whether our baseline has this capa-
bility by manually increasing the maximum outlier rate, ranging from 0 to 1. The
outlier rate is computed as the number of keypoints without a match divided by
the total number of keypoints, taking the maximum between 2D and 3D. For
all other experiments, we do not control keypoint the outlier rate to properly
mimic realistic conditions. As shown in Fig. 4, the Oracle stays round 55/90/94%
(AUC@1/5/10px). The large error at 1px is due to our match generation process
(c.f. supplementary for a detailed discussion). BPnPNet [10] slightly outperforms
GoMatch at 1px threshold, being similarly accurate to us at 5/10px thresholds
in the absence of outliers. However, as the ratio of outliers increases, the perfor-
mance of BPnPNet drastically drops, while GoMatch gracefully handles outliers,
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Table 2. GoMatch ablation. Top: We present Oracle for reference and re-trained
BPnPNet [10] as our baseline. Middle: We study how the 3D representation (Repr.) and
architectural changes influences the performance. Using bearing vector (BVs) instead
of 3D coordinates (Coords) as representation and introducing feature attention (Att)
are the most crucial factors to the performance improvement. Together with further
benefits from the outlier rejection (OR) component and sharing the query and database
keypoint feature encoders leads us to the full GoMatch model (Bottom). All results
rely on a singe retrieval image unless stated otherwise, e.g., k = 10.

Model
3D Share

Att OR
Rotation (◦) Translation Reproj. AUC (%)

Repr. Encoder Quantile@25/50/75% (↓) @1/5/10px (↑)

Oracle 0.03/0.06/0.10 0.00/0.00/0.01 54.58/90.37/94.87

BPnPNet Coords ✗ ✗ ✗ 15.17/31.05/59.78 1.67/3.14/5.31 0.34/0.83/1.21

BPnPNet (k = 10) Coords ✗ ✗ ✗ 16.03/33.27/63.90 1.59/3.24/5.80 0.56/1.08/1.50

Variants

BVs ✗ ✗ ✗ 12.19/27.68/58.22 1.26/2.8/5.14 0.37/1.48/2.18

BVs ✓ ✗ ✗ 9.16/22.62/53.20 0.98/2.38/4.72 0.85/3.09/4.36

BVs ✓ ✓ ✗ 0.55/8.08/29.34 0.05/0.84/3.34 9.13/25.71/31.65

BVs ✗ ✓ ✓ 0.38/7.46/31.75 0.04/0.83/3.73 10.22/28.17/33.69

Coords ✗ ✓ ✓ 4.09/23.56/63.21 0.37/2.53/5.93 3.81/13.54/17.46

GoMatch BVs ✓ ✓ ✓ 0.36/6.97/29.85 0.03/0.69/3.38 10.30/29.08/34.79

GoMatch(k = 10) BVs ✓ ✓ ✓ 0.15/0.95/13.00 0.01/0.09/1.55 15.14/42.39/51.24

i.e., GoMatch is always above 80% at 5/10px up to 50% of outliers. This exper-
iment confirms that GoMatch is significantly more robust to outliers compared
to BPnPNet. This outlier robustness is achieved through careful modifications
to the network architecture and 3D point representation, both validated by a
thorough performance analysis presented in the next sections.

Architecture-Level Analysis. In Table 2 (Top), we present the Oracle and
BPnPNet [10] re-trained on our data for a direct comparison with GoMatch. This
is paired with additional variants, progressively transitioning from BPnPNet
to GoMatch. We found that shared encoding brings performance gains up to
0.48/1.61/2.18 AUC percentage points. Adding feature attention on top leads to
a significant improvement of 8.28/22.62/27.29 AUC percentage points. By fur-
ther adding the outlier rejection increases the AUC by 1.17/3.37/3.14% points.
We conclude that these network components yield 9.93/27.6/32.61% points of
improvements in terms of AUC scores when using bearing vectors the represen-
tation.

Representation-Level Analysis. Using 3D coordinates (Coords) instead of
bearing vectors (BVs), even with attention and outlier rejection, hinders perfor-
mance dramatically by 6.49/15.54/17.33% points. If we only change the represen-
tation from Coords to BVs, without attention nor outlier rejection, the improve-
ment is merely 0.31/1.29/1.9% points. Therefore, we verify the bearing vector
representation is as important as the architectural changes, and both contribute
towards keypoint outlier resilience. By modifying both architecture and repre-
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Table 3. Comparison to existing localization baselines. We consider end-to-end (E2E)
methods and structure-based methods that either matches visual descriptors (VM) or
geometries (GM). We report median translation and angular error for each landmark
and combined storage requirements for operating on all landmarks. No Desc. Maint.
is checked if a method does not require descriptor updates in the long run. Privacy is
checked if a method is resilient to existing known privacy attacks.

Method Storage (MB) No Desc. Maint. Privacy King’s College Old Hospital Shop Facade St. Mary’s Church

Median Pose Error (m, ◦) (↓)

E2E PoseNet [35] 200 ✓ ✓ 1.92/5.40 2.31/5.38 1.46/8.08 2.65/8.48

DSAC++ [6] 828 ✓ ✓ 0.18/0.30 0.20/0.30 0.06/0.30 0.13/0.40

MSPN [4] - ✓ ✓ 1.73/3.65 2.55/4.05 2.92/7.49 2.67/6.18

MS-Transformer [60] 71.1 ✓ ✓ 0.83/1.47 1.81/2.39 0.86/3.07 1.62/3.99

VM HybridSC [13] 3.13 ✗ ? 0.81/0.59 0.75/1.01 0.19/0.54 0.50/0.49

Active Search [53] 812.7 ✗ ✗ 0.42/0.55 0.44/1.01 0.12/0.40 0.19/0.54

HLoc [50](w.SP [20]) 3214.84 ✗ ✗ 0.16/0.38 0.33/1.04 0.07/0.54 0.16/0.54

HLoc(w.SP+SG [51]) 3214.84 ✗ ✗ 0.12/0.20 0.15/0.30 0.04/0.20 0.07/0.21

GM BPnPNet [10] 48.15 ✓ ✓ 26.73/106.99 24.8/162.99 7.53/107.17 11.11/49.74

GoMatch 48.15 ✓ ✓ 0.25/0.64 2.83/8.14 0.48/4.77 3.35/9.94

sentation, GoMatch outperforms the re-trained BPnPNet by 9.96/28.25/33.58
AUC percentage points.

Utilizing Multiple Co-visible Images. As shown in Table 2, when using
k = 10 co-visible views, both methods improved their result: BPnPNet by a small
margin and GoMatch by a large margin of 4.84/13.31/16.45 AUC percentage
points. We thus use k = 10 for all of the following experiments.

5.4 Comparison to Localization Baselines

Following the discussion in Sect. 2, we comprehensively compare GoMatch with
other established baselines by looking beyond localization performance, and con-
sidering as well the storage footprint, resiliency to privacy attacks, and descriptor
maintenance. As shown in Table 3, HLoc with SuperPoint and SuperGlue is the
most accurate method but also has the highest storage requirements while being
vulnerable to privacy attacks. Using HLoc with a newly developed descriptor
method will require the map to be updated. In end-to-end methods, DSAC++
is the most accurate method while being resilient to privacy attacks as it does
not need to transmit visual descriptors. However, as it requires 4 model versions
trained per-scene, it requires 828 MB storage to work under 4 scenes compared
to our 48.12 MB. HybridSC as the most storage-efficient method keeps only 1.5%
if its original points via compression. However, it is unclear whether the privacy
issue still remains for this method since it still relies on full visual descriptors
to perform matching. Notice, compressing scene structure can be theoretically
combined with GoMatch to lower our storage requirements, which we leave as
future work to design suitable scene compression techniques for geometric-base
matching. On the whole, GoMatch and MS-Transformer both properly balance
those three aspects showing benefits in storage, privacy and absence of descriptor
maintenance, and are competitive in accuracy. Compared to its visual-descriptor
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Table 4. Generalization study on 7-Scenes. GoMatch generalizes between different
scene types and detector types and outperforming BPnPNet and PoseNet.

Method Storage (MB) No Desc. Maint. Privacy Chess Fire Heads Office Pumpkin Kitchen Stairs

Median Pose Error (m, ◦) (↓)

E2E PoseNet [35] 350 ✓ ✓ 0.32/8.12 0.47/14.4 0.29/12.0 0.48/7.68 0.47/8.42 0.59/8.64 0.47/13.8

DSAC++ [6] 1449 ✓ ✓ 0.02/0.50 0.02/0.90 0.01/0.80 0.03/0.70 0.04/1.10 0.04/1.10 0.09/2.60

MSPN [4] - ✓ ✓ 0.09/4.76 0.29/10.5 0.16/13.1 0.16/6.8 0.19/5.5 0.21/6.61 0.31/11.63

MS-Transformer [60] 71.1 ✓ ✓ 0.11/4.66 0.24/9.6 0.14/12.19 0.17/5.66 0.18/4.44 0.17/5.94 0.26/8.45

VM Active Search [53] - ✗ ✗ 0.04/1.96 0.03/1.53 0.02/1.45 0.09/3.61 0.08/3.10 0.07/3.37 0.03/2.22

HLoc [50](w.SIFT [41]) 2923 ✗ ✗ 0.03/1.13 0.03/1.08 0.02/2.19 0.05/1.42 0.07/1.80 0.06/1.84 0.18/4.41

HLoc(w.SP [20]) 22977 ✗ ✗ 0.03/1.28 0.03/1.3 0.02/1.99 0.04/1.31 0.06/1.63 0.06/1.73 0.07/1.91

HLoc(w.SP+SG [51]) 22977 ✗ ✗ 0.02/0.85 0.02/0.94 0.01/0.75 0.03/0.92 0.05/1.30 0.04/1.40 0.05/1.47

GM BPnPNet [10](SIFT [41]) 302 ✓ ✓ 1.29/43.82 1.48/51.82 0.93/55.13 2.61/59.06 2.15/39.85 2.15/43.00 2.98/60.27

BPnPNet (SP [20]) 397 ✓ ✓ 1.25/43.9 1.42/45.09 0.8/50.05 2.33/14.54 1.71/31.81 1.68/33.91 2.1/55.78

GoMatch (SIFT) 302 ✓ ✓ 0.04/1.65 0.13/3.86 0.09/5.17 0.11/2.48 0.16/3.32 0.13/2.84 0.89/21.12

GoMatch (SP) 397 ✓ ✓ 0.04/1.56 0.12/3.71 0.05/3.43 0.07/1.76 0.28/5.65 0.14/3.03 0.58/13.12

SuperPoint counterpart, GoMatch requires only 1.5% of the capacity to store
same scene. GoMatch reduces the average pose errors by (10.67m, 95.7◦) com-
pared to our only prior geometric-based matching work, significantly reducing
the accuracy gap to state-of-the-art methods. We hope this inspires researchers
to pursue this line of work.

5.5 Generalization

As our final experiment, we study the generalization capability of our method
in terms of localization in different types of scenes, e.g., indoor and outdoor,
and matching keypoints obtained using different detectors. According to our
results in Table 4, similar to our previous experiments, we outperform BPnPNet
by a large margin achieving (1.43m, 34.7◦) lower average median pose errors.
Except for GoMatch with SIFT keypoints which produces a relatively large
21.12◦ median rotation error in Stairs, we are only slightly worse than our
visual-based matching baselines with SIFT and SuperPoint. Yet, we require only
10/1.7% of the storage that is required by SIFT/SuperPoint to store maps. We
also largely outperform PoseNet [35] in all metrics for all scenes except for the
relatively lower translation error in Stairs scene, i.e., (0.47 m vs 0.58 m). Further-
more, we achieve better pose than MS-Transformer in the majority of scenes,
at the expense of a higher storage requirement. The results clearly verify that
GoMatch trained on outdoor scenes (MegaDepth) generalizes smoothly to indoor
scenes (7-Scenes), being agnostic to scene types. Similarly, we also confirm that
GoMatch trained with SIFT keypoints generalizes well to SuperPoint keypoints,
being agnostic to detector types.

6 Conclusion

We present GoMatch, a novel sparse keypoint matching method for visual
localization that relies only on geometrical information and that carefully bal-
ances common practical challenges of large-scale localization, namely: localiza-
tion performance, storage demands, privacy and descriptor maintenance (or lack
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thereof). From all these, the last three are often overlooked. Through a rigor-
ous architecture design process, GoMatch dramatically surpasses its prior work
in handling outliers, enabling it for real-world localization. Compared to local-
ization pipelines using visual descriptor-based matching, GoMatch allows local-
ization with a minimal 3D scene representation, requiring as little as 1.5/1.7%
to store the same scene. Geometric-based matching brings localization pipelines
to a new level of scalability that opens the door for localizing in much larger
environments. We see our work as a starting point for this new direction and we
look forward to inspire other researchers to pursue more accurate and reliable
geometric-based visual localization in the future.
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8 Conclusion

In this thesis, we tackled visual localization, the task of estimating the camera pose of
a query image w.r.t. a 3D scene. In most of the existing solutions, a scene is represented
by a database of reference images with camera poses, except for the structure-based
localization where one assumes an extra 3D model of the scene, which is commonly a point
cloud reconstructed via SfM. Among different formulations of the solutions, we targeted
relative pose-based localization and structure-based localization, which allows us to study
methods with different types of representations. We then built upon their advantages and
develop novel approaches to address the existing challenges in the existing formulations by
leveraging modern deep learning techniques. We aimed to improve a localization system
in terms of its scalability towards large-scale scenes, generalization across different types
of scenes, and robustness and accuracy under various extreme environmental conditions.

In chapter 5, we proposed a generic framework for visual localization from essential
matrices which is agnostic to how an essential matrix is computed. This characteristic
enables in-depth study of various methods for computing essential matrices, ranging from
purely hand-crafted to purely data-driven. Compared to structure-based localization
which is the most accurate one but relies on an expensive scene point cloud, our framework
is more flexible and light-weight as well as achieves competitive performance in accuracy
and generalization when using the handcrafted SIFT feature and a 5-point solver to
estimate essential matrices. With extensive evaluations and comparisons, we further show
that different ways of utilizing deep learning for relative pose estimation led to highly
different behaviors. Based on our experiments, learned feature extractor and matching do
not suffer from generalization issue, while relative pose regression leads to the incapability
of generalizing across indoor and outdoor scenes. We also found that the handcrafted
SIFT features are still very competitive compared to our learned matches, which suggests
the clear need for more advanced learning-based image matching techniques. Based on
this work, we show the potential of RP-based localization for future scalable localization
and point out clear working direction towards generalizable RP-based localization.

In chapter 6, we presented a new detect-to-refine paradigm for image matching that
aims at pixel-level accurate correspondences. To tackle the challenging task of densely
searching matches within a pair of images, we suggest splitting the task into stages, where
the first stage focuses on capturing the semantic high-level information and the second
stage focuses on the detailed structures inside local patches. To investigate the potential
of this concept, we applied it to the existing correspondence network (NCNet) which is
limited by the memory bottleneck to only match patch-level features. To refine match
proposals detected by the pre-trained NCNet, we developed a novel refinement network to
regress pixel-level matches from the local regions defined by those proposals and jointly
predict confidence scores to reject outlier matches. Our network was weakly supervised
by epipolar geometry to detect geometrically consistent correspondences without the need
for ground-truth correspondences and can be trained end-to-end with the correspondence
network. By evaluating our method on a variety of geometry tasks, we showed that
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Conclusion

our refinement network consistently and significantly improves the matching accuracy of
the correspondence network baseline. Furthermore, our model trained to refine NCNet
matches can be immediately leveraged to refine other match proposal networks without
re-training. By directly applying our pre-trained refinement to the best fully-supervised
matching method, we achieved state-of-the-art results on challenging long-term localization
benchmark. To this end, we validated that detect-to-refine is a promising paradigm for
future image matching that allows flexible and reasonable delegation of matching duties in
a coarse-to-fine manner. While it has been widely explored how to refine match proposals
by filtering the outliers, we are the first method that allows one to modify the locations
of match proposals, leading to more advanced true refinement.

Finally, in chapter 7, we tested the potential of establishing 2D-3D correspondences
via geometric-based matching for real-world visual localization that does not require
visual descriptors for matching. We built upon the previous geometric-based matcher and
significantly improve its robustness in handling keypoint outliers by leveraging the power of
attention mechanisms to boost contextual information propagation. We further introduced
a novel bearing vector representation of 3D points, which relieves the cross-modal challenge
in matching 2D image keypoints to 3D point cloud with only geometric information. We
showed that our method dramatically surpassed its prior work, making geometric-based
matching feasible for realistic localization tasks. Plugging our geometric matcher into a
hierarchical structure-based localization pipeline, we achieved performance on-par with
the state-of-the-art absolute pose regressors. More importantly, our approach elegantly
relieves structure-based localization from high storage demands, privacy concerns and the
need for long-term descriptor maintenance. In conclusion, we verified that geometric-based
matching is a promising option to pursue scalable, sustainable and reliable structure-based
localization for large-scale scenes. Our work serves as a starting point along this new
direction of geometric matching-based localization and we expect to inspire more research
effort devoted to boosting its current performance in accuracy.
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9 Future Work and Remarks

Extension to EssNet. In EssNet, we focused on studying the relative pose estimation
module and fixed the image retrieval and pose estimation part. However, the quality of
image retrieval has direct influence on both the following relative pose estimation and
the triangulation step. Therefore, an interesting research direction arises from exploring
the possibility of jointly learning image retrieval and relative pose together. In EssNet,
we developed a classical RANSAC-based algorithm to estimate the absolute pose from
multiple image pairs given their estimated relative poses. Another extension could be made
by devising a learned pose triangulation algorithm as an alternative to this handcrafted
process.

Extension to Patch2Pix. While Patch2Pix has the flexibility of modifying a match
proposal by searching again within its local regions, it is still limited by the size of local
regions. The local region has to be reasonable in size, otherwise the refinement becomes
too expensive in computation and more challenging. The refinement is not possible if the
errors of coarse matches are too larger. A direct extension to Patch2Pix is a joint proposal
and refinement network learned in an end-to-end manner, where we want to reduce the
number of proposals with big matching errors and leave the refinement network focusing
on finding highly accurate matches.

Extension to GoMatch. In GoMatch, we assume keypoints are already given in a
query image and are consistent with the 3D keypoints. However, we have shown that the
performance of our method decreases largely with more than 50% of keypoint outliers.
Besides pushing for more robust geometric-based matchers, another possibility is to reduce
keypoint outliers from the beginning, where we can learn a keypoint outlier filtering
function can be learned by exploring cues in keypoint distributions. Alternatively, one can
also jointly learn the task of detection and geometric-based matching, where we expect
keypoints to be directly tuned for the following matching step.

Correspondence networks. In correspondence networks, when an image is involved
in two image pairs, most likely different sets of points will be matched to its corresponding
paired image. This characteristic makes them less suitable for a structure-from-motion
task as well as localizing an image against a pre-built point cloud. The naive solution
to increase the keypoint repeatability, i.e., a point being matching in multiple image
pairs, is by applying quantization to matches such that the close-by keypoints involved
in matches are merged into one. However such quantization leads to reduced matching
accuracy, and thus is not optimal. As correspondence networks become popular and show
promising matching performance compared to keypoint-based matching, it is a clear need
to seek a better solution to the lack of repeatability issue. This can be addressed either
in correspondence networks or in downstream tasks.
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Future Work and Remarks

Relative pose-based localization is promising. One important conclusion we
learned from EssNet [Zho+20] (chapter 5) is that relative pose-based localization can gen-
eralize if we perform matching-based instead of regression-based relative pose estimation.
Our learned lesson is further confirmed by the very recent Mapfree [Arn+22], where they
show that methods estimate relative pose estimated from 2D matches not only dominantly
surpass those using relative pose regressions but also get closer to the state-of-the-art
structure-based localization in accuracy and generalization. Compared to structure-based
methods, relative pose-based localization has attracted much less attention in the past
years since it is less accurate. However, relative pose-based localization has the significant
advantage of not needing a 3D model, making it more scalable and suitable for city-scale
localization. Therefore, we are very optimistic and excited about the future development
in this direction.

Regression techniques: where to go? As we have introduced in previous sections,
different regression techniques have been proposed to address localization including
absolute pose regression (section 4.3), relative pose regression (section 4.5) and scene
coordinate regression (section 4.4). While the original motivation is good, they are all
faced with their own challenges.

Absolute pose regression (APR) was proposed to provide efficient and simple solution
for localization requiring no scene map during inference. However, by formulation it
is scene-dependent and its performance is highly related to the training data distribu-
tion [Sat+19] and relatively less accurate compared to other existing methods. It is very
likely to fail when the testing data is distributed very differently from the training data.
One way to relieve the generalization issue is by densely sampling training images from
the scene, however, it makes the training longer, requires more storage to keep those
training data and might not be feasible for large-scale scenes. Therefore, APR methods
are more suitable for applications where one knows some priors about the testing scenario
or where efficiency is more important than accuracy.

SCR learns an implicit 2D-3D matching function in a scene-dependent manner, which
also does not need a 3D scene model during inference meanwhile achieves highly accurate
performance for small-scale and indoor scenes. It is currently faced with the challenges
of scaling to larger scenes and improving the performance in outdoor scenes. Solving
those challenges will definitely bring SCR to a new level, making it a more competitive
candidate for real-world applications. Different from APR, there is no direct constraint
preventing a SCR to achieve those goals. There already exists some recent work showing
progress in addressing these issues [Li+20a; TZ00]. Overall, we are highly interested in
seeing future research about large-scale SCR.

While relative pose regression (RPR) by formulation is not limited to a specific scene,
they suffer from limited generalization and accuracy compared to matching-based relative
pose estimation [Zho+20; Arn+22]. Compared to APR and SCR methods, RPR has
to rely on image retrieval and pose estimation (from relative poses) to localize a query
image. Therefore, it is unclear what the advantages of using RPR is if it can not surpass
matching-based solution.
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