
TUM School of Computation, Information, and
Technology

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

Testing the Safe Behavior of Unmanned
Aerial Vehicles with Scenario-Based Testing

Tabea Ruth Jasmin Schmidt

Technische Universität München
TUM School of Computation, Information, and Technology

Testing the Safe Behavior of Unmanned
Aerial Vehicles with Scenario-Based

Testing

Tabea Ruth Jasmin Schmidt

Vollständiger Abdruck der von der TUM School of Computation, Information, and
Technology der Technischen Universität München zur Erlangung des akademis-
chen Grades einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Jörg Ott

Prüfer*innen der Dissertation:

1. Prof. Dr. Alexander Pretschner

2. Prof. Dr. Stefan Leutenegger

Die Dissertation wurde am 22.12.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information, and Technol-
ogy am 30.05.2023 angenommen.

Acknowledgments

First, I would like to thank my supervisor, Prof. Dr. Alexander Pretschner, for always
asking critical questions that have advanced my research. By raising new research questions
and providing honest feedback, he inspired me to investigate various aspects of my research
topic and think outside the box. With his high expectations for all of us, he pushed me
to do my best and to not only present and discuss my research results but also refine
their underlying methodology. Under his guidance, I have improved my preciseness in
communicating my findings and methodological understanding. In addition, I was able to
enhance my social skills, such as presenting my work or teaching others.

Next, my gratitude goes to my colleagues at the chair for providing me with such a
constructive, pleasant, and enjoyable work experience. Since everyone was always open to
discussion, new research ideas quickly introduced themselves. Further, I really enjoyed the
entertaining evenings during Hütte and other events.

Finally, the utmost thanks belong to my family and friends for their continuous support.
They have given me excellent support by celebrating the milestones I have achieved and
encouraging me to face challenges instead of giving up easily.

v

Zusammenfassung

Damit unbemannte Luftfahrzeuge beispielsweise Pakete direkt an unsere Haustüre
liefern können, wird sich deren primärer Betriebsmodus bald auf den autonomen Betrieb
außerhalb unserer Sichtweite verlagern. Daher benötigen wir eine Methodik, die das sichere
Verhalten von unbemannten Luftfahrzeugen in verschiedenen Situationen systematisch
testet und ein sicheres Verhalten dieser autonomen Systeme auch unter schwierigsten
Bedingungen gewährleistet. In dieser Arbeit stellen wir eine solche Methodik vor, die
szenario-basiertes Testen verwendet. Wir konzentrieren uns auf zwei Probleme: (1) die
Ableitung relevanter Testsituationen und (2) die Generierung von Testfällen, die potenzielle
Fehler im zu testenden System aufdecken können.

Hinsichtlich des ersten Problems erörtern wir die offenen Forschungsfragen bei der
automatischen Ableitung von Testsituationen basierend auf gesammelten realen Flugdaten.
Darüber hinaus stellen wir eine systematische Methodik zum Aufbau einer Ontologie
vor, die Testsituationen auf der Grundlage von mentalen Modellen beschreibt, sowie die
daraus resultierende Ontologie für einen Quadrocopter, der eine Art von unbemannten
Luftfahrzeugen darstellt. Schließlich stellen wir einen automatisierten Ansatz zur experi-
mentellen Ermittlung von Grenzwerten für die Dimensionen der Ontologie am Beispiel
der Ermittlung einer maximalen Anzahl von zu berücksichtigenden Hindernissen dar.
Unsere experimentellen Ergebnisse zeigen eine maximale Anzahl von 5 oder 8 relevanten
Hindernissen für das zu testende System, abhängig von der für die Datenerfassung verwen-
deten Fehlerhypothese. Mit sinnvollen Grenzwerten für die Dimensionen der Ontologie
können wir die Anzahl der Testsituationen effektiv begrenzen. Diese Grenzen stellen somit
eine Grundlage für die Sammlung einer vollständigen Liste relevanter Testsituationen für
unbemannte Luftfahrzeuge in zukünftigen Arbeiten dar.

Um das zweite Problem anzugehen, stellen wir eine Methode zum Testen des sicheren
Verhaltens von unbemannten Luftfahrzeugen vor, in der wir deren Umgebung einbeziehen
und berücksichtigen, dass wir das sichere Verhalten von unbemannten Luftfahrzeugen
nicht in allen Situationen explizit definieren können. In unseren Experimenten entdecken
wir mit dieser Methodik verschiedene Verletzungen des Sicherheitsabstands und meh-
rere fragwürdige Verhaltensweisen, wenn wir aufgrund fehlender Spezifikationen oder
Vorschriften keinen Sicherheitsabstand definieren können. Diese Ergebnisse zeigen die An-
wendbarkeit und Effektivität der vorgestellten Methodik zur Erstellung von Testfällen, die
potenzielle Fehler im zu testenden System aufdecken können. Da in der aktuellen Literatur
heuristische Optimierungsalgorithmen verwendet werden, um diese Testfälle zu finden,
müssen wir die Qualität der generierten Testfälle bewerten. In dieser Arbeit stellen wir
eine solche Fallstudie über drei Optimierungsalgorithmen und deren Kombinationen vor,
die das Problem aufzeigt, dass selbst der beste Algorithmus mehrere fehlerproduzierende
Situationen übersieht. Diese Ergebnisse deuten darauf hin, dass wir bei szenario-basiertem

vii

Testen zusätzlich mehrere Optimierungsalgorithmen verwenden müssen, was den weit-
verbreiteten Einsatz dieser Technik zum Testen von autonomen Systemen herausfordert.
Schließlich stellen wir das Tool StellaUAV vor, das die vorgestellte Methodik systematisch
anwendet, und zeigen seine Anwendbarkeit und Effektivität in Experimenten. Diese zeigen
auf, dass das zu testende System Probleme hat, sich in der Nähe von Hindernissen, die sich
dynamisch bewegen, sicher zu verhalten.

viii

Abstract

To enable use cases such as package delivery to our doorsteps, the primary operation
mode of Unmanned Aerial Vehicles (UAVs) will shift to autonomous operation near struc-
tures and people soon. If UAVs operate autonomously and Beyond Visual Line of Sight, it
is crucial to ensure that these systems behave safely. Thus, we need a methodology that
systematically tests the safe behavior of UAVs in various situations and ensures that the
UAVs operate safely even in the most challenging circumstances. In this work, we present
such a methodology that uses scenario-based testing to evaluate the safe behavior of UAVs.
We focus on two problems: (1) the derivation of relevant situations to test and (2) the
generation of test cases that can reveal potential faults in the system under test.

Addressing the first problem, we discuss the open research challenges of acquiring test
situations automatically by clustering collected real-flight data. In addition, we present
the systematic methodology for building an ontology that characterizes these situations
based on mental models and the resulting ontology for a quadcopter as one kind of UAV.
Finally, we demonstrate an automated approach for experimentally finding lower and
upper bounds for the dimensions of the ontology using the example of finding a maximal
number of obstacles to consider. Our experimental results show a maximal number of 5 or 8
relevant obstacles for the System Under Test (SUT) with one of the optimization algorithms
depending on the applied defect hypothesis used for data collection. With reasonable
bounds for the ontology’s dimensions, we can effectively limit the number of situations
to test the SUT. Thus, these bounds further present a basis for collecting a complete list of
relevant test situations for UAVs in future work.

Addressing the second problem, we present a methodology for testing the safe behavior
of UAVs that considers their environment and acknowledges the challenge of explicitly
defining the safe behavior of UAVs in all situations. In our experiments, we detect vari-
ous safety distance violations with the presented methodology and several questionable
behaviors when we cannot define a safety distance due to missing specifications or regula-
tions. These experimental results show the applicability and effectiveness of the presented
methodology for creating test cases that reveal potential faults in the SUT. As current litera-
ture suggests using heuristic optimization algorithms for finding these test cases, we need
to evaluate the quality of the generated test cases. In this work, we present an assessment
of the performance of three optimization algorithms and their combinations that reveals the
problem that even the best-performing algorithm misses several challenging situations that
can uncover potential faults in the SUT. These results indicate that scenario-based testing
comes at the extra cost of having to run multiple optimization algorithms, which challenges
the widespread use of this technique for testing autonomous systems. Finally, we introduce
the tool StellaUAV, which systematically applies the presented methodology, and show its
applicability and effectiveness in experiments by revealing the SUT’s problems to behave
safely when encountering moving obstacles.

ix

Outline of the Thesis

CHAPTER 1: INTRODUCTION

This chapter introduces the topic of testing the safe behavior of Unmanned Aerial Vehicles
(UAVs) with scenario-based testing and describes the gaps in the literature that this thesis
aims to close by providing a methodology for generating test cases for UAVs. Parts of this
chapter previously appeared in peer-reviewed publications [114, 115, 116] co-authored by
the author of this thesis.

CHAPTER 2: BACKGROUND AND PRELIMINARIES

This chapter provides a general overview of autonomously operating UAVs and the con-
cepts of scenario-based testing and search-based techniques for finding worst-case situations
to test the safe behavior of UAVs. Parts of this chapter previously appeared in peer-reviewed
publications [114, 115, 116] co-authored by the author of this thesis.

CHAPTER 3: METHODS AND CHALLENGES OF DERIVING LOGICAL SCENARIOS FOR UAVS

This chapter outlines one of the fundamental challenges of scenario-based testing: the defi-
nition of logical scenarios to test the UAVs’ safe behavior. First, it discusses the challenges
of automatically deriving logical scenarios from collected flight data before providing an
ontology to characterize them based on mental models for a quadcopter as one kind of UAV.
Parts of this chapter previously appeared in a peer-reviewed submission under review [118]
co-authored by the author of this thesis.

CHAPTER 4: EXPLORATION OF BOUNDS FOR THE ONTOLOGY’S DIMENSIONS

This chapter presents an automated approach for finding reasonable bounds for the param-
eter values that each dimension of an ontology for logical scenarios for UAVs describes.
Further, it illustrates the approach with the example of exploring an upper bound for the
number of relevant obstacles to include in logical scenarios. Parts of this chapter previ-
ously appeared in a peer-reviewed publication [115] co-authored by the author of this thesis.

CHAPTER 5: UNDERSTANDING AND ASSESSMENT OF THE SAFE BEHAVIOR OF UAVS

This chapter provides a methodology for testing the safe behavior of UAVs while consider-
ing their environment and the potential challenge of explicitly defining the safe behavior
of UAVs. Throughout the chapter, we explore the two cases of having a safety distance
specified and working with no defined safety distance. Parts of this chapter previously
appeared in a peer-reviewed publication [114] co-authored by the author of this thesis.

xi

CHAPTER 6: EVALUATION OF OPTIMIZATION ALGORITHMS FOR TESTING THE SAFE BE-
HAVIOR OF UAVS

This chapter introduces the problem of a missing guarantee for finding worst-case situa-
tions with heuristic optimization algorithms. Further, it presents a case study to explore
the quality of generated test cases for three optimization algorithms and their sequential
combinations when testing the safe behavior of an open-source UAV. Parts of this chapter
previously appeared in a peer-reviewed publication [116] co-authored by the author of this
thesis.

CHAPTER 7: STELLAUAV: A TOOL FOR TESTING THE SAFE BEHAVIOR OF UAVS

This chapter presents the tool StellaUAV that implements the proposed approach of testing
the safe behavior of UAVs with scenario-based testing and an evaluation of its applicability
and effectiveness for generating test cases that can reveal potential faults in UAVs. Parts of
this chapter previously appeared in a peer-reviewed publication [116] co-authored by the
author of this thesis.

CHAPTER 8: RELATED WORK

This chapter discusses related work about testing the safe behavior of UAVs with its chal-
lenges of deriving relevant logical scenarios for these systems and generating worst-case
situations for them. Parts of this chapter previously appeared in peer-reviewed publications
[114, 115, 116] and a peer-reviewed submission under review [118] co-authored by the
author of this thesis.

CHAPTER 9: CONCLUSION AND OUTLOOK

This chapter concludes by summarizing the concepts and results for testing the safe behav-
ior of UAVs presented in this thesis. In addition, it includes limitations of our work, lessons
learned, and ideas for future work.

N.B.: Multiple chapters of this dissertation are based on different publications authored or co-
authored by the author of this dissertation. Such publications are mentioned in the short descriptions
above. Due to the obvious content overlapping, quotes from such publications within the respective
chapters are not marked explicitly.

xii

Contents

Acknowledgements v

Zusammenfassung vii

Abstract ix

Outline of the Thesis xi

Contents xiii

I. Introduction and Background 1

1. Introduction 3
1.1. Testing the Safe Behavior of Unmanned Aerial Vehicles 3

1.1.1. Derivation of Typical Situations . 5
1.1.2. Generation of Test Cases . 5

1.2. Problem Statement and Research Gaps . 6
1.3. Solution . 8
1.4. Contributions . 9
1.5. Summary of Results . 10
1.6. Structure . 12

2. Background and Preliminaries 13
2.1. Autonomously Operating UAVs . 13
2.2. Abstraction Level of Test Scenarios . 16
2.3. Generation of “Good” Test Cases . 17
2.4. Optimization Algorithms . 18

2.4.1. Non-dominated Sorting Genetic Algorithm II (NSGAII) 18
2.4.2. Particle Swarm Optimization (PSO) 19
2.4.3. Bayesian Optimization (BO) . 20

II. Logical Scenario Derivation 23

3. Methods and Challenges of Deriving Logical Scenarios for UAVs 25
3.1. Introduction . 25

xiii

Contents

3.2. Challenges of Clustering Collected Data to Automatically Acquire Logical
Scenarios . 26
3.2.1. Automated Clustering Approach . 26
3.2.2. Experiments . 28

3.3. Systematic Derivation of Logical Scenarios Based On Mental Models 33
3.3.1. Methodology . 34
3.3.2. Application to a Quadcopter . 35

3.4. Conclusion . 43

4. Exploration of Bounds for the Ontology’s Dimensions 45
4.1. Introduction . 45
4.2. Automated Derivation of Bounds . 46

4.2.1. Black-Box Description of the UAV’s Behavior 46
4.2.2. Methodology . 47

4.3. Experiments . 50
4.3.1. Setup and Implementation . 50
4.3.2. Experimental Results . 51
4.3.3. Discussion . 51

4.4. Conclusion . 55

III. Test Case Generation 57

5. Understanding and Assessment of the Safe Behavior of UAVs 59
5.1. Introduction . 59
5.2. Challenges of Defining the Safe Behavior . 60
5.3. Generation of “Good” Test Cases . 61

5.3.1. Methodology . 61
5.3.2. Search Space . 63
5.3.3. Fitness Function . 64

5.4. Experiments . 65
5.4.1. Setup and Implementation . 65
5.4.2. Logical Scenarios and Search Spaces 66
5.4.3. Experimental Results for Safety Distance Testing 67
5.4.4. Experimental Results for Boundary Analysis Testing 67
5.4.5. Discussion . 69

5.5. Conclusion . 70

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs 73
6.1. Introduction . 73
6.2. Optimization Algorithms . 74

xiv

Contents

6.3. Case Study . 75
6.3.1. Setup and Implementation . 76
6.3.2. Evaluation Objectives . 78
6.3.3. Evaluation Results . 79
6.3.4. Discussion . 81

6.4. Conclusion . 86

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs 87
7.1. Introduction . 87
7.2. Methodology . 88
7.3. Architecture . 91
7.4. Evaluation . 93

7.4.1. System Under Test . 93
7.4.2. Setup and Implementation . 93
7.4.3. Logical Scenarios . 94
7.4.4. Experimental Results & Discussion 94

7.5. Conclusion . 98

IV. Related Work and Conclusion 99

8. Related Work 101
8.1. Testing the Safe Behavior of UAVs . 101
8.2. Logical Scenario Derivation . 102
8.3. Generating “Good” Test Cases . 104
8.4. Evaluation of Optimization Algorithms . 104
8.5. Tools and Frameworks for Testing UAVs . 105

9. Conclusion and Outlook 107
9.1. Summary of Results and Limitations . 107
9.2. Lessons Learned . 110
9.3. Future Work . 112

Bibliography 115

Glossary 129

List of Figures 131

List of Tables 135

A. JSON Schema 139

xv

Contents

B. Details on Experimental Settings 145

C. Visualization of Convex Hulls for NSGAII 147

xvi

Part I.

Introduction and Background

1

1. Introduction

This chapter introduces the topic of testing the safe behavior of Unmanned
Aerial Vehicles (UAVs) with scenario-based testing and describes the gaps in the
literature that this thesis aims to close by providing a methodology for generating
test cases for UAVs. Parts of this chapter previously appeared in peer-reviewed
publications [114, 115, 116] co-authored by the author of this thesis.

1.1. Testing the Safe Behavior of Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) conquer more and more air space to fulfill various
tasks, e.g., transporting objects, monitoring areas, search & rescue, and more specific tasks
such as wildfire fighting, precision farming, or weather forecasting [14, 25, 34, 78, 110, 120,
132]. Examples from the industry include Amazon [123], which is actively working on
autonomously operating UAVs that deliver packages to our doorsteps, and Zipline [105],
which has transported medicine in Rwanda via UAVs since 2016.

Currently, we perform most of these use cases by remotely controlling UAVs that are
not allowed to fly closer than 30 to 50 meters to any person or structure, depending on our
home country [8, 21, 35]. However, the primary operation mode of UAVs will shift to an
autonomous operation soon. Further, we believe that we will be allowed to operate UAVs
Beyond Visual Line of Sight and nearer to structures and people to enable use cases such as
package delivery to our houses in the near future. These new operation modes will lead
to a significant increase in the use and development of autonomously operating UAVs. If
UAVs operate autonomously and Beyond Visual Line of Sight, ensuring that these systems
behave safely and do not pose any unreasonable risk to their environment is crucial. This
effort is especially needed as there is no human in the loop to correct any unsafe behavior
in these use cases. Thus, we need a methodology that systematically tests the safe behavior
of UAVs in various situations and ensures that the UAVs operate safely even in the most
challenging circumstances.

When developing aerial vehicles, we have to meet the requirements of various standards
to get approved by certification authorities, such as EASA and FAA. Depending on the type
of UAV and its intended use case, different standards might be relevant, such as DO-178C,
DO-254, ARP4754, and ISO/TC 20/SC 16. Several of these standards apply to manned
as well as unmanned aerial vehicles, whereas others are for unmanned aerial vehicles in
particular. These standards specify requirements, processes, and metrics that we need

3

1. Introduction

to perform or fulfill for certifying aerial vehicles, focusing on different areas, such as the
software life cycle, hardware life cycle, system life cycle, or operation of airborne systems.
The standards’ goal is to minimize the number of failures by defining processes that
engineers need to execute consistently and efficiently. Due to these process specifications,
the standards provide a first step towards developing correctly and safely behaving UAVs.
However, since their focus lies on the specific parts of the development process or operation
of UAVs, the standards do not provide a thorough safety argumentation about a UAV’s
safe behavior in all relevant situations. To further assess the safety of UAVs, we propose to
apply additional methods.

For the automotive industry, the authors of [133] show that it is unfeasible to ensure the
safety of autonomous cars by executing real-world test drives. They present the need to
drive 6.6 billion kilometers for each variant of the System Under Test (SUT) to ensure that
it is at least as safe as with a human driver. The authors base these computations on the
number of kilometers between two fatal accidents. Since the number of kilometers between
two fatal accidents for aerial vehicles is even higher than the one for cars, this approach
is likewise unfeasible for UAVs. Thus, [54] proposes a shift to simulation-based testing
to enable thorough testing of such autonomous systems. In addition, simulation-based
techniques, contrary to real-world flight tests, provide the advantage of not causing any
damage or injury when the SUT behaves unsafely and collides with persons or objects
in its environment. Since we are interested in testing UAVs in safety-critical situations,
simulation-based techniques are well suited for our approach. When using simulation-
based testing, we rely on the correctness of the simulation, which presents an abstraction of
the SUT and its environment. In literature, there exists a large amount of research about the
correctness of simulations [58, 108]. Due to this high effort in verifying and improving the
quality of simulations in the research community, we will use existing tools for simulating
UAVs and do not incorporate research about further improvements of simulations into
this thesis. Instead of concentrating on the verification of the simulation itself, we focus on
building a methodology for generating test cases for testing the safe behavior of UAVs with
the help of these simulations.

When testing the safe behavior of Automated and Autonomous Driving Systems (ADS),
scenario-based testing [23] provides valuable insights into the safe behavior of these systems
[48, 82, 89, 126]. Thus, we propose to apply the same approach for testing the safe operation
of UAVs. The general idea of scenario-based testing is that we aim to ensure that the SUT
behaves safely in all relevant and challenging situations that it might encounter in the real
world. Therefore, we first acquire typical situations in which we need to test the behavior of
the SUT. An example of such a typical situation for a UAV is that the UAV has the mission
to fly to a target point while avoiding two static obstacles and two dynamically moving
obstacles. We can further specify the environmental conditions in this scenario by, e.g.,
describing the existence of light precipitation, cold ambient temperature, cloud coverage,
and heavy fog. In the next step, we generate test cases for each of the derived situations
that can reveal potential faults in the SUT.

4

1. Introduction

1.1.1. Derivation of Typical Situations

For testing the safe behavior of UAVs with scenario-based testing, one of the fundamental
challenges is the derivation of all relevant and challenging situations. For ADS, we have
a good understanding of these typical situations and can define their boundaries with
the help of rigid road structures and fine-grained traffic rules. In contrast, UAVs operate
in an open field, on various missions, and in different environments with only coarse-
grained restrictions. When acquiring typical situations for UAVs, we need to take all these
challenging circumstances into account. First, we need to specify relevant dimensions for
describing these typical situations for testing the safe behavior of UAVs. Secondly, we need
to find the correct level of granularity to present challenging situations for the SUT. We
propose representing this knowledge in an ontology that characterizes typical situations for
testing UAVs.

Authors of related work [36, 72, 110] focus on describing use case scenarios for UAVs,
which mainly focus on the mission of the included UAVs and provide a limited perspective
on the environment of the UAVs. As an extension of their work, we aim to present an
ontology that describes typical situations for testing the safe behavior of UAVs in this thesis
that includes information about the UAVs, their missions, and an in-depth specification
of their environment. For ADS, [10, 90] present models of typical situations that describe
the primary entities and their relationships without denoting concrete dimensions of these
typical situations. In addition, we cannot easily compare challenging situations for ADS
and UAVs due to rigid road structures and traffic rules for ADS and the non-existence of
these for UAVs.

To close these gaps in the literature, we aim to present an ontology that characterizes
typical situations for testing the safe behavior of a quadcopter as one kind of UAV in this
thesis. Further, to enable test engineers to replicate such an ontology for their SUTs, we
provide the applied methodology for systematically creating the resulting ontology. Finally,
we discuss the assumptions and conditions needed for providing a complete list of acquired
typical situations with the presented methodology.

1.1.2. Generation of Test Cases

After collecting a list of typical situations to test UAVs, we aim to generate test cases for
each of them. Instead of randomly creating test cases, we propose to search for challenging
situations for the UAVs in each of these typical situations to reveal potential faults in the
tested systems. We call these challenging situations also worst-case situations. When
evaluating the safe behavior of the SUT in these test cases, we face the challenge of explicitly
defining its safe behavior. For ADS, fine-grained traffic rules ease the specification of this
safe behavior. However, since we are missing such detailed regulations for UAVs, we need
to consider that we might not be able to explicitly define the safe behavior of UAVs in each
situation. Thus, a methodology for generating worst-case situations for UAVs needs to take
these circumstances into account.

5

1. Introduction

For finding worst-case situations, related work proposes search-based techniques [48,
137, 146, 147]. Due to their heuristic nature, these techniques cannot guarantee that they
will detect the optimal solution for a search problem. Thus, we need to evaluate the quality
of the created test cases for various optimization algorithms to enable a thorough safety
argumentation. In addition, we cannot directly apply the concepts presented in related
work about the generation of worst-case situations in the automotive domain [48, 137] since
worst-case situations for UAVs look differently than those for ADS. On the other side, the
authors of [146, 147] focus on finding collisions between various UAVs in an otherwise
empty environment. Since the safe behavior of UAVs in urban areas will be a crucial part
of their deployment, we believe that we need to take the environment into account when
searching for challenging situations for UAVs. In addition, all four papers concentrate
on the case of a specified safety distance to define the safe behavior of the autonomous
vehicle or UAV and do not explore the event when we cannot determine such a safety
distance. Related work presents various case studies that evaluate the performance of
optimization algorithms in different domains [29, 64, 125]. However, to the best of our
knowledge, no work on assessing optimization algorithms for scenario-based testing for
UAVs exists. Since each optimization algorithm has its advantages and disadvantages,
its performance is highly context-specific and cannot be easily generalized over several
domains. The authors of [60] focus on investigating the convergence rate of the evaluated
optimization algorithms when generating test cases for ADS. Contrary to their work, we
aim to assess the performance of optimization algorithms considering the quality of the
created worst-case situations.

To close the presented gaps in the literature, we propose a methodology for generating
test cases for testing the safe behavior of UAVs in urban areas that present worst-case
situations for the SUT in this thesis. In addition, we consider the two cases of (1) having
a pre-defined safety distance to lead the search for worst-case situations and (2) creating
worst-case situations without such a specification. To assess the quality of the generated
test cases, we provide a case study that evaluates the performance of three optimization
algorithms and their combinations.

1.2. Problem Statement and Research Gaps

In this work, we present solutions to two fundamental problems that we face when testing
the safe behavior of UAVs with scenario-based testing. For each of these problems, we
further describe the gaps in the literature.

• Problem 1 is the derivation of situations for testing the safe behavior of UAVs. For a
thorough safety argumentation, these acquired situations should represent all relevant
occasions in which we aim to ensure the safe behavior of the SUT. Currently, it is
unclear which dimensions are essential for characterizing these situations for UAVs.
Further, we cannot apply data-driven methods from the automotive domain [47]
to derive additional test situations since we still lack high amounts of data about

6

1. Introduction

real-world UAV flights to use these techniques. To limit the number of test situations
for the SUT, we need to find reasonable lower and upper bounds for each dimension
that characterizes relevant situations for the SUT. Finally, since it is infeasible to test
all combinations of the collected dimensions, we need to select relevant and suitable
ones for the SUT.

– Gap 1: Related work on typical situations for UAVs either focuses on the mission
of the UAVs or includes a limited number of environmental effects. Thus, there is
a need for an in-depth description of the relevant dimensions of typical situations
for testing UAVs. Existing work on typical situations for ADS presents meta-
models of these situations but lacks concrete dimensions for a direct derivation
of concrete situations. Further, different situations are challenging for ADS and
UAVs due to rigid road structures and traffic rules for ADS. Thus, there exists the
need for an ontology with concrete dimensions to describe relevant situations
for UAVs.

• Problem 2 is the generation of test cases for testing the safe behavior of UAVs that
can reveal potential faults in the SUT. Since we cannot easily define the safe behavior
of UAVs in all situations, we need to acknowledge this challenge when building a
methodology for generating test cases for these systems. When creating a thorough
safety argumentation, we need to be sufficiently confident in the quality of the found
worst-case situations. Thus, we need to perform an evaluation of various optimization
algorithms that can discover these worst-case situations. In addition, since combining
different optimization algorithms might present further improvements, we need to
investigate their performance concerning the quality of the generated test cases.

– Gap 2: Since different situations are challenging for UAVs and ADS, we cannot
directly utilize related work on generating test cases for ADS. Further, the non-
existence of fine-grained traffic rules for UAVs increases the challenge of clearly
defining a safe behavior for UAVs. Existing work on test case generation for
UAVs focuses on testing against a specified safety distance and in an environment
with no obstacles and environmental effects. For evaluating the performance of
various optimization algorithms for generating worst-case situations for UAVs,
we cannot easily generalize the results from other domains since they are highly
context-specific. Existing work in the context of ADS focuses on the convergence
rate of various optimization algorithms instead of investigating the quality of
the created test cases. To the best of our knowledge, no work on assessing
optimization algorithms and their combinations for scenario-based testing for
UAVs exists. Thus, there is a need for a methodology to generate challenging test
cases for testing the safe behavior of UAVs while considering the environment
and the possibility that a safety distance might not always be available. Further,
an evaluation of different optimization algorithms is needed to gain confidence
in the results of the test case generation process that uses these algorithms.

7

1. Introduction

yes

Logical Scenario
Derivation

Start

End

Test Case
Generation

2 3

1

5

4

6
Do We Know All

Logical Scenarios?
Did We Test Each Logical

Scenario Sufficiently?

yesno no

8

7

Mental Models Real Flight Data

Dimensions
With Range of
Values

Living Model of
Logical Scenarios

Optimization
Algorithm

Test Cases

Control Flow
Data Flow

Resource
Activity

9

10

Figure 1.1.: Overview of the process of testing the safe behavior of UAVs with scenario-
based testing. Previous versions appeared in [114, 115, 116, 118].

1.3. Solution

This work introduces a methodology for testing the safe behavior of UAVs with scenario-
based testing and presents a tool called StellaUAV, which implements this methodology. We
share the source code for our presented tool StellaUAV in [117]. We introduce an overview
of our approach in Figure 1.1 and describe it in the following. In this thesis, we focus on
steps 1 and 7 and provide a first step towards handling the presented challenge in 10 .

First, we need to derive those situations in which we aim to test the UAV’s behavior 1 .
We call these situations logical scenarios and introduce them in more detail in Chapter 2. In
this first step, we build an ontology that characterizes these logical scenarios for testing the
safe behavior of UAVs 5 . We can derive the dimensions for such an ontology (1) manually
from mental models 2 presented in specifications, literature, and expert knowledge or (2)
automatically by clustering real-flight data 3 that we previously gathered. After acquiring
the dimensions of the ontology, we need to explore a lower and upper bound for the values
of each dimension 4 before dividing them system-specifically into categories that present
various relevant situations for the SUT. Note that we view the resulting ontology as a
“living model” that we can adapt to newly discovered challenging situations or applications
for the SUT. To provide a thorough safety argumentation, we need to collect all relevant
logical scenarios in which we need to test our system’s behavior 6 . The derivation of such
a complete list of logical scenarios is still an open research challenge. If we lack confidence
in the completeness of the derived logical scenarios, we need to go back to step 1 and
gather additional logical scenarios. Once we are sufficiently confident that we found a

8

1. Introduction

complete list of logical scenarios, we can generate test cases for each logical scenario 7 .
Instead of randomly creating test cases, we aim to search for worst-case situations in which
a correct system operates safely meanwhile an incorrect system behaves unsafely by, e.g.,
violating specified safety distances. We can use various optimization algorithms 8 to
find test cases that represent worst-case situations for the SUT 9 . Finally, we need to
guarantee that we tested each logical scenario sufficiently 10 to ensure a high level of
safety for the SUT. If we do not meet this requirement, we need to generate more test
cases 7 before stopping the testing process. Current literature [48, 147] proposes using
heuristic optimization algorithms for generating worst-case situations in step 7 . Since
these algorithms, however, cannot ensure finding an optimal solution due to their heuristic
nature, guaranteeing sufficient testing of each logical scenario 10 gets more challenging.
As a first step towards handling this additional challenge, we investigate the performance
of different optimization algorithms for finding worst-case situations in this work. Further,
we explore whether sequentially combining optimization algorithms improves the quality
of the generated worst-case situations for testing the safe behavior of UAVs.

With our proposed methodology, we intend to yield the basis for a well-founded safety
argumentation about the safe behavior of UAVs with scenario-based testing. We present a
solution to two fundamental challenges of this technique. First, we provide a methodology
for deriving a system-specific ontology that characterizes logical scenarios for UAVs and
the resulting ontology. In addition, we discuss the necessary conditions and assumptions
for deriving a complete list of relevant situations for UAVs with this approach. Secondly,
we present a methodology for generating worst-case situations for these logical scenarios to
ensure the safe behavior of the UAV even in the most challenging circumstances of each
situation. Further, to assess the quality of the created test cases, we emphasize the need
to evaluate their quality for various optimization algorithms and present a case study for
three of them and their combinations.

1.4. Contributions

This work includes the following contributions to the presented gaps in the literature:

• To fill Gap 1 and provide a solution for 1 in Fig. 1.1, we present an ontology to
characterize logical scenarios in which we aim to test the safe behavior of a quadcopter
as one kind of UAV. This ontology includes concrete dimensions and sub-categories
to allow for a direct derivation of specific logical scenarios to test the SUT. We can
acquire the lower and upper bounds for the parameter values of each dimension either
(1) from expert knowledge and specifications or (2) from experimental results for
different bounds. To perform these experiments, we present an automated approach
for exploring the bounds of a dimension on the example of finding an upper bound
on the number of relevant obstacles that we need to consider in logical scenarios for
our SUT. Further, we represent the systematic methodology to generate an ontology

9

1. Introduction

that characterizes logical scenarios for testing the safe behavior of UAVs to enable
researchers and test engineers to produce a similar ontology for their SUT. In addition,
we discuss the necessary conditions for the completeness of the derived logical
scenarios from the provided ontology to provide a basis for 6 in Fig. 1.1.

• To fill Gap 2 and provide a solution for 7 in Fig. 1.1, we demonstrate how we can
effectively apply scenario-based testing and search-based techniques to generate
challenging test cases for UAVs. Further, we investigate two use cases for this method-
ology: (1) we can specify a safety distance that the UAV should keep to all obstacles
and can use this safety distance to explicitly define a safe behavior of the SUT, and (2)
we cannot determine such a safety distance and need to generate worst-case situations
for our SUT differently. Further, to provide a basis for solving 10 in Fig. 1.1, we
present a case study about the performance of various optimization algorithms and
their sequential combinations for generating test cases for testing the safe behavior of
UAVs. This case study reveals one of the crucial problems of scenario-based testing:
different optimization algorithms create substantially varying worst-case situations
and frequently miss finding the optimal ones. These results lead to the insight that
we have the additional cost of performing multiple optimization algorithms when
applying scenario-based testing. Finally, we present the tool StellaUAV that can
generate worst-case situations and evaluate the performance of various optimization
algorithms for the open-source PX4 autopilot for UAVs [81].

Parts of these contributions have previously appeared in the following peer-reviewed
publications, co-authored by the author of this thesis:

• Tabea Schmidt, Florian Hauer, Alexander Pretschner, “Understanding Safety for Un-
manned Aerial Vehicles in Urban Environments”, IEEE Intelligent Vehicle Symposium
(IV), 2021

• Tabea Schmidt, Florian Hauer, Alexander Pretschner, “Exploring a Maximal Number
of Relevant Obstacles for Testing UAVs”, International Conference on Computer
Safety, Reliability, and Security, 2022

• Tabea Schmidt, Alexander Pretschner, “StellaUAV: A Tool for Testing the Safe Behav-
ior of UAVs with Scenario-Based Testing”, IEEE 33rd International Symposium on
Software Reliability Engineering (ISSRE), 2022

• Tabea Schmidt, Alexander Pretschner, “Ontology-Based Collection of Scenarios for
Testing UAVs”, IEEE Robotics and Automation Letters, 2022, under review

1.5. Summary of Results

As the first result of this thesis, we present an ontology that describes logical scenarios
for testing the safe behavior of a quadcopter as one kind of UAV. We view the resulting

10

1. Introduction

ontology as a “living model” that we can adjust to newly discovered challenging situations
and circumstances. In addition, we formulated two conditions that we need to fulfill to
derive a complete list of logical scenarios from the created ontology: (1) the generated
ontology needs to be complete, and (2) the defect hypothesis that we apply for selecting
specific logical situations from the ontology needs to represent all challenging situations for
the SUT.

Our evaluation results for exploring an upper bound for the number of relevant obstacles
reveal that the two investigated optimization algorithms, Multiobjective Evolutionary
Algorithm Based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic
Algorithm II (NSGAII), show different performances when searching for extreme parameter
values. This observation indicates the need to find the most suitable algorithm system-
specifically for the presented methodology. Further, the experimental results for MOEA/D
imply that we need to consider a maximum of 5 to 8 obstacles depending on the fault
hypothesis used for data collection. By providing system-specific lower and upper bounds
for the parameter values of each dimension of the ontology, we can effectively limit the
number of logical scenarios in which we need to test the SUT’s behavior.

With our proposed methodology for generating test cases for testing the safe behavior
of UAVs, we discover 4 to 62 safety distance violations for four logical scenarios for the
open-source PX4 autopilot [81] when we can specify the safe behavior of UAVs with a safety
distance. Further, we find questionable behaviors of the tested UAV with our proposed
methodology when no safety distance is defined. These results show the effectiveness and
applicability of our proposed approach for generating worst-case situations that reveal
potential faults in the SUT. Even though experts still need to investigate the behavior of
the UAV manually when we cannot explicitly specify the safe behavior of the UAV, we
minimize the experts’ efforts by presenting worst-case situations that they solely need to
inspect.

When evaluating optimization algorithms and their combinations, we discover that
one combination outperforms the algorithm used in the literature by 20%, on average,
considering the quality of the created test cases. In addition, several evaluated algorithms
even generate test cases that reveal the unsafe behavior of the SUT in the tested logical
scenarios. However, the results also demonstrate that we cannot blindly trust optimization
algorithms to find worst-case situations, even if we select the best-performing one from a
context-specific analysis of different optimization algorithms. Even though we know that
heuristic optimization algorithms do not guarantee to find an optimal solution, our results
show that this is not an exceptional case. These results indicate that we do not only need to
perform several runs per logical scenario but also apply multiple optimization algorithms
when generating test cases for testing the safe behavior of UAVs with scenario-based testing.
Considering the required resources for performing scenario-based testing, this may be seen
as a crucial challenge to the application of scenario-based testing.

In our experiments for evaluating the applicability of StellaUAV, we detect several safety
distance violations of the open-source PX4 autopilot [81] in various logical scenarios. The
results show that the SUT has problems when facing dynamic obstacles as we detect safety

11

1. Introduction

distance violations for all 24 logical scenarios with dynamic obstacles. On the other side,
the SUT behaves safely when only encountering static obstacles in our experiments by not
violating any safety distances. Finally, the experimental results present the applicability of
StellaUAV and its effectiveness for finding worst-case situations in which the SUT shows
potentially unsafe behavior.

While working on this thesis and building a methodology for testing the safe behavior of
UAVs with scenario-based testing, we gathered several lessons learned: (1) we need to de-
rive logical scenarios for testing the safe behavior of UAVs system-specifically, (2) collecting
a complete list of logical scenarios presents various open challenges, (3) explicitly defining
the safe behavior of UAVs is not easily accomplished due to missing regulations, (4) we
need to execute multiple optimization algorithms to reliably find worst-case situations for
UAVs, and (5) scenario-based testing increases the confidence in the safe behavior of UAVs.

1.6. Structure

In Chapter 2, we introduce the essential aspects of autonomously operating UAVs and the
concepts of scenario-based testing and search-based techniques. Chapter 3 describes an
ontology that characterizes logical scenarios for testing the safe behavior of quadcopters
and depicts the corresponding methodology. Next, Chapter 4 presents an automated
approach for finding relevant bounds for the parameter values of the ontology dimensions.
In Chapter 5, we represent a methodology for testing the safe behavior of UAVs while
considering their environment. Chapter 6 presents a case study that explores the quality of
generated test cases for three optimization algorithms and their sequential combinations. In
Chapter 7, we outline the tool StellaUAV that we implemented for applying the presented
methodology. Finally, Chapter 8 discusses related work about testing the safe behavior
of UAVs and scenario-based testing before Chapter 9 concludes with a discussion of the
results of this thesis and ideas for future work.

12

2. Background and Preliminaries

This chapter provides a general overview of autonomously operating UAVs and
the concepts of scenario-based testing and search-based techniques for finding
worst-case situations to test the safe behavior of UAVs. Parts of this chapter
previously appeared in peer-reviewed publications [114, 115, 116] co-authored
by the author of this thesis.

2.1. Autonomously Operating UAVs

As there are various types of UAVs, we first outline their different characteristics. Table 2.1
presents an overview based on [73, 129] that focuses on the payload weight that the UAVs
can carry in kilograms, their flight endurance in hours, and the altitude at which they
operate in meters. Note that we can include additional characteristics such as launch and
recovery systems or flight control interfaces to specify different types of UAVs in more
detail [73]. In this work, we focus on quadcopters representing small UAVs in Table 2.1 to
show the applicability of our proposed approach. However, note that we can also apply
our methodology to other types of UAVs.

As we present a methodology for testing the safe behavior of autonomously operating
UAVs in this work, we need to define what level of autonomy we are considering. In
the literature, we can find several ideas for categorizing different levels of autonomy.
The National Institute of Standards and Technology describes three primary dimensions
to define autonomy: the complexity of the UAV’s mission, the difficulty of the UAV’s

Table 2.1.: Overview of the characteristics of different types of UAVs, as presented in [73,
129].

Category Payload Weight Endurance Altitude

Micro < 1 kg < 1 hour near ground level
Small 1− 10 kg 2− 5 hours near ground level
Tactical 10− 50 kg 4− 8 hours 0− 1, 500 m
Medium Altitude and Endurance 50− 300 kg > 12 hours 4, 500− 9, 000 m
High Altitude and Endurance 50− 800 kg > 24 hours > 15, 000 m

13

2. Background and Preliminaries

environment, and the UAV’s independence from humans [52]; In addition, in [50], the
authors describe four principles that autonomous systems implement: the knowledge
of the UAV about itself and its environment, the UAV’s adaptation mechanisms to cope
with a dynamically changing environment, the UAV’s self-awareness, and the UAV’s
emergency from its simple components to its complex characteristics; Further, the US
Air Force Research Laboratory defines eleven levels of autonomy in their work [28] that
characterize the situational awareness of the UAV, its decision-making characteristics, and
its communication and cooperation capabilities for each level. Finally, the authors of [140]
from NASA consider this classification too fine-grained for their use case of high-altitude
long-endurance UAV missions and, thus, propose a simplified version to describe the levels
of autonomy. They describe in [140] the following levels of autonomy:

• Level 0 - Remotely Controlled: ”Remotely piloted aircraft with a human in the loop,
making all the decisions. Operator is in constant control.”

• Level 1 - Simple Automation: ”Remotely piloted with some automation techniques
to reduce pilot workload. Human monitoring to start/stop tasks.”

• Level 2 - Remotely Operated: ”Human operator allows UAV on-board systems to do
the piloting. As part of the outer control loop, the human makes decisions as to where
to go, when, what to do once there. Remotely supervised, with health monitoring
and limited diagnostics. Operator allows UAV to execute preprogrammed tasks, only
taking over if the UAV is unable or fails to properly execute them.”

• Level 3 - Highly-Automated or Semi-Autonomous: ”UAV automatically performs
complex tasks. System understands its environment (situational awareness) and
makes routine decisions and mission refinements to dynamically adjust to flight and
mission variables. Limited human supervision, managed by exception. Adaptive to
failures and evolving flight conditions.”

• Level 4 - Fully Autonomous: ”UAV receives high-level mission objective (e.g., lo-
cation, time), translates them into tasks that are executed without further human
intervention. UAV has the ability and authority to make all decisions. Extensive situa-
tional awareness (internal and external), prognostics, and on-board flight re-planning
capability. Single vehicle operations.”

• Level 5 - Collaborative Operations: ”Brings in aspects of multiple UAVs working
autonomously together as a collective intelligent system. Group coordination. Indi-
vidual vehicles/systems in a collaborative group will have a least semi-autonomous
LOA (3) to keep the operator workload of the collaborative operation at a manageable
level.”

In this work, we follow this last classification presented in [140] as its granularity level
seems reasonable for our use case. Following the terminology, we focus on testing the safe

14

2. Background and Preliminaries

environment

SUT

Human

feedback loop

Autopilot

observe

Sensors

contains i.a.

contains i.a.

UAV

WeatherGeofence

area
restricts flight

boundaries
to fly in

appearance of
terrain

 Landform &
Surface Nature

position & velocities of
identified obstacles

Obstacles

might corrupt
data

applied force
by e.g. wind

software-in-the-loop simulation

Connection

Data/Force

Flow

mission

provides mission

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 2.1.: We depict the boundary of the SUT in this work and its connections to its
environment and a human. In this work, we simulate both the SUT and its
environment.

behavior of UAVs of autonomy level 4 in this work, where the UAV receives a mission that
it performs completely autonomously without human interaction. Note that we can also
apply our proposed methodology to level 3 systems. In future work, we aim to extend our
approach to test the safe behavior of autonomously operating cooperative UAVs, which
represent an autonomy level of 5.

Finally, we describe the boundary of the SUT and its connections to other entities in its
environment. In this work, the SUT is an autonomously operating small UAV of autonomy
level 4 consisting of an autopilot, sensors, actuators, a hardware platform, and several
software components for, e.g., detecting obstacles in its environment. We depict this SUT
and its connections to its environment and humans in Fig. 2.1. As the SUT operates
completely autonomously, the human only provides the UAV’s mission and does not
interfere with the UAV in any other way. The UAV’s environment might include different
elements, such as a geo-fence to restrict the flight area of the UAV and a specific landform
and surface nature that presents various terrains for the UAV. In addition, the environment
might contain obstacles that the UAV needs to avoid and different weather conditions that
might impact the sensor readings and flight capabilities of the UAV. Note that we apply a
Software-in-the-Loop approach in this work that includes a simulation of the SUT and its
environment. However, we can also use the presented methodology for Hardware-in-the-
Loop or Model-in-the-Loop testing.

15

2. Background and Preliminaries

Table 2.2.: Description of the parameters and their value ranges of an exemplary logical
scenario for testing the safe behavior of UAVs. The logical scenario includes light
precipitation, cold ambient temperature, complete cloud coverage, and heavy
fog. A previous version appeared in [116].

Parameter P Value Range (Min, Max)

p0 precipitation [cm/h] (0.1, 0.25)
p1 temperature [◦C] (5.0, 10.0)
p2 cloud coverage [%] (90.0, 100.0)
p3 reduced visibility [m] (40.0, 200.0)

Table 2.3.: Potential concrete scenarios for the logical scenario described in Table 2.2. A
previous version appeared in [116].

Parameter P Test Case 1 Test Case 2 Test Case 3 Test Case 4

p0 precipitation [cm/h] 0.23 0.17 0.21 0.11
p1 temperature [◦C] 6.6 9.5 8.3 5.9
p2 cloud coverage [%] 98.0 90.2 96.3 92.5
p3 reduced visibility [m] 175.0 88.5 134.7 41.2

2.2. Abstraction Level of Test Scenarios

In this work, we differentiate between logical scenarios and concrete scenarios for scenario-
based testing, as proposed by the authors of [82]. As previously mentioned, logical scenarios
describe the typical situations in which we aim to test the UAV’s safe behavior. We use
parameters P = {p0, p1, ..., pn} and corresponding value ranges for these parameters to
characterize these logical scenarios. In Table 2.2, we present an example of a logical scenario
for testing the safe behavior of UAVs. Note that this exemplary logical scenario does
not include all necessary parameters to comprehensively describe relevant test situations
for UAVs for simplicity of presentation. The represented logical scenario describes the
UAV’s environment with several environmental conditions that the UAV faces, such as
light precipitation, cold ambient temperature, cloud coverage, and heavy fog. With the
parameter p0, we describe the heaviness of the rain in the logical scenario with 0.1 to 0.25
centimeters per hour. Further, we represent the cold ambient temperature in a range of 5.0
to 10.0 degrees Celsius with p1. For the cloud coverage, we specify its heaviness between
90 and 100 percent coverage with the parameter p2. Finally, we limit the visibility of the
UAV to 40.0 to 200.0 meters with the parameter p3 to describe heavy fog. Note that when
specifying a logical scenario, we must determine system-specific parameter ranges for each
parameter of that logical scenario to define what, for example, a cold ambient temperature
represents for the SUT.

16

2. Background and Preliminaries

For a concrete scenario, we pick concrete values from the ranges of all parameters of a
logical scenario. A concrete scenario, thus, represents one test case for the given logical
scenario. Table 2.3 presents four potential concrete scenarios that we can choose for the
presented logical scenario in Table 2.2. In the first test case, we set the precipitation rate
to 0.23 centimeters per hour, the ambient temperature to 6.6 degrees Celsius, the cloud
coverage to 98.0 percent, and the reduced visibility to 175.0 meters.

2.3. Generation of “Good” Test Cases

When specifying test cases for a SUT, we need to define the test input for this test case
and its expected output. The selected concrete scenario denotes the test input by, e.g.,
describing the UAV’s mission, the UAV’s environment, and failures that the UAV needs
to handle. For this test input, as an expected output, we anticipate a safe behavior of the
UAV during its operation. However, it is not easy to explicitly define this safe behavior in
all situations. We discuss this challenge and its implications for testing the safe behavior
of UAVs in Chapter 5. The concrete scenarios of a logical scenario present all possible test
cases for this logical scenario. Since it is infeasible to test all of them, we need to choose
specific ones. When we apply a random selection, we cannot measure the quality of the
selected test cases. Thus, we propose to, instead, use the idea of [97] and search for so-called
“good” test cases that can reveal potential faults in the SUT. These “good” test cases, thus,
represent challenging situations for the SUT. When we can define a UAV’s safe behavior
by specifying a safety distance that it should keep to all obstacles, a safe system would
approach this safety distance but not overstep it in a “good” test case. On the other hand,
an unsafe system would violate the specified safety distance in the same test case.

To perform such a search with optimization algorithms, we first need to specify the
search space in which the search should take place and the fitness function, which guides
our search for “good” test cases. The parameter ranges of a logical scenario represent the
search space for this logical scenario. When testing the safe behavior of UAVs, we can use
different objectives to guide our search for “good” test cases. If there exists a specified safety
distance s that the UAV should keep to all obstacles, we can assess the UAV’s behavior
by comparing the distance d that it keeps to all obstacles with this safety distance s. If
d ≥ s, the UAV behaves safely. Otherwise, it violates the specified safety distance. However,
if we cannot define such a safety distance for a specific situation, we need to adapt our
search for challenging situations. We describe fitness functions for both of these cases in
Chapter 5. Another approach is to specify a so-called safe operating envelope, in which
the UAV can freely operate but which it should not leave. Finally, we can define additional
quality attributes, such as smoothness, that the UAV should also optimize while keeping
sufficient safety distance from all obstacles. We depict these three alternatives in Fig. 2.2. In
this work, we focus on the first case, even though we can also apply our proposed approach
to the other options.

17

2. Background and Preliminaries

d

UAV

sd-s

(a)

UAV
s

(b)

d

UAV

sd-s

+ max(qa)

(c)

Figure 2.2.: When testing the safe behavior of UAVs, we can test against (a) a given safety
distance s, (b) with a safe operating envelope around the UAV, here in blue, or
(c) against a given safety distance s and additional quality attributes qa.

2.4. Optimization Algorithms

When searching for “good” test cases, our search space is too high dimensional to apply
exact algorithms such as integer linear programming, dynamic programming, or branch-
and-bound [98]. Instead, we can use different optimization algorithms such as heuristic
algorithms or surrogate optimization algorithms to compute sound solutions for our prob-
lem with a decent cost-benefit ratio. However, these optimization algorithms cannot provide
a guarantee to find an optimal solution for a given problem. We discuss the implications of
this downside and a potential approach to solve this problem in Chapter 6. In this work,
we focus on three optimization algorithms, namely NSGAII, Particle Swarm Optimization
(PSO), and Bayesian Optimization (BO), which we describe in more detail in the following
subsections.

2.4.1. Non-dominated Sorting Genetic Algorithm II (NSGAII)

NSGAII [32] is the state-of-the-art optimization algorithm for generating “good” test cases
for ADS and UAVs [48, 114, 146]. The algorithm works with populations which are a set
of candidates that represent test cases for the SUT in our use case. During its operation,
NSGAII tries to improve the quality of the test cases in subsequent populations to achieve
the specified goal described by the fitness function. The algorithm is based on the survival-
of-the-fittest principle to find sound solutions. Further, it applies elitism to guarantee
that these solutions are part of future populations and do not get lost. To achieve these
two purposes, NSGAII uses so-called non-dominated sets of the last two populations
for choosing new candidates for the next population. A non-dominated set includes all
candidates of a population that are not dominated by other candidates, as the name suggests.
We depict the workflow of NSGAII in Fig. 2.3 and outline it in the following: First, NSGAII
creates an initial population of N candidates P0 that it chooses randomly from the given
search space 1 . As the termination criterion is not yet met 2 , the algorithm computes the
fitness of each candidate of this population with the provided fitness function 3 . Based on

18

2. Background and Preliminaries

Retrieve Fitness for Each
Population Candidate

Create Ranked Non-Dominated
Sets 𝐹𝑖 for 𝑃𝑡 and 𝑃𝑡−1

Choose N Candidates
From Best Ranked 𝐹𝑖

Apply Genetic
Operations

Create Initial
Population 𝑃0

Termination
Criterion Met?

Start 1

End2

3

45

6

yes

no

Control Flow
Activity

Figure 2.3.: Workflow of the optimization algorithm NSGAII.

these fitness values, NSGAII creates the non-dominated sets Fi 4 . The first set F1 contains
those candidates of the population that are not dominated by other candidates. Next, we
exclude the candidates of F1 and collect the candidates that are not dominated by the others
in this reduced set in F2. We repeat this process until we have ranked all candidates into
non-dominated sets. After the initial population, we include the candidates of the previous
population Pt−1 and the current population Pt for building Fi in this step. Then, NSGAII
chooses N candidates from the best ranked non-dominated sets Fi for the next population
5 . Before repeating the described process, the algorithm applies genetic operations such

as selection, mutation, and crossover operations to explore candidates close to the already
evaluated ones 6 . When the termination criterion is met 2 , NSGAII returns the best
performing candidates according to the fitness function.

2.4.2. Particle Swarm Optimization (PSO)

As another heuristic optimization algorithm, PSO [56] is frequently part of empirical case
studies about the performance of various optimization algorithms for different problems
[122, 125]. For generating sound solutions, PSO imitates how animals behave in a flock
with the help of so-called particles. Each of these particles presents a test case for the SUT
and has a position that represents its location in the search space and a velocity with which
it moves through the search space in a specified direction. Each particle further stores the
best fitness value it achieved so far in a variable called pbest. In addition, PSO stores the
overall best fitness value found until now in a variable with the name gbest. We present
the process of PSO for creating sound solutions in Fig. 2.4. First, the algorithm spreads N
particles randomly over the search space 1 . As the termination criterion is not yet met
2 , PSO calculates the fitness value for each particle with the provided fitness function 3 .

19

2. Background and Preliminaries

Retrieve Fitness for
Each Particle

Compare Current Fitness With
pbest and Update Accordingly

Compare Each pbest With
gbest and Update Accordingly

Modify Particles to Pull Them
Towards pbest and gbest

Randomly Spread Particles
Over Search Space

Termination
Criterion Met?

Start 1

End2

3

45

6

yes

no

Control Flow
Activity

Figure 2.4.: Workflow of the optimization algorithm PSO.

Then, it checks whether the current fitness of each particle is better than their stored pbest
4 . If this is the case, PSO updates pbest to the current location and fitness value. Next, PSO

compares the pbest of each particle with the fitness value of gbest 5 , which denotes the
globally best fitness value achieved so far. If one of the particles has a pbest with a better
fitness value than gbest, we change the position and fitness value of gbest to the parameter
values of this particle. Finally, the algorithm alters the particles’ positions and velocities by
pulling them towards their pbest and gbest 6 . The algorithm repeats this process until a
termination criterion is met 2 and afterward returns the candidates with the best fitness
value.

2.4.3. Bayesian Optimization (BO)

The optimization algorithm BO [96] uses another approach than NSGAII and PSO to
generate “good” test cases for our SUT. As there are various implementations of this
algorithm in the literature, we decided to focus on the one from Frazier et al. [42]. Contrary
to the other presented algorithms, BO models the fitness function with a Gaussian process
and retrieves candidates based on the posterior distribution of this process. For generating a
new candidate, the algorithm applies an acquisition function to yield a promising candidate.
There are various acquisition functions, e.g., probability of improvement, upper confidence
bound, or expected improvement. In Fig. 2.5, we present an overview of the process of
BO for generating sound solutions for a given problem. First, BO uses a Gaussian process
to represent the provided fitness function 1 , as mentioned before. Next, it randomly
chooses candidates from the search space and evaluates their fitness with the given fitness
function 2 . As the termination criterion is unmet 3 , the algorithm updates the Gaussian
process with the candidates and their fitness values 4 . Then, BO utilizes an acquisition
function to gain the next promising candidate for a decent solution 5 . Finally, the algorithm

20

2. Background and Preliminaries

Update Gaussian Process
With Collected Data

Retrieve Fitness of Randomly
Created Initial Candidates

Termination
Criterion Met?

Start 1

End

2

3

4

5

6

yes

no

Control Flow
Activity

Compute Next Candidate
Based on Acquisition Function

Retrieve Fitness Value for
Next Candidate

Model the Fitness Function
With a Gaussian Process

Figure 2.5.: Workflow of the optimization algorithm BO.

calculates the fitness of the retrieved candidate with the provided fitness function 6 before
reiterating through the process. When the termination criterion is met 3 , BO returns
the best performing candidates for the given search problem as the other optimization
algorithms.

In addition, BO offers the possibility to compute a 95% credible interval. With such a
credible interval, we describe a range of values in which the fitness values of the given
fitness function reside with a probability of 95%. However, to achieve tight credible intervals
that provide insight into the safe behavior of the SUT beyond the evaluated candidates, we
need to perform a large number of evaluations. As testing the safe behavior of UAVs is
highly time-consuming, we usually cannot perform such a large number of evaluations.
In addition, the high dimensionality of our search space for this problem complicates the
computations concerning memory consumption.

21

Part II.

Logical Scenario Derivation

23

3. Methods and Challenges of Deriving
Logical Scenarios for UAVs

This chapter outlines one of the fundamental challenges of scenario-based testing:
the definition of logical scenarios to test the UAVs’ safe behavior. First, it
discusses the challenges of automatically deriving logical scenarios from collected
flight data before providing an ontology to characterize them based on mental
models for a quadcopter as one kind of UAV. Parts of this chapter previously
appeared in a peer-reviewed submission under review [118] co-authored by the
author of this thesis.

3.1. Introduction

When testing the safe behavior of UAVs with scenario-based testing, we aim to ensure that
the SUT will behave safely in each relevant situation that it might encounter in the real
world. We describe these situations with various parameters and call them logical scenarios,
as explained in Section 2.2. We can derive logical scenarios for testing the safe behavior
of UAVs in two ways: (1) automatically by clustering relevant real-world flight data that
we previously collected, or (2) manually based on mental models of relevant situations
presented in the literature, specifications, or expert knowledge. In this chapter, we first
present an approach for (1) and discuss its open research challenges before focusing on
acquiring logical scenarios based on mental models, as introduced in (2). When applying
this second approach, we can divide the main challenge of deriving all relevant logical
scenarios based on mental models into the following four sub-problems: (1) finding relevant
dimensions to represent logical scenarios, (2) investigating a suitable level of granularity
for describing logical scenarios for a SUT, (3) presenting the derived logical scenarios in a
machine-readable way, and (4) combining the acquired dimensions to collect specific logical
scenarios that represent relevant and challenging situations for the SUT.

In related work, use case scenarios for UAVs [36, 72, 110] focus on the mission of the UAVs
and include a limited number of environmental effects. Extending their work, we aim to
provide an ontology that presents relevant dimensions for characterizing logical scenarios
for UAVs in more detail. For testing the safe behavior of ADS, there exist such ontologies
[10, 90] that describe logical scenarios for these systems. However, these ontologies present
meta-models of these situations and lack concrete dimensions to derive specific logical

25

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

scenarios. In addition, these ontologies focus on logical scenarios for ADS which look
different than those for UAVs. Considering sub-problem (1), several papers [22, 51, 124]
focus on specific use cases or systems when describing relevant dimensions for logical
scenarios for UAVs. We use their work and papers from other domains [11, 67] as a basis for
providing an ontology that describes all relevant dimensions for testing the safe behavior
of UAVs in this work. In the automotive domain, several papers [46, 47, 90] stress the
importance of finding a suitable level of granularity when describing logical scenarios,
which presents sub-problem (2). Still, choosing an adequate granularity level remains an
open research challenge. In terms of sub-problem (3), existing languages concentrate on
describing logical and concrete scenarios [7, 53, 99] for testing ADS or specific situations for
aircraft landing scenarios. Finally, [68] presents one approach for tackling sub-problem (4) by
applying combinatorial methods for selecting specific logical scenarios from the dimensions
of an ontology for ADS. In our opinion, this selection process should be performed system-
specifically and based on a corresponding defect hypothesis of challenging situations for
the SUT.

The contribution of this chapter is, firstly, a discussion about the applicability and
the open research challenges for automatically deriving logical scenarios for UAVs. In
addition, we secondly present an ontology that characterizes relevant and challenging
logical scenarios for testing the safe behavior of a quadcopter as one kind of UAV based
on mental models. To allow test engineers and researchers to create similar ontologies for
relevant logical scenarios for their SUTs, we further introduce the systematic methodology
to derive such an ontology. Note that we consider the presented ontology as a “living
model” that we can adapt to newly arising challenging situations for the SUT.

3.2. Challenges of Clustering Collected Data to Automatically
Acquire Logical Scenarios

As mentioned earlier, we can acquire logical scenarios (1) automatically with clustering
techniques, or (2) based on mental models. When we aim to apply the first approach and
automatically derive logical scenarios for our SUT with clustering techniques, we need
high amounts of diverse and relevant real-world flight data from UAVs similar to our
SUT as input. Ideally, we then gain logical scenarios from this data that can complement
the manually derived ones from mental models. However, we currently lack these high
amounts of diverse data for UAVs to apply this automatic derivation. Nonetheless, we
show the general idea of using these clustering techniques to acquire logical scenarios and
point out their challenges in this section by using simulated data.

3.2.1. Automated Clustering Approach

For automatically clustering collected real-flight data to derive logical scenarios, we adapt
approaches from the literature [47, 113] co-authored by the author of this thesis. Figure 3.1

26

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

Start End

Z-Normalization
Distance

Computation
Principal

Component Analysis
Clustering

2

1

3

4

5

6

7

8

Control Flow
Data Flow

Resource
Activity

Reduced
Distance Matrix

Collected
Data

Normalized
Data

Distance
Matrix

Cluster

9

Figure 3.1.: Process overview of the clustering approach for automatically deriving logical
scenarios for UAVs from collected real-world data.

depicts an overview of this automated clustering approach for acquiring logical scenarios
for testing the safe behavior of UAVs. The input to the clustering approach is the collected
real-flight data 1 representing diverse and relevant data for the SUT in the form of concrete
scenario instances. As logical scenarios group concrete scenarios of a similar structure, we
first apply z-normalization 2 to the data to focus on the structure of the data rather than
the absolute values we collected. For example, a logical scenario might describe several
concrete scenarios in which the UAV speeds up by 5 kilometers per hour in 1 second. In this
logical scenario, we focus on the speed increase and neglect the concrete starting speeds
such as 1 kilometers per hour or 10 kilometers per hour of the various concrete scenarios. As
a result of this step, we gain normalized data 3 . Next, we feed this normalized data into the
distance computation step 4 . The distance between two concrete scenarios describes their
similarity, with two identical concrete scenarios having a distance of zero. We calculate the
distance between the collected concrete scenarios with Dynamic Time Warping (DTW) [86],
as proposed in [16, 47, 69, 113]. We apply DTW since it can detect similar concrete scenarios
even if their behavior is distorted along the temporal axis, as it often occurs in real-world
data. After computing DTW distances between the parameters of two concrete scenarios,
we can either work with these non-aggregated distances or aggregate them using, e.g., the
squared sum of these values. Finally, we apply a min-max-normalization to the computed
distances to scale all parameters to the interval [0, 1]. As a result of step 4 , we gain a
distance matrix 5 that represents the similarity between each of the collected concrete
scenarios of our data. Before clustering based on this distance matrix, we apply a Principal
Component Analysis (PCA) 6 to reduce its dimensionality and improve the clustering
results. On this reduced distance matrix 7 , we then apply a selected clustering method 8
such as K-Means [75], Hierarchical Clustering algorithms [87], or DBSCAN [39]. Depending
on the chosen clustering method, we further need to apply techniques for finding an optimal
number of clusters k. The literature proposes to compute the clustering for all possible
numbers of clusters k and then use a knee/elbow detector such as Kneedle [111] to find

27

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

the optimal k. We can detect this knee or elbow in, e.g., the Silhouette Scores [106], the
Calinski-Harabasz Indices [18], or the distortion values discovered for the varying cluster
numbers. As a final result of this approach, we gain the computed clusters 9 that represent
the logical scenarios acquired from the collected real-flight data.

Note that the gathered data can contain different collected parameters from the real-world
flights of UAVs and that this clustering approach includes various parameters, such as
the applied aggregation method, the used clustering algorithm, and the utilized metric
for finding an optimal k. Due to these different parameters, we encourage researchers
to execute an analysis for the various parameters when applying this approach. When
performing such an analysis, we face the open research challenge of evaluating the quality
of the generated clustering. In general, we look for a small number of large clusters that
represent common logical scenarios that the UAV encounters and a high number of small
clusters that represent rarely occurring logical scenarios still relevant for the UAV. This
description, however, does not provide a concrete measurement to assess the quality of a
clustering result. In related work, one approach in the automotive domain [47, 103, 136] is
the manual analysis of the trajectories in each computed cluster to derive a corresponding
logical scenario and evaluate the quality of the created clusters. However, such a manual
analysis does not scale for the high amounts of data we need to investigate when acquiring
logical scenarios from collected concrete scenarios. This problem of automatically assessing
the quality of the resulting clustering is a general open research challenge in the clustering
community. Accordingly, we believe that solving this research challenge in the future will
be fundamental for the automatic derivation of logical scenarios for testing the safe behavior
of UAVs with the presented methodology.

3.2.2. Experiments

Since we currently lack high amounts of relevant and diverse real-world flight data for
UAVs to apply the presented clustering approach, we show its general applicability and
its challenges with simulated flight data on a small scale. Note that we base the recording
of this simulated data on logical scenarios based on mental models, which might impact
the clustering results. In addition, we only conduct experiments on small data sets since
we want to present the existing challenges and do not aim to acquire new logical scenarios
from the evaluated data sets.

Setup and Implementation

In our experiments, we evaluate two data sets, one that includes concrete scenarios from
distinct logical scenarios and one that incorporates concrete scenarios from similar logical
scenarios. For each of these data sets, we simulate the UAV’s behavior in five logical
scenarios and collect data from 10 concrete scenarios for each of them. Thus, each data set
consists of 50 concrete scenarios. In Table 3.1, we present the characteristics of the logical
scenarios for which we collect data for the two data sets in our experiments by defining

28

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

their included landform, surface nature, obstacles, wind force, and reduced visibility. In
the presented analysis, we focus on the difference between the two clustering algorithms,
KMeans and Agglomerative Hierarchical Clustering, between the two metrics Silhouette
Score and distortion values for finding an optimal k for these clustering algorithms, and
between collecting 7 and 20 parameters of the UAV in the gathered data. We acquire data
about the UAV’s position in x-, y-, and z-direction and its orientation in x-, y-, z-, and
w-direction. For the 20 parameters, we further include the linear acceleration in x-, y-,
and z-direction, the linear speed in x-, y-, and z-direction, the angular velocity of one
of the rotors in x-, y-, and z-direction and the distance of the UAV to each of the up to
four obstacles in the concrete scenarios. We record these parameters every 0.33 seconds to
enable a decent representation of the UAV’s behavior. In addition, we use squared sum
to aggregate the computed distances and do not compare other aggregation methods in
our experiments. Note that this analysis does not present an evaluation of all possible
settings for the proposed clustering approach but concentrates on those that seem to provide
promising results. Finally, we set the PCA to retain 95% of the variance in the data in our
experiments.

For implementing the proposed clustering approach, we use the fastdtw library [107]
to calculate the DTW distances between the concrete scenarios and the Scikit-learn frame-
work [95] for implementing the clustering algorithms, the metrics for finding an optimal
number of clusters k, the min-max-normalization, and the PCA. We apply the Kneedle
algorithm [111] to locate the optimal k in the presented metric values. To enable the repro-
ducibility of these experiments, we present the version number of the used libraries, in
Appendix B. In addition, we provide the concrete scenarios of the data sets used as input
for the experiments, the computed DTW distances, and the clustering results for all settings
in [112].

Experimental Results

In Table 3.2, we present the results of our analysis for the two data sets, one with the
distinct logical scenarios D1-D5 and one with the similar logical scenarios S1-S5, which we
characterize in Table 3.1. We further mark those clustering results which are identical for
different settings. The presented results focus on the number of clusters that each setting
produces and the size of these clusters. We consider clusters with one to five scenario
instances as “small” and those with six or more scenario instances as “large”. For the
distinct logical scenarios and 20 collected parameter values, KMeans and Hierarchical
clustering based on the Silhouette Scores produce the identical two large clusters, whereas
the same algorithms based on the distortion values produce nine to ten clusters of which
only four are large. When only considering seven parameters in our collected data, most
of the settings create the identical nine clusters for this data set, with the exception of
Hierarchical clustering based on silhouette scores with eleven clusters. For the second
data set of similar logical scenarios, only the clustering results of KMeans and Hierarchical
clustering for seven parameters and based on the Silhouette Score values are identical with

29

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

Table 3.1.: The logical scenarios on which we base the data collection in our experiments.
They include a landform (flat F, elevation E, depression D, or steep transition ST),
a surface nature (land L, water W, or a mixture M of them), the obstacles’ kind
(static ST or dynamic DY), the obstacles’ size (small S, medium M, or large L),
the obstacles’ form (cuboid CU, sphere SP, or cylinder CY), the included wind
force (none N, light L, moderate M, or strong S), and the reduced visibility (none
N, fog F, heavy fog HF, or thick fog TF).

Distinct Logical Scenarios Similar Logical Scenarios

Scenario D1 D2 D3 D4 D5 S1 S2 S3 S4 S5

Landform F F D E ST D D D D D
Nature L M L L M L W L M W
Wind L S N N S L M S L S
Red. Visibility N TF F N N HF HF HF N N
Obstacles 3 4 2 4 4 3 4 4 1 4

ST DY DY ST DY ST DY ST DY ST
Obstacle ST DY DY DY ST ST DY ST — ST
Kinds DY DY — ST DY ST DY DY — ST

— DY — DY DY — DY ST — DY

L S L L S L M M S L
Obstacle L S S L M M L S — L
Sizes M S — S M M M L — L

— S — S L — M S — M

CU CY CY CY SP SP CY CU CU SP
Obstacle CU SP CY CU SP CY CY SP — CY
Forms SP CY — CU CU CU CU CU — CY

— CY — SP SP — SP CU — CY

one small and one large cluster. The other settings produce different cluster results of six to
twelve clusters, even though some of these clustering results are very similar. In Fig. 3.2,
we display this slight difference by plotting the two principal dimensions of the clusters for
seven collected parameters and the clustering results of KMeans and Hierarchical clustering
based on the distortion values. This figure displays that the different settings assign only
two of the 50 data points to other clusters, which we highlight with the red boxes in the
figure.

30

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

2 0 2 4 6 8
1st principal component

4

2

0

2

4

6

2n
d

pr
inc

ipa
l c

om
po

ne
nt

Cluster
0
1
2
3
4
5
6
7
8

Cluster
0
1
2
3
4
5
6
7
8

(i) Clustering results with KMeans based on distortion values for seven recorded parameters of the
data set based on the similar logical scenarios S1-S5.

2 0 2 4 6 8
1st principal component

4

2

0

2

4

6

2n
d

pr
inc

ipa
l c

om
po

ne
nt

Cluster
0
1
2
3
4
5
6
7
8

Cluster
0
1
2
3
4
5
6
7
8

(ii) Clustering results with Hierarchical clustering based on distortion values for seven recorded
parameters of the data set based on the similar logical scenarios S1-S5.

Figure 3.2.: We depict the slight difference between the clustering results of the presented
two settings with the red boxes in 2D plots of the clusters. The clustering
algorithms assign two of the 50 data points to different clusters.

31

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

Table 3.2.: Experimental results of an analysis of different settings for our proposed clus-
tering approach. We present the number of clusters in the resulting clustering
and their size. A small cluster S includes one to five concrete scenarios, whereas
a large cluster L contains six or more instances. In addition, we mark those
clustering results that produce identical clusters for different settings with the
symbols ∗, ♦, and O.

20 Parameter 7 Parameter
KMeans Hierarchical KMeans Hierarchical

Dist. Sil. Dist. Sil. Dist. Sil. Dist. Sil.

Distinct Logical Scenarios D1-D5

cluster 9 2∗ 10 2∗ 9♦ 9♦ 9♦ 11
cluster sizes 5S/4L 0S/2L 6S/4L 0S/2L 4S/5L 4S/5L 4S/5L 6S/5L

Similar Logical Scenarios S1-S5

cluster 12 6 9 6 9 2O 9 2O

cluster sizes 8S/4L 2S/4L 4S/5L 2S/4L 7S/2L 1S/1L 7S/2L 1S/1L

Discussion

With our experiments, we aim to demonstrate the applicability of the presented clustering
approach for automatically deriving logical scenarios for UAVs and outline its challenges.
Since we currently lack high amounts of real-world flight data, we perform these experi-
ments on simulated flight data, which is reasonable for our presented goals. As mentioned
earlier, assessing the quality of the clustering results is still an open research challenge. In
general, we are interested in a small number of large clusters and a large number of small
clusters to represent logical scenarios for testing the safe behavior of UAVs.

Our experimental results show a considerable difference in the clustering when recording
the UAV’s behavior with 7 or 20 parameters. While finding an optimal number of clusters
k based on the Silhouette Score, the clustering algorithms generate two large clusters for
the distinct scenarios and 20 recorded parameters. On the contrary, they create nine to
eleven clusters for seven parameters. Since two large clusters do not provide enough
insight to derive several relevant logical scenarios, only recording seven parameters seems
favorable. However, our results show a reversed effect for the similar logical scenarios
in the second data set and the same settings. These contradicting observations show the
difficulty of finding the best settings for the proposed clustering approach and further
indicate that the parameters of our collected data heavily impact the clustering results.
Thus, we need to ensure that we consciously acquire data for this approach and explore
the effect of different parameter combinations of this data. When inspecting the clustering
results generated based on the distortion values, we can find a more stable behavior in
the total number of clusters and their sizes when applying different settings. In addition,

32

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

in Fig. 3.2, we can observe only a slight difference between the results for KMeans and
Hierarchical clustering on data with seven parameters. Nonetheless, these different settings
produce various clustering results that might be relevant when automatically acquiring
logical scenarios from collected real-world flight data. Thus, we encourage researchers
to apply the presented clustering approach to various settings and consider all generated
results when deriving logical scenarios for testing the safe behavior of UAVs. Finally, we
encounter the problem of acquiring specific logical scenarios from the created clusters,
which is currently an active research area [62, 83, 127]. Here the question arises which
parameters of the data we should consider and whether all concrete scenarios in a cluster
provide the intervals for these parameters or only those instances at the cluster’s center.
In addition, when our data does not include any parameters about the environment of
the UAV, we might not be able to represent the derived logical scenario adequately. Even
though environment data is missing in the recorded flight data, the clustering algorithm
might still be able to see different effects of the environment on the UAV’s behavior and
cluster the data accordingly. However, we cannot trace these effects back when describing
logical scenarios when we lack the required information about the environment.

Overall, we showed the applicability of the proposed method for clustering collected data
to acquire logical scenarios. During our experiments, we discovered several open research
challenges that we currently face for the presented technique: (1) we need high amounts
of relevant and diverse data for our SUT that we currently lack to complement logical
scenarios based on mental models, (2) since various settings for the clustering approach
provide different results, we need to either define a measure to describe the quality of
the generated clustering or consider the results of all reasonable settings when deriving
logical scenarios, (3) since the characteristics of the collected data heavily influence the
clustering results, we need to consciously acquire this data for our use case, and (4) missing
information about the environment of the UAV might complicate explicitly describing the
derived logical scenarios. Due to these presented open research challenges, we set our
research focus on acquiring logical scenarios based on mental models, as suggested in
[11, 82], which we introduce in the second part of this chapter.

3.3. Systematic Derivation of Logical Scenarios Based On Mental
Models

When collecting logical scenarios for UAVs based on mental models randomly, it gets
challenging to acquire a complete list of relevant logical scenarios for a SUT. To ease this
challenge, we propose a systematic methodology for the derivation. Note, however, that
a systematic method does not entail completeness by itself. In this section, we present a
systematic approach for building an ontology to describe relevant logical scenarios for a
SUT. We believe that the derived ontology will not be static but will change over time when
discovering new hazardous situations or new applications for the SUT.

33

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

Start End

Ontology Dimensions
Derivation

Granularity
Refinement

Schema
Derivation

Selection of Logical
Scenarios to Test

1

2

3

4

5

6

7

8
Control Flow
Data Flow

Resource
Activity

Ontology
Dimensions

Ontology With
Suitable Granularity
for SUT

Schema for
Logical Scenarios

List of
Logical Scenarios

Figure 3.3.: Methodology for systematically deriving logical scenarios for testing the safe
behavior of UAVs. A previous version appeared in [118].

3.3.1. Methodology

Figure 3.3 presents the proposed methodology. First, we describe the relevant dimensions
of logical scenarios for UAVs with an ontology 1 . In this step, we emphasize which aspects
are essential when testing the safe behavior of UAVs, e.g., characteristics of the tested UAVs,
their mission, and their environment. As a result of this step, we gain dimensions for an
ontology that characterizes logical scenarios for UAVs 2 . In the next step 3 , we need
to refine the generated outline of an ontology for logical scenarios. By defining suitable
sub-categories for each dimension, we specify a detailed and adjusted ontology for logical
scenarios for the SUT 4 . An example of such a suitable sub-categorization is the refinement
of the wind force as one dimension of the UAVs’ environment. Different wind forces will
be challenging for (1) a small UAV that operates near the ground or (2) a large UAV that
flies in high altitudes. For system (1), light wind might be represented by wind forces
of 1 to 4 kilometers per hour, while for system (2), wind forces of 1 to 20 kilometers per
hour might present light wind conditions. By providing a system-specific and fine-grained
categorization of different wind forces, we can test each system in wind situations that are
challenging for this system. After creating the system-specific ontology, we need to provide
a way of writing down specific logical scenarios. To this end, we derive a JavaScript Object
Notation (JSON) or Extensible Markup Language (XML) schema from the ontology 5 in
the next step. The generated schema 6 enables us to describe specific logical scenarios
and verify that the created specific logical scenarios are valid with respect to the provided
ontology. The number of all parameter combinations quickly becomes intractable. In step
7 , we hence select and write down specific logical scenarios 8 in which we aim to test

the UAV’s safe behavior. We can base this selection process on different general defect
hypotheses, which influence the completeness of the collected challenging situations for
the SUT.

34

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

3.3.2. Application to a Quadcopter

In this subsection, we apply the described approach to systematically derive logical scenar-
ios for a quadcopter as one kind of UAV which, e.g., transports a package or monitors an
area. We show the results of each step of the methodology presented in Fig. 3.3.

Derivation of Ontology Dimensions

First, we derive the ontology dimensions characterizing logical scenarios for UAVs. This
step is mainly generic for different types of UAVs and needs little adaptation for specific
systems. In this work, we acquire these ontology dimensions from the literature, expert
knowledge about hazardous situations for UAVs, and essential aspects for testing these
systems. We categorize the derived dimensions into system- and environment-related ones.

System-related dimensions specify details about (1) the maneuvers and failures of the UAVs
present in the logical scenario and (2) their cooperation if existing. Since various maneuvers
lead to different flight trajectories, we need to test if the UAV behaves safely in each
maneuver that it might perform during operation. In addition, we need to acknowledge
that UAVs will encounter failures of different types and degrees. A safely behaving UAV
should handle such failures and still present a safe behavior by, e.g., opening a parachute to
land. When defining logical scenarios for cooperative UAVs, we further need to describe the
cooperation between the UAVs. Based on several works [20, 40, 94, 138, 145] that categorize
cooperation mechanisms for autonomous robots, we derive the following sub-dimensions:
Communication, Coordination, Organization, and Knowledge. The type of cooperation will
influence the behavior of each UAV in the group of UAVs. Each UAV might take different
actions or flight trajectories depending on the cooperation type. Consequently, we need to
take these various aspects into account when testing the safe behavior of cooperative UAVs.

Environment-related dimensions define the characteristics of (1) the flight area, (2) the
present obstacles, and (3) the weather that occurs during the logical scenario. We can
describe the flight area in which the UAV performs its mission by its landform and sur-
face nature. Since various landforms such as elevation or depression can cause different
challenging situations for the UAV, we need to investigate their impact in various logical
scenarios. Further, different types of surfaces such as water or land might present varying
difficulties for the UAV. These diverse circumstances might compromise sensor readings
and, thus, should be included when testing the safe behavior of UAVs. In addition, we
specify the included obstacles by defining their kind, size, and form. A UAV that avoids an
obstacle, e.g., by flying around it, changes its flight trajectory compared to its regular one.
For situations that the UAV encounters after avoiding an obstacle, this changed trajectory
might lead to an unsafe behavior of the UAV. Thus, we need to test the UAV in logical
scenarios with different obstacles to enable thorough testing of the UAV in all situations
that it might encounter. We base the sub-dimensions for describing the weather of logi-
cal scenarios on well-known weather hazards found in the literature. We can refine the
weather in a logical scenario into lighting conditions [63], wind force [2, 14, 63, 128], ambient

35

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

temperature [2, 128], precipitation [2, 14, 63], cloud coverage [63], reduced visibility [63],
and the presence of lightning [2, 14, 63]. The weather conditions might impact the sensor
readings or rotor capabilities of the UAV. Due to low light or heavy rain, the UAV might
not detect obstacles timely to avoid them. This example shows that we need to consider
these conditions when testing the safe behavior of UAVs that we aim to apply outdoors and
that might encounter these conditions. Note that we acquired these ontology dimensions
based on existing literature and expert knowledge about relevant dimensions for logical
scenarios for quadcopters. Additional dimensions may be suitable to describe these logical
scenarios, such as the wind direction or wind gusts. Since we view the generated ontology
as a “living model”, we can adjust and expand these dimensions to newly discovered
challenging situations and circumstances for the SUT. Thus, we do not claim to represent
all relevant dimensions for all kinds of UAVs with the presented ones but, instead, aim to
provide an overview of relevant ones that we can adapt for the SUT.

System-Specific Granularity Refinement

In the next step, we derive sub-categories for each dimension with a suitable granularity for
a quadcopter. Note the need to refine these dimensions system-specifically since different
environments are challenging for various systems. A small UAV, for example, can cope
with only light wind conditions, while a larger one might be able to handle heavier wind
conditions. We can derive these sub-categories from expert knowledge, specifications, and
existing regulations relevant to the SUT. Figures 3.4 and 3.5 depict the derived fine-granular
ontology for a quadcopter.

Depending on the concrete use cases of the UAV, experts might find various maneu-
vers and possible failures relevant for their SUTs. For inspiration, [14] provides a list of
maneuvers and different types of failures for multiple UAVs such as motor, rudder, aileron,
GPS, or control loss failures. Further, we can simplify the presented maneuvers to the
following basic maneuvers: Take Off, Hover, Landing, Move to Waypoint, and Exploration
Mission. For describing the cooperation dimension of the ontology, we rely on several works
[20, 40, 94, 138, 145] about cooperation mechanisms for autonomous robots that present
the four sub-dimensions: Communication, Coordination, Organization, and Knowledge.
When UAVs cooperate, they can communicate directly, indirectly, or not at all. The indirect
communication can occur via a base station [145], stigmergy [20, 40, 94, 138], or sensing
[20, 94, 138]. The coordination sub-dimension describes the influence of the UAVs’ actions
on the behavior of the other UAVs. If coordination takes place, we can perform it with or
without a given coordination protocol [40]. Further, the organization of cooperative UAVs
can either be centralized, decentralized, or a hybrid combination. In a centralized organization,
a predefined or dynamically selected leader UAV provides commands to the other UAVs.
In contrast, UAVs decide how to fulfill the mission autonomously in a decentralized orga-
nization. The UAVs build groups with local leader UAVs in a hierarchical organization,
which the authors of [20, 138] regard as a decentralized organization, while [94] considers
it a hybrid approach. Finally, in [20, 40], the authors distinguish cooperation mechanisms

36

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

Maneuvers

UAVs

System

Logical Scenario

Take Off Hover Landing Move to
Waypoint

Exploration
Mission

Environment

Failures

Type

Degree

Motor Rudder Aileron GPS Control Loss

 None
0-1%

 Light
1-30%

 Moderate
30-60%

 Serious
60-100%

Communication

Cooperation

Organization

Coordination

Knowledge

Direct Indirect None

With Protocol Without
Protocol None

Centralized Decentralized Hybrid

Aware Unaware

Figure 3.4.: The first of two parts of the derived ontology with a suitable granularity level
for a quadcopter. A previous version appeared in [118].

on whether the systems are aware or unaware of each other. If a UAV knows about the
intentions and actions of other UAVs, the UAV can derive possible subsequent actions and
flight maneuvers of the other UAVs.

For the environment dimensions, we group the various landforms described by [79] into
the following four categories, excluding underwater and underground ones: flat, depression,
elevation, and steep transition describing, e.g., a cliff. In addition, we describe the surface
nature of the flight area as primarily land, mainly water, or a mixture of these two options.
In Fig. 3.6, we present exemplary worlds for the presented sub-categories landform and
surface nature. For the kind of obstacles, we consider static obstacles placed at a specific
point in the simulation world and dynamic obstacles defined by a starting position, target

37

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

System

Logical Scenario

Environment

Flight Area

Landform

Nature

Flat Depression Elevation Steep
Transition

 Land
80-100%

 Mixture
Land-Water

 Water
80-100%

Obstacles

Kind

Size

Shape

Static Dynamic

 Small
1.0-5.0 m

 Medium
5.0-10.0 m

 Large
10.0-20.0 m

Cuboid Sphere CylinderCylinder Cone Torus

Weather

Lighting

Wind Force

Temperature

Precipitation

Cloud Cover

Reduced
Visibility

Lightning

 None
0-20%

 Dim
20-70%

 Normal
70-100%

 Bright
100-150%

 None
0.0-1.0 km/h

 Light
1.0-4.0 km/h

 Moderate
4.0-8.0 km/h

 Strong
8.0-11.0 km/h

 Cold
Min - Min+5°C

 Moderate
Min+5°C - Max-5°C

 Hot
Max-5°C - Max

 None
0.0-0.1 cm/h

 Light
0.1-0.25 cm/h

 Moderate
0.25-0.76 cm/h

 Heavy
0.76-1.6 cm/h

 None
0-10%

 Moderate
10-50%

 Heavy
50-90%

 Complete
90-100%

 None
Full visibility

 Fog
< 1km visibility

 Heavy Fog
< 200m visibility

 Thick Fog
< 40m visibility

None Existing

Figure 3.5.: The second of two parts of the derived ontology with a suitable granularity
level for a quadcopter. A previous version appeared in [118].

38

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

Figure 3.6.: Exemplary worlds for the derived sub-categories landform and surface nature:
flat/land, depression/land, elevation/water, and steep transition/water.

position, and velocity. Considering the size of obstacles, we decided to distinguish between
small, medium, and large obstacles. Note that the size of each of these categories is dependent
on the size of the UAV. Considering the obstacle’s form, we approximate it to primitive
shapes such as cuboids, spheres, cylinders, cones, and tori, as mentioned in [119], for example.
For the lighting options, we base our categorization on common sense and regulations such
as AC 90-89B, which specifies how to perform flight tests for testing amateur-built aircraft.
We distinguish lighting into none, which equals a flight at night, dim, which represents
dawn or twilight conditions, normal, which presents normal light conditions during the day,
and bright, which denotes bright artificial light or light reflecting from snow. As a basis for
finding sub-categories for the wind force dimension, we can use the Beaufort Scale [44],
which categorizes different wind speeds. For our ontology, we assume that the considered
quadcopter loses control at wind forces larger than 11.0 kilometers per hour. Thus, we adjust
the categorization from the scale to a suitable level: none stands for a wind force between
0.0 and 1.0 kilometers per hour, light describes a wind force between 1.0 and 4.0 kilometers
per hour, moderate presents a wind force between 4.0 and 8.0 kilometers per hour, and
strong represents wind forces between 8.0 and 11.0 kilometers per hour. Since each UAV is
certified for a given range of ambient temperatures (Min,Max), we recommend using limit
testing for this dimension. Limit testing focuses on testing parameter values at the borders
of intervals. The category cold, thus, represents an operating temperature between Min and
Min+ 5 degrees Celsius, the category moderate denotes operating temperatures between
Min+5 and Max−5 degrees Celsius and the category hot defines an operating temperature
between Max− 5 and Max degrees Celsius. In addition, we follow the suggestion in [3]
to sub-divide the precipitation dimension into none denoting no precipitation, light with
a precipitation rate below 0.25 centimeters per hour, moderate with a precipitation rate
between 0.25 and 0.76 centimeters per hour, and heavy with a precipitation rate above 0.76
centimeters per hour. For the cloudiness of the sky, we propose to apply limit testing again.
We consider the two extremes of none and complete cloud cover to investigate effects such as
a potentially impaired GPS connection. For realistic scenarios, we further suggest adding
two categories between these extremes: moderate, which represents a sky filled up to 50%
with clouds and heavy for a sky covered by clouds for more than 50% but without full cloud
coverage. Further, we adopt the idea of [121] to divide the reduced visibility dimension

39

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

into four categories. None denotes a clear view with full visibility, fog describes a visibility
below 1 kilometer, heavy fog represents a visibility below 200 meters, and thick fog presents
a visibility below 40 meters. Finally, we distinguish between none lightning present and
lightning existing.

In this work, we aim to provide a comprehensive description of relevant dimensions that
characterize logical scenarios for a quadcopter as represented in the literature by collecting
all presented dimensions for the ontology based on existing specifications and literature.
In addition, we enable the adaptation of the derived dimensions by regarding the built
ontology as a “living model” and encourage the community to change it according to newly
arising relevant dimensions for their SUTs. Currently, we utilize constant values to describe
the categories in the presented ontology, e.g., moderate wind denotes a constant wind force
in the range of 4.0 to 8.0 kilometers per hour. We can further change these constant values
to functions to, e.g., represent wind gusts with varying wind speeds in this range over time.

Schema Derivation

To enable machine processing of logical scenarios for the provided ontology, we derive a
JSON schema of the ontology in the next step. We decided to use JSON due to its simple
syntax, its option to present various data types, and its easy and fast parsing possibilities.
Note that other formats such as XML are also valid options in this step. Figure 3.7 provides
an excerpt of the resulting JSON schema that focuses on describing the flight area present
in the logical scenarios. We depict the complete JSON schema in Appendix A. As presented
in Fig. 3.7, JSON enables us to specify the needed attributes of each dimension with the
required keyword and their possible values with the enum keyword. With these options, we
can limit the selected possible attributes of specific logical scenarios and, thus, validate the
correctness of a given logical scenario with respect to the provided ontology.

Selection of Logical Scenarios

As a final step, we need to choose specific logical scenarios for testing our SUT from the
created ontology since it is infeasible to consider all possible combinations of the ontology
dimensions. As mentioned earlier, we can use different defect hypotheses when selecting
logical scenarios from the ontology. There exist various general defect hypotheses, e.g.,
pair-wise testing of the ontology elements and UAV-specific defect hypotheses describing
challenging situations for UAVs. However, formulating an adequate defect hypothesis for
a SUT is challenging and is currently still an open research area. Thus, for the purpose of
this work and simplicity of presentation, we use two simple defect hypotheses in this work.
Table 3.3 shows the derived logical scenarios for these two simple defect hypotheses about
challenging situations for UAVs: (1) testing each sub-category of the ontology once, and (2)
testing the high impact of regional weather effects. Defect hypothesis (1) assumes that it is
sufficient to reach complete conditional coverage over all sub-categories of the ontology
to provoke all faults in the SUT and selects logical scenarios accordingly. Thus, for this

40

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

{ ..., "flight area": {
"type": "object",
"properties": {

"landform": {
"type": "string",
"enum": ["flat", "depression", "elevation",

"steep_transition"]↪→

},
"surface nature": {

"type": "string",
"enum": ["land", "mixture", "water"]

}
}, "required": ["landform", "surface nature"],
"additionalProperties": false

}, ...}

Figure 3.7.: Excerpt of the derived JSON schema for specifying logical scenarios for a quad-
copter, which focuses on the flight area dimension. A previous version appeared
in [118].

defect hypothesis, we derive, e.g., one logical scenario with a flat landform (E1) and one
with strong wind (E4), as we assume each of these environmental effects to independently
influence the SUT’s behavior. However, we do not expect the SUT to encounter other faults
when combining these specific environmental effects. The presented logical scenarios based
on the second defect hypothesis capture the following scenarios inspired by [37], who state
the difficulty of regional weather effects for UAVs: (R1) stormy weather with strong wind
and thick fog, (R2) coastal weather at a cliff with moderate wind, (R3) mountain weather
in an elevation landscape with light wind and fog, (R4) desert weather with moderate
wind, (R5) weather over a flat landmass with light wind, and (R6) weather over the sea
represented by a water surface and light wind. This defect hypothesis states that the SUT
shows all its faults when encountering regional weather effects, e.g., stormy weather (R1)
might lead to a malfunction of one of the rotors, and mountain weather with fog and an
elevation landscape (R4) might corrupt the sensor data, which might delay the detection
of obstacles. Further, we present logical scenarios based on the defect hypothesis that
pair-wise testing of the ontology’s elements is sufficient in Section 7.4.

We need to stress that the chosen logical scenarios only represent situations based on
the used defect hypothesis. Thus, we need to ensure that the applied defect hypothesis
represents all challenging situations for the SUT. In this work, we only show simple defect
hypotheses for several dimensions of the presented ontology and, thus, do not claim

41

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

Table 3.3.: The derived logical scenarios based on two different defect hypotheses that focus
on the environment-related dimensions. We present the parameters landform
(flat F, elevation E, depression D, or steep transition ST), surface nature (land L,
water W, or a mixture M of them), wind force (none N, light L, moderate M, or
strong S), reduced visibility (none N, fog F, heavy fog HF, or thick fog TF), and
various parameters about the included obstacles (static ST or dynamic DY; small
S, medium M, or large L; cuboid CU, sphere SP, or cylinder CY) of these logical
scenarios. A previous version appeared in [118].

(1) Each Category Once (2) Regional Weather Effects

Scenario E1 E2 E3 E4 R1 R2 R3 R4 R5 R6

Landform F D E ST D ST E D F F
Nature L W M L L M L L L W
Wind N L M S S M L M L L
Red. Visibility N F HF TF TF N F N N F
Obstacles 4 1 2 3 3 1 2 1 3 1

DY ST DY ST ST ST ST ST ST DY
Obstacle ST — ST DY DY — DY — ST —
Kinds DY — — DY DY — — — DY —

ST — — — — — — — — —

M S M S L S L M L S
Obstacle S — L M S — S — L —
Sizes S — — L S — — — M —

L — — — — — — — — —

SP CU SP CY CU CY CY CU CU SP
Obstacle CU — CY SP SP — SP — CU —
Forms CY — — CU CY — — — SP —

CU — — — — — — — — —

to acquire a comprehensive list of relevant logical scenarios from these hypotheses. As
mentioned before, the derived logical scenarios from the first defect hypothesis include
one logical scenario with a flat landform (E1) and one with strong wind (E4). However,
we might not provoke all failures of the SUT with these logical scenarios if the underlying
defect hypothesis is incorrect and, e.g., the specific combination of a flat landform and
strong wind leads to an unsafe behavior of the SUT. This observation indicates that only
if we can ensure (1) the correctness of the applied defect hypothesis for the SUT and (2)
the completeness of the created ontology, the derived logical scenarios based on this defect
hypothesis represent all challenging situations for the SUT.

42

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

3.4. Conclusion

We can derive logical scenarios for testing the safe behavior of UAVs (1) automatically with
clustering techniques or (2) based on mental models. Ideally, we gain logical scenarios from
both approaches that complement each other and present a comprehensive set of relevant
logical scenarios for the SUT. When applying the first approach, we need high amounts
of diverse and relevant real-world flight data, which we currently lack for testing UAVs.
Nonetheless, we show the general idea of using these clustering techniques to acquire
logical scenarios with simulated data and point out their challenges in the first part of this
chapter. When researchers apply these approaches, we strongly encourage them to execute
an analysis for the different parameters of the collected data and the clustering approach,
such as the used clustering algorithm or metric for finding an optimal number of clusters.
In our experiments, we present such an analysis on a small scale and based on simulated
data to outline the currently existing research challenges. We investigate the results of
applying the clustering algorithms KMeans and Agglomerative Hierarchical Clustering
and the two metrics Silhouette Score and distortion values for finding an optimal number
of clusters on data with 7 or 20 parameters. The experimental results present the general
applicability of clustering techniques to acquire logical scenarios and outline several open
research challenges for applying them: (1) we need high amounts of diverse and relevant
real-world flight data that we currently lack, (2) as we currently miss a quality measure for
the generated clustering, we either need to define such a measure or consider the results
for all suitable settings, (3) as the characteristics of the collected data heavily influence the
clustering results, we need to consciously acquire this data for our use case, and (4) if we
lack information about the UAV’s environment, explicitly describing the derived logical
scenarios gets more complicated. Due to these presented open research challenges, we set
our research focus on acquiring logical scenarios based on mental models in the second
part of this chapter.

In this second part, we outline the challenges of deriving logical scenarios for testing the
safe behavior of UAVs: (1) finding the relevant dimensions for logical scenarios, (2) defining
a suitable level of granularity for them, (3) writing them down, and (4) combining the found
dimensions to derive a manageable number of logical scenarios. To address several of these
challenges, we present an ontology characterizing logical scenarios for a quadcopter in this
work. Further, we describe how we systematically derive such an ontology to enable test
engineers to build similar ontologies for their UAVs. Note that we consider the presented
ontology a “living model” that we can adapt to newly discovered challenging situations
or applications. First, we collect the dimensions of logical scenarios for UAVs. After this
generic step, we refine these dimensions to a suitable level of granularity for the SUT. Note
the need to perform this refinement step system-specifically since different environments
are challenging for various systems. Next, we derive a JSON schema that represents
the ontology to enable writing down logical scenarios and verifying them with the built
ontology. Finally, we can apply a selection method to derive specific logical scenarios from
the created ontology. Depending on the correctness of the defect hypothesis on which we

43

3. Methods and Challenges of Deriving Logical Scenarios for UAVs

base this selection method, we might be able to further build a completeness argument
over the list of derived logical scenarios. Clearly, there is a trade-off between completeness
and practicability: If we use an inadequate defect hypothesis as a basis for selecting logical
scenarios, we might miss relevant situations for testing the SUT. However, if we can ensure
(1) the correctness of the used defect hypothesis for the SUT and (2) the completeness of the
generated ontology, we derive logical scenarios that represent all relevant situations for the
SUT.

In future work, we would like to investigate the open research challenges for automati-
cally deriving logical scenarios and investigate the correctness of various defect hypotheses
for selecting specific logical scenarios from an ontology to enable deriving a comprehensive
list of logical scenarios for UAVs in the future. In addition, we aim to generate ontologies
for other types of UAVs and compare their similarities and differences.

44

4. Exploration of Bounds for the Ontology’s
Dimensions

This chapter presents an automated approach for finding reasonable bounds for
the parameter values that each dimension of an ontology for logical scenarios
for UAVs describes. Further, it illustrates the approach with the example of
exploring an upper bound for the number of relevant obstacles to include in
logical scenarios. Parts of this chapter previously appeared in a peer-reviewed
publication [115] co-authored by the author of this thesis.

4.1. Introduction

When building an ontology that characterizes logical scenarios for testing the safe be-
havior of UAVs, we need to system-specifically divide the discovered dimensions into
sub-categories to represent various challenging situations for the SUT. For deriving these
sub-categories, we first need to define reasonable lower and upper bounds for the parameter
values of each dimension of the ontology. We can acquire these lower and upper bounds (1)
from expert knowledge and specifications or (2) from experimental results for decreasing or
increasing parameter values. An example of the first case is the temperature dimension.
The developers of a UAV often specify the temperature range in which one can operate
the UAV, e.g., 0 to 35 degrees Celsius. This information provides the lower and upper
bounds of the parameter values for the temperature dimension. Next, we can divide the
specified range of values into suitable sub-categories for the SUT, e.g., cold denoting 0
to 5 degrees Celsius, moderate presenting 5 to 30 degrees Celsius, and hot describing the
range 30 to 35 degrees Celsius. If we cannot acquire the lower and upper bounds from
specifications or expert knowledge, we need to find them by performing experiments with
different bounds for the parameters to investigate their influence on the UAV’s behavior.
The lower bounds for the dimensions are normally given by specifications or intuition,
e.g., 0 kilometers per hour representing the lower bound of the wind force dimension,
0 centimeters per hour presenting the lower bound of the precipitation dimension, or 0
obstacles as the lower bound for the number of obstacles to consider. On the contrary, we
cannot easily specify upper bounds for several dimensions, such as the upper bound for
the number of relevant obstacles or the number of wind directions to consider in logical
scenarios for UAVs. Thus, we need to evaluate the impact of increasing numbers of these
entities on the UAV’s behavior to find reasonable upper bounds for these dimensions.

45

4. Exploration of Bounds for the Ontology’s Dimensions

The contribution of this chapter is an automated approach for finding bounds for the
parameter values of the ontology’s dimensions presented with the example of finding an
upper bound for the number of relevant obstacles for our SUT. By defining reasonable
lower and upper bounds for the dimensions of the ontology, we effectively limit the
number of logical scenarios to test. We show the applicability of the presented approach in
experiments with two optimization algorithms and when recording different parameter
values to represent the UAV’s behavior.

4.2. Automated Derivation of Bounds

As mentioned before, we use the exploration of a maximal number of relevant obstacles
for the SUT as our example for presenting our proposed approach for finding bounds
for the ontology’s dimensions. When deriving a maximal number of relevant obstacles
for the SUT, we focus on those obstacles that impact the UAV’s behavior and trajectory
planning. Thus, we can dismiss obstacles located, e.g., 100 meters away and concentrate
on those residing in the surrounding area around the UAV. Since the UAV moves through
its environment during its mission, the relevance of specific obstacles varies over time.
However, the maximal number of relevant obstacles at each point is stable at any time.
Even though we might need fewer obstacles to provoke challenging situations for the
SUT in specific circumstances, we are interested in the maximum number of obstacles that
generally influence the UAV’s behavior here. Note that the relevance of an obstacle does
not only depend on its distance to the SUT but might also depend on other factors such as
the UAV’s size, type, or velocity. To experimentally explore an upper bound for the number
of relevant obstacles, we inspect the impact of a varying number of N obstacles on the
UAV’s behavior. We perform these experiments independent of a given logical scenario as
we aim to investigate the impact of obstacles on the SUT and do not focus on testing the
safe behavior of the SUT directly. After our approach yields a maximal number of relevant
obstacles M , we can build logical scenarios with 0 to M obstacles for the SUT, including
various environmental effects and missions, as presented in the previous chapter. In this
way, we derive a suitable upper bound for the obstacle dimension and limit the number of
logical scenarios to test by excluding those with more than M obstacles.

4.2.1. Black-Box Description of the UAV’s Behavior

When inspecting the impact of obstacles on the UAV’s behavior, we consider black-box
descriptions of its behavior in this chapter. Thus, we concentrate on the system states of the
UAV that we can observe externally. The pitch, roll, and yaw values of a UAV describe its
orientation and are one example of such externally observable system states. One reason
for using these parameter values in our experiments for finding an upper bound for the
number of relevant obstacles is the defect hypothesis that extreme orientation values present
challenging situations for the SUT. Depending on the SUT, this defect hypothesis might be

46

4. Exploration of Bounds for the Ontology’s Dimensions

correct and suitable as (1) extreme orientations of the UAV might lead to instability and
loss of control, and (2) the UAV needs to perform more extreme orientations when avoiding
obstacles in its environment. However, when testing a UAV that should perform maneuvers
with extreme orientations as part of its operation, such a defect hypothesis might not be
convenient for representing challenging situations for this system. In such a case, other
parameter values might be more suitable to discover demanding situations for the SUT,
such as the UAV’s linear velocity, which describes the UAV’s speed along a straight line,
its angular velocity, which represents the change in the angle that the UAV covers in a
given time, or its acceleration, which presents the rate of change of the UAV’s velocity over
time. Independent of the concrete parameter values that we use to describe the UAV’s state,
we investigate how a varying number of obstacles influences the range of these externally
observable values. If additional obstacles expand the range of the observable values, they
have an impact on the UAV’s behavior and might introduce challenging situations to the
SUT. Thus, we explore whether additional obstacles force the UAV into, e.g., new extreme
orientation or linear velocity values depending on the applied defect hypothesis. We need
to emphasize that only if we use a correct defect hypothesis, which describes parameter
values that represent challenging situations for the SUT, we can utilize the resulting upper
bound for the number of obstacles in logical scenarios to test the safe behavior of this SUT.
Otherwise, we cannot infer that the derived maximum number of relevant obstacles is
suitable when we generate “good” test cases for the SUT in the next step, as described in
Chapter 5. In our experiments, we present the independence of our proposed approach
from the specific parameter values used by showing results for orientation and linear
velocity values. However, to simplify explanations, we concentrate on orientation values as
an example for externally observable values in the remainder of this section.

4.2.2. Methodology

With our proposed approach, we evaluate the impact of various starting positions for the
UAV and differently located obstacles on the UAV’s behavior. We assess this impact by
collecting the orientation values of the UAV for an increasing number of obstacles N . In
our approach, we apply an optimization algorithm to discover situations in which the UAV
presents new extreme orientation values. To find these challenging situations, we first
define the search problem with its search space and corresponding fitness function. Next,
we present an overview of our process for finding bounds for the ontology’s dimensions.

Search Space & Fitness Function

To derive a maximal number of relevant obstacles for the SUT, we need to investigate the
UAV’s behavior when encountering varying amounts of obstacles. The corresponding
search space represents all possible situations for the UAV for each number of obstacles. In
Fig. 4.1, we visualize a suitable search space for finding a maximal number of obstacles to
consider in logical scenarios. For each parameter of the search space, we define a parameter

47

4. Exploration of Bounds for the Ontology’s Dimensions

start_x obst_x

UAV

obst_h

obst_w

x

yz

obst_z

obst_y

Param. start x start y obst x obst y obst z obst w obst h

Range [-4.0, -2.0] [-5.0, 5.0] [4.0, 8.0] [-4.0, 4.0] [0.0, 5.0] [0.5, 4.0] [1.0, 5.0]

Figure 4.1.: Visualization of an exemplary search space for exploring the maximal number
of relevant obstacles with our proposed approach. The UAV starts in the left
area with the mission to fly to the target point marked with an X while avoiding
the obstacles in the middle area. A previous version appeared in [115].

range to span a multi-dimensional space of possible situations that the SUT can encounter
for different numbers of obstacles. The presented search space includes parameters to
modify the starting position of the UAV and the position and size of the obstacles in a
specified area. For simplicity of presentation, the utilized search space contains only static
obstacles. However, we can extend this search space to consider also dynamic obstacles
by including parameter ranges for their trajectories and velocities. To detect situations in
this search space that lead to extreme orientation values and, thus, denote an impact of
the obstacles on the UAV’s behavior, we need to define a fitness function that finds these
situations. We collect all discovered parameter values in a convex hull h to find situations
that enforce new extreme parameter values. For each candidate c, we build a new convex
hull hnew(c) that includes the existing hull h and the orientation values of the UAV in this
candidate. Then, we compare the volumes v of these two hulls in our fitness function fbounds
to discover whether the candidate forced the UAV into new extreme orientation values:

fbounds(c) = v(hnew(c))− v(h) (4.1)

When searching for promising candidates, we strive to maximize this fitness function to
discover new extreme parameter values. Note that this fitness function does not directly

48

4. Exploration of Bounds for the Ontology’s Dimensions

Start

End

1

2

3
Population
Generation

Evaluation

4

6

5

Hull Update

Control Flow
Data Flow

Resource
Activity

Population
Candidates

Orientation
Values

Hull

Termination
Criterion Met?

yes

no
7

Figure 4.2.: Process overview of our proposed approach for finding bounds for the ontol-
ogy’s dimensions. A previous version appeared in [115].

depend on the collected parameter values and that we can use it for various parameter
values such as orientation values or linear velocity values. Further note that we can use
other fitness functions than the one presented in Eq. (4.1) to find challenging situations for
the UAV, e.g., one that maximizes the distance of an entire population to the existing hull
or one that maximizes the average distance of the parameter values to the hull.

Process Overview

To discover the impact of an increasing number of obstacles on the UAV’s behavior, we
follow the following process that we also depict in Fig. 4.2: for each number of obstacles N ,
the optimization algorithm generates in step 1 a population of candidates 2 that represent
concrete scenarios from the search space presented in the previous subsection. Next, in
step 3 , we simulate the SUT in each candidate and collect its orientation throughout the
simulation 4 . If other parameters represent challenging situations for the SUT, we collect
these other parameters in this step. As a final step of evaluating the population’s candidates,
we compute the quality of each candidate by calculating its fitness value with the fitness
function presented in Eq. (4.1). In step 5 , we update the convex hull 6 that contains
the orientation values of all evaluated candidates of the last populations by adding the
orientation values of the current candidates. Finally, the optimization algorithm generates a
new population if the termination criterion is not yet met 7 or stops this process for the
currently regarded number of obstacles N . In this work, we apply the following termination
criterion: we stop the search for challenging situations if (1) the current population does
not produce any new extreme orientation values that reside outside of the hull, (2) no
crashes with obstacles occurred in the current population, and (3) we evaluated a minimum

49

4. Exploration of Bounds for the Ontology’s Dimensions

of 500 candidates. Note that we repeat this process for each number of obstacles N to
discover a convergence in the results. If we add an additional obstacle N + 1, we expect to
observe new extreme orientations of the SUT compared with its behavior for N obstacles.
However, we will observe fewer and fewer new extreme orientations for a rising number of
obstacles. When we do not discover any new extreme orientations for additional obstacles,
these further obstacles do not have an impact on the UAV’s behavior. As an advantage of
our proposed approach, we only need to apply this process once for each system version
to discover appropriate bounds for the ontology’s dimensions and to generate a limited
number of logical scenarios for the SUT.

4.3. Experiments

In our experiments, we demonstrate the applicability of the proposed approach at the
example of finding a maximal number of relevant obstacles for the open-source PX4 autopi-
lot for UAVs [81] with the obstacle avoidance extension. We evaluate the performance of
two optimization algorithms for our approach, namely NSGAII [32] and MOEA/D [143].
We assess NSGAII since it generally performs well, as presented in [1, 6], and evaluate
MOEA/D as the benchmark of [45] suggests it as the best performing algorithm for con-
straint dynamic problems. Since our search problem is a dynamic problem, this is a suitable
choice for evaluation. In addition, we show the results for collecting orientation values or
linear velocity values to demonstrate the applicability of our approach independent of the
chosen parameter values that represent challenging situations for the SUT.

4.3.1. Setup and Implementation

During our experiments, we perform a Software-in-the-Loop simulation of the PX4 autopilot
in the simulator Gazebo [61], in which it autonomously flies to a specified target point
while avoiding obstacles in its path. During these simulations, we collect the UAV’s
orientation by observing its roll, pitch, and yaw value or its linear velocity in x-, y-, and z-
direction via the Robot Operating System (ROS). For the implementation of the optimization
algorithms MOEA/D and NSGAII, we use the jMetalPy framework [15] with Tschebycheff
as the aggregation function for MOEA/D and SBX Crossover and Binary Tournament as
the crossover and selection operators for NSGAII. In pre-experiments, we evaluate the
performance of these algorithms with population sizes of 25, 50, and 100. As the population
size of 100 showed the best performance in these pre-experiments, we apply this population
size in our presented experiments. During the experiments, the optimization algorithms
pick concrete scenarios from the search space displayed in Fig. 4.1 and apply the fitness
function in Eq. (4.1) to find challenging situations for the SUT. To enable the reproducibility
of these experiments, we provide additional details on the experiment settings as, e.g., the
version number of the used libraries, in Appendix B. In our evaluation, we focus on those
concrete scenarios in which the UAV is in control and does not crash into any obstacle

50

4. Exploration of Bounds for the Ontology’s Dimensions

without any environmental impact. As we aim to inspect the impact of additional obstacles
on the UAV’s behavior, we need to enable a clean collection of the chosen parameter values.
However, when the UAV loses control or crashes, it produces a random set of parameter
values that do not make a statement about the challenge of the situation necessarily. As
we use an open-source UAV, this situation might occur randomly without the present
obstacles influencing the control loss or crash. Note that if we test the safe behavior of UAVs
directly, as we do in the following chapter, these crashes represent particularly interesting
situations. However, as we instead investigate a maximum number of obstacles, we are
dependent on a clean collection of parameter values to gain insightful results. Thus, we
discard the parameter values from those concrete scenarios in which the UAV crashes
without environmental impact. Note that for the currently regarded number of obstacles,
we still collect parameter values of the UAV from other concrete scenarios and, thus, still
detect their effect on the UAV’s behavior. Further, we consider the crash information in
the termination criterion. Note that we provide the points of all hulls generated in these
experiments and their visualizations in [112].

4.3.2. Experimental Results

We show the results of our experiments in Table 4.1. In this table, we represent the perfor-
mance of MOEA/D and NSGAII when collecting orientation values or linear velocity values
of the UAV. For each number of obstacles N ∈ {1, 2, ..., 15}, we present the percentage
volume increase vi of the new hull hnew to the previous hull h. We compute this difference
in volumes v with the following formula:

vi =
v(hnew)− v(h)

v(h)
(4.2)

We do not provide a volume increase for N = 0 obstacles as we create the first hull of
parameter values for this number of obstacles. The results for orientation values show
that MOEA/D finds a maximum of M = 8 relevant obstacles, whereas NSGAII does not
converge and creates new extreme orientation values for higher numbers of obstacles.
These observations indicate that NSGAII cannot detect an upper bound for the number
of relevant obstacles when gathering orientation values with the presented methodology.
When collecting linear velocity values of the UAV, both algorithms discover a maximum
of M = 5 relevant obstacles as they produce no more new extreme parameter values for
N > 5.

4.3.3. Discussion

In our experiments, we compare the performance of the optimization algorithms MOEA/D
and NSGAII when exploring a maximal number of relevant obstacles for the SUT. When
collecting orientation values, NSGAII does not discover a maximal number of relevant
obstacles M , whereas MOEA/D results in M = 8 relevant obstacles that influence the

51

4. Exploration of Bounds for the Ontology’s Dimensions

Table 4.1.: The experimental result for finding a maximal number of relevant obstacles with
MOEA/D and NSGAII while collecting orientation or linear velocity values of
the SUT. We denote the percentage volume increases vi [%] for varying numbers
of obstacles N . A previous version appeared in [115].

MOEA/D NSGAII

N Orientation vi Lin. Velocity vi N Orientation vi Lin. Velocity vi

1 15.78 8.32 1 147.11 0.08
2 110.49 0.48 2 0.00 0.00
3 0.00 0.00 3 9.37 0.00
4 0.00 0.00 4 14.96 12.07
5 7.95 0.06 5 1.38 28.15
6 0.01 0.00 6 0.00 0.00
7 4.01 0.00 7 5.00 0.00
8 0.01 0.00 8 0.00 0.00
9 0.00 0.00 9 1.39 0.00
10 0.00 0.00 10 0.00 0.00
11 0.00 0.00 11 0.00 0.00
12 0.00 0.00 12 0.31 0.00
13 0.00 0.00 13 0.00 0.00
14 0.00 0.00 14 0.22 0.00
15 0.00 0.00 15 1.26 0.00

SUT’s behavior. Note that we acquire this number of relevant obstacles when assuming
that extreme orientations represent challenging situations for the SUT as they, e.g., denote
potential instabilities of the UAV that might lead to loss of control or avoidance maneuvers
of the UAV. To draw conclusions from this provided number, we need to ensure that the
presented defect hypothesis holds for the SUT. In Fig. 4.3, we show visualizations of the
convex hulls that contain all collected orientation values for N ∈ {1, 2, ..., 8} obstacles
created by MOEA/D in our experiments. Note that the number of obstacles impacts the
UAV’s behavior and, thus, implicitly influences the range of the gathered orientation values.
In these plots, we further display the increase in the hull’s volume by presenting the hull
for N − 1 obstacles in black and the hull for N obstacles in blue.

When recording the UAV’s linear velocity in our experiments, we discover that both
algorithms do not find any new extreme parameter values representing challenging situa-
tions for more than M = 5 obstacles. When the underlying defect hypothesis is true that
challenging situations for the SUT are presented by extreme linear velocities, these results
indicate that a maximum of 5 obstacles is relevant for the SUT. Even though both algorithms
converge to the same number of relevant obstacles, they reach this boundary differently.
NSGAII generates new extreme linear velocity values mainly for N ∈ {4, 5} obstacles,

52

4. Exploration of Bounds for the Ontology’s Dimensions

(i) N = 1 obstacles (ii) N = 2 obstacles (iii) N = 3 obstacles

(iv) N = 4 obstacles (v) N = 5 obstacles (vi) N = 6 obstacles

(vii) N = 7 obstacles (viii) N = 8 obstacles

Figure 4.3.: Visualization of the convex hulls that present the collected orientation values
for MOEA/D for N ∈ {1, 2, ..., 8} obstacles, which implicitly affect the range of
the orientation values. In addition, we show the increase in the hull’s volume
for each N by depicting the hull for N − 1 obstacles in black and the hull for the
current N obstacles in blue. A previous version appeared in [115].

whereas MOEA/D primarily creates them for N = 1 obstacles.

Overall, both optimization algorithms discover challenging situations represented by
extreme parameter values and converge to a maximal number of obstacles in our exper-
iments except for NSGAII when collecting orientation values. These results indicate the
applicability of the proposed approach for finding bounds for the ontology’s dimensions

53

4. Exploration of Bounds for the Ontology’s Dimensions

with the MOEA/D algorithm for the example of discovering a maximal number of relevant
obstacles for the SUT. MOEA/D seems to find a maximum number of obstacles more
reliably than NSGAII, which enables us to limit the number of logical scenarios we need
to test for the SUT and presents a basis for defining a test-ending criterion for testing the
safe behavior of UAVs. Further, as the algorithm focuses on discovering extreme param-
eter values for fewer obstacles, it reduces the cost of finding bounds for the ontology’s
dimensions, which is essential as the simulations of UAVs take quite some time. The nature
of our search problem as a dynamic optimization problem might be one reason for this
better performance of MOEA/D. An alternative interpretation of the results would be that
there is no upper bound for the maximal number of obstacles when considering orientation
values, and MOEA/D misses additional extreme values for higher numbers of obstacles.
When inspecting the extreme values collected by both algorithms, we can observe that the
volume of the hull built with MOEA/D is 32% larger than the one generated by NSGAII.
Further, the data shows us that NSGAII gathers only a small number of extreme values of
0.003% of all discovered values that MOEA/D does not detect. For reference, we include
the visualization of the convex hulls that present the collected orientation values for NS-
GAII for N ∈ {1, 2, ..., 15} obstacles in Appendix C. These observations show that various
optimization algorithms perform differently when searching for extreme parameter values
and that we should investigate system-specifically which works best for this use case. We
encounter similar findings when inspecting the performance of optimization algorithms for
generating worst-case situations for different logical scenarios in Section 6.3.

When assuming that MOEA/D works best for our SUT, the experimental results for
MOEA/D finally indicate a maximum number of M = 5 or M = 8 obstacles for the SUT
that we need to consider in logical scenarios for this system depending on whether we
collect orientation or linear velocity values. Note that the decision of which parameter
values are suitable to represent challenging situations is system-specific. Thus, we need to
ensure that we base this decision on a correct defect hypothesis for the SUT. By finding an
upper bound for the number of obstacles, we demonstrate how we can use the proposed
methodology to discover bounds for the ontology’s dimensions and effectively limit the
number of logical scenarios to test the SUT. These limited value ranges further present a
basis for collecting a complete list of relevant logical scenarios for UAVs in the future.

Threats to Validity

The results of our experiments might not generalize to other UAVs as we present results
for the PX4 autopilot only. It is essential to pick the collected parameter values for our
proposed approach system-specifically and based on a correct defect hypothesis for the
SUT to gain insightful results. Note that we focus on static obstacles in our experiments for
simplicity of presentation. To reduce the threats to internal validity in our experiments, we
use the implementations of MOEA/D and NSGAII from the open-source library jmetalPy
and evaluate the open-source PX4 autopilot. In addition, we run all simulations in isolated
Docker containers to decrease unwanted side effects.

54

4. Exploration of Bounds for the Ontology’s Dimensions

4.4. Conclusion

When exploring bounds for the ontology’s dimensions, we can acquire them (1) from
expert knowledge and specifications or (2) experimental results for different bounds. In this
chapter, we present an automated approach for the second option when we miss knowledge
about appropriate bounds for these dimensions for the SUT. We demonstrate this approach
with the example of finding a maximal number of obstacles that we need to consider in
logical scenarios for the SUT. In our presented method, we explore the impact of a varying
number of obstacles on the UAV’s behavior. To determine the relevance of obstacles, we
search for challenging situations that are represented by extreme parameter values. Note
that it is essential to select these parameter values system-specifically and based on a
correct defect hypothesis for challenging situations for the SUT to gain insightful results. In
our experiments, we compare the performance of the optimization algorithms MOEA/D
and NSGAII and demonstrate that our method can work with various parameter values
depending on which ones present challenging situations for the SUT. The experimental
results reveal the different performances of the investigated two optimization algorithms
when searching for extreme parameter values and the corresponding need to investigate
system-specifically which works best for the presented methodology. Finally, the results
for MOEA/D show that we need to consider a maximal number of M = 5 or M = 8
relevant obstacles for the SUT when collecting orientation or linear velocity values. With
the resulting reasonable bounds for each dimension of the ontology for the SUT, we can
effectively limit the number of logical scenarios in which we need to test the SUT. They
further present a basis for collecting a comprehensive list of relevant logical scenarios
for UAVs, which we aim to accomplish in the future. In addition, we aim to explore the
results of observing additional parameter values that describe the UAV’s behavior in future
work, such as its angular velocity or acceleration profiles. Finally, we would like to explore
the performance of other optimization algorithms for our presented approach and show
experimental results for finding a maximal number of dynamic obstacles in the future.

55

Part III.

Test Case Generation

57

5. Understanding and Assessment of the Safe
Behavior of UAVs

This chapter provides a methodology for testing the safe behavior of UAVs while
considering their environment and the potential challenge of explicitly defining
the safe behavior of UAVs. Throughout the chapter, we explore the two cases of
having a safety distance specified and working with no defined safety distance.
Parts of this chapter previously appeared in a peer-reviewed publication [114]
co-authored by the author of this thesis.

5.1. Introduction

After deriving logical scenarios for testing the safe behavior of UAVs, we generate test cases
for each of them in the next step. Note that we first need to define logical scenarios, as the
number of parameters for the search problem of generating test cases would otherwise
be too high. Since we cannot provide a thorough safety argumentation by randomly
generating test cases for each of these logical scenarios, we aim to create so-called “good”
test cases that can reveal potential faults in the tested UAV. These “good” test cases represent
challenging situations for the UAV, which we also call worst-case situations. In these
worst-case situations, a correct UAV behaves safely, while a faulty UAV operates unsafely
by, e.g., violating specified safety distances. The general idea of creating “good” test cases
for each logical scenario is the following: If the UAV behaves safely in all generated test
cases of a logical scenario — even in the worst-case situation — it will always behave safely
when encountering this situation, given that we found the worst-case situation. However,
due to missing regulations and the wide range of possible maneuvers and missions for
UAVs, it is not trivial to explicitly specify the safe behavior of UAVs in all possible situations.
Thus, a methodology for generating “good” test cases for testing the safe behavior of UAVs
is needed, which takes into account that we might not always be able to explicitly define
the UAV’s safe behavior.

Related work presents a similar concept for creating worst-case situations when testing
the safe behavior of ADS [48, 137]. However, we cannot directly apply their methodology
for testing the safe behavior of UAVs since different situations are challenging for UAVs
and ADS. Further, due to the existence of fine-grained traffic rules and rigid road structures,
the definition of the safe behavior of ADS is less challenging than for UAVs. The authors of

59

5. Understanding and Assessment of the Safe Behavior of UAVs

[146, 147] concentrate on testing the safe behavior of UAVs in an environment with other
UAVs but no further obstacles or environmental effects. Since we believe that the operation
of UAVs in urban environments will be crucial for their deployment in the future, we need
to take the environment into account when testing the safe behavior of UAVs. Finally, all
presented papers test against a specified safety distance and neglect the case where we
might not be able to define the safe behavior of UAVs with such a safety distance.

The contribution of this chapter is a methodology for generating “good” test cases
for testing the safe behavior of UAVs in various logical scenarios that take the UAV’s
environment into account. The proposed approach defines objectives to discover worst-case
situations for two cases: (1) we can specify a safety distance and use it when generating
test cases, and (2) we lack such a definition and still aim to find challenging situations.
Experiments present the effectiveness of our proposed methodology for finding “good” test
cases for four logical scenarios and both use cases.

5.2. Challenges of Defining the Safe Behavior

When assessing the safe behavior of UAVs, we first need to explicitly define such a safe
behavior. However, as we do not have fine-grained traffic rules for UAVs and UAVs operate
in an open field, specifying such a safe behavior is more challenging than for ADS. Current
regulations forbid the operation of UAVs near people or structures. Depending on the
country of operation, we need to keep a distance of 30 to 50 meters to these entities [8, 21, 35].
As UAVs should, e.g., deliver packages to our doorsteps in the near future, these regulations
will change and be less restrictive. As we are unaware of how these regulations will be
formulated and how fine-granular they will be, we need to consider the possibility that they
might not specify a safety distance for all possible situations that the UAV might encounter
in urban areas. Thus, we look at two cases throughout this chapter: (1) we have a specified
safety distance, and (2) we lack such a safety distance.

Fig. 5.1 presents a first overview of how we can find worst-case situations for both of
these cases. We will explain these approaches in more detail in the following subsection.
We call the case with a specified safety distance Safety Distance Testing (SDT) and the one
without one Boundary Analysis Testing (BAT). In the case of SDT, we search for challenging
situations in which the SUT approaches the specified safety distance s. Thus, in our search
for worst-case situations, we compare the UAV’s distance d to any obstacle with the defined
safety distance s to assess the UAV’s behavior. Further, this approach presents an automatic
oracle of the UAV’s safe behavior. If d < s, the UAV behaves unsafely; if d ≥ s, it shows a
safe behavior. For BAT, we lack a safety distance due to missing requirements, specifications,
or regulations. In this case, similar to SDT, we can generate worst-case situations by, e.g.,
minimizing the distance that the UAV keeps from any obstacle. However, there exist also
other options for how we can find worst-case situations for BAT. If the UAV needs to
fly through a gap between two obstacles, we can also generate challenging situations by
finding the minimal gap through which the UAV still flies. The most distinct difference

60

5. Understanding and Assessment of the Safe Behavior of UAVs

UAV

d

sd-s

(1) SDT

d

UAV

(2) BAT

Figure 5.1.: For Safety Distance Testing (SDT), we can use a specified safety distance s to
assess the UAV’s safe behavior. It behaves safely if it keeps a distance of d > s
to any obstacle while operating. For Boundary Analysis Testing (BAT), we
lack such a safety distance and instead create worst-case situations by, e.g.,
minimizing the UAV’s distance d to all obstacles. A previous version appeared
in [114].

between SDT and BAT is that we lack an automatic oracle for BAT as we have no safety
distance given. Thus, an expert needs to inspect the discovered worst-case situations to
evaluate the UAV’s safe behavior.

5.3. Generation of “Good” Test Cases

In this section, we present our methodology for generating “good” test cases for testing
the safe behavior of UAVs. The inputs for this approach are the logical scenarios in which
we aim to test the SUT. While generating test cases, we do not randomly pick them from
the search space but instead search for those test cases that can reveal potential faults in
the SUT. To find these so-called “good” test cases, we apply search-based techniques that
achieve valuable results when creating “good” test cases for ADS [48, 137]. Thus, as an
output, we gain test cases for each logical scenario and worst-case situations that present
the most challenging circumstances for the UAV in these logical scenarios.

5.3.1. Methodology

We present an overview of our methodology for generating “good” test cases for testing
the safe behavior of UAVs with search-based techniques in Fig. 5.2. When applying these
techniques, we first need to define the search space and the fitness function 1 . The logical
scenarios 2 in which we aim to test the UAV’s behavior serve as input to this step. We can
derive these logical scenarios automatically or manually, as presented in Chapter 3. Further,
when manually gathering logical scenarios in an ontology, we can use the methodology
presented in Chapter 4 to find lower and upper bounds for the dimensions of this ontology.

61

5. Understanding and Assessment of the Safe Behavior of UAVs

Start

End

Test Case
Generation

2

3

1

5

6

Search Space & Fitness
Function Derivation

Parameter Value
Generation

Environment
Building

Simulation Run

Fitness Function
Evaluation

A

B

C

D

Control Flow
Data Flow

Resource
Activity

Logical Scenarios

Search Space Fitness Function

Test Cases

4

Figure 5.2.: Overview of our proposed methodology for generating “good” test cases with
search-based techniques. A previous version appeared in [114].

In the next step, we can use the derived logical scenarios to define the search space for the
test case generation step. This search space 3 represents all possible test cases for a given
logical scenario. Thus, the search space is an n-dimensional space denoting the parameter
ranges for the n parameters P of the evaluated logical scenario. We discuss exemplary
search spaces in Section 5.3.2. The fitness function 4 describes the goal of the search, which
is the detection of worst-case situations in our case. We present various suitable fitness
functions for our search problem in Section 5.3.3. After specifying the search space and the
fitness function, we generate test cases 5 for the given logical scenarios 2 .

While creating test cases, an optimization algorithm picks concrete parameter values A
from the search space of the evaluated logical scenario that represents a candidate. Then,
we build the simulation environment of the UAV B based on the parameter values of
this candidate and place the UAV at its starting position. Next, we present the UAV and
dynamic obstacles with their missions and collect data about the UAV while the simulation
is running C . Finally, we compute the fitness of the currently assessed candidate by

62

5. Understanding and Assessment of the Safe Behavior of UAVs

Table 5.1.: Three exemplary search spaces describing simplified logical scenarios with one
static spherical obstacle on the ground level and no environmental effects. The
search spaces include parameter value ranges for the starting and landing posi-
tion of the UAV and the position and the radius of the obstacle.

start x start y land x land y obst x obst y obst r

1 [0.0, 2.0] [1.0, 9.0] [8.0, 10.0] [1.0, 9.0] [3.5, 6.5] [1.5, 5.5] [0.5, 1.0]
2 [-2.0, 0.0] [5.0, 10.0] [6.0, 8.0] [0.0, 5.0] [1.5, 4.5] [3.0, 7.0] [0.1, 3.5]
3 [-4.0, 4.0] [-15.0, -5.0] [16.0, 24.0] [5.0, 15.0] [8.0, 12.0] [-3.0, 3.0] [3.0, 8.0]

applying the specified fitness function D . The optimization algorithm repeats these steps
A to D for different candidates until it meets a termination criterion, e.g., it has evaluated

a pre-defined number of candidates. When generating new candidates, the optimization
algorithm tries to create candidates with better fitness values according to the specified
fitness function. The output of this test case generation step 5 are the created test cases
6 that include the worst-case situations with the best fitness values. By inspecting the

behavior of the UAV in these worst-case situations, we gain an understanding of its safe
behavior.

5.3.2. Search Space

As mentioned before, the search space represents the set of all possible concrete scenarios for
a given logical scenario. As we describe logical scenarios for UAVs with many parameters
P , the search space for generating “good” test cases is high-dimensional. Since we outlined
the derivation of logical scenarios for testing the safe behavior of UAVs in Chapter 3, we
focus on creating “good” test cases for the given logical scenarios in this chapter.

Table 5.1 presents three simplified search spaces for a logical scenario with one static
spherical obstacle on the ground level and no environmental effects. These exemplary
search spaces include parameters for the starting position of the UAV on the x- and y-axis,
the landing position of the UAV on the x- and y-axis, the position of the obstacle on the x-
and y-axis, and the radius of the obstacle. Note the need to specify a range of parameter
values for each parameter to define a specific search space. With the presented search
spaces, we enable the optimization algorithm to change the starting and landing position of
the UAV in a given range as well as the position and size of the obstacle when searching
for “good” test cases in the provided logical scenario. As the search space for a logical
scenario only depends on its parameters and is independent of whether we can define a
safety distance or not, the search space is the same for SDT and BAT. However, within the
same search space, different concrete scenarios might present worst-case situations for the
SUT for these two cases.

63

5. Understanding and Assessment of the Safe Behavior of UAVs

5.3.3. Fitness Function

The fitness function guides the search for “good” test cases in the specified search space.
As introduced in [48], the fitness function first needs to ensure that the logical scenario is
presented for which we search for “good” test cases. If this is the case, the fitness function
evaluates the objective o that leads to “good” test cases. Otherwise, the fitness function
assigns a poor fitness value to the evaluated concrete scenario cs as it does not represent
the given logical scenario. This poor fitness value is set to infinity in our case as we aim to
minimize the objective in our fitness function. We present this general fitness function f in
Eq. (5.1):

f(cs) =

{
o, if given logical scenario is represented
∞, otherwise

(5.1)

As the objective o differs for SDT and BAT, we will look at specific fitness functions for
these two cases in the subsequent subsections. Note that we can place a geo-fence in our
simulation to restrict the flying area of the UAV if desired and, thus, do not need to check
such restrictions in the fitness functions.

Fitness Function for Safety Distance Testing

In SDT, we have a specified safety distance that we can use in a fitness function to search
for challenging situations for the UAV. With this safety distance, we can define a safety
area around all obstacles the UAV should not enter. In a challenging situation, the UAV
approaches the borders of these safety areas around the obstacles. Thus, in a fitness function
for SDT, we compare the distance d(cs, t) that the UAV keeps in a specific concrete scenario
cs to any obstacle at time t ∈ T with the specified safety distance for this concrete scenario
s(cs, t). We denote the corresponding fitness function fsdt in Eq. (5.2):

fsdt(cs) =

{
min({t ∈ T : d(cs, t)− s(cs, t)}), if given logical scenario is represented
∞, otherwise

(5.2)
Note that we can apply the presented fitness function for various logical scenarios when

we have a specified safety distance. The concrete safety distance might change over time
and might be dependent on various factors such as the UAV’s velocity or size or the wind
speed in the currently evaluated concrete scenario. Finally, this fitness function has the
advantage of providing an automatic oracle that solves the oracle problem presented in [12].
If the computed fitness value of a concrete scenario is positive, the UAV behaved safely
in this situation as it kept a distance d ≥ s at any time during operation. However, if the
calculated fitness value is negative, we know that the UAV behaved unsafely as it violated
the specified safety distance since d < s.

64

5. Understanding and Assessment of the Safe Behavior of UAVs

Fitness Function for Boundary Analysis Testing

In BAT, we lack a given safety distance and, thus, need to adapt the fitness function
compared to SDT for finding challenging situations for the SUT. As the name suggests, we
search for the boundary between the safe and unsafe behavior of the UAV in the given
logical scenarios. To avoid an obstacle, the UAV has four alternatives: (1) it can fly around
it on the left- or right-hand side, (2) it can fly above it, (3) it can fly through a gap between
two obstacles, or (4) it can fly below it, thus, through a gap between the ground and the
obstacle. We can specify different objectives to guide the search for worst-case situations
for these various alternatives. For (1) and (2), we search for the minimal distance d(cs, t)
that the UAV keeps to any obstacle at time t ∈ T , as denoted in Eq. (5.3):

fbat,1(cs) =

{
min({t ∈ T : d(cs, t)}), if given logical scenario is represented
∞, otherwise

(5.3)

For (3) and (4), we can find challenging situations by minimizing the width of the gap
w(cs, t) between the obstacles or the obstacle and the ground at time t ∈ T . In these cases,
it is essential that we ensure that the given logical scenario is presented and the UAV flies
through the gap. Thus, a concrete scenario with no gap will receive a poor fitness value of
infinity. Equation (5.4) presents the corresponding fitness function fbat,2:

fbat,2(cs) =

{
min({t ∈ T : w(cs, t)}), if given logical scenario is represented
∞, otherwise

(5.4)

Even though the fitness function presented in Eq. (5.3) is similar to Eq. (5.2) for SDT, it
does not provide an automatic oracle. Instead, an expert needs to investigate the discovered
worst-case situations to evaluate the safe or unsafe behavior of the UAV. However, the
expert only needs to inspect the worst-case situations and does not need to look at all
generated concrete scenarios. The same applies when using the fitness function presented
in Eq. (5.4).

5.4. Experiments

In our experiments, we investigate the effectiveness and applicability of our proposed
methodology for generating “good” test cases for testing the safe behavior of UAVs. We
perform these experiments in four logical scenarios, which present all alternatives to avoid
an obstacle, and for the two cases of SDT and BAT.

5.4.1. Setup and Implementation

In these experiments, we generate test cases for the obstacle detection and avoidance exten-
sion of the open-source PX4 autopilot [81], which we simulate in the Gazebo simulator [61].

65

5. Understanding and Assessment of the Safe Behavior of UAVs

UAV

(1)

UAV

(2)

UAV

(3)

UAV

(4)

Figure 5.3.: In our experiments, we evaluate four logical scenarios in which the UAV flies (1)
around obstacles, (2) above obstacles, (3) through a gap between two obstacles,
and (4) below an obstacle to reach its destination point. The UAV starts in
the area on the left and lands in the area on the right in each of these logical
scenarios. A previous version appeared in [114].

We forward a mission to fly to a specified target point to the UAV via the MAVSDK-Python
library [92]. During the simulation, we collect data about the UAV via ROS [100] to calculate
a fitness value for each evaluated candidate. In the experiments for this chapter, we use
the optimization algorithm NSGAII [32], following the guidance of [1, 6]. We present a
technical comparison of various optimization algorithms and their performance for our
search for worst-case situations in Chapter 6. We utilize the algorithm’s implementation
from the jMetalPy framework [15] with its default parameter settings. Since we often face
multi-objective fitness functions when testing autonomous systems and aim to enable their
use in future work, we apply this multi-objective algorithm to our single-objective fitness
functions. In our experiments, this algorithm searches for “good” test cases following the
methodology presented in Fig. 5.2 for 200 evaluations for each logical scenario. Even though
this number is relatively low, we can already discover insights into the safe behavior of
the tested UAV. To enable the reproducibility of these experiments, we provide additional
details on the experiment settings as, e.g., the version number of the used libraries, in
Appendix B. Further, we present the parameter values of the concrete scenarios generated
in these experiments and their fitness values in [112].

5.4.2. Logical Scenarios and Search Spaces

We present the four logical scenarios for the experiments in Fig. 5.3, in which the UAV flies
(1) around a tree row, (2) above a grocery store, (3) through a gap between two tree rows,
and (4) below a bridge to reach its destination point. In our experiments, we use the search
spaces shown in Table 5.2 for these logical scenarios. Note that these are exemplary search
spaces for the presented logical scenarios and that experts need to choose them system-
specifically. In these search spaces, the optimization algorithm can adapt the position of the
obstacles on the x- and y-axis with the parameters obst 1 x, obst 1 y, obst 2 x, and obst 2 y,
which also changes the width of the gap between the tree rows in scenario (3). Further, the
algorithm can modify the starting and landing position of the UAV in a specified area with

66

5. Understanding and Assessment of the Safe Behavior of UAVs

Table 5.2.: The search spaces for the four logical scenarios in our experiments.

Scenario start x start y land x land y

All [-1.0, 1.0] [-10.0, 10.0] [12.0, 14.0] [-10.0, 10.0]

Scenario obst 1 x obst 1 y obst 1 z obst 1 h obst 2 x obst 2 y

(1) [4.0, 5.0] [-10.0, 15.0] — — — —
(2) — — — [1.0, 10.0] — —
(3) [4.0, 5.0] [-10.0, 15.0] — — [4.0, 5.0] [-10.0, 15.0]
(4) — — [0.0, 6.0] — — —

the parameters start x, start y, land x, and land y. For scenarios (2) and (4), we fix the
position of the obstacles on the x- and y-axis. Instead, we alter as additional parameters in
the search space the obstacle’s height obst 1 h in (2) and the position on the z-axis obst 1 z
in (4) to modify the width of the gap between the bridge and the ground. Note that we use
only static obstacles in these experiments for simplicity of presentation. However, we can
easily extend the search space to include dynamic obstacles by adding their trajectories and
velocities.

5.4.3. Experimental Results for Safety Distance Testing

For simplicity of presentation, we use a fixed safety distance s(cs, t) = 1.0 meters for our
experiments for SDT. Note that we usually use a non-static safety distance that might
change over time and depend on various characteristics of the UAV and its environment.
In our experiments for SDT, we aim to discover concrete scenarios from the search space in
which the SUT approaches the specified safety area around the obstacles and potentially
violates it. Note that the presented fitness function in Eq. (5.2) yields a negative fitness value
when the UAV violates the specified safety distance and, thus, represents an automatic
oracle about the UAV’s safe behavior. We present the results of our experiments for SDT in
Table 5.3. This table shows for each investigated logical scenario the number of concrete
scenarios in which the SUT shows an unsafe behavior by violating the defined safety
distance. In addition, we depict the highest of these violations for each logical scenario. In
our experiments, we find 4 to 62 violations of the defined safety distance in each logical
scenario. Fig. 5.4 presents examples of these detected violations by depicting the UAV and
the safety areas around the obstacles in red.

5.4.4. Experimental Results for Boundary Analysis Testing

In the experiments for BAT, we lack a defined safety distance due to missing regulations or
specifications. In these experiments, we aim to discover concrete scenarios in the search
space that present challenging situations for the SUT. In such worst-case situations, the UAV

67

5. Understanding and Assessment of the Safe Behavior of UAVs

Table 5.3.: For the logical scenarios (1) - (4), we denote the number of concrete scenarios in
which the SUT shows an unsafe behavior by violating the defined safety distance
and the largest of these violations. A previous version appeared in [114].

Scenario (1) Scenario (2) Scenario (3) Scenario (4)

Discovered Violations 38 4 4 62
Highest Violation -0.95 -0.18 -0.82 -0.84

Figure 5.4.: Examples of the detected safety distance violations in our experiments for SDT.
We mark the safety areas around the obstacles that the UAV should not enter in
red. A previous version appeared in [114].

might select an unsafe trajectory due to the challenging circumstances. In our experiments,
we search for these worst-case situations with the fitness functions presented in Eq. (5.3)
for the logical scenarios (1) and (2) that minimizes the UAV’s distance to the obstacles and
Eq. (5.4) for the logical scenarios (3) and (4) that minimizes the width of the gap. In Table 5.4,
we show the results of these experiments. For the logical scenarios (1) and (2), we present
the best fitness value, which represents the minimal distance in meters the UAV keeps to
any obstacle in all evaluated concrete scenarios and the number of concrete scenarios in
which this minimal distance is smaller than 1.0 meters. For the logical scenarios (3) and (4),
we present the minimal width of the gap through which the UAV flies in meters and the
width of the gap for which the UAV shows a presumably safe behavior. Note that to assess
the safe behavior of the UAV for BAT, experts need to inspect the discovered worst-case
situations and judge the UAV’s behavior in them. However, we reduce this manual effort
as the experts only need to investigate the worst-case situations instead of all generated test
cases for each logical scenario. While inspecting the worst-case situations for the logical
scenarios (3) and (4), we discovered a questionable behavior of the SUT. In these situations,
the UAV seems to recognize that the gap at the level of the tree trunks is broader than the
one at the level of the tree tops and decreases its altitude accordingly. The UAV behaves in
a similar way when encountering the bridge in the logical scenario (4). While lowering its
altitude in both worst-case situations, the UAV unintentionally lands on the ground and
rotates there before taking off again. This action represents a questionable behavior that we
do not expect from a safely behaving UAV. By investigating additional concrete scenarios

68

5. Understanding and Assessment of the Safe Behavior of UAVs

Table 5.4.: Characteristics of the worst-case situations that we discovered in our experiments
for BAT. Presented is the minimal distance the UAV keeps to all obstacles, the
number of concrete scenarios in which this distance is below 1.0 meters, the
minimal width of the gap through which the UAV flies, and the width of the
gap in which the UAV shows a presumably safe behavior. A previous version
appeared in [114].

Scenario (1) Scenario (2) Scenario (3) Scenario (4)

Minimal Distance 0.53 0.35 — —
Below 1.0 22 7 — —
Minimal Gap Width — — 3.76 3.02
Gap Width Safe Behavior — — 4.77 4.53

0

1

2

3

4

5

6

A
lt
it
u
d
e

Simulation time

(a) w = 3.76 meters

0

1

2

3

4

5

6

A
lt
it
u
d
e

Simulation time

(b) w = 4.77 meters

Figure 5.5.: The change in the UAV’s altitude in (a) the worst-case situation for the logical
scenario (3), in which the SUT unintentionally lands on the ground, and (b) for
a broader gap w, for which the UAV shows a presumably safe behavior. We
highlight the differences with the red circles. A previous version appeared in
[114].

that have a slightly worse fitness value, we discovered a presumably safe behavior of the
UAV for gaps of 4.77 and 4.53 meters and broader, in which the UAV stays in the air while
decreasing its altitude and keeps decent distances to the obstacles. In Fig. 5.5, we visualize
the behavior of the UAV in the worst-case situation for the logical scenario (3) and a broader
gap by depicting the change of the UAV’s altitude in the evaluated concrete scenarios.

5.4.5. Discussion

In our experiments, we aim to investigate the applicability and effectiveness of our proposed
approach for generating “good” test cases for testing the safe behavior of UAVs. Therefore,
we perform experiments in four logical scenarios representing all alternatives to avoid

69

5. Understanding and Assessment of the Safe Behavior of UAVs

obstacles for SDT and BAT. The results for SDT show the effectiveness of the proposed
approach as we find safety distance violations in all four logical scenarios. These safety
distance violations present unsafe behaviors of the SUT, which experts can inspect in the
next step to discover their underlying fault. Further, the results demonstrate the advantage
of having an automatic oracle for SDT since we can directly derive the safe or unsafe nature
of the UAV’s behavior from the computed fitness values. The results for BAT show how we
can generate worst-case situations for the SUT that can reveal potential unsafe behaviors
of the SUT, even without a defined safety distance. For BAT, an expert needs to inspect
the discovered worst-case situations and manually analyze the UAV’s behavior in these
situations. However, we minimize the experts’ effort as they only need to investigate the
worst-case situations and not all generated test cases. The experimental results not only
reveal questionable behaviors of the UAV in the worst-case situations but also indicate that
the gap between two tree rows needs to be 4.77 meters or broader for the SUT to safely fly
through it. In addition, a bridge needs to be located at least 4.53 meters above the ground for
the SUT to safely fly below it. Overall, the experimental results show the applicability and
effectiveness of the proposed approach for discovering potential unsafe behaviors of the
SUT by generating worst-case situations for the SUT. Further, the experiments demonstrate
how we can apply this methodology with and without a given safety distance and create
“good” test cases for both of these cases.

Threats to Validity

As we aim to gain an understanding of how we can test the safe behavior of UAVs with
search-based techniques, our experimental results in this chapter focus on showing the
applicability of our proposed approach and do not present results for various SUTs or
optimization algorithms. However, we present experimental results for different optimiza-
tion algorithms in the subsequent chapter. In our experiments, we execute only a limited
number of 200 evaluations for each logical scenario. However, as we discover unsafe
behaviors of the SUT with this limited number of test cases, it shows the effectiveness of
the proposed approach all the more. As we concentrate on understanding how we can
generally test the safe behavior of UAVs, we do not execute 30 runs for our experiments in
this chapter, as proposed by [5]. However, we present further experiments with more runs
in the following chapters. To reduce the threats to internal validity in our experiments, we
use the implementation of NSGAII from the open-source library jmetalPy and evaluate the
open-source PX4 autopilot for UAVs.

5.5. Conclusion

When testing the safe behavior of UAVs in urban areas, we face the challenge of ensuring
their safe behavior in all situations for a logical scenario, even in the worst-case situation,
and the challenge of explicitly defining this safe behavior. To tackle these challenges, we

70

5. Understanding and Assessment of the Safe Behavior of UAVs

present a methodology for generating so-called “good” test cases that can reveal potential
unsafe behaviors of the SUT. In addition, we demonstrate how we can apply this methodol-
ogy when we (1) have a specified safety distance and (2) lack such a safety distance due to
missing regulations or specifications. In our experiments, we show the applicability and
effectiveness of our proposed approach in four logical scenarios that present all alternatives
to avoid obstacles. When we have a given safety distance, we detect several violations of
this safety distance in all evaluated logical scenarios. In addition, we discovered question-
able behaviors of the SUT when testing our approach without a specified safety distance.
Finally, we minimize the experts’ manual effort needed when we cannot define a safety
distance by presenting worst-case situations that the experts solely need to inspect.

In future work, we aim to expand our experiments to assess the UAV’s behavior in logical
scenarios that present real-world situations in more detail. In addition, we would like to
explore additional fitness functions that might be applicable when we have no specified
safety distance. Finally, we aim to investigate search spaces and fitness functions suitable
for our proposed approach when testing the safe behavior of cooperative UAVs.

71

6. Evaluation of Optimization Algorithms for
Testing the Safe Behavior of UAVs

This chapter introduces the problem of a missing guarantee for finding worst-
case situations with heuristic optimization algorithms. Further, it presents a
case study to explore the quality of generated test cases for three optimization
algorithms and their sequential combinations when testing the safe behavior of an
open-source UAV. Parts of this chapter previously appeared in a peer-reviewed
publication [116] co-authored by the author of this thesis.

6.1. Introduction

As mentioned in the previous section, instead of randomly picking test cases for each logical
scenario, we aim to find the most challenging concrete scenarios for the UAV for each logical
scenario. Various papers [48, 114, 147] propose using heuristic search-based techniques to
find these challenging situations that we also call worst-case situations. Even though the
presented papers show that these techniques can effectively detect potential faults in the
SUTs, they lack the guarantee of discovering the most challenging worst-case situation for a
logical scenario due to their heuristic nature. However, when building a thorough safety
argumentation for testing the safe behavior of UAVs, we need to reliably find worst-case
situations to assess the UAV’s safe behavior. Thus, as a first step toward ensuring that we
tested each logical scenario sufficiently, we need to evaluate the quality of the worst-case
situations that different optimization algorithms generate. In such a case study, we aim
to explore which optimization algorithm reliably produces more challenging worst-case
situations for a given SUT. In this chapter, we present such a case study and focus on the
following three aspects: (1) we evaluate three given optimization algorithms, (2) we explore
whether sequential combinations of optimization algorithms perform better than their base
algorithms, and (3) we inspect which of the evaluated algorithms performs best for our use
case.

In related work, there exist various case studies about optimization algorithms for prob-
lems in different domains such as hydro-powered plant management, wireless sensor
networks clustering, or multi-objective land allocation [29, 64, 125]. The authors of [60]
present an evaluation of different optimization algorithms for generating test cases for
ADS that focuses on the convergence rate of the algorithms. In this chapter, we aim to

73

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

instead concentrate on the quality of the created worst-case situations. To the best of our
knowledge, no work that evaluates the performance of various optimization algorithms for
testing the safe behavior of UAVs with scenario-based testing exists. Since the performance
of optimization algorithms is highly context-specific and cannot be generalized over several
domains, there is a need to conduct a case study about the quality of worst-case situations
generated by various optimization algorithms for UAVs. When combining optimization
algorithms sequentially, related work presents diverse use cases. The authors of [85, 102]
use different optimization algorithms to solve distinct and separate sub-problems of their
search problem. [130] evaluates the performance of two optimization algorithms for their
search problem before choosing one for the overall evaluation. Finally, several works exist
[24, 33, 77] that combine optimization algorithms to exploit their advantages, e.g., their
good exploration or exploitation characteristics. In this chapter, we concentrate on this
last use case and explore the effectiveness of such combinations for generating worst-case
situations for testing the safe behavior of UAVs.

The contribution of this chapter is a case study that demonstrates one of the crucial
problems of testing the safe behavior of UAVs with scenario-based testing: various opti-
mization algorithms generate different worst-case situations without a guarantee of finding
the worst one. While it is well-known that heuristic search does not provide optimality
guarantees, our results show that non-optimality does not seem to be an exceptional case.
In addition, the results demonstrate that safety violations are instead likely to be missed by
some algorithms and that the outcome of different algorithms differs substantially, by up
to 20%. For these reasons, scenario-based testing comes at the extra cost of having to run
multiple optimizers to find worst-case situations, which challenges the current widespread
application of scenario-based testing for ensuring the safe behavior of autonomous systems
such as ADS or UAVs.

6.2. Optimization Algorithms

When searching for “good” test cases, the search space presented by the parameter ranges
of a logical scenario denotes a high dimensional space. Due to this high dimensionality, we
cannot use exact algorithms such as integer linear programming, dynamic programming,
or branch-and-bound [98] to compute optimal solutions for our problem. Instead, we can
use heuristic methods that produce good solutions in a reasonable amount of time but
cannot guarantee finding the optimal solution for a given problem. There exists a large
variety of heuristic optimization algorithms that all have advantages and disadvantages,
i.a., genetic algorithms, particle swarm optimization, and ant colony optimization [17]. As
an alternative, we can use surrogate optimization algorithms such as Bayesian optimization
[42], which additionally provide the option to compute the credibility of the results.

To gain an understanding of the quality of the produced “good” test cases, we aim to
investigate whether some optimization algorithms achieve better results than others in
the search for worst-case situations. In this work, we explore the performance of three

74

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

well-known and diverse optimization algorithms: NSGAII [32], PSO [56], and BO [96]. All
three algorithms use different approaches for finding solutions for the given problem and,
thus, represent a good mix of algorithms, in our opinion. Further, these three algorithms
showed a good performance in several small pre-experiments that we executed before
performing the case study presented in this chapter. One can find an overview of the
process of each of these algorithms in Section 2.4.

In this work, when combining optimization algorithms, we consider collaborative combi-
nations of these algorithms, as explained in [98]. In collaborative combinations, algorithms
supplement each other by exchanging information but are not integrated into each other. In
our case study, we execute the optimization algorithms sequentially and pass on informa-
tion about their best solutions. Several papers on seeding strategies [4, 26, 41] emphasize the
beneficial effect of using already good performing candidates compared to new randomly
generated ones for additional populations or optimization algorithms. According to [4],
the amount of seeded candidates seems to be less important than the existence of them
in the initial data for the next algorithm. Based on these papers, we decided to create
the initial candidates for the subsequent algorithm in a two-fold way. One half consists
of the best candidates from the previous algorithms, following the guidance of [26]. The
other half consists of randomly generated candidates from areas not yet heavily covered
by the previous algorithms. To determine the candidates for this second half, we inves-
tigate the coverage of the previously evaluated candidates in the search space. Since the
search space for our problem is too high dimensional to reasonably investigate the coverage
of all possible sub-parts of the search space, we decided to inspect the coverage of each
dimension separately. Therefore, we divide each dimension of the search space into 10
sub-parts and investigate the number of evaluated candidates with parameter values in
each of these parts. The smaller the number of candidates with values in a sub-part, the
less the optimization algorithm covered this sub-part. Thus, to not neglect these areas, we
generate candidates for the second half of the initial set of candidates for the subsequent
algorithm in the three sub-parts with the lowest number of evaluated candidates. We
consider all possible combinations of the three optimization algorithms NSGAII, PSO, and
BO for three executions with the exception of the direct repetition of the same algorithm.
Table 6.1 presents an overview of the sequential execution of the resulting 12 combinations
of these algorithms. We give every combination a short name for further reference that
includes the first letter of the executed algorithms in their order. The resulting best fitness
value of a combined algorithm is the minimal fitness value that one of the algorithms in the
combination achieves.

6.3. Case Study

When searching for “good” test cases for testing the safe behavior of UAVs with heuristic
methods, we lack a guarantee of finding the worst-case situations. Since the fitness function
for this search is highly complex, we cannot assume a simple distribution that would be

75

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

Table 6.1.: The combinations of the optimization algorithms NSGAII, PSO, and BO that we
investigate in this work.

Short Name Algorithm 1 Algorithm 2 Algorithm 3

NPN NSGAII PSO NSGAII
NPB NSGAII PSO BO
NBN NSGAII BO NSGAII
NBP NSGAII BO PSO
PNP PSO NSGAII PSO
PNB PSO NSGAII BO
PBN PSO BO NSGAII
PBP PSO BO PSO
BNP BO NSGAII PSO
BNB BO NSGAII BO
BPN BO PSO NSGAII
BPB BO PSO BO

necessary for computing guarantees with stochastic analysis. Instead, to explore the perfor-
mance of several optimization algorithms and their combinations for this search problem,
we perform an empirical case study following the guidance of [5, 101] that investigates the
safe behavior of the open-source PX4 autopilot [81] in a simulation environment.

6.3.1. Setup and Implementation

During this case study, we generate test cases for the obstacle detection and avoidance
extension of the open-source PX4 autopilot [81]. To investigate the behavior of this UAV, we
simulate the system with Gazebo [61] and assess the recorded simulation data. We use this
recorded data and the fitness function described in Eq. (5.2) to assess the UAV’s behavior:

fsdt(cs) =

{
min({t ∈ T : d(cs, t)− s(cs, t)}), if given logical scenario is represented
∞, otherwise

For simplicity of presentation, we set the safety distance s(cs, t) to a fixed value of 1.0
meters. In previous experiments, we could create various worst-case situations for the
PX4 autopilot in which it violates specified safety distances when including dynamic
obstacles in its environment. On the other hand, for several logical scenarios with only
static obstacles, the UAV shows a presumably safe behavior by not violating any safety
distances. There exist two possible causes for this safe behavior: (1) the UAV does behave
safely in all alternatives of the given logical scenario, even in the worst-case situation, or
(2) the optimization algorithm did not find the worst-case situation in which the UAV
might still behave unsafely. Due to these two possible reasons, we aim to investigate the

76

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

performance of different optimization algorithms, especially in logical scenarios in which
the UAV presumably behaves safely in all generated test cases. Since the PX4 autopilot shows
such a behavior for logical scenarios with only static obstacles, we focus on these in this case
study. Table 6.2 presents the evaluated logical scenarios that include different landforms,
surface natures, obstacles, wind forces, and fog thicknesses. Note that our simulation setup
limits our choices for denoting characteristics of logical scenarios so that the presented
logical scenarios do not provide a complete description of real-world situations. However,
as we discuss a general problem of applying optimization algorithms for finding worst-
case situations for autonomous systems independently of the evaluated concrete logical
scenarios, such a comprehensive description is not needed in this chapter.

In our case study, we investigate the performance of the optimization algorithms NSGAII,
PSO, BO, and their sequential combinations, as presented in Table 6.1. To implement
these algorithms, we utilize the jMetalPy framework [15] for the optimization algorithms
NSGAII and an improved version of PSO, called Speed-constraint Multi-objective PSO,
and the BayesianOptimization framework [91] for implementing BO. As proposed in [60],
we run 500 evaluations for assessing a given optimization algorithm. When combining
algorithms, we perform 300 evaluations for the first algorithm to enable it to find attractive
areas in the search space, followed by 100 evaluations for the second and third algorithms
to refine the search in these areas. These numbers add up to 500 evaluations to enable
comparability with the given optimization algorithms. For BO, we use the Expected
Improvement acquisition function and a balanced value for xi with 0.05 to allow an equal
exploration and exploitation. To enable a fair comparison, we select the same value for the
population size and offspring population size for NSGAII, the swarm size for PSO, and the
number of initial evaluations for BO. We set this value to 50 for the given algorithms and
first iterations of the combinations and reduce it to 20 for the second and third iterations of
the combinations as these iterations encompass fewer candidates. To explore the robustness
of the optimization algorithms, we follow the guidance of [5, 13, 101] and perform several
runs of generating “good” test cases with a given algorithm for each logical scenario,
namely fifteen. Note that we limit ourselves to evaluating each logical scenario fifteen times
in this case study instead of thirty times as proposed by [5] due to limited computation
power and time. Since we need to assess the UAV’s behavior in each generated test
case, we need to perform a simulation of about two minutes for each test case. Since we
evaluate 15 algorithm combinations in 5 logical scenarios for 500 evaluations each, we need
15 ∗ 5 ∗ 500 ∗ 2 minutes = 52 days per run when executing the algorithms sequentially.
Nonetheless, we achieve decent median absolute deviation values with these fifteen runs,
as presented in Section 6.3.3. To compare the optimization algorithms fairly, we use the
same initial populations for all algorithms for each run of a logical scenario, as proposed
in [13, 77, 101]. However, note that we use a different initial population for each of the
15 runs. When combining algorithms, we use the process described in Section 6.2 to
share information between them. To enable the reproducibility of these experiments, we
provide additional details on the experiment settings as, e.g., the version number of the
used libraries, in Appendix B. Further, we present all fitness values created during these

77

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

Table 6.2.: The five logical scenarios evaluated in the case study include various landforms,
surface natures, wind forces, types of reduced visibility as well as different sizes
(small S, medium M, and large L) and forms of obstacles (cuboid CU, sphere SP,
and cylinder CY).

Scenario 1 2 3 4 5

Landform depression steep transition flat depression elevation
Nature water water land land mixture
Wind moderate light strong light light
Red. Visibility fog thick fog none heavy fog fog
Obstacles 1 2 2 3 4

S M S L S
Obstacle — M L M M
Sizes — — — M S

— — — — M

CU CU CY SP CY
Obstacle — SP CU CY CY
Forms — — — CU CU

— — — — CY

experiments for the evaluated logical scenarios and runs and the convergence of the minimal
fitness values in [112].

6.3.2. Evaluation Objectives

When evaluating optimization algorithms, common objectives found in the literature are the
success rate [77, 102], the best and average fitness values [77, 85, 125], and the convergence
speed of the fitness values [64, 88]. Since the success rate depends on knowing the optimal
solution, we cannot use it in our case study for generating “good” test cases for UAVs as
these “good” test cases are not known beforehand. In addition, as mentioned earlier, finding
an optimal solution corresponding to a worst-case situation is more important in our use
case than having a quick convergence rate of the algorithms. For safety argumentations,
running the fastest algorithm is insufficient as long as it cannot find the worst-case situation
in this shorter run-time. When generating “good” test cases for testing the UAV’s behavior,
we commonly only execute a small number of runs per logical scenario and system version
due to time constraints. Thus, the high average performance of an optimization algorithm
is more important for our use case than high peak performance [38]. Therefore, following
the guidance of the presented literature, we explore (1) the overall best fitness value, which
corresponds to the worst-case situation found in all runs for a logical scenario. In addition,
we investigate (2) the median of the detected best fitness values found in all runs to explore

78

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

the average performance of an optimization algorithm. Finally, we inspect (3) the median
absolute deviation from the median best fitness value detected in all runs to compute how
heavily the best fitness values deviate from their median. We decided to use this metric
instead of the standard deviation since it is more robust to outliers. In our case study, an
optimization algorithm achieves high average performance with a low median value of the
found minimal fitness values and a low median absolute deviation from this median value.

6.3.3. Evaluation Results

In Table 6.3, we present the results of our evaluation of three optimization algorithms
and their combinations for testing the safe behavior of UAVs. For each algorithm and
each logical scenario, we show the best fitness value achieved overall runs, the median of
these minimal fitness values in all runs, and the median absolute deviation of these values.
For each algorithm, we further present the median value of each objective considering all
logical scenarios. Finally, we highlight the minimal value for each objective representing
the minimal distance of the UAV to the obstacles or the minimal median deviation. PBP
achieves the best minimal fitness value with −0.22, while PNP provides the best median
of the minimal fitness values with 1.24 and the minimal median absolute deviation with
0.36. To better understand the relevance of the results, we present the performance of the
algorithms compared to a base algorithm in Table 6.4. We use NSGAII, which is currently
applied in literature [114, 147], as a base algorithm for sub-categories (1) and (3) of our
problem, which we presented in the introduction. Further, we inspect the performance of
the combinations compared to their base algorithm for sub-category (2). To investigate the
significance of the results of our case study, we follow the suggestion of [5] and perform
a Mann-Whitney U test that explores the difference between all minimal fitness values
found in the fifteen runs by each of the algorithms in all logical scenarios. We present the
resulting P-values of these tests in Table 6.4 next to the performance of the algorithms. Two
algorithms perform significantly differently for a confidence interval of 95% if the P-value
is below 0.05. For better visualization, we highlight these occurrences in bold in Table 6.4.
In addition, we compute Vargha and Delaney’s A12 measure [131], which calculates the
probability of algorithm 1 yielding better results than algorithm 2. The advantage of this
statistical measure is that it is independent of specific data distributions. The resulting effect
size of this measure ranges between 0 and 1, with 0.5 indicating that the performance of both
algorithms is stochastically equal. A result of A12 > 0.5 suggests that the first algorithm
produces higher results than the second algorithm. However, as smaller fitness values
indicate better performance in our use case, a result of A12 > 0.5 indeed indicates a better
performance of the second algorithm in our use case. The authors of [131] further present
guidelines for interpreting the effect size of this measure by categorizing it as negligible,
small, medium, or large depending on the achieved A12 value. In Table 6.4, we also present
Vargha and Delaney’s A12 measure for the optimization algorithms’ performances and its
corresponding effect size category. In this measure, we compare the performance of the
base algorithms as algorithm 1 with the performance of the other algorithms as algorithm 2.

79

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

Table 6.3.: The resulting minimal fitness values, the median minimal fitness values, and
their median absolute deviation discovered in all runs for the evaluated five
logical scenarios. We underline the best median values per objective.

Minimal Fitness Value

Scenario 1 2 3 4 5 Median

NSGAII 1.06 1.47 0.30 0.38 -0.02 0.38
PSO 1.05 1.33 0.36 0.72 0.10 0.72
BO 1.24 1.34 -0.03 1.18 0.86 1.18
NPN 0.98 1.54 -0.15 0.65 -0.27 0.65
NPB 1.15 1.54 -0.03 0.70 0.01 0.70
NBN 0.19 1.38 -0.05 0.67 -0.14 0.19
NBP 0.14 1.53 -0.82 0.71 -0.65 0.14
PNP 0.89 1.31 0.21 -0.22 0.19 0.21
PNB 0.89 1.34 0.24 -0.22 0.19 0.24
PBN 0.65 1.33 -0.14 -0.22 -0.17 -0.14
PBP 0.66 1.46 -0.62 -0.22 -0.56 -0.22
BNP -0.04 1.27 0.16 -0.73 -0.21 -0.04
BNB 0.25 1.32 0.16 0.66 -0.21 0.25
BPN 0.01 1.01 0.20 0.48 0.45 0.45
BPB 0.01 1.48 0.34 0.48 0.69 0.48

Median Minimal Fitness Value

Scenario 1 2 3 4 5 Median

NSGAII 1.71 1.67 0.69 1.49 1.55 1.55
PSO 2.05 1.90 0.89 1.26 1.58 1.58
BO 1.76 2.17 1.44 2.36 1.88 1.88
NPN 1.76 1.68 0.37 1.39 0.77 1.39
NPB 2.02 1.77 0.71 1.74 1.13 1.74
NBN 1.95 1.68 0.55 1.36 1.20 1.36
NBP 1.90 1.77 0.75 1.47 1.06 1.47
PNP 1.58 1.52 0.69 1.24 1.18 1.24
PNB 1.81 1.53 0.69 1.48 1.24 1.48
PBN 1.65 1.63 0.73 1.30 1.19 1.30
PBP 1.74 1.66 0.77 1.41 1.25 1.41
BNP 1.38 1.52 0.83 1.22 1.61 1.38
BNB 1.54 1.63 0.81 1.92 1.73 1.63
BPN 1.39 1.51 0.92 1.89 1.42 1.42
BPB 1.46 1.79 1.03 2.16 1.72 1.72

continued on next page

80

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

Table 6.3 – continued from previous page

Median Absolute Deviation of Minimal Fitness Values

Scenario 1 2 3 4 5 Median

NSGAII 0.41 0.07 0.40 0.77 0.66 0.41
PSO 0.49 0.50 0.48 0.47 0.26 0.48
BO 0.42 0.54 0.40 0.37 0.37 0.40
NPN 0.36 0.20 0.56 0.64 0.42 0.42
NPB 0.35 0.24 0.50 0.62 0.39 0.39
NBN 0.45 0.32 0.29 0.70 0.58 0.45
NBP 0.47 0.21 0.29 0.62 0.42 0.42
PNP 0.51 0.12 0.35 0.92 0.36 0.36
PNB 0.38 0.24 0.34 0.57 0.41 0.38
PBN 0.65 0.32 0.49 0.52 0.41 0.49
PBP 0.72 0.30 0.46 0.78 0.30 0.46
BNP 0.53 0.26 0.49 0.82 0.42 0.49
BNB 0.74 0.25 0.41 0.59 0.19 0.41
BPN 0.85 0.31 0.49 0.66 0.70 0.66
BPB 0.53 0.27 0.39 0.48 0.66 0.48

6.3.4. Discussion

As mentioned before, in our use case of generating “good” test cases for testing the safe
behavior of UAVs, high average performance is more important than a high peak perfor-
mance of an optimization algorithm. Further, finding a minimal fitness value and, thus, a
worst-case situation is the most influential factor in our use case. Thus, an algorithm with
the lowest median of minimal fitness values found in various runs and logical scenarios
presents the most suitable optimization algorithm for our use case. Further, a low median
absolute deviation shows that the evaluated algorithm can reliably produce the presented
results. When investigating the performance of the evaluated optimization algorithms, we
focus on three sub-categories of the problem, as mentioned earlier.

Category (1) - Comparison of NSGAII, PSO, and BO

First, we inspect the performance of the three given optimization algorithms NSGAII, PSO,
and BO for our use case of generating “good” test cases for UAVs. Compared with PSO
and BO, NSGAII creates test cases with the lowest median value of minimal fitness values
overall logical scenarios with 1.55, which is 2% better than PSO and 21% better than BO.
NSGAII further generates test cases with the lowest minimal fitness value of a median

81

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

Table 6.4.: For each sub-category of the presented problem, we show the performance of the
optimization algorithms compared to one base algorithm and the P-value of a
Mann-Whitney-U test for this comparison in brackets. We flag the base algorithm
of each comparison with “Base”. In addition, we highlight the P-values that show
a significant difference for a 95% confidence interval in bold. Further, we present
Vargha and Delaney’s A12 measure below the performances and the category of
their effect size with “-”, “S”, “M”, or “L” presenting negligible, small, medium,
or large. A previous version appeared in [116].

Category (1) Category (2) Category (2) Category (2) Category (3)

NSGAII Base Base — — Base
PSO -2% (0.19) — Base — -2% (0.19)

A = 0.46 (-) — — — A = 0.46 (-)
BO -21% (0.00) — — Base -21% (0.00)

A = 0.26 (L) — — — A = 0.26 (L)
NPN — +10% (0.05) — — +10% (0.05)

— A = 0.56 (-) — — A = 0.56 (-)
NPB — -12% (0.82) — — -12% (0.82)

— A = 0.49 (-) — — A = 0.49 (-)
NBN — +12% (0.41) — — +12% (0.41)

— A = 0.52 (-) — — A = 0.52 (-)
NBP — +5% (0.80) — — +5% (0.80)

— A = 0.51 (-) — — A = 0.51 (-)
PNP — — +22% (0.00) — +20% (0.01)

— — A = 0.61 (S) — A = 0.57 (S)
PNB — — +6% (0.01) — +5% (0.25)

— — A = 0.56 (S) — A = 0.53 (-)
PBN — — +18% (0.00) — +16% (0.04)

— — A = 0.59 (S) — A = 0.56 (S)
PBP — — +11% (0.00) — +9% (0.13)

— — A = 0.58 (S) — A = 0.54 (-)
BNP — — — +27% (0.00) +11% (0.72)

— — — A = 0.75 (L) A = 0.51 (-)
BNB — — — +13% (0.00) -5% (0.05)

— — — A = 0.69 (M) A = 0.44 (-)
BPN — — — +24% (0.00) +8% (0.88)

— — — A = 0.74 (L) A = 0.50 (-)
BPB — — — +9% (0.00) -11% (0.00)

— — — A = 0.64 (S) A = 0.39 (S)

82

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

of 0.38. However, this difference in the performance is only significant for NSGAII and
BO according to our executed Mann-Whitney U test. Vargha and Delaney’s A12 measure
shows the same result and demonstrates that the difference in the performance of NSGAII
and BO is large in effect size. These results indicate that NSGAII is more suitable than
BO for generating test cases for our system and the tested logical scenarios. Even though
NSGAII further presents better results than PSO, their performances are not significantly
different. In future work, we aim to investigate the performance of these algorithms in
additional logical scenarios and for various UAV systems to strengthen the significance and
generalizability of the presented results.

Category (2) - Comparison of Combinations with Base Algorithms

After evaluating the performance of the given optimization algorithms individually, we
are interested in exploring whether a sequential combination of algorithms can improve
their performance. The combinations based on NSGAII are NPN, NPB, NBN, and NBP.
The algorithms NPN, NBN, and NBP produce test cases with, on average, better minimal
fitness values than NSGAII and achieve better performances of 5− 12%. However, none of
the results are significantly better than NSGAII, according to the Mann-Whitney U test and
Vargha and Delaney’s A12 measure. We can explore the reasons for this when investigating
the logical scenarios individually. For the first and second logical scenarios, none of the
combinations generates better median minimal fitness values than NSGAII. In contrast,
all combined algorithms generate lower median minimal fitness values than NSGAII for
scenario 5. These opposite observations show that the performance of the optimization
algorithms varies for the different logical scenarios. They further emphasize the importance
of focusing on the average performance of the algorithms. For the combinations based on
PSO — PNP, PNB, PBN, PBP — we discover that all combined algorithms produce better
median minimal fitness values than PSO, with an increased performance of 6− 22%. This
finding also holds when inspecting the logical scenarios separately, except for scenario
4, in which only PNP performs better. Overall, the Mann-Whitney U tests show that the
performances of all four combinations are significantly better than the performance of PSO
in our case study. The corresponding A12 measures show the same results with a small effect
size. These results indicate that the combined versions are more suitable for finding “good”
test cases for testing the UAV’s safe behavior than PSO itself. BNP, BNB, BPN, and BPB
are the evaluated combinations based on BO. On average, all of these combinations show
significantly better results for the median minimal fitness value overall logical scenarios
than BO, with an increased performance of 9 − 27%. Further, the A12 measures describe
the severity of this significance with the comparisons with BNP and BPN having a large
effect size, the one with BNB having a medium effect size, and the comparison with BPB
having a small effect size. As for PSO, these observations strongly advise us to use one of
the combined versions of BO instead of BO itself when generating “good” test cases for
UAVs.

83

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

Category (3) - Comparison of All Algorithms

Finally, we are interested in comparing all evaluated optimization algorithms, including
given and combined ones. Focusing on the median best fitness values reached throughout
all logical scenarios, PNP performs best with a median value of 1.24 and a performance
increase of 20% compared with NSGAII. The algorithm combination further achieves
finding a worst-case situation in scenario 4, in which the tested UAV behaves unsafely. We
can discover this unsafe behavior directly from the fitness value since the fitness value
presents the remaining distance to an obstacle until the UAV violates the specified safety
distance. Since the best fitness value generated is negative with −0.22, the UAV violates
the safety distance by 0.22 meters in the created test case. This finding shows that PNP
could create a worst-case situation that reveals unsafe behavior of the SUT, even though
the results of NSGAII suggested that the SUT behaves safely in all situations of this logical
scenario. These results strongly indicate that we should use various optimization algorithms
when searching for worst-case situations for the SUT. In addition, PNP shows the lowest
median absolute deviation of the minimal fitness values overall logical scenarios with 0.36,
which presents its reliability in finding “good” test cases for the SUT. When considering the
performance of PNP and NSGAII, a P-value of 0.01 shows a significant difference for a 95%
confidence interval and the A12 measure presents a small effect size. Therefore, the results
of our case study indicate that the combined optimization algorithm PNP is a reasonable
choice for reliably generating “good” test cases for the SUT. Compared with NSGAII, which
is currently used in literature, PNP shows a significantly increased performance of 20%,
considering the quality of the created test cases.

Even though the algorithm combination PNP shows the best results in our case study, it
nonetheless does not provide us a guarantee that it can find all worst-case situations. In
addition, we can observe a variation in the quality of the generated test cases for different
logical scenarios for all optimization algorithms, including PNP, which shows their heuristic
and non-deterministic behavior. To gain more reliable results, we advise test engineers to
execute various runs of generating “good” test cases for each logical scenario for their SUT
to increase the chance of finding the most challenging worst-case situation. However, our
case study also presents that this might still not be sufficient. Even though we perform
fifteen runs per logical scenario, we can discover that the best-performing algorithm PNP
does not detect several worst-case situations found by other optimization algorithms that
reveal the unsafe behavior of the tested UAV. Table 6.3 shows that, e.g., NPN finds safety
distance violations of the SUT in the logical scenarios 3 and 5 while PNP cannot discover
these situations. These results demonstrate that we cannot blindly trust optimization
algorithms to find worst-case situations when testing the safe behavior of UAVs. Even
though it is well-known that heuristic optimization algorithms do not provide a guarantee
to detect an optimal solution, our results show that non-optimality does not seem to be
an exceptional case. In addition, the results demonstrate that safety violations are instead
likely to be missed by some of the evaluated algorithms and that the outcome of different
algorithms differs substantially, by up to 20%.

84

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

As presented in this work, a case study about the performance of optimization algorithms
and their combinations indicates which algorithm generates “better” test cases for the SUT
in relevant logical scenarios. However, it is crucial to note that even if we perform such a
comparison to increase the possibility of finding worst-case situations, the resulting best-
performing algorithm might still miss several of these worst-case situations. Having such a
missing guarantee of finding the worst-case situation is problematic as we cannot ensure a
safe behavior of the SUT in the tested logical scenarios. However, for the certification of
autonomous systems, we should be able to present such a guarantee. Thus, to enhance the
chance of finding worst-case situations, we should execute multiple optimization algorithms
and combinations for all logical scenarios when testing the safe behavior of autonomous
systems with scenario-based testing. We feel that the scenario-based testing community
currently does not consider the cost and consequences of this essential insight that presents
the need to execute multiple optimization algorithms to improve the search for worst-case
situations. Further note that this crucial problem of generating worst-case situations for
scenario-based testing is not restricted to our use case of UAVs but also applies to other
domains such as autonomous driving. With the presented case study, we demonstrate
that testing the safe behavior of autonomous systems with scenario-based testing faces
the crucial challenge that optimization algorithms cannot provide a guarantee of finding
worst-case situations.

Threats to Validity

In this case study, we evaluate the performance of different optimization algorithms for
generating “good” test cases for five logical scenarios. Note that we do not claim that the
best-performing optimization algorithm found in our experiments also operates best for
other logical scenarios and SUTs, as we only evaluate the various optimization algorithms
for generating “good” test cases for the PX4 autopilot. Instead, we emphasize the need to
perform a similar case study as the presented one for relevant logical scenarios for each
SUT specifically. Further, our evaluation results show the general problem of applying
optimization algorithms for finding worst-case situations for autonomous systems. To
acknowledge the randomness of the evaluated optimization algorithms and gain robust
evaluation results, we perform fifteen runs for each logical scenario and investigate the
median absolute deviation. However, we do not execute 30 runs as proposed by [5] due to
limited computation power and time, as discussed in Section 6.3.1.

To reduce the threats to internal validity in our case study, we use existing libraries
to execute the optimization algorithms and an open-source UAV. Further, we base the
information-sharing process in the combination of algorithms on recommendations from
the literature. In addition, we run all simulations in isolated Docker containers to decrease
unwanted environmental effects. Finally, to achieve a fair comparison between the opti-
mization algorithms, we use the same initial candidates for all algorithms per run and set
the size parameters equally.

85

6. Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs

6.4. Conclusion

When applying heuristic optimization algorithms for generating “good” test cases for testing
the safe behavior of UAVs, we encounter the problem that these algorithms cannot provide
a guarantee to find the worst-case situation for the SUT. Due to this missing guarantee, we
aim to evaluate the performance of various optimization algorithms and their sequential
combinations when generating test cases for our use case. In our case study, we investigate
the performance of three optimization algorithms — NSGAII, PSO, and BO — and their
combinations when testing an open-source UAV in five different logical scenarios. We
focus on inspecting the performance of (1) these three optimization algorithms, (2) the
sequentially combined optimization algorithms compared with the algorithm we base
them on, and (3) all evaluated optimization algorithms, including the given and combined
ones. The results of our case study indicate that NSGAII is more suitable for our use
case than BO when considering the three evaluated optimization algorithms individually
for generating “good” test cases for our evaluated system and logical scenarios. Further
results advise us to use the combined algorithms instead of PSO and BO directly as they,
on average, produce “better” test cases. Finally, the results show that PNP presents, on
average, the best performance overall runs and logical scenarios. The algorithm achieves an
increased average performance of 20% compared to NSGAII in our case study. With PNP,
we even generate test cases that reveal the unsafe behavior of the tested UAV in one of the
tested logical scenarios. However, our case study also reveals the high variation of quality
of the generated test cases for different logical scenarios for all optimization algorithms,
including PNP. To increase the chance of finding the worst-case situation, we encourage
test engineers to repeat the generation of “good” test cases for each logical scenario several
times. However, our case study demonstrates that this might still not be sufficient for
finding all unsafe behaviors of the SUT. Even though it is known that heuristic search
algorithms do not provide optimality guarantees, our results show that non-optimality
does not seem to be an exceptional case. In addition, the results demonstrate that safety
violations are instead likely to be missed by some of the optimization algorithms and that
the outcome of different algorithms differs substantially. If we miss worst-case situations to
reveal potential faults in the SUT, we cannot guarantee a safe behavior of this system in the
evaluated logical scenarios. However, for the development and certification of autonomous
systems, a guarantee of the safe behavior of these systems is essential. For these reasons,
scenario-based testing comes at the extra cost of having to run multiple optimizers to increase
the chance of detecting worst-case situations. We feel that this insight and its consequences
are somewhat lost in the scenario-based testing community and that they challenge the
current widespread application of scenario-based testing for ensuring the safe behavior of
autonomous systems such as ADS or UAVs.

In future work, we plan to extend the case study with further runs per logical scenario to
more reliably explore the statistical significance of our results. Also, we aim to evaluate the
performance of other optimization algorithms for different UAVs and other autonomous
systems to strengthen the significance and generalizability of the presented results.

86

7. StellaUAV: A Tool for Testing the Safe
Behavior of UAVs

This chapter presents the tool StellaUAV that implements the proposed approach
of testing the safe behavior of UAVs with scenario-based testing and an eval-
uation of its applicability and effectiveness for generating test cases that can
reveal potential faults in UAVs. Parts of this chapter previously appeared in a
peer-reviewed publication [116] co-authored by the author of this thesis.

7.1. Introduction

When we aim to test the safe behavior of UAVs with scenario-based testing and the pre-
sented methodology in this work, we need a tool to generate “good” test cases and evaluate
various optimization algorithms. With such a tool, we can systematically apply the shown
methodology and (1) define logical scenarios to test the UAV’s safe behavior, (2) generate
worst-case situations for each of these logical scenarios for the SUT, and (3) compare the
performance of various optimization algorithms for the presented use case.

Related work presents frameworks [66, 141] that concentrate on testing path planning
algorithms as one part of UAVs or focus on testing the reliability of these systems instead
of their safety. The authors of [142] present a tool that uses belief state machines to create
test cases for testing the reliability of cyber-physical systems. Even though all three tools
are essential for testing UAVs, they do not focus on testing the safe behavior of UAVs,
which is another crucial aspect when testing autonomously operating UAVs. In [71], the
authors present a framework that applies metamorphic and model-based testing to test
the stability of a controller for UAVs. However, when using metamorphic testing, we need
to specify the corresponding correct and complete metamorphic relations. As we cannot
easily accomplish this, we focus on applying scenario-based testing in this work as the
specification of logical scenarios for a SUT is more often performed and more intuitive.
The authors of [30] present a framework that uses fault-injection methods to test the safe
behavior of their UAV autopilot. However, with such fault-injection methods, we can only
detect known faults. To ensure the safe behavior of UAVs, it seems favorable to discover
unknown faults likewise. Finally, note that we cannot directly apply tools and frameworks
for testing ADS as presented in [65, 76] due to the mentioned differences between using
scenario-based testing for testing ADS and UAVs.

87

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

StellaUAV

Describing Logical
Scenarios

Generating “Good”
Test Cases

Evaluating Optimization
Algorithms

NSGAII
PSO
BO

NSGAII Base

PSO -2%

BO -21%

Scenario 1
p0 = precipitation
p1 = temperature
…

Figure 7.1.: For testing the safe behavior of UAVs, StellaUAV includes three primary use
cases: describing logical scenarios to test, generating “good” test cases, and
evaluating the performance of various optimization algorithms. A previous
version appeared in [116].

The contribution of this chapter is a tool called StellaUAV, which enables us to generate
“good” test cases for testing the safe behavior of UAVs in various logical scenarios. The
tool offers the possibility to define these different logical scenarios before creating “good”
test cases for each of them. In addition, the user can specify the optimization algorithms
to apply for generating worst-case situations and, thus, perform a case study of different
algorithms, as we have shown in the previous chapter.

7.2. Methodology

As presented in the introduction, StellaUAV has three essential use cases, which we explain
in more detail in the remainder of this section: (1) defining logical scenarios to test the UAV’s
safe behavior, (2) generating worst-case situations for each of these logical scenarios, and (3)
comparing the performance of various optimization algorithms. We also depict these use
cases in Fig. 7.1. When executing StellaUAV, the user can select several parameters in the
presented GUI: the logical scenarios in which the user aims to test the UAV, the maximal
number of evaluations that the optimization algorithms perform to find “good” test cases,
the size parameter for the optimization algorithms, and the algorithms themselves.

In StellaUAV, we present the manually defined logical scenarios to test in a JSON format,
which offers various advantages, as described in Section 3.3.2. The tool can work with
logical scenarios that represent simulation worlds with different landforms, surface natures,
kinds, sizes, and forms of obstacles, wind forces, and reduced visibilities. We showed
examples of these simulation worlds in Fig. 3.6. For each logical scenario, the tested UAV
gets the mission to fly to a specified waypoint, which depends on the landform of the logical
scenario. In Fig. 7.2, we present an example of a logical scenario defined for StellaUAV.
Note that this example includes parameter values that implicitly denote parameter ranges,
e.g., moderate wind force stands for a wind force of 4.0 − 8.0 kilometers per hour, and a

88

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

{
"name": "Test Scenario #1",
"system": {

"UAVs": [{"maneuvers": ["move to waypoint"]}]
},
"environment": {

"flight area": {
"landform": "flat",
"surface nature": "land"

},
"obstacles": [

{
"kind": "dynamic",
"size": "medium",
"form": "sphere"

},
{

"kind": "static",
"size": "large",
"form": "cuboid"

}
],
"weather": {

"wind force": "moderate",
"reduced visibility": "heavy_fog",
"lighting": "normal",
"temperature": "moderate",
"precipitation": "none",
"lightning": "none",
"cloud cover": "none"

}
}

}

Figure 7.2.: Examplary JSON file that defines a logical scenario for evaluating the UAV’s
safe behavior in StellaUAV. A previous version appeared in [116].

medium-sized obstacle is 5.0 − 10.0 meters large. Thus, this example presents a logical
and not a concrete scenario. Further, the presented logical scenario adheres to the ontology
presented in Section 3.3.2 and the JSON schema derived from this ontology that we depict
in Appendix A.

Before StellaUAV generates “good” test cases for the manually specified logical scenar-
ios, it first derives the search space from these logical scenarios and the corresponding
fitness function. The value ranges of the parameters P of each logical scenario present

89

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

Start

End

5

I II

III

Optimization
Algorithm

Logical
Scenario

Test Case
Generation

Test Cases

Simulation Run &
Data Collection

V

Environment
Building

Fitness Function
Evaluation

Control flow
Data flow Resource

Activity

Worst-Case
Situation

SUT

Simulation

IV

Environment

VI

VII

VIII IX

Figure 7.3.: The methodology for generating “good” test cases applied in StellaUAV that
denotes step 5 in Fig. 5.2. A previous version appeared in [116].

the dimensions of the search space. In addition, we add the positions and velocities of
the obstacles to this search space. As the fitness function, StellaUAV uses the function
presented in Eq. (5.2). Note that this fitness function offers an automatic oracle as a negative
fitness value represents a safety distance violation to an obstacle in the UAV’s environment.
When searching for worst-case situations, StellaUAV follows the methodology introduced
in Chapter 5. We also present a focused view on this applied methodology in Fig. 7.3
and visualize which steps are executed in simulation. The logical scenario I to evaluate
and the optimization algorithm II to execute are input to the test case generation step 5 .
For each generated test case, StellaUAV builds in step III the simulation environment VI

before providing the SUT with its mission. During the simulation V , StellaUAV collects
data about the UAV VI to evaluate its safe behavior in the fitness function afterwards VII .
After assessing the initial candidates, the optimization algorithm generates further test
cases with the goal of discovering “better” ones that present worst-case situations. Finally,
StellaUAV returns the generated test cases VIII and the detected worst-case situations IX for
the evaluated logical scenarios.

Finally, StellaUAV presents several optimization algorithms to compare their performance
for testing the safe behavior of UAVs. In the previous chapter, we presented such a case
study for testing the safe behavior of the PX4 autopilot. StellaUAV includes implementations
of NSGAII, PSO, and BO and their sequential combinations that we introduced in the
previous chapter: NPN, NPB, NBN, NBP, PNP, PNB, PBN, PBP, BNP, BNB, BPN, BPB;
To gain reliable results and reduce the effect of randomness on the performance of the

90

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

classDiagram StellaUAV

util

AlgorithmCombinationRunScenarioParameterRanges

HandleRecordedDataJsonConverter

GUIEvaluation

DockerSimulation

I

optimization_algorithms

PSOAlgorithmNsgaiiAlgorithm

BaseAlgorithmJmetal BayesianOptimizationAlgorithm

bayes_opt.BayesianOptimization

jmetal.Algorithm BaseAlgorithm

<<enumeration>>
AlgorithmName

II

optimization_process

MissionWorldBuilder Mavsdk.System

Drone

jmetal.FloatProblem

UAVProblem
III

VII

VI

V

IV

Simulator

obstacle_forms

CuboidObstacle

ObstacleFormSphereObstacle

CylinderObstacle

<<use>>

<<use>>

<<use>>

<<use>>

<<use>><<use>><<use>>

<<use>>

<<use>>

<<use>> <<use>><<use>>

<<use>>

<<use>>

Figure 7.4.: The architecture of StellaUAV with steps from Fig. 7.3 and third-party frame-
works and libraries marked in gray. A previous version appeared in [116].

optimization algorithms, we encourage test engineers to perform several runs of generating
“good” test cases for each logical scenario and optimization algorithm.

7.3. Architecture

In Fig. 7.4, we present the architecture of our tool StellaUAV and corresponding steps
from Fig. 7.3. It is composed of four main packages: obstacle forms, optimization process,
optimization algorithms, and util; The first package obstacle forms includes implementations
of the various obstacles in StellaUAV. In the current implementation, we focus on cuboid,
spherical, and cylindrical obstacles which inherit attributes and methods from the abstract
class ObstacleForm. When adding another obstacle form, one needs to implement a new
class that inherits from this abstract class and includes methods for updating its position
and calculating the distance to this new form of obstacle.

The package optimization process encompasses classes for evaluating the safe behavior of
a UAV in simulation. In StellaUAV, we use the open-source simulator Gazebo [61], which
enables us to simulate various kinds of robots, including terrestrial, aerial, and underwater
ones. In addition, we can set different environmental effects in Gazebo, such as the wind
force or fogginess. In the optimization process package, we specify the simulation world IV

for Gazebo in a .world file. The class WorldBuilder generates this file III based on the defi-
nition of the logical scenarios I that we currently evaluate. In the current implementation,
this class adapts the landform, the water level, the type, size, and form of obstacles, the
wind force coming from one direction, and the fog to reduce the UAV’s visibility. To adjust

91

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

additional elements of the world, one can extend the adapt() function of the WorldBuilder
class. In the class UAVProblem, we formulate the search problem for our search for “good”
test cases with the search space and the fitness function. We inherit from the FloatProblem
class of the jmetalpy framework [15] to enable the usage of their optimization algorithms.
This framework presents implementations of various optimization algorithms and search
problems to evaluate with these algorithms. The applied optimization algorithms call the
evaluate() function of this class to start the simulation of the UAV V and evaluate its safe
behavior VII . Finally, we define a Drone class that inherits from the MAVSDK-Python
library [92] to enable communication with the simulated UAV VI via MAVSDK as well as
upload and start missions on the UAV. The MAVSDK library offers APIs for communicating
with MAVLink systems by sending them missions or controlling their movements.

In the package optimization algorithms, we define the various optimization algorithms
II that the user can select to generate “good” test cases. The current implementation of

StellaUAV provides the optimization algorithms NSGAII, an enhanced version of PSO
called Speed-constraint Multiobjective PSO, and BO. For NSGAII and PSO, we use the
implementations of the jmetalpy framework, and for BO’s implementation, we utilize
the BayesianOptimization framework [91]. All optimization algorithms inherit from the
abstract class BaseAlgorithm. To add another optimization algorithm, we need to create a
new class that inherits from this abstract class and specifies methods for parameterizing
and executing this algorithm.

Finally, package util includes several utility files that, i.a., convert the JSON files in which
we specify logical scenarios into parameter ranges for the definition of the search space or
evaluate the safe behavior of the UAV by investigation data that we recorded during the
simulation.

Limitations and Extensibility With StellaUAV, we can generate “good” test cases for
testing autonomously operating UAVs. To apply StellaUAV for testing a specific UAV,
this UAV needs to provide communication interfaces via the MAVSDK library to allow
transmission of the UAV’s mission and ROS to enable data collection during the simulation.
For exchanging the currently implemented PX4 autopilot [81] in StellaUAV that we use in
our experiments and will describe in Section 7.4.1, we have to modify the script that starts
the simulation of the UAV and the roslaunch files that launch the simulation environment
with the UAV. Except for these two files, we do not need to alter the source code of
StellaUAV to exchange the SUT. As a simulator, StellaUAV currently applies the open-
source simulator Gazebo, which enables us to define various landforms, surface natures,
obstacles, wind forces, and fogginess for the UAV’s environment. However, we are limited
to these capabilities and lack the option to represent, e.g., ambient temperature, cloudiness,
or various degrees of rain. To exchange Gazebo with another simulator, we need to adjust
the roslaunch files to launch the other simulator and adapt the class WorldBuilder to adhere
to specifying the simulation world for the new simulator. Finally, note that we apply our
methodology in this work in the context of Software-in-the-Loop testing but can also utilize
it for Hardware-in-the-Loop or Model-in-the-Loop testing.

92

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

7.4. Evaluation

In this section, we evaluate the presented tool StellaUAV by investigating the safe behav-
ior of the PX4 autopilot [81] in a Software-in-the-Loop simulation in 32 different logical
scenarios. We share the source code for our presented tool StellaUAV in [117].

7.4.1. System Under Test

In StellaUAV, we generate test cases for testing the safe behavior of the obstacle and
avoidance extension of the PX4 autopilot [81], which is an open-source project with a large
community that works on it. Note that the authors of this work did not implement this
autopilot. We can operate this autopilot autonomously by presenting it with a mission, e.g.,
to fly to a defined waypoint. The tested autopilot autonomously plans its trajectory to fulfill
its mission and automatically adapts it to upcoming obstacles or environmental conditions
that affect its behavior.

7.4.2. Setup and Implementation

As mentioned before, StellaUAV uses the simulator Gazebo [61] to simulate the PX4 au-
topilot. During simulation, we forward the mission to fly to a specified target point to
the UAV via the MAVSDK-Python library [92] and gather data about the UAV via ROS
[100]. To evaluate the safe behavior of the SUT in our experiments, we apply the fitness
function presented in Eq. (5.2), where we fix the safety distance s(cs, t) to 1.0 meters for
simplicity of presentation. Accordingly, we set the corresponding safety distance parameter
of the tested PX4 autopilot to the same value. As we present a case study that evaluates the
performance of various optimization algorithms in Chapter 6, we focus on the optimization
algorithm NSGAII in the experiments of this chapter. We selected NSGAII as it is currently
widely used for testing the safe behavior of autonomous systems [48, 114, 147]. In our
experiments, we set the maximum number of evaluations to 500 for each logical scenario,
as suggested in [60], and the population size of NSGAII to 100. We apply SBX Crossover,
Binary Tournament Selection, and polynomial mutation operators with a crossover rate
of 0.9 and a mutation rate of one divided by the number of variables in the search space,
as proposed by [19]. Due to the heuristic nature of the optimization algorithms, we ex-
ecute three runs to search for “good” test cases for each logical scenario to reduce the
randomness of the results. Note that we do not perform 30 runs as proposed by [5] due
to time constraints. However, as we do not present an empirical assessment of different
optimization algorithms in these experiments, three runs seem sufficient to demonstrate the
general applicability of StellaUAV. Note that we run all simulations in Docker containers
to decrease unwanted environmental effects. To evaluate the safe behavior of the UAV in
realistic concrete scenarios that enable the UAV to react reasonably, we exclude concrete
scenarios with dynamic obstacles with very high velocities. If the obstacles move too fast
and the SUT cannot respond to them, we cannot blame the SUT when violating any safety

93

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

distances. Thus, we need to ensure that the SUT can theoretically keep the specified safety
distance by limiting the velocity of the obstacles to a reasonable value. This limitation
presents one of our constraints to ensure the realism of the generated concrete scenarios.
Further, we assure that the UAV performs the predefined mission of the logical scenarios in
the created concrete scenarios. Due to the limitations of our applied simulator, which we
discussed in Section 7.3, we only represent a few environmental effects relevant to UAVs
and represent real-world obstacles in an approximated form. Regardless, StellaUAV still
enables us to define and test the safe behavior of UAVs in logical scenarios with static and
dynamic obstacles and relevant environmental effects, such as wind and fog. Finally, note
that the dynamic obstacles in StellaUAV currently move straight between two points with a
certain velocity. In future work, we would like to extend StellaUAV with more sophisticated
maneuvers for the dynamic obstacles. To enable the reproducibility of these experiments,
we provide additional details on the experiment settings as, e.g., the version number of
the used libraries, in Appendix B and present the generated minimal fitness values for all
logical scenarios and runs for these experiments in [112].

7.4.3. Logical Scenarios

In Tables 7.1 and 7.2, we present the logical scenarios that we evaluate in our experiments.
We derived these logical scenarios manually from the ontology introduced in Section 3.3.2.
For selecting logical scenarios from this ontology, we apply the simple defect hypothesis that
a pair-wise combination of the ontology’s dimensions is sufficient to provoke all relevant
faults in the SUT. However, note that we chose this defect hypothesis for simplicity of
presentation and that it does not present a complete and sufficient defect hypothesis for the
tested system. The resulting logical scenarios include different landforms, surface natures,
wind forces, reduced visibilities, and a varying number of obstacles in various forms, sizes,
and kinds.

7.4.4. Experimental Results & Discussion

We present the results of our experiments to show the applicability of StellaUAV in Table 7.3.
In this table, we depict the number of created test cases in which the SUT shows an unsafe
behavior by violating the defined safety distance for each logical scenario and each of the
three runs. Further, we denote the average and median values over all runs. For five of
the 32 logical scenarios, we cannot find any safety distance violations in our experiments.
In the other logical scenarios, we generate several test cases with negative fitness values
that represent safety distance violations in the experiments. An inspection of these logical
scenarios reveals that all of them include dynamic obstacles, whereas those in which
the UAV only shows a safe behavior consist solely of static obstacles. This observation
indicates that the SUT can safely handle the static obstacles in the tested logical scenarios
but encounters problems when faced with dynamically moving ones. In addition, the

94

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

Table 7.1.: The parameter values for the landform, surface nature, wind force, and reduced
visibility of the 32 logical scenarios in our experiments.

Scenario Landform Surface Nature Wind Force Reduced Visibility

1 flat mixture strong thick fog
2 depression land light heavy fog
3 elevation water moderate fog
4 steep transition mixture none none
5 flat land strong none
6 elevation water none fog
7 depression water moderate heavy fog
8 steep transition land moderate thick fog
9 flat water light fog
10 flat mixture none thick fog
11 steep transition land strong heavy fog
12 depression land strong heavy fog
13 elevation mixture light fog
14 steep transition water moderate none
15 flat land light thick fog
16 depression mixture light none
17 depression land none fog
18 depression water strong none
19 elevation mixture moderate heavy fog
20 elevation land none none
21 flat mixture strong fog
22 steep transition water light thick fog
23 flat land none heavy fog
24 steep transition mixture strong none
25 flat land moderate thick fog
26 depression water light thick fog
27 depression land light heavy fog
28 elevation mixture moderate thick fog
29 elevation water strong thick fog
30 steep transition water light fog
31 flat land moderate heavy fog
32 steep transition mixture none none

95

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

Table 7.2.: The parameter values for the number of obstacles, their kinds (static ST or
dynamic DY), sizes (small S, medium M, or large L), and forms (cuboid CU,
sphere SP, or cylinder CY) of the 32 logical scenarios in our experiments.

Scenario # Obst. Obstacle Kinds Obstacle Sizes Obstacle Forms

1 4 DY DY DY DY S S S S CY SP CY CY
2 3 ST ST ST — L M M — SP CY CU —
1 4 DY DY DY DY S S S S CY SP CY CY
2 3 ST ST ST — L M M — SP CY CU —
3 1 DY — — — M — — — CU — — —
4 4 ST DY ST ST M L L M CU CU SP CU
5 2 ST ST — — S L — — CY CU — —
6 4 DY ST DY ST L M L L SP SP CY SP
7 4 DY DY DY DY M L M M CY CY CU SP
8 4 ST ST ST DY L S S L CU CY SP CY
9 4 DY DY ST DY S M M S SP CU SP CU

10 1 ST — — — L — — — SP — — —
11 1 DY — — — S — — — CY — — —
12 4 ST ST DY ST M S L S CU SP CU CU
13 4 ST ST ST ST S M S M CY CY CU CY
14 3 ST DY DY — M S S — SP SP CY —
15 4 ST DY DY ST M L M L CU CU CY SP
16 1 DY — — — S — — — CU — — —
17 2 DY DY — — L S — — CY CY — —
18 4 ST ST ST DY L L L M SP CY CY CY
19 4 DY DY DY ST S S M L CY CU SP CU
20 4 ST DY ST DY L L S S CY CU CU SP
21 3 DY ST ST — S L L — CY SP SP —
22 2 ST ST — — M M — — CU SP — —
23 4 DY ST DY ST S S M M SP SP CY CY
24 4 DY ST DY DY S M M L SP SP CU SP
25 4 ST DY DY DY L M L S CU CY CU CU
26 4 ST ST DY ST S S L M CY CU SP SP
27 4 DY DY DY DY S M S L CY SP CY CU
28 2 DY ST — — S M — — SP SP — —
29 3 DY ST DY — L S S — CU CU CY —
30 4 DY DY DY DY M L M S CU CU CY CY
31 2 DY DY — — M M — — SP CY — —
32 3 DY ST ST — L L S — SP SP CU —

96

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

Table 7.3.: The number of test cases in which the SUT violates the specified safety distance
in our experiments for three runs and their average and median values.

Logical Scenario
Safety Distance Violations

Run 1 Run 2 Run 3 Average Median

1 104 116 61 93.67 104
2 0 0 0 0.00 0
3 97 69 16 60.67 69
4 12 22 5 13.00 12
5 0 0 0 0.00 0
6 112 163 151 142.00 151
7 18 7 14 13.00 14
8 34 25 25 28.00 25
9 209 222 234 221.67 222

10 0 0 0 0.00 0
11 37 31 31 33.00 31
12 9 18 2 9.67 9
13 0 0 0 0.00 0
14 10 12 14 12.00 12
15 128 124 133 128.33 128
16 7 18 37 20.67 18
17 58 17 50 41.67 50
18 6 3 1 3.33 3
19 198 211 169 192.67 198
20 153 180 135 156.00 153
21 23 1 10 11.33 10
22 0 0 0 0.00 0
23 177 177 143 165.67 177
24 24 39 10 24.33 24
25 123 185 149 152.33 149
26 36 132 83 83.67 83
27 12 8 6 8.67 8
28 167 180 160 169.00 167
29 61 53 12 42.00 53
30 38 42 20 33.33 38
31 229 260 239 242.67 239
32 126 140 111 125.67 126

results demonstrate the effectiveness and applicability of StellaUAV for creating “good”
test cases that reveal potential faults in the SUT.

97

7. StellaUAV: A Tool for Testing the Safe Behavior of UAVs

Threats to Validity

Our experimental results focus on showing the applicability of the presented tool for the
integrated PX4 autopilot by generating “good” test cases for this system in several logical
scenarios. Note that we do not present results for other systems and limit ourselves to
the presented logical scenarios in these experiments. However, we evaluate the tool’s
effectiveness in 32 logical scenarios that represent various environmental conditions for the
UAV. Note that we do not claim to demonstrate a complete list of relevant logical scenarios
for the SUT with these 32 logical scenarios. Since our tool uses existing open-source libraries,
tests the safe behavior of the open-source PX4 autopilot, and runs all simulations in isolated
Docker containers, we reduce the threats to internal validity.

7.5. Conclusion

For systematically applying the presented methodology in this work for testing the safe
behavior of UAVs with scenario-based testing, we require a tool that enables (1) the defi-
nition of logical scenarios to test the UAV’s safe behavior, (2) the generation of worst-case
situations for each of these logical scenarios, and (3) the comparison of the performance
of various optimization algorithms for the presented use case. As a contribution, this
chapter presents such a tool named StellaUAV. The tool describes the logical scenarios to
test in JSON files before deriving the search space and fitness function for these logical
scenarios. Afterward, StellaUAV applies a specified optimization algorithm to search for
worst-case situations in the defined search space. The tool enables the user to specify the
logical scenarios to test, the optimization algorithms to use for the search, and different
parameters for these algorithms. Finally, we show an evaluation of the applicability and
effectiveness of the presented tool by searching for safety distance violations in 32 logical
scenarios. These experiments show that the tested PX4 autopilot can handle static obstacles
very well, whereas it encounters problems with dynamically moving ones. Thus, these
results show the effectiveness of StellaUAV when creating “good” test cases that can reveal
potential faults in the SUT.

In future work, we would like to extend StellaUAV to enable the possibility of testing var-
ious kinds of UAV autopilots, including additional environmental effects, and introducing
more complex maneuvers for the included dynamic obstacles.

98

Part IV.

Related Work and Conclusion

99

8. Related Work

This chapter discusses related work about testing the safe behavior of UAVs
with its challenges of deriving relevant logical scenarios for these systems and
generating worst-case situations for them. Parts of this chapter previously
appeared in peer-reviewed publications [114, 115, 116] and a peer-reviewed
submission under review [118] co-authored by the author of this thesis.

8.1. Testing the Safe Behavior of UAVs

For testing the safe behavior of UAVs, literature presents various methods. One approach is
to identify hazards and risks for UAVs, as proposed by [14, 27, 80, 93, 134]. The authors
either derive the safety hazards from expert knowledge, a failure analysis, or experimental
flight tests in specific conditions, such as occurring motor or GPS failures. Primary hazards
presented in these papers are midair collisions [27, 80, 134], collisions with objects or persons
located on the ground [14, 80, 134], severe weather conditions [134], and loss of control
[14, 93, 134]. Addressing the detected hazards should be the first but not the last step when
testing the safe behavior of UAVs. The derived hazards or logical scenarios present a limited
subset of all relevant logical scenarios for the SUT. Further, the demonstrated approach does
not include a methodology to generate “good” test cases for each of the detected logical
scenarios to reveal the potentially faulty behavior of the SUT. In this work, we present an
ontology to characterize relevant logical scenarios for the SUT and outline a methodology
for generating “good” test cases for each of them with search-based techniques.

Reachable set analysis is another approach to evaluate the safe behavior of UAVs, as
suggested by [43, 70, 144]. The idea of this approach for safety evaluations of systems is the
following: we consider a SUT to behave safely if it does not enter a set of undesirable states
during its operation. Literature defines these undesired states as the reachable set of other
UAVs and obstacles [70, 144] or by setting boundaries for relevant parameter values [43].
We need to perform this partitioning into safe and unsafe states correctly for all possible
configurations to ensure the safety of the SUT. Even though reachable set analysis has the
advantage of ensuring a safe behavior of the regarded system in real-time, the verification
of the correct partitioning between safe and unsafe states is not easily accomplished. We
need to perform this additional verification step also for several other approaches, such
as simulation-based testing. When using simulations, we rely on the correctness of the
simulations, which present an abstraction of the SUT. However, there exists an extensive

101

8. Related Work

amount of research about the correctness of simulations [58, 108, 109]. Thus, we decided to
work with simulations instead of using reachable set analysis since we do not aim to test the
behavior of UAVs in real-time. Due to the existing high effort in verifying and improving
the quality of simulations in the research community, we use existing tools for simulating
UAVs and do not incorporate research about further improvements of simulations into this
thesis. Thus, we can focus on finding “good” test cases with the help of those simulations
instead of having to verify the abstraction of the system ourselves.

Another advantage of simulation-based testing compared with real-world flight tests,
as proposed by [55, 57, 84], is that they cause no damage or injury when the SUT behaves
unsafely and collides with persons or objects in its environment. Since we are interested in
testing UAVs in safety-critical situations, simulation-based techniques are, thus, well suited
for our approach. When only applying real-world flight tests, we face the problem of testing
only specific concrete scenarios that might not present the most challenging ones. Thus, we
need to develop and apply additional methods for ensuring that the UAVs behave safely,
even in the worst-case situation of each logical scenario. As scenario-based testing [23] has
shown to be an insightful approach for testing the safe behavior of ADS [48, 82, 89, 126], we
propose to apply the same method for testing the safe operation of UAVs.

Summary: Related work on testing the safe behavior of UAVs focuses on testing the
system in specific concrete scenarios or logical scenarios without basing their selection on
suitable defect hypotheses. For other approaches, we need an additional verification step of
the abstraction of the SUT that is not easily accomplished.

8.2. Logical Scenario Derivation

In the literature, several works present use case scenarios for UAVs [36, 72, 110]. However,
their main focus lies on the mission of the UAVs without concentrating on their environment.
If the use case scenarios include descriptions of the environment, they often focus on specific
areas, such as coastal settings [36] or desert environments [72]. To define logical scenarios
for testing the safe behavior of UAVs in more detail, we present an ontology that describes
the UAVs, their missions, and detailed information about their environment in this thesis.

The authors of [10, 90] apply a similar approach by modeling the logical scenarios for ADS
with ontologies. However, [10] focuses on the temporal and spatial causalities of logical
scenarios for ADS, and [90] concentrates on describing the objects and their relationships
in the logical scenarios as well as road and weather conditions. Both works present meta-
models of logical scenarios for ADS without concrete dimensions that prevent us from
directly deriving specific logical scenarios. In addition, both papers discuss logical scenarios
which present challenging situations for ADS. Due to missing fine-grained traffic rules and
rigid road structures, demanding situations for UAVs look different than those for ADS.
Further, to the best of our knowledge, no test-ending criterion for testing the safe behavior
of UAVs with scenario-based testing exists that would inherently present a complete list
of all relevant logical scenarios. To close these gaps in the literature, we introduce an

102

8. Related Work

ontology in this work that includes concrete dimensions to enable a direct derivation of
logical scenarios for testing the safe behavior of UAVs.

When creating an ontology that represents logical scenarios for UAVs, we first need
to find the relevant dimensions of these scenarios. As the existing ontologies for UAVs
[22, 51, 124] present dimensions for specific use cases such as UAV video content analysis,
available aircraft resources, and UAV flight control and management systems, we use them
as an inspiration for our ontology. In addition, we gathered ideas from ontologies of other
domains, such as [11, 59].

When dividing the collected dimensions of the ontology into suitable sub-categories,
several works [46, 47] emphasize the importance of achieving the correct level of granularity.
Contrary to [90], we aim to find this granularity level for logical scenarios themselves
instead of distinguishing between scenes, situations, scenarios, and use cases. We believe
that we need to derive the sub-categories and, thus, the correct level of granularity system-
specifically, as different situations are challenging for various UAVs. To describe all relevant
logical scenarios for UAVs, we need to find suitable lower and upper bounds for the
dimensions of our ontology before dividing each of them into sub-categories. Thus, we
describe an automated approach for detecting these bounds in this work to present a limited
number of test scenarios. Other methods for finding a complete list of logical scenarios for
autonomous systems focus on gathering them from collected real-world data [31, 49, 135].
To state whether we discovered all relevant logical scenarios for the SUT, these approaches
either analyze the density or diversity of the gathered data or use an instance of the Coupon
Collector’s Problem to detect whether additional data needs to be collected. However, in
the context of UAVs, we lack the high amounts of data necessary to apply these approaches.
Thus, we focus on an ontology based on mental models that represent logical scenarios in
this work instead of concentrating on statements about the completeness of the derived
logical scenarios.

Next, we aim to describe specific logical scenarios in a machine-readable. The authors
of [7, 99] present languages to denote concrete or logical scenarios for ADS, whereas the
Aviation Scenario Definition Language [53] introduces a language to define aircraft landing
scenarios. As all of the presented languages do not include the needed attributes to describe
all relevant logical scenarios for testing the safe behavior of UAVs, we propose to define
these logical scenarios in JSON.

Finally, we need a method to select specific logical scenarios from the presented ontology.
The authors of [68] suggest the use of combinatorial testing for an ontology that describes the
environment of autonomous vehicles. However, we believe that such a selection method
should be chosen system-specifically and based on a defect hypothesis of challenging
situations for the SUT.

Summary: Related work on logical scenarios for UAVs focuses on specific use cases
and the mission of the UAVs and misses an in-depth description of its environment. As
different situations are challenging for ADS and UAVs, we cannot directly use existing
work about meta-models of logical scenarios from the automotive domain that furthermore
lack concrete dimensions.

103

8. Related Work

8.3. Generating “Good” Test Cases

When testing the safe behavior of ADS, related work suggests the use of search-based
techniques to find challenging situations for the SUT [48, 137]. In [137], the authors present
the application of this approach for testing the safe behavior of an automated parking
system, whereas [48] focuses on the fitness functions needed to create “good” test cases for
ADS. Since we can encounter different challenging situations for ADS and UAVs, we cannot
directly apply these methods. In this work, we propose a methodology for generating
“good” test cases for testing the safe behavior of UAVs, which is based on the presented
literature but tackles the issues specific to UAVs. In addition, since we lack fine-grained
traffic rules and rigid road structures for UAVs, the explicit specification of a safe behavior
for UAVs gets more challenging. To acknowledge this challenge, we consider two cases in
this work. In the first case, we assume that we have a specified safety distance that we can
use in our fitness function to explicitly define the safe behavior of the SUT. In the second
case, we work without a specified safety distance and adapt our search for challenging
situations accordingly.

The authors of [146, 147] apply search-based techniques to find collisions between mul-
tiple UAVs in an environment with no further obstacles. In addition, the authors test
against a specified safety distance to evaluate the safe behavior of the UAVs. However, the
environment of UAVs has a high impact on their behavior, and assuring a safe behavior
of UAVs in urban areas will be an essential part of their deployment. Thus, we provide a
methodology for generating “good” test cases for testing the safe behavior of UAVs that
considers different environmental effects. In addition, we also investigate the case when we
cannot specify a safety distance, as mentioned before.

Summary: Related work on testing the safe behavior of autonomous systems with search-
based techniques focuses on testing ADS that encounter different challenging situations
than UAVs or on testing UAVs in an environment with no obstacles. In addition, the
literature concentrates on testing against a specified safety distance and neglects the case
when we cannot define such a safety distance.

8.4. Evaluation of Optimization Algorithms

In the literature, several works [9, 29, 64, 125] evaluate the performance of optimization
algorithms in different contexts, such as managing hydro-powered plants, allocating land
multi-objectively, solving kinematic equations for robot manipulators, or clustering in
wireless sensor networks. The authors of [60] focus on the convergence rate of different
optimization algorithms when creating “good” test cases for testing the safe behavior of
ADS. Contrary to this work, we aim to concentrate our evaluation on the algorithms’ ability
to find worst-case situations. In addition, we cannot easily generalize the results from
case studies from other domains as the performance of optimization algorithms is highly
context-specific.

104

8. Related Work

We base our empirical case study of the performance of optimization algorithms for
finding worst-case situations on the good practices presented in [13, 101]. To assess the
performance of each algorithm, we need to specify objectives relevant to our case study.
As we are not aware of the “good” test cases beforehand, we cannot use objectives based
on knowing the optimal solution, such as the success rate or deviation from the optimal
solution [9, 24, 77]. Since the simulation of the tested UAV in a concrete scenario exceeds
the execution time of the algorithms significantly, we also do not focus on the execution
time of the algorithms, as mentioned in [9, 24, 85, 125]. Instead, we concentrate on the best
and average fitness values found by the algorithms, as presented in [60, 85, 101, 125, 130],
and the deviation from the averaged values, as suggested by [85, 101, 125, 130].

In this work, we evaluate the performance of optimization algorithms and their combi-
nations. We focus on so-called collaborative combinations, as introduced by [74, 98], that
implement an information-sharing process between the individual executions of the differ-
ent algorithms. Related work uses collaborative combinations for various use cases, such
as solving distinct parts of the search problem [85], executing pre-experiments to decide
which algorithm to utilize for further evaluations [130], or exploiting all their advantages
[24, 33, 77], such as good exploration or exploitation characteristics. In this work, we explore
the third use case by comparing the performance of collaborative combinations with their
base algorithm to understand whether the combined version can create “better” test cases.
To share information between the execution of the different optimization algorithms, we
follow the guidance of [24, 33, 77] and pass the best candidates from the previous algo-
rithms on to the subsequent algorithm. Further, we enhance the initial candidates for the
subsequent algorithm with candidates from areas of the search space that were not yet
heavily covered to increase the variability of the candidates. Such an increased variability
leads to better results according to [139]. We can add these additional candidates as [4, 104]
indicate that having seeded candidates that previously performed well is more important
than the number of these candidates.

Summary: Related work on evaluating optimization algorithms presents their results for
other domains and focuses on the convergence rate of the algorithms instead of finding
their optimal solution. In addition, no evaluation of collaborative combinations for testing
the safe behavior of UAVs exists yet.

8.5. Tools and Frameworks for Testing UAVs

The literature presents various tools and frameworks for testing autonomous systems
such as ADS, UAVs, or cyber-physical systems [30, 65, 66, 71, 76, 141, 142]. The authors
of [142] concentrate on minimizing test suites concerning uncertainty and cost-effectiveness
and testing the reliability of cyber-physical systems while considering their uncertainty.
Similarly, the authors of [66, 141] focus on testing the reliability of UAVs. Contrary to their
works, we present a tool for testing the safe behavior of UAVs, which presents another
aspect of testing autonomous systems.

105

8. Related Work

Related work in the automotive domain [65, 76] applies fuzzing techniques to discover
unsafe behaviors. However, as autonomous cars present different systems with other
challenges than UAVs, we cannot utilize their tools directly.

[71] applies a model-based approach that uses metamorphic testing to assess the safe
behavior of a controller for UAVs. This approach presents one alternative for testing the
safe behavior of UAVs, which is based on the correct and comprehensive specification of all
relevant metamorphic relations. However, deriving such a complete set of metamorphic
relations presents various challenges. In this work, we instead concentrate on testing the
safe behavior of UAVs in logical scenarios for which we aim to find worst-case situations.
Even though we also face different challenges when deriving a complete list of logical
scenarios, we find it more intuitive as test engineers define these logical scenarios implicitly
when testing their systems.

The authors of [30] use fault-injection techniques to test the safe behavior of their sim-
ulated UAV. One disadvantage of these techniques is that we need to know the faults
beforehand and can only detect previously specified faults. Since we want to find potential
faults in our SUT even if we do not know them yet, we use search-based techniques to find
worst-case situations for the SUT in relevant logical scenarios.

Summary: Related work about tools and frameworks for testing autonomous systems
focuses on testing autonomous cars, testing other aspects than the UAVs’ safe behavior,
applying metamorphic testing, which presents the challenge of defining all relevant meta-
morphic relations, or using fault-injection techniques which can only detect known faults
in the SUT.

106

9. Conclusion and Outlook

This chapter concludes by summarizing the concepts and results for testing the
safe behavior of UAVs presented in this thesis. In addition, it includes limitations
of our work, lessons learned, and ideas for future work.

9.1. Summary of Results and Limitations

In this work, we present a methodology for testing the safe behavior of UAVs with scenario-
based testing. We focus on the two problems of (1) deriving relevant logical scenarios for a
SUT and (2) generating test cases that can reveal potential faults in the SUT.

Addressing Problem 1: As related work concentrates on the mission of the UAV or con-
tains a limited number of environmental effects, there is a need for an in-depth description
of the relevant dimensions of logical scenarios for UAVs. In addition, different situations
are challenging for ADS and UAVs due to, e.g., the influence of the environment and having
a road versus an open field to operate. Further, there are no fine-grained traffic rules and
rigid road structures for UAVs that ease the definition of logical scenarios. Thus, we cannot
directly apply logical scenarios from the automotive domain and instead need to build an
ontology with concrete dimensions that characterizes relevant logical scenarios for UAVs.
We can derive the dimensions for an ontology (1) automatically by clustering real-flight
data that we previously collected or (2) manually from mental models presented in expert
knowledge, specifications, and the literature. Even though we currently lack high amounts
of flight data needed for the first approach, we show the general concept of using these
clustering techniques to acquire logical scenarios with simulated data in this work. In these
experiments, we discover the following open research challenges for applying these tech-
niques: (1) we currently lack the necessary high amounts of diverse and relevant real-world
flight data, (2) as we currently lack a measure for assessing the quality of the generated
clustering, we either need to specify one or inspect the results for all suitable settings,
(3) as the characteristics of the gathered data heavily influence the clustering results, we
need to consciously acquire this data for our use case, and (4) if we lack information about
the UAV’s environment, an explicit description of the derived logical scenarios gets more
complicated. Due to these challenges, we focus on deriving logical scenarios based on
mental models in the remainder of this work. Therefore, we present a methodology for
systematically acquiring dimensions for an ontology based on mental models and show a

107

9. Conclusion and Outlook

resulting ontology that characterizes logical scenarios for a quadcopter as one kind of UAV.
Note that we consider the presented ontology a “living model” that we can adapt to newly
discovered challenging situations or applications. In addition, we outline the necessary
conditions for acquiring a complete list of logical scenarios from the presented ontology:
(1) the created ontology needs to be complete, and (2) the defect hypothesis we apply for
selecting specific logical situations from the ontology needs to represent all challenging
situations for the SUT.

When creating the ontology, we need to find reasonable lower and upper bounds for
each dimension before dividing it into system-specific categories. We can acquire these
bounds from (1) expert knowledge and specifications or (2) experimental results for different
bounds. In this work, we present an automated approach for the second alternative and
demonstrate its applicability with the example of finding a maximal number of obstacles
that we need to consider in logical scenarios for the SUT. Our experimental results for the
optimization algorithm MOEA/D show that we need to include a maximal number of 5
or 8 relevant obstacles for the SUT, depending on the applied defect hypothesis used for
data collection. In addition, the experiments reveal the different performances of the two
investigated optimization algorithms MOEA/D and NSGAII when searching for extreme
parameter values and the corresponding need to investigate system-specifically which
works best for the presented methodology. With the resulting bounds for the ontology’s
dimensions, we can effectively limit the number of logical scenarios in which we need to
test the SUT. Thus, these bounds further present a basis for collecting a comprehensive list
of relevant logical scenarios for UAVs in future work.

Limitations: In this work, we present an ontology that characterizes logical scenarios for
a quadcopter as one kind of UAV that might not generalize to other types of UAVs. Note
the need for deriving the categories of each dimension of the ontology system-specifically
as different situations are challenging for various types of UAVs. Even though we base the
dimensions of this ontology on expert knowledge, the literature, and specifications, there
might arise additional relevant dimensions in the future. Thus, we consider the ontology a
“living model” that we can easily adapt. Concerning the experiments for deriving reasonable
bounds for the ontology’s dimensions, we focus on deriving them for the open-source PX4
autopilot and do not evaluate other SUTs. Further note that it is essential to base the selec-
tion of the parameter values to collect during the experiments on a correct defect hypothesis
about challenging situations for the SUT to gain insightful results. Otherwise, we cannot
infer that the derived maximum number of relevant obstacles is suitable when we generate
“good” test cases for the SUT in the next step Finally, we concentrate on static obstacles
in our experiments for simplicity of presentation but present guidelines for applying our
approach to dynamic ones.

Addressing Problem 2: As for the definition of logical scenarios, we cannot directly use
the methodology found in the literature about testing the safe behavior of ADS for testing
UAVs. Further, since there are no fine-grained traffic rules for UAVs, the challenge of clearly
defining a safe behavior for UAVs increases. Related work on testing the safe behavior of

108

9. Conclusion and Outlook

UAVs focuses on testing against a specified safety distance and in an environment with no
obstacles and environmental effects. Thus, there is a need for a methodology for testing the
safe behavior of UAVs that considers the environment and acknowledges the challenge of
clearly defining a safe behavior for UAVs. In this work, we present such a methodology
that includes in-depth descriptions of the environment in logical scenarios and generates
so-called “good” test cases that represent worst-case situations for the SUT with the help
of optimization algorithms. Further, we demonstrate how we can apply this methodology
when we (1) have a specified safety distance or (2) lack such a safety distance due to missing
regulations or specifications. In our experiments, we detect 4 to 62 safety distance violations
when generating test cases for the open-source PX4 autopilot [81] for four logical scenarios
that denote all alternatives to avoid obstacles and a specified safety distance. In addition, we
discover questionable behaviors of the SUT with our proposed methodology when no safety
distance is defined. These experimental results show the effectiveness and applicability of
our proposed approach for generating worst-case situations that reveal potential faults in
the SUT. Even though experts still need to inspect the behavior of the UAV manually when
we cannot explicitly specify the safe behavior of the UAV, we minimize the experts’ efforts
by presenting worst-case situations that they solely need to investigate.

As current literature [48, 147] suggests the use of heuristic optimization algorithms for
generating these worst-case situations, we cannot ensure that we find an optimal solution.
Thus, to gain confidence in the quality of the discovered worst-case situations, we need
to perform a system-specific evaluation of various optimization algorithms. Further, as
the combination of these optimization algorithms might result in “better” test cases, we
also investigate these combinations. Related work in this area presents such empirical
assessments in others domains or focuses on the convergence rate of the evaluated algo-
rithms. To the best of our knowledge, no work on evaluating optimization algorithms and
their combinations for scenario-based testing for UAVs exists. In the case study presented
in this work, we assess the performance of the three optimization algorithms NSGAII,
PSO, and BO and their sequential combinations when testing an open-source UAV in five
different logical scenarios. The results of our case study indicate that NSGAII performs
significantly better than BO and that we should use the combined algorithms instead of PSO
and BO directly as they, on average, produce “better” test cases. Finally, the results show
that PNP presents, on average, the best performance overall runs and logical scenarios
with an increased performance of 20% compared to NSGAII, considering the quality of the
generated test cases. In addition, several of the evaluated algorithms even create test cases
that reveal the unsafe behavior of the SUT in the tested logical scenarios. However, our
case study also reveals the high variation of quality of the generated test cases for differ-
ent logical scenarios for all optimization algorithms, including PNP. Even if we perform
multiple runs per logical scenario, we might still miss worst-case situations even with the
best-performing optimization algorithm. Having such a missing guarantee of finding the
worst-case situation is problematic as we cannot ensure the safe behavior of the SUT in the
tested logical scenarios, which is needed for the certification of autonomous systems. Even
though we know that heuristic search algorithms do not provide optimality guarantees,

109

9. Conclusion and Outlook

our results show that non-optimality does not seem to be an exceptional case. For these
reasons, scenario-based testing comes at the extra cost of having to run multiple optimizers and
their combinations to increase the chance of detecting worst-case situations. We feel that this
insight and its consequences are somewhat lost in the scenario-based testing community
and that they challenge the current widespread application of scenario-based testing for
ensuring the safe behavior of autonomous systems such as ADS or UAVs.

To systematically apply the presented methodology, we introduce the tool StellaUAV
that enables (1) the definition of logical scenarios to test the UAV’s safe behavior, (2)
the generation of worst-case situations for each of these logical scenarios, and (3) the
comparison of the performance of various optimization algorithms for the presented use
case. We evaluate the applicability and effectiveness of StellaUAV by searching for safety
distance violations in 32 logical scenarios. The results show that the tested PX4 autopilot
can handle static obstacles very well, whereas it encounters problems with dynamically
moving ones. Thus, these results show the effectiveness of StellaUAV when creating “good”
test cases that can reveal potential faults in the SUT.

Limitations: In our experiments for generating “good” test cases with search-based
techniques, we focus on testing the safe behavior of the PX4 autopilot. Even though
we execute only a limited number of evaluations per logical scenario, we detect unsafe
behaviors of the SUT with them, which shows the effectiveness of the proposed approach.
When evaluating the performance of various optimization algorithms, we focus on five
logical scenarios and do not claim that the best-performing optimization algorithm found
in our experiments also operates best for other logical scenarios and SUTs. Instead, we
emphasize the need to perform a similar case study as the presented one for relevant logical
scenarios for each SUT specifically. In this empirical assessment, we execute fifteen runs
for each logical scenario to acknowledge the randomness of the evaluated optimization
algorithms and gain robust evaluation results. However, we do not perform 30 runs as
suggested by [5] due to limited computation power and time, as discussed in Section 6.3.1.
Finally, our experimental results for StellaUAV focus on showing the applicability of the
presented tool for the integrated PX4 autopilot and the tested logical scenarios. Even
though we evaluate the tool’s effectiveness in 32 logical scenarios that represent various
environmental conditions, we do not claim to present a complete list of relevant logical
scenarios for the SUT with these logical scenarios.

9.2. Lessons Learned

While working on this thesis, we gained several insights into the topic of testing the safe
behavior of UAVs with scenario-based testing, from which we share the most significant
ones in this section.

We need to derive logical scenarios for testing the safe behavior of UAVs system-
specifically. As many different kinds of UAVs exist that operate in various environments,

110

9. Conclusion and Outlook

diverse situations are relevant and challenging for these systems. In particular, these differ-
ences are significant between UAVs flying at low or high altitudes. Thus, to enable thorough
testing of the safe behavior of a SUT, we need to derive logical scenarios that present chal-
lenging situations for the SUT and cannot use acquired logical scenarios for all UAV systems.

Collecting a complete list of logical scenarios presents various open challenges. We
can acquire logical scenarios based on (1) collected real-world flight data, or (2) mental
models represented in, e.g., an ontology. To acquire a complete list of logical scenarios
based on (1), we rely on high amounts of diverse and relevant real-world data for testing the
safe behavior of the SUT. This data does currently not exist for UAVs. Further, we present
various open research challenges for applying this approach to derive logical scenarios for
UAVs in this work. We can gather a complete list of logical scenarios based on (2) if we
have sound and comprehensive defect hypotheses about challenging situations for the SUT.
Such defect hypotheses are, however, not easily specified.

Explicitly defining the safe behavior of UAVs is not easily accomplished due to miss-
ing regulations. Implicitly, we can describe the safe behavior of UAVs by stating that
they should not harm anybody or anything while operating and should pose no unrea-
sonable risk to their environment. However, defining a concrete measure for this implicit
description in all situations is challenging since we lack strict regulations for UAVs. Thus,
a methodology for testing the safe behavior of UAVs needs to take this into account and
enable us to generate test cases with and without an explicit specification of such a safe
behavior.

We need to execute multiple optimization algorithms to reliably find worst-case sit-
uations for UAVs. Our case study reveals that even the best-performing optimization
algorithm from a system-specific assessment of various optimization algorithms might
miss several worst-case situations. These results strongly indicate the need to execute
multiple optimization algorithms to reliably detect worst-case situations for the SUT. In ad-
dition, we encourage test engineers to perform multiple runs of generating “good” test cases
for each logical scenario and optimization algorithm to reduce the randomness of the results.

Scenario-based testing increases the confidence in the safe behavior of UAVs. Since
we search for challenging situations for the SUT in relevant logical scenarios, scenario-
based testing provides valuable insights into the safe behavior of UAVs. Further, we can
increase the confidence in the safe behavior of the SUT by performing various runs per
logical scenarios and executing different optimization algorithms for detecting worst-case
situations for our SUT. Even though scenario-based testing probably won’t be able to
provide a guarantee of the safe behavior of UAVs, it presents, in our opinion, one of our
best efforts to produce high confidence in their safe behavior.

111

9. Conclusion and Outlook

9.3. Future Work

This thesis presents solutions to various problems and gaps when testing the safe behavior
of UAVs. In future work, we would like to address additional open challenges for the
proposed methodology.

Investigation of open research challenges for automatically deriving logical scenarios.
In this work, we outlined various open challenges of applying clustering techniques to
collected real-flight data to automatically derive logical scenarios for UAVs. In future
work, we would like to work on solutions for these challenges and enable utilization of the
presented approach for deriving logical scenarios for UAVs that can complement manually
derived ones.

Evaluation of the correctness of various defect hypotheses for selecting specific logi-
cal scenarios. We need to apply a correct defect hypothesis about challenging situations for
the SUT to acquire relevant logical scenarios from the presented ontology in this work. For
simplicity of presentation, we show only simple defect hypotheses such as pair-wise testing
or the impact of regional weather effects. In the future, we aim to investigate the correctness
of more sophisticated defect hypotheses to enable the derivation of a comprehensive list of
logical scenarios for UAVs.

Extension of the case study about the performance of various optimization algorithms.
In our case study, we evaluate the performance of three optimization algorithms and their
combinations for generating “good” test cases for testing the safe behavior of the PX4
autopilot for five different logical scenarios in fifteen runs. In future work, we would like to
extend this case study by evaluating additional optimization algorithms and testing the
safe behavior of other UAV autopilots to strengthen the significance and generalizability of
the presented results. Further, we aim to perform additional runs per logical scenario to
more reliably explore the statistical significance of our computed results.

Extension of StellaUAV to test various kinds of UAV autopilots and present more re-
fined real-world situations. Our tool StellaUAV tests the PX4 autopilot in the current
implementation. In future work, we aim to include other autopilots into StellaUAV to test
their safe behavior and an easy selection procedure for choosing them. Further, the tool
uses the open-source simulator Gazebo to simulate the UAV and its environment. With
this simulator, we can adapt the landform, water level, kinds, forms, and sizes of obstacles,
the wind force, and the fogginess. However, we cannot represent more refined real-world
situations with, e.g., different heaviness of rain or varying ambient temperature. Thus, we
would like to extend the current setup in StellaUAV to add additional environmental effects
that we encounter in the real world. Further, we aim to extend the logical scenarios and
the methodology for generating “good” test cases for these logical scenarios by including
parameters that represent functions instead of constant values, e.g., to represent wind gusts.

112

9. Conclusion and Outlook

Testing the safe behavior of cooperative UAVs. In this work, we focus on testing the
safe behavior of a single UAV of autonomy level 4 following the terminology presented
in Section 2.1, where the UAV receives a mission to perform completely autonomously
without human interaction. In future work, we aim to extend our presented methodology
to test the safe behavior of autonomously behaving cooperative UAVs, which denote an
autonomy level of 5. For cooperatively operating UAVs, we need to adapt the search space
and the fitness function to acknowledge the additional challenges of the cooperation. Note
that the presented ontology in this work already includes the possibility to specify logical
scenarios with cooperative UAVs that use various types of cooperation strategies.

113

Bibliography

[1] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-Walawege.
A systematic review of the application and empirical investigation of search-based
test case generation. IEEE Transactions on Software Engineering, 36(6):742–762, 2009.

[2] Mostafa Aliyari, Behrooz Ashrafi, and Yonas Zewdu Ayele. Hazards identification
and risk assessment for uav–assisted bridge inspections. Structure and Infrastructure
Engineering, pages 1–17, 2020.

[3] American Meterological Society. Rain. Available online: https://glossary.
ametsoc.org/wiki/Rain. Accessed December 20, 2022.

[4] C Aranha and Hitoshi Iba. Modelling cost into a genetic algorithm-based portfolio
optimization system by seeding and objective sharing. In 2007 IEEE Congress on
Evolutionary Computation, pages 196–203. IEEE, 2007.

[5] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In 2011 33rd International Conference
on Software Engineering (ICSE), pages 1–10. IEEE, 2011.

[6] Aitor Arrieta et al. Search-based test case generation for cyber-physical systems. In
2017 IEEE Congress on Evolutionary Computation (CEC), pages 688–697. IEEE, 2017.

[7] ASAM. Asam openscenario. Available online: https://www.asam.net/
standards/detail/openscenario/. Accessed December 20, 2022.

[8] Civil Aviation Authority. The air navigation order 2016 and regulations (cap393),
2016, 2016.

[9] Mustafa Ayyıldız and Kerim Çetinkaya. Comparison of four different heuristic
optimization algorithms for the inverse kinematics solution of a real 4-dof serial robot
manipulator. Neural Computing and Applications, 27(4):825–836, 2016.

[10] Johannes Bach, Stefan Otten, and Eric Sax. Model based scenario specification for
development and test of automated driving functions. In 2016 IEEE Intelligent Vehicles
Symposium (IV), pages 1149–1155. IEEE, 2016.

[11] Gerrit Bagschik, Till Menzel, and Markus Maurer. Ontology based scene creation for
the development of automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 1813–1820. IEEE, 2018.

115

https://glossary.ametsoc.org/wiki/Rain
https://glossary.ametsoc.org/wiki/Rain
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/

Bibliography

[12] Earl T Barr et al. The oracle problem in software testing: A survey. Transactions on
Software Engineering, 41(5):507–525, 2014.

[13] Vahid Beiranvand, Warren Hare, and Yves Lucet. Best practices for comparing
optimization algorithms. Optimization and Engineering, 18(4):815–848, 2017.

[14] Christine M Belcastro, David H Klyde, Michael J Logan, Richard L Newman, and
John V Foster. Experimental flight testing for assessing the safety of unmanned
aircraft system safety-critical operations. In 17th AIAA Aviation Technology, Integration,
and Operations Conference, page 3274, 2017.

[15] Antonio Benitez-Hidalgo et al. jmetalpy: a python framework for multi-objective
optimization with metaheuristics. Swarm and Evolutionary Computation, 51:100598,
2019.

[16] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in
time series. In KDD Workshop, volume 10, pages 359–370. Seattle, WA, USA:, 1994.

[17] Ilhem Boussaı̈d, Julien Lepagnot, and Patrick Siarry. A survey on optimization
metaheuristics. Information Sciences, 237:82–117, 2013.

[18] Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. Com-
munications in Statistics-theory and Methods, 3(1):1–27, 1974.

[19] Alessandro Calò, Paolo Arcaini, Shaukat Ali, Florian Hauer, and Fuyuki Ishikawa.
Generating avoidable collision scenarios for testing autonomous driving systems. In
2020 IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST), pages 375–386. IEEE, 2020.

[20] Y Uny Cao, Alex S Fukunaga, and Andrew Kahng. Cooperative mobile robotics:
antecedents and directions. Autonomous robots, 4(1):7–27, 1997.

[21] CASA. Civil aviation safety regulations part 101, 2016.

[22] Danilo Cavaliere, Vincenzo Loia, and Sabrina Senatore. Towards an ontology design
pattern for uav video content analysis. IEEE Access, 7:105342–105353, 2019.

[23] JD Cem Kaner. An introduction to scenario testing. Florida Institute of Technology,
Melbourne, pages 1–13, 2013.

[24] Rachid Chelouah and Patrick Siarry. Genetic and nelder–mead algorithms hybridized
for a more accurate global optimization of continuous multiminima functions. Euro-
pean Journal of Operational Research, 148(2):335–348, 2003.

[25] Mo Chen, Qie Hu, Casey Mackin, Jaime F Fisac, and Claire J Tomlin. Safe platooning
of unmanned aerial vehicles via reachability. In 2015 54th IEEE conference on decision
and control (CDC), pages 4695–4701. IEEE, 2015.

116

Bibliography

[26] Tao Chen, Miqing Li, and Xin Yao. On the effects of seeding strategies: a case for
search-based multi-objective service composition. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1419–1426, 2018.

[27] Reece A Clothier and Rodney A Walker. Determination and evaluation of uav
safety objectives. In Proceedings of the 21st International Unmanned Air Vehicle Systems
Conference, 2006.

[28] Bruce T Clough. Metrics, schmetrics! how the heck do you determine a uav’s
autonomy anyway. Technical report, Air Force Research Lab Wright-Patterson AFB
OH, 2002.

[29] Pascal Côté and Robert Leconte. Comparison of stochastic optimization algorithms
for hydropower reservoir operation with ensemble streamflow prediction. Journal of
Water Resources Planning and Management, 142(2), 2016.

[30] Xunhua Dai, Chenxu Ke, Quan Quan, and Kai-Yuan Cai. Rflysim: Automatic test
platform for uav autopilot systems with fpga-based hardware-in-the-loop simulations.
Aerospace Science and Technology, 114:106727, 2021.

[31] Erwin de Gelder, Jan-Pieter Paardekooper, Olaf Op den Camp, and Bart De Schut-
ter. Safety assessment of automated vehicles: how to determine whether we have
collected enough field data? Traffic injury prevention, 20(sup1):S162–S170, 2019.

[32] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[33] Xavier Delorme, Xavier Gandibleux, and Fabien Degoutin. Evolutionary, constructive
and hybrid procedures for the bi-objective set packing problem. European Journal of
Operational Research, 204(2):206–217, 2010.

[34] Patrick Doherty and Piotr Rudol. A uav search and rescue scenario with human body
detection and geolocalization. In Australasian Joint Conference on Artificial Intelligence,
pages 1–13. Springer, 2007.

[35] Les Dorr and A Duquette. Fact sheet–small unmanned aircraft regulations (part 107).
Federal Aviation Administration, 2016.

[36] Christopher D Drummond, Mitchell D Harley, Ian L Turner, A Nashwan A Matheen,
William C Glamore, et al. Uav applications to coastal engineering. In Australasian
Coasts & Ports Conference 2015: 22nd Australasian Coastal and Ocean Engineering Con-
ference and the 15th Australasian Port and Harbour Conference, page 267. Engineers
Australia and IPENZ, 2015.

117

Bibliography

[37] EASA. Easy access rules for unmanned aircraft systems. Available online: https:
//www.easa.europa.eu/document-library/easy-access-rules/
easy-access-rules-unmanned-aircraft-systems-regulation-eu.
Accessed December 20, 2022.

[38] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing, vol-
ume 53. Springer, 2003.

[39] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In kdd,
volume 96, pages 226–231, 1996.

[40] Alessandro Farinelli, Luca Iocchi, and Daniele Nardi. Multirobot systems: a classifi-
cation focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 34(5):2015–2028, 2004.

[41] Gordon Fraser and Andrea Arcuri. The seed is strong: Seeding strategies in search-
based software testing. In 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, pages 121–130. IEEE, 2012.

[42] Peter Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811,
2018.

[43] Jeremy H Gillula, Haomiao Huang, Michael P Vitus, and Claire J Tomlin. Design of
guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics
in theory and practice. In 2010 IEEE International Conference on Robotics and Automation,
pages 1649–1654. IEEE, 2010.

[44] Government of Canada. Beaufort wind scale table. Available online:https:
//www.canada.ca/en/environment-climate-change/services/
general-marine-weather-information/understanding-forecasts/
beaufort-wind-scale-table.html. Accessed December 20, 2022.

[45] PA Grudniewski and AJ Sobey. Benchmarking the performance of genetic algorithms
on constrained dynamic problems. Natural Computing, pages 1–17, 2020.

[46] Magnus Gyllenhammar, Carl Zandén, and Martin Törngren. Defining fundamental
vehicle actions for the development of automated driving systems. In SAE Technical
Paper Series. SAE International, 2020.

[47] Florian Hauer, Ilias Gerostathopoulos, Tabea Schmidt, and Alexander Pretschner.
Clustering traffic scenarios using mental models as little as possible. In 2020 IEEE
Intelligent Vehicles Symposium (IV), pages 1007–1012. IEEE, 2020.

[48] Florian Hauer, Alexander Pretschner, and Bernd Holzmüller. Fitness functions for
testing automated and autonomous driving systems. In International Conference on
Computer Safety, Reliability, and Security, pages 69–84. Springer, 2019.

118

https://www.easa.europa.eu/document-library/easy-access-rules/easy-access-rules-unmanned-aircraft-systems-regulation-eu
https://www.easa.europa.eu/document-library/easy-access-rules/easy-access-rules-unmanned-aircraft-systems-regulation-eu
https://www.easa.europa.eu/document-library/easy-access-rules/easy-access-rules-unmanned-aircraft-systems-regulation-eu
https://www.canada.ca/en/environment-climate-change/services/general-marine-weather-information/understanding-forecasts/beaufort-wind-scale-table.html
https://www.canada.ca/en/environment-climate-change/services/general-marine-weather-information/understanding-forecasts/beaufort-wind-scale-table.html
https://www.canada.ca/en/environment-climate-change/services/general-marine-weather-information/understanding-forecasts/beaufort-wind-scale-table.html
https://www.canada.ca/en/environment-climate-change/services/general-marine-weather-information/understanding-forecasts/beaufort-wind-scale-table.html

Bibliography

[49] Florian Hauer, Tabea Schmidt, Bernd Holzmüller, and Alexander Pretschner. Did
we test all scenarios for automated and autonomous driving systems? In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 2950–2955. IEEE, 2019.

[50] Philipp Helle, Wladimir Schamai, and Carsten Strobel. Testing of autonomous
systems–challenges and current state-of-the-art. In INCOSE international symposium,
volume 26, pages 571–584. Wiley Online Library, 2016.

[51] Xuan Hu and Jie Liu. Ontology construction and evaluation of uav fcms software
requirement elicitation considering geographic environment factors. IEEE Access,
8:106165–106182, 2020.

[52] Hui-Min Huang, Kerry Pavek, Brian Novak, James Albus, and E Messin. A frame-
work for autonomy levels for unmanned systems (alfus). Proceedings of the AUVSI’s
unmanned systems North America, pages 849–863, 2005.

[53] Shafagh Jafer, Bharvi Chhaya, Umut Durak, and Torsten Gerlach. Formal scenario
definition language for aviation: aircraft landing case study. In AIAA Modeling and
Simulation Technologies Conference, page 3521, 2016.

[54] Stefan Jesenski, Jan Erik Stellet, Wolfgang Branz, and J Marius Zöllner. Simulation-
based methods for validation of automated driving: A model-based analysis and an
overview about methods for implementation. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pages 1914–1921. IEEE, 2019.

[55] Eric N Johnson, Michael A Turbe, Allen D Wu, Suresh K Kannan, and James C
Neidhoefer. Flight test results of autonomous fixed-wing uav transitions to and
from stationary hover. In Proceedings of the AIAA Guidance, Navigation, and Control
Conference Exhibit, Monterey, CO, 2006.

[56] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings
of ICNN’95-International Conference on Neural Networks, volume 4, pages 1942–1948.
IEEE, 1995.

[57] Tamás Keviczky and Gary J Balas. Flight test of a receding horizon controller for
autonomous uav guidance. In Proceedings of the 2005, American Control Conference,
2005., pages 3518–3523. IEEE, 2005.

[58] Jack PC Kleijnen. Verification and validation of simulation models. European journal
of operational research, 82(1):145–162, 1995.

[59] Florian Klück, Yihao Li, Mihai Nica, Jianbo Tao, and Franz Wotawa. Using ontologies
for test suites generation for automated and autonomous driving functions. In 2018
IEEE International symposium on software reliability engineering workshops (ISSREW),
pages 118–123. IEEE, 2018.

119

Bibliography

[60] Florian Klück, Martin Zimmermann, Franz Wotawa, and Mihai Nica. Performance
comparison of two search-based testing strategies for adas system validation. In IFIP
International Conference on Testing Software and Systems, pages 140–156. Springer, 2019.

[61] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 3, pages 2149–2154. IEEE, 2004.

[62] Nicola Kolb, Claudius Jordan, Florian Huber, and Alexander Pretschner. Automatic
evaluation of automatically derived semantic scenario instance descriptions. In 2022
IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pages
1565–1571. IEEE, 2022.

[63] Jimmy Krozel, William McNichols, Joseph Prete, and Tenny Lindholm. Causality
analysis for aviation weather hazards. In The 26th Congress of ICAS and 8th AIAA
ATIO, page 8914, 2008.

[64] Nurul Abdul Latiff, Charalampos Tsimenidis, and Bayan Sharif. Performance com-
parison of optimization algorithms for clustering in wireless sensor networks. In
2007 IEEE International Conference on Mobile Adhoc and Sensor Systems, pages 1–4. IEEE,
2007.

[65] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Kumar Sas-
try Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. Av-fuzzer: Finding safety
violations in autonomous driving systems. In 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE), pages 25–36. IEEE, 2020.

[66] Rui Li, Huai Liu, Guannan Lou, Xi Zheng, Xiao Liu, and Tsong Yueh Chen. Meta-
morphic testing on multi-module uav systems. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1171–1173. IEEE, 2021.

[67] Xin Li, Sonia Bilbao, Tamara Martı́n-Wanton, Joaquim Bastos, and Jonathan Ro-
driguez. Swarms ontology: a common information model for the cooperation of
underwater robots. Sensors, 17(3):569, 2017.

[68] Yihao Li, Jianbo Tao, and Franz Wotawa. Ontology-based test generation for au-
tomated and autonomous driving functions. Information and Software Technology,
117:106200, 2020.

[69] T Warren Liao. Clustering of time series data—a survey. Pattern recognition,
38(11):1857–1874, 2005.

[70] Yucong Lin and Srikanth Saripalli. Collision avoidance for uavs using reachable sets.
In 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pages 226–235.
IEEE, 2015.

120

Bibliography

[71] Mikael Lindvall, Adam Porter, Gudjon Magnusson, and Christoph Schulze. Metamor-
phic model-based testing of autonomous systems. In 2017 IEEE/ACM 2nd International
Workshop on Metamorphic Testing (MET), pages 35–41. IEEE, 2017.

[72] Giuseppe Loianno, Vojtech Spurny, Justin Thomas, Tomas Baca, Dinesh Thakur,
Daniel Hert, Robert Penicka, Tomas Krajnik, Alex Zhou, Adam Cho, et al. Localiza-
tion, grasping, and transportation of magnetic objects by a team of mavs in challeng-
ing desert-like environments. IEEE Robotics and Automation Letters, 3(3):1576–1583,
2018.

[73] Mark David Lower. Unique aspects of unmanned aerial vehicle testing, 2004.

[74] Manuel Lozano and Carlos Garcı́a-Martı́nez. Hybrid metaheuristics with evolutionary
algorithms specializing in intensification and diversification: Overview and progress
report. Computers & Operations Research, 37(3):481–497, 2010.

[75] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[76] Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner, and Damien Zufferey.
Paracosm: A test framework for autonomous driving simulations. In International
Conference on Fundamental Approaches to Software Engineering, pages 172–195. Springer,
Cham, 2021.

[77] Hasan Makas and NEJAT YUMUŞAK. Balancing exploration and exploitation by
using sequential execution cooperation between artificial bee colony and migrating
birds optimization algorithms. Turkish Journal of Electrical Engineering & Computer
Sciences, 24(6):4935–4956, 2016.

[78] Adriano Mancini, Andrea Cesetti, A Iuale, Emanuele Frontoni, Primo Zingaretti,
and Sauro Longhi. A framework for simulation and testing of uavs in cooperative
scenarios. In Unmanned Aircraft Systems, pages 307–329. Springer, 2008.

[79] David M Mark and Barry Smith. A science of topography: from qualitative ontology
to digital representations. Geographic Information Science and Mountain Geomorphology,
pages 75–100, 2004.

[80] T McGeer, L Newcome, and Juris Vagners. Quantitative risk management as a
regulatory approach to civil uavs. In Proceedings of the International Workshop on UAV
Certification, 1999.

[81] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4: a node-based multi-
threaded open source robotics framework for deeply embedded platforms. In IEEE
International Conference on Robotics and Automation (ICRA), pages 6235–6240. IEEE,
2015.

121

Bibliography

[82] Till Menzel, Gerrit Bagschik, and Markus Maurer. Scenarios for development, test
and validation of automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 1821–1827. IEEE, 2018.

[83] Francesco Montanari, Christoph Stadler, Jörg Sichermann, Reinhard German, and
Anatoli Djanatliev. Maneuver-based resimulation of driving scenarios based on real
driving data. In 2021 IEEE Intelligent Vehicles Symposium (IV), pages 1124–1131. IEEE,
2021.

[84] Andrew Moore, Swee Balachandran, Steven D Young, Evan T Dill, Michael J Logan,
Louis J Glaab, Cesar Munoz, and Maria Consiglio. Testing enabling technologies
for safe uas urban operations. In 2018 Aviation Technology, Integration, and Operations
Conference, page 3200, 2018.

[85] Mohammad Hasan Moradi and M Abedini. A combination of genetic algorithm
and particle swarm optimization for optimal dg location and sizing in distribution
systems. International Journal of Electrical Power & Energy Systems, 34(1):66–74, 2012.

[86] Meinard Müller. Dynamic time warping. Information retrieval for music and motion,
pages 69–84, 2007.

[87] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–
97, 2012.

[88] Prasanth Nair, A Keane, and R Shimpi. Combining approximation con-
cepts with genetic algorithm-based structural optimization procedures. In 39th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1998.

[89] Demin Nalic, Tomislav Mihalj, Maximilian Bäumler, Matthias Lehmann, Arno Eich-
berger, and Stefan Bernsteiner. Scenario based testing of automated driving systems:
A literature survey. In FISITA web Congress, 2020.

[90] Takuya Nanri, Fang Fang, and Abdelaziz Khiat. Use-case generation and analysis for
autonomous driving in urban areas. International Journal of Automotive Engineering,
12(2):54–61, 2021.

[91] Fernando Nogueira. Bayesian Optimization: Open source constrained global
optimization tool for Python. Available online: https://github.com/fmfn/
BayesianOptimization, 2014. Accessed December 20, 2022.

[92] Julian Oes. Mavsdk-python. Available online:https://github.com/mavlink/
MAVSDK-Python, 2019. Accessed December 20, 2022.

[93] Isaac Olson and Ella M Atkins. Qualitative failure analysis for a small quadrotor
unmanned aircraft system. In AIAA Guidance, Navigation, and Control (GNC) Conference,
page 4761, 2013.

122

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://github.com/mavlink/MAVSDK-Python
https://github.com/mavlink/MAVSDK-Python

Bibliography

[94] Lynne E Parker, Daniela Rus, and Gaurav S Sukhatme. Multiple mobile robot systems.
In Springer Handbook of Robotics, pages 1335–1384. Springer, 2016.

[95] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011.

[96] Martin Pelikan, David E Goldberg, Erick Cantú-Paz, et al. Boa: The bayesian optimiza-
tion algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference
GECCO-99, volume 1, pages 525–532. Citeseer, 1999.

[97] Alexander Pretschner. Defect-based testing. Dependable Software Systems Engineering,
84, 2015.

[98] Jakob Puchinger and Günther Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In International Work-
Conference on the Interplay Between Natural and Artificial Computation, pages 41–53.
Springer, 2005.

[99] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. Geoscenario: an open
dsl for autonomous driving scenario representation. In 2019 IEEE Intelligent Vehicles
Symposium (IV), pages 287–294. IEEE, 2019.

[100] Morgan Quigley et al. Ros: an open-source robot operating system. In ICRA workshop
on open source software, volume 3, page 5. Kobe, Japan, 2009.

[101] Ronald Rardin and Reha Uzsoy. Experimental evaluation of heuristic optimization
algorithms: A tutorial. Journal of Heuristics, 7(3):261–304, 2001.

[102] Waseem Rawat and Zenghui Wang. Hybrid stochastic ga-bayesian search for deep
convolutional neural network model selection. JUCS-Journal of Universal Computer
Science, 25:647, 2019.

[103] Lennart Ries, Philipp Rigoll, Thilo Braun, Thomas Schulik, Johannes Daube, and Eric
Sax. Trajectory-based clustering of real-world urban driving sequences with multiple
traffic objects. In 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), pages 1251–1258. IEEE, 2021.

[104] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. Seeding strategies in search-
based unit test generation. Software Testing, Verification and Reliability, 26(5):366–401,
2016.

[105] Jonathan W Rosen. Zipline’s ambitious medical drone delivery in africa. MIT
Technology Review, June, 8:2017, 2017.

123

Bibliography

[106] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[107] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear
time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[108] Robert G Sargent. Verification and validation of simulation models. In Proceedings of
the 2010 Winter Simulation Conference, pages 166–183. IEEE, 2010.

[109] Robert G Sargent and Osman Balci. History of verification and validation of sim-
ulation models. In 2017 Winter Simulation Conference (WSC), pages 292–307. IEEE,
2017.

[110] Mrinmoy Sarkar et al. Pie: a tool for data-driven autonomous uav flight testing.
Journal of Intelligent & Robotic Systems, 98(2):421–438, 2020.

[111] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a
”kneedle” in a haystack: Detecting knee points in system behavior. In 2011 31st
international conference on distributed computing systems workshops, pages 166–171. IEEE,
2011.

[112] Tabea Schmidt. Supplementary material for ‘Testing the Safe Behavior of Unmanned
Aerial Vehicles with Scenario-Based Testing’. Available online: https://figshare.
com/s/1fe3f53e42dd13dd21da, 2022. Accessed December 20, 2022.

[113] Tabea Schmidt, Florian Hauer, and Alexander Pretschner. Automated anomaly
detection in cps log files. In International Conference on Computer Safety, Reliability, and
Security, pages 179–194. Springer, 2020.

[114] Tabea Schmidt, Florian Hauer, and Alexander Pretschner. Understanding safety for
unmanned aerial vehicles in urban environments. In 2021 IEEE Intelligent Vehicles
Symposium (IV), pages 638–643. IEEE, 2021.

[115] Tabea Schmidt, Florian Hauer, and Alexander Pretschner. Exploring a maximal
number of relevant obstacles for testing uavs. In International Conference on Computer
Safety, Reliability, and Security, pages 335–349. Springer, 2022.

[116] Tabea Schmidt and Alexander Pretschner. StellaUAV: A tool for testing the safe
behavior of uavs with scenario-based testing. In IEEE 33rd International Symposium on
Software Reliability Engineering (ISSRE), pages 37–48. IEEE, 2022.

[117] Tabea Schmidt and Alexander Pretschner. Supplementary material for ‘StellaUAV: A
Tool for Testing the Safe Behavior of UAVs with Scenario-Based Testing’. Available
online: https://doi.org/10.6084/m9.figshare.19666311, 2022. Accessed
December 20, 2022.

124

https://figshare.com/s/1fe3f53e42dd13dd21da
https://figshare.com/s/1fe3f53e42dd13dd21da
https://doi.org/10.6084/m9.figshare.19666311

Bibliography

[118] Tabea Schmidt and Alexander Pretschner. Ontology-based collection of scenarios for
testing uavs. In IEEE Robotics and Automation Letters. IEEE, 2022, under review.

[119] Ruwen Schnabel, Raoul Wessel, Roland Wahl, and Reinhard Klein. Shape recognition
in 3d point-clouds. In The 16th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision. Václav Skala-UNION Agency, 2008.

[120] Hazim Shakhatreh, Ahmad H Sawalmeh, Ala Al-Fuqaha, Zuochao Dou, Eyad Al-
maita, Issa Khalil, Noor Shamsiah Othman, Abdallah Khreishah, and Mohsen Guizani.
Unmanned aerial vehicles (uavs): A survey on civil applications and key research
challenges. Ieee Access, 7:48572–48634, 2019.

[121] Frank D Shepard. Reduced visibility due to fog on the highway, volume 228. Transporta-
tion Research Board, 1996.

[122] Saeid Shokri, Mohammad Taghi Sadeghi, and Mahdi Ahmadi Marvast. High reliabil-
ity estimation of product quality using support vector regression and hybrid meta-
heuristic algorithms. Journal of the Taiwan Institute of Chemical Engineers, 45(5):2225–
2232, 2014.

[123] Shiva Ram Reddy Singireddy and Tugrul U Daim. Technology roadmap: drone
delivery–amazon prime air. In Infrastructure and Technology Management, pages 387–
412. Springer, 2018.

[124] Denis Smirnov and Peter Stutz. Use case driven approach for ontology-based mod-
eling of reconnaissance resources on-board uavs using owl. In 2017 IEEE Aerospace
Conference, pages 1–17. IEEE, 2017.

[125] Mingjie Song and DongMei Chen. A comparison of three heuristic optimization
algorithms for solving the multi-objective land allocation (mola) problem. Annals of
GIS, 24(1):19–31, 2018.

[126] Jian Sun, He Zhang, Huajun Zhou, Rongjie Yu, and Ye Tian. Scenario-based test au-
tomation for highly automated vehicles: A review and paving the way for systematic
safety assurance. IEEE Transactions on Intelligent Transportation Systems, 2021.

[127] Alexander Tenbrock, Alexander König, Thomas Keutgens, and Hendrik Weber. The
conscend dataset: Concrete scenarios from the highd dataset according to alks regula-
tion unece r157 in openx. In 2021 IEEE Intelligent Vehicles Symposium Workshops (IV
Workshops), pages 174–181. IEEE, 2021.

[128] Amila Thibbotuwawa, Grzegorz Bocewicz, Banaszak Zbigniew, and Peter Nielsen.
A solution approach for uav fleet mission planning in changing weather conditions.
Applied Sciences, 9(19):3972, 2019.

125

Bibliography

[129] T. Tozer, D. Grace, J. Thompson, and P. Baynham. Uavs and haps - potential conver-
gence for military communications. IEE Colloquium on Military Satellite Communications
(Ref. No. 2000/024), 2000.

[130] Fevrier Valdez, Patricia Melin, and Oscar Castillo. An improved evolutionary method
with fuzzy logic for combining particle swarm optimization and genetic algorithms.
Applied Soft Computing, 11(2):2625–2632, 2011.

[131] András Vargha and Harold D Delaney. A critique and improvement of the cl common
language effect size statistics of mcgraw and wong. Journal of Educational and Behavioral
Statistics, 25(2):101–132, 2000.

[132] Amedeo Rodi Vetrella, Giancarmine Fasano, Alfredo Renga, and Domenico Accardo.
Cooperative uav navigation based on distributed multi-antenna gnss, vision, and
mems sensors. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 1128–1137. IEEE, 2015.

[133] Walther Wachenfeld and Hermann Winner. The release of autonomous vehicles. In
Autonomous driving, pages 425–449. Springer, 2016.

[134] Kay Wackwitz and Hendrick Boedecker. Safety risk assessment for uav operation.
Drone Industry Insights, Safe Airspace Integration Project, Part One, Hamburg, Germany,
2015.

[135] Wenshuo Wang, Chang Liu, and Ding Zhao. How much data are enough? a statistical
approach with case study on longitudinal driving behavior. IEEE Transactions on
Intelligent Vehicles, 2(2):85–98, 2017.

[136] Nico Weber, Christoph Thiem, and Ulrich Konigorski. Unscene: Toward unsupervised
scenario extraction for automated driving systems from urban naturalistic road traffic
data. arXiv preprint arXiv:2202.06608, 2022.

[137] Joachim Wegener and Oliver Bühler. Evaluation of different fitness functions for the
evolutionary testing of an autonomous parking system. In Genetic and Evolutionary
Computation Conference, pages 1400–1412. Springer, 2004.

[138] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A survey and analysis of multi-
robot coordination. International Journal of Advanced Robotic Systems, 10(12):399, 2013.

[139] Shin Yoo and Mark Harman. Test data regeneration: generating new test data from
existing test data. Software Testing, Verification and Reliability, 22(3):171–201, 2012.

[140] Larry Young, Jeffrey Yetter, and Mark Guynn. System analysis applied to auton-
omy: Application to high-altitude long-endurance remotely operated aircraft. IAA
Infotech@Aerospace Conference, 2005.

126

Bibliography

[141] Jiantao Zhang, Zheng Zheng, Beibei Yin, Kun Qiu, and Yang Liu. Testing graph
searching based path planning algorithms by metamorphic testing. In 2019 IEEE 24th
Pacific Rim International Symposium on Dependable Computing (PRDC), pages 158–15809.
IEEE, 2019.

[142] Man Zhang, Shaukat Ali, and Tao Yue. Uncertainty-wise test case generation and
minimization for cyber-physical systems. Journal of Systems and Software, 153:1–21,
2019.

[143] Qingfu Zhang and Hui Li. Moea/d: a multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

[144] Yuchen Zhou and John S Baras. Reachable set approach to collision avoidance for
uavs. In 2015 54th IEEE Conference on Decision and Control (CDC), pages 5947–5952.
IEEE, 2015.

[145] Xueping Zhu, Zhengchun Liu, and Jun Yang. Model of collaborative uav swarm
toward coordination and control mechanisms study. In ICCS, pages 493–502, 2015.

[146] Xueyi Zou, Rob Alexander, and John McDermid. Safety validation of sense and avoid
algorithms using simulation and evolutionary search. In International Conference on
Computer Safety, Reliability, and Security, pages 33–48. Springer, 2014.

[147] Xueyi Zou, Rob Alexander, and John McDermid. Testing method for multi-uav
conflict resolution using agent-based simulation and multi-objective search. Journal of
Aerospace Information Systems, 13(5):191–203, 2016.

127

Glossary

ADS Automated and Autonomous Driving Systems. 4–7, 18, 25, 26, 59–61, 73, 74, 86, 87,
102–105, 107, 108, 110

BAT Boundary Analysis Testing. 60, 61, 63–65, 67–70, 132, 136

BO Bayesian Optimization. 18, 20, 21, 75–77, 81, 83, 86, 90, 92, 109, 131, 136, 146

DTW Dynamic Time Warping. 27, 29, 145

JSON JavaScript Object Notation. 34, 40, 41, 43, 88, 89, 92, 98, 103, 131, 132, 139

MOEA/D Multiobjective Evolutionary Algorithm Based on Decomposition. 11, 50–55, 108,
132, 135, 145

NSGAII Non-dominated Sorting Genetic Algorithm II. 11, 18–20, 50–55, 66, 70, 75–77, 79,
81, 83, 84, 86, 90, 92, 93, 108, 109, 131, 133, 135, 136, 145, 147, 148

PCA Principal Component Analysis. 27, 29, 145

PSO Particle Swarm Optimization. 18–20, 75–77, 81, 83, 86, 90, 92, 109, 131, 136, 145

ROS Robot Operating System. 50, 66, 93

SDT Safety Distance Testing. 60, 61, 63–65, 67, 68, 70, 132

SUT System Under Test. 4–12, 15–21, 25–27, 33, 34, 36, 40–52, 54, 55, 60, 61, 63, 65, 67–71,
73, 84–87, 93, 94, 97, 98, 101–104, 106–112, 131, 132, 135–137, 145

UAV Unmanned Aerial Vehicle. xi, xii, 3–18, 21, 25–29, 32–37, 39–41, 43–52, 54, 55, 59–71,
73–79, 81, 83–94, 98, 101–113, 131, 132, 135, 136, 145

XML Extensible Markup Language. 34, 40

129

List of Figures

1.1. Overview of the process of testing the safe behavior of UAVs with scenario-
based testing. Previous versions appeared in [114, 115, 116, 118]. 8

2.1. We depict the boundary of the SUT in this work and its connections to its
environment and a human. In this work, we simulate both the SUT and its
environment. 15

2.2. When testing the safe behavior of UAVs, we can test against (a) a given safety
distance s, (b) with a safe operating envelope around the UAV, here in blue,
or (c) against a given safety distance s and additional quality attributes qa. . 18

2.3. Workflow of the optimization algorithm NSGAII. 19
2.4. Workflow of the optimization algorithm PSO. 20
2.5. Workflow of the optimization algorithm BO. 21

3.1. Process overview of the clustering approach for automatically deriving logi-
cal scenarios for UAVs from collected real-world data. 27

3.2. We depict the slight difference between the clustering results of the presented
two settings with the red boxes in 2D plots of the clusters. The clustering
algorithms assign two of the 50 data points to different clusters. 31

3.3. Methodology for systematically deriving logical scenarios for testing the safe
behavior of UAVs. A previous version appeared in [118]. 34

3.4. The first of two parts of the derived ontology with a suitable granularity
level for a quadcopter. A previous version appeared in [118]. 37

3.5. The second of two parts of the derived ontology with a suitable granularity
level for a quadcopter. A previous version appeared in [118]. 38

3.6. Exemplary worlds for the derived sub-categories landform and surface na-
ture: flat/land, depression/land, elevation/water, and steep transition/water. 39

3.7. Excerpt of the derived JSON schema for specifying logical scenarios for a
quadcopter, which focuses on the flight area dimension. A previous version
appeared in [118]. 41

4.1. Visualization of an exemplary search space for exploring the maximal num-
ber of relevant obstacles with our proposed approach. The UAV starts in the
left area with the mission to fly to the target point marked with an X while
avoiding the obstacles in the middle area. A previous version appeared in
[115]. 48

131

List of Figures

4.2. Process overview of our proposed approach for finding bounds for the
ontology’s dimensions. A previous version appeared in [115]. 49

4.3. Visualization of the convex hulls that present the collected orientation values
for MOEA/D for N ∈ {1, 2, ..., 8} obstacles, which implicitly affect the range
of the orientation values. In addition, we show the increase in the hull’s
volume for each N by depicting the hull for N − 1 obstacles in black and the
hull for the current N obstacles in blue. A previous version appeared in [115]. 53

5.1. For SDT, we can use a specified safety distance s to assess the UAV’s safe
behavior. It behaves safely if it keeps a distance of d > s to any obstacle while
operating. For BAT, we lack such a safety distance and instead create worst-
case situations by, e.g., minimizing the UAV’s distance d to all obstacles. A
previous version appeared in [114]. 61

5.2. Overview of our proposed methodology for generating “good” test cases
with search-based techniques. A previous version appeared in [114]. 62

5.3. In our experiments, we evaluate four logical scenarios in which the UAV
flies (1) around obstacles, (2) above obstacles, (3) through a gap between two
obstacles, and (4) below an obstacle to reach its destination point. The UAV
starts in the area on the left and lands in the area on the right in each of these
logical scenarios. A previous version appeared in [114]. 66

5.4. Examples of the detected safety distance violations in our experiments for
SDT. We mark the safety areas around the obstacles that the UAV should not
enter in red. A previous version appeared in [114]. 68

5.5. The change in the UAV’s altitude in (a) the worst-case situation for the logical
scenario (3), in which the SUT unintentionally lands on the ground, and (b)
for a broader gap w, for which the UAV shows a presumably safe behavior.
We highlight the differences with the red circles. A previous version appeared
in [114]. 69

7.1. For testing the safe behavior of UAVs, StellaUAV includes three primary use
cases: describing logical scenarios to test, generating “good” test cases, and
evaluating the performance of various optimization algorithms. A previous
version appeared in [116]. 88

7.2. Examplary JSON file that defines a logical scenario for evaluating the UAV’s
safe behavior in StellaUAV. A previous version appeared in [116]. 89

7.3. The methodology for generating “good” test cases applied in StellaUAV that
denotes step 5 in Fig. 5.2. A previous version appeared in [116]. 90

7.4. The architecture of StellaUAV with steps from Fig. 7.3 and third-party frame-
works and libraries marked in gray. A previous version appeared in [116]. . 91

132

List of Figures

C.1. Visualization of the convex hulls that present the collected orientation values
for NSGAII for N ∈ {1, 2, ..., 6} obstacles, which implicitly affect the range
of the orientation values. 147

C.2. Visualization of the convex hulls that present the collected orientation values
for NSGAII for N ∈ {7, 8, ..., 15} obstacles, which implicitly affect the range
of the orientation values. 148

133

List of Tables

2.1. Overview of the characteristics of different types of UAVs, as presented in
[73, 129]. 13

2.2. Description of the parameters and their value ranges of an exemplary logical
scenario for testing the safe behavior of UAVs. The logical scenario includes
light precipitation, cold ambient temperature, complete cloud coverage, and
heavy fog. A previous version appeared in [116]. 16

2.3. Potential concrete scenarios for the logical scenario described in Table 2.2. A
previous version appeared in [116]. 16

3.1. The logical scenarios on which we base the data collection in our experiments.
They include a landform (flat F, elevation E, depression D, or steep transition
ST), a surface nature (land L, water W, or a mixture M of them), the obstacles’
kind (static ST or dynamic DY), the obstacles’ size (small S, medium M, or
large L), the obstacles’ form (cuboid CU, sphere SP, or cylinder CY), the
included wind force (none N, light L, moderate M, or strong S), and the
reduced visibility (none N, fog F, heavy fog HF, or thick fog TF). 30

3.2. Experimental results of an analysis of different settings for our proposed
clustering approach. We present the number of clusters in the resulting clus-
tering and their size. A small cluster S includes one to five concrete scenarios,
whereas a large cluster L contains six or more instances. In addition, we
mark those clustering results that produce identical clusters for different
settings with the symbols ∗, ♦, and O. 32

3.3. The derived logical scenarios based on two different defect hypotheses that
focus on the environment-related dimensions. We present the parameters
landform (flat F, elevation E, depression D, or steep transition ST), surface
nature (land L, water W, or a mixture M of them), wind force (none N, light
L, moderate M, or strong S), reduced visibility (none N, fog F, heavy fog HF,
or thick fog TF), and various parameters about the included obstacles (static
ST or dynamic DY; small S, medium M, or large L; cuboid CU, sphere SP, or
cylinder CY) of these logical scenarios. A previous version appeared in [118]. 42

4.1. The experimental result for finding a maximal number of relevant obstacles
with MOEA/D and NSGAII while collecting orientation or linear velocity
values of the SUT. We denote the percentage volume increases vi [%] for
varying numbers of obstacles N . A previous version appeared in [115]. . . . 52

135

List of Tables

5.1. Three exemplary search spaces describing simplified logical scenarios with
one static spherical obstacle on the ground level and no environmental
effects. The search spaces include parameter value ranges for the starting
and landing position of the UAV and the position and the radius of the obstacle. 63

5.2. The search spaces for the four logical scenarios in our experiments. 67

5.3. For the logical scenarios (1) - (4), we denote the number of concrete scenarios
in which the SUT shows an unsafe behavior by violating the defined safety
distance and the largest of these violations. A previous version appeared in
[114]. 68

5.4. Characteristics of the worst-case situations that we discovered in our ex-
periments for BAT. Presented is the minimal distance the UAV keeps to all
obstacles, the number of concrete scenarios in which this distance is below
1.0 meters, the minimal width of the gap through which the UAV flies, and
the width of the gap in which the UAV shows a presumably safe behavior. A
previous version appeared in [114]. 69

6.1. The combinations of the optimization algorithms NSGAII, PSO, and BO that
we investigate in this work. 76

6.2. The five logical scenarios evaluated in the case study include various land-
forms, surface natures, wind forces, types of reduced visibility as well as
different sizes (small S, medium M, and large L) and forms of obstacles
(cuboid CU, sphere SP, and cylinder CY). 78

6.3. The resulting minimal fitness values, the median minimal fitness values, and
their median absolute deviation discovered in all runs for the evaluated five
logical scenarios. We underline the best median values per objective. 80

6.4. For each sub-category of the presented problem, we show the performance of
the optimization algorithms compared to one base algorithm and the P-value
of a Mann-Whitney-U test for this comparison in brackets. We flag the base
algorithm of each comparison with “Base”. In addition, we highlight the
P-values that show a significant difference for a 95% confidence interval
in bold. Further, we present Vargha and Delaney’s A12 measure below the
performances and the category of their effect size with “-”, “S”, “M”, or “L”
presenting negligible, small, medium, or large. A previous version appeared
in [116]. 82

7.1. The parameter values for the landform, surface nature, wind force, and
reduced visibility of the 32 logical scenarios in our experiments. 95

7.2. The parameter values for the number of obstacles, their kinds (static ST or
dynamic DY), sizes (small S, medium M, or large L), and forms (cuboid CU,
sphere SP, or cylinder CY) of the 32 logical scenarios in our experiments. . . 96

136

List of Tables

7.3. The number of test cases in which the SUT violates the specified safety
distance in our experiments for three runs and their average and median
values. 97

137

A. JSON Schema

In this part of the appendix, we provide the entire JSON schema for specifying logical
scenarios for a quadcopter, for which we present an excerpt in Section 3.3.2. We derived
this schema from the ontology shown in Section 3.3.2.

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://logical_scenarios.com/scenario.schema.json",
"title": "Logical Scenario",
"description": "A logical scenario that can be used for testing the

safe behavior of UAVs",↪→

"type": "object",
"properties": {

"name": {
"description": "The name of the logical scenario",
"type": "string"

},
"system": {

"description": "The system dimensions of the logical scenario
describing the UAVs and, if applicable, their cooperation
mechanism",

↪→

↪→

"type": "object",
"properties": {
"UAVs": {

"description": "The UAVs that are present in the logical
scenario",↪→

"type": "array",
"items": {

"description": "A single UAV in the logical scenario with
its maneuvers and, if applicable, failures",↪→

"type": "object",
"properties": {

"maneuvers": {
"description": "A list of maneuvers for the single UAV

in the logical scenario",↪→

"type": "array",
"items": {

"description": "A single maneuver of a UAV in the
logical scenario",↪→

139

A. JSON Schema

"type": "string",
"enum": ["take off", "hover", "landing", "move to

waypoint", "exploration mission"]↪→

}
},
"failures": {

"description": "A list of failures for the single UAV in
the logical scenario",↪→

"type": "array",
"items": {

"description": "A single failure of a UAV in the
logical scenario with its type and degree",↪→

"type": "object",
"properties": {

"type": {
"description": "The type of failure of the single

UAV in the logical scenario",↪→

"type": "string",
"enum": ["motor", "rudder", "aileron", "GPS",

"control loss"]↪→

},
"degree": {

"description": "The degree of the failure of the
single UAV in the logical scenario",↪→

"type": "string",
"enum": ["none", "light", "moderate", "serious"]

}
},
"required": ["type", "degree"],
"additionalProperties": false

}
}

},
"required": ["maneuvers"],
"additionalProperties": false

},
"additionalProperties": false

},
"cooperation": {

"description": "The cooperation mechanism in the logical
scenario describing the communication, coordination,
organization, and awareness of the UAVs",

↪→

↪→

"type": "object",
"properties": {

"communication": {
"description": "The communication dimension of the

cooperation mechanism in the logical scenario",↪→

140

A. JSON Schema

"type": "string",
"enum": ["direct", "indirect", "none"]

},
"coordination": {

"description": "The coordination dimension of the
cooperation mechanism in the logical scenario",↪→

"type": "string",
"enum": ["with protocol", "without protocol", "none"]

},
"organization": {

"description": "The organization dimension of the
cooperation mechanism in the logical scenario",↪→

"type": "string",
"enum": ["centralized", "decentralized", "hybrid"]

},"knowledge": {
"description": "The knowledge dimension of the cooperation

mechanism in the logical scenario",↪→

"type": "string",
"enum": ["aware", "unaware"]

}
},
"required": ["communication", "coordination", "organization",

"knowledge"],↪→

"additionalProperties": false
}

},
"required": ["UAVs"],
"additionalProperties": false

},
"environment": {

"description": "The environment dimensions of the logical
scenario, including flight area, weather, and, if applicable,
obstacles",

↪→

↪→

"type": "object",
"properties": {
"flight area": {

"description": "The flight area in the logical scenario with
its landform and surface nature",↪→

"type": "object",
"properties": {

"landform": {
"description": "The landform of the flight area in the

logical scenario",↪→

"type": "string",
"enum": ["flat", "depression", "elevation",

"steep_transition"]↪→

},

141

A. JSON Schema

"surface nature": {
"description": "The nature of the surface of the flight

area in the logical scenario",↪→

"type": "string",
"enum": ["land", "mixture", "water"]

}
},
"required": ["landform", "surface nature"],
"additionalProperties": false

},
"obstacles": {

"description": "The obstacles in the logical scenario, if
existing",↪→

"type": "array",
"items": {

"description": "A single obstacle in the logical scenario
describing its kind, size, and form",↪→

"type": "object",
"properties": {

"kind": {
"description": "The kind of a single obstacle in the

logical scenario",↪→

"type": "string",
"enum": ["static", "dynamic"]

},
"size": {

"description": "The size of a single obstacle in the
logical scenario",↪→

"type": "string",
"enum": ["small", "medium", "large"]

},
"form": {

"description": "The form of a single obstacle in the
logical scenario",↪→

"type": "string",
"enum": ["cuboid", "sphere", "cylinder", "cone",

"torus"]↪→

}
},
"required": ["kind", "size", "form"],
"additionalProperties": false

},
"additionalProperties": false

},
"weather": {

142

A. JSON Schema

"description": "The weather in the logical scenario with its
lighting, wind force, temperature, precipitation,
lightning, reduced visibility, and cloud cover",

↪→

↪→

"type": "object",
"properties": {

"lighting": {
"description": "The lighting in the logical scenario",
"type": "string",
"enum": ["none", "dim", "normal", "bright"]

},
"wind force": {

"description": "The wind force in the logical scenario",
"type": "string",
"enum": ["none", "light", "moderate", "strong"]

},
"temperature": {

"description": "The temperature in the logical scenario",
"type": "string",
"enum": ["cold", "moderate", "hot"]

},
"precipitation": {

"description": "The precipitation in the logical
scenario",↪→

"type": "string",
"enum": ["none", "light", "moderate", "heavy"]

},
"cloud cover": {

"description": "The cloud cover in the logical scenario",
"type": "string",
"enum": ["none", "moderate", "heavy", "complete"]

},
"reduced visibility": {

"description": "The reduced visibility in the logical
scenario",↪→

"type": "string",
"enum": ["none", "fog", "heavy_fog", "thick_fog"]

},
"lightning": {

"description": "If lightning exists in the logical
scenario",↪→

"type": "string",
"enum": ["none", "existing"]

}
},
"required": ["lighting", "wind force", "temperature",

"precipitation", "cloud cover", "reduced visibility",
"lightning"],

↪→

↪→

143

A. JSON Schema

"additionalProperties": false
}

},
"required": ["flight area", "weather"],
"additionalProperties": false

}
},
"required": ["name", "system", "environment"],
"additionalProperties": false

}

144

B. Details on Experimental Settings

In this chapter, we provide detailed settings for our experiments in this work to enable
the reproducibility of the presented results. Further, we share the source code for our tool
StellaUAV, presented in Chapter 7, in [117].

Settings for the experiments in Chapter 3:

• fastdtw library [107] version 0.3.4 for computing the DTW distances

• Scikit-learn framework [95] version 1.0.2 for implementing the clustering algorithms,
the metrics for finding an optimal number of clusters k, the min-max-normalization,
and the PCA

• kneed library [111] version 0.7.0 for the implementation of the Kneedle algorithm

Settings for the experiments in Chapters 4, 5, 6, and 7:

• Used operating system: Ubuntu 18.04

• System under test (SUT): PX4 autopilot for UAVs [81] version 1.11.3 with the obstacle
avoidance extension version 0.3.1

• Applied simulator: Gazebo [61] version 9.0.0

• Additional libraries:

– ROS Melodic Morenia [100] for collecting the SUT’s data

– MAVSDK-Python library [92] version 0.6.1 for forwarding a mission to the SUT

– jMetalPy framework [15] version 1.5.5 for the implementation of the optimization
algorithms NSGAII, PSO, and MOEA/D:

* NSGAII: SBX crossover operator (crossover rate CR = 0.9), polynomial
mutation operator (mutation rate MR = 1/num variables), and binary
tournament selection operator

* PSO: Implementation of the speed-constraint Multi-objective PSO with a
polynomial mutation operator (MR = 1/num variables), and a crowding
distance archive

* MOEA/D: Differential evolution crossover operator (CR = 1.0), polynomial
mutation operator (MR = 1/num variables), Tschebycheff as the aggrega-
tion function, and a neighborhood selection probability of 0.9

145

B. Details on Experimental Settings

* For the evaluated search space and specific values of additional parameters,
such as the population/swarm size, please refer to the corresponding setup
section presented for each experiment in this work.

– BayesianOptimization framework [91] version 1.2.0 for the implementation of
the optimization algorithm BO:

* BO: Expected improvement as the acquisition function and xi = 0.05

* For the evaluated search space and specific values of additional parameters,
such as the initial population size, please refer to the corresponding setup
section presented for each experiment in this work.

146

C. Visualization of Convex Hulls for NSGAII

This chapter presents additional visualization of the convex hulls we build in our experi-
ments for finding an upper bound for the number of obstacles in Section 4.3. We display the
convex hulls when gathering orientation values with NSGAII for N ∈ {1, 2, ..., 15} obstacles
in Fig. C.1 and Fig. C.2.

(a) N = 1 obstacles (b) N = 2 obstacles (c) N = 3 obstacles

(d) N = 4 obstacles (e) N = 5 obstacles (f) N = 6 obstacles

Figure C.1.: Visualization of the convex hulls that present the collected orientation values
for NSGAII for N ∈ {1, 2, ..., 6} obstacles, which implicitly affect the range of
the orientation values.

147

C. Visualization of Convex Hulls for NSGAII

(a) N = 7 obstacles (b) N = 8 obstacles (c) N = 9 obstacles

(d) N = 10 obstacles (e) N = 11 obstacles (f) N = 12 obstacles

(g) N = 13 obstacles (h) N = 14 obstacles (i) N = 15 obstacles

Figure C.2.: Visualization of the convex hulls that present the collected orientation values
for NSGAII for N ∈ {7, 8, ..., 15} obstacles, which implicitly affect the range of
the orientation values.

148

	Acknowledgements
	Zusammenfassung
	Abstract
	Outline of the Thesis
	Contents
	I Introduction and Background
	1 Introduction
	1.1 Testing the Safe Behavior of Unmanned Aerial Vehicles
	1.1.1 Derivation of Typical Situations
	1.1.2 Generation of Test Cases

	1.2 Problem Statement and Research Gaps
	1.3 Solution
	1.4 Contributions
	1.5 Summary of Results
	1.6 Structure

	2 Background and Preliminaries
	2.1 Autonomously Operating UAVs
	2.2 Abstraction Level of Test Scenarios
	2.3 Generation of ``Good" Test Cases
	2.4 Optimization Algorithms
	2.4.1 Non-dominated Sorting Genetic Algorithm II (NSGAII)
	2.4.2 Particle Swarm Optimization (PSO)
	2.4.3 Bayesian Optimization (BO)

	II Logical Scenario Derivation
	3 Methods and Challenges of Deriving Logical Scenarios for UAVs
	3.1 Introduction
	3.2 Challenges of Clustering Collected Data to Automatically Acquire Logical Scenarios
	3.2.1 Automated Clustering Approach
	3.2.2 Experiments

	3.3 Systematic Derivation of Logical Scenarios Based On Mental Models
	3.3.1 Methodology
	3.3.2 Application to a Quadcopter

	3.4 Conclusion

	4 Exploration of Bounds for the Ontology's Dimensions
	4.1 Introduction
	4.2 Automated Derivation of Bounds
	4.2.1 Black-Box Description of the UAV's Behavior
	4.2.2 Methodology

	4.3 Experiments
	4.3.1 Setup and Implementation
	4.3.2 Experimental Results
	4.3.3 Discussion

	4.4 Conclusion

	III Test Case Generation
	5 Understanding and Assessment of the Safe Behavior of UAVs
	5.1 Introduction
	5.2 Challenges of Defining the Safe Behavior
	5.3 Generation of ``Good" Test Cases
	5.3.1 Methodology
	5.3.2 Search Space
	5.3.3 Fitness Function

	5.4 Experiments
	5.4.1 Setup and Implementation
	5.4.2 Logical Scenarios and Search Spaces
	5.4.3 Experimental Results for Safety Distance Testing
	5.4.4 Experimental Results for Boundary Analysis Testing
	5.4.5 Discussion

	5.5 Conclusion

	6 Evaluation of Optimization Algorithms for Testing the Safe Behavior of UAVs
	6.1 Introduction
	6.2 Optimization Algorithms
	6.3 Case Study
	6.3.1 Setup and Implementation
	6.3.2 Evaluation Objectives
	6.3.3 Evaluation Results
	6.3.4 Discussion

	6.4 Conclusion

	7 StellaUAV: A Tool for Testing the Safe Behavior of UAVs
	7.1 Introduction
	7.2 Methodology
	7.3 Architecture
	7.4 Evaluation
	7.4.1 System Under Test
	7.4.2 Setup and Implementation
	7.4.3 Logical Scenarios
	7.4.4 Experimental Results & Discussion

	7.5 Conclusion

	IV Related Work and Conclusion
	8 Related Work
	8.1 Testing the Safe Behavior of UAVs
	8.2 Logical Scenario Derivation
	8.3 Generating ``Good" Test Cases
	8.4 Evaluation of Optimization Algorithms
	8.5 Tools and Frameworks for Testing UAVs

	9 Conclusion and Outlook
	9.1 Summary of Results and Limitations
	9.2 Lessons Learned
	9.3 Future Work

	Bibliography
	Glossary
	List of Figures
	List of Tables
	A JSON Schema
	B Details on Experimental Settings
	C Visualization of Convex Hulls for NSGAII

