
TUM School of Computation, Information and Technology
Technische Universität München

Low-power Time Series Processing with Spiking Neural Networks

Daniel Gustav Auge

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Claudia Eckert

Prüfer*innen der Dissertation:
1. Prof. Dr.-Ing. habil Alois Chr. Knoll
2. Prof. Dr.-Ing. habil Erwin Biebl

Die Dissertation wurde am 15.07.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information and Technology am 08.02.2023
angenommen.

Abstract

Neural network-based systems are deployed in an ever-growing number of applications.
While in some cases, Artificial Neural Networks (ANNs) replace classical approaches
for the benefits of higher accuracy, faster inference, or better generalizability, in others,
they enable the development of totally new markets. The increasing number of deployed
ANNs in server applications, cars, mobile phones, and even vacuum cleaners drives the
motivation to increase the networks’ energy efficiency. Especially in embedded systems,
efficiency is crucial due to their restricted power budgets.
As a promising approach to increase the overall efficiency of neural network-based

systems, Spiking Neural Networks (SNNs) are in the focus of many current studies. SNNs
have demonstrated promising properties concerning energy efficiency and their ability to
solve complex problems. Inspired by biological nervous systems, they are not only used to
understand the complex relations of brain activity. Recent research also investigates their
usage in commercial applications as alternatives to ANNs. In direct comparison with
common networks, however, SNNs often do not reach comparable accuracy when solving
the same problem. It is thus not clear whether networks based on these biologically
inspired neurons are viable and efficient alternatives to current solutions.
This thesis contributes to this ongoing discussion. We analyze encoding schemes

needed to translate real-world data into event representations. Thereby, we propose sparse
encoding schemes, which encode data sequences into spatio-temporal event representations.
Additionally, we extend existing approaches used in the training of ANNs to their
application in SNNs and analyze the scaling behavior of the examined networks with a
focus on the computational costs.

The proposed methods are applied in two applications: speech recognition and gesture
recognition. The results show that the SNNs reach performances, which are comparable
with those of ANNs while needing fewer and less expensive computational operations.
Hence, our findings support the evidence that SNNs are suitable alternatives to ANNs in
the field of low-power time series classification.

iii

Zusammenfassung

Auf neuronalen Netzen basierende Systeme werden in einer ständig wachsenden Zahl von
Anwendungen eingesetzt. Während in einigen Fällen künstliche neuronale Netze (ANNs)
klassische Ansätze nur ersetzen, ermöglichen sie in anderen Fällen die Entwicklung völlig
neuer Märkte. Die zunehmende Zahl von ANNs in Serveranwendungen, Fahrzeugen,
Mobiltelefonen und sogar Staubsaugern treibt die Motivation voran, die Energieeffizienz
der Netze zu erhöhen. Besonders in eingebetteten Systemen ist die Effizienz aufgrund
des begrenzten Energiebudgets entscheidend.
Als ein vielversprechender Ansatz zur Steigerung der Gesamteffizienz von Systemen,

die auf neuronalen Netzen basieren, stehen gepulste neuronale Netze (SNNs) im Fokus
vieler aktueller Studien. Inspiriert von biologischen Nervensystemen werden sie nicht nur
genutzt, um die komplexen Zusammenhänge der Gehirnaktivität zu verstehen. Jüngste
Forschungsarbeiten untersuchen auch ihren Einsatz in kommerziellen Anwendungen
als Alternative zu ANNs. SNNs zeigen vielversprechende Eigenschaften in Bezug auf
Energieeffizienz und ihre Fähigkeit, komplexe Probleme zu lösen. Im direkten Vergleich
mit herkömmlichen Netzen erreichen SNNs jedoch oft nicht die gleiche Genauigkeit
bei der Lösung desselben Problems. Es ist daher nicht klar, ob Netze, die auf diesen
biologisch inspirierten Neuronen basieren, universell nutzbare und effiziente Alternativen
zu aktuellen Lösungen sind.
Diese Arbeit leistet einen Beitrag zu dieser laufenden Diskussion. Wir analysieren

die Kodierungsschemata, die notwendig sind, um Daten aus der realen Welt in ereignis-
getriebene Repräsentationen zu übersetzen. Dabei schlagen wir spärliche Kodierungss-
chemata vor, die Datensequenzen in räumlich-zeitliche Repräsentationen kodieren. Zusät-
zlich erweitern wir bestehende Ansätze aus dem Training von ANNs auf deren Anwendung
in SNNs und analysieren das Skalierungsverhalten der untersuchten Netze mit Fokus auf
den Rechenaufwand.
Die vorgeschlagenen Methoden werden in zwei Anwendungen, Spracherkennung und

Gestenerkennung, angewendet. Die resultierenden Ergebnisse zeigen, dass die SNNs
Vorhersagegenauigkeiten erreichen, die mit denen von ANNs vergleichbar sind, während
sie zahlenmäßig weniger sowie weniger teure Rechenoperationen benötigen. Daher
unterstützen unsere Ergebnisse die Hypothese, dass SNNs eine geeignete Alternative zu
ANNs im Bereich der Klassifizierung von Zeitreihen mit geringem Stromverbrauch sind.

v

Acknowledgments

Foremost, I would like to thank Prof. Alois Knoll, who made this research possible in the
first place. He initiated this close collaboration between industry and academia, for which
I am genuinely grateful. Additionally, he provided discussions and guidance throughout
the whole project. Without that, a successful conclusion of the research project would
not have been possible.
The research project was funded by Infineon Technologies AG. I want to express my

special thanks for this opportunity. Representatively, I would like to thank Dr. Cyprian
Grassmann; also for being my mentor and helping me during every stage of the project.
Next, I would like to thank the academic and administrative staff at the Chair of

Robotics, Artificial Intelligence, and Real-time Systems: Dr. Alexander Lenz, Ute Lomp,
and Amy Bücherl. They provided a positive and supportive working environment, no
matter the circumstances or the kind of questions I had.

In these challenging times of a global pandemic, lock-downs, and “home office”, social
interaction is just as important as scientific collaboration. Therefore, I would like to thank
my colleagues at the university and at Infineon, who created an enjoyable environment that
promoted new ideas and the motivation to pursue further research directions. Specifically,
I would like to thank Etienne Müller, Julian Hille, and Robin Dietrich for the many
discussions and collaborations, both in person and in pandemic-conform phone calls.
Lastly, this work would not have been possible without the support of my partner

Sarah and my family. Thank you for being there for me.

vii

Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvii

List of Symbols xxi

1 Introduction 1
1.1 Research Questions and Scope of the Thesis 4
1.2 Structure . 5
1.3 Contributions . 7

2 Background 11
2.1 Neuron Models . 11

2.1.1 Hodgkin-Huxley Model . 11
2.1.2 Leaky Integrate-and-fire Model . 12
2.1.3 Resonate-and-fire Model . 14

2.2 Training . 15
2.2.1 Biologically Plausible Learning Algorithms 16
2.2.2 Artificial Learning Algorithms . 16
2.2.3 Backpropagation . 17

2.3 Neuromorphic Hardware . 20
2.3.1 Software Simulation Environments 21
2.3.2 Multipurpose Hardware Accelerators 21
2.3.3 Specialized Circuits . 24
2.3.4 FPGA-based Accelerators . 25
2.3.5 Summary . 25

2.4 Review of Encoding Schemes . 26
2.4.1 Taxonomy . 26
2.4.2 Rate Coding . 28
2.4.3 Temporal Coding . 30

3 Signal Encoding 35
3.1 Introduction . 35
3.2 Frame-based Encoding . 36

3.2.1 Correlation and Synchrony . 37
3.2.2 Globally Referenced . 37

ix

Contents

3.2.3 Binarization . 38
3.3 Stream Encoding . 39

3.3.1 Temporal Contrast . 39
3.3.2 Filter and Optimizer . 40

3.4 Frequency-selective Resonating Neurons 40
3.4.1 Properties of the Resonator . 41
3.4.2 Spike Generation . 43
3.4.3 Frequency, Amplitude, and Phase Resolution 46
3.4.4 Discretized Model . 47

4 Network Architecture and Training 51
4.1 Neuron Models and Connectivity Schemes 51

4.1.1 Discrete LIF Neuron . 51
4.1.2 Reset Functionality . 52
4.1.3 Integrator Output Neurons . 54
4.1.4 Recurrence . 54
4.1.5 Convolutional Layer . 55

4.2 Training . 56
4.2.1 Optimization Variables . 56
4.2.2 Regularization . 58
4.2.3 Network Pruning . 60

4.3 Neuromorphic Hardware Considerations 61
4.3.1 Mapping Network Hyperparameters to Hardware 62
4.3.2 Neurons, Trainable Parameters, and Synapses 63
4.3.3 Energy Consumption . 64

5 Speech Recognition – Wake Word Detection 67
5.1 Motivation . 67
5.2 Background . 68

5.2.1 Auditory Feature Generation . 68
5.2.2 Related Work . 71

5.3 Setup . 71
5.3.1 Dataset . 71
5.3.2 Evaluation Metrics . 73
5.3.3 Input Encoding . 73
5.3.4 Network Architectures . 76

5.4 Evaluation . 80
5.4.1 Classification Performance . 80
5.4.2 Network Dynamics of the SNN . 82
5.4.3 Ablation Study . 88

5.5 Discussion of the Results . 92
5.5.1 Comparison to ANNs and the State of the Art 92
5.5.2 Energy and Complexity Considerations 93

x

Contents

6 Radar-Based Hand Gesture Recognition 95
6.1 Motivation . 95
6.2 Background . 95

6.2.1 Measurement Principle . 96
6.2.2 Related Work . 97

6.3 Setup . 99
6.3.1 Datasets . 99
6.3.2 Preprocessing and Encoding . 100
6.3.3 Evaluation Metrics . 101
6.3.4 Network Architectures . 102

6.4 Evaluation . 102
6.4.1 Classification Performance . 102
6.4.2 Ablation Study . 103

6.5 Discussion of the Results . 111

7 Summary and Conclusion 113
7.1 Background . 113
7.2 Signal Encoding . 114
7.3 Network Architecture and Training . 114
7.4 Applications . 115

7.4.1 Speech Recognition . 115
7.4.2 Hand Gesture Recognition . 116
7.4.3 Similarities and Differences . 116

7.5 Limitations . 117

8 Outlook 119

Appendix 121

Bibliography 123

xi

List of Figures

1.1 Structure of the thesis . 6

2.1 Equivalent electrical circuit of the LIF neuron 13
2.2 Voltage courses of LIF and Hodgkin-Huxley neurons 14
2.3 RF neuron by Izhikevich . 15
2.4 Schematic computational flow in recurrent networks 19
2.5 Surrogate gradients used for the training of SNNs 20
2.6 Taxonomy of rate and temporal coding techniques 27
2.7 Exemplary coding schemes for a sequence of images over time 28
2.8 Visualization of rate coding techniques . 29
2.9 Visualization of temporal coding techniques 31

3.1 Considered data sequence formats . 36
3.2 Pulsed excitation of a RF neuron . 41
3.3 Resonant versus non-resonant excitation of the RF neuron 42
3.4 Excitation of RF neurons with superimposed sinusoidal signals 44
3.5 Detailed view of the RF neurons’ spike times implementing different reset

schemes . 46
3.6 Evaluation of an arbitrary signal using RF neurons with spike generation

and threshold adaption . 49
3.7 Evaluation of an arbitrary signal using RF neurons with Izhikevich’s reset

scheme . 50

4.1 Update calculations of a population of discrete LIF neurons 53
4.2 LIF neuron reset schemes . 54

5.1 Network architecture for the speech recognition task 68
5.2 Hearning models . 70
5.3 Exemplary evaluation of the encoding of a speech signal using RF neurons 75
5.4 Feature generation for an exemplary spoken word 77
5.5 Confusion matrices for the best performing ANN and SNN 83
5.6 Exemplary evaluation of the SNN’s inference of a command 85
5.7 Weight change during training . 86
5.8 Trainable time constants and thresholds 87
5.9 Network size sweep . 88
5.10 Network sparsity sweep . 90
5.11 Network activity regularization sweep . 91

xiii

List of Figures

6.1 Radar-based hand gesture recognition . 96
6.2 Schematic chirp sequence of an FMCW radar system 97
6.3 Network architecture for the hand gesture recognition task 99
6.4 Hand gestures contained in the Interacting with Soli dataset 100
6.5 Confusion matrices for the two radar gesture datasets 104
6.6 Network size sweep . 105
6.7 Exemplary evaluation of the SNN’s inference of a gesture 106
6.8 TSNE visualization plots of the gesture data 107
6.9 Network sparsity sweep . 109
6.10 Network activity regularization sweep . 110

A.1 Confusion matrix for a recurrent ANN and a convolutional SNN to solve
the speech recognition task . 121

xiv

List of Tables

1.1 Advantages of Spiking Neural Networks 2

2.1 Neuromorphic hardware solutions . 22

3.1 Complexity of Fourier transform algorithms 48

4.1 Network parameters and their effects in neuromorphic hardware 62
4.2 Comparison of network complexity for different layer types 63
4.3 Comparison of the computational costs for different layer types 65

5.1 Related work for speech recognition in SNNs 72
5.2 Parameters of the Mel- and MFCC-based feature generation 73
5.3 Parameters of the RF neurons used for the speech recognition task 74
5.4 Architectures of the examined ANNs for the speech detection task 79
5.5 Architectures of the examined SNNs for the speech detection task 81
5.6 Classification performance of different architectures for the speech detection

task . 82
5.7 Complexities of evaluated SNN architectures 94

6.1 Dataset parameters from Interacting with Soli and TinyRadarNN 101
6.2 Classification performance of different approaches for the radar gesture

recognition task . 103
6.3 Synaptic operations in densely connected networks using different bina-

rization approaches . 105

A.1 Layer-wise activity of the evaluated densely connected SNNs to solve the
speech recognition task . 121

xv

List of Acronyms

ADC Analog-to-Digital Converter

AEIF Adaptive Exponential Integrate-and-Fire

ALIF Adaptive Leaky Integrate-and-Fire

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuit

BMBF Bundesministerium für Bildung und Forschung

BPTT Backpropagation Through Time

BSA Ben’s Spiker Algorithm

CNN Convolutional Neural Network

DAC Digital-to-Analog Converter

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DNN Deep Neural Network

DVS Dynamic Vision Sensor

EEG Electroencephalography

ELU Exponential Linear Unit

eSNN Evolving Spiking Neural Network

FC Fully Connected

FFT Fast Fourier Transform

FinFET Fin Field-Effect Transistor

FMCW Frequency Modulated Continuous Wave

xvii

LIST OF ACRONYMS

FPGA Field-Programmable Gate Array

GRU Gated Recurrent Unit

HICANN High Input Count Analog Neural Network

HICANN-DLS High Input Count Analog Neural Network with Digital Learning System

HSA Hough Spiker Algorithm

IF Intermediate Frequency

IoT Internet of Things

ISI Interspike Interval

LIF Leaky Integrate-and-Fire

LOSO Leave-One-Subject-Out

LSM Liquid State Machine

LSTM Long Short-Term Memory

MAC Multiply-Accumulate

MFCC Mel-Frequency Cepstral Coefficients

MIM Metal-Insulator-Metal

NEF Neural Engineering Framework

PSTH Peri-Stimulus-Time Histogram

RBM Restricted Boltzmann Machine

RCNN Recurrent Convolutional Neural Network

RDM Range-Doppler Matrix

ReLU Rectified Linear Unit

RF Resonate-and-Fire

RNN Recurrent Neural Network

ROC Rank-Order Coding

RQ Research Question

xviii

SDR Sparse Distributed Representation

SDSP Spike-Driven Synaptic Plasticity

SNN Spiking Neural Network

SOP Synaptic Operation

STDP Spike-Timing-Dependent Plasticity

SVM Support Vector Machine

TC Temporal Contrast

TSNE T-Distributed Stochastic Neighbor Embedding

TTFS Time-to-First-Spike

VLSI Very-Large-Scale Integration

WTA Winner-Takes-All

xix

List of Symbols

Notation

a A scalar (real or integer)
a A scalar (complex)
a A vector
A A matrix

a(t) A temporally changing variable (continuous time)
a[t] A temporally changing variable (discrete time)

ai The i-th element of vector a, with the index starting at 1
ai,j Element i, j of matrix A

a(i) Element within the i-th layer of a network
a(i,j) Element with contributions from layer i to layer j

adescr A variable with distinct description

f(a) A function of a
Re(a) Real part of complex variable a
Im(a) Imaginary part of complex variable a

xxi

LIST OF SYMBOLS

Symbols

t Time
∆t Time interval

tf Firing times of a neuron
v(t), v(t), v[t] Membrane voltage of a neuron
vth Threshold voltage of a neuron
vreset Reset voltage of a neuron
C Membrane capacitance of a neuron
R Resistance of a neuron
δ(t), z[t] Spike event
i(t), i[t] Input current of a neuron
τ Time constant of a neuron
λ Damping constant of a neuron
W Weight matrix containing the synaptic connection weights
f Frequency
ω Angular frequency

η Learning rate
L Loss function
ψlin, ψsig Pseudo gradient
si, sf Sparsity level

x Input vector
y Output vector
ŷ Label vector

cω=ωn(t) Envelope function of a neuron’s response with ω = ωn

σ(x) Softmax function
S(x) Logistic sigmoid function

Nxxx Number of xxx
Exxx Energy consumption of xxx

xxii

1 Introduction

Artificial Neural Networks (ANNs) define the state-of-the-art solution in many current
applications. Their superiority over classical approaches manifests in applications like
pattern recognition and classification, function approximation, sequence prediction,
content generation, or showing their abilities by competing in games like Chess, Go, or
arcade video games [1], [2]. Their use has become indispensable in modern systems,
ranging from huge compute clusters to embedded microsystems.

Despite their computational capabilities, ANNs lay way behind their biological counter-
parts when comparing their energy efficiency. For example, the human brain can perform
the complex computations of sensory perception, cognition, and motion coordination
while consuming 20 Watts. The actual consumption of the computations themselves is
even lower [3], [4]. ANNs require power levels, which are orders of magnitude higher
when performing complex tasks [5]. A popular example to illustrate this disparity is
the historic game of Go between the human world champion Lee Sedol and his artificial
opponent AlphaGo in 2016 [6]: The machine housing the artificial agent needed 1 MW to
perform the necessary computations [7], roughly 105 times more than the human brain.
The development towards increasingly large networks facilitates solving more and

more complex problems, often surpassing human capabilities. However, these large
networks also necessitate large compute clusters and huge power budgets. The mismatch
between the vastly growing requirements on hardware and power on the one hand, and
the infinitesimal performance gains of the networks on the other hand, is addressed by
the field of GreenAI [5]. There, the network’s performance and requirements are always
considered simultaneously.

The performance-requirements-tradeoff is particularly striking in the field of embedded
systems. There, the requirements in terms of the realizable complexity of ANN-based
systems in embedded applications and the available power budget are especially restricted.
Small microcontroller systems offer memory in the order of a few KB and execution
speeds of several MHz while consuming power in the order of mW [8]. The well known
field of Internet of Things (IoT) or the advanced processing in modern driver-assisted
vehicles are prominent examples for the application of these microcontroller systems.

To enable more powerful ANNs on restricted hardware, there exist several research
directions to optimize distinct aspects of the system: sparse networks [9]–[11], computa-
tional optimizations [12], new network architectures [13], [14], or energy-efficient hardware
accelerators [15]. A further promising approach is inspired by biological neural networks,
as it mimics the functions of biological neurons more closely [16]. These networks form
the next step towards their biological archetypes, which have been optimized over millions
of years. As their biological counterpart, the networks have latent neuronal variables
and communicate via binary all-or-nothing events, often referred to as spikes. Inspired

1

1 Introduction

Table 1.1: Advantages of Spiking Neural Networks.

Claim Reasoning Ref.

Energy-efficient Neuromorphic realizations of SNNs consume less energy
than equivalent ANNs

[18]–[23]

Less neurons SNNs need less neurons than ANNs to solve the same
problem

[16]

Fast SNNs operate event-based, asynchronously and highly
parallelized

[24]–[26]

Time-affine SNNs operate in the time domain; they are made for
temporal pattern recognition

[27]

Adaptive SNNs can adapt to changing input characteristics (con-
text drift, online learning)

[28]

Robust Communication using binary spikes is less prone to
noise

[29]

Hardware-
friendly

Simple neurons, local learning (in space and time) [30], [31]

by their spike-based communication scheme, these types of networks are called Spiking
Neural Networks (SNNs).
The spiking network type can be seen as the next generation of artificial network

designs. Neural networks are commonly assigned to three generations [16] with increasing
complexity per level. Networks based on binary threshold activation functions are defined
to be part of the first generation. Perceptrons, Hopfield nets, and Boltzmann machines
fall into this group of networks. The second generation distinguishes itself from the
previous generation through continuous output activation functions. Examples for this
generation are feedforward and recurrent networks using tanh, sigmoid, or rectified linear
activation functions. SNNs form the third generation of artificial neural networks by
using neurons, which encode information into temporal sequences of binary events [16].
In the following, we use the term ANN for neural networks of the first two generations,
whereas SNN is used to refer to networks of the third, spiking, generation.

The underlying principles of both ANNs and SNNs have been developed several decades
ago: the first binary neuron model by McChulloch and Pitts (1943), Hebbian learning
(1949), multilayer perceptrons (1960s), backpropagation (1970s), SNNs (1990s) [17].
The current success of neural networks can be primarily attributed to the continuous
further development of sophisticated algorithms and the rapidly increasing availability
of computing power. The increased interest in SNNs for productive applications began
with the development of specialized neuromorphic circuits in the 2010s.

With the biologically inspired way of conveying and processing information, SNNs have
shown to have a range of advantages over ANNs of the previous generations. The most
important claims are summarized in table 1.1. Many of the advantages are based on the
neurons’ spatially and temporally sparse communication scheme. On average, large parts

2

of the networks are inactive and are only activated whenever new information in the
form of spikes is available. Because of that, many neurons only need to be updated rarely.
Based on this principle, it has been shown that realizations of SNNs consume much less
energy than equivalent ANNs, resulting in a higher energy efficiency of SNNs [18]–[23].
A further advantage that results from the event-based processing scheme is the fast
response to incoming stimuli. With no need for synchronization, important information
can be propagated through the network efficiently, while fine-grained or less important
information can enhance the resulting response during a longer interval [24]–[26]. The
precise timing between spikes can also be leveraged to adapt the network continuously.
Different local learning rules can, thus, be used to adapt the network to changing input
characteristics with no need to propagate the error through the entire network [28]. With
the distributed processing of events, it is also possible to circumvent the von Neumann
bottleneck as no centralized coordination of memory and compute resources have to be
performed [26], [32]. SNNs can be implemented as simple integrator units that directly
communicate with each other in small local groups [30]. Larger groups of neurons can be
clustered and spikes can be routed to other clusters using digital data buses [32].

However, the advantages are offset by several challenges when trying to solve the same
problem with SNNs instead of ANNs [26]. In most cases, SNNs simply do not reach the
same performance levels as ANNs [20], [33]–[35]. The performance gap can partially be
explained by the nature of the benchmarks themselves because most benchmarks that
assess the performance of neural networks comprise single frame-based image classification
tasks without supporting (temporal) context [26]. While it has been shown that our
brains can solve those tasks, too [36], they are much more optimized for analyzing
continuous data streams that contain binary patterns of neural activations. This directly
leads to the more important reason for the performance gap: Information is represented
and processed differently in spike-based networks.
The challenges manifest themselves in three areas: the encoding and decoding of

information, the variety of neuron models that can be deployed to construct the networks,
and finally, the training of the networks to reach the desired functionality. All three areas
are large fields of research in their own. Through extensive theoretical and practical
works in the field of neurobiology, many details about the individual processes in our
nervous system are known. However, only a minor part could be transferred to real
applications so far.
It is not fully understood how sensor data can be efficiently represented by spatio-

temporal spike trains. Of course, they can be encoded into temporally averaged spike rates,
but this necessitates many spikes to represent only a small dynamic range, questioning
the overall efficiency of the spike-based system. There are works that instead show the
biological evidence and describe the importance of sparse encoding schemes in which
the exact timing of each spike is crucial for the information to be transmitted [37]–[43].
Others even state, that longer periods of silence between spikes hold more information
than the spikes themselves during more active intervals [44]. Implementations of these
sparse encoding mechanisms verify their efficiency, however, their application is often
limited to proofs of concept or toy examples. Further, because of the difference in
their communication schemes, many established methods from the areas of machine

3

1 Introduction

learning and classical algorithms cannot be utilized directly to the use with SNNs.
Backpropagation, for example, cannot be used trivially to train SNNs because spikes
are non-differentiable functions, thus rendering the gradient-based error propagation
impossible to use. Biologically inspired learning methods, on the other hand, often result
in unstable learning performance with much need for manual tweaking [45]. Additionally,
schemes that favor the time-based asynchronous communication schemes of SNNs are
yet to be developed.

Thus, the nature of SNNs requires the development of new architectures, different
mechanisms to represent information, and the adaption of established methods or the
development of new learning algorithms. Inspired by both biological and artificial neural
network realizations, plenty of solutions need to be developed to close the gap between
the artificial and spiking network approaches.
Recent advances in the adoption of backpropagation-based optimization techniques

for the training of SNNs [46]–[49] facilitated the utilization of SNNs in a broad range of
real-world applications. With this thesis, we build upon these advances and try to get a
better understanding of the tradeoffs that are involved in the use of ANNs and SNNs in
embedded applications.

1.1 Research Questions and Scope of the Thesis
The overall question which motivates this work is:

Are neural networks based on spiking neurons viable and advantageous alter-
natives to common ANNs in real-world applications?

This simple question, however, cannot be answered simply. There are works, which
show, that SNNs can outperform ANNs in different individual aspects (see table 1.1). A
consensus about the SNN’s supremacy, however, has not been reached yet. To contribute
to the discussion, this thesis considers SNNs in the context of real-world applications in
small, embedded environments. Therefor, the performances of the SNNs are evaluated,
and the requirements on their neuromorphic realizations are examined. To narrow the
field of applications, we consider the classification of concluded data sequences. We
thereby leverage the potential advantages of the time affinity of SNNs. At the same
time, we have the possibility to compare our approaches with ANNs on well-established
benchmarks that are not focused on frame-based image recognition.

SNNs process information using all-or-nothing pulses. Real-world data that is recorded
by digital sensors, however, is not naturally present in this binary event-based form. The
sensory data streams, therefore, need to be converted to a format, which can be processed
by SNNs. Accordingly, our first Research Question (RQ) is:

Research Question 1
How to encode data streams into spike event representations for the processing in SNNs?

With the input being present, the network itself has to be built and trained. Biologically
inspired methods as well as methods for the training of ANNs can be used to achieve

4

1.2 Structure

this. Some of these methods can be adapted for the special requirements of SNNs. The
summarizing RQ arises:

Research Question 2
How to train SNN architectures for supervised classification tasks?

One of the main reasons for the consideration of SNNs over classical ANNs is the
highly efficient execution of SNNs on specialized neuromorphic hardware. The energy
efficiency of the networks is thus a high priority in the design of application-oriented
SNNs. However, the use of neuromorphic hardware imposes additional constraints like
the available number of neurons a network can comprise or its connectivity within the
neuronal populations. Similar to embedded applications, the networks should be minimal
to reduce the hardware costs and power consumption. We, therefore, ask the following
RQs:

Research Question 3
How can the complexity of the SNN realizations be reduced?

Research Question 4
How do the network complexity and performance scale?

1.2 Structure
This work is divided into eight chapters. An overview of the structure of this work is
given in Figure 1.1.
This first chapter motivates the work and introduces the problem statement. Subse-

quently, research questions are formulated that address the identified gap of knowledge.
The chapter ends with a list of publications that make up this work or are directly related
to it.

Chapter 2 sets out the basic principles for this work. This includes an introduction of
the neuron models, which are used in this thesis, as well as an overview of bio-inspired and
artificial learning algorithms. Because we use pseudo-gradient-based backpropagation to
train the networks in this work, we introduce the necessary background here. The chapter
closes with an overview of current neuromorphic hardware accelerators and a review of
encoding schemes, which can be deployed to encode information in a spike-based format.

The methodological sections of this work are described in chapters 3 and 4. Chapter 3
builds upon the encoding schemes that are reviewed in Section 2.4. Based on the
characteristics of the data we will evaluate in the chosen applications, we distinguish
between frame-based (Section 3.2) and stream (Section 3.3) encoding schemes. Specific
to data sequences that comprise superpositions of sinusoidal components, we introduce
the use of Resonate-and-Fire (RF) neurons as frequency selective input encoders in
Section 3.4.
The second methodological chapter, chapter 4, introduces the algorithms and ap-

proaches that are used to train the SNNs in this work. Section 4.1 describes the
underlying models and structures that are used to construct the SNNs. The algorithms to

5

1 Introduction

Introduction

Methods

Applications

Conclusion

Chapter 1
Introduction

Chapter 2
Background

Chapter 3
Signal Encoding

Chapter 4
Network Architectures

and Training

Chapter 5
Speech Recognition -

Wake Word Detection

Chapter 6
Radar-Based Hand
Gesture Recognition

Chapter 7
Summary and Conclusion

Chapter 8
Outlook

Figure 1.1: Structure of the thesis.

train these networks are subsequently introduced in Section 4.2. The chapter concludes
with considerations on the subject of neuromorphic hardware. We discuss the relations
between network architectures and the potential neuromorphic realizations.
Chapter 5 introduces the first application of small, low-power SNN implementations,

which is discussed in this work: the recognition of keywords in audio data streams.
The first two sections (5.1, 5.2) explain the motivation and the background for this
application. The setup of the experiments is shown in Section 5.3. Here, we utilize the
approaches that are described in the methodological chapters. Subsequently, the results
of the experiments are evaluated in Section 5.4 and their implications are discussed in
the last section of this chapter, Section 5.5.

In the second application, SNNs are used to detect hand gestures in sequences of radar
measurements. This is elaborated in chapter 6. As in the previous chapter, the first
two sections motivate the research and introduce the background for this application
(Sections 6.1 and 6.2). The results of the experiments are evaluated in Section 6.4. In

6

1.3 Contributions

Section 6.5, we discuss the results and draw parallels to the insights gained in the previous
section.
In chapter 7, the results, findings, and limitations of the methodological and the

application-oriented chapters are summarized. Finally, chapter 8 gives an outlook over
future directions and topics of the application-oriented low-power usage of SNNs.

1.3 Contributions

Parts of this thesis have been previously published in peer-reviewed journals or at
international peer-reviewed conferences.
To be able to answer the first RQ, a review article about encoding techniques in

biological and artificial SNNs was composed and was published in a journal. Its content
is reflected in Section 2.4 and forms the basis of chapter 3.

1. Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. A Survey of Encod-
ing Techniques for Signal Processing in Spiking Neural Networks. Neural
Processing Letters, 2021. [50]

The initial idea and evaluation of using RF neurons as frequency selective encoders for
the use in SNNs has been published as a technical report. Its content is included in
chapter 3.

2. Daniel Auge and Etienne Mueller. Resonate-and-Fire Neurons as Frequency
Selective Input Encoders for Spiking Neural Networks. TUM (Technical
Report), 2020. [51]

The further analysis and application of the approach to speech recognition has been
published as a conference paper and will be elaborated in chapter 5. The proposed
methods are part of chapters 3 and 4.

3. Daniel Auge, Julian Hille, Felix Kreutz, Etienne Mueller, and Alois Knoll. End-to-
End Spiking Neural Network for Speech Recognition Using Resonating
Input Neurons. 30th International Conference on Artificial Neural Networks
(ICANN), 2021. [52]

As RF neurons can encode spectral information of arbitrary signals, we show their use
for the detection of interference in radar applications. The evaluation of this application,
however, is not included in this thesis.

4. Julian Hille, Daniel Auge, Cyprian Grassmann, Alois Knoll. Resonate-and-Fire
Neurons for Radar Interference Detection. International Conference on
Neuromorphic Systems (ICONS), 2022. [53]

The idea to classify hand gestures based on radar data using SNNs was presented as a
poster:

7

1 Introduction

5. Daniel Auge, Philipp Wenner, Etienne Mueller. Hand Gesture Recognition
using Hierarchical Temporal Memory on Radar Sequence Data. Bernstein
Conference 2020, 2020. [54]

Although the specific approach of the above-mentioned publication [54] has been discarded,
we continued to pursue the idea. The resulting approach, which involved recurrently con-
nected SNNs and an evaluation of binarization techniques, was published as a conference
paper. The methodological parts of the paper are included in chapters 3 and 4, whereas
the experimental part of the paper is reflected in chapter 6.

6. Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. Hand Gesture
Recognition in Range-Doppler Images Using Binary Activated Spiking
Neural Networks. IEEE International Conference on Automatic Face and Gesture
Recognition 2021, 2021. [55]

The KI-ASIC project [56], funded by the German Bundesministerium für Bildung und
Forschung (BMBF), is about evaluating the use of SNNs in the field of automotive radar
processing. Some of the knowledge gained in this thesis is reflected in the joint journal
contribution by all project members:

7. Bernhard Vogginger, Felix Kreutz, Javier López Randulfe, Chen Liu, Robin Di-
etrich, Hector A. Gonzalez, Daniel Scholz, Nico Reeb, Daniel Auge, Julian Hille,
Muhammad Arsalan, Florian Mirus, Cyprian Grassmann, Alois Knoll, and Chris-
tian Mayr. Automotive Radar Processing with Spiking Neural Networks:
Concepts and Challenges. Frontiers in Neuroscience, 2022. [57]

The following works also contribute to the field of SNNs but are not directly part of this
thesis.

8. Etienne Mueller, Julius Hansjakob, Daniel Auge, Alois Knoll. Minimizing Infer-
ence Time: Optimization Methods for Converted Deep Spiking Neural
Networks. 2021 International Joint Conference on Neural Networks (IJCNN),
2021. [34]

9. Etienne Mueller, Viktor Studenyak, Daniel Auge, Alois Knoll. Spiking Trans-
former Networks: A Rate Coded Approach for Processing Sequential
Data. International Conference on Systems and Informatics (ICSAI), 2021. [58]

10. Etienne Mueller, Daniel Auge, Simon Klimaschka, Alois Knoll. Neural Os-
cillations for Energy-Efficient Hardware Implementation of Sparsely
Activated Deep Spiking Neural Networks. AAAI’s International Workshop
on Practical Deep Learning in the Wild, 2022. [59]

The following works contribute to the field of time series processing of radar or camera
data in the automotive field with ANNs. They are not directly part of this thesis but
discuss neighboring fields which could be applications of SNNs in the future.

8

1.3 Contributions

11. Julian Hille, Daniel Auge, Cyprian Grassmann, Alois Knoll. FMCW radar2radar
Interference Detection with a Recurrent Neural Network. 2022 IEEE
Radar Conference (RadarConf), 2022. [60]

12. Saasha Nair, Sina Shafaei, Daniel Auge and Alois Knoll. An Evaluation of
“Crash Prediction Networks” (CPN) for Autonomous Driving Scenarios
in CARLA Simulator. SafeAI 2021 - AAAI’s Workshop on Artificial Intelligence
Safety, 2021. [61]

9

2 Background

This chapter presents the relevant background and related works for this approach. We,
first, introduce the base neuron models, which are used in this work. Subsequently, we
give an overview of learning algorithms for the use for SNNs. In real-world applications,
SNNs are executed on specialized hardware to ensure their energy-efficient execution. An
overview of current solutions in this field of research is given in the third section of this
chapter. The chapter closes with a review of encoding schemes, which can be used to
encode real-world information into trains of spike events.

The related works, which are specific to the respective application in the later chapters,
are given in Sections 5.2 and 6.2.

2.1 Neuron Models
The dynamics of spiking neurons are described using analytical models consisting of
differential equation systems. Models have been developed, which closely resemble
biological behavior, whereas others show only abstracted behaviors. The choice for the
respective model to be used primarily depends on the considered system. Researchers
interested in simulating distinct ion movements within the neuron cells will most certainly
need a different abstraction level than someone who examines the behavior of large
neuron populations and their interactions on a network level.
Throughout this work, mainly two different neuron models are utilized to construct

SNNs: Leaky Integrate-and-Fire (LIF) neurons and Resonate-and-Fire (RF) neurons.
From Izhikevich’s list of neuro-computation features [27], the LIF neuron implements
tonic spiking (persistent generation of output spikes as long as the input current is
present), class 1 excitability (spike frequency proportional to the input current), and the
property of an integrator. The RF neuron additionally implements, as the name suggests,
the properties of a resonator and further relations between stimulus and spike response.
The mathematical descriptions of these neuron models are presented in the following.
We introduce the Hodgkin-Huxley model for completeness because it is the first formal
description of a neuron and forms the basis for all neuron models.

2.1.1 Hodgkin-Huxley Model

Hodgkin and Huxley developed the first biologically feasible neuron model in 1952. They
performed experiments on the squid’s nervous system to study the chemical and electrical
processes of the nerve cell and its surrounding. They found that the transport of ions
using channels between the inside and outside the nerve cell is used to adapt the cell’s
membrane potential. They identified sodium and potassium ions as the main carriers for

11

2 Background

charge transport in the cell. The Hodgkin-Huxley model describes those transports and
concentrations by a four-dimensional differential equation system [62].

The equation describing the membrane potential u(t) is given by

C
dv

dt
= −

∑
k

ik(t) + i(t). (2.1)

Thereby, C describes the membrane capacity, i(t) the input current and ik(t) the sum of
the internal ion currents∑

k

Ik(t) = gNam
3h(v − vNa) + gKn

4(v − vK) + gL(v − vL) (2.2)

introduced by the movement of sodium (Na) and potassium (K) ions as well as a leakage
current (L), which mainly consists of chlorine ions. vNa, vK, and vL are the respective
reversal potentials, which have been empirically determined by Hodgkin and Huxley. The
variables n, m, and h are described by differential equations themselves of the form

dx

dt
= − 1

τx(v)
[x− x0(v)] . (2.3)

Through measurements on the squid, they empirically determined the necessary time
constants and reverse potentials to complete the formulation. In this biologically plausible
model, what is often referred to as a spike is, in fact, the rapid rise and fall of the neuron’s
membrane potential, enabled by the interlinked movements of ions.
The four-dimensional Hodgkin-Huxley model can be reduced to a nonlinear two-

dimensional model by approximating its temporal characteristics. There are two simpli-
fying approximations involved in the reduction of the dimensions [63]: (1) The temporal
evolution of the m variable is much faster than that of the two other gating variables
n and h. Consequently, the variable m is treated as an instantaneous variable, thus
m(t) 7→ m0 [v(t)]. (2) The time constants τn and τm have similar temporal dynamics,
suggesting approaching the two variables n and h by a single variable v2. This simplifies
eqs. (2.1) to (2.3) to

dv

dt
=

1

τ
[f(v, v2) +R i(t)] and

dv2
dt

=
1

τ2
g(v, v2).

(2.4)

2.1.2 Leaky Integrate-and-fire Model

The most simplified result of the dimensional reduction of the Hodgkin-Huxley model is
the LIF neuron model. Due to its simplicity, it can be computed efficiently. The general

12

2.1 Neuron Models

Figure 2.1: Equivalent electrical circuit of the LIF neuron. The membrane potential
is present at the capacitance. The leakage current is modeled by the parallel
resistor, which causes the voltage to decrease to the rest potential. (Figure
from [63])

dynamic of the membrane potential v(t) is given by the differential equation

C
dv

dt
= − 1

R
v(t) + i(t), (2.5)

with C being the membrane capacitance, R being the input resistance, and i(t) the input
current. A schematic and the equivalent electrical circuit are depicted in Figure 2.1.
Often, the membrane capacitance and the input resistance of the neuron are combined
to a single value, namely the time constant τ of the neuron. The time constant defines
the voltage leakage of the neuron as the factor of the exponential decay of the membrane
potential. As soon as the membrane potential crosses the threshold value vth, the LIF
neuron fires an output spike, and the membrane potential is lowered to the reset potential
vreset. After generating a spike, the membrane can be fixed at the reset potential for a
specific time, representing the neuron’s refractory period.

The input current can be divided into a continuous stimulation icont as well as the
contribution of other neurons connected via simple synapses with weights wi,j :

ii(t) = icont(t) +
∑
f,j

wi,jδ(t− tfj). (2.6)

Here, incoming spikes are modeled as delta functions δ(t), which are zero at every point
in time except for t = 0 and

∫∞
−∞ δ(x)dx = 1. The spikes at the firing times tf of

each neuron j are thus summed and weighted. Incoming spikes, therefore, result in an
instantaneous change of the membrane voltage. Weights can be positive and negative to
comply with excitatory and inhibitory action potentials in their biological archetypes.
An exemplary course of the membrane voltage of a neuron modeled as LIF neuron and
Hodgkin-Huxley neuron is depicted in Figure 2.2.

13

2 Background

In
pu

t
cu

rr
en
t

−50
0

Hodgkin-Huxley

M
em

br
an

e
vo

lta
ge

[m
V
]

0 100 200
vreset

vth

LIF

Time [ms]

M
em

br
an

e
vo

lta
ge

Figure 2.2: Voltage courses of LIF and Hodgkin-Huxley neurons. The exemplary
current in the upper plot is applied to the two neuron models. The first current
onset causes both neurons to produce spikes. The voltage course of the Hodgkin-
Huxley model is more complex due to the temporal evolution of the variables
n, m, and h, which are not depicted. The second current is not able to charge
the LIF neuron enough to reach the threshold voltage. However, the sudden
onset of the current leads to an action potential of the Hodgkin-Huxley model.

Variants

In the family of integrate-and-fire neurons exist further variants of the LIF neuron,
which implement more or less neuro-computational features, as shown by Izhikevich [27].
Examples include the non-leaky integrate-and-fire neuron, which does not implement an
exponential decay of the membrane voltage over time, the quadratic and exponential LIF
neuron, which implement a second, bistable threshold, or the Adaptive Leaky Integrate-
and-Fire (ALIF) neuron, which exhibits an adaption of the firing threshold, depending
on the spike activity of the respective neuron.

2.1.3 Resonate-and-fire Model

The RF neuron is a two-dimensional neuron model, which was proposed by Izhikevich
[64]. Its two cross-coupled membranes v1 and v2 oscillate when the neuron gets excited
and begin to resonate if the stimulus matches the resonant frequency of the neuron:

dv
dt

=

[
−λ −ω
ω −λ

]
v +

[
i(t)
0

]
. (2.7)

Izhikevich describes the two variables y and v as the current- and voltage-like variables.
The coupling is given by the resonant frequency ω = 2πf of the neuron. Additionally,
each membrane is subject to damping, described by the damping constant λ. Accordingly,

14

2.2 Training

Figure 2.3: RF neuron by Izhikevich. Input spikes must arrive in the correct time
interval to excite the neuron enough to produce an output spike. The left plot
shows the temporal evolution of the two coupled variables in the complex plane.
A spike is emitted when the course crosses the threshold at i. This corresponds
to the voltage-like variable Im(z) crossing the threshold. (Figure from [64])

an outgoing spike is generated as soon as the voltage-like variable v reaches the firing
threshold. The variables are subsequently reset to their resting potential. The equation
system can alternatively be represented in a complex form with v = v1 + iv2 ∈ C with
Im(v) being the voltage-like variable:

dv

dt
= (−λ+ iω)v + i(t). (2.8)

Figure 2.3 shows the course of the voltage-like variable when stimulated with non-
resonant and resonant input pulse trains. The voltage-like variable only reaches the firing
threshold if the correct time interval is present between succeeding spikes. The neuron
does also generate spikes when stimulated with multiple near-simultaneous input spikes
or when a combination of inhibitory and excitatory pulses at the correct time interval is
present at the input.
Apart from the simple, symmetric RF mode, other neuron models can also exhibit

resonant behavior [27]. Numerous works analyze the properties of these models [65]–[69].
Silicon-based integrated circuit realizations of RF neurons have been demonstrated in
[70] and [71].

2.2 Training
The training of neural networks refers to adapting the networks’ weights to achieve the
desired input-output functionality. In the supervised learning scheme, the networks
learn the desired relations using exemplary input-output pairs. In common non-spiking
artificial neural networks, this is often done by propagating the error terms from the
network’s output back to its inputs. Using automatic differentiation tools, the gradients
of the errors with respect to the network weights are used to optimize the connections
strengths of the network. Since spike trains are represented by Dirac pulse combs, and the
spiking neurons’ activation functions are modeled as step functions, the backpropagation
mechanism cannot be transferred directly to pulsed networks due to the non-existing
derivative of the spike neuron’s activation function. Therefore, adaptions to the known

15

2 Background

training schemes of neural networks or the development of new, often bio-plausible,
methods are being developed.

2.2.1 Biologically Plausible Learning Algorithms

The most prominent biologically plausible learning rule is Spike-Timing-Dependent
Plasticity (STDP), which is based on Hebb’s rule [72]. STDP is best described with
the well-known phrase “cells that fire together, wire together” [73]. If a postsynaptic
neuron fires shortly (e.g., ≈ 10 ms) after a presynaptic spike, its weight is strengthened
or weakened in the opposite case. This unsupervised learning rule uses information
that is local to the synapse and local in time to adapt the synaptic weight. Masquelier
and Thorpe showed the successful learning of visual features using STDP [74]. Later,
Masquelier et al. showed that a single unsupervised STDP trained LIF neuron is able
to recognize one or multiple repeating spike patterns in a noisy environment [75], [76].
In [77], Diehl et al. used an unsupervised STDP-trained network to classify digits in
images of 28x28 pixels of the MNIST dataset. Spike rates thereby coded the pixel values.
Kheradpisheh et al. applied the STDP learning rule to train a convolutional network [78].
They used Difference of Gaussians filters to convert the pixel values into spike events.
Often, in STDP learning-based networks, Winner-Takes-All (WTA) circuits are used to
support the learning process. In those circuits, lateral inhibitory connections between
neurons of one layer are generated. They inhibit all neighboring neurons whenever
the first neuron emits a postsynaptic spike. By doing so, the own connection to the
neuron sending the presynaptic spike is strengthened, while all other connections are
weakened. With that approach, neurons specialize more to specific inputs while having
a highly diverse response among many neurons. A variant of STDP, Spike-Driven
Synaptic Plasticity (SDSP) [79] adapts the synaptic weights of incoming spikes based on
the current membrane voltage. The weight is strengthened if the potential is above a
certain threshold during an incoming presynaptic spike; otherwise, it is weakened. At
the end of the training, the weights learned by this bi-stable method are either one
or zero (the minimum or maximum allowed weight, respectively), which enables an
efficient implementation in analog Very-Large-Scale Integration (VLSI) circuits or Field-
Programmable Gate Arrays (FPGAs) [79]. In [80], Kasabov et al. use STDP and SDSP
methods, for the training of Evolving Spiking Neural Networks (eSNNs) to recognize
patterns in spatio- and spectro-temporal signals. In supervised and reinforcement-based
learning settings, STDP can be modulated to match the desired behavior. In these
reward-modulated schemes, the teacher decides whether the closely emitted spikes were
beneficial for the overall goal [81], [82]. The weight update is then adapted accordingly.

2.2.2 Artificial Learning Algorithms

ReSuMe (Remote Supervised Method) [83], Chronotron [84] and SPAN (spike pattern
association neuron) [85] are supervised learning techniques and attempt to teach a neuron
to fire at exact desired times. All three models use metrics to compare the desired and
observed outputs following a presynaptic input. ReSuMe and SPAN are based on the

16

2.2 Training

Widrow-Hoff rule [86] to compute the weight adaption ∆w. The Chronotron uses the
adapted Victor-Purpora distance metric [87] to gain a piecewise differentiable function.
This function can subsequently be used for gradient descent methods. The distance
metric is a function describing the cost of transforming one spike train into the other.
As stated earlier, backpropagation cannot be transferred to spiking neural networks

due to the missing derivative of the activation function. Examples for adaptions are Lee
et al., who use the membrane potential as a differentiable signal and treat jumps of the
potential due to incoming spikes as noise [88]. With that, they trained a multilayered
fully connected spiking neural network to reach a performance of 98.88% on the MNIST
dataset. A similarly trained convolutional spiking neural network reached a higher
performance of 99.31% on the same dataset, which is comparable with but still inferior
to non-spiking variants.
A form of free-energy based reinforcement learning is shown in [89]. There, the free

energy of a Restricted Boltzmann Machine (RBM) is decreased by temporal difference
learning. The idea is explained in [90], [91] and was transferred to SNNs. Neftci et al.
present in [33] the adapted ”event-driven” contrastive divergence learning rule for RBMs
together with STDP as weight update rule.
The synaptic weights of SNNs can also be parameterized by training a non-spiking

network and transferring the weights to it. This learning method is called offline,
conversion, or transfer learning. By this, the well-known learning mechanisms of common
neural networks can be exploited while leveraging the power-efficient characteristics of
the spiking neurons. Often, the real-valued activations are thereby replaced by rate-
based coding (see Section 2.4). An example using this approach with a high achieved
performance on the MNIST dataset can be found in [92] and [93].
A tighter coupling between ANN and SNN training is given in tandem learning

approaches [35]. Here, the forward and backward paths during training are separated.
The forward path, which computes the output of the network, is conducted within the
SNN. This output forms the basis for the calculation of the training error. The backward
path, which provides the gradients needed for the weight updates, is performed in an
equivalent ANN. The weights are shared between both networks.

A comprehensive summary of supervised learning techniques developed until 2006 can
be found in [94]. Newer, also deep learning methods are summarized in [45].

2.2.3 Backpropagation

In recent works, using the well-known backpropagation technique gained traction within
the SNN research community. Backpropagation is used in standard ANNs as the
main approach to train neural networks. It became viable for the use in SNNs by the
introduction of surrogate gradients [46]–[48].
Backpropagation describes the network’s loss function computation with respect to

the connection weights. In a supervised learning approach, for example, the cost or
loss function L is minimized over a dataset of known input and target values {x, ŷ}.
Following the gradient descent algorithm, the network weights W have to be updated in
the opposite direction of the losses’ gradient to minimize the loss [1].

17

2 Background

The magnitude of this update is thereby scaled by the learning rate η:

wi,j ← wi,j − η∆wi,j . (2.9)

Using the chain rule

∆wi,j =
∂L

∂wi,j
=
∂L

∂yi

∂yi
∂ai

∂ai
∂wi,j

, (2.10)

the gradient of the loss with respect to the network weights W can be computed. With
that, the weight update ∆W is derived. The fraction ∂yi

∂ai
relates the layer’s output and

its activation, which corresponds to its activation function. Therefore, the activation
function needs to be differentiable to be used here.
The use of the chain rule in eq. (2.10) is called backpropagation in neural networks

since the gradient of the loss is backpropagated from the output towards the input of
the network. This solves the spatial credit assignment problem, which states which node
contributed to the final output to which extent [95].

Backpropagation Through Time

When the input to the network consists of temporal sequences and the network has got
stateful variables, the temporal credit assignment problem has to be solved additionally
[95]. The training algorithm has thus not only to decide which node contributed to the
final output, but also at which point in time.
Backpropagation Through Time (BPTT) is a temporal extension of the gradient-

based backpropagation algorithm, which solves the above-mentioned credit assignment
problems. It is used to train Recurrent Neural Networks (RNNs) [96]. The recurrent
network is unfolded in time to enable the backpropagation of the error through the
network and its past states. Accordingly, long temporal sequences result in humongous
networks comparable with the depth of deep neural networks. This introduces the
problem of vanishing and exploding gradients due to the multiplicative linkage of the
losses, gradients, and parameters by the chain rule [97], [98]. However, this problem
can be reduced by limiting the length of the temporal sequences, by closely monitoring
the backpropagated gradients, or by using specialized neuron models like the Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells. These specialized
cells allow an unaltered backpropagation of the error signal [99], [100].
The forward path through the network comprises the computation of the neurons’

activation values a(l)[t] and their outputs y(l)[t] for each layer l and point in time t:

y(l)[t] = f (l)
(

a(l)[t]
)

a(l)[t] = g(l)
(

y(l−1)[t],y(l)[t− 1],W(l,l−1),W(l,l)
)
.

(2.11)

A schematic overview of the computation graph is shown in Figure 2.4. The activation
function f l() can be any nonlinear function like the sigmoid function, tanh, or a step

18

2.2 Training

a(2)[0] a(2)[1] a(2)[2] a(2)[n]

y(1)[0] y(1)[1] y(1)[2] y(1)[n]

a(1)[0] a(1)[1] a(1)[2] a(1)[n]

x[0] x[1] x[2] x[n]
W(0,1)

f()

W(1,2)

W(1,1)

Figure 2.4: Schematic computational flow in recurrent networks. The recurrent
network is unrolled in time. At every time step, the input to the layer x[t] and
the output of the previous time step y[t− 1] are used to compute the current
layer’s activation.

or delta function, as in the case of spiking networks. The activation value is computed
by relating the layer’s previous output y(l)[t− 1] and the output of the preceding layer
y(l−1)[t] with the respective weight matrices W. In most cases, the relation g(l)() is a
weighted summation, but it can also take on more complex functions. In the first layer,
the input x[t] is used instead of y(l−1)[t].

The loss for the input-target value pair x, y with the network output yNt is calculated
by the loss function C(y, yNt). The loss can be computed for each time step individually
when a distinct ground-truth value is given for each sample. Alternatively, the network’s
output at the last time steps is used for the calculation for the whole sequence. The
derived error is subsequently backpropagated through the unrolled network.

Pseudo Gradients

The activation function of a LIF neuron corresponds to a step function with an undefined
derivative at the time of the step itself. Accordingly, the chain rule in eq. (2.10) is not
applicable due to this the non-existent derivative of the relation between activation and
output value ∂yi

∂ai
. Backpropagation therefore cannot be utilized trivially [49].

However, the introduction of surrogate gradients makes determining the weight updates
possible. Proposed surrogate gradients alleviate the discontinuous true gradient based on
the ratio between the neuron’s current membrane voltage v and the threshold voltage vth.
The two most frequently used functions show linear [46], [47] or S-shaped [48] relations:

Linear : ψlin = max

(
1−

∣∣∣∣ vvth
∣∣∣∣ , 0)

Sigmoid : ψsig = a S

(
a
v

vth

)
S

(
−a v

vth

)
with S(x) =

1

1 + e−x

(2.12)

19

2 Background

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

v/vth

ψ

Linear
Sigmoid
True

Figure 2.5: Surrogate gradients used for the training of SNNs. The gradient of the
sigmoid activation function and the linear pseudo gradient can be used as a
smooth out surrogate gradient of the non-differentiable step function.

as shown in Figure 2.5. For the sigmoid function, a is a factor, which can be used to
control the steepness of the gradient around v

vth
≈ 0. The gradient does thus not depend

on the spike event itself but on the relation between the membrane potential and the
threshold voltage.

2.3 Neuromorphic Hardware

Neuromorphic hardware is specifically designed to leverage the distributed, event-based
operations of SNNs. They often circumvent the von Neumann bottleneck of classical
digital network designs by architectures using in-memory computing. Other realizations
implement the network using analog structures without digital processing elements as
main compute units.

Many currently available neuromorphic processing chips provide scalable multipurpose
systems primarily for research purposes [21], [101], [102]. With accelerators like these,
arbitrarily large networks can be realized without the hardware being the limiting factor.
Projects like the Human Brain Project [103] or the Brain Initiative [104] even intend
to scale these accelerators up to systems which are capable of simulating the activity
of a human brain with hundreds of millions of neurons. Other works, in contrast,
propose specialized circuits, which focus heavily on a high efficiency [105], [106]. The
third category of accelerators comprises approaches using FPGAs, which thus do not
necessitate the production of specialized Application-Specific Integrated Circuits (ASICs).
Table 2.1 lists an overview of existing neuromorphic accelerators. Especially in the second
category, many more approaches and demonstrators exist, highlighting new architectures
and circuits, which improve specific details within the area of neuromorphic computing.
There are a multitude of reviews, which examine certain aspects of neuromorphic

hardware. Most of them thereby base their analyses on the general-purpose accelerators.
As one of the first reviews, [107] recapitulates the first generations of neuromorphic
hardware regarding their large-scale application. Further reviews examine the topic of
neuromorphic computing in a broader way, providing also the temporal context beginning
with early developments in the 1980s [108], [109]. The authors of [110] and [32] focus

20

2.3 Neuromorphic Hardware

their review on the low-power signal processing capabilities of the hardware and on
the communication involved between the neurons, respectively. More recent reviews
reflect the state of the art and identify the current trends in this rapidly developing field
[111]–[113].

2.3.1 Software Simulation Environments

Before bringing SNNs to hardware accelerators, their time-dependent behavior has to
be modeled. The four most known tools for this purpose, NEURON [114], GENESIS
[115], Brian 2 [116] and NEST [117], are evaluated in [118]. Due to its good performance
at large networks and its scalability to computer clusters, the NEST simulator is used
in the Neurorobotics platform [119] of the Human Brain Project. Brian 2 convinces
through simple operation, high efficiency in terms of code length and a comprehensive
documentation. NEURON and GENESIS are the simulator, which are most used based on
their citations. However, they are primarily used to precisely model biological behaviors.
Many of the software frameworks have a standardized software interface, PyNN [120],
and feature built-in interfaces for the use of neuromorphic hardware accelerators.
Lately, also, the automatic differentiation frameworks TensorFlow [121] and PyTorch

[122] gained traction within the community. While they are primarily used for the training
of second-generation networks, advances in pseudo gradient-based learning schemes in
SNNs made them suitable for the simulation of third generation networks, too.

2.3.2 Multipurpose Hardware Accelerators

HICANN/BrainScaleS

High Input Count Analog Neural Networks (HICANNs) are the chiplet building blocks
of the hierarchical wafer-scale neuromorphic system BrainScaleS [123]. Its architecture
and communication schemes are optimized for large network systems.

HICANNs implement Adaptive Exponential Integrate-and-Fire (AEIF) neurons [124],
which can be reduced to the standard integrate-and-fire model if necessary. The timescale
of the implementation is quite fast, resulting in a 103 to 105 acceleration of the biological
equivalent circuits. The time constants of the neurons are tuned by adjusting the
capacitance of the membrane and the leakage conductance. The small time constants
result from small electrical capacities, which in turn have small physical dimensions. As
the membranes are implemented as Metal-Insulator-Metal (MIM)-capacitors, they do
not occupy any additional surface area.
BrainScaleS’ neurons are implemented in Analog Network Cores. Each core consists

of 512 membranes (which can be combined to neurons), two blocks of synapse arrays
and synaptic drivers. The synaptic drivers convert the digital address events to analog
currents using 4-bit Digital-to-Analog Converters (DACs). At maximum, a neuron can
be fed with over 14 k synapses.
One wafer houses a total of 352 HICANN chiplets resulting in up to 180k neurons to

be simulated. BrainScaleS’ reference system consists of 20 wafers in total.

21

2 Background

T
ab

le
2.

1:
N

eu
ro

m
or

ph
ic

ha
rd

w
ar

e
so

lu
ti

on
s.

N
am

e
Y

ea
r

N
eu

ro
ns

Sy
na

ps
es

M
od

el
s

D
om

ai
n

P
ro

ce
ss

D
ie

si
ze

[n
m
]

[m
m

2
]

H
um

an
br
ai
n

10
1
1

10
1
5

Va
rio

us
El
ec
tr
oc
he

m
ic
al

H
iC

A
N
N

[1
23

]
20

10
51

2
10

0k
A
EI

F
M
ix
ed

-s
ig
na

l
18

0
55

H
iC

A
N
N
-D

LS
[1
25

]
20

16
51

2
13

1k
LI
F

M
ix
ed

-s
ig
na

l
65

32
Sp

iN
N
ak

er
[1
26

]
20

14
16

k
16

M
A
rb
itr

ar
y

D
ig
ita

l(
so
ftw

ar
e)

13
0

10
0

Sp
iN

N
ak

er
2

[1
02

]
20

19
A
rb
itr

ar
y

D
ig
ita

l(
so
ftw

ar
e)

22
N
eu

ro
G
rid

[1
27

]
20

14
64

k
M
ix
ed

-S
ig
na

l
18

0
16

8
B
ra
in
dr
op

[1
28

]
20

18
40

96
65

k
M
ix
ed

-s
ig
na

l
28

0.
65

Tr
ue

N
or
th

[1
01

]
20

14
1M

25
6M

LI
F

D
ig
ita

l
28

43
0

D
Y
N
A
P-

SE
L

[1
29

]
20

17
10

88
78

k
LI
F

M
ix
ed

-s
ig
na

l
18

0/
28

7.
28

Lo
ih
i

[2
1]

20
18

13
1k

13
0M

LI
F

D
ig
ita

l
14

60

D
ar
w
in

[1
30

]
20

16
20

48
4M

LI
F

D
ig
ita

l
18

0
25

O
D
IN

[1
31

]
20

19
25

6
64

k
LI
F/

Iz
hi
ke
vi
ch

D
ig
ita

l
28

0.
08

6∗
R
ol
ls

[1
32

]
20

15
25

6
A
EI

F
M
ix
ed

-S
ig
na

l
18

0
51

.4
B

uh
le

r2
01

7
[1
33

]
20

17
51

2
LI
F

M
ix
ed

-S
ig
na

l
40

C
he

n2
01

8
[1
34

]
20

18
40

96
1M

LI
F

D
ig
ita

l
10

1.
72

C
ho

20
19

[1
35

]
20

19
20

48
14

9k
LI
F

D
ig
ita

l
40

2.
56

Pa
rk

20
19

[1
36

]
20

19
41

0
20

0k
Si
gm

oi
d

D
ig
ita

l
65

10
T
ia
nj
ic

[1
37

]
20

19
40

k
10

M
hy

br
id

D
ig
ita

l
28

14
.5

µ
B
ra
in

[1
05

]
20

21
33

6
20

k
LI
F

D
ig
ita

l
40

2.
82

K
ua

ng
20

21
[1
06

]
20

21
10

24
1M

LI
F

D
ig
ita

l
28

3.
66

K
ua

ng
20

21
[1
38

]
20

21
64

k
64

M
LI
F

D
ig
ita

l
65

10
7

Zh
on

g2
02

1
[1
39

]
20

21
10

24
25

6k
LI
F

D
ig
ita

l
28

1.
41

*W
it
ho

ut
pe

ri
ph

er
al
s
an

d
pa

ds
.

22

2.3 Neuromorphic Hardware

The second generation of the HICANN chiplet is the High Input Count Analog
Neural Network with Digital Learning System (HICANN-DLS) [125]. It features newer
manufacturing processes, neurons and synapses with higher bit-precision, and onboard
learning capabilities.

SpiNNaker and SpiNNaker 2

SpiNNaker is an ARM microcontroller-based multicore platform with the goal to simulate
large-scale networks up to the size of the human brain [126]. A SpiNNaker machine can
incorporate an arbitrary number of processing nodes, making it possible to be scaled to
any desirable size. Each processing node in this architecture consists of 18 cores within
one package with local memory, shared memory, and a packet router, which controls
the communication within the node and between nodes. The processors in the nodes
are freely programmable and can simulate a few hundred neurons, depending on the
complexity of the neural model, the synaptic model, and the learning rule. Depending
on the application, many of those nodes can be operated in parallel, resulting in a large
simulation capability.

SpiNNaker’s successor, SpiNNaker 2 [102], aims to increase the simulation capacity by a
factor greater than 50 with numerous improvements over the older architecture and a much
smaller production technology (130 nm versus 22 nm). The architectural improvements
include hardware-accelerated processing and adaptive voltage and frequency scaling
depending on the current workload of the nodes.

Braindrop and Neurogrid

Braindrop [128] is a mixed-signal processor, primarily made for the simulation of Neural
Engineering Framework (NEF) [140] networks. The software framework features a
translation of the abstract formulation of e.g. differential equations onto the hardware.
The authors claim that they thereby leverage – and are even reliant on – the mismatch
of the analog circuits for the needed neuronal variability in the network. Braindrop
implements 4096 neurons and a weight memory of 64 KB, which is designed to fit 16
8-bit synapses per neuron.
The power consumption of large neuromorphic systems is largely influenced by the

digital communication. The authors therefore focus on sparsifying the communication
schemes in space and time (sparse encoding and accumulative thinning). The communi-
cation is implemented digitally, the neurons themselves are analog implementations. The
neurons are designed to work in the subthreshold region. Due to the mixed-signal design
and the specific communication scheme, Braindrop shows to have a much higher neuronal
density and a vastly lower energy consumption per synaptic operation compared to the
fully digital architectures of its peers [128].
Braindrop is the successor of the large-scale system Neurogrid [127]. Braindrop itself

will be a building block of the planned Brainstorm chip, which is designed for realizations
containing millions of neurons in a multicore system [128].

23

2 Background

TrueNorth

TrueNorth [101] is a fully digital platform, build for the simulation of one million neurons.
Each chip contains 4,096 neurosynaptic cores. The cores hold a self-contained neural
network comprising 256 LIF neurons with 256 input lines, 256 output lines, and a 256×256
matrix to specify the synaptic connections.
In total, a single TrueNorth chip can house one million neurons with 256 million

synapses. To enable the simulation of larger networks, multiple chips can be connected
to larger clusters.

DYNAP-SEL

The DYNAP-SEL chip is a mixed-signal processor with a scalable routing architecture,
which makes it possible to combine multiple chips [129]. Each chip comprises four neural
processing cores and one core, which features additional plastic synapses. Each of the
non-plastic cores houses 256 neurons and 64 4-bit synapses per included neuron. The
additional core has got 64 neurons with 128 plastic synapses with on-chip learning and
64 programmable synapses per neuron.

This unique architecture enables the simulation of large networks with efficient on-chip
learning, structural plasticity, or biological evidence.

Loihi

The Loihi chip [21] implements 128 digital neuromorphic cores. Each core can simulate
1,024 neurons, which share the same fan-in connections, fan-out connections, and config-
urations. Ten memory blocks contain the spike traces for learning, synapse memories
and mappings, and the neuronal state variables. Loihi implements the LIF model with
current-based synapses. The on-chip learning scheme, however, is freely programmable
using 4-bit microcode.
Whenever spikes are generated by a neuromorphic core, the events are propagated

through the grid structure of the chip. Synchronizing messages are used to ensure that
all events have been processed before entering the next global time step. Apart from this
synchronization, the cores operate asynchronously.

Similar to SpiNNaker, the Loihi architecture is scalable. Therefore, multiple chips can
be combined to form clusters. The largest system based on Loihi contains 768 chips with
a total of 98,304 cores and 100M neurons.
A successor to Loihi, Loihi 2, has been brought up recently [141], but information

about the underlying architecture has not been published yet.

2.3.3 Specialized Circuits

Apart from the popular general-purpose neuromorphic hardware solutions, there exists a
variety other of approaches.
µBrain [105] is an interesting example of specialized, purpose-built neuromorphic

hardware. It is a fully digital layer-based architecture, which uses overflowing digital

24

2.3 Neuromorphic Hardware

accumulators as neurons and implements fixed size integer synapse weights. The archi-
tecture uses feedforward and recurrent connections between the layers. The concrete
implementation of the µBrain architecture is synthesized, thus fixing most of the network
directly into silicon. This includes the network topology, connectivity, and the bit preci-
sion of the individual calculations. Only neuron parameters and synaptic weights are
programmable during runtime. The authors showcase µBrain’s design with a 336-neuron
network realization, though arbitrary architectures are possible. The core concept of the
architecture is the spike arbiter and the delay cell, which make the fully asynchronous
operation possible. The arbiter resolves situations in which more than one spike arrive
at the layer input at the same time. As a result, spikes are delayed by several ns (in
contrast to the normal operation time constants of µs to ms).

The chip presented in [134] is an example for the design of accelerating networks with
ultralow power consumption. This is reached by using a 10 nm Fin Field-Effect Transistor
(FinFET) manufacturing process and architectural and algorithmic approaches like sparse
neuronal connections and stochastic dropping of events. Buhler et al. demonstrate a
chip, which achieves the same goal using analog neuron implementations [133].

2.3.4 FPGA-based Accelerators

FPGAs provide the possibility to accelerate neuromorphic processes using off-the-shelf
hardware. Works like [142]–[146] thus propose certain architectures, which exploit the
properties of FPGAs. DeepSouth [146], as an example, is a scalable architecture, which
has been shown to be able to simulate billions of LIF neurons on the chosen FPGA
board. Depending on the temporal simulation speed and available memory, the networks
could be even larger. However, the energy efficiency FPGAs is much worse compared
with ASICs. The flexibility, which is introduced by the programmable hardware, is thus
accompanied by a higher energy consumption.

2.3.5 Summary

There exists a variety of different approaches, which enable the efficient execution of
SNNs on specialized hardware. The solutions comprising hardware or software-based
many-core systems, analog compute elements, or approaches using off-the-shelf compute
hardware, for example, thereby pursue vastly different goals with the inherent advantages
and disadvantages of their specific implementations.

The many-core systems like Loihi [21] and TrueNorth [101] implement digital processors,
which are able to compute huge networks efficiently, but have limited flexibility in terms
of realizable neuron and synapse models. SpiNNaker [126] is highly flexible because the
neurons and synapses are computed entirely in software. This, however, comes at the
cost of a higher energy consumption. Analog realizations can mimic biological behavior
at speeds, that are magnitudes higher than their biological models. They are, however,
influenced by the ambient temperature, process variations, and noise.
A universal solution, which fits all possible applications, thus does not exist. In this

work, we will examine networks for embedded applications, which comprise a few hundred

25

2 Background

neurons. Most of the aforementioned accelerators, however, are designed for the simulation
of large-scale networks. They are, therefore, suited to be used during prototyping, but for
the final deployment in products, these accelerators are not appropriate due to their sheer
physical size. Additionally, much of the overhead, which is only used for the simulation
of large networks (communication buses, routers, schedulers), is not needed.

2.4 Review of Encoding Schemes

The first challenge when utilizing SNNs is the representation of information. Since spikes
are the main information carrier in SNNs, incoming data has to be encoded for the
network to be processed.
A look at the biology already provides the intuition that there exist different coding

schemes, which are specialized for the type of data they are used for. Photo receptors in
our eyes encode light intensities into spike patterns, microscopic hair cells in the inner ear
transform changes in the air pressure into frequency-selective spike trains, and our nose
has got chemical receptors, which emit spikes as soon as specific molecules are perceived
within the air. The underlying question, however, is how these spike trains exactly look
like, and how they represent specific information.1

2.4.1 Taxonomy

Coding schemes can be categorized into two clusters: rate codes and temporal codes [63].
The main differentiation between those two schemes is the distinction whether exact
spike times and the order of spikes is crucial for the information to be transmitted. In
rate codes, information is embedded into the instantaneous or averaged spike rate of a
single neuron or a larger population. Temporal codes, in contrast, rely on the precise
timing of single spikes. The timing can be interpreted in relation to a fixed reference
time, in intervals between the spikes, or by the order of arrival of different spikes. While
a slight variation of a spike’s timing would change nothing in a rate-based coding, a
temporal coded information could be completely altered.
Rate and temporal codes can be further broken down into several distinct coding

schemes, as shown in Figure 2.6. The classification of the individual schemes is often
ambiguous. The distinctive definition chosen in this case is simple: if the exact timing or
the order of spike arrivals is crucial for the transmitted information, a temporal code
is given; otherwise a rate code is present. Often a third category, population codes, is
introduced. However, this does only introduce further ambiguity since this category does
not include any temporal characteristics. The distinctive property is, whether one or
multiple neurons are needed to represent the desired code. Because this can be the case
in both, temporal and rate codes, the category is omitted here.
In the neurobiological research area, there was a broad consensus for a long time

that rate codes are mainly used in biological systems [147]. Further research, however,
suggested that precise spike times are used to encode the perceptions of the sensory organs.

1Parts of the following review have been published in [50].

26

2.4 Review of Encoding Schemes

Rate Coding

Count Rate Density Rate Population Rate

Temporal Coding

Temporal
Contrast

TBR SF MW

Latency/ISI

Burst

Correlation
& Synchrony

SDR Binary (par.)
Global

Referenced

ROC TTFS Phase Binary (seq.)

Filter
& Optimizer

HSA BSA GAGamma

Figure 2.6: Taxonomy of rate and temporal coding techniques. Rate codes are
characterized by the averaged spike activity over a temporal interval, population
of neurons, or multiple executions of the same experiment. Temporal codes use
the precise timing of spikes to encode information. (Figure previously published
in [50])

The most well-known experiment which underpins this theory demonstrates, that the
human visual system needs less than 150 ms to process new stimuli [36]. In the experiment,
images were presented to the participants for 20 ms. The decision whether these images
contained animals was already present after these 150 ms. Accordingly, a rate code which
describes the image on the retina is highly improbable. The author of this experiment,
Thorpe, was with that able to prove his earlier proposition about the relevance of precise
spike times in biological systems [148]. Later, more and more publications support these
findings in visual [38], [149]–[151], audio [152], tactile [37], and olfactory systems [153],
[154]. The latter experiment targeting the olfactory system of mice showed an additional
insight into biological coding: mice were able to discriminate between simple odors within
a time of 200 ms; when the odors were similar, the discrimination took 100 ms longer.
This suggests an integration of information over time [154].

Inspired by the biological examples, the assumption is evident that there exists a
variety of coding schemes which we can adapt for our artificial applications. Though,
depending on the application and the type of the input data, some coding schemes might
be more suited than others. Networks which have to deal with fast changing inputs
and rely on fast reactions will most probably not use rate-based coding schemes. For
networks analyzing slowly varying data of high dimensionality, on the other hand, rate
codes might come in handy. Unfortunately, there is no universal answer which coding
scheme performs best yet.

27

2 Background

Time

TC

TTFS

Count

Digital 0100 0001 0011 0010 0110

In
te
ns
ity

Time

Figure 2.7: Exemplary coding schemes for a sequence of images over time. The
intensity-time plot indicates the changes of the pixel value in the blue square as
a continuous function. The dashed lines indicate the time instances at which
the images have reached the color value. Digital, count, and TTFS spikes in
correlation to the local minima and maxima in the intensity curve. The TC
emits spikes if the continuous intensity change exceeds a certain threshold.
(Figure previously published in [50])

Figure 2.7 illustrates the fact, that data can be encoded using different schemes. In the
example, a sequence of images is encoded into spikes. In the digital domain, the brightness
of each pixel in every frame is represented by a digital number. The rate-based count code
translates the intensity in the number of spikes which are emitted per frame. A larger
number of spikes can for example represent a higher brightness at the respective pixel.
Time-to-First-Spike (TTFS) is a temporal code in which only one spike is emitted per
pixel per frame. The exact timing of the spike thereby encodes the brightness information.
Using the Temporal Contrast (TC) scheme, we encode the continuous change of light
intensity over time instead of in fixed frames. In this case, positive or negative valued
spikes are emitted as soon as a relative intensity change surpasses a threshold. Specialized
cameras have been developed, which leverage this event-based type of encoding [155].

2.4.2 Rate Coding

Rate codes can be further divided into three subcategories: count rate codes, density rate
codes, and population rate codes. Three schematic visualizations of the codes applied to
an arbitrary input signal are depicted in Figure 2.8. The definitions are based on the
work of Gerstner, Kistler, Naud, and Paninski on neuronal dynamics [63].

Count rate – average over time

Count rate codes average the spike activity of a single neuron Nspikes over a time interval
∆t

r(t) =
Nspikes

∆t
. (2.13)

28

2.4 Review of Encoding Schemes

Stimulus

(a) Stimulus

Run 1

Run 2

Run 3

Run 4

(b) Density rate coding

Neuron 1

(c) Count rate coding

Neuron 1

Neuron 2

Neuron 3

Neuron 4

(d) Population rate coding

Figure 2.8: Visualization of rate coding techniques. The exemplary stimulus is a wide
pulse (a). The dashed line in the encoding visualizations (b-d) indicates the
rising and falling edge of the stimulus. (Figure previously published in [50])

This mean firing rate is often also referred to as frequency coding. This type of code can
describe any value with a finite accuracy. For the representation of sequences this coding
scheme is only viable for slowly varying values as many spikes are required to encode the
instantaneous value of the signal.

The timing of the spikes in count rate codes can be exact or randomly distributed. In
the former case, the spike times are evenly spaced, determined by the number of spikes in
the given interval. The latter, randomly distributed, case is often modeled by a Poisson
distribution. The error introduced by the encoding of continuous values by a discrete
number of spikes decreases with the number of spikes involved in the coding 1/Nspikes.
With Poisson distributed spike times, however, this error is 1/

√
Nspikes due to the varying

number of spikes in a given interval [156].
The activation value of Rectified Linear Unit (ReLU)-activated artificial neurons can

be trivially encoded by count rate codes. Therefore, many SNNs based on conversion
methods [92] use this kind of coding.

Biological evidence of this type of coding has for example been shown by Adrian and
Zotterman. They observed different spike count rates when stretching a frog muscle with
different forces [157].

Density rate – average over multiple runs

The density rate can be calculated by recording the neural activity of a neuron over
multiple trials. The rate

p(t) =
1

∆t

Nspikes,K(t; t+∆t)

K
(2.14)

can then be visualized in a Peri-Stimulus-Time Histogram (PSTH). Therefore, the number
of spikes Nspikes,K is averaged over K runs of the same network. This coding scheme is

29

2 Background

by no means biologically plausible. Gerstner et al. illustrate this fact with an example:
Imagine a frog, which attempts to catch a fly. It will certainly not base its movements
on multiple computations over the exact same trajectory of the fly [63]. Yet, in artificial
applications or when evaluating neuronal activity, this code can be beneficial.

Population rate – average over multiple neurons

In population rate codes, the activities of multiple neurons are averaged in a given time
interval [t; t+∆t]:

A(t) =
1

∆t

Nspikes(t; t+∆t)

N
. (2.15)

Here, the number of spikes of N neurons is averaged.
Population rate codes are heavily used within the NEF [140]. There, the rich diversity

of the spike responses of different neurons in the populations leads to unique and
distinguishable spike patterns of the whole population.

2.4.3 Temporal Coding

Temporal codes comprise all coding schemes, which rely on the precise timing of spikes
or their distinct order of arrival. Thus, small variations already alter the encoded
information. The schemes included in the temporal coding category are various: globally
referenced codes encode information into relative intervals with respect to a fixed reference,
periodical signal, or oscillation; TC codes represent the signal’s derivative; in Interspike
Interval (ISI) codes, the time interval between spikes is the main information carrier,
while correlation codes focus on the simultaneous activity of neurons; and filter and
optimizer-based approaches convolve the input signal with kernels to obtain the spike
train representations. To illustrate this variety, Figure 2.9 shows exemplary temporal
coded spike trains of an arbitrary input signal.

Global referenced codes

Globally referenced codes encode information into the relative interval between spikes
and a stationary or periodic reference. The data to be encoded is therefore processed
in packets between two successive reference points. Using the TTFS coding scheme,
this relative interval is proportional to the represented signal amplitude. The interval
between the spike and the reference point ∆t can, for example, be the inverse of the
amplitude a to be encoded ∆t = 1/a, or a linear relation ∆t = 1− a. In these cases, a
early spike time – meaning a short interval between reference and spike – corresponds to
a high amplitude value. Naturally, this can of course also be defined inversely. TTFS is
in some cases also named latency coding [38], though, this naming is less widely spread.

In phase-coded spike trains, the information is encoded with respect to the phase of a
reference oscillation, rather than a single point in time [39], [40].

30

2.4 Review of Encoding Schemes

Stimulus

(a) Stimulus

Neuron 1

Neuron 2

Neuron 3

Neuron 4

∆t1

∆t3

(b) TTFS coding

Neuron 1

Neuron 2

Neuron 3

Refoszi

∆t1

(c) Phase coding

Neuron 1

Neuron 2

Neuron 3

Neuron 4

1

2

3

4

(d) ROC coding

Neuron 1

Neuron 2

Neuron 3

Neuron 4

∆t1 ∆t2∆t3

(e) ISI coding

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Time window

1 0

(f) Correlation and synchrony coding

Presence

Timing

1 0 1 1 0

(g) Binary coding

Stimulus

BSA

TC

(h) BSA and TC

Figure 2.9: Visualization of temporal coding techniques. The wide pulse stimulus in
(a) is used for the visualizations in (b-g). The dashed line indicates the rising
and falling edge of the stimulus. ∆t describes the latency between the reference
point and the spike. In (d), the order of spikes is numbered on the right. The
stimulus for the coding visualization in (h) is the sinusoidal wave, which is
directly given in the same sub figure. (Figure previously published in [50])

31

2 Background

Rank-Order Coding (ROC) uses the order of the spikes emitted by different neurons
as the carrier of information [42], [43]. The exact spike times are thereby irrelevant
as long as the spike order is maintained. The spikes are therefore often arranged in
fixed time steps, resulting in equidistant discrete spike times. Because the absolute
amplitude information gets lost, this scheme implements normalization properties. An
exact reconstruction of the input signal is thus not possible.
The last coding scheme within the globally referenced codes are sequential binary

codes. These codes directly implement the ones and zeros of a bit stream. For that, every
bit is assigned to a time interval and the generated spikes are related to these intervals.
Within the encoding scheme, two interpretations of the encoded bits are possible: (1) the
ones and zeros can be encoded into the presence and absence of spikes within an interval
[158], or (2) into the timing of the spikes within the interval [159]. In the second case, the
interval is split into halves. Accordingly, a spike can either be present in the first or in
the second half of the interval, which corresponds to the encoded bit value. Accordingly,
the number of emitted spikes stays constant, independent of the encoded bit pattern.

In most globally referenced codes, early spikes represent important information or large
signal amplitudes, respectively. The network can thus base its activity on the first spikes,
neglecting the information provided by later, less important spikes. This introduces a
speed-accuracy tradeoff, as the network is able to respond before the whole input pattern
has been presented to its neurons [42].

Temporal contrast

Coding schemes belonging to the temporal contrast category produce spikes based on
the temporal changes of the input signal [160]. The category can be broken down to
three algorithms: step-forward (SF), moving-window (MW), and threshold-based
representation (TBR) [161]. All three algorithms emit separate spikes for positive
and negative changes of the signal amplitude. However, the rules defining the generation
of the spikes are different.
In SF, the present signal value is compared to a moving baseline. If the difference

exceeds a predefined threshold, a spike is emitted. The baseline is then updated to the
current signal value and the next value is compared. The threshold is thus the only
tunable parameter in this case. In MW, the calculation of the baseline is based on the
signal’s mean value within a moving window, which adds the size of the window as a
further parameter.
TBR only takes the difference between two succeeding signal values into account. In

each time step, the difference is compared to a threshold, which is based on the signal’s
mean value, standard deviation, and an adjustable factor. Accordingly, the characteristics
of the whole sequence are used to encode the signal. This also means, that future signal
values, which have not been presented to the network, influence the encoding.

32

2.4 Review of Encoding Schemes

Inter-spike interval coding

Similar to TTFS, ISI codes are also sometimes named latency codes. However, the
latency is here defined as the relative interval between different spikes of a neuron group,
not to a global reference [162].

Correlation and synchrony

The synchronous firing of neurons within a population is the primary information carrier
of correlation and synchrony codes. Synchrony is thereby given if the ISI between
the neuronal activity within the population is relatively short [63]. The decisive factor is
which of the neurons is active at the same time. Sparse Distributed Representations
(SDRs) [163], [164] also fall into this category. In SDRs a fixed subset of neurons within
the population is active at any point in time. Using this scheme, a virtually infinite
number of patterns can be represented by a population [165]. If only one single neuron
is active at any time, the scheme is also called amplitude coding. If, for example, a
continuous signal is encoded, each neuron within the population represents a certain
amplitude range. If a neuron is active, the current signal amplitude falls in the respective
range.

Parallel binary codes assign bit representations of larger words to specific neurons.
The synchronous firing of a population of these neurons within a time interval can be
interpreted as the ones and zeros of the binary represented word. Accordingly, the
whole word is represented at once by the synchronous presence and absence of spikes.
In contrast, sequential binary codes, as introduced earlier, encode bits into a stream of
spikes.

Filter and optimizer-based approaches

To identify a system, a standard approach is to measure the system’s response to known
inputs and to derive a mathematical relation between these inputs and outputs. The
characteristics of a neuron or a population of neurons can, for example, be determined
by measuring the spike responses to arbitrary analog input signals. Ben’s Spiker
Algorithm (BSA) [166] and its predecessor Hough Spiker Algorithm (HSA) [167]
use this approach to encode analog signals into spikes. There, the input signal is
convoluted with an encoding filter and if the convolution exceeds a predefined threshold,
a spike is generated.

In the GaGamma scheme, the encoding process is interpreted as a data compression
task with prior knowledge [168]. The task is to maximize to transmitted information
while minimizing the spike density. This optimization problem is supported by prior
knowledge of the signal’s characteristics.

33

3 Signal Encoding

In chapters 5 and 6, two different applications are examined in which we leverage the
temporal characteristics of SNNs: keyword recognition of spoken words and radar-based
hand gesture recognition. Both experiments comprise the classification of data sequences.
However, the sequences have differing temporal and spatial characteristics and thus
require the input data streams to be encoded differently. In this chapter, the encoding
schemes used in the experiments are presented.1 The implemented encoding schemes are
separated in streaming and frame-based approaches and are evaluated in separate sections.
In the last section of this chapter, we present an encoding scheme that uses resonating
neurons to transform input signals with sinusoidal components into spatio-temporal spike
trains. This scheme is part of the stream-based encoding schemes but it is introduced in
a separate section.

3.1 Introduction
In general, there is no broad consensus about how to encode information to be processed
by SNNs. While rate codings or TTFS are often used in image processing [78], [92],
[93], BSA and TC are used for the processing of data streams [160], [169]. However, the
decision for an encoding scheme is always dependent on prior knowledge about the data
to be encoded.

The data sequences considered in this work consist of one-, two-, or three-dimensional
features, which vary over time as shown in Figure 3.1:

• 1-dimensional vectors consisting of one scalar signal value per time step,

• 2-dimensional matrices consisting of a one-dimensional feature vector per time step,
and

• 3-dimensional tensors consisting of a two-dimensional matrix per time step.

To decide on specific encoding schemes for the above-mentioned sequence types, the
general characteristics need to be reflected. Although all three types mentioned above
involve sequence processing, they may benefit from disparate encoding schemes. In the
applications examined in this work, the 1-dimensional vectors contain fast-changing signals
with high sampling rates. The latter two cases, in contrast, combine the information of
several time steps into feature vectors and feature maps. Accordingly, they are updated
far less often. During a fixed time interval, the 1-dimensional signal contains thus much
more sample points than the more-dimensional cases. Therefore, it is reasonable to

1Some of the approaches have already been published in [51], [52], [55].

35

3 Signal Encoding

1D - Scalars

2D - Feature vectors

3D - Feature maps

t

t

t

Figure 3.1: Considered data sequence formats. The input sequences in examined
applications in this work consist of temporally varying scalars, feature vectors,
and feature maps.

encode the first, 1-dimensional signal as a stream and the multidimensional sequences in
a frame-based format in the present applications.
In the following, we, therefore, examine different temporal encoding approaches for

stream and frame-based sequence processing. Rate-based encoding schemes are not
considered in this work because they do not fully leverage the temporal potentials of
SNNs. Although rate-based SNNs have shown to reach similar performances compared
with ANNs at lower energy consumption levels [19]–[23], they use far more spikes to
encode information than networks using temporal encoding schemes. A higher network
activity results in higher dynamic power consumption. Davidson and Furber argue in
their comparative study of ANNs and SNNs in terms of digital hardware properties: “The
path towards truly mould-breaking neurally-inspired computation for artificial systems
should focus on information encoding as the way forward” [23].

3.2 Frame-based Encoding

The frames in our applications consist of characteristic one- or two-dimensional feature
maps. Although the frames are parts of sequences, they are converted without considera-
tion of their predecessors or successors, but only based on the information provided by

36

3.2 Frame-based Encoding

the frames themselves. The temporal changes are to be detected and evaluated by the
connected SNN.
Due to the slow update frequency of the feature maps and the short length of the

sequences, encoding schemes within the categories Temporal Contrast and Filter &
Optimizer are not apt to be used in this case. These schemes are more suited for encoding
high-frequency data streams with a high temporal variance. The remaining encoding
schemes given in Figure 2.6 are examined in the following.

3.2.1 Correlation and Synchrony

Codes based on correlation and synchrony encode information in the concurrent spiking
of groups of neurons. Therefore, the encoding of large structures like images requires
even larger populations of neurons, depending on the accuracy of the brightness value to
be encoded per pixel.

A sparse activation is given when only a few neurons are active within the population at
any point in time [163]. The advantage of such sparse codes in SDRs is the high robustness
against noise. If only a small subset of the population encodes the present feature, the
chances for overlapping representations are negligible. Accordingly, the probability for
a false activation in the preceding layer is low [165]. However, the populations need
to be sufficiently large to leverage these advantages. With two active neurons within
a population of 15 neurons, 15!

(15−2) 2! = 105 unique patterns (feature states) can be
represented. But if the state of only one neuron is flipped, an entirely different value is
encoded. With more active neurons, the size of the population also has to be increased
to ensure the sparseness of the activations. This coding scheme ends up necessitating
numerous neurons per feature, which contradicts the initial objective of finding an efficient
encoding scheme.

3.2.2 Globally Referenced

The common reference point given by the presentation of a new frame renders globally
referenced codes, an eligible encoding scheme for one- and multidimensional feature
maps. The implementation of globally referenced encoding schemes expands a single
frame to multiple time steps. In both considered schemes, TTFS and ROC, each neuron
representing a single feature spikes at most once per frame. In both cases, the spikes
representing the most relevant features are generated first, while spikes featuring less
important information are sent out later or not at all. In general, the resolution of the
encoded data improves the more time steps are at the disposal of the encoding process.

TTFS encodes each feature into the precise timing of one spike. The absolute value of
the feature is thereby translated into an interval relative to the global reference point.
This interval can, for example, be defined as the inverse of the amplitude or a linear
relation, as introduced in Section 2.4.3. In a setting in which the network is executed
in discrete time steps, the continuous intervals have to be rounded to the next time
step. TTFS results in a fixed amplitude range of the input feature to be encoded if no
normalizing preprocessing step is performed.

37

3 Signal Encoding

In ROC, the features of one frame are encoded in relation to each other. Accordingly,
the amplitude range of the encoded features is flexible, but the absolute values are lost.
In the vanilla case, exactly one feature representing neuron is active in each time step.
For n features to be encoded, this results in n! different combinations along the t = n
time steps. Depending on the application, the scheme can be modified so that multiple
features spike simultaneously or the least significant features do not spike at all, resulting
in a shorter encoding time frame.

3.2.3 Binarization

Binarization is a special case of frame-based encoding schemes, in which the encoding
lasts only one time step – as opposed to globally referenced schemes – and each feature
is represented by a single neuron – as opposed to correlation and synchrony coding. It
thus combines the minimum specification for both temporal and spatial requirements.
In each single time step, every neuron encoding a single feature can either be active
or inactive. A distinction in time- or rate-based algorithms or further sub-categories is
thus not practical. The binarized encoding of a frame or a sequence of frames cannot be
clearly categorized regarding Figure 2.6.
The binarization encoding scheme is well suited for spatial data, which does not rely

on accurate amplitude representations. An example of this kind of data is the MNIST
dataset, which consists of grayscale images of handwritten digits [170]. In this simple
dataset, the precise representation of each pixel intensity is not crucial for an accurate
recognition; the simple notion of whether there is a stroke or not is sufficient.

The input data can also be a temporal sequence of frames. In this case, each frame is
evaluated and binarized individually. An example for this input is given in the radar-based
gesture recognition task, which is further elaborated in chapter 6. In that case, the input
consists of a sequence of range-Doppler images, which show the distance-velocity map of
the near surrounding. In this setting, the nearest objects will be represented with the
highest amplitude values in the map, while the background will mostly be noise. As
the absolute value of the entries does not carry relevant information, and we are only
interested in the nearest objects, a binarization of the input is feasible.

The binarization requires a threshold vth,input, which indicates the level at which every
element xi of the input x ∈ Rn is mapped to a one or zero:

zi =

{
1, if xi > vth,input

0, otherwise.
(3.1)

The binarization threshold can thereby be fixed or adaptive. While a fixed threshold
convinces with its simplicity, an adaptive threshold can better map to the spontaneous
characteristics of the input signal or be used for a constant number of activations within
the binarized input. Two practical threshold rules are the mean value or the α-quantile

38

3.3 Stream Encoding

of the instantaneous input frame:

mean: vth,input = mean(v) (3.2)
α-quantile: vth,input = α · n-largest value of x. (3.3)

With mean binarization scheme, all inputs that are greater than the average value of
the input vector are set active. All other entries are inactive. This leads to a normalized
encoding of the input vector. The number of active entries is, thereby, not constant. A
constant number of activations can be reached using the quantile-based binarization.
Here, the α ·n-largest values of x are set to be active, with n being the number of features
within the input vector. The quantile-based binarization can additionally be extended
that not only two states but three are used. In that case, the top quantile and the second
quantile are used as thresholds.

Current Injection

A further special case is the current injection scheme, in which no conversion of the input
into spikes takes place. The input signal is fed into the neuron as it is, resulting in a
direct injection in the form of a current. The conversion into spikes is thus performed by
the network itself in the first population of neurons. The current injection method can be
used for both data frames and streams. We will use this approach for the stream-based
encoding in Section 3.4.

3.3 Stream Encoding

The one-dimensional signals in our applications consist of temporally varying superposi-
tions of sinusoidal components. To encode the signals, not only the instantaneous value
of the signal is considered, but also its recent course. Because the stream is theoretically
infinite, there is no single global reference point as in the frame-based encoding. As
mentioned above, TC methods and filter and optimizer-based approaches are suited to
encode these fast-changing signals.

3.3.1 Temporal Contrast

TC-based methods encode changes in the signal’s amplitude into spike events (see
Section 2.4.3). Polarized spikes emphasize the change above a defined threshold in the
positive or the negative direction. To encode the signal’s course precisely, the threshold
is chosen to be small. In this way, also small changes in the signal are recognized. This
causes numerous spike events if the signal’s amplitude changes fast. A doubling of the
signal frequency consequently results in a double number of spike events. This type of
encoding is suited to encode arbitrary varying signals with high accuracy if the threshold
is chosen appropriately and if many spikes are acceptable.
TC is the prevalent encoding scheme for event-based Dynamic Vision Sensor (DVS)

cameras [155], [171]. There, local changes in light intensity at the specific pixels are

39

3 Signal Encoding

encoded into spike events. The changes in light intensity are arbitrary; however, they
occur in relatively long intervals. If there are no changes, pixels remain silent and do not
emit any signals. As a result, these sensors emit rich but sparse spike sequences, which
describe the temporal changes of the perceived scenery.
In our applications, the characteristics of the signals are known a priori: The signals

consist of superimposed sinusoidal waves with high frequencies in the range of kHz to
MHz. This knowledge should therefore be incorporated into the encoding scheme. A
TC-based method can encode any signal but does not leverage this prior knowledge.

3.3.2 Filter and Optimizer

BSA is one of the most prominent examples of filter-based encoding schemes. There, the
input signal is convoluted with a filter function, and a spike is generated if the resulting
value surpasses a predefined threshold. With this approach, similar to TC, arbitrary
signals can be encoded. It is, for example, used for the task of recognizing anomalies in
Electroencephalography (EEG) data streams [169].
We extend this idea and simultaneously use multiple filters to evaluate the signal

based on different characteristics. With the prior knowledge of the signal’s sinusoidal
components, the filters can be chosen accordingly. The resulting encoding scheme uses
filters to detect different spectral components in the signal using resonating neurons. The
encoding is extended by an additional spatial domain by using multiple filters. Whereas
TC and BSA only use one or two spike sources to indicate a (polarized) signal change, we
encode the presence of different independent features (spectral components) into multiple
sources. The scheme will be introduced and evaluated in the following section.

3.4 Frequency-selective Resonating Neurons

The RF neurons introduced in Section 2.1.3 can detect spike sequences with specific
frequencies or ISIs [64]. We extend this approach and use the resonating neurons to
directly convert continuous analog signals into frequency-selective spike sequences.1 The
encoding into spikes and the spectral analysis are thereby performed simultaneously.
Additionally, as the analysis is performed directly on the analog signal in the time domain,
no analog-to-digital conversion or buffering of samples is needed. Common approaches
perform a Fast Fourier Transform (FFT) and subsequently transform the result into
spikes to be analyzed by SNNs [35], [172], [173]. A practical implementation using RF
neurons as frequency selective input encoders within an SNN is shown in and will be
demonstrated in chapter 5. There, the RF neurons are used to convert speech signals
into spike trains to be recognized by the SNN.
With reference to the taxonomy of encoding schemes presented in Figure 2.6, RF

neurons can be categorized as a filter-based approach.

1This approach has been previously published in [51].

40

3.4 Frequency-selective Resonating Neurons

0

vth
↑ Output spike

Non-resonant input Resonant input

Re(v(t))

Im(v(t)) t

Figure 3.2: Pulsed excitation of a RF neuron. The input current in applied to the
current-like variable Re(v(t)), whereas the voltage-like variable Im(v(t)) is used
to determine the excitation of the neuron. An output spike is generated as
soon as Im(v(t)) crosses the threshold voltage. The excitation only reaches the
required level when the input spikes arrive in the correct temporal distance.

3.4.1 Properties of the Resonator

As introduced in Section 2.1.3, the complex-valued differential equation describing the
membrane v ∈ C is given by

dv

dt
= (−λ+ iωn) v + i(t), (3.4)

with λ being the damping constant, i the imaginary unit, ωn the neuron’s natural
frequency, and i(t) the analog input signal. In the following, we distinguish between four
different input scenarios: (1) pulsed excitation, in which i(t) consists of a spike train,
(2) resonant excitation, in which i(t) = a cos(ωt) consists of a sinusoidal signal with the
frequency ω = ωn and the arbitrary amplitude a, and (3) non-resonant excitation with
the same input as in (2) but with ω 6= ωn. In a fourth scenario (4), an arbitrary signal is
shown in which scenarios (2) and (3) superimpose.

Pulsed Excitation

Spike trains can be the direct signal input to the resonator or originate from the
communication between neurons within a larger network. The resonator’s response to
this pulsed excitation has been shown by Izhikevich [64]. He showed that in contrast
to the LIF neuron, the timing of the incoming spikes is of major importance. If two
succeeding input spikes arrive with an interval of half of the period of the resonator’s
oscillation, the two spikes cancel each other out. If the interval is near a full period, they
add up. With that, if enough spikes arrive at the correct intervals, the neuron reaches its
firing threshold.

41

3 Signal Encoding

0 0.1 0.2
−0.1

0

0.1

Time

A
m
pl
itu

de

0 0.1 0.2
−0.1

0

0.1

Time

Im(v)ω=ωn Im(v)ω 6=ωn cω=ωn cω 6=ωn

Figure 3.3: Resonant versus non-resonant excitation of the RF neuron. The
temporal course of the voltage variable Im(v) is shown for an exemplary resonant
and non-resonant excitation. The resonant frequency of the neuron is 100 Hz
(left) and 200 Hz (right). The non-resonant excitation has a frequency of 10
Hz above the resonance. Additionally, the upper boundaries of the respective
envelopes are given. It can be seen, that the boundaries are independent of the
frequencies themselves.

Resonant Excitation

For a resonant excitation of the resonator, the input current is modeled as a single
sinusoidal oscillation with the same frequency as the resonator’s resonant frequency:
i(t) = a cos(ωnt). The steady state response of the oscillator’s membrane voltage results
in a constant oscillation:

v = C et (−λ+ωn i) +
etωni

2λ
+

e−tωni

2λ− 4ωni

≈ etωni

2λ
for t→∞.

(3.5)

The transient response, however, follows an exponential process. The envelope of the
oscillation is given by

cω=ωn(t) =
a

2d

(
1− e−tλ

)
≈ a

2
t for tλ� 1,

(3.6)

which can be approximated linearly during the beginning of the oscillation when the
product of t and λ is sufficiently small.

Non-resonant Excitation

The response to a non-resonant signal with ω 6= ωn reaches much lower amplitudes during
the same time interval. In this case, the envelope follows a sinusoidal path that is given

42

3.4 Frequency-selective Resonating Neurons

by

cω 6=ωn(t) ≈
aωn

|ω2
n − ω2|

(
1 + e−tλ

)
sin

(
ωn − ω

2
t

)
max

t
(cω 6=ωn(t)) ≈

2aωn

|ω2
n − ω2|

for tλ� 1.

(3.7)

The amplitude difference of the oscillation’s envelopes of the resonant and the non-
resonant excitations is approximately independent of the absolute frequency itself. At a
constant measurement period T , the amplitude difference between the resonant frequency
ωn and the non-resonant frequency ω = ωn +∆ω remains approximately constant for all
ωn. However, if the measurement period is too small, the differences between resonant
and non-resonant excitation might not develop sufficiently to discriminate between close
frequencies.

Arbitrary Excitation

Considering the sum of sinusoidal signals of different frequencies, the effects mentioned
previously superimpose. The neurons respond strongly if oscillatory components of
their respective natural frequency are present in the signal. The decomposition of an
exemplary signal is exhibited in Figure 3.4. The neuron is excited with a signal of the
form i(t) =

∑
ai cos(ωit+ φi). In each simulation, the resonant frequency of the neuron

changes by 1 Hz, producing 50 simulations. At various frequencies, the superposition of
the influences by the constant, resonant, and non-resonant excitation is evident. The
signal component with a frequency of 10.5 Hz and amplitude 1 lacks a distinct voltage
maximum because it does not match any natural frequency of the neuron. However, the
neurons with natural frequencies of 10 and 11 Hz exhibit a high membrane voltage due to
the near-resonant excitation. The signal component with a frequency of 43 Hz displays
the same amplitude but produces a higher membrane voltage at the corresponding neuron
as it coincides with a natural frequency.

3.4.2 Spike Generation

The RF neuron emits a spike as soon as its excitation exceeds a defined level. The
voltage variable Im(v) is used to determine the neuron’s excitation. Accordingly, a spike
is generated as soon as the threshold is reached:

δ(t) =

{
1, if Im(v(t)) > vth → v = 0

0, otherwise.
(3.8)

The membrane is subsequently reset to zero. Due to the resonance behavior of the
membrane, the threshold is reached quickly if the resonance frequency is present in the
signal. During a non-resonant excitation, the threshold is reached significantly later or
not at all.

43

3 Signal Encoding

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Frequency [Hz]
M
ax

vo
lta

ge

Figure 3.4: Excitation of RF neurons with superimposed sinusoidal signals. Max-
imum voltage of 50 neurons with fn = ωn/2π = 1, 2, 3, ...50 Hz after a mea-
surement time of one second. Excitation with sum of sine with frequencies 0
(constant excitation), 10.5, 17, 30, and 43 Hz and amplitudes 0.3, 1, 0.6, 0.2,
and 1. The influences of constant excitation (ω = 0), resonance (ω = ωn) and
non-resonant (ω 6= ωn) excitation are discernible.

The parametrization of the threshold introduces the tradeoff between the processable
amplitude range of the input signal and the achievable frequency resolution. A low
threshold enables the detection of resonant signal components with low amplitudes.
Non-resonant components with large amplitudes, however, will also be able to reach
the required excitation level. A high threshold, on the other hand, results in better
differentiability between neighboring frequencies, but signals with low amplitude will be
almost irrelevant. The upper and lower boundaries of the threshold can be determined
using the simple relations

vth >
amax T

2N
and

vth <
amin T

2
.

(3.9)

The lower boundary of the threshold is given by the maximum number of spikes N , which
is generated during the measurement time T in the presence of the resonant signal’s
largest amplitude amax. Every threshold value higher than this will generate fewer spikes
at the largest amplitude level. The upper boundary restricts the threshold that at least
one spike is generated during the measurement time T at the presence of a signal with
the resonant frequency and the smallest detectable amplitude amin. Every threshold
value smaller than this will enable even smaller amplitudes to excite the neuron enough
to generate at least one spike.

The tradeoff between the minimum detectable signal amplitude, spike rate saturation
at too large amplitudes, and the discriminability of resonant and non-resonant frequencies
can be somewhat accommodated by introducing a variable threshold value. After each
spike generation, the threshold is increased to discriminate neighboring frequencies with
high amplitudes more precisely. The threshold can be varied linearly or exponentially,
depending on the prior knowledge of the characteristics of the input signal. If no spike is

44

3.4 Frequency-selective Resonating Neurons

generated for an extended period of time, the threshold decreases steadily towards its
initial value to enable the detection of signal components with lower amplitudes again. In
accordance with the dynamics of the membranes, the temporal behavior of the threshold
value is therefore described by a differential equation [52].

dvth
dt

= λ (vth,0 − vth). (3.10)

The threshold value thus always converges back to the initial, low, threshold vth,0.
Without limiting the generality, the damping coefficient is chosen to match the damping
of the resonator itself, thus, coupling the two mechanisms to the same temporal scope.
An exemplary evaluation of an arbitrary signal using this variable threshold is shown
in Figure 3.6. The complete system of equations describing the neuron from eqs. (3.4)
and (3.8) extends to

dv

dt
= (−λ+ iωn) v + i(t)

dvth
dt

= λ (vth,0 − vth)

δ(t) =

{
1, if Im(v(t)) > vth → v = 0, vth = f (vth, vth,0)

0, otherwise.

(3.11)

The bandwidth of frequencies for which a neuron emits spikes depends on the properties
of the resonator and the spike generation mechanism. The resonator is characterized
by its resonant frequency and damping coefficient. The spike generation mechanism,
on the other hand, is adjusted by tuning the initial firing threshold and the threshold
adaptation function after each spike emission. To keep the number of spikes at the
resonance frequency constant for different bandwidths, the initial threshold and the
threshold adaption function have to be adapted simultaneously. A lower firing threshold
enables a broader bandwidth and has to be compensated with a larger increase of the
threshold after each spike emission.

In his publication, Izhikevich proposed the reset of only the voltage-like variable when
an output spike has been emitted Re(v) [64]. This enables the RF neuron to produce
spikes in the same frequency as the resonant input spike train because the excitation
remains present. If both membrane variables were reset, an additional input spike would
be required to initiate the neuron’s oscillation. Thus, every other resonant input spike
would trigger the emission of a spike. For our applications, we do not need the property of
the continuous spike emission because the inputs to be analyzed are continuous sinusoidal
signals. Instead, resetting both variables leads to a slightly better differentiation between
resonant and non-resonant frequencies. For direct comparison, the same setup as in
Figure 3.6 but with Izhikevich’s reset scheme is shown in Figure 3.7. A noticeable
difference is the delayed spike emission of the resonantly excited neuron with the index
100, shown in (e). A detailed view of the spike patterns shown in both figures in (d)
around the neurons with the index 100, respectively, is given in Figure 3.5. The spikes

45

3 Signal Encoding

that appear after the initial spike of each neuron are shifted due to the different reset
schemes. Generally, the neurons following Izhikevich’s reset scheme emit spikes slightly
earlier. Additionally, the spike emissions of neurons with resonant frequencies close to
the signal’s sinusoidal components are less symmetrically centered around the resonant
frequency. With that, there are less difference between the spike patterns of resonant
and near-resonant excitations.

0 0.1 0.2 0.3 0.4
90

95

100

105

110

Time

In
de

x

Figure 3.5: Detailed view of the RF neurons’ spike times implementing different
reset schemes. The spike times of the neurons implementing the full reset of
both variables are depicted as black points. The spikes emitted by neurons with
Izhikevich’s reset scheme are depicted as blue squares. The neurons that follow
Izhikevich’s reset scheme emit spikes slightly earlier. Additionally, the spike
response is less symmetrically centered around the frequency of the signal’s
component.

3.4.3 Frequency, Amplitude, and Phase Resolution

The exact timing of a generated spike contains evidence about superimposing information:
(1) The presence of a specific frequency component within the signal is signalized, which
matches the resonant frequency of the resonating neuron. The temporal occurrence
of the frequency component can thus be localized, similarly to the Short-time Fourier
transform or the wavelet transform. (2) The amplitude of the frequency component
is encoded because a higher excitation results in a shorter interval to reach the firing
threshold. The interval between consecutive spikes is directly influenced by the temporal
development of the frequency component’s amplitude and the neuron’s threshold adaption.
(3) The phase of the signal leads to small temporal shifts of the spike time because the
neuron’s membrane is more likely to reach the threshold voltage during the maxima of
the oscillatory signals.

The frequency resolution of the encoding scheme is given by the sharpness of the pass
band of the resonators and the number of resonators that are being used. As shown above,
the resolution can additionally be influenced by the choice of the threshold voltage and
its temporal variation. Similar to the Discrete Fourier Transform (DFT), the frequency
resolution grows the longer the measurement interval is. As shown in eq. (3.5), the
neuron’s excitation is theoretically unbounded when excited with its resonant frequency,

46

3.4 Frequency-selective Resonating Neurons

whereas in the non-resonant case, the maximum excitation is reached shortly after the
onset of the signal. Thus, with longer measurement intervals, the differences get larger.

The amplitudes of the signal’s frequency components are encoded in the timing of the
spikes. With that, the resolution is, in theory, arbitrarily high. With the exact timing
between spikes and the known temporal adaption of the spike threshold, infinitesimal
changes can be expressed. However, in practical realizations, the smallest resolvable time
interval will be determined by the actual hardware implementation. Additionally, the
excitation of each resonator is also influenced by non-resonant signal components, akin
to the effect of spectral leakage in the DFT.
The influence of the signal phase φ on the spike timing is comparatively small. The

phase of the signal varies the maxima of the neuron’s membrane oscillation by a fraction
of the signal’s frequency. Because the firing threshold of the neuron is most probably
reached during these maxima, the timing of the spike is shifted by ∆t = φ

ωn
. This

temporal shift is small compared to variations introduced by tiny changes in the signal
amplitude.
The encoding of sinusoidal signals using RF neurons leads to unique spatio-temporal

spike trains, which can be analyzed by succeeding network populations. The interaction
of input signal, membrane characteristics, and threshold adaption embed the signal
information in sparse, frequency-selective sequences of events. With the characteristics
of the resonators, the encoding can be used to represent the amplitude spectrum of the
analyzed signal.

3.4.4 Discretized Model

The continuous differential equation model in eq. (3.11) can be transformed into a
discrete representation. This transformation is performed by exact integration under
the assumption that the input i(t) is constant during the discrete interval n with the
length ∆t [174]:

v[n] = e−∆t λ ei∆tω v[n− 1] + i[n]

= αω v[n− 1] + i[n].
(3.12)

With that, the neuron’s complex membrane variable v is scaled and rotated in the complex
plane. The constant resonant frequency-dependent factor αω ∈ C, thereby, defines this
rotation.

In its discrete form, the computational complexity of the RF neuron can be compared
to standard algorithms like the DFT or FFT, see table 3.1. The DFT has complexity
O(N2) when transforming a sequence of length N . This complexity reduces to O(MN)
when only M < N spectral components are required to be determined. Algorithms like
the Goertzel Algorithm have the same complexity but require less computations than the
vanilla DFT. With the FFT, the whole spectrum is calculated, but with a complexity of
O(N log2N). The spectral transform using RF neurons also scales with O(MN) as M
neurons have to be updated during N time steps. For each of the M neurons, N complex
multiplications and one addition are required. Additionally, the membrane voltage has

47

3 Signal Encoding

Table 3.1: Complexity of Fourier transform algorithms. The number of multipli-
cations and additions is given per spectral component for a real-valued input
signal. M refers to the number of desired spectral components, whereas N refers
to the number of input samples.

Algorithm Complexity Multiplications∗ Additions∗ Extra∗

DFT O(MN) 2N 2(N − 1)
Goertzel O(MN) N + 2 2N + 2
FFT O(N log2N) 2 log2N 3 log2N

RF neuron O(MN) 4N 3N N comparisons
*Per spectral component.

to be compared to the threshold value to generate an output spike if necessary. If the
threshold is continuously adapted, additional computations are required.
As shown in table 3.1, the discrete implementation of the RF neuron is only efficient

to use if only few spectral components need to be determined. The calculation of the
spectral components is solved more efficiently using the Goertzel Algorithm. However, the
RF neurons additionally perform the transform into temporal spike trains as introduced
earlier. The properties of the resonating neuron additionally offer the possibility to
perform the spectral analysis in analog circuits as shown in [71].

48

3.4 Frequency-selective Resonating Neurons

0 0.2 0.4 0.6 0.8 1
−1
−0.5

0

0.5

1

Time

A
m
pl
itu

de

(a)

0

100

200

In
de

x

(d)

0.1

0.2

0.3

A
m
pl
itu

de
sp
ec
tr
um

(b)

-1

0

1
Im

(v
1
0
0
)

(e)

50 100 150 200 250
0

1

2

3

4

Frequency

N
sp

ik
es

(c)

0 0.2 0.4 0.6 0.8 1

0.2

0.6

1

Time

v t
h
,1
0
0

(f)

Figure 3.6: Evaluation of an arbitrary signal using RF neurons with spike gener-
ation and threshold adaption. The input signal (a) contains three distinct
frequency components and a noise floor. (b) shows the real spectrum of the
signal, which is obtained using an FFT. For the direct comparison, a bank of
RF neurons is used, which have resonant frequencies equivalent to the grid
points of the FFT. The number of emitted spikes per neuron is shown in (c).
The temporal occurance of the spikes is depicted in (d). (e) and (f) show
the temporal course of voltage-like variable and the threshold adaption of the
neuron corresponding to the frequency of 100 Hz. The variant using Izhikevich’s
reset of only the current-like variable is shown in Figure 3.7.

49

3 Signal Encoding

0 0.2 0.4 0.6 0.8 1
−1
−0.5

0

0.5

1

Time

A
m
pl
itu

de

(a)

0

100

200

In
de

x

(d)

0.1

0.2

0.3

A
m
pl
itu

de
sp
ec
tr
um

(b)

-1

0

1

Im
(v

1
0
0
)

(e)

50 100 150 200 250
0

1

2

3

4

Frequency

N
sp

ik
es

(c)

0 0.2 0.4 0.6 0.8 1

0.2

0.6

1

Time

v t
h
,1
0
0

(f)

Figure 3.7: Evaluation of an arbitrary signal using RF neurons with Izhikevich’s
reset scheme. The setup is the same as in Figure 3.6. In this case, only the
current-like variable Re(v) is reset after a spike emission. The exemplary neuron
in (e), therefore, shows a different voltage course. The number of emitted spikes
stays the same (c). The timing of the spikes shown in (d), however, differs.

50

4 Network Architecture and Training

In the previous chapter, we introduced the methods which we will use to encode the tem-
poral input sequences into spike representations. The approaches used to train the SNNs
to detect and classify the encoded information are introduced in this chapter. Therefore,
existing approaches from the training of ANNs and SNNs are extended to improve the
performance of the SNNs.1 Additionally, the complexity of SNN implementations is
analyzed, and the mapping to neuromorphic hardware is examined.

4.1 Neuron Models and Connectivity Schemes

The network architectures and the computation flows of the SNNs used in this work
do not differ much from that of classical ANNs. The SNNs are batch-processed in
fixed time steps, omitting the inherent benefits of sparse and event-based processing.
However, this is only necessary during training to enable the credit assignment and the
backpropagation of the error signal. Similar to ANNs, the spike-based networks consist of
input, hidden, and output layers. The term population is often used synonymously with
layer to underline the possible recurrent connectivity within the layer and to support the
biological motivation.

In terms of ANNs, a spiking network is a recurrent network consisting of neurons with
at least one stateful variable and a binary activation function. Note that the neurons do
not necessarily have to be connected recurrently; the recurrence is already given by the
neuron’s state variables.

4.1.1 Discrete LIF Neuron

Our network model is based on the assumption that the main information processing takes
place in the network dynamics rather than in the dynamics of single neurons. Therefore,
the LIF neuron, as introduced in Section 2.1, is used as the computational element within
the networks. It is one of the simplest models of spiking neurons. Additionally, spikes are
modeled as binary events, which increase or decrease the neuron’s membrane potential
instantaneously. To increase the distinction to spike events in the continuous time domain
δ(t− tf), we describe spike events in discrete time as z[t], with z[t] = 1 representing a
spike and z[t] = 0 representing no spike emission.
In most parts of this work, the SNNs are simulated in discrete time steps to enable

the use of BPTT. The LIF neuron model has thus to be discretized. The update of the
membrane voltage v[t] at time t is performed for the whole population of n neurons at

1Some of the approaches have already been published in [52], [55]

51

4 Network Architecture and Training

the same time. The membrane voltage

v[t] = λ v[t− 1] + icharge[t]− ireset[t]
icharge[t] = W(l−1,l) x[t]

ireset[t] = γ[t] z[t− 1]

(4.1)

now contains the summation of the scaled membrane voltage of the previous time step
and the charge and reset currents. The physical relation in eq. (2.5) between membrane
voltage, charge current, membrane capacitance and discharge resistor is only preserved in
an abstracted form without units. The membrane resistance and capacitance, and thus
the time constant of the neuron, are represented by the factor λ. It controls the retention
time of the membrane voltage. With no charge current, the membrane voltage decays
exponentially towards the resting potential zero. The charge current icharge[t] contains
the weighted superposition of the input x[t]. The matrix W(l−1,l) contains the weights of
the feedforward connections between the input and the neurons of the current population.
Any zero in the matrix means that there is no connection between the corresponding
neurons. The superscript l refers to the current layer, whereas l− 1 is the preceding layer.
The reset current ireset[t] is a vector with non-zero entries at the respective neurons,
which spiked in the previous time step. The values for the factor γ can vary based on
the reset scheme, which is implemented (see Section 4.1.2). The output spike vector
is calculated by comparing the current membrane voltages of each neuron j with the
threshold voltage:

zj [t] =

{
1, if vj [t] > vth

0, otherwise.
(4.2)

The exemplary update of a LIF neuron is also shown in Figure 4.1: The layer’s
input x[t] at time step t is multiplied with the layer’s weight matrix W to calculate the
instantaneous charge currents icharge[t] for the neurons within the layer. The stateful
membrane voltages v[t] are updated accordingly. Subsequently, the nonlinear spike
activation function is applied to generate the output spikes. The output vector z[t] is
additionally used to determine the reset current in the next time step to reset the neurons
that produced an output spike.

4.1.2 Reset Functionality

After each spike emission of a spiking neuron, the membrane voltage is reset. This
can be done in two different ways: resetting the membrane voltage to a constant value
(for example zero) or resetting the voltage by subtracting the threshold voltage [92].
The factor γ in eq. (4.1), which describes the absolute value of the reset current, is set

52

4.1 Neuron Models and Connectivity Schemes

1.3 0.3 0.1 −1.0 −1.3

0.1 −0.1 −0.9 0.5 −0.9

0.3 −0.3 0.6 0.8 0.0

0.8 0.7 0.8 0.1 0.5

0.3 0.0 −0.8 −0.2 0.6

−0.7 0.44 0.0 1.2 1.2





1 0 0

0 1 0

0 0 1

1 1 0

0 0 1




t

× +

1.2

0.6

0.3

0.9

1.1

0.6




v > vth

1

0

0

0

1

0




x[t]

W

icharge[t]

λ v[t− 1] ireset[t] = γ z[t− 1]

v[t] z[t]

Input

Weights

Membrane voltage Output spikes

Figure 4.1: Update calculations of a population of discrete LIF neurons. The
elements involved in the update of an arbitrary neuron are highlighted in blue.

accordingly:

reset to constant/zero : γj [t] = vj [t− 1]− voffset (4.3)
reset by threshold : γj [t] = vth. (4.4)

The reset to zero is modeled by subtracting the value of the last time step’s membrane
voltage for the individual neuron. This erases the neuron’s memory of the past until the
reset. The neuron thus discards the information about potentially very high activations.
Additionally, the constant value voffset can be included in the reset current to reset the
membrane to a constant non-zero value. A positive value of the initial membrane voltage
leads to an excited neuron after the reset. In contrast, a negative value can introduce a
characteristic similar to the refractory period of a biological neuron.
By resetting the membrane voltage by subtracting the threshold voltage, each reset

draws the same amount of charge from the membrane. Accordingly, if the neuron was
excited to a level much higher than the threshold voltage, the membrane remains charged,
thus preserving the membrane’s memory. Therefore, the neuron is more likely to spike
soon if the input still matches the neuron’s preferred patterns. Especially when running
discrete simulations with coarse time resolution, multiple input spikes can arrive at the
same point in time. With the reset-by-threshold scheme, this information is preserved.
The voltages course of two LIF neurons using the two reset schemes is depicted in

Figure 4.2. In the upper plot, the neuron is reset to zero after each spike emission. The
neuron in the lower plot implements the reset by subtracting the threshold voltage.

53

4 Network Architecture and Training

vth
reset to zero

vth
reset by threshold

Time

Figure 4.2: LIF neuron reset schemes. The reset-by-threshold scheme preserves the
information of high activations. Accordingly, multiple spikes can follow a single
excitation with a large amplitude.

4.1.3 Integrator Output Neurons

The output layers of the networks in this work are modeled as non-spiking neurons. A
similar approach has been shown in other works simultaneously [175]. These neurons
are LIF neurons without the spike and reset functionalities. They solely integrate the
incoming weighted spike trains and provide the membrane voltage as output. The
continuously evolving membrane voltages can be used to calculate the loss function
accurately. This approach is suitable for both, regression and classification tasks. For
classification tasks, the softmax function σ : Rn → [0, 1]n can be applied to normalize
the output layer’s membrane voltages:

σ(vj) =
evj∑
j e

vj
. (4.5)

This standard method in the field of machine learning enables a suitable projection of
the membrane voltages to the class probabilities that they represent.

4.1.4 Recurrence

Equation (4.1) can optionally be extended by a recurrent current it,rec, which feeds the
weighted layer’s output of the previous time step z[t− 1] back into the population:

irec[t] = W(l,l) z[t− 1]. (4.6)

The square matrix W(l,l) holds the weights of the recurrent connections. The entries on
the main diagonal of this matrix correspond to a recurrent connection of a neuron with
itself. This introduces additional processing capabilities to the population. With that,

54

4.1 Neuron Models and Connectivity Schemes

temporal sequences of spatial patterns can be learned and represented, self-exciting loops
can be created, and information can be contained over a more extended period of time.
Neftci, Mostafa, and Zenke explicitly differentiate between recurrent networks and

recurrently connected networks [49]. Recurrent networks implement latent variables,
which introduce a recurrent dependence between the current state and past states.
Recurrently connected networks additionally have synaptic connections within the same
population. Thus, a recurrent dependence of different neurons between the current state
and past states is established. Following this definition, a network consisting of LIF
neurons is a recurrent network. In this work, however, the term recurrent refers to the
more general definition of recurrence, which includes recurrent synaptic connections.

Reservoir computing, and liquid state machines in particular, heavily utilize recurrently
connected populations [176]. In these approaches, a population of sparsely connected
neurons, the reservoir, is randomly generated. This population projects the input pattern
into a higher dimensional space. The readout layer, which is the only part of the network
where learning takes place, projects this representation back to the output [177]. This
paradigm can be beneficial to use when the temporal sequences are long, and using
BPTT on the whole network might result in vanishing and exploding gradients. However,
the network’s performance greatly depends on the properties of the randomly generated
reservoir. Therefore, insights and improvements of the generation process of such a
network are part of active research. In this work, however, we focus on networks that are
trained as a whole.

4.1.5 Convolutional Layer

Convolutional layers in neuronal networks convolve small kernels across the input tensor
to extract spatial features. The kernels are shift-invariant, so they are applied across all
input axes without change. The shifted application of the kernel multiple times acts as
there were multiple copies of the same kernel with shared weights, which examine small
parts of the input in parallel.

In biological systems, this type of operation can, for example, be found in the nervous
system of the eye. Horizontal cells connect neighboring photoreceptor cells and bipolar
cells in a way that they are able to detect contrasts. They form circular antagonistic
center-surround receptive fields by the interplay of exciting and inhibiting neuronal
activity [178]. These circuits are distributed millions of times over the retina and thus
compose a convolutional neural network.

Convolutional layers in artificial SNNs are used in various works. Examples are spike-
based Convolutional Neural Networks (CNNs), which operate on rate-coded data [19],
[92], or networks, which apply the convolution operation directly on the raw input data
and apply the binary activation function afterwards [172], [179].
The implementation of a convolutional spiking neuron does not differ much from a

conventional LIF neuron. The only difference is in the calculation of the input current.
Each neuron is connected to a small perceptive field instead of being connected to the
whole input, and the weights are shared with other instances of the same kernel. The
membrane voltage update given in eq. (4.1) therefore stays the same.

55

4 Network Architecture and Training

Convolutional layers in ANNs can extract small gradients and patterns within the
input and reflect their presence precisely using continuous activation function outputs.
Spiking convolutional layers, on the other hand, evaluate incoming spike patterns and
communicate the results to the outside via binary outputs. It is obvious that compromises
in the reached accuracy are made at this point if the continuous realization is directly
transferred to a spiking implementation.
Most convolutional ANNs implement two-dimensional convolutions. The dimensions

are, for example, the two dimensions of an image or temporal sequence of a feature vector,
like the frequency and time axis of a spectrum. In the latter case, the time dependence
of the input data is represented by one dimension of the convolution kernels. For this
purpose, the information of a whole sequence needs to be provided as an input for the
convolutional network. Since neuron models in SNNs already contain temporal dynamics,
they implement a recursive approach. Accordingly, instead of common approaches
using two-dimensional convolutions [172], [180] it can be sufficient to only apply a one-
dimensional convolution to the feature vector dimension of the data stream and still
extract temporal information. The motivation behind this is twofold: First, processing
the data stream continuously reduces the memory consumption since no buffering of data
or delaying of spikes is needed. Additionally, buffering or delaying large amounts of data
would hardly be realizable in an analog implementation of the neuromorphic circuits.
Secondly, it results in a smaller number of weights since the time dimension is not part
of the filter kernel.
The convolutional connectivity scheme can additionally be extended with recurrent

connections within the population. To restrict the number of connections, we distinguish
between recurrent connections between neurons within the kernel but at different positions
of the receptive field and connections between the neurons at the same position but
between the different kernels.

4.2 Training
With the inputs being encoded and the network components being defined, the networks
now have to be trained to meet the desired functionality. First, we introduce the variables
which will be optimized during the training. Subsequently, we introduce the regularization
techniques, which will be used to improve the ability of the network to generalize on
unseen data and to lower the overall network activity. Lastly, pruning is introduced to
sparsify the network connections during training.

4.2.1 Optimization Variables

Connection weights are the common optimization variables of ANNs and SNNs. They
define the presence and the strength of a connection between two neurons. These weights
are adapted during training to minimize the error function and form the neural network
with the desired input-output function. Next to these connection weights, SNNs introduce
two additional parameters, which can be optimized during training: the time constants
of the neurons and their threshold values.

56

4.2 Training

Weights

The network weights are commonly initialized randomly to enable a rich response to
the presented input. The goal is to avoid the development of vanishing or exploding
gradients, which greatly slow down or even inhibit the convergence of the error function
towards the global minimum. For SNNs, the weight initialization is even more important
because of their all-or-nothing activation function. Depending on their inputs, certain
neurons might never be excited enough to take part in the dynamic processes of the
network. Therefore, parts of the network could remain silent no matter the input.
For ANNs, a range of different initialization techniques have been proposed, which

determine the variance of the initial weight distributions [181], [182]. Due to the similar
derivative of the sigmoid activation function and the spike activation function, we adapt
the Glorot initialization [181] to initialize the network weights. This type of initialization
aims to maintain the variance of the activations and the backpropagated errors across
the network. For that, weights are sampled from a uniform distribution in the interval
[−r, r] and

r =

√
6

Nin +Nneurons
, (4.7)

with Nin being the number of inputs and Nneurons being the number of neurons in the
considered layer. For recurrently connected layers, we have

r =

√
3

Nneurons
(4.8)

to reflect the connections within the layer.
The firing threshold of the LIF neurons does not have to be considered for the

initialization of the weights. As shown in eq. (2.12), the pseudo gradient is defined to lie
between 0 and 1. Its value is derived from the current activation of the neuron, which is
scaled by the threshold voltage. The output of the activation function (see eq. (4.2)) is
defined to be 0 or 1. Its value is thus also dependent on the relation between current
activation vjt and threshold voltage vth, but not on the absolute values themselves.

Time Constants

A neuron’s time constant specifies the leakage current that discharges the membrane
over time. It thus describes the retention time of given information in the form of its
membrane potential. This parameter can be varied during training to closely match the
temporal characteristics of specific features to be detected. With different time constants,
a stronger emphasis can be placed on short patterns or long-term relations.
The initialization of the LIF neurons’ time constants is highly dependent on the

temporal characteristics of the input signals as well as on the temporal scope of the
temporal context, which is expected to be considered. From an initial approximation,
the constants have to be searched empirically. In the analysis of temporal sequences,

57

4 Network Architecture and Training

it is intuitive to optimize the time constants during the learning process. However,
the introduction of more freely optimizable parameters also introduces the potential for
overfitting. Therefore, we introduce constraints for closer consideration during the specific
applications. Generally, the values can be fixed, optimized network-wide, layer-wise, or
for each neuron individually. Unlike connection weights, the time constants do not have
to be unique for every single neuron. To adapt for the temporal characteristics of the
task to be solved, it can be sufficient to enable the optimization of one time constant,
which is shared among the population or the whole network.

Thresholds

The firing threshold defines the membrane potential of a neuron that has to be surpassed
to produce a spike. A high threshold voltage, therefore, reduces the probability of a
spike being emitted as higher excitations have to be reached. Low thresholds favor the
exchange of more spikes, as in the extreme case, a single input spike can be sufficient to
excite the neuron above its threshold level.

The threshold voltage can be optimized for each neuron individually or in relation to
the population or the whole network, similar to the optimization of the time constant.

In our experiments, it has been shown that a tunable threshold can help the population
adapt to the input characteristics faster. Using one jointly optimized threshold per
population can speed up the learning process because this adaption does not need to be
handled by the optimization of each individual weight.

Joint Consideration

All three optimization variables – weights, time constants, and thresholds – are in close
relation to each other. Due to their multiplicative linkage within the LIF neuron model,
the same network behavior can be reached using different parameter combinations. During
training, fixing one of the variables narrows the parameter space without sacrificing
performance. Therefore, in our experiments, we fix the threshold to a global value that
is not part of the optimization process.

In a hardware realization of the circuits, closer attention to this simplification can be
paid. Neuromorphic hardware might add additional constraints to the space of possible
parameters. Weights might, for example, be only feasible in a particular range, the
threshold voltage might not be chosen to be arbitrarily large or small, or a different time
constant per neuron might not be possible to realize. Therefore, considering all variables
and constraints for the realization in hardware is advisable.

4.2.2 Regularization

Regularization is commonly used in the field of machine learning to prevent overfitting
and thus reduce the overall variance of the model [1]. The goal of reducing the test error
is often reached by adding further optimization objectives to the loss function. Other
regularization strategies include early stopping, dataset augmentation, noise injection, or

58

4.2 Training

adversarial training. In this work, we use additive optimization objectives and dropout,
and expand these techniques for the use in SNNs.

Additive Optimization Objectives

One of the simplest and most commonly used regularization techniques is weight decay,
in which large absolute values of the synaptic weights are penalized [1]. This is done by
adding the L2 or L1 norm of the considered weights to the loss function. Thus, simpler
models with small weights are encouraged.

In SNNs, regularization can additionally be used to reduce the overall spike activity of
the network, similar to activation regularization in ANNs. To penalize excessive spike
activity, the loss function is extended by the activity loss, which is a function of the
number of spikes of the respective population. Similar approaches have been proposed
by other works simultaneously [172].

The different additive optimization objectives are summed up with the training loss to
obtain the overall loss function:

L = Ltrain + αLweights + β Lactivity

Ltrain = f(y, ŷ) = −
∑

y log ŷ

Lweights = f(W) = WT W

Lactivity = f(Z) =
1

NnN∆t

∑
neurons,t

Z.

(4.9)

The total loss is thus given by the sum of the training loss Ltrain, the weight loss Lweights,
and the activity loss Lactivity. The factors α and β are thereby used to adjust the relation
of the losses and with that, the influence of the regularizers.
In our experiments, the training loss is given by the cross-entropy between the true

one-hot-coded class labels ŷ and the predicted class probabilities y. The weight loss
is given by the L2 norm of the weight matrices for every feedforward and recurrent
connection. The activity loss is given by the L1 norm of the spikes Z being emitted.
Here, Z contains the information of whether a neuron emitted a spike for every neuron
in every time step. Effectively, by normalizing the number of spikes by the number of
neurons Nn and time steps N∆t, we obtain the spike rate of the network and use it as
the loss metric.
Our experiments showed that our tested SNNs were very sensitive to activity regu-

larization during the first epochs of training. Especially when combined with pruning
techniques, the use of activity regularization resulted in unstable training runs. Therefore,
we included a regularization schedule, which adapts the loss scaling factors α and β
according to the training progress. While the regularization factors are low initially, they
are slowly ramped towards the end of the training run.

Depending on the neuromorphic implementation of the SNN, the types of regularization
are beneficial for the overall energy consumption of the network during inference. Obvi-
ously, fewer activations lead to fewer spikes being propagated through the network and

59

4 Network Architecture and Training

thus fewer updates of the involved neurons. In analog implementations, smaller weights
might result in smaller currents which are needed to charge the membrane capacities and
with that less charge being moved during this process.

Dropout Scaling

Dropout is a further regularization technique. During training, a fixed number of randomly
selected neurons within a layer is deactivated at each batch [183]. This encourages the
remaining neurons to generalize more instead of focusing too much on single examples.
DropConnect generalizes this idea to setting a fixed part of the connections (weights)
between the layers to zero, creating even more possible combinations [184].

To keep the layer’s absolute activation constant during the training and testing phases,
the kept node’s activations are scaled by 1/1−p, with p being the dropout probability. In
SNNs, the activation values are not continuous but binary events, which are either 1 or 0.
As stated earlier, information is transmitted by the presence and timing of events, not
their absolute value. Scaling the values of the events would lead to spikes, which have
different values during training and testing time. Due to the binary characteristic of the
spikes, the scaling does not average over the whole population.

4.2.3 Network Pruning

In a densely connected neural network, not all connections contribute significantly to the
overall performance of the network [185]. Often it is sufficient to use only a subset of
the connections of the dense network without sacrificing significant performance losses.
These sparse networks, which reach the same performance as the dense starting network
when trained independently, are called lottery tickets [11]. Many approaches have been
proposed to identify these sparse subnetworks. They can be divided into four categories:
(1) training the sparse network from scratch, (2) pruning the network after training, (3)
pruning the network during training, and (4) pruning the network even before training
[186].
In SNNs, sparsity can not only be reached in the spatial domain by optimizing the

structure of the networks but also in the temporal domain by constraining the network
activity in the form of exchanged spikes to a minimum. This can be reached using
regularization as shown in Section 4.2.2.
In the field of SNNs, populations are often initialized sparsely. This is, for example,

the case for reservoir computing, where only the readout connections are trained [176],
or hierarchical networks, in which sparsely connected structures are imitated [165]. A
popular algorithm, which maintains the sparsity of a given network, is Deep Rewiring
[187]. In a sparsely initialized network, a fixed number of connections between pairs of
neurons are initialized. These connections comprise a trainable weight and a fixed sign.
Deep Rewiring rewires the connections, which are optimized out during the gradient
descent-based learning process: as soon as a connection weight gets a negative value,
the connection is dissolved, and a new connection is established between two randomly
selected neurons. In our experiments, however, this algorithm led to inferior performances.

60

4.3 Neuromorphic Hardware Considerations

In this work, we follow the approaches of the third category to identify sparse sub-
networks: pruning the network during training. Pruning thereby refers to the deletion
of connections between neurons or the neuron itself. Generally, we reached better per-
formances using connection-based pruning. The pruning algorithm used in this work is
based on Zhu and Gupta [188]. In this iterative approach, the number of pruned weights
is gradually increased over the training steps until the network reaches its final sparsity
value sf :

si = sf − sf
(
1− i

iend,prune

)3

for i ∈ {0, . . . , iend,prune}. (4.10)

During training, the instantaneous sparsity value si is increased until the last training
step with pruning iend,prune is reached. After that, the sparsity value is kept constant
to fine-tune the remaining network weights. Pruning is implemented using a binary
weight mask, containing a zero at every associated pruned connection. The mask is then
updated at every pruning step during training. In their approach, weights are pruned
based on their absolute value, pruning the smallest values at the given step.

The advantages of sparse networks are numerous: fewer connections and weights need
to be stored, fewer spikes need to be propagated through the networks, training can be
less expensive due to the lower number of parameters in the later training steps, and
the ability of the network to generalize can be improved because fewer highly detailed
connections are available. However, to find the optimum configurations fast and cheaply,
and to prevent the whole network from collapsing due to too many connections being
removed is still part of ongoing research [189].

4.3 Neuromorphic Hardware Considerations

Neuromorphic hardware aims at the energy-efficient acceleration and emulation of SNNs.
Some available platforms have been presented in Section 2.3. They feature a multitude
of different system designs: Systems that emulate the dynamics of the SNNs purely in
software and use many-core systems to parallelize this simulation. Systems that implement
specialized digital circuits to emulate specific neuron models in digital hardware. Or
systems that use analog circuits to model neurons, spikes, and entire networks. However,
these chips will not be used to accelerate SNNs in edge devices for small applications
like keyword spotting due to their sheer physical size. Instead, small accelerators that
specifically fulfill the networks’ requirements will be integrated into the systems.

Therefore, we discuss the network properties that will influence the design of the
specific hardware realization. We will consider the hyperparameters of the network, the
influence of different common layer layouts, and influences on the power consumption of
neuromorphic hardware.

61

4 Network Architecture and Training

Table 4.1: Network parameters and their effects in neuromorphic hardware.

Parameter Effect

Neuron model Memory/size processing elements/update rate
Number of neurons Memory, speed/n. processing elements
Number of tunable parameters Memory/adjustable elements
Number of synapses Complexity of wiring/communication
Number of spikes/synaptic events Energy consumption

4.3.1 Mapping Network Hyperparameters to Hardware

Table 4.1 lists some relevant parameters of a network that influence the design of a
neuromorphic accelerator.
The number of neurons directly defines the complexity of the accelerator. A large

number of neurons necessitates the maintenance of many dynamic variables or analog
membranes, which need to be updated frequently. This can either be realized in discrete
compute elements or in shared elements, which are used for the calculation of multiple
neurons at once. This can be done by time-multiplexing the available resources. SpiN-
Naker and Intel’s Loihi, for example, use their compute cores to simulate the behavior of
multiple neurons at once [21], [126]. µBrain, on the other hand, implements one compute
element for each individual neuron [190]. Scaling the different architectures can thus be
linearly or follow discrete step sizes.
The chosen neuron model defines the complexity of each neuron. The LIF neuron

model is one of the simplest models to implement. It comprises one state variable (its
membrane voltage), which has to be updated whenever an input to the neuron is present.
If the input is a spike train, the updates can be performed in an event-based manner. This
simple neuron model is used in most of the available neuromorphic hardware systems (see
table 2.1). The more complex ALIF neuron model has one additional state variable: its
adaptive threshold. Accordingly, two state variables have to be maintained, stored, and
updated for each neuron. The advantages of the event-based processing scheme diminish
if the neurons’ inputs are not spike-based anymore. In that case, each neuron has to be
updated continuously or in each discrete time step, depending on the implementation.
We explicitly differentiate between tunable parameters (weights) and synapses. A

synapse is given at the directed connection between two neurons, whereas the weight
defines its gain. Many neuromorphic hardware systems use 1-bit weights, weights, which
are shared between multiple synapses, or a combination thereof to enable as much design
flexibility as possible with the restricted resources [101], [123], [127]. Other tunable
parameters are, for example, adjustable time constants or firing thresholds. These have
to be stored, too. As the number of values to store can exceed millions for large networks,
the storage is often realized off-chip. This flexibility might not necessarily be given in
neuromorphic realizations with analog neuron implementations. Instead, the parameters
are fixed at the time of the hardware synthesis.

62

4.3 Neuromorphic Hardware Considerations

Table 4.2: Comparison of network complexity for different layer types. With m,
n, and nk being the number of inputs, outputs, and kernels. The kernels have
the size k.

Weights Synapses Neurons SOPs/input spike

Feedforward mn mn n n
Recurrent mn+ nn mn+ nn n n (+n at output)
Convolutional k nk (m− k − 1) k nk (m− k − 1)nk k n∗k
*Ignoring padding at the edges of the input. Average will be slightly less.

As already stated, synapses are the directed connections between neurons. They
enable the exchange of spikes and thus information within the network. In pure analog
realizations, each connection has to be realized physically in the form of a dedicated
circuit, which connects two neurons. Mixed-signal and fully digital implementations
use data buses to utilize physical connections more efficiently. By using packet routers
and additional circuitry, the same bus can be used to enable the connection between a
multitude of neurons or an inter-chip communication between multiple nodes. Due to
the sparse communication scheme of SNNs, the same set of physical wires is thus used in
a time-multiplexed way. The number of synapses is limited by the physical dimension of
synapse arrays and their weight storage. Additionally, the distance between neurons is
important. Depending on the hardware architecture, spikes need to be handed over by
multiple packet routers, thus introducing a notable propagation delay. With that, the
number of synapses can also influence the reachable processing speeds.

In the event-based processing scheme, neurons are only updated when new information
is present. Accordingly, the dynamic energy consumption increases with each spike being
emitted. This is where the advantages of sparse communication and a sparse design
become apparent. The fewer neurons a spike reaches, the fewer neurons need to be
updated, and the less energy is used. At the same time, there is no neuron update if
no spike had been produced in the first place. However, our experiments will show that
optimizing a network for sparse connectivity increases the number of emitted spikes while
maintaining or losing classification accuracy. But as the network gets more sparse, each
emitted spike is forwarded to less afferent neurons, resulting in less Synaptic Operations
(SOPs). This introduces an interesting design trade-off between the network performance,
connection sparsity, spike activity, and SOPs.

4.3.2 Neurons, Trainable Parameters, and Synapses

In the highly parallelized realization of SNNs, there is an important distinction between
the number of neurons, trainable parameters, and synapses, which are given by the
network or layer design, respectively. Due to their sequential layer-wise computation
scheme, this is often not addressed in ANNs. A summary of the relations between the
number of weights, synapses, and neurons for different layer types is given in table 4.2.

63

4 Network Architecture and Training

Neuron layers following the fully connected feedforward scheme connect each input of
the layer m to every output neuron n. As a result, there are as many synapses as weights
involved. Recurrently connected layers increase the number of weights and synapses by
the recurrent connections while keeping the same number of neurons.
The implementation of convolutional layers results in a reduced number of trainable

parameters compared to the utilized number of synapses due to the sharing of the kernels’
weights. The number of neurons and synapses is still high because unfolding the sliding
kernel window results in numerous applications of the same kernel weights on different
groups of neurons. The number of synapses and neurons in a convolutional layer greatly
depends on the size and number of the kernels involved in the convolution operation.
Typically, kernels are small compared to the size of the input. Therefore, even though
small kernels lead to a low number of trainable parameters, the total number of parallel
synapses and neurons is high.

A further important distinction concerns the number of SOPs, which are triggered by
the incoming spikes of a layer. Depending on the layer architecture, this number varies
greatly. The relations given in table 4.2 are based on densely connected schemes. Thus,
the numbers will be smaller if the layers are sparsely connected. For both feedforward
and recurrent layer types, an incoming spike triggers the update of every neuron in
the population. For recurrently connected layers, an outgoing spike emitted by the
population of the layer itself also triggers the update of every neuron in the population.
In convolutional layers, each input feature is perceived by a subset of the neurons in
the layer. Here, only those neurons have to be updated, whose receptive fields cover the
input feature. Ignoring effects caused by padding at the edges of the input, each input
feature is covered by a number of neurons, proportional to the size of the convolutional
kernels and the number of kernels.

4.3.3 Energy Consumption

One of the most important metrics to assess the performance of a neuromorphic accelerator
is its energy efficiency. Most commonly, this is expressed by the consumed energy per
SOP or spike. This, of course, only reflects a part of the total energy consumption of the
chip. What is not reflected is the static energy consumption, which is independent of the
activity of the network. However, it gives a ballpark figure of the expectable consumption
and an idea about how the approach scales.
For a comparison between ANNs and SNNs, Yin, Corradi, and Bothé provide an

overview of the dynamic whole-layer energy consumption of different layer types if the
SNN is realized in a common digital system [175]. An excerpt is given in table 4.3 for
different layer types with m inputs and n outputs. Their considerations are based on
the fact, that simple additions consume much less energy than the Multiply-Accumulate
(MAC) operations used in common ANNs, thus EAC < EMAC. This simplification
is enabled by the binary activation function of SNNs, which eliminates the need for
the multiplication of the current activation value and the connection weight. Instead,
the weights of active incoming connections can be summed up. The sparse processing
capability of SNNs is reflected by the firing rate parameter Fr, which can be much

64

4.3 Neuromorphic Hardware Considerations

Table 4.3: Comparison of the computational costs for different layer types. The
layers have m inputs and n outputs. (Adapted from [175])

Type Network Energy/layer

ANN

DNN mnEMAC

RNN (mn+ nn)EMAC

LSTM (4mn+ 4nn+ 3n)EMAC

SNN Feedforward (mn)Eadd Fr
Recurrent (mn+ nn)Eadd Fr

smaller than one if a sparse activity is given. In ANNs, in contrast, the whole network is
updated every time.
In a digital neuromorphic hardware implementation, the energy costs can be further

broken down, as shown by Davidson and Furber [23]. They additionally include the
costs of broadcasting the activations through the network, retrieving the weights and
neuron states from memory, and writing the newly computed states back to memory. In
a feedforward network, this totals:

EtotalANN = EbroadcastActivation + EretrieveWeights

+NmeanTargets × (EgetState + Emultiplication + Eaddition + EwriteState) .
(4.11)

In SNNs, the multiplication operation can be omitted, but the number of operations is
now scaled by the number of exchanged spikes:

EtotalSNN = NmeanSpikes × (EbroadcastSpike + EretrieveWeights)

+NmeanSpikes ×NmeanTargets × (EgetState + Eaddition + EwriteState) .
(4.12)

Based on the typical energy consumption when realized in the TSMC 22FDX technology,
the authors conclude the cost of an adder operation to be E, a multiplier to be 5E,
and reading and writing from and to memory to be 5E and E, respectively. The
remaining cost components are neglected but would have a larger share in the SNN’s
energy balance. The total cost for an ANN thus sums up to 5E to retrieve the weights
and 5E + 5E + E + E = 12E for each loop over the targets. Scaling effects and
broadcasting costs are thereby neglected. In an SNN, the cost for each target computation
is 5E + E + E = 7E, but this cost is scaled by the number of emitted spikes. Thus, in
an equivalent architecture, the spike rate of each neuron needs to be < 12E/7E = 1.72
per inference for the SNN to outperform the ANN based on these assumptions [23]. A
rate-based encoding scheme contradicts this maximum spike rate. “It suggests that only
networks with very low spiking activity justify the use of spikes over conventional ANNs”
[23].

The above-mentioned relation only approximates the theoretical abstract energy con-
sumption of equivalent networks, in which each artificial neuron is exchanged by a spiking
one. However, this one-to-one relationship is not always practical. When sequences

65

4 Network Architecture and Training

are analyzed, it is often beneficial to use networks that implement memory. LSTMs
implement a latent cell state that can maintain information throughout several time
steps. This comes at the cost of an increased number of calculations to update this cell
state, as shown in table 4.3. The theoretical energy consumption is thus significantly
higher than in the simple fully connected feedforward network. In direct comparison with
the recurrently connected SNN, the LSTM requires over four times more calculations to
be executed when the same number of neurons are used.

66

5 Speech Recognition – Wake Word
Detection

In this chapter, we use and evaluate the methods of the foregoing chapters. Therefore, we
solve the key word detection task within the topic of speech recognition. The presented
approach1 combines the usage of resonating input neurons from Section 3.4 and the
improvements and approaches of SNNs and their training from chapter 4.

After motivating the topic and giving an overview over the approach, a short review of
existing methods is given. Subsequently, the setup of the experiments is presented, and
the results are shown. Finally, the results are discussed in the last section of this chapter.

5.1 Motivation (based on [52])

Keyword spotting, as part of speech recognition, is widely used in embedded systems for
a wide range of voice-activated assistants. A detector for this purpose can be operated in
an always-on mode; therefore, in addition to the recognition rate, energy efficiency is a
decisive factor for evaluating a detection system. Another consideration is the detector’s
ability to perform the desired action in real-time.

Current implementations consist of multiple cascaded detectors of increasing complexity
to cope with these requirements. Such detectors range from simple threshold switches over
classical algorithmic signal processing to complex neural networks. The growing demand
for smart devices and their capabilities expects even better performance with further
improved energy efficiency. Many embedded ANN architectures have been proposed to
resolve this [8], [191]. Ideally, also large-scale speech recognition should be performed
directly in the edge device. Due to its too high complexity, this task is currently offloaded
to cloud servers.
In a common, digital, speech recognition implementation, the spoken speech signal

is converted into a quantized and discretized format for further processing. Therefore,
the alternating pressure waves in the air are transformed into electrical signals using a
microphone. An Analog-to-Digital Converter (ADC) converts this electrical signal into
the digital domain. This step is followed by the spectral analysis and the generation of
the auditory features, which are processed by the ANN-based detectors.
An alternative approach, which can extract complex information while remaining

energy-efficient, comprises SNNs. A possible SNN-based approach can directly operate
on the analog electrical signal. The RF neurons introduced in Section 3.4 can convert the
signal into spatio-temporal spike trains if implemented in analog neuromorphic hardware.

1This approach has been previously published in [52].

67

5 Speech Recognition – Wake Word Detection

(optional)
Binarization

Recurrent
SNN

(a) Data collection (b) Spectral analysis (c) (d) Prediction (e) Readout

FC
FC

FC

So
ftm

ax
So

ftm
ax

So
ftm

ax

𝑡0

𝑡1

𝑡𝑛

Recurrent
SNN

FC
FC

FC

So
ftm

ax
So

ftm
ax

So
ftm

ax

R
F n

eu
ro

n
s

𝑡0

𝑡1

𝑡𝑛

𝑡0 𝑡𝑛𝑡1

𝑡0 𝑡𝑛𝑡1

Figure 5.1: Network architecture for the speech recognition task. The speech signal
samples are collected (a). Subsequently, the frequency domain features are
generated using either RF neurons or classical signal processing approaches
(b). Optionally, the Mel-based spectra can be binarized (c) to provide spike
representations for the recurrently connected SNN to be recognized (d). Non-
spiking integrator neurons, one for each class, indicate the probability of a
detected gesture (e). (Figure adapted from [55])

The resulting spike trains are then analyzed by a succeeding SNN (see Figure 5.1). Here,
the inherent properties of SNNs can be leveraged: the ability to detect patterns within
the input while maintaining low average activity and thus operating energy-efficient.

In this chapter, we compare different modeling approaches for simulating SNN behavior.
Simultaneously, we use different neuron behaviors and connectivity strategies to identify
the most suitable network for an end-to-end keyword spotting on restricted hardware.
Therefore, we demonstrate resonating neurons as input layer to transform an audio
signal into a frequency selective spatio-temporal spike representation. Thus, the network
can perform keyword detection solely with spiking neurons without using digital signal
processing.

5.2 Background

In the last few years, speech processing has been a much-elaborated field in neural
network-based processing. In the following, we give the condensed background for the
typical generation of auditory features and provide an overview of related works. There,
we focus on approaches based on SNNs to provide better comparability for our approach.

5.2.1 Auditory Feature Generation

Speech recognition is not applied directly on the auditory signal in the time domain but
on features that have been generated using digital signal processing techniques. These

68

5.2 Background

techniques will be briefly introduced in the following. To take a step back, however, we
first have a look at the biological feature generation system of our hearing.

Anatomical Example

The generation of speech in the human being is achieved by varying the tension of
the vocal cords, the shape of the vocal tract, and the configuration of the lips and
nostrils. The spectrum of human speech can be approximated to have nearly constant
characteristics in short periods (10-30 ms) due to the anatomy of the vocal cords and the
cavities involved in voice generation [192].

The perception of speech signals is carried out by our ears, which convert the alternating
pressure waves of sound into spatio-temporal patterns of neural activity [193]. Leaving
out complex closed loop interactions between the brain and the auditory sensory organ,
the conversion is done by microscopic hair cells, which resonate at specific frequency
bands. These hair cells emit spike signals proportionally to their current excitation. The
hair cells are located on the basilar membrane in the cochlea of the inner ear. They
are arranged in a way that the hair cells, which resonate at the highest frequencies, are
located at the base of the basilar membrane, whereas low frequencies are recognized
towards the apex (see Figure 5.2a).

The hair cells’ excitation patterns are propagated along the auditory nerve via different
paths through the brain stem to the audio cortex of the brain. It has been shown that
temporal codes are thereby used to encode slowly varying changes, whereas rate codes
are used for fast, instantaneous amplitude differences [194]. At the same time, the spike
trains originating from hair cells representing low frequencies show phase-locked behaviors
[178]. Thus, the spikes always occur at the same phase of the encoded underlying signal.
Above 5 kHz, the frequencies are too high to be accurately represented, and the spikes
occur at random phases.

Lyon’s Cochlea Model

The computational model of the cochlea by Lyon [195] models the ear as a cascade of
filters, non-linearities, and gain controls for digital processing.

The first notch filter cascade mimics the spatial evolution of traveling pressure waves
along the basilar membrane, starting with high frequencies (20 kHz) to low frequencies
(50 Hz) as shown in Figure 5.2b. A resonator follows each filter to create a bank of
sharp band-pass filters. The zero-centered oscillations are then rectified using a half-wave
rectifier. This nonlinearity preserves the pitch of the fundamental oscillation while
“amplitude demodulating” [195] the waveform. In the last step, a compression module is
included to account for a large dynamic range of the input signal.

Mel-frequency Cepstral Coefficients

There is an important difference between the absolute signal frequency and its perceived
pitch in human perception. To reflect this, the Mel-scale was introduced, in which
doubling the pitch of a perceived tone results in doubling its respective Mel-value. The

69

5 Speech Recognition – Wake Word Detection

(a) Schematic anatomy of the human cochlea. (Fig-
ure from [196])

(b) Filter cascade of Lyon’s cochlea model.
(Figure from [195])

Figure 5.2: Hearning models. In the human cochlea (a), sound waves are translated
into frequency-selective spike trains. Hair cells on the basilar membrane, which
perform the translation, resonate in their resonant frequency and emit action
potentials proportionally to their excitation. Their resonant frequency, thereby,
decreases the farther away they are located from the base of the membrane.
Lyon’s cochlea model (b) tries to mimic this spatial separation of frequency
components using a cascade of notch filters and resonators.

relation between the signal’s frequency and its projection onto the Mel-scale is linear at
low frequencies and logarithmic and higher frequencies.

Mel- or log-Mel spectra are used in digital audio processing systems to represent sounds
like music or speech. In this way, the information needed to convey an understanding
of the content is presented in a compressed form. To condense the representation even
more, cepstral coefficients were introduced. These Mel-Frequency Cepstral Coefficients
(MFCC) have been shown to represent the relevant sound information best compared to
other feature generation techniques [197].
The generation of MFCC comprises five distinct steps [198]: (1) Dividing the signal

into frames with constant length. Often, consecutive frames overlap by 25% to 50% to
enable continuity between the frames. (2) Calculating the amplitude spectrum using the
FFT algorithm. (3) Taking the logarithm of the amplitude spectrum. (4) Projecting
the resulting spectrum onto the Mel-frequency spectrum. Here, the evenly spaced
amplitude spectrum generated by the Fourier transform is scaled that resembles the
human perception of the pitch more closely. (5) Computing the Discrete Cosine Transform
(DCT) of the resulting scaled spectrum. The result is called cepstrum because of the
non-linear operations between the two transforms. Often only a subset of the cepstral
parameters is included in the final result.
Depending on the application and the further signal processing, only the first four

steps are often conducted to generate the log-Mel spectrum of the input signal without
the final calculation of the cepstral coefficients.
Common guidelines are to use 40 Mel-frequency bins computed in step 4, and 13

cepstral features as the result of the DCT computation in step 5 [199]. Additionally,

70

5.3 Setup

the first and second derivatives of the cepstral features can be included to reflect the
evolution of the cepstral features over time.

5.2.2 Related Work (based on [52])

Most modern speech recognition systems are based on non-spiking ANNs. They use
recurrent or convolutional network architectures to detect spoken words in audio signals
[200], [201]. For this purpose, the input signal is divided into windowed blocks, and a
short-time Fourier transform is applied, resulting in a spectrum that changes over time.
Typically, the spectrum is then projected to the Mel-frequency scale, or it is further
processed to yield the MFCC features.

Other ANN-based approaches exist, which directly analyze the audio stream without
prior feature generation. The network learns feature extraction from the ground up
while still operating on fixed-sized windows of input data. The proposed deep and
convolutional architectures, therefore, exceed millions of trainable parameters and result
in large networks [202]–[205]. Accordingly, small-sized networks for embedded use cases
are based on Mel feature generation [8].
Due to the inherent relation of speech recognition and biologically inspired networks,

there exist numerous approaches for audio processing using SNNs. Early works on
biologically plausible audio processing solutions based on SNNs demonstrated small,
energy-efficient networks that show stimulus-specific network activities when stimulated
with simple stimuli [206]. They used an artificial cochlea [207], [208] to transform the
audio signal into a spiking representation.
An overview of SNN-based approaches in speech recognition is given in table 5.1.

With recent advances in supervised gradient descent-based learning algorithms for SNNs
[47], [49], spiking networks that perform keyword spotting in the spiking domain have
been proposed [22], [35], [172]. With the use of SNNs, the focus of the benchmarks is
increasingly moving towards the energy-efficient execution of the recognizers [22], [209],
[210].

5.3 Setup

In the following experiments, different combinations of feature generation methods and
network architectures of ANNs and SNNs are evaluated. The detailed descriptions of the
individual components are given in the following.

5.3.1 Dataset

The dataset used for the evaluation of the proposed architecture is Google’s Speech
Commands Dataset [211]. It consists of the spoken command words down, go, left, no,
off, on, right, stop, up, yes, background noise, and numerous arbitrary words, which are
categorized as unknown. All examples have a duration of one second and are sampled
with a frequency of 16 kHz. Each known word has roughly 3000 examples in the training
set, whereas the unknown class amounts to 54k examples. The total number of examples

71

5 Speech Recognition – Wake Word Detection

T
ab

le
5.

1:
R

el
at

ed
w

or
k

fo
r

sp
ee

ch
re

co
gn

it
io

n
in

SN
N

s.
*
=

ou
rs

Y
ea

r
R

ef
.

T
yp

e
Fe

at
ur

es
E

nc
od

in
g

L
ea

rn
in

g
T

as
k

20
00

[2
12

]
LS

M
sp
ec
tr
um

on
se
t,

pe
ak

,o
ffs
et

ha
nd

cr
af
te
d

T
I4
6
sp
ee
ch

co
rp
us

(s
ub

se
t)

20
05

[2
13

]
LS

M
M
FC

C
,L

yo
n
m
od

el
B
SA

re
ad

ou
t
tr
ai
n

T
I4
6
sp
ee
ch

co
rp
us

(s
ub

se
t)

20
05

[2
14

]
FF

Sp
ec
tr
um

R
O
C

ha
nd

cr
af
te
d

Fr
en

ch
di
gi
ts

20
10

[2
15

]
FF

LP
C

ra
te

SW
AT

T
I4
6
sp
ee
ch

co
rp
us

(s
ub

se
t)

20
10

[2
16

]
C
N
N
,D

N
N

w
av
ef
or
m
/w

av
el
et
s

R
O
C

ev
ol
vi
ng

sp
ea
ke
r
id
en
tifi

ca
tio

n
20

12
[2
06

]
R
N
N

sil
ic
on

co
ch
le
a

ra
te

ST
D
P

Si
ng

le
fr
eq
ue

nc
ie
s

20
15

[2
17

]
LS

M
Ly

on
m
od

el
B
SA

lo
ca
ll
ea
rn
in
g

T
I4
6
sp
ee
ch

co
rp
us

(s
ub

se
t)

20
17

[2
18

]
D
N
N

sp
ec
tr
um

cu
rr
en
t
to

LI
F

ST
D
P

A
ur
or
a
(s
ub

se
t)

20
18

[2
09

]
D
N
N

M
FC

C
R
at
e,

T
T
FS

B
P

T
IM

IT
(s
ub

se
t)

20
18

[2
19

]
H
M
M

sp
ec
tr
um

ra
te

(P
oi
ss
on

)
ST

D
P

A
ur
or
a
(s
ub

se
t)

20
19

[2
10

]
D
N
N

M
FC

C
B
P

(c
on

ve
rs
io
n)

ph
ra
se

de
te
ct
io
n

20
20

[3
5]

D
N
N

M
FC

C
,l
og

-M
el

cu
rr
en
t
to

LI
F

B
P

(t
an

de
m
)

T
IM

IT
,F

A
M
E,

Li
br
isp

ee
ch

20
20

[1
80

]
D
N
N
,C

N
N

M
FC

C
cu

rr
en
t
to

LI
F

B
P

(t
an

de
m
)

Sp
ee
ch

C
om

.,
H
ey

Sn
ip
s

20
20

[2
2]

D
N
N

M
FC

C
B
P

Sp
ee
ch

C
om

.
20

20
[2
20

]
R
N
N

M
FC

C
ra
w

B
P,

e-
pr
op

T
IM

IT
20

21
*

[5
2]

R
N
N

M
FC

C
,l
og

-M
el
,w

av
ef
.

ra
w
,b

in
ar
iz
ed

,R
F

B
P

Sp
ee
ch

C
om

.
20

21
[1
72

]
C
N
N

lo
g-
M
el

ra
w

B
P

Sp
ee
ch

C
om

.
20

21
[1
41

]
D
N
N
,R

F
sp
ec
tr
um

,w
av
ef
or
m

ra
w
,R

F
Sl
ay
er

Sp
ee
ch

C
om

.
20

21
[1
73

]
R
N
N

M
FC

C
,l
og

-M
el

ra
w

B
P

Sp
ee
ch

C
om

.,
H
ei
de

lb
er
g,

T
IM

IT

72

5.3 Setup

Table 5.2: Parameters of the Mel- and MFCC-based feature generation.

Parameter Value

Frame length 30 ms
Hop length 10 ms
Minimum frequency 133 Hz
Maximum frequency 6854 Hz
NMelfrequencies 40
NMFCC 13 (+ 13∆ and 13∆∆)

in the training set is therefore 85,511. In the test set, each known word is represented by
approximately 400 examples.
Class weights are introduced to account for the unbalanced dataset, which scale the

training error according to their numerical over or underrepresentation within the dataset,
respectively.

5.3.2 Evaluation Metrics

To enable comparability with other approaches, we report the classification accuracy
on the test set. The winning class is selected by the largest value of the neurons in
the last layer of each network using the softmax activation function. The number of
neurons, synapses, trainable parameters, and state variables are determined by the chosen
architecture. They give an idea about the complexity of the network as introduced in
table 4.1. For the architectures based on SNNs, additionally, the number of spike events
per example is recorded and averaged during the evaluation of the test set. The total
number of synaptic events can be calculated with the information about the fan-out
synaptic connections for each neuron. This value reflects the expectable dynamic power
consumption during inference. For the baseline ANN architectures, the number of MAC
operations is reported for comparison.

5.3.3 Input Encoding

The raw audio stream has to be encoded to be processed by the neural networks.
The RF neuron-based approach is compared with the common feature generation for

speech detection based on Mel-frequencies.

Mel-frequencies and MFCC

The RF-encoded approaches are compared to traditional methods. Therefore, log-Mel
features and MFCC are used. The parameters chosen are based on typical values used in
the literature and in other related works [172], [180]. The parameters are summarized in
table 5.2.

73

5 Speech Recognition – Wake Word Detection

Table 5.3: Parameters of the RF neurons used for the speech recognition task.

Parameter Symbol Value set 1 Value set 2

Damping constant λ 20 Hz 20 Hz
Initial threshold vth,0 1.0 0.5
Threshold adaption f(vth) vth 7→ 2 vth vth 7→ 2.1 vth
Minimum frequency fmin 20 Hz 20 Hz
Maximum frequency fmax 2000 Hz 4000 Hz
Frequency spacing - linear linear
Nneurons - 40 100

The 40 Mel-frequencies cover a frequency range between 133 Hz and 6854 Hz. Thereby,
the first 13 filters are linearly spaced with their center frequencies placed between 200
Hz and 1000 Hz, and the following 27 filters are logarithmically spaced [199]. Because
the bandwidth of the logarithmically spaced filters grows with higher frequencies, their
amplitude is normalized so that the filter’s energy stays constant. The logarithm is applied
to the Mel-spaced spectrum to obtain the standard log-Mel-spectrum. Additionally, the
MFCC and their first and second discrete derivatives are computed.
In contrast to the spike-based encoding using RF neurons, the traditional methods

evaluate fixed sections of the signal, frames, which are successively moved along the time
axis. A frame has a length of 30 ms, and the hop length equals 10 ms. Because the
speech recordings last one second, this results in 98 partially overlapping frames.
To account for the spike-based communication scheme of the SNNs, the resulting

input matrices are additionally binarized using the mean binarization scheme shown
in Section 3.2.3. Both the raw and binarized inputs will be applied to the different
architectures.

Resonate-and-fire Neurons

In the third configuration, the raw audio stream is encoded into a spike representation
using resonating neurons (see Section 3.4). This approach is inspired by Lyon’s cochlea
model, introduced in Section 5.2.1: A bank of resonators is used to select spectral
components of the input according to their resonance frequency. In contrast to Lyon’s
model, the amplitude demodulation is carried out by the non-linear spike generation.
Additionally, the compression filter is replaced by the adaption of the spike threshold to
account for a large range of input amplitudes.
The resonating neurons are simulated using exact solving of the coupled differential

equations, which describe the system. Exact solving is applicable here because the input
signal i(t) is assumed to be constant between two succeeding samples. Although the
input values are digital samples during this simulation, the observations are transferred
to a pure analog implementation. The consideration of the Nyquist-Shannon sampling
theorem during the sampling of the dataset and the exact solving of the neuron’s equation
system justify this assumption.

74

5.3 Setup

The parameters of the neuron model have been determined analytically using the
relations described in Section 3.4, and have been tuned empirically to adapt to the
characteristics of the input data. The resulting parameters are summarized in table 5.3.
Two variants with different maximum frequencies and a different number of resonating
neurons are implemented to enable further comparisons. In both cases, the neurons’
resonant frequencies are spaced linearly. However, since more resonators are available in
the second value set, the maximum frequency is increased to 4000 Hz. Simultaneously,
the neurons’ bandwidth for which they generate output spikes is narrowed in the second
set. This ensures less overlap between adjacent resonant frequencies. The damping
constants and minimum frequencies are equal in both cases because these mainly depend
on the analyzed dataset.

0Sound
amplitude

(a)

0

1k
Neuron
frequency

(b)

0
Membrane
voltage

(c)

200 300 400

vth,0

Time [ms]

Threshold
voltage

(d)

Figure 5.3: Exemplary evaluation of the encoding of a speech signal using RF
neurons. (a) shows the waveform of the analyzed spoken word right. The
corresponding spike response pattern of the encoding RF neurons is shown in
(b). The course of the voltage-like variable of one of the RF neurons and its
threshold voltage adaption is shown in (c) and (d). (Figure previously published
in [52])

The exact spike times of the resonating neurons are discretized. The reason behind
this is two-fold: (1) The SNNs are simulated in discrete time steps to enable BPTT-based
learning (see Section 2.2.3). This restriction, however, is only necessary during the
training phase of the networks. For inference in production, the networks can be operated

75

5 Speech Recognition – Wake Word Detection

continuously or with a different discretization. For this, it is necessary to adjust the
neurons’ parameters to ensure similar behavior. (2) For the comparison with the baseline
ANN models, the input needs to be present in a discretized form. The discretization
intervals are chosen to be similar to the frame length of the MFCC- and Mel-based inputs.
The resulting input format for the network simulation are sparse matrices, which have
non-zero entries at the time-frequency coordinate at which the neuron with the respective
resonant frequency emitted a spike.
An exemplary visualization of the encoding process using RF neurons is shown in

Figure 5.3. The figure thereby only shows the relevant time span in which the signal
contains the voice. The raw speech signal of the arbitrarily chosen word right is fed into
the bank of resonating neurons. The neurons start to resonate depending on their resonant
frequency and the amplitude of the respective signal components. If the excitation of a
single neuron is high enough, it produces an output spike, its membranes are reset, and
the threshold value is increased according to the threshold adaption rule. The resulting
spike train is depicted in the second row of Figure 5.3. The temporal evolution of one
neuron’s voltage-like membrane variable is shown in the third row of the figure. There,
the positive responses to the respective frequencies in the signal are visible. After each
reset, the threshold voltage of the neuron is increased, as shown in the bottom row. The
threshold voltage slowly decreases to the initial threshold value if no spike is generated
for a long period of time. This enables the neuron to spike again in the presence of lower
excitations.

Visual Comparison of the Speech Features

Figure 5.4 shows a visual comparison of the feature generation methods using RF neurons,
Mel-frequencies, and MFCC. The parameters for the feature generation are shown in
tables 5.2 and 5.3. Again, the word right, pronounced by a female speaker, is used for
demonstration. The two sets of parameters for the RF neurons are primarily used for the
performance evaluation of the whole networks. However, it can be seen that the extension
of the frequency range up to 4 kHz includes more distinctive features. Qualitatively, the
two spike trains and the spectrum based on Mel-frequencies look comparable. A high
activation can be seen during the presentation of the spoken word. During the time
interval between 200 ms and 300 ms, especially low frequencies are present. Then, higher
frequency components start to be recognizable. The MFCC can not be visually compared
because, due to the cosine transform, the features do not represent a spectrum anymore.

5.3.4 Network Architectures

In our experiments, we compare the above-mentioned feature generation approaches in
combination with different network architectures of ANNs and SNNs. The networks
comprise feedforward, convolutional, and recurrently connected layer types. They thus
represent a broad base of different network architectures.

76

5.3 Setup

0

So
un

d
am

pl
itu

de

(a)

0

1k

2k

R
F
ne

ur
on

fr
eq
ue

nc
y
[H

z]

(b)

0

2k

4k

R
F
ne

ur
on

fr
eq
ue

nc
y
[H

z]

(c)

0
2k
4k
6k

M
el

fr
eq
ue

nc
y
[H

z]

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

Time [s]

M
FC

C

(e)

Figure 5.4: Feature generation for an exemplary spoken word. The waveform of
the spoke word right is shown in (a). (b) and (c) show the spike response of the
RF neuron banks using the two value sets in table 5.3. (d) depicts the log-Mel
histogram of the audio snipped. The sequence of MFCCs and their first and
second derivatives is shown in (e).

77

5 Speech Recognition – Wake Word Detection

ANN Architectures

The baseline models used for comparison are non-spiking ANNs. They feature simplified
architectures of common networks given in the literature. The networks do not fully
reach current state-of-the-art performance but are a ballpark figure which performance
to expect from the different types with the given experimental setup. The inputs to the
different networks are the same as for the SNNs to enable comparability.
The feedforward type network – Deep Neural Network (DNN) – consists of one or

more layers of dense Fully Connected (FC) layers. Because the network itself does not
offer any temporal memory or specialized structures, the input sequences are flattened
and are presented to the network at once.

The recurrent network consists of LSTM cells. The network can thus save its state in
the cell’s latent variables. With that, a memory is created, and it is possible to process
data sequences with temporal features.

The convolutional network – CNN – comprises convolutional layers for spatial feature
extraction and temporal sequence detection. Accordingly, the first convolutional layers
convolve the kernels over the two-dimensional input of multiple stacked frames. The
posterior layers convolve over the time domain of the sequence to extract the temporal
information of the spoken words.
A fourth network architecture – Recurrent Convolutional Neural Network (RCNN) –

combines the convolutional and recurrent network types. The network consists of a con-
volutional layer, which is used to extract spatial features within the input. Subsequently,
a LSTM layer is used to extract the temporal variances.

Descriptions of the architectures are also given in table 5.4.

SNN Architectures

The benchmarked networks comprising spiking neurons include feedforward, recurrent,
and convolutional structures, too (see table 5.5).
Similar to the baseline ANNs, the inputs of the SNNs are either the spike trains

generated by the RF encoding layer, or temporal patterns, which are provided by the
preprocessed Mel- and MFCC-based inputs. The output layer consists of non-spiking
integrators – one for each class – which are evaluated after each training example to
calculate the respective loss and accuracy values (see Section 4.1.3). The populations
between the input and the output layer consist of LIF neurons with different connectivity
schemes.

In the network implementing feedforward connectivity, weighted synapses solely connect
neurons of different layers without creating backward connections. In contrast to the
baseline feedforward ANN implementation, this already enables recurrence within the
network. Recurrence is already given by the latent hidden variables of the neurons.

The second network implements recurrence explicitly. It includes additional connections
within a population to enable communication between neurons through time.

The examined convolutional networks implement kernels with small receptive fields,
which are instantiated multiple times with shared weight variables (see Section 4.1.5).

78

5.3 Setup

Table 5.4: Architectures of the examined ANNs for the speech detection task.
FC: fully connected dense layer with (number of neurons) and ReLU activation.
Output: fully connected layer with softmax activation. C: convolutional layer
with (number of kernels, kernel size in time dimension, kernel size in frequency
dimension, stride in time, stride in frequency) and ReLU activation. MaxPool:
max pooling with (pool size in time, pool size frequency). Lin: linear layer,
which is a FC layer without activation function. LSTM: recurrently connected
layer with (number of LSTM cells).

Type Layer Parameters MAC Operations

DNN FC(50) 50,050 50,050
FC(50) 2,550 2,550
Output(12) 612 612
Σ 53,212 53,212

LSTM LSTM(92) 48,944 4,857,600
Output(12) 1,116 1,104
Σ 50,060 4,858,704

CNN C(20,10,4,1,1) 820 2,693,600
MaxPool(2,4) - 136.800
C(30,10,4,2,2) 24,030 1,296,000
Lin(16) 25,936 25,936
FC(64) 1,088 1,088
Output(12) 780 780
Σ 52,466 4,154,204

RCNN C(30,10,4,2,2) 1,230 1,048,800
MaxPool(1,4) - 46,080
LSTM(65) 48,360 2,212,600
Output(12) 792 780
Σ 50,382 3,308,260

79

5 Speech Recognition – Wake Word Detection

Within the scheme of convolutional networks, we examine three different architectures.
The first two layers comprise one-dimensional convolutions, which only extract spatial
features of the frequency axis. The kernel size on the time axis is one. Accordingly,
temporal features are extracted by the LIF neurons. To evaluate the relevance of recurrent
connections within the convolutional kernels, one of the one-dimensional CNN incorporates
recurrent connections. The architecture featuring two-dimensional convolutions of both
the time and the frequency axis is a scaled-down version based on [172].
The temporal evolution of the SNNs is simulated in discrete time steps to enable

backpropagation learning. This part of the network is subject to the optimization of
connections, weights, and hyperparameters.

5.4 Evaluation
In this section, the proposed end-to-end approach of using solely spiking neurons for
speech recognition is evaluated. Therefore, different network architectures are evaluated
and compared, followed by insights into the process of training and an evaluation of
the networks’ complexities. The section concludes by comparing the obtained results to
state-of-the-art solutions given in the literature.

5.4.1 Classification Performance

The classification performance reached by the different model and input combinations is
shown in table 5.6. Detailed network descriptions of the respective models are given in
the appendix in tables 5.4 and 5.5. All of our evaluated networks have the constraint of
a maximum of 50,000 parameters in common. This number marks the beginning of the
point of diminishing returns, such that a much larger network results only in marginally
higher classification performances. We will show this relation in Section 5.4.3. To enable
the comparability between Mel-based and RF-encoded inputs, only the first value set
shown in table 5.3 is used. With that, the dimensionality of the input feature vector is
the same for all inputs.
The top half of table 5.6 shows the classification performance of the non-spiking

ANNs. The best result of each model is marked in bold. In all cases, the performance of
non-binarized input data is notably higher than the binary inputs. This also applies to
the input based on the RF neurons.
The reported classification performances do not reflect the current state-of-the-art

performances given in the literature. Attention-based CNNs, for example, have been
shown to reach even higher classification accuracies [221], [222]. However, the reached
performances give an idea about what the simple architectures in our experiments are
capable of. It shows that given the different preprocessing steps on the audio data, the
networks are able to reach 93% accuracy on the benchmark dataset with around only
50,000 tunable parameters.
The classification performances of the SNNs is shown in the lower half of table 5.6.

The networks can solve the classification problem with a comparable but consistently
lower accuracy compared to the ANN-based architectures.

80

5.4 Evaluation

Table 5.5: Architectures of the examined SNNs for the speech detection task.
FC: fully connected dense layer with (number of LIF neurons). Output: fully
connected layer with softmax activation. C: convolutional layer with (number of
kernels, kernel size in time dimension, kernel size in frequency dimension, stride
in time, stride in frequency). Rec. FC: recurrently connected layer with (number
of LIF neurons). SOPs/Spike refers to the number of neuron updates, which are
triggered in the next layer by each spike emitted by the current layer.

Type Layer Neurons Params Synapses SOPs/Spike

DNN Input 200
FC(200) 200 8,002 8,000 200
FC(200) 200 40,002 40,000 12
Output(12) 12 2,400 2,400
Σ 412 50,404 50,400

RNN Input 200
Rec. FC(200) 200 48,002 48,000 212
Output(12) 12 2,400 2,400
Σ 212 50,402 50,400

1D-CNN Input ≈ 132∗

C(33,1,4,1,2) 627 167 2,508 70
Rec. FC(70) 70 48,792 48,790 82
Output(12) 12 840 840
Σ 708 49,798 52,138

1D-RCNN Input ≈ 132∗

Rec. C(33,1,4,1,2) 627 1,882 20,691 101
Rec. FC(68) 68 47,262 47,260 80
Output(12) 12 816 816
Σ 706 49,334 68,767

2D-CNN Input ≈ 504∗

C(42,4,3,1,1) 1,596 548 19,152 ≈ 504∗

C(42,4,3,1,1) 1,344 21,212 677,376 ≈ 504∗

C(42,4,3,1,1) 588 21,212 296,352 12
Output(12) 12 7,056 7,056
Σ 3,540 50,028 999,936

*Ignoring padding at the edges of the input. Average will be slightly less.

81

5 Speech Recognition – Wake Word Detection

Table 5.6: Classification performance of different architectures for the speech
detection task. For detailed architecture descriptions, see tables 5.4 and 5.5.
Combinations marked with “-” did not converge at all.

Type Model MFCC/∆/∆∆ log-Mel RF
raw bin raw bin (set 1)

ANN

DNN 64.94 16.97 77.38 43.99 50.98
CNN 88.12 73.87 88.92 66.75 71.06
LSTM 89.96 87.34 86.20 75.52 86.11
RCNN 91.53 84.91 93.09 78.20 84.68

SNN

DNN 88.83 86.44 60.98 72.47 79.67
RNN - 88.81 - 78.83 84.82
1D-CNN 88.85 83.46 77.95 69.82 82.56
1D-RCNN 90.08 84.44 79.90 72.97 83.08
2D-CNN 89.20 81.19 91.19 71.92 -

For both network types, ANNs and SNNs, the architectures based on convolutional
layers show the best classification accuracy. A comparison between the spiking 1D-CNN
and the 1D-RCNN networks highlights the importance of recurrent connections within a
convolutional layer. Though having marginally fewer trainable parameters, the evaluation
of the test set results in a higher classification accuracy.
Interestingly, the recurrent SNN, which marks the best performing spiking network

architecture on the RF-encoded dataset, does not converge on raw Mel-based data.
Only if the data is binarized can the network learn the essential correlations. In that
case, it outperforms all other architectures, including those based on ANNs. Only with
RF-encoded input features, the recurrently connected SNN is beaten by the non-spiking
LSTM architecture.
The confusion matrices in Figure 5.5 show the correct and false classifications on

the test set of two different networks. Both show a high misclassification rate for the
unknown class (11) and the word pair {off (4), up (8)}. The SNN based on the RF input
shows additional confusion pairs. The most prominent are {down (0), go (1)}, {go (1),
no (3)}, and {off (4), on (5)}. The same pairs can also be found for an LSTM network
on RF input (Figure A.1a), suggesting that the resonating input encoding clips relevant
information. Comparing the best performing ANN and SNN networks on the log-Mel
spectral input (Figures 5.5a and A.1b) shows that both network generations can achieve
similar results on the same input dataset.

5.4.2 Network Dynamics of the SNN

As shown in the previous section, the SNNs in the various combinations are able to reach
accuracy levels, which are comparable with those of the baseline ANNs. We now look
into the dynamics of the spiking networks and the behavior of the optimization variables
during training.

82

5.4 Evaluation

0 1 2 3 4 5 6 7 8 9 1011

0
1
2
3
4
5
6
7
8
9

10
11

355 9 1 8 2 1 0 1 0 3 0 26

3 364 0 10 1 0 0 1 4 1 0 18

1 0 395 0 0 0 0 0 2 3 0 11

2 4 4 374 0 0 0 1 0 3 0 17

0 5 0 1 368 3 0 1 16 0 0 8

0 3 0 0 11 359 0 1 5 0 0 17

1 0 6 0 0 0 374 0 0 0 1 14

2 2 0 1 0 0 0 389 4 1 1 11

1 2 2 3 12 3 1 5 384 0 0 12

0 1 4 0 0 0 1 1 1 401 0 10

1 0 0 0 0 0 6 1 4 0 396 0

2 2 7 5 0 2 3 2 1 1 0 383

Predicted

A
ct
ua

l

(a) ANN - RCNN on log-Mel spectogram

0 1 2 3 4 5 6 7 8 9 1011

0
1
2
3
4
5
6
7
8
9

10
11

338 12 3 14 1 0 0 8 0 4 0 26

19 326 2 14 2 4 0 10 4 2 0 19

3 1 366 0 0 0 8 2 0 19 0 13

6 11 4 359 0 0 4 3 1 4 0 13

0 6 2 3 302 15 0 7 54 0 0 13

2 1 0 2 31 332 1 3 9 0 0 15

2 2 10 3 3 0 334 1 2 2 0 37

9 19 2 0 12 2 0 344 14 2 0 7

0 2 1 1 24 8 2 19 357 0 0 11

2 5 16 0 0 0 6 0 1 377 0 12

15 0 6 0 2 7 1 15 7 3 321 31

9 9 8 12 9 16 10 4 6 5 0 320

Predicted

A
ct
ua

l

(b) SNN - RNN on RF inputs

Figure 5.5: Confusion matrices for the best performing ANN and SNN. Both
networks comprise 50,000 parameters. The ANN shown in (a) is a RCNN and
is applied on log-Mel spectrograms. The SNN in (b) is a recurrently connected
network. Its inputs are RF-encoded spike trains. Both networks show the
most misclassifications at wrongly predicted unknown class (11) or pair-wise
confusions like {off (4), up(8)}. The labels correspond in ascending order to
the words down, go, left, no, off, on, right, stop, up, yes, background noise,
unknown.

83

5 Speech Recognition – Wake Word Detection

Temporal Behavior

To give a general impression of the processes in the spiking network, an example evaluation
is shown in Figure 5.6. The depicted network consists of a single hidden population with
200 recurrently connected LIF neurons. The second row shows the sparse activity within
this population. The class probabilities are obtained by the membrane voltages of the
neurons in the output layer. The voltages are normalized using the softmax activation
function. The course of output corresponding to the correct output class is colored in
green. The bottom row of the figure displays the membrane voltage course of an arbitrary
neuron within the hidden population. The stroked horizontal line represents the threshold
voltage of the neuron. The stroked vertical lines illustrate the points in time when the
membrane voltage crosses this threshold and the neuron, thus, produces an outgoing
spike.

Figure 5.6 shows the network activity when excited by the command off. The evaluation
of the network output underlines the results of the confusion matrices shown earlier. Up
to a certain point, the network favored an output that did not match the correct class,
as depicted in red. This output corresponds to the word up. During the phonetically
similar pronunciation of the two words, the network predicts the wrong class until the
phoneme is present, which allows for a distinction between the words.
Another aspect, which is visible in the graphic, is the sparse network activity during

the inference. In fact, there is no activity at all during the majority of the simulation time.
Only during the time frame in which the excitation of the RF neurons is high enough to
produce spikes does the network exchanges spikes for further information processing.

Training

During training, the trainable variables are optimized to approximate the desired input-
output relation. In this setup, the trainable variables are the weights between the input
layer and the hidden population, the recurrent connections within the population and the
connections between the hidden population and the output layer. Additionally, the firing
threshold and the time constants of the hidden neurons are optimized. In Section 4.2,
we introduced these additional optimization variables and stated, that these can be
optimized either for each neuron individually or jointly for the whole population. In our
experiments, a joint optimization, thus, optimizing one threshold and one time constant
for the hidden layer, lead to the best results.

The adaption of the connection weights of the same network as in the previous figure
during training is shown in Figure 5.7. The figure shows the evolution of the weights
and their average absolute change in its three columns. The rows correspond to the
different groups of weights: the connections between the RF neurons (input), the recurrent
connections of the hidden layer, and the connections between the hidden layer and the
output neurons. While the distributions of the weights stay roughly constant at the input
and output connections, the weights of the recurrent connections show larger fluctuations.
As the histogram shows, most of the weights are located close to the average value, which
is nearly zero. At the same time, the minimum and maximum values of the weights are

84

5.4 Evaluation

Figure 5.6: Exemplary evaluation of the SNN’s inference of a command. (a) shows
the spike train of the word off using the RF neuron value set 1 in table 5.3. (b)
visualizes the spike activity in the hidden layer of the SNN. The spike emissions
are sparse in time and across the neurons. The courses of the normalized
membrane voltage of the non-spiking output neurons are shown in (c). The
course of the neuron corresponding to the correct label is shown in green. The
red line corresponds to the word up, which is preferred during the first half of
the prediction. The plot at the bottom (d) shows the course of the membrane
voltage of one arbitrary neuron in the hidden layer. The stroked horizontal line
visualizes the threshold voltage. The stroked vertical lines illustrate the spike
events.

85

5 Speech Recognition – Wake Word Detection

µ

max(W)

min(W)

µ+ 2σ

µ+σ

In
pu

t

Weights

µ−σ

µ

µ+σ

Weight
histograms

0

0.2

0.4

Average ∆W
per epoch

µ

R
ec
ur
re
nt

co
nn

ec
tio

ns

µ−σ

µ

µ+σ

0

0.1

0.2

µ

O
ut
pu

t

µ−σ

µ

µ+σ

Epochs
0

0.2

0.4

Figure 5.7: Weight change during training. The left column shows the course of the
average values of weights (µ), the areas of the standard deviations (µ+ σ and
µ+ 2σ) as well as the minimum and maximum values of the weights (min(W)
and max(W)) of the input connections, recurrent connections within the hidden
population and the output connections during training. In the mid column,
the histograms of the weight distributions are shown. The displayed range
corresponds to the red shaded area in the left column. The average weight
change of the respective connection group in each epoch is shown in the right
column.

86

5.4 Evaluation

4 10 30 50 70 90

0.6

0.7

0.8

0.9

τ [∆t]

A
cc
ur
ac
y

Time constants

Constant
Learned

5 10 15 20

0.2

0.4

0.6

0.8

Epoch

Thresholds

Figure 5.8: Trainable time constants and thresholds. The influence of different initial
time-constants λ = e−1/τ and on the final test-set accuracy is shown in the left
plot. The graphs show the reached classification accuracy for constant decay
values or time constants which were learned during training. The right plot
shows the evolution of the training error during training. Both configurations
reach the same accuracy, however, the network with the trainable threshold
converges faster.

significantly larger than in the other two cases. Thus, most connections are not relevant
for the processing of the information. Those, which are important, however, are adapted
accordingly. In the next section, we will prune these unnecessary, near-zero connections.

Figure 5.8 shows the influence of trainable time constants and thresholds. The left
plot shows the reached accuracy for network configurations with different initial time
constants of the neurons in the hidden population. Thereby, the constants were either
fixed or adaptive during the training phase. The networks with trainable time constants
consistently reached an accuracy of about 84%. The networks with constant configurations,
however, showed significantly worse performances. The intersection point of both graphs
is in the region around τ = 12∆t. This also marks the final value of the time constant
in the networks that were able to optimize the constant. We observed no difference
between individually learned time constants and layer-wise shared ones in this application.
However, in a setting with richer temporal variances within the input, the networks might
benefit from the individual per-neuron optimization.

The evolution of the training error for a fixed firing threshold and a population-wise
optimized threshold is shown in the right plot of Figure 5.8. Both graphs show the
averaged course over multiple runs. In both cases, the same error is reached. However,
due to the introduced freedom of the trainable threshold, the error converges faster if
the optimal threshold has not been guessed initially. Our experiments’ differences in
the convergence time introduced through the two approaches are reproducible but small.
The actual advantage of the introduced degree of freedom might manifest itself in much
larger network configurations.

87

5 Speech Recognition – Wake Word Detection

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·105

0.75

0.8

0.85

0.9

Trainable variables

A
cc
ur
ac
y

LSTM
LSTM100
SNN
SNN100

Figure 5.9: Network size sweep. Classification performance versus network size of LSTMs
and recurrently connected SNNs on RF-encoded input data. Here, the baseline
configuration as well as the second value set consisting fo 100 RF neurons is
examined. The sweep is performed for both value sets for the RF neurons
(see table 5.3). The stroked vertical line marks the number of 50,000 trainable
variables. After that point all networks show diminishing returns when further
increasing the network size. Generally, the networks, which use the input spike
trains of 100 RF neurons perform slightly better than the variants using only
40 neurons.

5.4.3 Ablation Study

The following studies examine individual aspects of the evaluated network to get a
more profound understanding of the involved SNNs. We base these experiments on the
non-spiking LSTM and the spiking RNN using RF-encoded input features. We use this
combination because of the simple structures of the two networks and their affinity to
the RF-based input.

Network Size

First, the relation between network size and the reachable classification performance is
analyzed. In addition to the first value set in table 5.3, we also evaluate the classification
performance using the second value set with 100 RF neurons.
Figure 5.9 shows the result of this experiment. The four classes represent the LSTM

and recurrently connected SNN, with the RF encoding being parametrized according to
the two value sets in table 5.3. All four classes experience a saturation of the reached
classification accuracy with higher numbers of trainable variables. For the two non-spiking
LSTM variants, the saturation is qualitatively reached at larger network sizes, resulting
in an overall higher achieved accuracy.
Generally, higher accuracies can be reached using the second value set of the RF

neurons. With the 100 RF neurons, a better representation of the sound spectrum is
given. Because more neurons are used, the bandwidth for which each individual neuron
emits spikes is tuned to be narrower, resulting in a more specific spike response. The
larger number of encoding neurons also increases the number of input spikes, which

88

5.4 Evaluation

are fed into the network. This also increases the overall network activity, resulting in
potentially higher energy consumption.

As mentioned above, the number of 50,000 trainable variables and the first RF value set
is used for all further analyses. At this network size, the reached classification accuracy of
all variants starts to saturate, resulting in a diminishing rate of returns above this value.
Although those variants using 100 RF input neurons tend to reach higher accuracies,
we proceed with 40. By that, the input feature vectors have the same size for the Mel-
and RF-based schemes. However, this again illustrates the ubiquitous tradeoff between
network complexity, network activity, and classification performance.

Pruning

The influence of connection pruning on the networks’ performance is examined in this
experiment. Here, the iterative pruning method introduced in Section 4.2.3 is used.
Multiple networks using the LSTM and RNN architectures are therefore trained, all
starting as dense networks with 50,000 trainable parameters. Aiming at the target
sparsity, the number of non-zero variables is gradually reduced during the training until
50% of the total epochs are reached. The second 50% of the total training steps are used
to fine-tune the model at the target sparsity.

The result of this experiment is shown in Figure 5.10. In the upper plot, the achieved
classification accuracy is shown in relation to the final sparsity of the network’s connections.
Above a sparsity of 80%, the reached classification accuracy starts to drop significantly
for both network types. This sparsity corresponds to only 10,000 of the initial 50,000
neuronal connections being active. Interestingly, the SNN can maintain a better accuracy
in the range between 80% and 90% sparsity, whereas the LSTM network already loses
performance. This might hint at the advantages of sparsely connected SNNs. However,
the best accuracies overall could be achieved by more densely connected LSTM networks.
The lower plot in Figure 5.10 shows the relation between network spike activity and

the sparsity of the networks. Here, only the spiking RNN is depicted for apparent reasons.
The network activity is shown in terms of spikes and SOPs. Spikes, thereby, correspond
to the outgoing spike events emitted by a neuron. SOPs, on the other hand, refer to the
incoming spikes, which trigger the computations at the receiving neuron. The distinction
is made because depending on the connection density of the network, each emitted spike
leads to a smaller or larger number of SOPs. In a sparse network, for example, only a
few neurons are connected, which leads to fewer updates of efferent neurons. The plot
shows a definite relation between network activity and connection density: the sparser
a network is, the more spikes are emitted during inference. The opposite correlation is
valid for the total number of SOPs. Due to the sparser connectivity, the emitted spikes
are received by a smaller number of neurons. The fewer SOPs per spike introduced by a
higher sparsity is thus more than enough to compensate for the larger number of total
spikes.

89

5 Speech Recognition – Wake Word Detection

0.65

0.7

0.75

0.8

0.85

A
cc
ur
ac
y

LSTM
SNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

·105

Sparsity

SO
Ps

1,000

1,500

2,000

Sp
ik
es

SOPs
Spikes

Figure 5.10: Network sparsity sweep. The classification performance versus sparsity of
LSTMs and recurrently connected SNNs on RF-encoded input data is shown
in the upper plot. The lower plot shows the network activity of the SNNs
for the same sparsities. The number of spikes corresponds to the number of
spikes, which have been emitted by the RF encoding and by the neurons of
the hidden layer. The number of events corresponds to the number of SOPs,
which have been triggered by the spikes. The number of SOPs decreases with
increasing sparsity since less neurons have to be updated per emitted spike.

90

5.4 Evaluation

Regularization

To restrict the growing network activity in sparse networks, spike activity regularization
is used. We, therefore, add the L1-norm for the spike activity of the hidden layer to the
training loss as introduced in Section 4.2.2. The activity regularization factor β scales
the loss contribution and thus controls its influence during the optimization.

0.65

0.7

0.75

0.8

A
cc
ur
ac
y

Sparsity level
0.5
0.7
0.8

10−6 10−5 10−4 10−3 10−2

0

0.5

1

1.5

·105

Regularization factor

SO
Ps

(o
nl
y
hi
dd

en
)

Figure 5.11: Network activity regularization sweep. The classification performance
versus the regularization factor of the activity regularization is shown in the
upper plot. The sweep is performed for different sparsity configurations. The
lower plot shows the number of SOPs for the different regularization factors.
Small regularization factors already influence the network activity while only
marginally influencing the classification accuracy. At too large factors, the
networks start to collapse, because the optimization favors decreasing the
network activity over the reduction of the training error.

The results in Figure 5.11 show that with a growing activity regularization factor, far
fewer spikes are emitted during inference. For low factors, this is even possible without
sacrificing classification performance. It is thus recommendable to include a cautiously
weighted activity penalization during the training phase. If the chosen factor is too
large, the reached classification accuracy starts to lower, introducing the tunable tradeoff
between accuracy and network activity.
This relation holds independently of the chosen target sparsity of the network. The

differences in accuracy and spike activity remain in place: a sparse network will likely
reach a lower classification performance while exchanging more spikes during inference.

91

5 Speech Recognition – Wake Word Detection

Accordingly, the tradeoff between network density, classification accuracy, and spike
activity is still present.
The training showed to be unstable in numerous instances because pruning and

regularization are essentially working against each other. Therefore, the introduction of a
schedule, which adapts the regularization factor during the training process, is beneficial.
With the schedule, the regularization factor can be increased as soon as the pruning of
the network is completed. This reduces the opposing effects of the two mechanisms. The
instability often results in deadlocks of the network, in which no continuous connection
between the network’s input and output is given anymore. When this happens, the
error gradients cannot be propagated through the network anymore, and the state of the
network cannot be altered. This behavior heavily depends on the random initialization
of the network weights. The corresponding phenomenon during pruning, in which all
connections of a layer are pruned, is called layer-collapse [186]. So far, the state for which
the network results in a deadlock cannot be predicted.
The regularization of large absolute values of connection weights (weight decay) did

not alter the network performance. Due to the inherent dependencies between the
optimization variables, weights, time constants, and threshold voltages, the regularization
of one of the variables leads to the increase of another. Only if the specifications of the
target (neuromorphic) hardware are available, a useful optimization can be achieved.

5.5 Discussion of the Results

5.5.1 Comparison to ANNs and the State of the Art

In this chapter, we demonstrated insights and relations of the sparse activity of SNNs on
the example of speech recognition. Most evaluations are based on RF encoded features
and simple SNNs consisting of a single population of recurrently connected neurons.

The accuracies reported in related publications vary slightly depending on the subset
and version of the benchmark task being used. However, most works report values above
95%, which is far more than we achieved in our experiments. Reasons for that are the use
of larger and more complex network architectures, more elaborate training techniques, and
more expensive preprocessing. We intentionally used small and simple network structures
to motivate the use of SNNs in restricted environments. Additionally, we dispensed with
techniques like data augmentation [221] or lavish normalization approaches during feature
generation [220]. Our goal was to identify relations and feasibility studies for using SNNs
in real-world applications instead of attempting to beat existing benchmark records.

For this reason, we introduced baseline models based on ANNs to compare the spiking
network approaches with. These ANNs were subject to the same training schedules and
input data and therefore provided a more realistic comparative measurement. These
networks, however, outperform the evaluated spiking network models on every type of
input features, as shown in table 5.6. It is, therefore, reasonable to assume that SNN are
less suitable for this application or even inferior to ANNs in general.
Our results show, and [172] come to a similar conclusion, that SNNs with two-

dimensional convolutional layers can reach classification accuracies, which are close

92

5.5 Discussion of the Results

to those of ANNs. In both cases, the network architectures were similar and Mel-based
input features were used. However, the commonalities of both approaches, their convolu-
tional architecture, and the Mel-based input feature generation contradict our conceptions
of efficient, event-based computation.

As shown in the detailed descriptions of the network architectures in tables 5.4 and 5.5,
plain convolutional networks with two-dimensional convolutions result in huge networks,
albeit having only a small number of tunable parameters. The weight sharing property
causes the number of parallel synaptic connections to soar. Reducing the number of
parameters to restrict the network size, on the other hand, limits the ability of the
network to generalize well. Additionally, by using solely two-dimensional convolutions,
the temporal characteristics of the spiking neurons are not really used. Thus, the inherent
potential is not leveraged.
As discussed in [52], resonating neurons may be a more energy-efficient alternative

to the digital processing chain used in modern speech recognition systems. Using these
neurons, analog-to-digital converters, digital filters, fast Fourier transform blocks, and the
MFCC feature generation can be omitted. We demonstrated that these neurons generate
feature-rich spike trains that the following network structures can analyze. The set of
hyperparameters such as the number of resonating neurons, the choice of their resonance
frequencies, or the threshold adaption characteristic allows space for improvement and
the adaption to other applications. However, the energy efficiency of this method using
specialized electrical circuits remains to be proven.

5.5.2 Energy and Complexity Considerations

Our experiments show the contending relation between the network activity, the network
complexity, and the reached classification accuracy. Especially using the pruning and
regularization techniques, networks can be adapted to fit the targeted hardware optimally.
The complexity of the network can thereby be influenced by the number of neurons,
parameters, and synaptic connections. The architectures, which were evaluated in this
section, are listed in table 5.7. Depending on the neuromorphic realization, many solutions
arise, which all comprise specific trade-offs.
In Section 4.3, we introduced Davidson and Furber’s approximation of the energy

consumption of ANNs and SNNs in purely digital implementations [23]. The authors
state that with equivalent architectures, each spiking neuron can emit a maximum of
1.72 spikes during the inference of the same example to undercut the energy consumed by
the ANN. The approximation is not entirely suited to compare networks with different
architectures, but it might still be valid for a ballpark figure. The scaling effects by
parallel execution and vectorization, application of non-linearities, and the propagation
of spikes are not considered in the comparison.

The evaluated LSTM executes nearly 5 ·106 MAC operations during the 100 time steps
of the inference of one sample (see table 5.4). The recurrent SNN on the other hand
totals ≈ 0.33 · 106 SOPs (see table 5.7 and table A.1 for layer-wise activity numbers).
Even without the merits of simpler calculations, the sheer number of executions already
highlights the potentially much higher efficiency of the SNN. At the same time, models

93

5 Speech Recognition – Wake Word Detection

Table 5.7: Complexities of evaluated SNN architectures. All networks comprise 50k
initial trainable parameters. The sparse recurrently connected SNN has the
same number of initial parameters, however, most of them are pruned during
training. The networks implementing convolution operations have significantly
more synapses due to the weight sharing properties of convolution layers.

Model Neurons Synapses SOPs

DNN 412 50k 363,440
RNN 212 50k 335,868
RNN (80% sparse) 212 10k 105,254
1D-CNN 709 52k 198,346
1D-RCNN 708 69k 256,287
2D-CNN 3,540 1M 4,460,040

given in other works, which use a comparable number of operations, provide worse
performances [8]. An even higher potential reduction in connection complexity and
network activity is given when sparse networks are used. Table 5.7 lists one exemplary
sparse RNN, which is 80% sparse, resulting in only 104 remaining connections between
the neurons with only minor losses in the classification accuracy.
A further important difference arises when we compare the number of synaptic or

MAC operations, which are induced only by the input layer. On average, the spike
train generated by the RF neuron layer comprises 260 spikes for one spoken word. In
comparison, the inputs based on MFCC and log-Mel features deliver 40 distinct values in
each time step, resulting in 4000 values throughout a single word utterance. Additionally,
to generate the log-Mel features, the speech signal first has to be transformed into the
frequency domain using algorithms like the FFT. This requires thousands of additional
operations. The large discrepancy between the required numbers of operations alone
motivates the use of event-based computation schemes. As for RF neurons, however, we
do not know whether the actual embedded implementations advance these benefits yet.
It has to compete with the highly-optimized implementations of digital signal processing
modules like filters and FFT blocks.

94

6 Radar-Based Hand Gesture
Recognition

In chapter 5, we found that given a suitable spike representation of the input, a recurrently
connected SNN can reach good performances while requiring only few resources compared
to convolutional structures. In this chapter, we demonstrate this on a second application:
hand gesture recognition1. Radar-based hand gesture recognition is a well-suited example
application for spatio-temporal sequence classification.

6.1 Motivation (based on [55])
In many fields, human-computer interaction evolves towards dynamic interactions that
are more intuitive for humans. One possible natural method for humans is using hand
gestures, which are sensed and recognized by machines. The applications for this type of
interaction are various: smart home, car entertainment, mobile phones, robot control, or
even interactive display panels in smart cities.
The gestures are commonly detected using cameras [223], [224]. However, multiple

other approaches have been proposed. Human attached sensors such as an armband to
detect muscle activity showed successful classification of 6 different classes [225]. Gesture
recognition can also be extended to full-body movements, as shown by [226], where an
ANN classifies the micro-Doppler signatures of sonar sensors.

Radar-based gesture recognition provides many advantages over other solutions, like
the independence of lighting, atmospheric conditions, and the inherent privacy. Radar
systems can detect the range, velocity, and angle of arrival of nearby targets independent
of environmental conditions. Therefore, a variety of classification algorithms based on
ANNs have been proposed [227]–[232].

For all applications, a high classification accuracy as well as a low-energy consumption
are of major importance. Especially for mobile devices, a low-energy consumption of the
sensor itself and the attached signal processing is crucial for a long battery life. Therefore,
SNNs are examined as potential solutions for this task.

6.2 Background
In the following, we provide the background for radar-based gesture recognition. Therefore,
a brief introduction of the measurement principle of radar is given. Subsequently, we
present an overview of related works within this topic.

1This approach has been previously published in [55].

95

6 Radar-Based Hand Gesture Recognition

Figure 6.1: Radar-based hand gesture recognition. (Figure from [231])

6.2.1 Measurement Principle

Radar (Radio Detection and Ranging) is a technology using electromagnetic waves in
millimeter-wave range to measure the relative velocity and distance between sensor and
target. The spatial position of the target can be further defined using multi-antenna
designs. The basic principle is to measure the reflection of a previously emitted wave.
Depending on the specific method, the time between emission and reception of the
measurement signal or its frequency is measured. Radar is used in large-scale applications
like weather forecasting and land surveying, aircraft and ship surveillance, but also
in smaller fields like automotive applications and the usage in handheld devices. The
benefits of this technology are its scalability, low volume production costs, reasonable
package size, and robustness to environmental conditions like dust, water, and different
lighting conditions.

The most simple measurement principle is the pulse-Doppler radar, which uses the time
of flight measurement of the transmitted signal and the frequency shift by the reflection
on the target due to the Doppler effect. In modern small-scale radar applications, often
Frequency Modulated Continuous Wave (FMCW) or chirp signals are used because of
the best possible utilization of the signal power, used bandwidth, and measurement time
[233]. Here, the frequency of the continuously transmitted signal is varied to measure
the target’s distance and velocity. The transmitted signal of the FMCW radar is

xtransmit(t) = cos

(
2πfct+ π

B

Tc
t2
)
.

The frequency of the signal is thereby linearly increased during the chirp duration Tc
starting from the base frequency fc by the sweep bandwidth B, as shown in Figure 6.2.

The instantaneous frequency of the transmitted and one reflected signal is depicted in
Figure 6.2. The waveform of the received signal

yreceive(t) = α cos

(
2πfc(t− td) + π

B

Tc
(t− td)2

)

96

6.2 Background

IF
-B

andwidth

t

f(t)

ftransmit ftarget

B

fc

Tc

Tm

td

Figure 6.2: Schematic chirp sequence of an FMCW radar system. The transmit
signal’s frequency is modulated over time. Starting at the carrier frequency
fc, the frequency is gradually increased by up to B during the chirp interval
Tc. The received signal is temporally shifted by td but otherwise corresponds
to the transmitted signal. This temporal shift is proportional to the target’s
distance and can be obtained by determining the difference frequency between
send and received signal. Over the course of a measurement interval Tm, the
phase change of the received signal can be determined to calculate the relative
velocity between sender and target.

is scaled by α due to transmission path losses and delayed by td due to the traveling
time of the signal. After mixing the transmitted and the received signal and filtering the
high-frequency part, the Intermediate Frequency (IF) signal remains as

yIF(t) = cos

(
φ0 − 2π

B

Tc
tdt

)
.

Since the chirp duration is very short, a frequency shift during the sweep due to Doppler
effect is small and can be neglected. With that, a linear correspondence between the
IF signal’s frequency and the range of the measured object is given. Applying a first
dimension FFT on the IF signal exposes the received frequencies and with that distances
to the detected objects. The values of the discrete spectrum represent fixed distances,
which are therefore called range bins. To determine the relative velocity between the
measured objects and the sensor, the second dimension FFT can be applied to evaluate
the phase change of the IF signal between multiple chirps. The two-dimensional matrix
as a result of the two Fourier transforms is called Range-Doppler Matrix (RDM). The
matrix contains the absolute values of the second Fourier transform and thus includes
the corresponding velocity values for each distance bin.

6.2.2 Related Work (based on [55])

Most gesture recognition systems use classical signal processing algorithms to generate
RDMs and use subsequent neural networks to classify the sensed gesture. Often, the

97

6 Radar-Based Hand Gesture Recognition

networks are separated into two parts: spatial feature generation and temporal sequence
recognition. The former part is achieved using convolutional layer structures to extract
meaningful features from the incoming range-Doppler images. The latter part then
analyzes sequences of extracted features to recognize the actual movement of the hand and
fingers. These temporal dependencies are evaluated using either temporal convolutions
[230] or LSTM layers [227], [229], [232]. Alternative CNN-based solutions omit the
second Fourier transform to generate the RDMs. Instead, they evaluate the temporal
development of the distance metric using multiple convolutional layers [234], or they only
use the temporal development of the velocity profile [228]. A comprehensive review of
current approaches is given by Ahmed, Kallu, Ahmed, and Cho [235].

Recently, four works have been published, which solve the gesture recognition task using
SNNs, too [173], [236]–[238]. The simultaneous publications underline the significance
and the topicality of the research.
The authors of [236] have shown that SNN-based radar processing performs well on

the recognition of whole-body gestures. There, the authors use convolutional structures
to extract features from the spectral input data. Additionally, they use the bio-inspired
STDP learning rule to adapt the network weights based on the relative timing between
spikes. However, they use a comparatively large CNNs to classify large body movements
in a small dataset.
The authors of the approaches introduced in [237] and [173] base their evaluations

of the hand gesture recognition task on the dataset provided by [229], thus enabling a
meaningful comparison between the different SNN-based and classical approaches.

The network proposed in [237] is a hybrid structure consisting of a spike-based Liquid
State Machine (LSM) and a conventional Support Vector Machine (SVM). The LSM
is a reservoir of excitatory and inhibitory neurons, which are randomly connected and
will not be adapted during the learning process. Learning takes place in the readout
layer, which maps the activity of the reservoir onto a classification output. The authors
implement three different readout classifiers for this purpose, namely logistic regression,
random forest, and a SVM. However, they show that the SVM classifier performs best.
The input of the network are binarized RDMs using a fixed threshold, comparable to
the methods introduced in Section 3.2.3. The authors show that a network with a LSM
consisting of 153 neurons already gives a high classification accuracy. From this point,
the accuracy starts to saturate when further increasing the number of neurons being
part of the reservoir. Most performance metrics are reported for a network with 460
neurons. The connections between the input pixels and the reservoir and the connections
within the reservoir are sparse. However, two details within the work’s evaluation part
are questionable and lead to non-realistic performance: (1) The authors use a random
50/50 split to divide the available data into training and test data. With that, gestures
performed by a single person are present in both sets. This is highly unrealistic since
most users use their devices without being part of the product’s development process.
The more realistic Leave-One-Subject-Out (LOSO) cross-validation, using all but one
subject for training and using the remaining subject for testing, is a more reasonable
approach and is used only once. (2) The authors distinguish between normalized and
variable sequence length, for which only the variable sequence length is a viable choice.

98

6.3 Setup

Recurrent
SNN

(a) Data collection (b) RDM generation (c) Binarization (d) Prediction (e) Readout

𝑡0

𝑡1

𝑡𝑛
FC

FC
FC

So
ftm

ax
So
ftm

ax
So
ftm

ax

𝑡0

𝑡1

𝑡𝑛

Figure 6.3: Network architecture for the hand gesture recognition task. The
gesture data is collected using radar sensors (a). Subsequently, the image-like
RDMs are generated using classical signal processing approaches (b). The RDMs
are binarized using different techniques (c) to provide spike representations for
the recurrently connected SNN to be recognized (d). Non-spiking integrator
neurons, one for each class, indicate the probability of a detected gesture (e).
(Figure previously published in [55])

Concerning the normalized length, each sequence is normalized to a fixed length, thus
compressing or stretching the sequence in the time domain.

The network proposed in [173] consists of layers of ALIF neurons, which extend the LIF
neuron model by an adaptive threshold. The recurrent connections within the layers and
the feedforward connections between the layers are trained using pseudo-gradient-based
BPTT. The authors propose the Multi-Gaussian surrogate gradient, which includes
negative slopes as inspired by the Exponential Linear Unit (ELU) activation function.
The network consists of two hidden layers with 512 neurons each and a non-spiking
output layer. The first layer thereby does not include any recurrent connections. The
encoding of the input RDMs is not specified further.

6.3 Setup (based on [55])

The structure of the evaluated architecture is shown in Figure 6.3. The raw data,
provided by two different datasets, is transformed into RDMs using standard radar signal
processing techniques. The resulting image-like maps are encoded into binary events.
These events are then fed into the SNN to classify the presented gesture. More detailed
descriptions of the individual steps are given in the following.

6.3.1 Datasets

The datasets used in the experiments consist of 11 different gestures, which are specifically
designed to assess the performance of gesture recognition systems [229]. The gestures
comprise small finger movements (pinch pinky, pinch index finger), larger movements of

99

6 Radar-Based Hand Gesture Recognition

Figure 6.4: Hand gestures contained in the Interacting with Soli dataset. The
arrows in the pictures of the first row indicate the movements of the fingers or
the hand to perform the gestures. The second and third row show the start
and finish positions of each respective gesture. (Figure from [229])

the whole hand (push, pull), and gestures with different speeds of movement (slow swipe
and fast swipe). Illustrations of the gestures are depicted in Figure 6.4.

The initial version of the dataset [229] uses Google’s project Soli sensor [231]. A second
independent version uses Acconeer’s A1 RADAR sensors to record the same set of base
gestures and an additional no hand gesture [230]. Although both datasets consist of the
same set of gestures, the classification accuracies reached during the evaluation cannot
be compared directly. The two sensors produce quite different data streams due to their
different designs. Additionally, the datasets differ significantly in the size of the available
training data. The relevant properties of the datasets are summarized in table 6.1. We
apply the proposed networks to both datasets to achieve the best comparability of the
specific algorithms.

6.3.2 Preprocessing and Encoding

For both datasets, we use zero padding to reach a constant number of frames for
each gesture for batch processing. Therefore, empty RDMs are added at the end of
each recording. The approaches in [229], [237] use temporal interpolation to achieve
constant sequence lengths. However, temporal relationships are altered as this stretches
or compresses the sequence.

The TinyRadarNN dataset is available in a raw format, leaving the freedom to choose
the parameters to generate the RDMs. The chirps in the dataset provide information
about nearly 500 range bins with a resolution of below a millimeter. To reduce the data
rate and to prevent overfitting, each chirp is decimated using average pooling with a
kernel size of four. Subsequently, the Fourier transform is applied to generate the velocity
axis of the RDMs. The window size of the Fourier transform is chosen to be 16 chirps to
avoid smearing on the range axis due to too long evaluation time windows. To reduce

100

6.3 Setup

Table 6.1: Dataset parameters from Interacting with Soli and TinyRadarNN.
The Interacting with Soli dataset was recorded using a Soli sensor with four
input channels. The data is available as in the form of RDM sequences. Thus,
always 32 chirps are grouped together in one RDM. The TinyRadarNN dataset
was recorded using two separate A1 RADAR sensors. The data is available as
frequency-transformed raw data of the individual chirps.

Parameter Interacting with Soli [229] TinyRadarNN [230]

Nchannels 4 2
Chirp frequency 32 · 40 Hz 160 Hz
Range bins 32 492
Velocity bins 32 32

Recording length ≈ 1 s ≤ 3 s
Npersons 10 26
Recordings per gesture 10 · 25 (25 recordings per person) 26 · 35
Total recordings 2750 10010

the size of the input data further and to increase the generalization, an additional max
pooling is performed on the range dimension of the generated RDMs.
The used radar systems have multiple receive channels; thus, multiple RDMs are

generated and can be used to determine the angle of the perceived targets additionally.
The maps are either fed directly into the network by converting the values of the RDMs
directly to the input currents of the spiking neurons or encoded into spikes to match
the information exchange format of the binary activated networks (see Section 3.2.3).
Different approaches are used concurrently to evaluate the influences of the different
binarization techniques: mean binarization, α-quantile binarization, and three-level
binarization (ternarization).

In all cases, the binarization is performed for each input channel individually to prevent
the dominance of a single channel due to possibly different characteristics of the channels.
The resulting channel-wise binary encoded RDMs are stacked and form a 4-dimensional
tensor of the format [time, range, velocity, channel]. Accordingly, the encoding scheme
converts the amplitude values in the RDMs along the range and Doppler axis vr,d for
each time step and channel into a binary form zinput,r,d.

6.3.3 Evaluation Metrics

In [229], the authors differentiate between the per-sequence and the per-frame accuracy.
In the former accuracy metric, the information of the completed gesture is present at the
time of evaluation and classification. In the latter case, only the instantaneous RDM is
presented without the specific information of the start and the end of the sequence. Since
the definition of a frame is ambiguous [230], we report the per-sequence accuracy only.
The reported accuracies are based on the multi-user LOSO cross-validation tests.

There, the networks are trained using the data of all but one subject and are evaluated

101

6 Radar-Based Hand Gesture Recognition

on the unseen data. This is repeated for every subject, and the resulting accuracy values
are averaged, hence the cross-validation. This is the most realistic scenario, as it is
implausible that each user’s gesture data is also part of the training set.

6.3.4 Network Architectures

In this experimental setup, we evaluate whether the findings of chapter 5 are applicable
to other applications. Therefore, recurrently connected SNNs are used because of their
architectural simplicity and their convincing performance in the speech recognition task.
The resulting classification accuracies are compared with those of other works [229], [230],
[237].

In this application, the input consists of sequences of two-dimensional data frames with
multiple channels each. Because the recurrently connected SNN does not extract spatial
information like a CNN would do, the input is flattened. With that, the input RDM
sequences are reshaped into a sequence of feature vectors. The recurrently connected
population of LIF neurons in the hidden layer is fully connected to the input feature
vector at every time step. Similar to the speech recognition application in chapter 5,
the output consists of non-spiking integrators, which are evaluated at the end of each
sequence.
The SNNs are simulated in discrete time steps. The network is updated with each

presentation of a new input frame without intermediate update steps. The network is
thus updated as often as there are frames in the sequence.

6.4 Evaluation

6.4.1 Classification Performance

The classification performances reached during the LOSO cross-validation tests are shown
in table 6.2. The performances of the networks with different input encoding variants are
comparable with those of other approaches given in the literature. The results show that
in this application, the binarization of the input does not reduce the performance of the
binary activated SNNs. In fact, using the binarized input RDM sequences reached even
higher accuracies than the raw inputs. This supports the hypothesis that the notion of
the nearest range and velocity bins holds sufficient information. The individual amplitude
values of each bin are thus not needed.

The confusion matrices shown in Figure 6.5 illustrate the links between the false
classifications of one exemplary cross-validation test for each dataset. Especially, small
finger movements – pinch index (0) and pinch pinky (3) – are easily mistaken. Also, a
steady hand (10) is often confused with gestures involving finger movements, as in both
cases, most of the hand does not move at all. The distinction between a fast and slow
swipe gesture (4 and 5) is also often misclassified, suggesting a too coarse time resolution
or too vague data in the training set due to different interpretations of fast and slow by
the recorded persons. Most gestures, however, can be recognized with low to no error.

102

6.4 Evaluation

Table 6.2: Classification performance of different approaches for the radar gesture
recognition task. Wang et al. and Scherer et al. are also the provider of the
respective datasets. Both solve the recognition task using ANNs. Tsang et al.
use a hybrid network consisting of both spiking and non-spiking neurons.

Interacting with Soli TinyRadarNN

Wang et al. (2016) [229] 88.27 -
Tsang et al. (2021) [237] 91.40 -
Scherer et al. (2021) [230] - 78.85

Current injection (raw) 86.24 79.15
Mean binarization 88.20 80.31
α=0.10 ternarization 88.17 79.33
α=0.10 max binarization 86.71 79.02
α=0.05 max binarization 87.40 76.43

6.4.2 Ablation Study

Because the applied methods and obtained results are similar for both datasets, we
limit the following evaluations on the TinyRadarNN dataset due to its larger number of
samples. To reduce the computational overhead, 5-fold cross-validation is used instead of
LOSO cross-validation. Thus, the test set contains the gestures of five individuals each,
instead of only one in the case of LOSO. This does not change the qualitative results
of the experiments, as the train and test groups are still large, and we are interested in
the scaling properties of individual design aspects. However, the quantitative accuracy
measures cannot directly be compared to those reported in table 6.2.

Network Size

Similar to the speech recognition task’s evaluation, the necessary network size is first
determined. Figure 6.6 shows the performances reached during the evaluation of the
gestures of one data set. Starting at 105 trainable variables, the accuracy begins to
saturate. We, therefore, use networks with 105, which corresponds to 100 neurons in the
hidden layer, which are fully connected to the input and recurrently connected within the
population. During Section 6.4.2 we will see that, similar to the speech recognition task,
only a fraction of the dense connections are necessary to reach the same performances.
Thus, the number of neurons determines the reachable accuracy.

Input Encoding (based on [55])

The influence of the encoding scheme on the classification performance is evaluated in the
next set of experiments. As shown in table 6.2, the use of all five encoding schemes leads
to performances that are comparable with those reached by related works. The mean
binarization encoding scheme leads to the best results on both datasets. Figure 6.7 shows
the exemplary evaluation of the finger slider gesture. The spike activity patterns for the

103

6 Radar-Based Hand Gesture Recognition

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9
10

22 0 0 3 0 0 0 0 0 0 0

0 25 0 0 0 0 0 0 0 0 0

0 0 19 6 0 0 0 0 0 0 0

0 0 0 25 0 0 0 0 0 0 0

1 0 2 0 22 0 0 0 0 0 0

0 0 0 0 0 25 0 0 0 0 0

0 0 0 0 0 0 25 0 0 0 0

10 0 1 0 0 0 0 7 2 0 5

0 0 0 0 0 0 0 0 25 0 0

0 0 0 0 0 1 0 0 0 24 0

4 0 0 0 0 0 0 0 0 0 21

Predicted

A
ct
ua

l

(a) Interacting with Soli

0 1 2 3 4 5 6 7 8 9 1011

0
1
2
3
4
5
6
7
8
9

10
11

15 0 0 3 0 0 0 0 7 0 10 0

0 35 0 0 0 0 0 0 0 0 0 0

8 0 13 5 0 0 0 0 9 0 0 0

8 0 0 22 0 0 0 0 5 0 0 0

0 0 0 0 9 16 0 0 0 10 0 0

0 0 0 0 0 33 0 0 0 2 0 0

0 0 0 0 3 0 30 0 0 2 0 0

0 2 1 0 0 0 0 30 0 2 0 0

1 0 0 1 0 0 0 0 32 0 1 0

0 1 0 0 1 3 0 0 0 30 0 0

0 1 0 0 0 0 0 0 0 0 33 0

0 0 0 0 0 0 0 0 0 0 0 35

Predicted

A
ct
ua

l

(b) TinyRadarNN

Figure 6.5: Confusion matrices for the two radar gesture datasets. In both cases,
recurrently connected SNN with 105 trainable variables are used. The input
RDMs are encoded using mean binarization. The gestures comprise in ascending
order: pinch index, palm tilt, finger slider, pinch pinky, slow swipe, fast swipe,
push, pull, finger rub, circle, palm hold, no hand. The Interacting with Soli
dataset in (a) does not include the no hand gesture.

different encoding schemes, as well as the output of the hidden and output layers, are
depicted. The high activity in the middle segments of the encoded gestures corresponds
to the static hand in front of the sensor. The activity outside this area is likely to be part
of the finger movement within the distance-velocity coordinate system of the encoded
RDMs.
T-Distributed Stochastic Neighbor Embedding (TSNE) visualization plots [239] are

handy tools to graphically analyze nonlinear relationships within multidimensional data,
where the low-dimensional representation projects the neighboring probability of the
higher dimensional data clusters. In our case, we use it to get an understanding of the
separability of the raw RDMs as well as the spike train representations of the input
binarization methods and the activity of the hidden layer. Figure 6.8 shows the clustering
of all classes with color indications, where each dot corresponds to a gesture in the test
set of the TinyRadarNN dataset.

The first finding here is that the TSNE clustering algorithm is, in fact, able to separate
the classes based on the spike trains of the inputs and the hidden layer. The algorithm
itself separates the data points iteratively in an unsupervised manner. The colors
representing the different classes are added later for a better visual distinction. The
visualizations show that the different gestures performed by a single person can be
separated using the algorithm. Though, a perfect separability of the raw input data is
not necessarily given. The binarization encoding does not affect the clustering much,
thus suggesting that no relevant information is lost. Some clusters are hard to distinguish
in both the raw and the binarized format. Note that the distance between data points in

104

6.4 Evaluation

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·105

0.76

0.78

0.8

0.82

Trainable variables

A
cc
ur
ac
y

Figure 6.6: Network size sweep. Classification performance versus network size of
recurrent SNNs on the TinyRadarNN dataset. The stroked vertical line marks
the number of 100,000 trainable variables. After that point the classification
accuracy starts to saturate when further increasing the network size.

Table 6.3: Synaptic operations in densely connected networks using different
binarization approaches. The large disparity of the SOPs in the input layer
are caused by the different sparseness levels of the encodings. When feeding the
raw stream into the neurons, each neuron in the input layer has to be updated
in every time step. Whereas in the sparse encoding schemes, only a subset of
the inputs need to be updated.

Encoding SOPs Input SOPs Hidden

Raw 2,400,000 44,920
Mean bin. 356,600 48,320
α=0.10 tern. 147,800 47,280
α=0.10 max bin. 147,800 49,900
α=0.05 max bin. 79,800 49,000

TSNE is only a representation of clusters; it is not suited to make quantitative statements.
The spike activity of the hidden layer shows a clear separation between most of the
clusters, highlighting the capabilities of the recurrently connected neuron population to
extract temporal patterns from the input signal. The two blue shaded clusters, which
are not separable in all TSNE plots, correspond to the gestures pinch index and pinch
pinky. As already seen in the confusion matrix (indices 7 and 8), the distinction between
those two gestures is, in most cases, not possible for the network.

Besides the differences in the reached classification accuracy, the different input encoding
schemes also result in vastly different numbers of synaptic events. Table 6.3 shows the
average number of SOPs induced by the input and the spikes emitted by the hidden layer
for the different evaluated encoding schemes. Qualitatively, these differences are also
visible in the exemplary visualization in Figure 6.7.

In “raw” encoding, each pixel of the input RDMs has to be multiplied by its associated
weight and to be accumulated by the neurons in the hidden layer. For all frames within

105

6 Radar-Based Hand Gesture Recognition

0
200
400
600
800

In
pu

t i
nd

ex

Mean binarization (a)

0
200
400
600
800

In
pu

t i
nd

ex

0.05 (b)

0
200
400
600
800

In
pu

t i
nd

ex

0.1 (c)

0
200
400
600
800

In
pu

t i
nd

ex

0.1 tri (d)

0
20
40
60
80

Ne
ur

on
 in

de
x

(h
id

de
n)

(e)

0

1

Cl
as

s
pr

ob
ab

ili
ty

(f)

0 5 10 15 20
Timestep

0.0

0.1

M
em

br
an

e
vo

lta
ge

(g)

Figure 6.7: Exemplary evaluation of the SNN’s inference of a gesture. (a-d) show
the different binarization approaches on the RDM sequence of the gesture finger
slider from the Interacting with Soli dataset. The approaches show notable
differences in the average number of spikes, which are active to encode each
frame. The activity of the hidden layer, which was fed with the spike train
resulting from the mean binarization in (a), is shown in (e). (f) depicts the
course of the normalized membrane voltages of the integrating output neurons.
The voltage course of the neuron, which corresponds to the correct class, is
highlighted in green. The plot at the bottom (g) shows the evolution of the
membrane voltage of one arbitrarily chosen neuron from the hidden layer in
(e). The stroked horizontal line visualizes the threshold voltage. The stroked
vertical lines illustrate the spike events.

106

6.4 Evaluation

(a) Raw data (b) Spike activity of the hidden layer

(c) Mean binarization (d) α=0.05 max binarization

(e) α=0.10 max binarization (f) 3-level binarization

Figure 6.8: TSNE visualization plots of the gesture data. (a) depicts the clustering
of the unaltered RDM sequences. The clustering of the spike activity of the
hidden layer is shown in (b). This hidden layer is fed with RDM sequences using
mean binarization. (c-f) show the TSNE visualization for the binarized RDM
sequences. In all cases, most information is preserved during the binarization,
enabling the SNN to extract the relevant patterns for the classification. The
binarization techniques in (d-f), however lead to the merging of some clusters,
which is also notable in the confusion matrices in Figure 6.5.

one sequence, this sums up to 2.4 million MAC operations. Obviously, many of these
operations do not necessarily contribute to the inferred classification, which will be shown
during pruning (see Section 6.4.2). The binarized inputs result in much fewer operations
additionally to being solely add operations. However, the encoding of the input does,
of course, also introduce additional overhead, which we do not consider here. The least
SOPs are induced by the α=0.05 quantile binarization. The number of operations is even
smaller than 0.05× the number of operations of the raw input stream. This is because
there is not even enough activity to fill the available spike contingent in some frames.

The SOPs induced by the hidden layer express themselves in the sum of the operations
by the recurrent connections and the connections to the output layer. Interestingly, the
number of operations is the lowest for the raw input type. In the next section, we will
see that this relation stays the same during the pruning of the networks.

107

6 Radar-Based Hand Gesture Recognition

Pruning

In this experiment, the iterative pruning method introduced in Section 4.2.3 is used again.
As shown in Figure 6.9, we train and evaluate networks with different target sparsity
levels for the different encoding schemes. The results of this experiment support the
findings of the relationship between accuracy, sparsity, and network activity.
In the upper plot of Figure 6.9, the relation between the network sparsity and the

reached classification accuracy for the different encoding schemes is shown. For values up
to 90% sparsity, the reached performances are constant and resemble the results reported
in table 6.2. However, because we use an 80/20 split in this experiment instead of LOSO
cross-validation, the numbers are not quite the same. Networks that are sparser than
90% result in increasingly worse accuracy because, with higher sparsity levels, important
connections are pruned, too.
The relations for the number of spikes and SOPs are depicted separately by the

hidden layer and input. The two middle plots show the SOPs and spike emissions of the
hidden layer, respectively. Similar to the results of the speech recognition application in
Section 5.4, the number of spikes rises with increasing connection sparsity. The number of
synaptic events decreases simultaneously. Again, this is due to the outweighing influence
of the fewer number of afferent neurons, for which the spikes induce SOPs. Above sparsity
levels of 95%, there is a sudden decline of emitted spikes, which matches the region where
the overall reached accuracy breaks down. Accordingly, the network is not able to work
properly anymore at these sparsity levels. The choice of the encoding scheme slightly
influences the activity of the hidden population. The injection of the raw RDM values
into the layer leads to the lowest activity in the hidden layer. On the other side, the
quantile-based binarization schemes lead to more spikes being exchanged. The 3-level
and mean binarization schemes lie in between.
However, the differences in the induced spike activity in the hidden layer are small

against those induced by the input layer itself. The SOPs induced by the input layer are
shown in the lower plot of Figure 6.9. The different binarized inputs are sparse in space
and time by design, thus triggering much less SOPs. The injection of the raw RDMs,
in comparison, triggers operations for every input pixel at every frame. The introduced
connection sparsity, therefore, influences the raw RDM input most.

Regularization

The adaption of the scaling factor of the activity regularization loss during the speech
recognition experiment in Section 5.4 yielded a degradation of the reached classification
accuracy, followed by a sudden drop as soon as the impact of the regularization term
surpassed that of the training loss. At the same time, with a growing regularization
scaling factor, the synaptic events within the hidden layer decreased. The evaluation of
the gesture recognition task results in similar behavior.
Figure 6.10 shows the reached classification accuracy and the number of synaptic

events of the hidden layer for the different encoding schemes of the RDMs at a range
of regularization factors. The results are shown for a target sparsity of 70%; however,

108

6.4 Evaluation

0.65

0.7

0.75

0.8

0.85

A
cc
ur
ac
y

(a)

400

500

600

Sp
ik
es

hi
dd

en
la
ye
r

(b)

0

2

4

·104

SO
Ps

hi
dd

en
la
ye
r

(c)

Raw
Mean bin.
α=0.10 tern.
α=0.10 bin.
α=0.05 bin.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1
·106

Sparsity

SO
Ps

in
pu

t
la
ye
r

(d)

Figure 6.9: Network sparsity sweep. The top-most plot (a) shows the classification
performance over the connection sparsity of recurrently connected SNNs on the
TinyRadarNN dataset. The performance of networks using unaltered RDM
sequences as well as those using one of the four binarization configurations to
binarize the input are depicted. (b) shows the number of emitted spikes in the
hidden layer. The number of SOPs shown in (c), however, is not influenced by
the chosen input format because the increasing connection sparsity outweighs
all other effects. The number of SOPs induced by the input layer (d) shows the
largest differences between the encoding schemes. Due to the sparser activity
of the binarized schemes, the number of induced SOPs is significantly lower
and decreases further the sparser the network gets.

109

6 Radar-Based Hand Gesture Recognition

0.6

0.7

0.8

A
cc
ur
ac
y

10−6 10−5 10−4 10−3 10−2 10−1

0

0.5

1

·104

Regularization factor

SO
Ps

(o
nl
y
hi
dd

en
)

Raw
Mean bin.
α=0.10 tern.
α=0.10 bin.
α=0.05 bin.

Figure 6.10: Network activity regularization sweep. The classification performance
versus the regularization factor of the activity regularization is shown in the
upper plot. All networks are sparsely connected with a connection sparsity
of 70%. Using the different input encoding schemes, different accuracies
are reached. However, with increasing regularization factor, the general
arrangement among the different schemes stays constant. The number of
SOPs in the hidden layer decreases significantly with increasing regularization
factor. There are no noteworthy differences in the network activity between
the encoding schemes.

the qualitative results are similar for all sparsity levels below the turning point shown in
Figure 6.9. The arrangement of the accuracy levels for the different encoding schemes
meets the performances reported for the LOSO cross-validation shown in table 6.2. The
reached accuracies degrade slowly with an increasing regularization factor. At a factor
of 0.1, the performance drops significantly, suggesting that the optimization goal of
minimizing the spike activity now tops the minimization of the classification error. The
performance drop is particularly given for the encoding schemes with no binarization
and the mean binarization scheme.

The course of the number of synaptic events of the hidden layer is shown in the bottom
plot of Figure 6.10. As already shown in Figure 6.9, the different encoding schemes only
slightly differ in the number of induced synaptic events of the hidden layer. The majority
of the synaptic events of the whole network is given by the input itself, which is two
orders of magnitude larger. However, this is not affected by the activity regularization of
the hidden layer. The low activity with which the networks can maintain a high accuracy

110

6.5 Discussion of the Results

is remarkable: 200 to 500 synaptic events, which correspond to 10 to 20 spikes being
emitted by the population of the hidden layer, are utilized at regularization factors of
0.01 to 0.03.

6.5 Discussion of the Results

This chapter showed the successful application of SNNs to classify hand gestures in radar
data sequences. The networks showed comparable performances to ANN-based solutions
on two different datasets (see table 6.2). In some cases, the SNN-based approach was able
to surpass the accuracies reported in the literature slightly. Accordingly, this approach
shows to be a viable solution to this simple sequence classification problem.
The most notable differences between the approaches are their computational com-

plexities. Even in the worst configuration, the SNN was able to solve the recognition
task using less than 2.5 · 106 synaptic operations per sequence on the TinyRadarNN
dataset. In comparison, [230] reports 20 · 106 MAC operations for each single frame for a
convolutional neural network-based solution to the same dataset with a slightly worse
classification performance. For the whole sequence, this totals 500 · 106 MAC operations.
In our experiments using the TinyRadarNN dataset, we drastically reduced the resolution
of the range measurements to reduce the overall size of the input and, with that, the
number of necessary operations. As our results show, this reduced resolution still provides
enough information to reach the same accuracy levels. In order to include this in the
comparison, the number of operations within the network in [230] has to be adapted by
the factor of 16. Since most of the MAC operations are to be assigned to the convolutions
in the first layer, this is a reasonable assumption. However, even with this factor, the
SNN-based solutions need far fewer operations to solve the problem. Additionally, as
noted in Section 4.3, the main operation involved in the processing of SNNs is the add
operation. ANNs, in contrast, depend on more costly multiplications. In the best case,
using 3-level binarization or mean binarization in conjunction with regularization and
pruning to 90% sparsity, the number of SOPs decreases to 25 · 103 while maintaining the
same level of accuracy. The choice of the encoding scheme in the experiments mostly
influenced the number of synaptic events induced by the input. The influence on the
SOPs in the hidden layer is negligible.

As we showed in table 6.3 and Figure 6.9, the binarization of the input RDMs drastically
reduced the number of operations required in the input layer. Additionally, increasing
the connection sparsity by pruning ineffective connections led to a further reduction of
required operations. Of course, pruning and skipping ineffective operations with zeros
is not exclusive to SNNs, but their sparse event-based communication scheme vastly
leverages these techniques.
The good performance of all approaches heavily relies on the digital preprocessing

of the radar data. To generate the RDMs, a multitude of FFTs has to be calculated.
The complexity of the classical radix-2 algorithm [240] to calculate the FFT scales with
N/2 log2N , resulting in 2N log2N real MAC operations, ignoring further additions and
control logic. Modern algorithms undercut this number by several percent [241], but

111

6 Radar-Based Hand Gesture Recognition

the order of magnitude stays the same. For the downscaled TinyRadarNN dataset, this
results in nearly 106 operations to calculate the RDMs of one gesture sequence. This
number is huge compared to the number of operations required for the optimized SNNs.
An alternative approach without calculating the RDMs is the direct analysis of the

IF signal of the radar sensor in the time domain. The main challenge, in this case, is
encoding the signal into a spike representation. The use of the RF neuron-based encoding
similar to the speech recognition application is not possible due to the loss of the phase
information as shown in Section 3.4. The direct mapping of the signal course using
TC methods is not practical due to the high signal frequencies in the order of several
MHz and the rich variability in amplitude, frequency, and phase. To be able to capture
these details would require a vast number of spikes in relatively small time intervals.
Frame-based encoding methods in which each sample is translated into one temporal
event likewise lead to large numbers of synaptic events to be processed. However, the
tradeoff can be justified if operation-intense calculations like the Fourier transform can
be replaced. Approaches like a spike-based Fourier transform [242] might render this a
possibility.

112

7 Summary and Conclusion

Spiking Neural Networks (SNNs) offer many potential advantages over classical neural
network approaches. Especially the evaluation of data sequences in low-power environ-
ments using specialized neuromorphic hardware can be a promising field of application
as it combines multiple key features of the spike-based communication scheme and bio-
logically inspired neuron models. In this work, approaches and the evaluation of specific
applications were presented, which support this hypothesis.
In the first chapter, we motivated this work and proposed our research questions.

Following on from the first chapter, we have provided a summary of the background for
the following approaches in chapter 2. The methodological approaches were introduced
afterwards; chapter 3 discussed the encoding of signals into spikes, and chapter 4 presented
methods to train and optimize neural networks based on spiking neurons. Finally, the
methods were evaluated in two exemplary applications, speech recognition (chapter 5)
and gesture recognition (chapter 6).
The following sections give conclusions of the individual chapters in more detail.

7.1 Background

Chapter 2 provided the background and introduced related research on which this work is
based. First, we introduced the Hodgkin-Huxley neuron model, which lays the foundations
for every neuronal model. The authors Hodgkin and Huxley received the Nobel Prize
in Medicine in 1963 for their fundamental contributions. We then derived the Leaky
Integrate-and-Fire (LIF) and Resonate-and-Fire (RF) neuron models, which are used in
this work. Subsequently, we gave an overview of biologically inspired learning algorithms
to train SNNs. The learning rule used in this work, gradient descent using pseudo
gradients, was presented afterwards. Many of the hypotheses why SNNs can outperform
Artificial Neural Networks (ANNs) are based on the utilization of neuromorphic hardware.
The most prominent chips were summarized in Section 2.3. We showed that there are
large general purpose accelerators, smaller architectures, which often showcase specific
technological or architectural advances, and Field-Programmable Gate Array (FPGA)-
based solutions, which offer to accelerate SNNs on generally available hardware. To
conclude the background chapter, a review of encoding schemes for the use in SNNs was
given.

113

7 Summary and Conclusion

7.2 Signal Encoding

In chapter 3, we discussed the translation of data sequences into spikes. This translation
is necessary to leverage the spike-based communication scheme of the SNNs. Therefor,
the encoding schemes introduced in the previous chapter were evaluated with respect to
the targeted applications. We identified two possible modes to convert the data sequences
into spikes: frame-based approaches and streaming approaches.
Frame-based approaches convert sub-sequences of the signal with fixed lengths into

spikes, which are evaluated at once. These approaches are suited for applications with
multidimensional inputs with low update frequencies. When the input data streams
are preprocessed using classical Fourier transform-based signal processing approaches,
frame-based encodings are most suited.

Streaming approaches convert the signal continuously. They are useful to encode fast
changing one-dimensional signals. Due to the sinusoidal characteristics of the analyzed
signals, we proposed the use of RF neurons to convert the analog input signal into
spike trains. The data stream is analyzed continuously and is, therefore, part of the
streaming approaches. We showed that using the resonating neurons as input encoders, a
frequency-selective spike response can be generated. To perform the encoding, the signal
is directly applied to the input of the neuron. Because of its properties of a resonator,
the two coupled membrane capacitors start to resonate when the matching frequency is
present within the signal. When the resonant oscillation reaches a threshold level, a spike
is emitted. The limitation of this encoding is that only the real amplitude spectrum of
the signal can be represented. The amplitude of the spectral component is expressed in
the timing of the emitted spikes. The phase of the spectral component also influences
the precise timing of the emitted spike. This phase induced time shift, however, is small
compared to the fluctuations introduced by amplitude noise. Thus, the information about
the signal phase gets lost.

7.3 Network Architecture and Training

The methods involving the architectures and the training of the SNNs were presented
in chapter 4. First, we introduced the neuron models and connectivity schemes, which
were used in our simulations. These definitions were followed by methods that improve
the SNNs during training. Specifically, we covered optimization variables, regularization
techniques, and the reduction of the networks’ complexity by pruning connections with
low influences on the network output.
The last section within chapter 4 discussed the implications of realizing SNNs in

neuromorphic hardware. Therefor, we first analyzed the effect of architectural choices on
the hardware realizations. Next, we considered the relation of the number of trainable
variables, neurons, and synapses for different layer types. We closed the chapter with a
reflection on the energy consumption of SNNs in comparison with ANNs.

114

7.4 Applications

7.4 Applications

Chapters 5 and 6 contain the evaluations of the methods proposed in chapters 3 and 4.
The methods were evaluated using two different sequence classification applications:
speech recognition (chapter 5) and radar-based hand gesture recognition (chapter 6).

7.4.1 Speech Recognition

The speech recognition application comprised the detection and classification of keywords
in short audio snippets. We proposed the usage of RF neurons to encode the audio
stream into frequency-selective spike trains. This approach was compared to classical
approaches using Fourier transform-based preprocessing. The different preprocessing
methods were used to feed neural networks based on classical and spiking neurons.
For both neuron types, networks using convolutional layers together with temporal

memories reached the best performances. They reached the highest scores when the input
was present as a log-Mel spectrogram. Generally, the ANNs performed slightly better than
the SNNs. Both neuron types were also able to reach good classification performances
using RF neurons as input encoders. This demonstrates the overall feasibility of the
approach. However, the performances were still lower than those of the configurations
that used input sequences of raw or binarized Fourier spectra.

The first experiments were followed by ablation studies, which aimed at getting a more
profound understanding of the network behaviors when scaling certain parameters. We,
therefore, compared Long Short-Term Memorys (LSTMs) with recurrently connected
SNNs on RF-encoded input features. These two networks performed best on the new type
of encoding. We showed the relation between network sparsity, the reached classification
accuracy, and the network activity. When increasing the targeted sparsity, which is
obtained by pruning during the training phase, the reached accuracy stays nearly constant.
At the same time, the network activity in the form of emitted spikes grows. However,
with the increased connection sparsity, each emitted spike has to be considered at fewer
downstream neurons. In sum, this leads to a declining number of Synaptic Operations
(SOPs). We further showed that regularizing the spike activity of a neuron can further
reduce the overall network activity.

We concluded the chapter with a discussion of the results. We reflected on the examined
network architectures and the found relations as well as their impact on the complexity
and energy consumption in neuromorphic realizations. Especially convolutional layers –
with all their advantages as generalizing feature detectors – result in humongous network
realizations. We showed that using two-dimensional convolutions, 10 to 50 times more
synaptic events are triggered than with feedforward or recurrent connectivity schemes.
The best overall performance could be reached with a recurrently connected population
of sparsely connected neurons. With that, the number of neurons, synapses, and SOPs
was minimal while suffering only minor accuracy losses.

115

7 Summary and Conclusion

7.4.2 Hand Gesture Recognition

In the second application, we used recurrently connected SNNs to classify hand gestures
based on distance-velocity measurement sequences of radar sensors. The sequences of
frames were encoded using different approaches.

We showed that our SNN-based implementations match or slightly surpass the accura-
cies reported in the literature. Similar to the previous chapter, the presentation of the
initial results were followed by ablation studies. The best results were achieved using
mean-binarization to encode the input frames. This proved the assumption that the
actual amplitude measurements are less important, but only the notion of the largest
measurement entries holds enough information. Additionally, we showed that the selection
of the input encoding scheme can directly influence the network activity in the form of
necessary SOPs. The experiments involving pruning and regularization lead to similar
results as in the ablation studies of the speech recognition experiments: networks can
be pruned during training to sparsity levels of 80% without accuracy losses. We could
show again that with higher sparsity levels, the overall spike activity rises, but due to
less downstream neurons, the resulting number of SOPs drops. Additionally, gentle spike
activity regularization should always be used to encourage sparse temporal spike activity
without harming performance.

In the subsequent discussion of the experiments’ results, we focused on the number of
Multiply-Accumulate (MAC) operations involved in the execution of the proposed SNNs
in digital neuromorphic hardware and the ANNs given in the literature. We showed
that our SNN-based approaches need at least one order of magnitude fewer operations
while still reaching the same classification accuracy. Additionally, we considered the
number of MAC operations used for the preprocessing of the radar signals. Because the
preprocessing of the radar signals requires the computation of multiple two-dimensional
Fast Fourier Transforms (FFTs), the number of operations involved in this step is likely to
surpass the operations needed for the actual network inference. This, in turn, motivates
the development of alternative preprocessing methods, which we will discuss in chapter 8.

7.4.3 Similarities and Differences

In both applications, we were able to solve the sequence classification problems with
high accuracy. While matching and surpassing the performance of other works in the
gesture recognition example, the performance during the speech recognition task came
short compared with related works. The question arises why this is the case.
The processing of radar data based on Range-Doppler Matrices (RDMs) seems to be

a perfect fit for SNNs. In this context, once the RDMs are calculated, the amplitude
information is of less relevance. We assumed that instead of the precise amplitude of
each bin within the RDMs, only the relative information is important in our application.
It is sufficient to know whether an entry belongs to the highest valued bins of one frame.
The assumption is valid for this unique application because we only consider a single
target that is close to the sensor.

116

7.5 Limitations

Additionally, the structure of the input data is simple. Movements within the RDMs are
always centered around the central line corresponding to zero velocity. Thus, the network
must detect the existence and sequences of binary events in the input to infer the correct
movement. The small, recurrently connected SNN achieves exactly that. Convolutional
layer structures do not add any benefit because the influence of translationally invariant
features is small compared with the binary activity patterns at a larger scale.
Speech recognition, on the other hand, is heavily reliant on the accurate representa-

tion of the audio spectrum. The binarization of the spectra, thus, leads to decreased
classification performances. Additionally, features are translationally invariant due to
the various pitches and pronunciations of the speakers. Because of that, convolutional
layers on the raw spectra lead to very high accuracies. With the use of RF neurons to
encode the speech signal, we aimed to eliminate the dependence on amplitude information
from the first stage on. This type of feature encoding resulted in inferior performances
compared with the classical techniques, which utilize Fourier transforms and further
digital processing steps. However, it opens a new set of possibilities to analyze audio
signals, with the potential to eliminate the need for digital preprocessing.

The common features of both approaches are the same scaling effects in performance,
sparsity, and activity. In both applications, sparsifying the connectivity matrices by
pruning resulted in higher spike rates and overall lower number of neuron updates due to
fewer synaptic input events. The reached classification accuracy stayed constant in both
cases, followed by a sudden drop in performance at sparsity rates of about 80 to 95%.
The regularization of the networks’ activities during training led to a notable reduction
of the required operations if tuned thoroughly.

7.5 Limitations

In the first chapter, we motivated our research with the overall question:

Are neural networks based on spiking neurons viable and advantageous alter-
natives to common ANNs in real-world applications?

This high-level question still cannot be answered conclusively. However, we provided
evidences that SNNs are able to outperform ANNs in certain applications. Additionally,
SNNs show to have favorable scaling properties in small-scale applications.
Sparsifying the input to the networks is one of the major options to ensure a highly

energy-efficient execution of the SNNs. The event-based processing scheme enables the
networks to only contribute to the dynamic power consumption when spikes need to
be processed. In our applications, we achieved this by using RF-based encoding and
binarization. However, this kind of sparse input conversion might not be applicable
to many other applications. As soon as rate-based encoding schemes are utilized to
represent a richer set of values, many of the SNNs’ advantages disappear, and ANN-based
implementations might be favorable again.
Much of the pending success of SNNs is dependent on the development of future

neuromorphic hardware realizations. The architecture, configurability, and availability of

117

7 Summary and Conclusion

the accelerators will show how well solutions based on SNNs will perform compared to
classical networks.
The stability of the training process using pseudo gradient-based Backpropagation

Through Time (BPTT) was comparatively low in our experiments. Depending on the
random initialization of the networks, vastly different results were achieved. Especially
while using pruning and regularization methods, networks often result in untrainable
configurations. This behavior is far more pronounced than with ANNs due to the
“all-or-nothing” characteristic of the spike events.

118

8 Outlook

In the coming decades, more and more devices, applications, and processes will be
enhanced by the utilization of data-driven algorithms in the form of neural networks. No
matter whether highly automated vehicles, smart assistants and wearables, the connected
industry, or cloud services, neural networks will be powering large portions of the world’s
technologies. Therefore, our overall motivation and goals for this work stay valid for
future research: reducing the energy consumption and increasing the capabilities of these
networks by exploring new methods.
In this work, we investigated neural networks based on biologically inspired spiking

neurons. With their event-based communication scheme and their inherent temporal
affinity, SNNs are capable alternatives to ANNs, which go well with the above-mentioned
goals. To continue these thoughts, further research should address the topics of improving
the overall performance of SNNs and providing methods for the comparison of approaches
based on classical algorithms, ANNs, and SNNs.
For the analysis of sinusoidal signal streams, we proposed the use of RF neurons to

translate the time-domain signals into feature-rich spike trains. We demonstrated the
viability of this approach. The approach has the potential to provide alternatives to
classical approaches involving the calculation of Fourier transforms. In this work, we
showed the RF neurons’ application in the area of speech recognition. We additionally
demonstrated the detection of interference in automotive radar applications in a related
article [53]. Next to further theoretical analyses and improvements, hardware realizations
should be developed to prove the hypothetical advantages in the power consumption and
deliver metrics for the comparison with classical approaches.
Further research should also focus on advancing the training process of SNNs. Many

of the methods developed for ANNs can be adapted for the use for SNNs. However, the
event-based processing scheme also necessitates the development of specialized approaches.
The instability of the pseudo gradient-based training, the initialization of the networks, or
the temporal credit assignment in long sequences, for example, needs further addressing.

A direct comparison between ANNs and SNNs is often not trivially possible. For ANNs,
there exist efforts to provide a standardized benchmark suite [243]. The benchmark
assesses the performance of standardized network architectures and tasks of different
domains when executed on different hardware. The evaluated performance indicators are
the inference latency, execution speed, and, in some cases, power consumption. With this
benchmark being developed to compare different hardware configurations executing the
networks, others can be designed to compare different architectures or training methods.
For an elaborate comparison of SNNs, for example, the benchmarks should contain
the achieved performance, metrics reflecting the network’s complexity, a comprehensive

119

8 Outlook

breakdown of the energy consumption, and the way how the network was executed, being
it a software-based simulation or realization in hardware.

In this work, we focused on the use of SNNs in low-power applications. However, there
are more research directions on the topic of biologically inspired neural networks, which
can positively influence each other. Research directed towards understanding biological
nervous systems, for example, can provide new insights into the complex interactions of
large networks, which can be transferred to technical applications. Application-oriented
research, in turn, can provide evidence for phenomenons in vivo, which could not be
explained before. In any case, the author looks forward to future developments in this
exciting field.

120

Appendix

Table A.1: Layer-wise activity of the evaluated densely connected SNNs to solve
the speech recognition task. All networks comprise 50,000 trainable param-
eters.

Model Spikes SOPs ΣSOPs

DNN 1505 + 870 52,000 + 301,000 + 10,440 363,440
RNN 1339 52,000 + 283,868 335,868
1D-CNN 1385 + 818 34,320 + 96,950 + 67,076 198,346
1D-RCNN 1747 + 569 34,320 + 176,447 + 45,520 256,287
2D-CNN 4627 + 3935 + 1146 131,040 + 2,332,008 + 1,983,240 + 13,752 4,460,040

0 1 2 3 4 5 6 7 8 9 1011

0
1
2
3
4
5
6
7
8
9

10
11

330 16 4 20 0 2 1 7 0 3 0 23

15 338 4 14 1 0 1 5 1 2 0 21

1 1 362 0 0 0 13 0 1 20 0 14

13 14 1 357 0 0 0 0 0 5 1 14

0 5 2 1 318 16 0 4 44 0 0 12

8 2 0 0 23 331 0 0 1 1 0 30

1 2 15 4 0 4 333 1 2 1 1 32

4 12 1 0 3 2 0 372 10 0 0 7

1 0 0 0 29 2 1 16 361 0 1 14

0 3 11 1 0 0 6 0 0 385 0 13

1 0 0 0 1 0 1 0 2 2 372 29

4 9 10 9 4 13 10 10 5 8 1 325

Predicted

A
ct
ua

l

(a) ANN - LSTM on RF inputs

0 1 2 3 4 5 6 7 8 9 1011

0
1
2
3
4
5
6
7
8
9

10
11

345 6 7 14 0 2 0 2 0 0 0 30

6 321 0 29 0 0 0 1 5 0 1 39

1 3 377 0 1 0 1 0 2 10 0 17

10 15 0 347 0 0 0 0 0 3 0 30

0 3 0 2 365 7 0 1 11 0 1 12

2 0 0 0 17 343 0 0 4 0 0 30

0 1 1 0 0 0 355 1 2 0 0 36

1 1 0 0 0 0 0 392 5 0 0 12

3 1 0 1 4 3 1 4 388 1 0 19

2 0 4 3 0 0 0 0 0 393 0 17

0 1 1 0 6 2 0 3 1 0 391 3

5 4 5 1 0 2 4 1 2 2 0 382

Predicted

A
ct
ua

l

(b) SNN - 2CNN on log-Mel spectogram

Figure A.1: Confusion matrix for a recurrent ANN and a convolutional SNN
to solve the speech recognition task. Both networks comprise 50,000
parameters. The ANN uses on log-Mel-encoded inputs. The SNN is fed with
RF-generated spike trains.

121

Bibliography

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. The MIT
Press, 2016, vol. 1, 800 pp.

[2] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4. edition.
Hoboken: Pearson, 2020, 1152 pp.

[3] E. R. Kandel, J. D. Koester, S. H. Mack, and S. A. Siegelbaum, Principles of
Neural Science, 6th ed. New York: McGraw-Hill Education, 2021, 1696 pp.

[4] W. B. Levy and V. G. Calvert, “Computation in the human cerebral cortex uses less
than 0.2 watts yet this great expense is optimal when considering communication
costs”, BioRxiv, 2020.

[5] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI”, Communications
of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[6] E. Gibney, “Google AI algorithm masters ancient game of Go”, Nature News,
vol. 529, no. 7587, p. 445, 2016.

[7] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of Go with deep
neural networks and tree search”, nature, vol. 529, no. 7587, pp. 484–489, 2016.

[8] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello Edge: Keyword Spotting on
Microcontrollers”, 2017. arXiv: 1711.07128.

[9] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage”, in Advances
in Neural Information Processing Systems, 1990, pp. 598–605.

[10] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and Connections
for Efficient Neural Network”, Advances in Neural Information Processing Systems,
vol. 28, 2015.

[11] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks”, 2018. arXiv: 1803.03635.

[12] A. Lavin and S. Gray, “Fast Algorithms for Convolutional Neural Networks”, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 4013–4021.

[13] A. G. Howard, M. Zhu, B. Chen, et al., “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications”, 2017. arXiv: 1704.04861.

[14] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices”, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.

123

https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1704.04861

Bibliography

[15] A. Shafiee, A. Nag, N. Muralimanohar, et al., “ISAAC: A Convolutional Neu-
ral Network Accelerator with In-Situ Analog Arithmetic in Crossbars”, ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

[16] W. Maass, “Networks of Spiking Neurons: The Third Generation of Neural Network
Models”, Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[17] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview”, Neural
networks, vol. 61, pp. 85–117, 2015.

[18] C.-S. Poon and K. Zhou, “Neuromorphic silicon neurons and large-scale neural
networks: Challenges and opportunities”, Frontiers in neuroscience, vol. 5, p. 108,
2011.

[19] Y. Cao, Y. Chen, and D. Khosla, “Spiking Deep Convolutional Neural Networks
for Energy-Efficient Object Recognition”, International Journal of Computer
Vision, vol. 113, no. 1, pp. 54–66, 2015.

[20] B. Rueckauer and S.-C. Liu, “Conversion of Analog to Spiking Neural Networks
Using Sparse Temporal Coding”, in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), 2018, pp. 1–5.

[21] M. Davies, N. Srinivasa, T. Lin, et al., “Loihi: A Neuromorphic Manycore Processor
with On-Chip Learning”, IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[22] P. Blouw and C. Eliasmith, “Event-Driven Signal Processing with Neuromorphic
Computing Systems”, in 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, 2020, pp. 8534–8538.

[23] S. Davidson and S. B. Furber, “Comparison of Artificial and Spiking Neural
Networks on Digital Hardware”, Frontiers in Neuroscience, vol. 15, 2021.

[24] C. Farabet, R. Paz, J. Pérez-Carrasco, et al., “Comparison between frame-
constrained fix-pixel-value and frame-free spiking-dynamic-pixel convnets for
visual processing”, Frontiers in neuroscience, vol. 6, p. 32, 2012.

[25] D. Neil, M. Pfeiffer, and S.-C. Liu, “Learning to be Efficient: Algorithms for Train-
ing Low-Latency, Low-Compute Deep Spiking Neural Networks”, in Proceedings
of the 31st Annual ACM Symposium on Applied Computing, 2016, pp. 293–298.

[26] M. Pfeiffer and T. Pfeil, “Deep Learning With Spiking Neurons: Opportunities
and Challenges”, Frontiers in neuroscience, vol. 12, 2018.

[27] E. M. Izhikevich, “Which Model to Use for Cortical Spiking Neurons?”, IEEE
transactions on neural networks, vol. 15, no. 5, pp. 1063–1070, 2004.

[28] J. L. Lobo, I. Laña, J. Del Ser, M. N. Bilbao, and N. Kasabov, “Evolving Spik-
ing Neural Networks for Online Learning over Drifting Data Streams”, Neural
Networks, vol. 108, pp. 1–19, 2018.

[29] M. Nolte, M. W. Reimann, J. G. King, H. Markram, and E. B. Muller, “Cortical
reliability amid noise and chaos”, Nature communications, vol. 10, no. 1, pp. 1–15,
2019.

124

[30] J. M. Cruz-Albrecht, M. W. Yung, and N. Srinivasa, “Energy-Efficient Neuron,
Synapse and STDP Integrated Circuits”, IEEE transactions on biomedical circuits
and systems, vol. 6, no. 3, pp. 246–256, 2012.

[31] A. Tavanaei, T. Masquelier, and A. Maida, “Representation Learning using Event-
based STDP”, Neural Networks, vol. 105, pp. 294–303, 2018.

[32] A. R. Young, M. E. Dean, J. S. Plank, and G. S. Rose, “A Review of Spiking Neu-
romorphic Hardware Communication Systems”, IEEE Access, vol. 7, pp. 135 606–
135 620, 2019.

[33] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs, “Event-
Driven Contrastive Divergence for Spiking Neuromorphic Systems”, Frontiers in
neuroscience, vol. 7, p. 272, 2014.

[34] E. Mueller, J. Hansjakob, D. Auge, and A. Knoll, “Minimizing Inference Time:
Optimization Methods for Converted Deep Spiking Neural Networks”, in 2021
International Joint Conference on Neural Networks (IJCNN), IEEE, 2021, pp. 1–8.

[35] J. Wu, E. Yılmaz, M. Zhang, H. Li, and K. C. Tan, “Deep Spiking Neural Networks
for Large Vocabulary Automatic Speech Recognition”, Frontiers in Neuroscience,
vol. 14, p. 199, 2020.

[36] S. Thorpe, D. Fize, and C. Marlot, “Speed of Processing in the Human Visual
System”, nature, vol. 381, no. 6582, p. 520, 1996.

[37] R. S. Johansson and I. Birznieks, “First Spikes in Ensembles of Human Tactile
Afferents Code Complex Spatial Fingertip Events”, Nature neuroscience, vol. 7,
no. 2, p. 170, 2004.

[38] T. Gollisch and M. Meister, “Rapid Neural Coding in the Retina with Relative
Spike Latencies”, Science, vol. 319, no. 5866, pp. 1108–1111, 2008.

[39] J. J. Hopfield, “Pattern Recognition Computation Using Action Potential Timing
for Stimulus Representation”, Nature, vol. 376, no. 6535, p. 33, 1995.

[40] C. Kayser, M. A. Montemurro, N. K. Logothetis, and S. Panzeri, “Spike-Phase
Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike
Patterns”, Neuron, vol. 61, no. 4, pp. 597–608, 2009.

[41] C. M. Gray, P. König, A. K. Engel, and W. Singer, “Oscillatory Responses in Cat
Visual Cortex Exhibit Inter-Columnar Synchronization Which Reflects Global
Stimulus Properties”, Nature, vol. 338, no. 6213, p. 334, 1989.

[42] S. Thorpe and J. Gautrais, “Rank Order Coding”, in Computational Neuroscience,
Springer, 1998, pp. 113–118.

[43] J. Gautrais and S. Thorpe, “Rate Coding versus Temporal Order Coding: A
Theoretical Approach”, Biosystems, vol. 48, no. 1-3, pp. 57–65, 1998.

[44] M. Li and J. Z. Tsien, “Neural Code-Neural Self-Information Theory on How
Cell-Assembly Code Rises from Spike Time and Neuronal Variability”, Frontiers
in Cellular Neuroscience, vol. 11, p. 236, 2017.

125

Bibliography

[45] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. S. Maida,
“Deep Learning in Spiking Neural Networks”, Neural Networks, vol. 111, pp. 47–63,
2019.

[46] S. M. Bohte, “Error-backpropagation in Networks of Fractionally Predictive
Spiking Neurons”, in International Conference on Artificial Neural Networks,
Springer, 2011, pp. 60–68.

[47] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long Short-
Term Memory and Learning-to-Learn in Networks of Spiking Neurons”, in Ad-
vances in Neural Information Processing Systems, 2018, pp. 787–797.

[48] F. Zenke and S. Ganguli, “SuperSpike: Supervised Learning in Multilayer Spiking
Neural Networks”, Neural computation, vol. 30, no. 6, pp. 1514–1541, 2018.

[49] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate Gradient Learning in Spiking
Neural Networks: Bringing the Power of Gradient-based optimization to spiking
neural networks”, IEEE Signal Process. Mag., vol. 36, no. 6, pp. 51–63, 2019.

[50] D. Auge, J. Hille, E. Mueller, and A. Knoll, “A Survey of Encoding Techniques for
Signal Processing in Spiking Neural Networks”, Neural Processing Letters, 2021.

[51] D. Auge and E. Mueller, “Resonate-and-Fire Neurons as Frequency Selective Input
Encoders for Spiking Neural Networks”, TUM (Technical Report), 2020.

[52] D. Auge, J. Hille, F. Kreutz, E. Mueller, and A. Knoll, “End-to-end Spiking
Neural Network for Speech Recognition Using Resonating Input Neurons”, in 30th
International Conference on Artificial Neural Networks (ICANN), 2021.

[53] J. Hille, D. Auge, C. Grassmann, and A. Knoll, “Resonate-and-Fire Neurons
for Radar Interference Detection”, in International Conference on Neuromorphic
Systems 2022, Association for Computing Machinery, 2022.

[54] D. Auge, P. Wenner, and E. Mueller, “Hand Gesture Recognition using Hierarchical
Temporal Memory on Radar Sequence Data”, in Bernstein Conference 2020, 2020.

[55] D. Auge, J. Hille, E. Mueller, and A. Knoll, “Hand Gesture Recognition in Range-
Doppler Images Using Binary Activated Spiking Neural Networks”, in IEEE
International Conference on Automatic Face and Gesture Recognition 2021, 2021.

[56] KI-ASIC — Mikroelektronikforschung, https://www.elektronikforschung.de/
projekte/ki-asic, Accessed: 2021-12-08.

[57] B. Vogginger, F. Kreutz, J. Lopez-Randulfe, et al., “Automotive Radar Pro-
cessing with Spiking Neural Networks: Concepts and Challenges”, Frontiers in
Neuroscience, p. 414,

[58] E. Mueller, V. Studenyak, D. Auge, and A. Knoll, “Spiking Transformer Net-
works: A Rate Coded Approach for Processing Sequential Data”, in International
Conference on Systems and Informatics (ICSAI), 2021.

[59] E. Mueller, D. Auge, S. Klimaschka, and A. Knoll, “Neural Oscillations for Energy-
Efficient Hardware Implementation of Sparsely Activated Deep Spiking Neural
Networks”, 2022.

126

https://www.elektronikforschung.de/projekte/ki-asic
https://www.elektronikforschung.de/projekte/ki-asic

[60] J. Hille, D. Auge, C. Grassmann, and A. Knoll, “FMCW radar2radar Interference
Detection with a Recurrent Neural Network”, in 2022 IEEE Radar Conference
(RadarConf22), IEEE, 2022, pp. 1–6.

[61] S. Nair, S. Shafaei, D. Auge, and A. C. Knoll, “An Evaluation of” Crash Prediction
Networks”(CPN) for Autonomous Driving Scenarios in CARLA Simulator.”, in
SafeAI@ AAAI, 2021.

[62] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Popula-
tions, Plasticity. Cambridge university press, 2002.

[63] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition. Cambridge University Press,
2014.

[64] E. M. Izhikevich, “Resonate-and-fire neurons”, Neural networks, vol. 14, no. 6-7,
pp. 883–894, 2001.

[65] B. Hutcheon and Y. Yarom, “Resonance, oscillation and the intrinsic frequency
preferences of neurons”, Trends in Neurosciences, vol. 23, no. 5, pp. 216–222, 2000.

[66] M. J. E. Richardson, N. Brunel, and V. Hakim, “From Subthreshold to Firing-Rate
Resonance”, Journal of Neurophysiology, vol. 89, no. 5, pp. 2538–2554, 2003.

[67] I. Lampl and Y. Yarom, “Subthreshold oscillations and resonant behavior: Two
manifestations of the same mechanism”, Neuroscience, vol. 78, no. 2, pp. 325–341,
1997.

[68] H. G. Rotstein, “Frequency Preference Response to Oscillatory Inputs in Two-
dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude
and Phase Resonance”, The Journal of Mathematical Neuroscience, vol. 4, no. 1,
p. 11, 2014.

[69] M. St-Hilaire and A. Longtin, “Comparison of Coding Capabilities of Type I
and Type II Neurons”, Journal of Computational Neuroscience, vol. 16, no. 3,
pp. 299–313, 2004.

[70] T. Asai, Y. Kanazawa, and Y. Amemiya, “A Subthreshold MOS Neuron Circuit
Based on the Volterra System”, IEEE transactions on neural networks, vol. 14,
no. 5, pp. 1308–1312, 2003.

[71] K. Nakada, T. Asai, and H. Hayashi, “A Silicon Resonate-and-Fire Neuron Based
on the Volterra System”, in Int. Symp. on Nonlinear Theory and Its Applications,
2005, pp. 82–85.

[72] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. Psy-
chology Press, 2005.

[73] S. Löwel and W. Singer, “Selection of Intrinsic Horizontal Connections in the
Visual Cortex by Correlated Neuronal Activity”, Science, vol. 255, no. 5041,
pp. 209–212, 1992.

127

Bibliography

[74] T. Masquelier and S. J. Thorpe, “Unsupervised Learning of Visual Features
through Spike Timing Dependent Plasticity”, PLoS computational biology, vol. 3,
no. 2, e31, 2007.

[75] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Spike Timing Dependent
Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains”,
PloS one, vol. 3, no. 1, e1377, 2008.

[76] T. Masquelier and S. R. Kheradpisheh, “Optimal Localist and Distributed Coding
of Spatiotemporal Spike Patterns Through STDP and Coincidence Detection”,
Frontiers in Computational Neuroscience, vol. 12, 2018.

[77] P. U. Diehl and M. Cook, “Unsupervised Learning of Digit Recognition Using
Spike-Timing-Dependent Plasticity”, Frontiers in computational neuroscience,
vol. 9, p. 99, 2015.

[78] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “STDP-
Based Spiking Deep Convolutional Neural Networks for Object Recognition”,
Neural Networks, vol. 99, pp. 56–67, 2018.

[79] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. J. Amit, “Spike-driven
synaptic plasticity: Theory, simulation, VLSI implementation”, Neural computa-
tion, vol. 12, no. 10, pp. 2227–2258, 2000.

[80] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dynamic evolving spiking
neural networks for on-line spatio-and spectro-temporal pattern recognition”,
Neural Networks, vol. 41, pp. 188–201, 2013.

[81] R. V. Florian, “Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity”, Neural computation, vol. 19, no. 6, pp. 1468–
1502, 2007.

[82] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and M.
Ganjtabesh, “First-Spike-Based Visual Categorization Using Reward-Modulated
STDP”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29,
no. 12, pp. 6178–6190, 2018.

[83] F. Ponulak and A. Kasiński, “Supervised Learning in Spiking Neural Networks
with ReSuMe: Sequence Learning, Classification and Spike-Shifting”, Neural
computation, vol. 22, no. 2, pp. 467–510, 2010.

[84] R. V. Florian, “The Chronotron: A Neuron That Learns to Fire Temporally
Precise Spike Patterns”, PloS one, vol. 7, no. 8, e40233, 2012.

[85] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “SPAN: Spike Pattern
Association Neuron for Learning Spatio-Temporal Spike Patterns”, International
journal of neural systems, vol. 22, no. 04, p. 1 250 012, 2012.

[86] B. Widrow and M. E. Hoff, “Adaptive Switching Circuits”, Stanford Univ Ca
Stanford Electronics Labs, 1960.

128

[87] J. D. Victor and K. P. Purpura, “Nature and Precision of Temporal Coding in
Visual Cortex: A Metric-Space Analysis”, Journal of neurophysiology, vol. 76,
no. 2, pp. 1310–1326, 1996.

[88] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training Deep Spiking Neural Networks
Using Backpropagation”, Frontiers in Neuroscience, vol. 10, 2016.

[89] T. Nakano, M. Otsuka, J. Yoshimoto, and K. Doya, “A Spiking Neural Network
Model of Model-Free Reinforcement Learning with High-Dimensional Sensory
Input and Perceptual Ambiguity”, PLOS ONE, vol. 10, no. 3, e0115620, 2015.

[90] B. Sallans and G. E. Hinton, “Reinforcement Learning with Factored States and
Actions”, Journal of Machine Learning Research, vol. 5, pp. 1063–1088, Aug 2004.

[91] M. Otsuka, J. Yoshimoto, and K. Doya, “Free-energy-based Reinforcement Learn-
ing in a Partially Observable Environment”, in ESANN, 2010.

[92] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of
Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image
Classification”, Frontiers in neuroscience, vol. 11, p. 682, 2017.

[93] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-Classifying,
High-Accuracy Spiking Deep Networks through Weight and Threshold Balancing”,
in Neural Networks (IJCNN), 2015 International Joint Conference On, IEEE,
2015, pp. 1–8.

[94] A. Kasiński and F. Ponulak, “Comparison Of Supervised Learning Methods For
Spike Time Coding in Spiking Neural Networks”, International Journal of Applied
Mathematics and Computer Science, vol. 16, pp. 101–113, 2006.

[95] M. Minsky, “Steps toward Artificial Intelligence”, Proceedings of the IRE, vol. 49,
no. 1, pp. 8–30, 1961.

[96] P. J. Werbos, “Backpropagation Through Time: What It Does and How to Do
It”, Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[97] Y. Bengio, P. Simard, and P. Frasconi, “Learning Long-Term Dependencies with
Gradient Descent is Difficult”, IEEE transactions on neural networks, vol. 5, no. 2,
pp. 157–166, 1994.

[98] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks”, in International Conference on Machine Learning, PMLR, 2013,
pp. 1310–1318.

[99] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[100] K. Cho, B. Van Merriënboer, C. Gulcehre, et al., “Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation”, 2014. arXiv:
1406.1078.

[101] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., “A million spiking-neuron
integrated circuit with a scalable communication network and interface”, Science,
vol. 345, no. 6197, pp. 668–673, 2014.

129

https://arxiv.org/abs/1406.1078

Bibliography

[102] C. Mayr, S. Hoeppner, and S. Furber, “SpiNNaker 2: A 10 Million Core Processor
System for Brain Simulation and Machine Learning”, 2019. arXiv: 1911.02385.

[103] Human Brain Project, https://www.humanbrainproject.eu/, Accessed: 2021-
12-08.

[104] The BRAIN Initiative, https://braininitiative.nih.gov/, Accessed: 2021-
12-08.

[105] J. Stuijt, M. Sifalakis, A. Yousefzadeh, and F. Corradi, “�Brain: An Event-Driven
and Fully Synthesizable Architecture for Spiking Neural Networks”, Frontiers in
Neuroscience, vol. 0, 2021.

[106] Y. Kuang, X. Cui, Y. Zhong, et al., “A 28-nm 0.34-pJ/SOP Spike-Based Neuro-
morphic Processor for Efficient Artificial Neural Network Implementations”, in
2021 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE,
2021, pp. 1–5.

[107] S. Furber, “Large-scale neuromorphic computing systems”, Journal of neural
engineering, vol. 13, no. 5, p. 051 001, 2016.

[108] C. D. Schuman, T. E. Potok, R. M. Patton, et al., “A Survey of Neuromorphic
Computing and Neural Networks in Hardware”, 2017. arXiv: 1705.06963.

[109] C. S. Thakur, J. L. Molin, G. Cauwenberghs, et al., “Large-Scale Neuromorphic
Spiking Array Processors: A Quest to Mimic the Brain”, Frontiers in neuroscience,
vol. 12, p. 891, 2018.

[110] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou, “Low-
Power Neuromorphic Hardware for Signal Processing Applications: A Review
of Architectural and System-Level Design Approaches”, IEEE Signal Processing
Magazine, vol. 36, no. 6, pp. 97–110, 2019.

[111] M. Bouvier, A. Valentian, T. Mesquida, et al., “Spiking Neural Networks Hard-
ware Implementations and Challenges: A Survey”, ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 15, no. 2, pp. 1–35, 2019.

[112] U. Rueckert, “Update on Brain-Inspired Systems”, in NANO-CHIPS 2030, Springer,
2020, pp. 387–403.

[113] J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov, “Spiking Neural Networks
and Online Learning: An Overview and Perspectives”, Neural Networks, vol. 121,
pp. 88–100, 2020.

[114] N. T. Carnevale and M. L. Hines, The NEURON Book. Cambridge University
Press, 2006.

[115] J. M. Bower and D. Beeman, The Book of GENESIS: Exploring Realistic Neural
Models with the GEneral NEural SImulation System. Springer Science & Business
Media, 2012.

[116] M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive and efficient
neural simulator”, eLife, vol. 8, F. K. Skinner, R. L. Calabrese, F. K. Skinner,
F. Zeldenrust, and R. C. Gerkin, Eds., e47314, 2019.

130

https://arxiv.org/abs/1911.02385
https://www.humanbrainproject.eu/
https://braininitiative.nih.gov/
https://arxiv.org/abs/1705.06963

[117] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool)”, Scholarpe-
dia, vol. 2, no. 4, p. 1430, 2007.

[118] R. A. Tikidji-Hamburyan, V. Narayana, Z. Bozkus, and T. A. El-Ghazawi, “Soft-
ware for Brain Network Simulations: A Comparative Study”, Frontiers in neu-
roinformatics, vol. 11, p. 46, 2017.

[119] E. Falotico, L. Vannucci, A. Ambrosano, et al., “Connecting Artificial Brains to
Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform”,
Frontiers in Neurorobotics, vol. 11, 2017.

[120] A. P. Davison, D. Brüderle, J. M. Eppler, et al., “PyNN: A common interface for
neuronal network simulators”, Frontiers in Neuroinformatics, vol. 2, 2009.

[121] M. Abadi, P. Barham, J. Chen, et al., “TensorFlow: A system for Large-Scale
machine learning”, in 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, K.
Keeton and T. Roscoe, Eds., USENIX Association, 2016, pp. 265–283.

[122] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”, in Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett,
Eds., 2019, pp. 8024–8035.

[123] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner, “A
Wafer-Scale Neuromorphic Hardware System for Large-Scale Neural Modeling”,
in 2010 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE,
2010, pp. 1947–1950.

[124] R. Brette and W. Gerstner, “Adaptive Exponential Integrate-and-Fire Model as
an Effective Description of Neuronal Activity”, Journal of neurophysiology, vol. 94,
no. 5, pp. 3637–3642, 2005.

[125] S. A. Aamir, P. Müller, A. Hartel, J. Schemmel, and K. Meier, “A highly tunable
65-nm CMOS LIF neuron for a large scale neuromorphic system”, in ESSCIRC
Conference 2016: 42nd European Solid-State Circuits Conference, IEEE, 2016,
pp. 71–74.

[126] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker Project”,
Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[127] B. V. Benjamin, P. Gao, E. McQuinn, et al., “Neurogrid: A Mixed-Analog-Digital
Multichip System for Large-Scale Neural Simulations”, Proceedings of the IEEE,
vol. 102, no. 5, pp. 699–716, 2014.

[128] A. Neckar, S. Fok, B. V. Benjamin, et al., “Braindrop: A Mixed-Signal Neuro-
morphic Architecture With a Dynamical Systems-Based Programming Model”,
Proceedings of the IEEE, vol. 107, no. 1, pp. 144–164, 2018.

131

Bibliography

[129] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (DYNAPs)”, IEEE transactions on biomedical circuits and systems,
vol. 12, no. 1, pp. 106–122, 2017.

[130] J. Shen, D. Ma, Z. Gu, et al., “Darwin: A neuromorphic hardware co-processor
based on spiking neural networks”, Science China Information Sciences, vol. 59,
no. 2, pp. 1–5, 2016.

[131] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A 0.086-mm 212.7-pJ/SOP
64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in
28-nm CMOS”, IEEE transactions on biomedical circuits and systems, vol. 13,
no. 1, pp. 145–158, 2018.

[132] N. Qiao, H. Mostafa, F. Corradi, et al., “A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128K synapses”, Frontiers in
neuroscience, vol. 9, p. 141, 2015.

[133] F. N. Buhler, P. Brown, J. Li, T. Chen, Z. Zhang, and M. P. Flynn, “A 3.43
TOPS/W 48.9 pJ/pixel 50.1 nJ/classification 512 analog neuron sparse coding
neural network with on-chip learning and classification in 40nm CMOS”, in 2017
Symposium on VLSI Circuits, IEEE, 2017, pp. C30–C31.

[134] G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Krishnamurthy,
“A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural network with on-chip
STDP learning and sparse weights in 10-nm FinFET CMOS”, IEEE Journal of
Solid-State Circuits, vol. 54, no. 4, pp. 992–1002, 2018.

[135] S.-G. Cho, E. Beigné, and Z. Zhang, “A 2048-neuron spiking neural network
accelerator with neuro-inspired pruning and asynchronous network on chip in
40nm CMOS”, in 2019 IEEE Custom Integrated Circuits Conference (CICC),
IEEE, 2019, pp. 1–4.

[136] J. Park, J. Lee, and D. Jeon, “7.6 A 65nm 236.5 nJ/classification neuromorphic
processor with 7.5% energy overhead on-chip learning using direct spike-only
feedback”, in 2019 IEEE International Solid-State Circuits Conference-(ISSCC),
IEEE, 2019, pp. 140–142.

[137] J. Pei, L. Deng, S. Song, et al., “Towards artificial general intelligence with hybrid
Tianjic chip architecture”, Nature, vol. 572, no. 7767, pp. 106–111, 2019.

[138] Y. Kuang, X. Cui, Y. Zhong, et al., “A 64K-neuron 64M-1b-synapse 2.64 pJ/SOP
Neuromorphic Chip with All Memory on Chip for Spike-based Models in 65nm
CMOS”, IEEE Transactions on Circuits and Systems II: Express Briefs, 2021.

[139] Y. Zhong, X. Cui, Y. Kuang, K. Liu, Y. Wang, and R. Huang, “A Spike-event-
based Neuromorphic Processor with Enhanced On-chip STDP Learning in 28nm
CMOS”, in 2021 IEEE International Symposium on Circuits and Systems (ISCAS),
IEEE, 2021, pp. 1–5.

[140] C. Eliasmith and C. H. Anderson, Neural Engineering: Computation, Representa-
tion, and Dynamics in Neurobiological Systems. MIT press, 2004.

132

[141] G. Orchard, E. P. Frady, D. B. D. Rubin, et al., “Efficient Neuromorphic Signal
Processing with Loihi 2”, in 2021 IEEE Workshop on Signal Processing Systems
(SiPS), 2021, pp. 254–259.

[142] A. Cassidy, A. G. Andreou, and J. Georgiou, “Design of a one million neuron
single FPGA neuromorphic system for real-time multimodal scene analysis”, in
2011 45Th Annual Conference on Information Sciences and Systems, IEEE, 2011,
pp. 1–6.

[143] Q. Wang, Y. Li, B. Shao, S. Dey, and P. Li, “Energy efficient parallel neuromorphic
architectures with approximate arithmetic on FPGA”, Neurocomputing, vol. 221,
pp. 146–158, 2017.

[144] D. Pani, P. Meloni, G. Tuveri, F. Palumbo, P. Massobrio, and L. Raffo, “An
FPGA platform for real-time simulation of spiking neuronal networks”, Frontiers
in neuroscience, vol. 11, p. 90, 2017.

[145] H. Mostafa, B. U. Pedroni, S. Sheik, and G. Cauwenberghs, “Fast classification
using sparsely active spiking networks”, in 2017 IEEE International Symposium
on Circuits and Systems (ISCAS), IEEE, 2017, pp. 1–4.

[146] R. M. Wang, C. S. Thakur, and A. van Schaik, “An FPGA-based massively parallel
neuromorphic cortex simulator”, Frontiers in neuroscience, vol. 12, p. 213, 2018.

[147] E. D. Adrian and Y. Zotterman, “The Impulses Produced by Sensory Nerve-
Endings. Part 2. The Response of a Single End-Organ.”, The Journal of Physiology,
vol. 61, no. 2, 1926.

[148] S. J. Thorpe, “Spike Arrival Times: A Highly Efficient Coding Scheme for Neural
Networks”, Parallel processing in neural systems, pp. 91–94, 1990.

[149] T. J. Gawne, T. W. Kjaer, and B. J. Richmond, “Latency: Another Potential
Code for Feature Binding in Striate Cortex”, Journal of neurophysiology, vol. 76,
no. 2, pp. 1356–1360, 1996.

[150] M. A. Montemurro, M. J. Rasch, Y. Murayama, N. K. Logothetis, and S. Panzeri,
“Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex”,
Current biology, vol. 18, no. 5, pp. 375–380, 2008.

[151] G. Portelli, J. M. Barrett, G. Hilgen, et al., “Rank Order Coding: A Retinal
Information Decoding Strategy Revealed by Large-Scale Multielectrode Array
Retinal Recordings”, Eneuro, vol. 3, no. 3, 2016.

[152] R. Galambos and H. Davis, “The Response of Single Auditory-Nerve Fibers to
Acoustic Stimulation”, Journal of neurophysiology, vol. 6, no. 1, pp. 39–57, 1943.

[153] T. W. Margrie and A. T. Schaefer, “Theta Oscillation Coupled Spike Latencies
Yield Computational Vigour in a Mammalian Sensory System”, The Journal of
physiology, vol. 546, no. 2, pp. 363–374, 2003.

133

Bibliography

[154] N. M. Abraham, H. Spors, A. Carleton, T. W. Margrie, T. Kuner, and A. T.
Schaefer, “Maintaining Accuracy at the Expense of Speed: Stimulus Similarity
Defines Odor Discrimination Time in Mice”, Neuron, vol. 44, no. 5, pp. 865–876,
2004.

[155] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 dB 15 µs Latency
Asynchronous Temporal Contrast Vision Sensor”, IEEE Journal of Solid-State
Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[156] S. Denève and C. K. Machens, “Efficient Codes and Balanced Networks”, Nature
neuroscience, vol. 19, no. 3, p. 375, 2016.

[157] E. D. Adrian and Y. Zotterman, “The Impulses Produced by Sensory Nerve
Endings: Part 3. Impulses Set up by Touch and Pressure”, The Journal of
physiology, vol. 61, no. 4, pp. 465–483, 1926.

[158] M. Zhang, Z. Gu, N. Zheng, D. Ma, and G. Pan, “Efficient Spiking Neural Networks
With Logarithmic Temporal Coding”, IEEE Access, vol. 8, pp. 98 156–98 167, 2020.

[159] H. Hamanaka, H. Torikai, and T. Saito, “Quantized Spiking Neuron with A/D
Conversion Functions”, IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 53, no. 10, pp. 1049–1053, 2006.

[160] N. Kasabov, N. M. Scott, E. Tu, et al., “Evolving Spatio-Temporal Data Ma-
chines Based on the NeuCube Neuromorphic Framework: Design Methodology
and Selected Applications”, Neural Networks, Special Issue on ”Neural Network
Learning in Big Data”, vol. 78, pp. 1–14, 2016.

[161] B. Petro, N. Kasabov, and R. M. Kiss, “Selection and Optimization of Temporal
Spike Encoding Methods for Spiking Neural Networks”, IEEE Transactions on
Neural Networks and Learning Systems, vol. 31, no. 2, pp. 358–370, 2020.

[162] F. Ponulak and A. Kasinski, “Introduction to spiking neural networks: Information
processing, learning and applications.”, Acta neurobiologiae experimentalis, vol. 71,
no. 4, pp. 409–433, 2011.

[163] B. A. Olshausen and D. J. Field, “Sparse Coding of Sensory Inputs”, Current
opinion in neurobiology, vol. 14, no. 4, pp. 481–487, 2004.

[164] S. Ahmad and L. Scheinkman, “How Can We Be So Dense? The Benefits of Using
Highly Sparse Representations”, 2019. arXiv: 1903.11257.

[165] J. Hawkins and S. Ahmad, “Why Neurons Have Thousands of Synapses, a Theory
of Sequence Memory in Neocortex”, Frontiers in Neural Circuits, vol. 10, 2016.

[166] B. Schrauwen and J. Van Campenhout, “BSA, a Fast and Accurate Spike Train
Encoding Scheme”, in Proceedings of the International Joint Conference on Neural
Networks, vol. 4, IEEE Piscataway, NJ, 2003, pp. 2825–2830.

[167] M. Hough, H. De Garis, M. Korkin, F. Gers, and N. E. Nawa, “SPIKER: Analog
Waveform to Digital Spiketrain Conversion in ATR’s Artificial Brain (Cam-Brain)
Project”, in International Conference on Robotics and Artificial Life, Citeseer,
1999.

134

https://arxiv.org/abs/1903.11257

[168] N. Sengupta, N. Scott, and N. Kasabov, “Framework for Knowledge Driven
Optimisation Based Data Encoding for Brain Data Modelling Using Spiking Neural
Network Architecture”, in Proceedings of the Fifth International Conference on
Fuzzy and Neuro Computing (FANCCO - 2015), V. Ravi, B. K. Panigrahi, S. Das,
and P. N. Suganthan, Eds., ser. Advances in Intelligent Systems and Computing,
Springer International Publishing, 2015, pp. 109–118.

[169] N. Nuntalid, K. Dhoble, and N. Kasabov, “EEG Classification with BSA Spike
Encoding Algorithm and Evolving Probabilistic Spiking Neural Network”, in
Neural Information Processing, B.-L. Lu, L. Zhang, and J. Kwok, Eds., vol. 7062,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 451–460.

[170] Y. LeCun, “The MNIST Database of Handwritten Digits”, http://yann. lecun.
com/exdb/mnist/, 1998.

[171] T. Delbrück and C. A. Mead, “Analog VLSI adaptive logarithmic wide-dynamic-
range photoreceptor”, in Proc. IEEE Int. Symp. Circuits and Systems, vol. 4,
1994, pp. 339–342.

[172] T. Pellegrini, R. Zimmer, and T. Masquelier, “Low-activity supervised convolu-
tional spiking neural networks applied to speech commands recognition”, in 2021
IEEE Spoken Language Technology Workshop (SLT), IEEE, 2021, pp. 97–103.

[173] B. Yin, F. Corradi, and S. M. Bohté, “Accurate and efficient time-domain classifica-
tion with adaptive spiking recurrent neural networks”, Nature Machine Intelligence,
vol. 3, no. 10, pp. 905–913, 10 2021.

[174] S. Rotter and M. Diesmann, “Exact digital simulation of time-invariant linear
systems with applications to neuronal modeling”, Biological cybernetics, vol. 81,
no. 5, pp. 381–402, 1999.

[175] B. Yin, F. Corradi, and S. M. Bohté, “Effective and Efficient Computation
with Multiple-timescale Spiking Recurrent Neural Networks”, in International
Conference on Neuromorphic Systems 2020, ser. ICONS 2020, New York, NY,
USA: Association for Computing Machinery, 2020, pp. 1–8.

[176] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable
states: A new framework for neural computation based on perturbations”, Neural
computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[177] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent
neural network training”, Computer Science Review, vol. 3, no. 3, pp. 127–149,
2009.

[178] M. Bear, B. Connors, and M. A. Paradiso, Neuroscience: Exploring the Brain,
Enhanced Edition, 004 Edition. Burlington: JONES & BARTLETT PUB INC,
2020, 975 pp.

[179] S. K. Esser, P. A. Merolla, J. V. Arthur, et al., “Convolutional Networks for Fast,
Energy-Efficient Neuromorphic Computing”, Proceedings of the National Academy
of Sciences, vol. 113, no. 41, pp. 11 441–11 446, 2016. arXiv: 1603.08270.

135

https://arxiv.org/abs/1603.08270

Bibliography

[180] E. Yılmaz, O. B. Gevrek, J. Wu, Y. Chen, X. Meng, and H. Li, “Deep convolutional
spiking neural networks for keyword spotting”, Proc. Interspeech 2020, pp. 2557–
2561, 2020.

[181] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks”, in Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings,
2010, pp. 249–256.

[182] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification”, in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1026–1034.

[183] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, The journal
of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[184] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of neural
networks using dropconnect”, in International Conference on Machine Learning,
PMLR, 2013, pp. 1058–1066.

[185] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas, “Predicting
parameters in deep learning”, in Advances in Neural Information Processing
Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, Eds., vol. 26, Curran Associates, Inc., 2013.

[186] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neural networks
without any data by iteratively conserving synaptic flow”, in Advances in Neural
Information Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 6377–
6389.

[187] G. Bellec, D. Kappel, W. Maass, and R. Legenstein, “Deep rewiring: Training
very sparse deep networks”, 2017. arXiv: 1711.05136.

[188] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy of
pruning for model compression”, 2017. arXiv: 1710.01878.

[189] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity in
Deep Learning: Pruning and growth for efficient inference and training in neural
networks.”, J. Mach. Learn. Res., vol. 22, no. 241, pp. 1–124, 2021.

[190] Q. Yu, H. Tang, K. C. Tan, and H. Yu, “A Brain-Inspired Spiking Neural Network
Model with Temporal Encoding and Learning”, Neurocomputing, vol. 138, pp. 3–
13, 2014.

[191] C. Banbury, C. Zhou, I. Fedorov, et al., “MicroNets: Neural Network Architectures
for Deploying TinyML Applications on Commodity Microcontrollers”, Proceedings
of Machine Learning and Systems, vol. 3, pp. 517–532, 2021.

[192] S. Furui, Digital Speech Processing: Synthesis, and Recognition. CRC Press, 2018.
[193] D. Purves, Ed., Neuroscience, Sixth edition. New York: Oxford University Press,

2018, 1 p.

136

https://arxiv.org/abs/1711.05136
https://arxiv.org/abs/1710.01878

[194] X. Wang, T. Lu, D. Bendor, and E. Bartlett, “Neural coding of temporal informa-
tion in auditory thalamus and cortex”, Neuroscience, From Cochlea to Cortex:
Recent Advances in Auditory Neuroscience, vol. 154, no. 1, pp. 294–303, 2008.

[195] R. Lyon, “A computational model of filtering, detection, and compression in the
cochlea”, in ICASSP’82. IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 7, IEEE, 1982, pp. 1282–1285.

[196] A. Kern, C. Heid, W.-H. Steeb, N. Stoop, and R. Stoop, “Biophysical parameters
modification could overcome essential hearing gaps”, PLoS computational biology,
vol. 4, no. 8, e1000161, 2008.

[197] S. Davis and P. Mermelstein, “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences”, IEEE transactions
on acoustics, speech, and signal processing, vol. 28, no. 4, pp. 357–366, 1980.

[198] B. Logan, “Mel frequency cepstral coefficients for music modeling”, in In Interna-
tional Symposium on Music Information Retrieval, Citeseer, 2000.

[199] T. Ganchev, N. Fakotakis, and G. Kokkinakis, “Comparative evaluation of various
MFCC implementations on the speaker verification task”, in Proceedings of the
SPECOM, vol. 1, 2005, pp. 191–194.

[200] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks”, in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, 2013, pp. 6645–6649.

[201] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying convolutional
neural networks concepts to hybrid NN-HMM model for speech recognition”, in
2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2012, pp. 4277–4280.

[202] K. Kumatani, S. Panchapagesan, M. Wu, et al., “Direct modeling of raw audio
with DNNS for wake word detection”, in 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), 2017, pp. 252–257.

[203] T. N. Sainath, R. J. Weiss, K. W. Wilson, et al., “Multichannel signal processing
with deep neural networks for automatic speech recognition”, IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 25, no. 5, pp. 965–979,
2017.

[204] J. Lee, J. Park, K. L. Kim, and J. Nam, “Sample-level deep convolutional neural
networks for music auto-tagging using raw waveforms”, 2017. arXiv: 1703.01789.

[205] T. Kim, J. Lee, and J. Nam, “Comparison and analysis of samplecnn architectures
for audio classification”, IEEE Journal of Selected Topics in Signal Processing,
vol. 13, no. 2, pp. 285–297, 2019.

[206] S. Sheik, M. Coath, G. Indiveri, S. L. Denham, T. Wennekers, and E. Chicca,
“Emergent auditory feature tuning in a real-time neuromorphic VLSI system”,
Frontiers in neuroscience, vol. 6, p. 17, 2012.

137

https://arxiv.org/abs/1703.01789

Bibliography

[207] V. Chan, S.-C. Liu, and A. van Schaik, “AER EAR: A matched silicon cochlea
pair with address event representation interface”, IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 54, no. 1, pp. 48–59, 2007.

[208] S. Liu, A. van Schaik, B. A. Mincti, and T. Delbruck, “Event-Based 64-Channel
Binaural Silicon Cochlea with Q Enhancement Mechanisms”, in Proceedings of
2010 IEEE International Symposium on Circuits and Systems, 2010, pp. 2027–
2030.

[209] B. U. Pedroni, S. Sheik, H. Mostafa, S. Paul, C. Augustine, and G. Cauwenberghs,
“Small-footprint spiking neural networks for power-efficient keyword spotting”, in
2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), IEEE, 2018,
pp. 1–4.

[210] P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith, “Benchmarking keyword
spotting efficiency on neuromorphic hardware”, in Proceedings of the 7th Annual
Neuro-inspired Computational Elements Workshop, 2019, pp. 1–8.

[211] P. Warden, “Speech commands: A dataset for limited-vocabulary speech recogni-
tion”, 2018. arXiv: 1804.03209.

[212] J. J. Hopfield and C. D. Brody, “What is a moment?“Cortical” sensory integration
over a brief interval”, Proceedings of the National Academy of Sciences, vol. 97,
no. 25, pp. 13 919–13 924, 2000.

[213] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout, “Isolated
word recognition with the liquid state machine: A case study”, Information
Processing Letters, vol. 95, no. 6, pp. 521–528, 2005.

[214] S. Loiselle, J. Rouat, D. Pressnitzer, and S. Thorpe, “Exploration of Rank Order
Coding with Spiking Neural Networks for Speech Recognition”, in Proceedings.
2005 IEEE International Joint Conference on Neural Networks, 2005., vol. 4,
IEEE, 2005, pp. 2076–2080.

[215] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “SWAT: A spiking
neural network training algorithm for classification problems”, IEEE Transactions
on Neural Networks, vol. 21, no. 11, pp. 1817–1830, 2010.

[216] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spiking neural networks
for audiovisual information processing”, Neural Networks, vol. 23, no. 7, pp. 819–
835, 2010.

[217] Y. Zhang, P. Li, Y. Jin, and Y. Choe, “A digital liquid state machine with
biologically inspired learning and its application to speech recognition”, IEEE
transactions on neural networks and learning systems, vol. 26, no. 11, pp. 2635–
2649, 2015.

[218] A. Tavanaei and A. S. Maida, “A spiking network that learns to extract spike
signatures from speech signals”, Neurocomputing, vol. 240, pp. 191–199, 2017.

138

https://arxiv.org/abs/1804.03209

[219] A. Tavanaei and A. S. Maida, “Training a Hidden markov model with a Bayesian
spiking neural network”, Journal of Signal Processing Systems, vol. 90, no. 2,
pp. 211–220, 2018.

[220] G. Bellec, F. Scherr, A. Subramoney, et al., “A solution to the learning dilemma
for recurrent networks of spiking neurons”, Nature Communications, vol. 11, no. 1,
p. 3625, 1 2020.

[221] B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted Residual Learning for
Efficient Keyword Spotting”, 2021. arXiv: 2106.04140.

[222] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword Transformer: A Self-Attention
Model for Keyword Spotting”, 2021. arXiv: 2104.00769.

[223] G. Rogez, J. S. Supancic, and D. Ramanan, “Understanding everyday hands in
action from rgb-d images”, in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 3889–3897.

[224] C. Zimmermann and T. Brox, “Learning to estimate 3d hand pose from single
rgb images”, in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 4903–4911.

[225] M. E. Benalcázar, C. Motoche, J. A. Zea, et al., “Real-time hand gesture recognition
using the Myo armband and muscle activity detection”, in 2017 IEEE Second
Ecuador Technical Chapters Meeting (ETCM), IEEE, 2017, pp. 1–6.

[226] J. Craley, T. S. Murray, D. R. Mendat, and A. G. Andreou, “Action recognition
using micro-Doppler signatures and a recurrent neural network”, in 2017 51st
Annual Conference on Information Sciences and Systems (CISS), IEEE, 2017,
pp. 1–5.

[227] Z. Zhang, Z. Tian, and M. Zhou, “Latern: Dynamic continuous hand gesture
recognition using FMCW radar sensor”, IEEE Sensors Journal, vol. 18, no. 8,
pp. 3278–3289, 2018.

[228] B. Dekker, S. Jacobs, A. S. Kossen, M. C. Kruithof, A. G. Huizing, and M. Geurts,
“Gesture recognition with a low power FMCW radar and a deep convolutional
neural network”, in 2017 European Radar Conference (EURAD), IEEE, 2017,
pp. 163–166.

[229] S. Wang, J. Song, J. Lien, I. Poupyrev, and O. Hilliges, “Interacting with soli:
Exploring fine-grained dynamic gesture recognition in the radio-frequency spec-
trum”, in Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, 2016, pp. 851–860.

[230] M. Scherer, M. Magno, J. Erb, P. Mayer, M. Eggimann, and L. Benini, “TinyRadarNN:
Combining spatial and temporal convolutional neural networks for embedded ges-
ture recognition with short range radars”, IEEE Internet of Things Journal,
2021.

139

https://arxiv.org/abs/2106.04140
https://arxiv.org/abs/2104.00769

Bibliography

[231] J. Lien, N. Gillian, M. E. Karagozler, et al., “Soli: Ubiquitous gesture sensing with
millimeter wave radar”, ACM Transactions on Graphics (TOG), vol. 35, no. 4,
pp. 1–19, 2016.

[232] E. Hayashi, J. Lien, N. Gillian, et al., “RadarNet: Efficient Gesture Recognition
Technique Utilizing a Miniature Radar Sensor”, in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, 2021, pp. 1–14.

[233] H. Winner, S. Hakuli, F. Lotz, and C. Singer, Handbuch Fahrerassistenzsysteme:
Grundlagen, Komponenten Und Systeme Für Aktive Sicherheit Und Komfort (3.,
Überarbeitete Und Ergänzte Auflage Aufl.) Wiesbaden: Springer Vieweg, 2015.

[234] S. Skaria, A. Al-Hourani, M. Lech, and R. J. Evans, “Hand-gesture recognition
using two-antenna Doppler radar with deep convolutional neural networks”, IEEE
Sensors Journal, vol. 19, no. 8, pp. 3041–3048, 2019.

[235] S. Ahmed, K. D. Kallu, S. Ahmed, and S. H. Cho, “Hand gestures recognition
using radar sensors for human-computer-interaction: A review”, Remote Sensing,
vol. 13, no. 3, p. 527, 2021.

[236] D. Banerjee, S. Rani, A. M. George, et al., “Application of spiking neural networks
for action recognition from radar data”, in 2020 International Joint Conference
on Neural Networks (IJCNN), IEEE, 2020, pp. 1–10.

[237] I. J. Tsang, F. Corradi, M. Sifalakis, W. Van Leekwijck, and S. Latré, “Radar-
Based Hand Gesture Recognition Using Spiking Neural Networks”, Electronics,
vol. 10, no. 12, p. 1405, 12 2021.

[238] F. Kreutz, P. Gerhards, B. Vogginger, K. Knobloch, and C. G. Mayr, “Applied
Spiking Neural Networks for Radar-based Gesture Recognition”, in 2021 7th
International Conference on Event-Based Control, Communication, and Signal
Processing (EBCCSP), IEEE, 2021, pp. 1–4.

[239] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.”, Journal of
machine learning research, vol. 9, no. 11, 2008.

[240] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series”, Mathematics of computation, vol. 19, no. 90, pp. 297–301,
1965.

[241] S. G. Johnson and M. Frigo, “A modified split-radix FFT with fewer arithmetic
operations”, IEEE Transactions on Signal Processing, vol. 55, no. 1, pp. 111–119,
2006.

[242] J. López-Randulfe, T. Duswald, Z. Bing, and A. Knoll, “Spiking Neural Network
for Fourier Transform and Object Detection for Automotive Radar”, Frontiers in
Neurorobotics, vol. 15, 2021.

[243] V. J. Reddi, C. Cheng, D. Kanter, et al., “Mlperf inference benchmark”, in 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), IEEE, 2020, pp. 446–459.

140

	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Research Questions and Scope of the Thesis
	1.2 Structure
	1.3 Contributions

	2 Background
	2.1 Neuron Models
	2.1.1 Hodgkin-Huxley Model
	2.1.2 Leaky Integrate-and-fire Model
	2.1.3 Resonate-and-fire Model

	2.2 Training
	2.2.1 Biologically Plausible Learning Algorithms
	2.2.2 Artificial Learning Algorithms
	2.2.3 Backpropagation

	2.3 Neuromorphic Hardware
	2.3.1 Software Simulation Environments
	2.3.2 Multipurpose Hardware Accelerators
	2.3.3 Specialized Circuits
	2.3.4 FPGA-based Accelerators
	2.3.5 Summary

	2.4 Review of Encoding Schemes
	2.4.1 Taxonomy
	2.4.2 Rate Coding
	2.4.3 Temporal Coding

	3 Signal Encoding
	3.1 Introduction
	3.2 Frame-based Encoding
	3.2.1 Correlation and Synchrony
	3.2.2 Globally Referenced
	3.2.3 Binarization

	3.3 Stream Encoding
	3.3.1 Temporal Contrast
	3.3.2 Filter and Optimizer

	3.4 Frequency-selective Resonating Neurons
	3.4.1 Properties of the Resonator
	3.4.2 Spike Generation
	3.4.3 Frequency, Amplitude, and Phase Resolution
	3.4.4 Discretized Model

	4 Network Architecture and Training
	4.1 Neuron Models and Connectivity Schemes
	4.1.1 Discrete LIF Neuron
	4.1.2 Reset Functionality
	4.1.3 Integrator Output Neurons
	4.1.4 Recurrence
	4.1.5 Convolutional Layer

	4.2 Training
	4.2.1 Optimization Variables
	4.2.2 Regularization
	4.2.3 Network Pruning

	4.3 Neuromorphic Hardware Considerations
	4.3.1 Mapping Network Hyperparameters to Hardware
	4.3.2 Neurons, Trainable Parameters, and Synapses
	4.3.3 Energy Consumption

	5 Speech Recognition – Wake Word Detection
	5.1 Motivation
	5.2 Background
	5.2.1 Auditory Feature Generation
	5.2.2 Related Work

	5.3 Setup
	5.3.1 Dataset
	5.3.2 Evaluation Metrics
	5.3.3 Input Encoding
	5.3.4 Network Architectures

	5.4 Evaluation
	5.4.1 Classification Performance
	5.4.2 Network Dynamics of the SNN
	5.4.3 Ablation Study

	5.5 Discussion of the Results
	5.5.1 Comparison to ANNs and the State of the Art
	5.5.2 Energy and Complexity Considerations

	6 Radar-Based Hand Gesture Recognition
	6.1 Motivation
	6.2 Background
	6.2.1 Measurement Principle
	6.2.2 Related Work

	6.3 Setup
	6.3.1 Datasets
	6.3.2 Preprocessing and Encoding
	6.3.3 Evaluation Metrics
	6.3.4 Network Architectures

	6.4 Evaluation
	6.4.1 Classification Performance
	6.4.2 Ablation Study

	6.5 Discussion of the Results

	7 Summary and Conclusion
	7.1 Background
	7.2 Signal Encoding
	7.3 Network Architecture and Training
	7.4 Applications
	7.4.1 Speech Recognition
	7.4.2 Hand Gesture Recognition
	7.4.3 Similarities and Differences

	7.5 Limitations

	8 Outlook
	Appendix
	Bibliography

