
TUM School of Computation, Information and
Technology

Technische Universität München

Variational Bayes for Continual
Learning and Time-Series Forecasting

Richard Kurle

TUM School of Computation, Information and
Technology

Technische Universität München

Variational Bayes for Continual Learning and
Time-Series Forecasting

Richard Kurle

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Darius Burschka

Prüfer*innen der Dissertation: 1. Prof. Dr. Stephan Günnemann
2. apl. Prof. Dr. Georg Groh

Die Dissertation wurde am 23.09.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am

09.02.2023 angenommen.

Abstract

Deep neural networks trained with gradient-based methods are the workhorse of many data-
driven solutions for real-world problems due to impressive performance in various domains,
such as computer vision, natural language processing, and time-series modelling. However,
certain applications such as continual learning with non-stationary data, multi-modal/multi-
view learning, or probabilistic time-series forecasting pose challenging problems that require
non-trivial extensions of the established methods. In order to address these problems, this
dissertation takes the probabilistic approach to machine learning, providing a coherent framework
for constructing models that combine prior or expert knowledge about latent random variables
in the model with information inferred from data through the likelihood function. One of the
key challenges is to develop practical algorithms that allow for tractable inference of the latent
variables, usually requiring simplifying model assumptions or approximations. Variational Bayes
is a well-established approximate-inference method that is applicable to deep learning in different
ways: neural networks can be used to define the parameters of the conditional distributions in
deep latent-variable models and deep state-space models, thus modelling aleatoric uncertainty;
on the other hand, Bayesian neural networks treat the weights and biases of the neural network
as latent variables, reflecting epistemic uncertainty.

This cumulative dissertation develops variational-Bayesian methods for the above-mentioned
applications. In case of continual learning with non-stationary data, sequential variational
approximation and adaptation methods for Bayesian neural networks are developed. The
variational approximation consists of a running memory of raw data and a Gaussian distribution
that summarises the rest of the data, and the proposed adaptation methods allow the model to
cope with data drift. Subsequent work explains the main problem of the variational-Bayesian
method used for (continual) learning: invariances in the likelihood of over-parametrised models
have a detrimental effect on variational-Bayesian methods, since the invariances lead to an
additional gap in the ELBO objective that incentivises posterior collapse to the prior. Another
contribution is a neural-variational-inference method for learning deep latent-variable models
of multiple sources (modalities or views). The proposed approach uses individual inference
models for each source and the inferred beliefs are integrated via a product- or mixture-of-
experts approach. For probabilistic time-series forecasting, an extension of switching Gaussian
linear systems with additional state-to-switch recurrence and a decoder-type emission model is
developed, allowing for improved long-term forecasts and to represent multivariate non-linear
and non-Gaussian emission noise. An efficient Rao-Blackwellised particle filter is proposed for
inferring the latent state variables and learning the parameters. The above-mentioned methods
are evaluated extensively, with qualitative experiments on synthetic data to provide intuition, and
well-known benchmarks in the respective fields to evaluate the methods quantitatively.

ii

Acknowledgements

I would like to thank the people who supported, encouraged, and motivated me while working
on this dissertation.

First, I want to thank my supervisors Stephan Günnemann and Patrick van der Smagt, who
gave me this great opportunity and made sure that I stay on track, while leaving me the full
freedom to explore the topics that excite me, thank you.

I am grateful that I had the opportunity to work and spend time with wonderful colleagues at the
Volkswagen MLRL. Sincere thanks to Adnan, Alexej, Alexandros, Atanas, Baris, Djalel, Felix,
Grady, Justin, Karolina, Maximilian K., Maximilian S., Michelle, Nutan, and Philip. Special
thanks to Botond, you taught me a lot during our whiteboard sessions and discussions.

I feel very fortunate that I had the opportunity to work in an amazing environment at AWS AI
Labs during my internship and later full time. Many thanks to Jan, Syama, and Tim for enabling
the internship during which I learned a lot from you. Special thanks to Jan and Bernie, your
continuous support, effort, and trust in me is invaluable. I feel also lucky to have collaborated
with Ralf, your excitement for challenging problems is truly motivating and inspiring.

I also want to thank all my close friends for their support. Many thanks to Manon, you
impressively endured the exposure to many random ideas and thoughts during the first years,
while having no clue what I was talking about, thank you. Luckily, Alexej later imposed this
duty on himself. Jokes aside, I really enjoyed our inspiring discussions in the kitchen and during
sports, and I am extremely grateful to have you and Alina as close friends, thank you for all the
support. I also want to thank Sebi, I will miss our thought provoking walks around Olympia
park, thank you for keeping an eye on the actually important things. Special thanks to Caro for
your support close to the finish line.

Finally, I want to thank my family and foremost my parents, thank you for supporting and
believing in me throughout my life.

iii

Contents

Abstract ii

Acknowledgements iii

Acronyms vi

I Introduction and Fundamentals 1

1 Introduction 2
1.1 Motivation . 2
1.2 Outline and Contributions . 3
1.3 List of Contributions . 4

2 Probabilistic Modelling and Inference 6
2.1 Probabilistic Modelling . 6
2.2 Bayesian Inference for Machine Learning . 7
2.3 Variational Bayes . 8

2.3.1 Evidence Lower Bound: Variational Inference as Optimisation 9
2.3.2 Monte Carlo Approximation and Stochastic Backpropagation 10

2.4 Importance Sampling . 12
2.5 Sequential Monte Carlo . 14

3 Bayesian Neural Networks 17
3.1 Model Formulation . 17
3.2 Maximum a Posteriori Approximation . 18
3.3 Laplace Approximation . 18
3.4 Variational-Bayesian Approximation . 19

4 Deep Latent-Variable Models 21
4.1 Model Formulation . 21
4.2 Neural Variational Inference for DLVMs . 22

4.2.1 Variational Autoencoder . 23
4.2.2 Importance-weighted Autoencoder . 23
4.2.3 Hierarchical Variational Approximation 24

5 Deep State-Space Models 26
5.1 Model Formulation . 26

iv

Contents

5.2 Inference and Parameter Estimation . 27
5.2.1 Inference and Prediction . 27
5.2.2 Parameter Estimation . 29

5.3 Gaussian Linear Dynamical Systems . 31
5.3.1 Inference . 31
5.3.2 Parameter Estimation . 33

5.4 Variational Sequential Monte Carlo . 34

II Own Publications 37

6 Continual Learning with Bayesian Neural Networks for Non-stationary Data 38

7 On the detrimental effect of invariances in the likelihood for variational
inference 62

8 Multi-source Neural Variational Inference 86

9 Deep Rao-Blackwellised Particle Filters for Time Series Forecasting 100

III Conclusion and Outlook 119

10 Summary 120

11 Future Research 122

Bibliography 124

v

Acronyms

NN neural network. 2, 3, 4, 17, 18, 19, 21, 22, 23, 24, 25, 26, 35, 38, 62, 120, 121, 122
BNN Bayesian neural network. 3, 4, 7, 8, 10, 17, 18, 19, 62, 120, 122, 123
CNN convolutional neural network. 17, 122
RNN recurrent neural network. 17
MLP multilayer perceptron. 17, 20
LVM latent-variable model. 21, 22, 26, 34
DLVM deep latent-variable model. 3, 4, 7, 8, 10, 21, 22, 23, 24, 120, 122, 123
VAE variational autoencoder. 3, 22, 23, 25, 86, 123
IWAE importance-weighted autoencoder. 23
SSM state-space model. 4, 26, 27, 29, 31, 34, 35, 121
DSSM deep state-space model. 3, 4, 7, 8, 10, 26, 27, 120, 121, 122, 123
GLS Gaussian linear dynamical system. 26, 27, 31, 34
SGLS switching Gaussian linear system. 4, 100, 121
MC Monte Carlo. 8, 9, 11, 12, 14, 19, 20, 22, 121
IS importance sampling. 8, 12, 13, 14, 16
SIS sequential importance sampling. 14, 15
SMC sequential Monte Carlo. 4, 8, 13, 14, 15, 26, 27, 35, 36, 100, 121, 122
PF particle filter. 4, 14, 100
PS particle smoother. 14
MCMC Markov Chain Monte Carlo. 3, 18, 29
SGD stochastic gradient descent. 2, 11, 17
ML maximum likelihood. 2, 3, 17, 18, 21, 22, 29, 34
MAP maximum a posteriori. 3, 9, 18, 22, 29, 34
VB variational Bayes. 8, 9, 29
ELBO evidence lower bound. 4, 9, 10, 11, 12, 19, 22, 23, 29, 30, 33, 34, 36, 120, 121, 123
EM expectation maximisation. 22, 29, 30, 33
VEM variational expectation maximisation. 22
KL Kullback-Leibler divergence. 9, 10, 11, 12, 19, 22
PCA principal component analysis. 21
ICA independent component analysis. 21

vi

Part I

Introduction and Fundamentals

1

1 Introduction

1.1 Motivation

Machine learning has become relevant to many scientific fields and business applications, such
as computer vision, natural language processing, economics, robotics, medicine, genetics and
genomics, and molecular biology [1, 2, 3, 4, 5, 6, 7]. Some of the most important use cases are
explaining latent structure in the data, detecting anomalies, and making predictions on novel
inputs or for future time points. To ensure robustness and reliability, it is essential to take into
account sources of uncertainty, e.g. arising from a lack of sufficient training data, the randomness
inherent in the process underlying the data, or changes in the data distribution. The Bayesian
probabilistic framework provides a simple but principled recipe to achieve this: construct a
probabilistic model that implements a priori assumptions about the problem or phenomenon at
hand, and apply standard rules of probability to infer the posterior distribution over the unknown
random variables—such as model parameters and additional latent variables—from information
in the observed data. This probabilistic approach to machine learning can be understood as the
process of inferring plausible models that are likely to have generated the observed data [8]. It
allows for a coherent way to combine prior information (e.g. from domain-specific experts) with
observed data, represent uncertainty, make predictions, and compare models. This dissertation
builds on the Bayesian framework in combination with deep neural network (NN) models to
address several fundamental challenges arising in the above-mentioned applications, such as i)
continual learning and adaptation to distribution shift, ii) sensor fusion considering missing,
noisy and anomalous data, and iii) long-term time-series forecasting.

The main challenge in the probabilistic approach is that models for which the posterior dis-
tribution is computationally tractable are often too simple to describe the data accurately.
The Bayesian community has developed a wealth of algorithms to approximate the intractable
integrals occurring in the inference procedure of more complex models. These can be categorised
into stochastic sampling-based algorithms, deterministic analytical approximations with simpler
distributions, and combinations thereof. On the other hand, deep NNs are a popular class of
non-linear models that have achieved remarkable success in the last decade [9, 10], as they can
approximate complex non-linear functions of high-dimensional data, while scaling well to large
datasets. The NN parameters are often learned through maximum likelihood (ML) estimation
with stochastic gradient descent (SGD) based optimisation algorithms without taking into
account uncertainties. However, especially since the last decade, NNs are now often used within
the Bayesian framework to combine the best of both worlds.

The combination of Bayesian inference algorithms and NN models, nowadays sometimes referred
to as Bayesian deep learning [11, 12, 13], has a long history with the first approaches in the early
1990s [14, 15, 16, 17, 18, 19]. This thesis is concerned with two types of Bayesian approaches to

2

1 Introduction

deep learning: Bayesian neural networks (BNNs) treat the NN parameters (weights and biases)
as latent random variables. In contrast to deterministic point-estimation methods such as ML
or maximum a posteriori (MAP) estimation, distributions over the parameter values expresses
epistemic uncertainty arising from a lack of information in the training data, which can be
reduced as more data is observed. The second type of Bayesian approaches to deep learning use
NNs as parametrised functions that predict the parameters of conditional distributions. The
conditional distributions relate the latent and observed variables (data) in directed graphical
models [20]. In contrast to deterministic representations in deep NNs, distributions over latent
variables express aleatoric uncertainty, i.e. the irreducible uncertainty that is inherent in the
process by which the data was obtained. Two model classes that fall under this second type of
approach are relevant for this dissertation, namely deep latent-variable models (DLVMs) and
deep state-space models (DSSMs).

Although inference for both the parameters and latent variables is conceptually equivalent from
a Bayesian perspective, practical approximate-inference algorithms differ substantially due to
differences in the respective graphical model. Learning/inference of the parameters of BNNs
is often based on Markov Chain Monte Carlo (MCMC) methods such as Hamiltonian Monte
Carlo [18] or Langevin Monte Carlo [21], with variants that allow for mini-batch stochastic
optimisation [22], variational inference [19, 23, 24], or Laplace’s approximation [17]. On the other
hand, the parameters of DLVMs and DSSMs are nowadays often learned through stochastic
variational inference [25, 26, 27], amortising the cost of inference of the latent variables by using
a NN encoder to predict the variational posterior approximation from the data.

Despite the several extensions and advancements of BNNs [28, 29, 30, 31, 32], DLVMs [33, 34, 35,
36, 37], and DSSMs [38, 39, 40, 41], several problems remain challenging: predictive uncertainty
estimates are often not reliable. For instance, standard variational-Bayesian methods for learning
BNNs result in severe underfitting and poor predictions [30], and a similar problem has also
been observed in variational autoencoders (VAEs) [42]. On the other hand, sampling-based
approximations are inefficient for high-dimensional integrals. Moreover, applying Bayesian
deep-learning methods to more challenging or non-standard problems usually requires further
approximations or model assumptions for efficient inference.

1.2 Outline and Contributions

This dissertation consists of three parts. Part I provides an introduction and the technical
fundamentals for Bayesian inference used in conjunction with NNs. Ch. 1 introduces the research
area, provides a concise overview of existing approaches and open problems, and highlights the
contributions of this thesis. Ch. 2 establishes the Bayesian approach to machine learning and the
most relevant approximate-inference techniques, which provide the basis for learning/inference
in the proposed models. The three subsequent chapters of Part I then describe three model
classes, respectively, which are central to the four publications that constitute this cumulative
dissertation: Ch. 3 introduces BNNs and important approximate-inference methods. BNNs are
used for the variational continual-learning method proposed in Ch. 6 and the analysis of the
short-comings of variational inference for these models (Ch. 7). Secondly, DLVMs are introduced
in Ch. 4, providing the basis for the extension to multi-source inference in Ch. 8. Finally,

3

1 Introduction

DSSMs—which are used for time-series modelling and probabilistic forecasting in Ch. 9—and
important recursive inference-methods for these models are described in Ch. 5.

The four peer-reviewed publications from Part II constitute the main content and contributions
of this cumulative dissertation. These publications share a similar methodology, using variational-
Bayesian methods for inferring model parameters or other latent variables in probabilistic models.
However, the contributions address substantially different problem areas, and the inference
methods were developed for three different model classes.

Ch. 6 develops a Bayesian approach to continual learning with non-stationary data. In such
scenarios, data (sets) arrive sequentially, inferences and predictions should be performed im-
mediately, and the data distribution is assumed to change over time, e.g. as a consequence of
unpredictable external factors. A memory-based variational approximation is developed for
sequential inference of the posterior of the NN parameters. Two proposed adaptation methods
enable this sequential posterior approximation to adapt to changes in the data distribution.

The main bottleneck of the continual-learning approach is that variational Bayes for BNNs often
leads to poor posterior approximations. Ch. 7 explains this through the detrimental effect of
invariances in the likelihood of over-parametrised models. The invariances lead to an additional
gap in the evidence lower bound (ELBO) objective compared to a purpose-built posterior
approximation that takes into account the invariances. A detailed analysis of the detrimental
effect of translation invariance is presented for over-parametrised Bayesian linear models. It is
shown that, while the true posterior can be constructed from a mean-field parametrisation, this
optimum is not achievable if the invariance gap is not taken into account in the ELBO.

Ch. 8 presents a neural-variational-inference method for DLVMs that model the generative
process of data from multiple sources (modalities or views). The DLVM assumes conditionally
independent observations and it is learned jointly with multiple inference models that infer
beliefs from individual sources. Methods to compare (e.g. detect conflicts) and combine these
beliefs are developed and evaluated experimentally.

Ch. 9 addresses efficient inference in state-space models (SSMs) for time-series forecasting.
Switching Gaussian linear systems (SGLSs) are extended by a state-to-switch recurrence and a
decoder-type emission model, improving long-term forecasts and allowing to model multivariate
non-linear and non-Gaussian emission noise. An efficient Rao-Blackwellised particle filter is
developed for this model: expectations w.r.t. variables in the conditionally Gaussian linear part
of the model are computed in closed-form, and expectations w.r.t. the remaining variables are
approximated using variational sequential Monte Carlo (SMC).

Part III concludes the thesis with a summary in Ch. 10 and outlining promising ideas for future
research directions in Ch. 11.

1.3 List of Contributions

This cumulative dissertation is based on four peer-reviewed papers that were published at
international conferences. Tab. 1.1 provides a list of the publications that contribute to this
dissertation and publications that were co-authored while pursuing the degree.

4

1 Introduction

Bayesian Neural Networks.

Continual Learning with Bayesian Neural Networks for Non-Stationary Data [43] (Ch. 6).
Richard Kurle, Botond Cseke, Alexej Klushyn, Patrick van der Smagt, Stephan Günnemann.
International Conference on Learning Representations (ICLR) 2020.
On Symmetries in Variational Bayesian Neural Nets [44].
Richard Kurle, Tim Januschowski, Jan Gasthaus, Yuyang Wang.
Bayesian Deep Learning NeurIPS workshop (BDL) 2021.
On the detrimental effect of invariances in the likelihood for variational inference [45]
(Ch. 7).
Richard Kurle, Ralf Herbrich, Tim Januschowski, Yuyang Wang, Jan Gasthaus.
Advances in Neural Information Processing Systems (NeurIPS) 2022.

Deep Latent-Variable Models.

Metrics for Deep Generative Models [46].
Nutan Chen∗, Alexej Klushyn∗, Richard Kurle∗, Xueyan Jiang, Justin Bayer, Patrick Smagt.
International Conference on Artificial Intelligence and Statistics (AISTATS) 2018.
∗ indicates equal contributions.
Multi-Source Neural Variational Inference [47] (Ch. 8).
Richard Kurle, Stephan Günnemann, Patrick Van der Smagt.
Association for the Advancement of Artificial Intelligence (AAAI) 2019.
Learning Hierarchical Priors in VAEs [37].
Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, Patrick van der Smagt.
Advances in Neural Information Processing Systems (NeurIPS) 2019.

Deep State-Space Models.

Normalizing Kalman Filters for Multivariate Time Series Analysis [48].
Emmanuel de Bézenac, Syama Sundar Rangapuram, Konstantinos Benidis, Michael Bohlke-Schneider,
Richard Kurle, Lorenzo Stella, Hilaf Hasson, Patrick Gallinari, Tim Januschowski.
Advances in Neural Information Processing Systems (NeurIPS) 2020.
Deep Rao-Blackwellised Particle Filters for Time Series Forecasting [49] (Ch. 9).
Richard Kurle, Syama Sundar Rangapuram, Emmanuel de Bézenac, Stephan Günnemann, Jan
Gasthaus.
Advances in Neural Information Processing Systems (NeurIPS) 2020.
Latent Matters: Learning Deep State-Space Models [50].
Alexej Klushyn, Richard Kurle, Maximilian Soelch, Botond Cseke, Patrick van der Smagt.
Advances in Neural Information Processing Systems (NeurIPS) 2021.
Deep Explicit Duration Switching Models for Time Series [51].
Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Turkmen, Harold Soh, Alex
Smola, Bernie Wang, Tim Januschowski.
Advances in Neural Information Processing Systems (NeurIPS) 2021.

Table 1.1: List of peer-reviewed and published papers in chronological order per topic corre-
sponding to background chapters 3, 4, and 5. Publications that contribute to this
cumulative dissertation are listed in black and references to the respective chapters
are provided. Publications that are not included in this thesis are listed in gray.

5

2 Probabilistic Modelling and Inference

In the Bayesian interpretation of probability theory, probability provides a measure of reasonable
expectation of an event drawn from the probability distribution [52]; in other words, it describes
the degree of belief in one of several hypotheses [53]. From this interpretation it is evident
that probability is not an intrinsic property of the physical world. Instead, it represents the
available information about the truth of the considered hypotheses, allowing for reasoning with
incomplete information [54]. It is also important to note that probability is not necessarily
subjective to the practitioner. However, the above interpretation states the fact that probability
and inference are always conditioned on (unavoidable) assumptions such as the considered
probability distribution [53]. For example, the publication in Ch. 8 uses the term belief to refer
to the model’s information about a latent variable. In this case, the probability distribution is
conditioned on an inference model (encoder) and data from one or several sources.

The central theme of Bayesian inference is to update the prior belief p(H) that some hypothesis
H is true with new information (evidence) E through the likelihood function p(E|H). This is
achieved using Bayes rule, resulting in the posterior distribution

p(H|E) =
p(E|H)p(H)

p(E)
. (2.1)

Note that the prior and posterior belief is not absolute; these distributions over the hypotheses
are relative to the set of all considered hypotheses.

Many problems arising in machine learning can be approached by applying the above general
inference methodology to probabilistic models and data. To this end, Sec. 2.1 briefly introduces
two types of probabilistic models that are considered in this dissertation. Sec. 2.2 then explains
how the above inference methodology can be applied to these probabilistic models. Several
fundamental approximate-inference methods—that are relevant to subsequent chapters and the
main contributions of this dissertation—are then described in Sec. 2.3, 2.4, and 2.5. Specific
instantiations of these more general inference methods for the model classes considered in this
dissertation are provided in the subsequent chapters.

2.1 Probabilistic Modelling

This dissertation considers and distinguishes probabilistic models with global parameters θ and
local latent variables x. A parametric model is a family of probability distributions that is defined
through a finite set of parameters θ from a parameter space Θ, where every parametrisation
θ ∈ Θ of some model class denoted by M assigns a probability p(D|θ,M) to the observed
dataset, D = {d(n)}Nn=1. The data points d(n) can be single observations or tuples, such as

6

2 Probabilistic Modelling and Inference

pairs of inputs u(n) and targets y(n). In the probabilistic approach to machine learning, the
observed dataset and the specific parameter values of the model thus correspond to the evidence
and hypotheses in Eq. (2.1), respectively [55]. The parameters are global in the sense that
the same parameters apply to the entire dataset. To this end, the conditional probability
distribution p(D|θ,M) =

∏N
n=1 p(d

(n)|θ,M) serves as the likelihood function, and p(θ|M) is
the prior probability of the parameters given the model classM. Examples of such parametric
models expressing uncertainty over the parameters include Bayesian linear regression and BNNs
(see Ch. 3).

Many probabilistic models such as DLVMs (see Ch. 4) and DSSMs (see Ch. 5) use additional
latent variables that are local in the sense that they are associated with individual observations
d(n) in the dataset. From the Bayesian perspective, both the parameters and latent variables
correspond to hypotheses with a prior distribution, i.e. parameters are similarly treated as
unknown random variables. In practice, however, parameters are distinguished from latent
variables as they are used for different modelling purposes. Whereas parameters are associated
with the entire dataset and thus fixed in their number, latent variables are usually associated
with individual data points (or sets thereof) and thus grow in number with the dataset size N ,
i.e. p(d(n)|θ,M) =

∫
p(d(n),x(n)|θ,M)dx(n), for each data point in the dataset.

Distributions over parameters and latent variables also represent different notions of uncertainty
[56, 57]. Epistemic uncertainty derives from the lack of information about the model, which
could in principle be reduced, e.g. if more data was observed. This type of uncertainty is thus
reflected in the distribution over model parameters. Aleatoric uncertainty results from the
unpredictable random nature of the process by which the data was obtained, which cannot
be reduced as more data is observed. This type of uncertainty can be expressed through
distributions over latent variables affecting individual observations.

2.2 Bayesian Inference for Machine Learning

From a probabilistic perspective, learning, prediction and model comparison can all be seen as
forms of inference [8]:

• Learning amounts to performing posterior inference to find the parameters that are most
probable—within the specified prior and likelihood model—given the data:

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
. (2.2)

• Prediction involves marginalising over the model parameters in the joint distribution
p(D′, θ|D,M) = p(D′|θ,M)p(θ|D,M) of the parameters and some hypothetical/new data
D′, conditioned on the observed data D:

p(D′|D,M) =

∫
p(D′|θ,M)p(θ|D,M)dθ. (2.3)

This so-called posterior predictive thus involves averaging the predictive distributions
p(D′|θ,M) weighted by the posterior probability of the respective parameter values.

7

2 Probabilistic Modelling and Inference

• Model comparison and selection can also be considered as an inference problem, where
the most probable model class is inferred from the data:

p(M|D) =
p(D|M)p(M)

p(D)
. (2.4)

As there is typically no good reason to prefer a particular model class a priori, models are of-
ten compared and selected based on themarginal likelihood p(D|M) =

∫
p(D|θ,M)p(θ|M),

also referred to as model evidence.

The dependence on the model classM will be omitted in the subsequent sections for convenience.
It is, however, important to note that posterior inference is always relative to the considered
model classM and parameter space Θ. Model misspecification can therefore lead to unexpected
and suboptimal results for prediction and model comparison, even if the posterior is inferred
exactly [58].

Approximate inference. The standard problem when using the Bayesian approach is that
computing the posterior distribution is analytically tractable only for simple models such as
Gaussian linear models. Thus, one of the main challenges in Bayesian inference is to find
approximations that are suitable for the considered problem and model class. Approximate-
inference methods can be broadly categorised as deterministic (analytical) and stochastic (Monte
Carlo) approximations or a combination of both. Deterministic approximations are characterised
by providing analytical distributions, which are usually simpler than the distribution of interest
that may have no known analytical form. Stochastic methods represent the distribution of
interest by a set of random samples and approximate the corresponding integrals numerically
by a finite average involving these samples. Several methods combine analytical and Monte
Carlo methods, e.g. to approximate still intractable integrals involving analytical variational
approximations (e.g. amortised variational inference, see Sec. 4.2).

The following sections (Secs. 2.3, 2.4, and 2.5) explain several important approximate-inference
methods that are applicable to a plethora of different models. Subsequent chapters (Ch. 3,
4, and 5) then provide more details and present practical inference algorithms for the model
classes considered in the publications contributing to this thesis. These general methods are
applicable to both the inference of parameters and latent variables in probabilistic models. For
instance, methods for variational approximations of the posterior of BNN parameters (weights
and biases) are presented in Sec. 3.4, and amortised variational inference for the latent variables
of DLVMs is explained in Sec. 4.2. On the other hand, importance sampling (IS) (Sec. 2.4) and
SMC (Sec. 2.5) are used in this dissertation only for DLVMs and DSSMs, respectively. The
subsequent sections therefore introduce these fundamental inference methods, denoting latent
variables by x and observations by y.

2.3 Variational Bayes

Variational Bayes (VB) is often used to approximate probability distributions (usually the
posterior) by simpler distributions, as well as approximate expectations arising in machine-
learning problems [59, 60]. The approximation is given by a distribution q from a family of

8

2 Probabilistic Modelling and Inference

distributions Q; it is therefore often referred to as a deterministic approximation. The variational
distribution usually has a convenient and simpler structure than the true posterior, e.g. with
additional independence assumptions, which allow to simplify computations involving this
distribution.

2.3.1 Evidence Lower Bound: Variational Inference as Optimisation

The approximation is found by minimising the Kullback-Leibler divergence (KL) between
approximating and true posterior distribution, casting inference as an optimisation problem
w.r.t. the variational distribution:

q∗(x) = argmin
q(x)∈Q

KL
[
q(x) || p(x|y)

]
. (2.5)

The central idea of variational approximation methods is that minimising the KL in Eq. (2.5) is
equivalent to maximising the evidence lower bound (ELBO). This objective is often tractable or
can be further approximated e.g. through Monte Carlo estimation. As implied by its name, the
ELBO is a lower bound to the log marginal likelihood

log p(y) = log

∫
p(y|x)p(x)dx

= log

∫
q(x)

p(y|x)p(x)

q(x)
dx

≥
∫
q(x) log

p(y|x)p(x)

q(x)
dx =: LELBO

(
y, q(x)

)
.

(2.6)

The variational distribution is introduced by multiplying with q(x)
q(x) , and the ELBO is then

obtained by applying Jensen’s inequality [61].

The ELBO is often written in one of the following forms with useful interpretations:

LELBO (y, q) = Eq(x)

[
log p(y|x) + log p(x)− log q(x)

]
(2.7a)

= Eq(x)

[
log p(y|x)

︸ ︷︷ ︸
reconstruction

]
−KL

[
q(x) || p(x)

]
︸ ︷︷ ︸

info gain

(2.7b)

= Eq(x)

[
log p(y,x)

︸ ︷︷ ︸
neg. energy

]
+ H

[
q(x)

]
︸ ︷︷ ︸

entropy

(2.7c)

The KL form (Eq. (2.7b)) shows that the ELBO trades off the cost of reconstructing/predicting
the data from the posterior approximation with the information gained from the data (w.r.t. the
prior) as measured by the KL; for this reason, the KL is sometimes referred as the regularisation
term. The entropy form (Eq. (2.7c)) is often preferred in other fields such as statistical mechanics,
where the ELBO is known as the negative variational free energy. This form shows that q(x)
is encouraged to distribute most of the probability mass in regions of high joint probability
(negative energy), while also maximising the uncertainty (entropy) of the posterior approximation.
This latter form is useful for comparing VB to MAP estimation, showing that the entropy term
prevents the approximation from collapsing to a point estimate.

9

2 Probabilistic Modelling and Inference

The gap/tightness between the log marginal likelihood and the ELBO can be quantified as

LELBO (y, q) =

∫
q(x) log

p(x,y)

q(x)
dx

= log p(y) +

∫
q(x) log

p(x|y)

q(x)
dx

︸ ︷︷ ︸
−KL[q(x) || p(x|y)]

.
(2.8)

Thus, the gap is

log p(y)− LELBO (y, q) = KL
[
q(x) || p(x|y)

]
, (2.9)

where the log marginal likelihood log p(y) was factored out of the integral since it is independent
of x. For the same reason, maximising LELBO amounts to minimising KL

[
q(x) || p(x|y)

]
w.r.t.

q(x), i.e.
q∗(x) = argmax

q(x)∈Q
LELBO (y, q) = argmin

q(x)∈Q
KL
[
q(x) || p(x|y)

]
. (2.10)

If the approximating family q contains the true posterior p(x|y
)
, it is also the optimal solution.

If this solution is also found by the optimisation algorithm, the bound is tight and the KL
between approximate and true posterior is zero.

2.3.2 Monte Carlo Approximation and Stochastic Backpropagation

Though Eq. (2.10) provides a general approach for inference in probabilistic models, it remains
to show how this optimisation can be turned into a practical algorithm. The remainder of
this section describes the key ideas allowing for (doubly) stochastic backpropagation, lead to
practical variational inference algorithms for several important models such as BNNs (Ch. 3),
DLVMs (Ch. 4), and DSSMs (Ch. 5).

Variational parametrisation. The problem is simplified by restricting the family of vari-
ational distributions to some parametric distribution with parameters φ and optimising the
ELBO objective w.r.t. these variational parameters instead:

LELBO

(
y, φ

)
= Eqφ(x)

[
log

pθ(y|x) p(x)

qφ(x)

]
. (2.11)

φ∗ = argmax
φ

LELBO

(
D, φ

)
. (2.12)

Since the optimisation problem is now w.r.t. the variational parameters, gradient-based parameter
optimisation algorithms can be used.

10

2 Probabilistic Modelling and Inference

Monte Carlo estimation. In contrast to the log marginal likelihood, the expectations in
the ELBO can be approximated using Monte Carlo (MC) methods. An unbiased estimate of
the ELBO objective can be obtained by making MC approximations, replacing the expectation
w.r.t. the variational distribution by a finite average with P random samples xp ∼ qφ(x):

L̂ELBO

(
y, φ

)
≈ 1

P

P∑

p=1

[
log

p(y|x(p)) p(x(p))

qφ(x(p))

]
, where x(p) ∼ qφ(x). (2.13)

The form in Eq. (2.13) makes no assumptions whether some terms can be computed in closed-
form. For example, if the ELBO is written in KL form (Eq. (2.7b)) or entropy form (Eq. (2.7c)),
the KL or the entropy can often be computed in closed-form and need not be estimated
stochastically.

Eq. (2.13) yields a tractable objective function, but it remains to show how this function
can be optimised with SGD optimisation methods. The main problem is that the stochastic
sampling operation x(p) ∼ qφ(x) is not differentiable, and, thus, obtaining MC estimates of the
gradient w.r.t. φ is challenging. Two important methods that address this problem are presented
subsequently.

Black-box gradient estimation. A general method for estimating gradients of the ELBO
w.r.t. the variational parameters is black-box variational inference [62], which is also known
as the score-function gradient estimator [63] and used also in other machine learning areas
such as reinforcement learning for policy gradient methods [64, 65, 66]. Denoting fφ(x) =
log p(y|x) + log p(x) − log qφ(x), such that LELBO

(
y, φ

)
= Eqφ(x) [fφ(x)], the gradient of the

ELBO can be formulated as

∇φEqφ(x) [fφ(x)] = ∇φ
∫
qφ(x)fφ(x)dx

=

∫
∇φ (qφ(x)fφ(x)) dx

=

∫
fφ(x)∇φqφ(x)dx +

∫
qφ(x)∇φfφ(x)dx

= Eqφ(x) [fφ(x)∇φ log qφ(x)] + Eqφ(x) [∇φfφ(x)]
︸ ︷︷ ︸

=0

,

(2.14)

where ∇φ denotes the gradient w.r.t. the variational parameters. The last line of the derivation
exploits the log-derivative trick, ∇φqφ(x) = qφ(x)∇φ log qφ(x). An unbiased gradient estimate
can be obtained through MC estimation with a finite number of samples from qφ. The advantage
of this estimator is that it does not require fφ to be differentiable; it suffices to evaluate fφ
and the so-called score function ∇φ log qφ(x) with samples drawn from qφ. Several variance
reduction techniques such as Rao-Blackwellisation and control variates are used [62] in practice,
however, reparametrisation yields gradient estimates with lower variance in most (though not
all) cases [63].

11

2 Probabilistic Modelling and Inference

Reparametrisation gradient estimation. For many common distributions, differentiability
can be achieved using the reparametrisation trick [26, 27] and its extensions and generalisations
[67, 68, 69], allowing for gradient estimation with lower variance—in most but not all cases—
compared to the above black-box estimates [63]. Reparametrisation expresses a density through a
deterministic invertible transformation x = T (ε;φ) of an auxiliary random variable sampled from
a simpler density ε ∼ q(ε) with fixed parameters. For instance, the Gaussian qφ(x) = N (x; m,V)
can be reparametrised as

x = T (ε;φ) = V
1
2 ε+ m, where ε ∼ N (ε; 0, 1), (2.15)

where V
1
2 is the square root (Cholesky decomposition) of the covariance matrix.

Importantly, the auxiliary variable ε is independent of φ. Consequently, gradients w.r.t. expec-
tations involving φ can be written in terms of expectations w.r.t. the auxiliary variable ε using
chain rule:

∇φEqφ(x)

[
fφ(x)

]
= Eq(ε)

[
∇xfφ(x)|x=T (ε;φ)∇φT (ε;φ)

]
, (2.16)

where fφ(x) = log p(y|x) + log p(x) − log qφ(x). Sampling from ε ∼ q(ε) does not need to be
differentiable since this auxiliary density has fixed parameters. Gradients of the MC estimate
of Eq. (2.13) are computed analogously for either the whole ELBO objective or e.g. just the
log likelihood term if the remaining terms (KL) can be computed in closed-form, e.g. if both
distributions are in the exponential family [70].

2.4 Importance Sampling

Importance sampling (IS) is a sampling-based technique for approximating expectations of
functions, Eν(x)[g(x)], where ν(x) is referred to as target distribution and g(x) is often called
the test function. Such integrals are very common in machine learning, e.g. for prediction and
likelihood estimation. Standard MC approaches estimate the expectation directly through

Eν(x)[g(x)] ≈ 1

P

P∑

p=1

g(x(p)),

with x(p) ∼ ν(x). It is easy to see that this estimator is unbiased and the variance of the error
decreases with O(1/P). However, this simple estimator may be problematic in machine learning
applications for several reasons. First, it is sometimes difficult to sample from ν(x), e.g. if
the target distribution is the posterior ν(x) = p(x|y) with intractable normalisation constant.
Furthermore, estimating the expectation directly with samples from ν(x) can be very inefficient
if few samples are drawn in regions where |g(x)| is large.

Basic Importance Sampling. A more efficient approach than standard MC is to sample
instead from a proposal distribution x(p) ∼ π(x)

Eν(x)[g(x)] = Eπ(x)

[
ν(x)

π(x)
g(x)

]
≈

P∑

p=1

w(p) g(x(p)), (2.17)

12

2 Probabilistic Modelling and Inference

where

w(p) =
1

P

ν(x(p))

π(x(p))
(2.18)

are referred to as importance-weights. This IS estimate is unbiased and has minimum variance
if π(x) ∝ |g(x)|ν(x) [71]. Although this choice of proposal distribution is never attainable as it
would defeat the point of using importance sampling in the first place, it provides a useful guide
for choosing an appropriate proposal distribution (e.g. in Ch. 9).

Self-normalised Importance Sampling. If evaluating ν(x) is difficult, the unnormalised
target distribution ν̃(x) can be used by additionally estimating its normalisation constant
Z =

∫
ν̃(x)dx through IS:

Eν(x)[g(x)] =
Eπ(x)

[
ν̃(x)
π(x)g(x)

]

Eπ(x)

[
ν̃(x)
π(x)

] ≈
1
P

∑P
p=1 w̃

(p) g(x(p))

1
P

∑P
p′=1 w̃

(p′)
=

P∑

p=1

w(p) g(x(p)), (2.19)

where the importance-weights

w(p) =
w̃(p)

∑P
p′=1 w̃

(p′)
(2.20)

are self-normalised and w̃(p) = ν̃(x)
π(x) are the unnormalised importance-weights. While both the

numerator and denominator in Eq. (2.19) are unbiased, the fraction and thus the resulting
estimator is biased for finite sample sizes P . IS with normalisation provides the basis for SMC
methods described in Sec. 2.5.

Importance sampling in machine learning. In machine learning applications using IS,
ν(x) is often the posterior p(x|y) and the unnormalised distribution ν̃(x) is the joint distribution
p(x,y). The posterior is thus approximated by the set of importance-weighted particles

p(x|y) ≈
P∑

p=1

w(p)δ(x(p)), (2.21)

where δ denotes the Dirac-delta function. Alternatively, a posterior approximation with uniformly
weighted particles can be obtained by treating the importance-weights as the probabilities of a
categorical distribution and resampling from this distribution.

An unbiased estimate of the marginal likelihood (normalisation constant) is given by

Ẑ :=
1

P

P∑

p=1

w̃(p) ≈
∫
p(x,y)dx = p(y) (2.22)

in the denominator of Eq. (2.19). Other scoring rules involving the posterior predictive can be
estimated using Eq. (2.19). For instance, the continuous ranked probability score [72, 73, 74] is
estimated to evaluate the forecasting distribution from the model in Ch. 9.

13

2 Probabilistic Modelling and Inference

2.5 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods [75, 76] are MC methods that combine sequential
importance sampling (SIS) and resampling in order to approximate a sequence of target dis-
tributions ν(x1), . . . , ν(x1:T) with increasing dimension [77]. The resulting target distributions
are of particular interest in themselves: for instance, various versions of particle filters (PFs)
and particle smoothers (PSs) are instances of the general class of SMC methods, where e.g.
the posterior, the filtering, or the smoothing distribution are used as the target distribution.
Furthermore, expectations w.r.t. a sequence of test functions such as forecasting distributions
can be computed sequentially by using the forecast distribution as the test function and the
posterior or filter distribution as the target distribution. The main challenge of SMC is, however,
to approximate the sequence of target distributions.

Sequential importance sampling. SIS is a recursive version of IS, where the estimates are
computed sequentially, building on previous estimates. In contrast to standard IS, the proposal
distribution π(x1:T) =

∏T
t=1 π(xt|x1:t−1) is chosen with sequential (autoregressive or Markovian)

structure. The unnormalised importance-weights can then be computed recursively as

w̃
(p)
t =

ν̃(x
(p)
1:t)

π(x
(p)
1:t)

=
ν̃(x

(p)
1:t−1)

π(x
(p)
1:t−1)

ν̃(x
(p)
1:t)/ν̃(x

(p)
1:t−1)

π(x
(p)
t |x

(p)
1:t−1)

= w̃
(p)
t−1 γ(x

(p)
t ,x

(p)
1:t−1),

(2.23)

where γ(x
(p)
t ,x

(p)
1:t−1) are referred to as the incremental importance-weights. A sensible choice

for the proposal distribution π(x
(p)
t |x

(p)
1:t−1) is one that is proportional to ν̃(x

(p)
1:t)/ν̃(x

(p)
1:t−1) to

minimise the variance of the importance-weights. Approximations of the target distribution and
the normalisation constants at every step t can be estimated analogously to standard IS. The
target distribution is approximated as

ν̂(x1:t) :=
P∑

p=1

w
(p)
t δ(x

(p)
1:t) ≈ ν(x1:t). (2.24)

An unbiased estimate of the normalisation constant is given by

Ẑt :=
1

P

P∑

p=1

w̃
(p)
t ≈

∫
ν̃(x1:t) = Zt. (2.25)

Sequential Monte Carlo. The major problem of standard SIS is the so-called weight de-
generacy problem (see e.g. [77]): the maximum importance-weight quickly approach one and
all other weights zero for increasing steps t, because IS/SIS scales poorly with the number of
dimensions. The novelty of SMC compared to SIS is a resampling procedure that discards/du-
plicates particles that have low/high importance-weights, focusing computational resources on

14

2 Probabilistic Modelling and Inference

the most relevant particles. The resampling procedure can be seen as an improvement upon
standard SIS by sampling from

x
(p)
1:t ∼ π(xt|x(p)

1:t−1)ν̂(x1:t−1) (2.26)

rather than π(xt|x(p)
1:t−1)π(x

(p)
1:t−1). SMC thus takes advantage of the information provided in

the (sample-based approximation of the) previous target distribution [78]

ν̂(x1:t−1) =

P∑

p=1

w
(p)
t−1δ(x

(p)
1:t−1). (2.27)

Sampling from Eq. (2.26) is achieved in three steps:

1. resampling x̄
(p)
1:t−1 ∼ ν̂(x1:t−1),

2. sampling x
(p)
t ∼ π(xt|x̄(p)

1:t−1),

3. concatenating x
(p)
1:t := (x

(p)
t , x̄

(p)
1:t−1).

If a resampling step is performed, the importance-weights are set uniformly as w(p)
t = 1/P .

In order to resample from the discrete distribution over particle indices defined by the importance-
weights, the weights must be normalised. It is thus useful to write the unnormalised importance-
weights in SMC using the previous normalised importance-weights. Starting with w(p)

t−1 = 1/P
for t = 1, the unnormalised importance-weights then are

w̃
(p)
t = w

(p)
t−1γ(x

(p)
t ,x

(p)
1:t−1), w

(p)
t =

w̃
(p)
t∑P

p′=1 w̃
(p′)
t

, (2.28)

where the incremental importance-weights γ(x
(p)
t ,x

(p)
1:t−1) are given by Eq. (2.23).

The particle approximation of the target distribution at every step t is analogous to SIS, though
an approximation before and after resampling, respectively, is given by

ν̂(x1:t) =

P∑

p=1

w
(p)
t δ(x

(p)
1:t), (2.29a)

and

ν̄(x1:t) =
P∑

p=1

w
(p)
t δ(x̄

(p)
1:t). (2.29b)

Due to the normalisation, the sum of unnormalised importance-weights provides an estimate of
the ratio of normalisation constants Zt|t−1 = Zt

Zt−1
, i.e.

Ẑt|t−1 =

P∑

p=1

w̃
(p)
t ≈ Zt|t−1. (2.30)

This estimate is biased but consistent; however, the product of the estimates of these conditionals
yields an unbiased estimate of the joint likelihood Ẑt =

∏T
t=1 Ẑt|t−1 [78, 79].

15

2 Probabilistic Modelling and Inference

Resampling strategies. Reducing the weight degeneracy problem through resampling comes
at the cost of introducing the so-called path degeneracy problem. Both degeneracies arise
from the fact that IS is inefficient in high-dimensional spaces. The resampling procedure adds
sampling noise [80] and causes most future particles to share the same ancestors; it thereby
reduces the quality of the approximation of the past trajectory, while (in most cases) improving
the approximation of future target densities [77]. Consequently, ν̂ should be preferred for
the current estimate while ν̄ is in most cases preferable for future estimates. Two common
approaches are often applied to reduce the path degeneracy problem (used e.g. in Ch. 9). One
way to reduce the variance is to improve the resampling procedure. The simplest algorithm,
known as multinomial resampling, treats the importance-weights as probabilities of a discrete
distribution and samples the particle indices from this distribution with replacement. Alternative
algorithms such as systematic resampling are known to yield favorable results in practice [81].
Moreover, adaptive resampling performs the resampling step only if a criterion is met, e.g. if the
effective sample size

Peff =

(
P∑

p=1

(
w

(p)
t

)2
)−1

(2.31)

drops below a defined threshold such as Peff ≤ P/2. If resampling is performed, w(p)
t−1 = 1/P ;

otherwise, the unnormalised importance-weights are updated according to Eq. (2.28). This
resampling criterion is used together with systematic resampling in the inference method
proposed in Ch. 9.

16

3 Bayesian Neural Networks

The general methodology from Sec. 2.2 applies to parametric models, including deep NN models
(see Sec. 3.1 for the model formulation). The simplest approximate-inference methods for
learning the parameters are described in Sec. 3.2 and 3.3, and Sec. 3.4 shows how variational
Bayes (cf. Sec. 2.3) can be used for learning BNNs.

3.1 Model Formulation

Deep Neural Networks. The most basic type of deep NNs is also referred to as multilayer
perceptron (MLP). The parametric non-linear models progressively transform input vectors by
applying non-linear transformations. Denoting feature vectors by hl and the input vector by u,
a deep MLPs computes the function

mlp(u) = aL(WLhL−1 + bL), h1 = a1(W1u + b1), hl = al(Wlhl−1 + bl), (3.1)

where Wl and bl denote the weight matrix and bias vector corresponding to layer l, respectively,
and al are element-wise activation functions that introduce non-linearities. The last activation
function aL is dictated by the prediction task. For instance, in regression with additive
homogeneous Gaussian noise, the real-valued range of the predictions is usually not constrained,
so aL is the identity function. For multi-class classification, the outputs are constrained to
positive values summing to one (probabilities), so aL is a softmax function. The collection of all
weight matrices and bias vectors, stacked as a parameter vector, is denoted by θ.

Other NN architectures that are commonly used e.g. for time-series or image data are recurrent
neural networks (RNNs) and convolutional neural networks (CNNs). And various more intricate
NN architectures have shown superior performance in practice, including residual networks [82],
recurrent models with internal memory and a gating mechanism [83, 84], or transformers with
an attention mechanism [85]. An overview of deep NN models can be found e.g. in [10, 9].

Bayesian Deep Neural Networks. The parameters of NNs are usually learnt via ML
estimation through optimisation with SGD based optimisation algorithms. If the NN parameters
are instead treated as hidden random variables that must be inferred from data through Bayesian
inference, these models are referred to as Bayesian neural networks (BNNs). As mentioned
in Ch. 2, Bayesian inference is computationally intractable for most model classes—including
BNNs—and approximations are required. A BNN assigns the marginal likelihood

p(D) =

∫
p(D|θ)p(θ)dθ (3.2)

17

3 Bayesian Neural Networks

to a dataset D = {u(n),y(n)}Nn=1 consisting of N inputs u(n) and targets y(n). A prior p(θ) is
assumed over the NN weights and biases denoted by θ, and the likelihood function factorises as
p(D|θ) =

∏N
n=1 p(y

(n)|u(n), θ).

In the context of BNNs, the posterior approximation will be denoted by

qφ(θ) ≈ p(D|θ)p(θ)
Z

, (3.3)

where φ denotes the parameters of the approximating distribution such as the mean and log-scale
if it is Gaussian. The following sections introduce relevant methods to approximate φ. Other
important inference algorithms based on MCMC (e.g. [86, 87, 88, 89]) or Langevin dynamics
(e.g. [22]) are not in the scope of this dissertation.

3.2 Maximum a Posteriori Approximation

The simplest approximation is a Dirac delta distribution qφ(θ) = δ(θ−θMAP), which approximates
the full posterior distribution by the single most probable parameters, i.e. the MAP point
estimate φ = θMAP. Though point estimates are clearly bad approximations for distributions,
this approach can be justified in practice: if a lot of data (evidence) is available in comparison to
the (unknown) model parameters, it can be reasonably expected that the posterior has very low
entropy and will concentrate in the limit. As a benefit, the intractable integration is replaced
by an optimisation problem that can be dealt with e.g. by gradient methods:

θMAP = argmax
θ

log p(θ|D)

= argmax
θ

log p(D|θ) + log p(θ).
(3.4)

It is well known that optimising the negative log marginal likelihood (w.r.t. the parameters)
with additional L2/L1 regularisation is equivalent to MAP estimation with Gaussian/Laplace
priors, respectively, and that ML estimation without regularisation corresponds to a uniform
prior.

3.3 Laplace Approximation

The Laplace approximation provides a simple extension and improvement over MAP estimation.
The posterior distribution is approximated locally around the MAP estimate by a Gaussian
distribution qφ(θ) = N

(
θ; m,V

)
, where the parameters of the approximating distribution are

φ = {m,V}. This is achieved through second order Taylor series expansion of the log-posterior
around θMAP. In the first step, m = θMAP is computed as in Sec. 3.2. Secondly, the Hessian
H is computed around m, yielding the covariance matrix parameters V = H−1. To show this,
it suffices to use the unnormalised posterior with possibly unknown normalisation constant.
Expanding log f(θ), where f(θ) ∝ p(θ|D), around m up to the second term results in

log f(θ) ≈ log f(m)− 1

2
(θ −m)T H (θ −m). (3.5)

18

3 Bayesian Neural Networks

The first term in Eq. (3.5) is the zeroth-order term (offset) of the Taylor series. The first order
term (gradient) is zero at a local optimum, m = θMAP. And the second term in Eq. (3.5) is the
second-order term of the Taylor series, where

H =
∂2 log f(θ)

∂(θ)∂(θ)

∣∣∣∣
θ=m

is the Hessian computed at m. The quadratic form of Eq. (3.5) implies that

f(θ) ≈ f(m) exp
{
− 1

2

(
θ −m

)T
H
(
θ −m

)}

is a Gaussian function. Subsequent normalisation thus yields the Gaussian approximation

qφ(θ) = N
(
θ; m,V

)
; m = θMAP, V = H−1.

Computing the Hessian exactly has a computational complexity of O(|D||φ|2) that is linear in
dataset size and quadratic in number of parameters. This is prohibitive for models with a large
amount of parameters such as NNs. For this reason, diagonal or structured approximations of
the Hessian are typically used in practice [90, 91, 92]. Unfortunately, diagonal approximations
are known to result in bad posterior predictive distributions in case of BNNs [17, 93]; linearising
the NN has been shown to provide better results [94].

3.4 Variational-Bayesian Approximation

Variational-Bayesian methods introduced in Sec. 2.3 can be applied to infer the weights and
biases of NNs, by assuming a fixed parametric form for qφ with variational parameters φ and
building on MC-based gradient estimation with reparametrisation. Replacing notation for latent
random variables x used in 2.3 by θ denoting the unknown model parameters, the ELBO for
BNNs is given by

L̂ELBO

(
D, φ

)
=

1

P

P∑

p=1

log p(D|θ(p)) + log p(θ(p))− log qφ(θ(p))

=
1

P

P∑

p=1

(
N

B

B∑

n=1

log p(y(n)|u(n), θ(p)) + log p(θ(p))− log qφ(θ(p))

)
,

(3.6)

where θ(p) ∼ qφ(θ) is sampled from a variational distribution for which reparametrisation is
applicable. It is often possible to compute the KL in the ELBO in closed-form and thus obtain
lower variance estimates, e.g. if both densities are from the exponential family [70]:

L̂ELBO

(
D, φ

)
=

1

P

N

B

P∑

p=1

B∑

n=1

log p(y(n)|u(n), θ(p)) + KL
[
qφ(θ) || p(θ)

]
. (3.7)

The most common choice is an independent Normal variational distribution qφ(θ) = N (θ; m,V),
where the means and log-scales are parametrised, i.e. the variational parameters are φ = {m,ρ},

19

3 Bayesian Neural Networks

and the diagonal covariance matrix is given by V = diag(exp(2 · ρ)), where diag(·) denotes
the diagonal matrix constructed from a vector. In practice, it is also common to replace the
exponential by a softplus function.

The sampling operation can be reparametrised as in 2.15. For posterior approximations with
diagonal (fully factorised) covariance [95] or low-rank plus diagonal covariance structure [96]
in MLPs, local reparametrisation can be applied, providing MC (gradient) estimates with
much lower variance. This reparametrisation exploits the fact that the linear transformation
with Gaussian weights induces Gaussian pre-activations (before the non-linearity) that can be
computed in closed-form; sampling from these pre-activations instead of the weights directly
provides gradient estimates with significantly lower variance.

20

4 Deep Latent-Variable Models

The goal of probabilistic generative modelling is to approximate the generative process underlying
a dataset D = {y(n)}Nn=1. This is often achieved by means of additional latent (unobserved)
variables. The so-called graphical model describes the conditional independence assumptions by
which latent and observed variables are related. These conditional independence assumptions
and modelling choices for the respective distributions can be used to inject prior knowledge
about the true model. The latent variables can be thought of as modelling additional factors
that are not observed but contribute to the data generating process [97]. For instance, latent
variables can represent the common state underlying multiple observations (Ch. 8), or the
structured state of a dynamical system (Ch. 9).

4.1 Model Formulation

One particular class of probabilistic models that is relevant to this dissertation are latent-variable
models (LVMs) and their extensions using deep neural networks, which are here referred to as
deep latent-variable models (DLVMs).

Latent-Variable Models. LVMs describe the generative process by modelling that each
observation y(n) is associated with its own local latent variable x(n) via the joint distribution

pθ(y
(n),x(n)) = pθ(y

(n)|x(n))pθ(x
(n)), (4.1)

and assuming that observations are conditionally independent given the parameters θ, i.e.

pθ(D) =

N∏

n=1

pθ(y
(n)), (4.2)

where pθ(y(n)) =
∫
pθ(y

(n),x(n))dx(n). While both the parameters θ and latent variables x(n)

can in principle be inferred via the Bayesian probabilistic approach, it is common to use
(approximate) inference for the posterior over the latent variables and ML estimation for the
parameters. In contrast to Ch. 3—where the parameters are treated as random variables—the
NN parameters are here denoted by a subscript.

This model class encompass several well-known models such as factor analysis [98, 99], proba-
bilistic principal component analysis (PCA) [100, 101], probabilistic independent component
analysis (ICA) [102], Gaussian mixture models, latent Dirichlet allocation [103], sigmoid belief
nets [104, 105], or the Helmholtz machine [106].

21

4 Deep Latent-Variable Models

Deep Latent-Variable Models. DLVMs are LVMs in which the conditional distributions
of the graphical model are parametrised by deep NNs and the latent variables have hierarchical
structure of the form

pθ(y
(n),x(n)) = pθ(y

(n)|x(n))pθ(x
(n)), (4.3a)

pθ(x
(n)) = pθ(x

(n)
1)

L∏

l=2

pθ(x
(n)
l |x

(n)
<l), (4.3b)

where x(n) = {x(n)
l }Ll=1 are the latent variables associated with the observations y(n). The

likelihood (Eq. (4.3a)) and the hierarchical prior (Eq. (4.3b)) of this generative model often has
Markovian structure (e.g. [27, 107, 33]), although recent models with many hierarchies use the
more general non-Markovian model (e.g. [108, 109]). Furthermore, several related important
models such as conditional variational autoencoders (VAEs) [110] or semi-supervised models
[111] can be obtained by using additional inputs u(n).

4.2 Neural Variational Inference for DLVMs

From a Bayesian perspective, both the parameters and latent variables should be inferred
by updating prior information with evidence induced by the likelihood model and data. In
practice, it is often sufficient to treat only the latent variables probabilistically, while estimating
the parameters through MAP or ML estimation. In case of models for which the posterior
can be computed exactly—such as Factory Analysis, Gaussian Mixture models, Gaussian
Linear Dynamical Systems—this can be achieved using the expectation maximisation (EM)
algorithm [112]. In more complex models, the posterior can be approximated using variational-
Bayesian methods (cf. Sec. 2.3). The resulting algorithm is referred to as variational expectation
maximisation (VEM) and is equivalent to variational inference; it can thus be seen as a
special case of variational-Bayesian methods applied to LVMs, pθ(y) =

∫
pθ(y|x)p(x)dx, where

the variational approach is applied only to the latent variables x, and the parameters θ are
approximated by the ML or MAP estimate.1

Building on MC approximation of the ELBO and the reparametrisation gradient explained in
Sec. 2.3, the ELBO estimate for DLVMs is given as

L̂ELBO

(
D, φ, θ

)
≈

N∑

n=1

1

P

P∑

p=1

[
log

pθ(y
(n)|x(n,p)) pθ(x

(n,p))

qφn(x(n,p))

]
, x(n,p) ∼ qφn(x(n)). (4.4)

As discussed in Sec. 2.3, the ELBO is often written in KL form (Eq. (2.7b)), and the KL can be
computed in closed-form e.g. for distributions from the exponential family [70].

1The variational approach can be applied to all unknown variables of the model including parameters; some
authors refer to the corresponding variational algorithm as variational-Bayesian EM [113]. In DLVMs, this is
indeed possible, combining Sec. 3.4 and the approach described in this chapter.

22

4 Deep Latent-Variable Models

4.2.1 Variational Autoencoder

The above approach does not scale to large datasets for two reasons: First, the ELBO is
computed by summing the per-data-point ELBOs over the whole dataset; this is possible
since L̂ELBO

(
D, φ, θ

)
=
∑N

n=1 L̂ELBO

(
y(n), φ, θ

)
in DLVMs that makes the i.i.d. assumption

log pθ(D) =
∑N

n=1 log pθ(y). Moreover, every per-data-point posterior pθ(x(n)|y(n)) is approxi-
mated with independent variational parameters φ = {φn}Nn=1. These issues can be addressed
by mini-batch MC estimation and amortising the per-data-point inference through shared
variational parameters [25]. To this end, the variational autoencoder (VAE) [26, 27] uses an
encoder NN to predict the parameters of the approximating distribution using the data as input.
This approach is referred to as amortised or neural variational inference.

The variational parameters φ are shared for each data point, that is, qφ(x(n)|y(n)) ≈ pθ(x(n)|y(n)).
Consequently, assuming the dataset is randomly shuffled, the ELBO estimate becomes

L̂VAE
ELBO

(
D, φ, θ

)
≈ N

B

B∑

n=1

1

P

P∑

p=1

[
logw(n,p)

]
, x(n,p) ∼ qφ(x(n)|y(n)), (4.5)

where

w(n,p) =
pθ(y

(n)|x(n,p)) pθ(x
(n,p))

qφ(x(n,p)|y(n))
. (4.6)

In practice, it is usually sufficient to draw a single sample (i.e. P = 1) from the variational
distribution, since the variance of this estimate can also be reduced by taking larger mini-batch
sizes B.

4.2.2 Importance-weighted Autoencoder

L̂VAE
ELBO can be seen as a special case of a tighter importance-sampling ELBO, L̂IWAE

ELBO, with
importance-weights w(n,p) (cf. Sec. 2.4). Generalising the VAE, this approach is referred to as
importance-weighted autoencoder (IWAE) [33]. It provides a tighter bound

L̂IWAE
ELBO

(
D, φ, θ

)
≈ N

B

B∑

n=1

[
log

1

P

P∑

p=1

w(n,p)

]
, x(n,p) ∼ qφ(x(n)|y(n)). (4.7)

The bound becomes tight as P →∞ (if w(n,p) is bounded). The variational distribution here
serves the purpose of a proposal distribution and is usually chosen as a factorised Gaussian.
Performing a resampling operation on the importance-sampling approximation of the pos-
terior pθ(x(n)|y(n)) ≈ ∑P

p=1w
(n,p)δ(x(n,p)) results in samples from a non-Gaussian posterior

approximation that approximates the true posterior as P →∞.

An important property of the variational importance-sampling formulation that is used in
Ch. 8 is the following: Even if the amortisation is chosen such that parameters of the proposal
distribution are predicted from incomplete information, e.g. qφ(x|y1) ≈ pθ(x|y1,y2), samples
from the true posterior can be recovered as P → ∞. This is because (feedback from) the
likelihood is used to update the incomplete encoder posterior approximation, reflected in the

23

4 Deep Latent-Variable Models

importance-weights. In principle, the proposal could even be the prior, though this would of
course be very inefficient. In contrast, the standard variational approximation used in Eq. (4.5)—
and even very flexible posterior approximations based on normalising flows (e.g. [35, 114, 115,
116])—cannot approximate the true posterior to arbitrary accuracy through amortisation from
incomplete information.

4.2.3 Hierarchical Variational Approximation

The previous paragraphs thus far did not discuss the hierarchical nature of the DLVMs for
depths L > 1. The true posterior factorises in its forward form simply proportional to joint
distribution,

pθ(x|y) ∝ pθ(y|x)
L∏

l=1

pθ(xl|x<l), (4.8)

where the superscript index n is dropped in this section, and pθ(xl|x<l) = pθ(x1) for l = 1.
Variational approximations often do not follow the true posterior factorisation for practical
reasons such as efficiency or even tractability. With amortised/neural variational inference, the
variational distribution can be factorised into several conditional distributions predicted by NNs.
Two common factorisations are worth distinguishing, the latter being used e.g. in Ch. 9.

Backwards Factorisation. Since the encoder takes the data as inputs—in the opposite
direction as the likelihood model—one obvious approach is to factorise the variational distribution
in the reverse direction compared to the prior and likelihood model:

qbw
φ (x|y) = qφ(xL|y)

L−1∏

l=1

qφ(xl|x>l). (4.9)

The encoder NN can thus be seen as the function inverting the model. This approach is taken
e.g. in [33], although a Markov assumption is made both for the generative and inference
model.

Forward Factorisation. Alternatively, information from the forward model can be combined
with an approximate likelihood, which is computed recursively in the backward direction. This
approach reuses the conditional Gaussians pθ(xl|x<l) of the forward model for its posterior
approximation, while only approximating the likelihood by a Gaussian, similar in structure to
Eq. (4.8). To this end, the Gaussian likelihood approximation hφ(xl|y) is predicted by an encoder
NN for every hierarchy of latent variables. That is, the variational approximation is

qfw
φ (x|y) =

L∏

l=1

1

Zl
hφ(xl|y)pθ(xl|x<l), (4.10)

24

4 Deep Latent-Variable Models

where Zl is the normalisation constant of the respective product of Gaussian. The encoder NN
consists of a hierarchy of deterministic NNs fφl running in the backwards direction

dL = fφL(y),

dl = fφl(dl+1), l = 1, . . . , L− 1.
(4.11)

A further transformation then maps these deterministic representations dl to the distribution
parameters ml(y, φ) and Vl(y, φ):

hφ(xl|y) := gφ(dl). (4.12)

This factorisation was proposed e.g. in the ladder VAE [107], although a Markov assumption is
made for both the generative and inference model. Furthermore, this approach is used for the
variational proposal distributions for the model in Ch. 9.

25

5 Deep State-Space Models

Many practical problems involve one or several sequences of time-ordered observations. Such
time series data does not permit the independence assumption between observations within
the same time series. The temporal dependency can be modelled explicitly with probabilistic
time series models: for instance, autoregressive models directly model the (forward) conditional
distributions of the observations given the previous observations; on the other hand, state-space
models (SSMs) use additional latent variables to model the time series data.

Sec. 5.1 defines SSMs, and Sec. 5.2 then describes the inference and parameter estimation
problems arising in these models and general formulations to address these problems. For the
standard Gaussian linear dynamical system (GLS), exact solutions for the inference problems
and methods for parameter estimation are presented in Sec. 5.3. Variational SMC methods for
state estimation and parameter learning in deep state-space model (DSSM) are then described
in Sec. 5.4. These methods provide the basis for the hybrid linear/non-linear model proposed in
Ch. 9.

5.1 Model Formulation

SSMs—often referred to as Hidden Markov Models in case of discrete states—are LVMs with
Markovian sequential structure.

pθ(y1:T ,x0:T) = pθ(x0)
T∏

t=1

pθ(yt|xt)pθ(xt|xt−1), (5.1a)

where pθ(x0) = N (x0; µ0,Σ0) is the initial prior distribution and θ denotes the model parame-
ters. The subscript t is a discrete time index for the elements in the sequence of latent variables
x0:T and observations y1:T . Both the dynamical model pθ(xt|xt−1) and measurement/emission
model1 pθ(yt|xt) are given by a possibly non-linear transformation and additive Gaussian
noise

xt = fθ(xt−1) + wt, wt ∼ N
(
wt; 0,Rθ(xt−1)

)
. (5.1b)

yt = gθ(xt) + vt, vt ∼ N
(
vt; 0,Qθ(xt−1)

)
. (5.1c)

If the conditional distributions are parametrised by NNs, these models are referred to as deep
state-space models (DSSMs) in this dissertation.

1Depending on the perspective, i.e. for performing inference or generation, the respective term is more common.

26

5 Deep State-Space Models

5.2 Inference and Parameter Estimation

This section describes common inference and parameter estimation problems for SSMs and
DSSMs. If the conditional distributions are linear Gaussian, efficient recursive algorithms for
exact inference can be used (see Sec. 5.3). However, non-linear dynamical and measurement
models are more important in practice, requiring approximate-inference algorithms such as
SMC approximations (see Sec. 5.4). The variational SMC methods for DSSMs and the analytic
solutions from the GLS provide the basis for the hybrid inference algorithm in Ch. 9.

The Markov assumption for the dynamical and emission model model has several useful
consequences for inference algorithms due to the following implications [117]:

pθ(yt|x0:t,y1:t−1) = pθ(yt|xt), (5.2a)
pθ(xt|x0:t−1,y1:t−1) = pθ(xt|xt−1), (5.2b)
pθ(xt|x0:t−1,y1:T) = pθ(xt|xt−1,yt:T), (5.2c)
pθ(xt|xt+1:T ,y1:T) = pθ(xt|xt+1,y1:t). (5.2d)

Several inference problems of interest—such as state inference, forecasting, and parameter
estimation—benefit from these simplifications, as explained in the following.

5.2.1 Inference and Prediction

In the sequential inference setting, several distributions besides the posterior pθ(x0:T |y1:T) are
important in practical applications. The respective algorithms to compute these are summarised
in this section and general approaches are explained. Algorithms for exact solutions in case of
Gaussian linear models as well as variational SMC approximations for DSSMs are provided in
Sec. 5.3 and Sec. 5.4, respectively.

Filtering. The filter distribution is the posterior of the state at a certain times-slice given the
data up to that time-slice. It can be computed recursively from the previous filter distribution
using the Markov assumptions of Eqs. (5.2a) and (5.2b):

pθ(xt|y1:t) ∝ pθ(yt|xt)
∫
pθ(xt|xt−1)pθ(xt−1|y1:t−1)dxt−1, (5.3)

where pθ(xt−1|y1:t−1) = pθ(x0) for t = 1. The resulting filtering algorithm is an online algorithm
that uses results from the previous step and data up to the respective time index t only. The
marginalisation (integral) is referred to as prediction step and the Bayes update (multiplication
with the likelihood pθ(yt|xt) and conditioning on yt) is referred to as update step.

Smoothing. In offline scenarios, the smoothing distribution pθ(xt|y1:T) and the full posterior
pθ(x0:T |y1:T) can be inferred given all available observations including future observations
yt:T . Several variants to compute these distributions have been proposed in the literature
for different types of approximations such as sigma-point and particle approximations. These

27

5 Deep State-Space Models

general smoothing variants include forward-backward, backward-forward, two-filter, and even
forward-only formulations.

Two-filter smoothers [118, 119] compute a forward and backward filter message and combine
them at every time-slice t to form pθ(xt|y1:T). The disadvantage of this approach is that it
provides only the smoothing distribution (marginals) but not the full posterior. Furthermore,
artificial marginals distributions have to be defined for every time-slice in order to make the
backward message normalisable [119].

Forward-backward/backward-forward smoothers first filter forward/backward, and then recur-
sively compute the smoothing distributions backward/forward, respectively; Interestingly, for
certain models, the forward-backward variant can be reformulated as a forward-only approach,
which is especially suitable for online applications. For examples of the backward-forward and
forward-only variants, see e.g. [120, 121, 122, 123]; these are not further discussed here.

The forward-backward smoother is the most common variant; it is described in more detail in the
following. After the last filter distribution pθ(xT |y1:T) (identical to last smoothing distribution)
is computed, the method recurses backwards, smoothing the results from the filter:

pθ(xt|y1:T) = pθ(xt|y1:t)

∫
pθ(xt+1|xt)pθ(xt+1|y1:T)

pθ(xt+1|y1:t)
dxt+1. (5.4a)

This is obtained by marginalising the future states xt+1 in the two-slice marginal posterior

pθ(xt|y1:T) =

∫
pθ(xt,xt+1|y1:T)dxt+1, (5.4b)

where the Markov assumption of Eq. (5.2d) is used to factorise this two-slice distribution as

pθ(xt,xt+1|y1:T) = pθ(xt|xt+1,y1:t)pθ(xt+1|y1:T), (5.4c)

and where the Markov property of Eq. (5.2b) simplifies the posterior backward transition as

pθ(xt|xt+1,y1:t) =
pθ(xt+1|xt)pθ(xt|y1:t)

pθ(xt+1|y1:t)
. (5.4d)

The initial distribution is computed using pθ(xt|y1:t) = pθ(x0) for t = 0.

In order to compute the marginals in Eq. (5.4b), the backward pass additionally yields two-slice
marginals and thus even the full posterior through pθ(x0:T |y1:T) =

∏T
t=0 pθ(xt|xt+1,y1:t), where

for t = 0 and t = T the respective observed and future state variables are omitted. This latter
formulation of the full posterior is useful also for algorithms that aim to sample only from the
posterior; for example, particle implementations of forward filtering backward sampling have
lower computation complexity compared to approximating the smoothing marginals.

28

5 Deep State-Space Models

Forecasting. Using the results from the filter distribution, future observations can be fore-
casted by marginalising the filtered and predicted states:

pθ(yt+1:T |y1:t) =

∫
pθ(yt+1:T |xt)pθ(xt|y1:t)dxt

=

∫
pθ(yt+1:T |xt+1:T)

∫
pθ(xt+1:T |xt)pθ(xt|y1:t)dxt dxt+1:T .

(5.5)

5.2.2 Parameter Estimation

Several flexible approximate-inference methods such as MCMC and VB can be used to approxi-
mate the posterior of the model parameters. Similarly to Ch. 4, however, computationally less
demanding ML or MAP estimates are often sufficient, while more involved approximations are
used for the states. In order to estimate the likelihood of the parameters, consider a dataset
D = {y(n)

1:Tn
}Nn=1 consisting of N sequences of possibly different lengths Tn.2 As usual, the

marginal likelihood pθ(D) =
∏N
n=1 pθ(y

(n)
1:Tn

) is assumed to factorise over the observed sequences.
Therefore, is suffices to consider a single sequence with the log marginal likelihood log pθ(y

(n)
1:Tn

)
in the following.

Common ML and MAP approximation approaches for SSMs estimate the log marginal likelihood
e.g. directly using (approximate) filtering methods, or using the ELBO form using (approximate)
smoothing methods. As explained in Ch. 4, the log marginal likelihood reformulated in the
ELBO form also gives rise to the EM algorithm. Furthermore, the ELBO form shows the
relation to gradient-based estimation techniques using Fisher’s identity.

Direct estimation. The key to direct estimation of log pθ(y1:T) is to use the sequential
factorisation pθ(y1:T) =

∏T
t=1 pθ(yt|y1:t−1) and compute the conditionals as

log pθ(y1:T) =
T∑

t=1

log pθ(yt|y1:t−1)

=
T∑

t=1

log

∫
pθ(yt|xt)pθ(xt|y1:t−1)dxt

=
T∑

t=1

log

∫
pθ(yt|xt)

∫
pθ(xt|xt−1)pθ(xt−1|y1:t−1)dxt−1dxt,

(5.6)

where pθ(xt−1|y1:t−1) = pθ(x0) for t = 1. Each conditional pθ(yt|y1:t−1) can then be computed
recursively as a by-product of an (approximate) filtering algorithm: The inner integral can be
identified as the prediction step in the filter, and the outer integral is the predictive distribution,
computed in the update step. When using gradient-based methods to optimise this direct
estimate (or approximation thereof), gradients must be backpropagated through the whole chain
of filtering operations.

2Additional controls (inputs) u(n)
1:Tn

are often used, but not considered in this section to simplify notation.

29

5 Deep State-Space Models

Fisher’s identity. As an alternative to direct gradient computation, the identity

∇θ pθ(y1:T) = Epθ(x1:T |y1:T)

[
∇θ log pθ(y1:T ,x0:T)

]
(5.7)

is commonly used to compute the gradients more efficiently. This identity is referred to as Fisher’s
identity (see e.g. [124]). The expectation is w.r.t. the true posterior, and, thus, smoothing is
required. However, gradients are computed only w.r.t. the joint distribution—also referred to
as complete likelihood—which factorises according to Eq. (5.1a); thus, gradients are no longer
back-propagated through the filter chain (or the smoothing distribution).

ELBO estimation. Fisher’s identity can also be regarded as the gradient of the ELBO, where
the true posterior is used in place of an approximating distribution. This objective also gives
rise to the EM algorithm. To see this, the ELBO is written in the entropy form

log pθ(y1:T) ≥ Eq(x0:T)

[
log pθ(y1:T ,x0:T)

]
+H

[
q(x0:T)

]
=: LELBO(y1:T , q, θ), (5.8)

The EM algorithm alternates (coordinate ascend) between optimising the ELBO w.r.t. q and
θ, respectively. In the E-step, the true posterior q∗(x0:T) = pθ(x0:T |y1:T) is computed as the
optimal distribution and the bound becomes tight. The M-step is usually carried out in closed-
form, setting the derivatives w.r.t. θ to zero and solving for the resulting equations. Fisher’s
identity is obtained if gradient-based methods are used in the M-step. Since the true posterior
is optimal and thus held fixed in the M-step, the entropy term in Eq. (5.8) can be dropped
from the optimisation and the gradient operator can be pulled into the expectation [125]. The
remaining term in the ELBO objective can be simplified due to the Markov properties from
Eqs. (5.2a) and (5.2b):

Eq(x0:T)

[
log pθ(y1:T ,x0:T)

]

=

T∑

t=1

Eq(xt)

[
log pθ(yt|xt)

]
︸ ︷︷ ︸

`emit

+

T∑

t=1

Eq(xt,xt−1)

[
log pθ(xt|xt−1)

]
︸ ︷︷ ︸

`trans

+Eq(x0)

[
log pθ(x0)

]
︸ ︷︷ ︸

`prior

. (5.9)

The required one-slice marginals (smoothing distribution) and two-slice marginals are both
computed e.g. in forward-backward smoothing.

Although the entropy term can be dropped for optimisation if the true posterior is obtained, it is
required if the value of the log marginal likelihood is of interest besides the parameters that max-
imise it. Fortunately, the structure of the true posterior is Markovian (cf. Eqs. (5.2c) and (5.2d)).
Consequently, the posterior of the whole state sequence x0:T can be computed e.g. using one of
the following options: a) posterior forward conditionals; b) posterior backward conditionals; or
c) one-slice and two-slice (smoothing) marginals. The corresponding entropy formulations are

30

5 Deep State-Space Models

given as

H
[
q(x0:T)

]
= −

T∑

t=1

Eq(xt,xt−1)

[
log q(xt|xt−1)

]
− Eq(x0)

[
log q(x0)

]
(5.10a)

= −
T−1∑

t=0

Eq(xt,xt+1)

[
log q(xt|xt+1)

]
− Eq(xT)

[
log q(xT)

]
(5.10b)

= −
T−1∑

t=0

Eq(xt,xt+1)

[
log q(xt,xt+1)

]
+
T−1∑

t=1

Eq(xt)
[

log q(xt)
]
. (5.10c)

The respective distributions can be obtained e.g. from backward-forward or forward-backward
smoothing.

5.3 Gaussian Linear Dynamical Systems

The GLS is the simplest and most studied SSM since inference, prediction, and likelihood
estimation is tractable and efficient algorithms exist. These are described in the following, using
additional controls/inputs u in order to provide background for Ch. 9. In the GLS, both the
dynamical and emission model are linear transformations with additive Gaussian noise

x0 ∼ N (x0;µ0,Σ0), (5.11a)
xt = Atxt−1 + bt + wt, wt ∼ N (wt; 0,Rt), (5.11b)
yt = Ctxt + dt + vt, vt ∼ N (vt; 0,Qt), (5.11c)

where the biases bt and dt can also be a non-linear function of inputs/controls ut, but are more
commonly given by a linear transformation bt = Btut and dt = Dtut with state and emission
control matrices Bt and Dt

3. At and Ct are the transition and emission matrices, and Rt and
Qt are the state and emission noise covariance matrices, respectively.

5.3.1 Inference

Inference is tractable in the GLS using the famous Kalman filter and smoother [126]. This section
provides details for the (forward) filtering and forward backward smoothing recursions.

Filtering. The Bayes filter update from Eq. (5.3) can be subdivided into two steps, alternating
between the prediction step and update step at every time-slice t. The prediction step computes
the prior for slice t by taking the transition and marginalising the previous state

pθ(xt|y1:t−1,u1:t) =

∫
pθ(xt|xt−1,ut)pθ(xt−1|y1:t−1,u1:t−1)dxt−1

= N
(
xt; mt|t−1,Vt|t−1

)
,

(5.12)

3Linear controls allow for analytical solutions in the M-step of the EM algorithm, however, the exact log
likelihood and its gradients can be computed even for non-linear additive biases.

31

5 Deep State-Space Models

where

mt|t−1 = Atmt−1 + bt,

Vt|t−1 = AtVt−1A
T
t + Rt.

Similarly, the predictive distribution (emission), which is used in the update step below, is
obtained through marginalisation of the state in the emission

pθ(yt|y1:t−1) =

∫
pθ(yt|xt)pθ(xt|y1:t−1)dxt

= N
(
yt; mt|t,Vt|t

)
,

(5.13)

where

mt|t = Ctmt|t−1 + dt,

Vt|t = CtVt|t−1C
T
t + Qt.

The update step is a standard Bayesian update in a Gaussian linear model

pθ(xt|y1:t) ∝ pθ(yt|xt)pθ(xt|y1:t−1)

= N
(
xt; mt,Vt

)
,

(5.14)

where

mt = mt|t−1 + Gt

(
yt −mt|t

)
,

Vt = Vt|t−1 −GtCtVt|t−1,

Gt = VT
t|t−1C

T
t V−1

t|t .

The matrix Gt is often referred to as the Kalman gain matrix.

Smoothing. As mentioned in Sec. 5.2.1, there are several algorithms for computing the
smoothing distribution. This section provides the relevant equations for the forward-backward
smoothing variant [127], which is the most common smoother implementation; it is nowadays
referred to as RTS or Kalman smoother. After having computed the last filter distribution
pθ(xT |y1:T), forward-backward smoothing iterates backwards recursively, computing

pθ(xt|y1:T) ∝
∫
pθ(xt|xt+1,y1:t)pθ(xt+1|y1:T)dxt+1

= N
(
xt; m̃t, Ṽt

)
,

(5.15)

where

m̃t = mt + Ht(m̃t+1 −mt+1|t),

Ṽt = Vt + Ht(Ṽt+1 −Vt+1|t)G
T
t ,

Ht = VtA
T
t V−1

t|t−1.

32

5 Deep State-Space Models

5.3.2 Parameter Estimation

Direct estimation. Estimating log pθ(y1:T) directly using Eq. (5.6) is straightforward, since
each incremental likelihood pθ(yt|y1:t−1) is computed by the Kalman filter already in Eq. (5.13).
Taking the logarithm, results in

log pθ(y1:T) =

T∑

t=1

logN
(
yt; mt|t,Vt|t

)

=

T∑

t=1

−Dy

2
log 2π +

1

2
log |V−1

t|t | −
1

2
(yt −mt|t)

TV−1
t|t (yt −mt|t),

(5.16)

where Dy denotes the dimension of the observation space.

ELBO estimation. Estimating the log likelihood in the ELBO form is slightly more involved,
however, gradient computation is much more efficient and the EM algorithm with exact solutions
in the M-step can be used. The terms of the complete log likelihood (Eq. (5.9)) and the posterior
entropy H[q(x1:T)] require the one-slice and two-slice posterior marginals, computed e.g. in
forward backward or backward forward smoothers. Denote these joint Gaussian two-slice
posteriors as

q(xt−1,xt) = N
([

xt−1

xt

]
;

[
m̃t−1

m̃t

]
,

[
Ṽt−1 Ṽt−1,t

Ṽt,t−1 Ṽt

])
, (5.17)

where Ṽt−1,t = ṼT
t,t−1 is the covariance between adjacent states and Ṽt−1, Ṽt are the covariances

of the one-slice marginals (smoothing distribution). Further denote the covariance of the posterior
conditionals q(xt|xt−1) and q(xt|xt+1)—given by Gaussian conditioning—as

Ṽt|t−1 = Ṽt − ṼT
t−1,tṼ

−1
t−1Ṽt−1,t, (5.18a)

Ṽt|t+1 = Ṽt − ṼT
t+1,tṼ

−1
t+1Ṽt+1,t. (5.18b)

The prior term in Eq. (5.9) is given as

`prior = Eq(x0)

[
logN (x0; µ0,Σ0)

]

= −Dx

2
log 2π +

1

2
log |Σ−1

0 | −
1

2
E(x0),

(5.19a)

Eprior(x0) = Eq(x0)

[
(x0 − µ0)TΣ−1

0 (x0 − µ0)
]

= Tr
{
Σ−1

0 Eq(x0)

[
(x0 − µ0)(x0 − µ0)T

]}

= Tr
{

Σ−1
0

[
(m̃0 − µ0)(m̃0 − µ0)T + Ṽ0

]}
.

(5.19b)

Expectations of the log transitions are w.r.t. two-slice posteriors q(xt−1,t) = N (xt−1,t; m̃t−1,t, Ṽt−1,t),
which are computed e.g. in forward-backward smoothing using posterior backward transitions.

33

5 Deep State-Space Models

The transition terms can then be computed as

`trans = Eq(xt−1,xt)

[
logN (xt; Atxt−1 + bt,Rt)

]

= −Dx

2
log 2π +

1

2
log |R−1

t | −
1

2
Etrans(xt−1,t),

(5.20a)

Etrans(xt−1,t) = Eq(xt−1,xt)

[
(xt −Atxt−1 − bt)

TR−1
t (xt −Atxt − bt)

]

= Tr
{

R−1
t Eq(xt−1,xt)

[
(xt −Atxt−1 − bt)(xt −Atxt−1 − bt)

T
]}

= Tr
{

R−1
t

[
(m̃t −Atm̃t−1 − bt)(m̃t −Atm̃t−1 − bt)

T

+ AtṼt−1A
T
t + Ṽt −AtṼt−1,t − Ṽt,t−1A

T
t

]}
,

(5.20b)

where Vt,t−1 denotes the posterior covariance between adjacent states xt and xt−1. Finally, the
emission terms result in

`emit = Eq(xt)
[

logN (yt; Ctxt + dt,Qt)
]

= −Dy

2
log 2π +

1

2
log |Q−1

t | −
1

2
Eemit(xt)

(5.21a)

Eemit(xt) = Eq(xt)
[
(yt −Ctxt − dt)

TQ−1
t (yt −Ctxt − dt)

]

= Tr
{

Q−1
t Eq(xt)

[
(yt −Ctxt − dt)(yt −Ctxt − dt)

T
]}

= Tr
{

Q−1
t

[
(yt −Ctm̃t − dt)(yt −Ctm̃t − dt)

T + CtṼtC
T
t

]}
.

(5.21b)

ML parameter estimates can be found by optimising the complete log likelihood w.r.t. the
parameters of the GLS.

Although the entropy term is not required for ML or MAP parameter estimation, it can be
computed using either form of Eq. (5.10), e.g.

H
[
q(x0:T)

]
=

T∑

t=0

Dx

2
(1 + log 2π) +

1

2
log |Vt|t−1|, (5.22a)

=

T∑

t=0

Dx

2
(1 + log 2π) +

1

2
log |Vt|t+1|. (5.22b)

where Vt|t+1 = VT for t = T , and Vt|t−1 = Vt for t = 0, respectively. The resulting log
likelihood estimate in ELBO form (Eq. (5.8)) with the true posterior equals the direct estimate
(Eq. (5.16)) obtained through filtering, however, the computational graphs for the loss and
gradient computations differ substantially.

5.4 Variational Sequential Monte Carlo

For SSMs with non-linear/non-Gaussian dynamical and emission models, inference and parameter
estimation is not tractable since integrals that occur in the marginalisations and normalisation
constants cannot be computed analytically. Similarly to other non-linear LVMs (cf. Ch. 4),

34

5 Deep State-Space Models

approximations are required. Various methods have been proposed in the literature for non-
linear/non-Gaussian SSMs, including i) Taylor approximations such as the extended Kalman
filter (see e.g. [128, 129]) and second order versions [130]; ii) assumed density (Gaussian)
approximations [129, 131, 132, 133, 134]; iii) variational approximations [135, 136]; and iv) SMC
methods [75, 76, 77].

This section considers SMC for SSMs and then describes recent variational SMC approaches,
providing the basis for inference and parameter estimation in Ch. 9. For SMC methods it is
more convenient to consider the SSM with joint probability pθ(y1:T ,x1:T), i.e. without initial
state x0, to avoid sampling an initial state without corresponding observations. In the following,
the initial state will therefore not be considered.

SMC for DSSMs. Building on the generic SMC method described in Sec. 2.5, the se-
quence of (unnormalised and normalised) target distributions in non-linear/non-Gaussian
SSMs (cf. Eq. (5.1)) are the joint distribution ν̃(x1:t) = pθ(x1:t,y1:t), and the posterior
ν(x1:t) = pθ(x1:t|y1:t), respectively; the normalisation constant is the marginal likelihood
Zt = pθ(y1:t) and the incremental normalisation constants are Zt|t−1 = pθ(yt|y1:t−1). The
incremental importance weights are given as

γ(x
(p)
t ,x

(p)
1:t−1) =

pθ(yt|x(p)
t)pθ(x

(p)
t |x

(p)
t−1)

π(x
(p)
t |x

(p)
1:t−1)

. (5.23)

The particle approximation of the target distribution (Eq. (2.29)) then gives an approximation
of the filter distribution:

pθ(xt|y1:t−1) ≈
P∑

p=1

w
(p)
t δ(x

(p)
t). (5.24)

Therefore, SMC methods applied to the filtering problem in SSMs are also referred to as particle
filters. SMC methods can also be applied to smoothing or to infer the full posterior distribution.
Existing particle smoothers are based on the different posterior decompositions described in
Sec. 5.2 (see e.g. [76, 137, 119, 121]). Particle smoothers are commonly used for parameter
estimation with gradient-based methods using Fisher’s identity (cf. Sec. 5.2.2 and see e.g. [124,
138]), since SMC yields sample trajectories from the posterior4.

Variational SMC for DSSMs. The quality of the particle approximation from SMC heavily
depends on the proposal distribution. Variational SMC methods parametrise the proposal
distribution πφ(xt|x1:t−1) in Eq. (5.23) with variational parameters φ and learn them jointly
with the model parameters θ [40, 139, 140]. Building on neural/amortised variational inference,
the parameters of the proposal distribution are predicted from previous particles x

(p)
1:t−1 by a

NN. Optionally, additional data such as the current observations yt, past observations y1:t, or
even all observations y1:T can be used.

4Particle filters also yield samples from the posterior if the particle histories (paths) are not discarded and the
last importance weights are used [76]. However, this (naive) approach suffers from severe path degeneracy.

35

5 Deep State-Space Models

Unfortunately, Fisher’s identity is not applicable since the variational parameters are learned
and gradients w.r.t. this parametrised proposal distribution are not zero. However, gradient can
be estimated based on the direct form or the ELBO form of the likelihood (see Sec. 5.2). In case
of the direct estimation, an unbiased estimate of the marginal likelihood can be obtained through
Ẑt =

∏T
t=1 Ẑt|t−1, where the estimates Ẑt|t−1 are given by Eqs. (2.30) and (2.28). Since SMC

provides an unbiased estimate of the marginal likelihood, i.e. E
[∏T

t=1 Ẑt|t−1

]
= pθ(y1:T), the

log estimate E
[∑T

t=1 log Ẑt|t−1

]
≤ log pθ(y1:T) is a lower bound to the log marginal likelihood

due to Jensen’s inequality.

This variational objective—which is used in Ch. 9—is based on particle filtering. However, a
smoothing variational objective has also been proposed more recently [41]. This approach approx-
imates the log marginal likelihood of the entire sequence y1:T using particle smoothing (forward
filtering backward simulation) instead of approximating the conditionals log pθ(yt|y1:t−1).

36

Part II

Own Publications

37

6 Continual Learning with Bayesian Neural
Networks for Non-stationary Data

Continual learning with non-stationary data considers scenarios in which data sets arrive sequen-
tially, inferences and predictions should be performed immediately, and the data distribution
may change over time. For computational reasons, the posterior approximations given data up
to a certain time step should re-use previous inference computations, while avoiding information
loss due to poor approximations. At the same time, changes in the data distribution require
methods for adaptation. In the Bayesian framework, both sequential learning and adaptation
can be approached in a natural and simple manner. To provide a more powerful posterior ap-
proximation, a memory-based variational approximation is developed that combines a Gaussian
variational distribution with a running memory of raw data points. The memory is selected
such that data—for which the corresponding likelihood terms cannot be well approximated
by a Gaussian—are kept in raw form and the remaining data is projected into the Gaussian
variational distribution. For the adaptation, two alternative approaches are proposed: Bayesian
exponential forgetting, which assigns lower weighting factors to past likelihood terms; or a
diffusion process assumption on the time evolution of the NN weights.

Note that in the corresponding background sections (Sec. 2.3 and Ch. 3) the NN weights and
variational parameters are defined as θ and φ, respectively, whereas in the publication presented
in this chapter, w is used for the weights and θ for the variational parameters.

Authors Richard Kurle
Botond Cseke
Alexej Klushyn
Patrick van der Smagt
Stephan Günnemann

Conference International Conference on
Learning Representation, ICLR 2020

Contribution Problem definition contributed
Literature survey significantly contributed
Algorithm development contributed
Method implementation significantly contributed
Experimental evaluation significantly contributed
Preparation of the manuscript contributed

38

Published as a conference paper at ICLR 2020

CONTINUAL LEARNING WITH BAYESIAN NEURAL
NETWORKS FOR NON-STATIONARY DATA

Richard Kurle∗1 2 Botond Cseke1 Alexej Klushyn1 2

Patrick van der Smagt1 Stephan Günnemann2

1Volkswagen Group 2Technical University of Munich

ABSTRACT

This work addresses continual learning for non-stationary data, using Bayesian
neural networks and memory-based online variational Bayes. We represent the
posterior approximation of the network weights by a diagonal Gaussian distribution
and a complementary memory of raw data. This raw data corresponds to likelihood
terms that cannot be well approximated by the Gaussian. We introduce a novel
method for sequentially updating both components of the posterior approximation.
Furthermore, we propose Bayesian forgetting and a Gaussian diffusion process
for adapting to non-stationary data. The experimental results show that our update
method improves on existing approaches for streaming data. Additionally, the
adaptation methods lead to better predictive performance for non-stationary data.

1 INTRODUCTION

Continual learning (CL), also referred to as lifelong learning, is typically described informally by the
following set of desiderata for computational systems: the system should (i) learn incrementally from
a data stream, (ii) exhibit information transfer forward and backward in time, (iii) avoid catastrophic
forgetting of previous data, and (iv) adapt to changes in the data distribution (Ring, 1997; Silver
et al., 2013; Chen & Liu, 2016; Ruvolo & Eaton, 2013; Parisi et al., 2018). The necessity to adapt to
non-stationary data is often not reconcilable with the goal of preventing forgetting. This problem is
also known as the stability-plasticity dilemma (Grossberg, 1987).

The majority of current CL research is conducted in the context of online multi-task learning (Nguyen
et al., 2018; Kirkpatrick et al., 2017; Schwarz et al., 2018; Rusu et al., 2016; Fernando et al., 2017),
where the main objective is to prevent catastrophic forgetting of previously learned tasks. This focus
is reasonable since changes in the statistics of the data distribution are usually an artefact of learning
different tasks sequentially. However, changes in the statistics of the data can also be real properties of
the data-generating process. Examples include models of energy demand, climate analysis, financial
market, or user-behavior analytics (Ditzler et al., 2015). In such applications, the statistics of the
current data distribution are of particular interest. Old data may be outdated and can even deteriorate
learning if the drift in the data distribution is neglected. Consequently, CL systems for non-stationary
data require adaptation methods, which deliberately forget outdated information.

In this work, we develop an approximate Bayesian approach for training Bayesian neural networks
(BNN) (Hinton & van Camp, 1993; Graves, 2011; Blundell et al., 2015) incrementally with non-
stationary streaming data. Similar to variational continual learning (VCL) (Nguyen et al., 2018)
and the Virtual Vector Machine (VVM) (Minka et al., 2009), we approximate the posterior using a
Gaussian distribution and a complementary memory of previous data. Both components are updated
sequentially, while adapting to changes in the data distribution. Our main contributions are as follows:

• We propose an online approximation consisting of a diagonal Gaussian distribution and a
running memory, and we provide a novel sequential update method for both components.
• We extend the online approximation by two alternative adaptation methods, thereby general-

ising online variational Bayes with Bayesian neural networks to non-stationary data.
We compare our sequential update method to VCL in the online-inference setting on several popular
datasets, demonstrating that our approach is favorable. Furthermore, we validate our adaptation
methods on several datasets with concept drift (Widmer & Kubat, 1996), showing performance
improvements compared to online variational Bayes without adaptation.
∗Correspondence to richard.kurle@tum.de

1

39

Published as a conference paper at ICLR 2020

2 BACKGROUND: ONLINE INFERENCE

Consider a stream of datasets {Dtk}Kk=1, where tk are the time points at which datasets Dtk are
observed. For the moment, we assume that these datasets and the samples within are generated
independently and identically distributed (i.i.d.). Methods for non-i.i.d. data are considered in Sec. 4.

In the Bayesian approach to online learning, we want to infer the posterior distribution p(w|Dt1:tk)
of our model parameters, with the restriction that the data is processed sequentially.1 Using Bayes
rule, a recursive posterior inference equation emerges naturally:

p(w|Dt1:tk) ∝ p(w|Dt1:tk−1
) p(Dtk |w,Dt1:tk−1

) = p(w|Dt1:tk−1
) p(Dtk |w), (1)

where the last step follows from the i.i.d. assumption of the data.

In this paper, we consider Gaussian and multinomial likelihoods, parametrised by a neural network
with weights w and prior p(w|∅) = p0(w) = N (w;µ0, σ0). Furthermore, we consider supervised
learning, where Dtk = {d(n)

tk
}n = {(x(n)

tk
,y

(n)
tk

)}n and p(d(n)
tk
|w) = p(y

(n)
tk
|NN

(
x

(n)
tk

;w)
)
.

2.1 ONLINE VARIATIONAL BAYES

Since exact Bayesian inference is intractable for non-trivial models, various approximations have
been developed. Prominent examples include sequential Monte Carlo (Liu & Chen, 1998), assumed
density filtering (Maybeck, 1982), and online variational Bayes (Opper, 1998; Ghahramani, 2000;
Sato, 2001; Broderick et al., 2013). Online variational Bayes (VB) approximates the posterior of
Eq. (1) by a parametrised distribution qθtk (w) ≈ p(w|Dt1:tk) through a sequence of projections:

qθtk (w) = argmin
qθ

KL
[
qθ(w) ||Z−1

tk
qθtk−1

(w) p(Dtk |w)
]
, (2)

where Ztk is the normalisation constant. The above minimisation is equivalent to maximising the
evidence lower bound (ELBO) Ltk(θ;Dtk) = Eqθ(w)

[
log p(Dtk |w)

]
−KL

[
qθ(w) || qθtk−1

(w)
]
. In

this work, we consider diagonal Gaussian posterior approximations qθtk (w) for the neural network
weights, similar to Nguyen et al. (2018).

2.2 ONLINE VARIATIONAL BAYES WITH MEMORY

Online approximate Bayesian inference methods inevitably suffer from an information loss due
to the posterior approximation at each time-step. An alternative approach to online learning is to
store and update a representative dataset/generative model—and to use it as a memory—in order to
improve inference (Robins, 1995; Lopez-Paz & Ranzato, 2017; Shin et al., 2017; Kamra et al., 2017).
Memory-based online learning has also been combined with online Bayesian inference methods
(Minka et al., 2009; Nguyen et al., 2018). A common property of these approaches is to represent the
(current) posterior approximation by a product of two factors

p(w|Dt1:tk) ≈ qθtk (w) p(Mtk |w) (3)

and update them sequentially as new dataDtk is observed. The factor p(Mtk |w) =
∏M
m p(m

(m)
tk
|w)

is the likelihood of a set of M = |M| data points, which we refer to as running memory; and qθtk (w)

is a Gaussian distribution, which summarises the rest of the data D̄1:tk = D1:tk\Mtk .

In case of VCL, the factors in Eq (3) are updated in two steps, which we refer to as (i) memory update
and (ii) Gaussian update: (i) a new memoryMtk ⊂ Dtk ∪ Mtk−1

is selected using heuristics such
as random selection or the k-center method (a greedy algorithm that selects K data points based on
geometric properties of Dtk ∪ Mtk−1

.); (ii) the Gaussian distribution is updated with the remaining
data D̄tk = Dtk ∪ Mtk−1

\ Mtk (using Eq. (2)) to obtain qθtk (w) ≈ qθtk−1
(w) p(D̄tk |w).

Note that we cannot sample directly from the posterior approximation in Eq. (3) and thus we cannot
easily evaluate quantities such as the posterior predictive distribution. VCL therefore performs a
second projection

q̃θtk (w) = argmin
qθ

KL
[
qθ(w) || Z̃−1

tk
qθtk (w) p(Mtk |w)

]
. (4)

This distribution should not be confused with the recursively updated variational distribution (Eq. (2)).
1 A strict definition of online learning requires single data samples at each time step instead of batches Dtk .

2

40

Published as a conference paper at ICLR 2020

3 IMPROVING MEMORY-BASED ONLINE VARIATIONAL BAYES

In this section, we focus on two problems of existing approaches using online VB with a running
memory: (i) the memory update does not take into account the approximation error or approximation
capabilities of the variational distribution; (ii) the Gaussian update—performed by optimising the
ELBO (Eq. (2)) only with data D̄tk—can fail for streaming data. This is because VB yields poor
posterior approximations if the dataset is too small or the neural network architecture has too much
capacity (cf. Ghosh et al. (2018), Fig. 1). In Secs. 3.2 and 3.3, we propose improvements to these
two update methods. The mathematical background for our approach is provided in Sec. 3.1.

3.1 PROPERTIES OF THE GAUSSIAN VARIATIONAL APPROXIMATION

There are two important properties of the Gaussian variational approximation that we will exploit
later: (i) Gaussian approximate posterior distributions factorise into a product of Gaussian terms
corresponding to the prior and each likelihood term; (ii) the ELBO can be written as the sum of the
approximation’s normalisation constant and a sum of residuals corresponding to these factors.

Let p0(w) = N (w;µ0,Σ0) be a Gaussian prior and p(D|w) =
∏
n p(d

(n)|w) be the likelihood of
the observed data D. Furthermore, let qθ(w) = N (w;µ,Σ) denote the corresponding Gaussian vari-
ational approximation with θ = {µ,Σ}. Assume that µ and Σ are the optimal parameters correspond-
ing to a (local) maximum of the ELBO L(µ,Σ;D). The optimality conditions ∂µL(µ,Σ;D) = 0
and ∂ΣL(µ,Σ;D) = 0 can be rewritten as follows (Knowles & Minka, 2011; Opper & Archambeau,
2008; Cseke et al., 2013) (cf. App. C):

Σ−1µ = Σ−1
0 µ0 +

∑

n

(
∂µEqθ(w)

[
log p(d(n)|w)

]
− 2∂ΣEqθ(w)

[
log p(d(n)|w)

]
µ
)
, (5a)

Σ−1 = Σ−1
0 − 2

∑

n

∂ΣEqθ(w)

[
log p(d(n)|w)

]
. (5b)

Since the sum of natural parameters corresponds to a product in distribution space, the above
equations show that—at a local optimum—the approximation qθ(w) factorises in the same way as the
posterior p(w|D). It can be written in the form qθ(w) = Zq

−1p0(w)
∏
n r

(n)(w), where the factors
r(n)(w) are Gaussian functions with natural parameters given by Eqs. (5a) and (5b), and where
Zq =

∫
p0(w)

∏
n r

(n)(w) dw is the normalisation constant. These Gaussian functions r(n)(w)

each correspond to the contribution of the likelihood p(d(n)|w) to the posterior approximation qθ(w).

The resulting factorisation implies that the ELBO L(µ,Σ;D) can be written in the form (Opper &
Winther, 2005) (c.f. App. D)

L(µ,Σ;D) = logZq +
∑

n

Eqθ(w)

[
log p(d(n)|w)− log r(n)(w)

]
. (6)

If the terms p(d(n)|w) were (diagonal) Gaussian in w, they would each cancel with the corresponding
(diagonal) Gaussian term, leaving only logZq. Intuitively, the residual terms in Eq. (6) can be used
to quantify the quality of the Gaussian approximation.

3.2 MEMORY UPDATE

The authors of VCL propose to use a memory to compensate the information loss resulting from the
Gaussian approximation of the posterior distribution. However, their memory update is independent
of the approximation error that is due to the chosen distributional family (diagonal Gaussian). An
alternative memory update, which specifically targets the above mentioned information loss, has
been introduced previously for VVM. Although the latter method was developed for expectation
propagation in a (linear) logistic regression model—and is thus not directly applicable to online VB—
we show that some of its properties can be transferred to the variational inference setting. The central
idea is to replace the likelihood terms that can be well approximated by a Gaussian distribution by their
Gaussian proxies p(dtk |w) ≈ rtk(w;dtk) resulting in qθtk (w); and retain the data corresponding
to the rest of the likelihood terms in the memory. To score a candidate memory, Minka et al.
(2009) proposed to maximise the KL divergence between the model given in the form of Eq. (3)

3

41

Published as a conference paper at ICLR 2020

and a Gaussian posterior approximation, that is, maximise KL
[
Z̃−1
tk

qθtk (w) p(M|w) || q̃θtk (w)
]
.

However, this score function is intractable, because the expectation in the KL includes the likelihood
p(M|w). In the following, we develop a tractable score function applicable to VB. Intuitively, we
can use Eq. (6) to test how much L(µ,Σ;D) changes if we replace the exact likelihood terms (of all
data which is not contained in the candidate memory) by their Gaussian approximations.

To achieve this, we need to find Gaussian approximations for every data point in the candidate
memory. We first approximate the posterior distribution using both Dtk andMtk−1

:

q̃θtk (w) = argmin
qθ

KL
[
qθ(w) || Z̃−1

tk
qθtk−1

(w) p(Dtk |w) p(Mtk−1
|w)
]
. (7)

Next, we use Eqs. (5a) and (5b) to calculate the natural parameters of all Gaussian terms. In practice,
we estimate the natural parameters using (unbiased) Monte-Carlo estimators for the expectations. We
have now available the likelihood terms and their Gaussian approximations. This allows us to write
L(θtk ;Dtk ∪Mtk−1

) in the form of Eq. (6):

L(θtk ; Dtk ∪ Mtk−1
) = logZqtk +

∑

dtk ∈Dtk∪Mtk−1

Eq̃θtk (w)

[
log p(dtk |w)− log rtk(w;dtk)

]
,

where dtk are the samples in Dtk ∪Mtk−1
and where rtk(w;dtk) are the Gaussian approximation

of the corresponding likelihood terms. Note that rtk does not only depend on dtk , however, we omit
the dependence on the remaining data for notational convenience.

If the likelihood p(dtk |w) is close to the Gaussian rtk(w;dtk) in expectation w.r.t. the approximate
posterior qθtk (w), then its contribution to L(θtk ;Dtk ∪Mtk−1

) is small. Similarly, likelihood terms
that cannot be well approximated by the respective Gaussian have a large contribution, and, hence,
the corresponding data should be kept in the memory. For this reason, we propose the score function

Stk(M; Dtk ∪ Mtk−1
) =

∑

dtk ∈M
Eq̃θtk (w)

[
log p(dtk |w)− log rtk(w;dtk)

]
, (8)

and the corresponding memory updateMtk = argmaxM Stk(M; Dtk ∪ Mtk−1
). Note that since

all residual terms are computed independently, the update results in selecting the top M terms.

3.3 GAUSSIAN UPDATE

The Gaussian update follows from the memory update presented in the previous section: once the
memoryMtk has been selected, we update the Gaussian distribution with the approximations corre-
sponding to the rest of the data Dtk ∪Mtk−1

\Mtk . We can update qθtk (w) in two equivalent ways:

qθtk (w) = qθtk−1
(w)

∏

dtk 6∈Mtk

rtk (w;dtk), (9a) qθtk (w) = q̃θtk (w) /
∏

dtk ∈Mtk

rtk (w;dtk). (9b)

Note again that the natural parameters of rtk(w;dtk) are estimated using Monte Carlo and the
products in the above equations imply a summation of the natural parameters. In order to reduce the
variance of this sum of estimators, we use Eq. (9a) if |Dtk | ≤ |Mtk |, and Eq. (9b) if |Dtk | > |Mtk |.
Furthermore, we can compute the average bias from all natural parameter estimates (see App. C). We
reduce the bias of our estimates by subtracting the average bias from all estimates. Note that a further
option to update qtk(w) would be to use VB on the data Dtk ∪ Mtk−1

\Mtk to compute the update
qθtk (w) ≈ qθtk−1

(w) p(Dtk ∪ Mtk−1
\Mtk |w). The latter approach is numerically more stable

but computationally more expensive. It also turned out that it is less favorable to the update using
Eq. (9a) or Eq. (9b) in case of small datasets Dtk , because VB applied to BNNs with small datasets
often leads to a poor fit.

Previous work hypothesised that this problem is an artifact of the ELBO and not an optimisation
problem (Trippe & Turner, 2018; Turner & M. Sahani, 2011). We provide further evidence in Fig. 1,
where we infer the posterior of a Bayesian neural network with VB, using 70 and 100 data samples
respectively and compare it to posterior inference with MCMC. In case of VB with 70 samples, the
posterior approximation yields a model that is almost linear. These difficulties of posterior inference
with variational Bayes are especially problematic in case of the streaming data setting, where the
number of observations at each time-step is typically very small. The Gaussian update proposed
above can alleaviate the problem of having to train BNNs with small datasets. Specifically, we have
Ntk +M instead of Ntk data points to find a better optimum of the ELBO.

4

42

Published as a conference paper at ICLR 2020

(a) MCMC, 70 samples (b) VB, 70 samples (c) VB, 100 samples

60

40

20

0

Ex
pe

ct
ed

 lo
g-

lik
el

ih
oo

d

0 100000 200000 300000 400000 500000
iteration

0

20

40

60

KL
 (a

nn
ea

le
d)

70 samples
100 samples

(d) ELBO terms during training

Figure 1: Posterior predictive distribution in the xy-plane (grey) of a Bayesian neural network with 2 layers of
16 units, tanh activations, prior p0(w) = N (w; 0, 1), and Bernoulli likelihood. In case of variational Bayes
(Figs. 1b, 1c), the KL divergence of the ELBO is annealed from β = 0 to β = 1 over many iterations (450k
annealing, 50k ELBO). Fig. 1d shows that the approximation trades off the expected log-likelihood for a better
KL divergence as β is increased. With 70 data points, the annealed KL jumps to a significantly lower value,
resulting in an almost linear decision boundary. By contrast, MCMC yields a much better predictive distribution
for the same number of samples. Data is visualised in red and blue.

4 VARIATIONAL BAYES WITH MODEL ADAPTATION

The incremental learning methods discussed so far assume i.i.d. data (cf. Sec. 2, Eq. (1)). This
assumption can be reasonable even in scenarios with changing data distributions, e.g. when the data
drift is an algorithmic artifact rather than a real phenomenon. For example, in online multi-task or
curriculum learning we want to learn a model of all tasks, but we may choose to learn the tasks
incrementally for various reasons (e.g. Nguyen et al., 2018; Kirkpatrick et al., 2017; Schwarz et al.,
2018; Rusu et al., 2016; Fernando et al., 2017). However, such approaches are not applicable for
modeling non-stationary data: one of the properties of online VB is that the variance of the Gaussian
posterior approximation shrinks at a rate of O(N), where N is the total amount of data (e.g. Opper,
1998). Consequently, learning comes to a halt as t→∞. To overcome this issue, the model needs
to be extended by a method that enables it to adapt to changes in the data distribution, e.g., by
deliberately forgetting the belief inferred from previous data.

In the following, we describe two alternative methods for adapting to changing data. In Sec. 4.1, we
impose Bayesian exponential forgetting, which forgets previous data exponentially by weighting
the likelihood terms (or their approximations). In Sec. 4.2, we implement the adaptation through a
diffusion process applied to the neural network parameters. Compared to the online learning scenario,
we make the following assumptions: (i) we observe datasets Dtk at potentially non-equidistant time
steps tk; (ii) data within Dtk is assumed i.i.d., however, not between different datasets Dtk and Dtk+1

.

In both approaches, we realise adaptation by an additional forgetting step before observing the
new data Dtk+1

. We denote the distribution, which results from applying the forgetting step to the
posterior approximation qθtk (w) p(Mtk |w) by ptk+1

(w).

4.1 ADAPTATION WITH BAYESIAN FORGETTING

Model adaptation through forgetting can be achieved by decaying the likelihood based on the temporal
recency of the data (Graepel et al., 2010; Honkela & Valpola, 2003). It has been explored previously
as an alternative to filtering and is referred to as Bayesian exponential forgetting (Kulhavý & Zarrop,
1993). This approach defines a forgetting operator that yields p(wtk+1

|Dt1:tk) directly. Here, we use
a continuous-time version of this forgetting operation that can be formulated as

p(w|Dt1:tK) ∝ p0(w)
K∏

k=1

p(Dtk |w)(1−ε)
tK−tk
τ , (10)

where τ is a time-constant corresponding to the average of the time-lags ∆tk+1 = tk+1 − tk. The
distribution defined in Eq. (10) can be formulated recursively (cf. App. F) as

p(w|Dt1:tk+1
) ∝ p0(w)1−(1−ε)∆tk+1/τ

p(w|Dt1:tk)(1−ε)∆tk+1/τ

p(Dtk+1
|w). (11)

This equation can be viewed as Bayes rule (Eq.(1)) applied after the forgetting step. The first two
terms of Eq. (11) can be identified as the forgetting operation, applied to the current posterior. In

5

43

Published as a conference paper at ICLR 2020

0 50 100 150 200 250
t

0

1

2

3

4

5

(t)

 0 = 5.0, 0 = 0.1
0.025
0.05
0.075
0.1
0.125
0.15
0.175
0.2
0.225

(a) µt

0 50 100 150 200 250
t

0.2

0.4

0.6

0.8

1.0

(t)

 0 = 5.0, 0 = 0.1

0.025
0.05
0.075
0.1
0.125
0.15
0.175
0.2
0.225

(b) σt

0 50 100 150 200 250
t

1

0

1

2

3

4

5

p(
w

t)

 0 = 5.0, 0 = 0.1, = 0.05
(t)
(t)

(c) µt ± σt, ε = 0.05

0 50 100 150 200 250
t

0

1

2

3

4

5

(t)

 0 = 5.0, 0 = 0.1
0.0125
0.025
0.0375
0.05
0.0625
0.075
0.0875
0.1
0.1125

(d) µt

0 50 100 150 200 250
t

0.2

0.4

0.6

0.8

1.0

(t)

 0 = 5.0, 0 = 0.1

0.0125
0.025
0.0375
0.05
0.0625
0.075
0.0875
0.1
0.1125

(e) σt

0 50 100 150 200 250
t

1

0

1

2

3

4

5

p(
w

t)

 0 = 5.0, 0 = 0.1, = 0.025
(t)
(t)

(f) µt ± σt, θ = 0.025

Figure 2: Time-evolution of distribution parameters of Bayesian Forgetting (top) and the Ornstein-Uhlenbeck
process (bottom) for different adaptation parameter values. The initial distribution (at t = 0) can be seen as the
approximate posterior at some time-step tk.

order to apply this operation to our posterior approximation qθtk (w) p(Mtk |w), we modify it by an
additional weighting factor for each likelihood term in the memory. Denoting the age of a memory
item m by ∆tk(m), the forgetting operation for this new posterior approximation then results in

ptk+1
(w) ∝ p0(w)1−(1−ε)∆tk+1/τ ×

[
qθtk (w)

∏

m∈Mtk

p(m|w)(1−ε)∆tk(m)/τ

](1−ε)∆tk+1/τ

=

[
p0(w)1−(1−ε)∆tk+1/τ

qθtk (w)(1−ε)∆tk+1/τ

]
×

∏

m∈Mtk

p(m|w)(1−ε)∆tk+1(m)/τ

, (12)

where ∆tk+1(m) = ∆tk(m) + ∆tk+1. As can be seen from Eq. (12), BF acts on both factors of the
posterior approximation independently: in case of the memory, it re-weights the respective likelihood
terms by updating ∆tk+1(m). For the Gaussian term qθtk (w), BF leads to a weighted product with
the prior distribution (i.e. the first two terms of Eq. (12)), resulting in a Gaussian with parameters

σ−2
tk+1

=
(

1− (1− ε)∆tk+1/τ
)
σ−2

0 + (1− ε)∆tk+1/τσ−2
tk
,

σ−2
tk+1

µtk+1
=
(

1− (1− ε)∆tk+1/τ
)
σ−2

0 µ0 + (1− ε)∆tk+1/τσ−2
tk
µtk .

For ∆tk+1 → ∞, the likelihood term in Eq. (12) converges to the uniform distribution and the
Gaussian term reverts to the prior. We note, however, that while Eq. (11) is an exact recursive form
of Eq. (10), the online VB approximation of Eq. (11) is not generally identical to the (offline) VB
approximation of Eq. (10) due to its successive approximations. For tuning the hyperparameter ε,
we note that the weighting of likelihood terms corresponds to an effective dataset size of 1/ε ·N (if
all datasets are of equal size N). In Fig. 2, we also visualise the forgetting operation applied to the
Gaussian part of the posterior approximation for multiple values of ε.

4.2 ADAPTATION WITH DIFFUSION PROCESSES

Model adaptation can also be realised by using dynamic model parameters that evolve according to a
stochastic process. In this case, adaptation is achieved by the stochastic transition ptk+1,tk(w′|w)
resulting in a prediction distribution

ptk+1
(w′) =

∫
ptk+1,tk(w′|w) p(w|Dt1:tk) dw, (13)

where we consider Gaussian transitions ptk+1,tk(w′|w). However, this operation is generally not
tractable for our posterior approximation qθtk (w) p(Mtk |w). Moreover, the forgetting operation
implied by the transition does not retain the product form as in the case of BF. For this reason,
we consider only a Gaussian posterior approximation (without memory) for this approach, that is
ptk+1

(w′) =
∫
ptk+1,tk(w′|w) qθtk (w) dw.

6

44

Published as a conference paper at ICLR 2020

As mentioned in Sec. 4.1, BF yields the prior distribution for ∆tk+1 → ∞. This is a desirable
property, since it corresponds to forgetting all information conveyed by the data. In case of a Gaussian
prior, the only Gaussian process that fulfills this requirement is the Ornstein-Uhlenbeck (OU) process
given by the stochastic differential equation dwt = θ · (µ0 −wt) dt+ σ0

√
2θ dWt, where θ is the

stiffness parameter which controls the drift rate towards µ0. To decouple the adaptation parameter
from the rate at which data is observed, we rescale the stiffness parameter as θ = a/τ . The resulting
prediction distribution ptk+1

(w) = N
(
µtk+1

, σ2
tk+1

)
is defined by the parameters

µtk+1
=
(
1− e−a

∆tk+1
τ

)
µ0 + e−a

∆tk+1
τ µtk ,

σ2
tk+1

=
(
1− e−2a

∆tk+1
τ

)
σ2

0 + e−2a
∆tk+1
τ σ2

tk
.

An interesting observation is that both parameters evolve independently of each other. In contrast to
BF, the mean and variance—instead of the natural parameters—follow an exponential decay. The
hyperparameter a can be determined e.g. through the half-time of the exponential decay of the mean
parameter, given as τ1/2 = 1/θ. We visualise the time evolution of the above parameters in Fig. 2.

5 RELATED WORK

There are many Bayesian approaches to online learning, which differ mostly in the approximation of
the posterior distribution at each time-step. Sequential Monte Carlo (Liu & Chen, 1998) approximates
the posterior by a set of particles. Assumed Density Filtering (ADF) (Maybeck, 1982) and Bayesian
online learning (Opper, 1998) are deterministic posterior approximations based on moment matching.
Other deterministic approaches are based on Laplace’s approximation (MacKay, 1992): Kirkpatrick
et al. (2017) use multiple diagonal Gaussian posterior approximations of previous time-steps to
regularise future tasks; Ritter et al. (2018) use a single (block-diagonal) posterior approximation,
summarising all previous time-steps. The latter method is closer to Bayesian online inference, as it is
an approximation of Eq. (1). Our work is based on online VB (Opper, 1998; Ghahramani, 2000; Sato,
2001; Broderick et al., 2013), which approximates the posterior at every time-step by minimising the
KL-divergence between a parametric (here Gaussian) and the true posterior distribution. In contrast
to online VB, we approximate the posterior by a Gaussian distribution and a running memory.

Other approaches are based on various types of episodic memory, motivated by their empirical
success in preventing catastrophic forgetting. The basic idea of rehearsal (Ratcliff, 1990) is to train on
both the new data and a subset of previous data or pseudo samples (Robins, 1995; Shin et al., 2017;
Kemker & Kanan, 2017) sampled from a generative model. The memory-based online inference
methods most similar to our approach are VCL (Nguyen et al., 2018) and VVM (Minka et al., 2009).
Both methods use a Gaussian distribution and a running memory to approximate the posterior. VCL
uses heuristics such as random selection or the k-center method to update the memory. However,
both heuristics select the memory independently of the Gaussian approximation. By contrast, VVM
updates the memory with data that cannot be well approximated by the Gaussian distribution. VVM
uses expectation propagation for the posterior approximation in a logistic regression model and,
therefore, it is not directly applicable to our work. We transferred the main idea of VVM to online VB
and developed the corresponding memory update method. In our case, the memory is updated with
data for which the ELBO changes most if the corresponding likelihood functions are approximated
by a Gaussian. In contrast to these two approaches, we extend our model by an adaptation method
that allows to cope with non-stationary data.

Many adaptation methods were developed in the context of concept drift, however, few of these
approaches operate in the Bayesian framework. For example McInerney et al. (2015) treat the learning
dynamics of their model as a non-stationary process that allows for adaptation. In contrast, our
approach uses an evolving prior and a well defined forgetting mechanism that gives a better control
over the learning process. A more closely related approach uses the extended Kalman filter to estimate
the optimal parameters of a logistic regression classifier Su et al. (2008). However, they consider a
transition model which is equivalent to a Wiener process (in unit-time) and therefore does not revert to
the prior. By contrast, our approach (Sec. 4.2) models the dynamics as a prior-reverting OU process.
BF (Kulhavý & Zarrop, 1993) has been applied as an alternative to adaptation with an explicit
transition model (e.g. Honkela & Valpola, 2003; Graepel et al., 2010). Compared to previous work,
we used a continuous-time version of BF and extended it to our posterior appoximation consisting of
a Gaussian and a running memory.

7

45

Published as a conference paper at ICLR 2020

(a) t0 (b) t25 (c) t50

0 20 40 60 80 100
time step

1.2

1.0

0.8

0.6

0.4

0.2

0.0

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

in memory
evicted data

(d) LML

Figure 3: Two-moons dataset. Predictive distribution (Figs. 3a – 3c) of a BNN (gray) and running memory
(rectangular shapes, size is proportional to the score), chosen by the memory update proposed in Sec. 3.2. Data
from tk and t<k−1 is visualised as large circles and small dots, respectively. Fig. 3d shows the one-step-ahead
(predictive) LML (divided by the number of samples) for data that will be selected for the memory and data that
will be evicted. Data that will be selected in the memory tends to have a significantly lower predictive likelihood.

GRS (ours) k-center random

Concrete −0.779± 0.039 −0.798± 0.039 −0.800± 0.039
Boston −0.619± 0.111 −0.638± 0.093 −0.664± 0.156
Energy 0.365± 0.440 −0.119± 0.128 −0.078± 0.087
Yacht 1.925± 0.229 1.658± 0.291 1.648± 0.254
Spam −0.216± 0.016 −0.219± 0.015 −0.217± 0.016
Wine −1.165± 0.056 −1.212± 0.059 −1.194± 0.070
MNIST −0.148± 0.005 −0.158± 0.005 −0.153± 0.005

Table 1: average test LML, av-
eraged over the last 10% time-
steps. Mean and std. deviations
are computed over 16 indepen-
dent runs. The memory size
is 15 for Concrete, Boston, En-
ergy and Yacht, 25 for Spam and
Wine, and 150 for MNIST. Bold
indicates best (average) results.

6 EXPERIMENTS

We validate our proposed inference methods in two stages. In Sec. 6.1, we compare our memory
update and Gaussian update (Sec. 3) to existing memory-based online inference methods on several
standard machine learning datasets. In Sec. 6.2, we evaluate our adaptation methods (Sec. 4)
on commonly used datasets with concept drift (Widmer & Kubat, 1996), where the conditional
distribution of labels given the features changes over time (i.e. non-stationary data in the context of
predictive models).

We found that training (variational) Bayesian neural networks on streaming data is challenging, specif-
ically, our approach requires model parameters very close to a local optimum since Eqs. (5a) and (5b)
hold only at local extrema of the ELBO. To overcome these difficulties, we use several methods to
reduce the variance of the gradient estimates for learning: (i) we apply the local reparametrisation trick
(Kingma et al., 2015); (ii) we use the Adam optimiser (Kingma & Ba, 2014); and (iii) we use multiple
Monte Carlo samples to estimate the gradients (cf. Tab. 2 for details). Furthermore, we developed
methods for determining hyperparameters of the Gaussian prior and the initialisation distribution
of Bayesian neural networks. The idea is similar to the initialisation method proposed by Glorot &
Yoshua Bengio (2010) and He et al. (2015): we choose the prior and the posterior initialisation such
that the mean and standard deviation of the activations in every layer are approximately zero and one,
respectively. We refer to App. H and App. I for a derivation and further details.

We use the following metrics for evaluation: (i) the avg. test log-marginal likelihood (LML)
N−1

test

∑
n logEq̃θtk (w)

[
p(d

(n)
test|w)

]
, where d(n)

test is a sample from a heldout test dataset; (ii) the avg. one-

step-ahead LML N−1
tk+1

∑
n logEq̃θtk (w)

[
p(d

(n)
tk+1
|w)
]
, where d(n)

tk+1
is data observed at time-step tk+1.

Both metrics measure the predictive performance, however (i) can be used in the online setting, where
the data is i.i.d.; and (ii) is typically used to evaluate models with non-stationary streaming data.

6.1 ONLINE LEARNING

In this section, we evaluate our running memory (Sec. 3) in an online learning setting. To illustrate
how our memory update works, we start our evaluation with a qualitative assessment: we train a
model on 2-dimensional toy data (two-moons), where we can visualise the selected memory. The
BNN has 2 layers with 16 units and tanh activations, and has a prior p0(w) = N (w; 0, 1) on all

8

46

Published as a conference paper at ICLR 2020

0 5 10 15 20 25
memory size

1.0

0.9

0.8

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Concrete

GRS
kcenter
random

0 5 10 15 20 25
memory size

0.1

0.0

0.1

0.2

0.3

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Energy

GRS
kcenter
random

0 10 20 30 40 50
memory size

0.219

0.218

0.217

0.216

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Spam
GRS
kcenter
random

0 50 100 150 200 250
memory size

0.165

0.160

0.155

0.150

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

MNIST

GRS
kcenter
random

0 20 40 60
t

1.0

0.9

0.8

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Concrete

GRS 15
kcenter 15
random 15
no memory

0 10 20 30 40 50
t

0.4

0.2

0.0

0.2

0.4
lo

g-
ex

pe
ct

ed
-li

ke
lih

oo
d

UCI Energy
GRS 15
kcenter 15
random 15
no memory

0 25 50 75 100 125
t

0.35

0.30

0.25

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Spam

GRS 30
kcenter 30
random 30
no memory

0 20 40 60 80 100
t

0.275

0.250

0.225

0.200

0.175

0.150

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

MNIST

GRS 150
kcenter 150
random 150
no memory

Figure 4: Average test LML, evaluated for several memory sizes (top), and evaluated over time (bottom) for a
specific memory size (cf. corresponding legend). Cf. Sec. 6.1 for details and App. A for further results.

weights and biases. The memory-size is M = 30. The model observes 150 data samples at time-step
t0 and 15 samples at all consecutive time-steps. In Fig. 3, we visualise the selected memory and
the corresponding scores for time-steps t0, t25, and t50, respectively. We can make the empirical
observation that our method favors data close to the decision boundary. Furthermore, in Fig. 3d, we
visualise the one-step-ahead LML for data that will be selected and evicted (in the next time-step),
respectively. This shows that our memory update tends to select data for which the model has a low
predictive LML. These observations support our intuition that the memory is indeed complementary
to the Gaussian approximation, selecting data for which the likelihood cannot be well approximated
by a Gaussian function. In Fig. 9 of the supplementary material, we visualised the running memory
for a model trained on MNIST, showing that the memory also accumulates diverse samples over time.

We evaluate our memory-based online inference method (Sec. 3) quantitatively on several standard
machine learning datasets, including regression (UCI Boston, UCI Concrete, UCI Energy, UCI Yacht)
and classification (MNIST, UCI Spam, UCI Wine) tasks. Here, we refer to our approach as Gaussian
Residual Scoring (GRS). We compare GRS to the respective memory update and Gaussian update
methods proposed in VCL (Nguyen et al., 2018) (cf. Sec. 2.2). Refer to App. B for an explanatory list
of compared update methods. Online learning is performed by observing Ntk samples per time-step
(cf. Tab. 2 for the experiment setup and hyperparameters.). For evaluation, we use a random held-out
test dataset (20% of the data). We perform each experiment with 16 different random data splits and
random seeds for the model parameter initialisation. In Fig. 4, we plot the test LML, averaged over the
16 runs, against the memory size, and the LML over all time-steps. In most cases, random selection
and the k-center method start with a worse initial fit at t0. This is because these methods perform
the initial Gaussian update by optimising the ELBO with Nt0 −M samples at t0; by contrast, GRS
uses a Gaussian update that first optimises the ELBO with Nt0 samples and subsequently discounts
the contribution of the memory. In Tab. 1, we report the mean and std. deviation of the LML, where
the mean and std. deviation are taken over the 16 independent runs, each averaged over the last 10%
time-steps. The results demonstrate the superior predictive performance of our update methods. We
also note that the experiments on the smaller datasets (cf. Tab. 2 in App. B) result in a high variance
among the random data splits and random seeds. This is the case for all compared methods and it
could not be remedied e.g. by using annealing or a different prior.

6.2 ADAPTATION

In this section, we evaluate our adaptation methods (Sec. 4) in settings with concept drift. We begin
with a simple logistic regression problem, where the data Dtk = {(xtk ,ytk)}n, xtk ∈ R2, ytk ∈ R
is sampled from xtk ∼ Uniform(−3, 3), ytk ∼ Bernoulli(σ(wtkxtk)). The true model has two
time-dependent parameters w0

tk
= 10 sin(α · tk), w1

tk
= 10 cos(α · tk), where α = 5 deg /sec and

where we observe data at tk ∈ [0, 1, . . . , 720]. Fig. 5 shows the learned model parameters for
standard online learning (without adaptation), OU process transitions, and Bayesian forgetting. If
the time-dependence of the data is ignored (in case of online VB), the class labels are distributed
with equal probability in the whole input space. Consequently, as t→∞, the weights of the model
without adaptation shrink to 0. By contrast, the posterior means of BF and the OU process follow a
sinusoidal curve as the parameters of the true model.

9

47

Published as a conference paper at ICLR 2020

(a) Online (no adaptation) (b) Ornstein-Uhlenbeck process (c) Bayesian forgetting

Figure 5: Mean and std deviation of the approximate posterior distributions of a logistic regression model over
720 time-steps. The model is trained on a toy classification problem with rotating class boundaries (cf. Sec. 6.2).
Online VB (left) quickly converges to zero mean, whereas Bayesian forgetting and OU-process transitions lead
to a sinusoidal curve as in the true model.

0.0 0.5 1.0 1.5 2.0 2.5
diffusion rate (diff/ 0) 1e 2

0.50

0.45

0.40

0.35

0.30

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Wiener process

0 1 2 3 4
stiffness () 1e 2

0.50

0.45

0.40

0.35

0.30

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Ornstein-Uhlenbeck process

0.0 0.5 1.0 1.5
forgetting rate () 1e 1

0.50

0.45

0.40

0.35

0.30

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Bayesian forgetting

0 50 100 150 200
memory size

0.50

0.45

0.40

0.35

0.30

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Bayesian forgetting with memory

= 0.110

Figure 6: One-step ahead LML on Covertype dataset. Subplots show 3 different adaptation methods (3 left
plots), evaluated for several values of the respective adaptation parameter, and Bayesian forgetting with ε = 0.11,
evaluated for multiple memory sizes (right).

We also evaluate our adaptation methods quantitatively on 3 datasets with concept drift (Weather, Gas
Sensor Array Drift, Covertype). We compare online VB (without adaptation), the Wiener process (a
special case of the OU process), the OU process, and Bayesian Forgetting (with and without memory).
All compared variants use the same model architecture and hyperparameters (cf. Tab. 2 in the
supplementary material). We report the one-step-ahead LML, where the expectation is approximated
with 500 Monte Carlo samples. Results are averaged over the last 50% time-steps, because we are
interested in the continual learning performance, and the first few time-steps will be similar for most
methods. We report the mean and std. deviation over 8 independent runs with different random seeds.
In Fig. 6 (and Fig. 10 in the appendix), we plot the LML against 10 adaptation parameter values (of
the respective adaptation method), where the value zero corresponds to online VB. The LML for
BF with different memory sizes and a fixed forgetting rate ε = 0.11 is shown in Fig. 6. As can be
seen from the results, all adaptation methods significantly improve the performance compared to
online VB. Interestingly, the Ornstein-Uhlenbeck process performs better than Bayesian Forgetting,
however, using a running memory with Bayesian Forgetting closes the gap.

7 CONCLUSION

In this work, we have addressed online inference for non-stationary streaming data using Bayesian
neural networks. We have focused on posterior approximations consisting of a Gaussian distribution
and a complementary running memory, and we have used variational Bayes to sequentially update
the posteriors at each time-step. Existing methods update these two components without having an
interaction between them, and they lack methods to adapt to non-stationary data. We have proposed a
novel update method, which treats both components as complementary, and two novel adaptation
methods (in the context of Bayesian neural networks with non-stationary data), which gradually
revert to the prior distribution if no new data is observed.

Future research could extend our work by drift detection methods and use them to infer the adaptation
parameters. This work could also be extended by developing adaptation methods for gradual, abrupt,
or recurring changes in the data distribution. Finally, we observed that variational Bayesian neural
networks with a uni-modal approximate posterior often find poor local minima if the dataset is small
and models are complex. This is especially challenging in scenarios with streaming data. While
our Gaussian update alleviates this problem to a certain degree, further research in extending the
approximation family beyond Gaussians could be beneficial. Progress in this direction would improve
our proposed methods and allow to scale them to more complex models.

10

48

Published as a conference paper at ICLR 2020

REFERENCES

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks.
In Proceedings of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37, pp. 1613–1622, 2015.

T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan. Streaming variational bayes.
In Proceedings of the 26th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’13, pp. 1727–1735, USA, 2013. Curran Associates Inc.

Z. Chen and B. Liu. Lifelong Machine Learning. Morgan & Claypool Publishers, 2016.

B. Cseke, M. Opper, and G. Sanguinetti. Approximate inference in latent gaussian-markov models
from continuous time observations. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 26, pp. 971–979.
Curran Associates, Inc., 2013.

G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonstationary environments: A survey.
Computational Intelligence Magazine, IEEE, 10:12–25, 11 2015.

C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and D. Wierstra.
Pathnet: Evolution channels gradient descent in super neural networks. CoRR, abs/1701.08734,
2017.

Z. Ghahramani. Online variational Bayesian learning. NIPS Workshop on Online Learning, 2000.

S. Ghosh, J. Yao, and F. Doshi-Velez. Structured variational learning of Bayesian neural networks
with horseshoe priors. In J. Dy and A. Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80, pp. 1744–1753, 2018.

X. Glorot and Y. Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Y. W Teh and M. Titterington (eds.), Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pp. 249–256, 2010.

T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale Bayesian click-through rate
prediction for sponsored search advertising in Microsoft’s Bing search engine. In Proceedings of
the 27th International Conference on Machine Learning, ICML, pp. 13–20, USA, 2010. Omnipress.

A. Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger (eds.), Advances in Neural Information Processing
Systems 24, pp. 2348–2356. Curran Associates, Inc., 2011.

S. Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cognitive
Science, 11(1):23 – 63, 1987.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, Washington, DC, USA, 2015. IEEE Computer Society.

G. E. Hinton and D. van Camp. Keeping the neural networks simple by minimizing the description
length of the weights. In Proceedings of the Sixth Annual Conference on Computational Learning
Theory, COLT ’93, pp. 5–13, New York, NY, USA, 1993. ACM.

A. Honkela and H. Valpola. On-line variational bayesian learning. In In Proc. of the 4th Int. Symp.
on Independent Component Analysis and Blind Signal Separation, pp. 803–808, 2003.

N. Kamra, U. Gupta, and Y. Liu. Deep Generative Dual Memory Network for Continual Learning.
arXiv e-prints, art. arXiv:1710.10368, Oct 2017.

R. Kemker and C. Kanan. Fearnet: Brain-inspired model for incremental learning. CoRR,
abs/1711.10563, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

11

49

Published as a conference paper at ICLR 2020

D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization
trick. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 28, pp. 2575–2583. Curran Associates, Inc., 2015.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526, 2017.

D. A. Knowles and T. P. Minka. Non-conjugate variational message passing for multinomial and
binary regression. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger
(eds.), Advances in Neural Information Processing Systems 24, pp. 1701–1709. Curran Associates,
Inc., 2011.

T. Kulhavý and M. B. Zarrop. On a general concept of forgetting. International Journal of Control,
58(4):905–924, 1993.

J. S. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. Journal of the American
Statistical Association, 93(443):1032–1044, 1998.

D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp.
6470–6479, USA, 2017. Curran Associates Inc. ISBN 978-1-5108-6096-4.

D. J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computu-
tation, 4(3):448–472, May 1992.

P. S. Maybeck. Stochastic Models, Estimation and Control. Mathematics in science and engineering.
Academic Press, 1982.

J. McInerney, R. Ranganath, and D. Blei. The population posterior and bayesian modeling on streams.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 28, pp. 1153–1161. Curran Associates, Inc., 2015.

T. P. Minka, R. Xiang, and Y. A. Qi. Virtual Vector Machine for Bayesian online classification. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, pp.
411–418, Arlington, Virginia, USA, 2009. AUAI Press.

C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational continual learning. In International
Conference on Learning Representations, 2018.

M. Opper. A Bayesian approach to on-line learning. In D. Saad (ed.), On-line Learning in Neural
Networks, pp. 363–378. Cambridge University Press, New York, NY, USA, 1998. ISBN 0-521-
65263-4.

M. Opper and C. Archambeau. The variational gaussian approximation revisited. Neural Computation,
21:786–92, 10 2008.

M. Opper and O. Winther. Expectation consistent free energies for approximate inference. In L. K.
Saul, Y. Weiss, and L. Bottou (eds.), Advances in Neural Information Processing Systems 17, pp.
1001–1008. MIT Press, 2005.

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with neural
networks: A review. ArXiv, abs/1802.07569, 2018.

R. Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97 2:285–308, 1990.

M. B. Ring. Child: A first step towards continual learning. Machine Learning, 28(1):77–104, 1997.

H. Ritter, A. Botev, and D. Barber. Online structured laplace approximations for overcoming
catastrophic forgetting. In Proceedings of the 32Nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 3742–3752, USA, 2018. Curran Associates Inc.

12

50

Published as a conference paper at ICLR 2020

A. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):123–146,
1995.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu,
and R. Hadsell. Progressive neural networks. CoRR, abs/1606.04671, 2016.

P. Ruvolo and E. Eaton. ELLA: An efficient lifelong learning algorithm. In In Proc. of the 30th
International Conference on Machine Learning, pp. 507–515, 2013.

M. Sato. Online model selection based on the variational bayes. Neural Computation, 13(7):
1649–1681, 2001.

J. Schwarz, J. Luketina, W. Czarnecki, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and R. Hadsell.
Progress & compress: A scalable framework for continual learning. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep generative replay. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 30, pp. 2990–2999. Curran Associates, Inc., 2017.

D. Silver, Q. Yang, and L. Li. Lifelong machine learning systems: Beyond learning algorithms. In
AAAI Spring Symposium Series, 2013.

B. Su, Shen, Y-D., and Xu, W. Modeling concept drift from the perspective of classifiers. In 2008
IEEE Conference on Cybernetics and Intelligent Systems, pp. 1055–1060, Sep. 2008.

B. Trippe and R. Turner. Overpruning in Variational Bayesian Neural Networks. arXiv e-prints, pp.
arXiv:1801.06230, Jan 2018.

R. E. Turner and M. M. Sahani. Two problems with variational expectation maximisation for time-
series models. In D. Barber, T. Cemgil, and S. Chiappa (eds.), Bayesian Time series models,
chapter 5, pp. 109–130. Cambridge University Press, 2011.

G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine
Learning, 23:69–101, 1996.

13

51

Published as a conference paper at ICLR 2020

8 APPENDIX

A FURTHER EXPERIMENTAL RESULTS

A.1 MEMORY

Here we provide additional experimental results for the memory update and Gaussian update from
Sec. 3. We conducted experiments on 3 additional datasets (UCI Boston, UCI Yacht, UCI Red Wine).
The influence of the memory size and the performance over time (for a specific memory size) are
shown in Fig. 7 (corresponding to Fig. 4 in the main text).

0 5 10 15 20 25
memory size

0.70

0.65

0.60

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Boston

GRS
kcenter
random

0 5 10 15 20 25
memory size

1.2

1.4

1.6

1.8

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d
UCI Yacht

GRS
kcenter
random

0 10 20 30 40 50
memory size

1.22

1.20

1.18

1.16

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Red Wine

GRS
kcenter
random

0 5 10 15 20 25 30
t

0.85

0.80

0.75

0.70

0.65

0.60

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Boston

GRS 15
kcenter 15
random 15
no memory

0.0 2.5 5.0 7.5 10.0 12.5
t

1.4

1.6

1.8

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Yacht

GRS 15
kcenter 15
random 15
no memory

0 25 50 75 100 125 150
t

1.30

1.25

1.20
lo

g-
ex

pe
ct

ed
-li

ke
lih

oo
d

UCI Red Wine

GRS 30
kcenter 30
random 30
no memory

Figure 7: Average test LML on further datasets not included in the main text. Evaluated for several memory
sizes (top), and evaluated over time (bottom) for a specific memory size. Cf. Sec. 6.1, App. A.1 for details.

Furthermore, we test the memory update and Gaussian update of GRS separately on UCI Energy
and UCI Concrete. For this purpose, i) we combine the k-center method with our Gaussian update
from Sec. 3.3; and ii) we use our memory update from Sec. 3.2 and update the Gaussian distribution
by optimizing Eq. (2) with Dtk ∪Mtk−1

\Mtk (re-fitting) . The results are shown in Fig. 8. As
can be seen, GRS performs better than one of the components used in combination with a baseline
method. GRS with refit performs especially bad, similar to the baselines k-center and random. This is
because refitting requires optimising the ELBO with a small dataset. As mentioned in Sec. 3.3 (cf.
Fig. 1), Bayesian neural networks with VB perform bad on small datasets due to over-regularisation.
Consequently, in case of refitting, a good memory update can lead to a worse overall performance due
to a much worse Gaussian update. While this general issue with Bayesian neural networks (learned
with VB) is beyond the scope of this work, it is an important future research direction.

0 5 10 15 20 25
memory size

0.75

0.50

0.25

0.00

0.25

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Energy

GRS
GRS + k-center
GRS with refit

0 10 20 30 40 50
t

0.1

0.0

0.1

0.2

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Energy

GRS 5
GRS with k-center 5
GRS with refit 5

0 10 20 30 40 50
t

0.4

0.2

0.0

0.2

0.4

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Energy

GRS 15
GRS with k-center 15
GRS with refit 15

0 10 20 30 40 50
t

1.00

0.75

0.50

0.25

0.00

0.25

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Energy

GRS 25
GRS with k-center 25
GRS with refit 25

0 5 10 15 20 25
memory size

1.2

1.0

0.8

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Concrete

GRS
GRS + k-center
GRS with refit

0 20 40 60
t

1.1

1.0

0.9

0.8

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Concrete

GRS 5
GRS with k-center 5
GRS with refit 5

0 20 40 60
t

1.4

1.2

1.0

0.8

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Concrete

GRS 15
GRS with k-center 15
GRS with refit 15

0 20 40 60
t

1.4

1.2

1.0

0.8

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

UCI Concrete

GRS 25
GRS with k-center 25
GRS with refit 25

Figure 8: Average test LML on UCI Energy (top) and UCI Concrete (bottom). GRS denotes our approach
(Sec. 3), GRS with k-center replaces our memory update by the k-center method; GRS with refit replaces our
Gaussian update by the optimization of Eq. (2) with Dtk ∪Mtk−1\Mtk . Evaluated for several memory sizes
(left), and evaluated over time (right) for 3 different memory sizes. Hyperparameters are chosen as in Sec. 6.1.

14

52

Published as a conference paper at ICLR 2020

To better understand our memory update using the score function from Eq. (8), we visualise the
running memory for a model trained on MNIST in Fig. 9.

(a) t25 (b) t50 (c) t75 (d) t100

Figure 9: Running memory at different time-steps on MNIST (cf. Sec. 6.1), with a memory size N = 100. The
memory update tends to select non-typical data while showing diversity.

A.2 ADAPTATION

0.0 0.5 1.0 1.5 2.0 2.5
diffusion rate (diff/ 0) 1e 3

0.6

0.5

0.4

0.3

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Wiener process

0.0 0.5 1.0 1.5 2.0
stiffness () 1e 3

0.6

0.5

0.4

0.3

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Ornstein-Uhlenbeck process

0.0 0.5 1.0 1.5 2.0
forgetting rate () 1e 2

0.6

0.5

0.4

0.3

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Bayesian forgetting

0 10 20 30 40 50
memory size

0.6

0.5

0.4

0.3

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Bayesian forgetting with memory

= 0.009

0.0 0.5 1.0 1.5 2.0 2.5
diffusion rate (diff/ 0) 1e 3

0.450

0.445

0.440

0.435

0.430

0.425

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Wiener process

0.0 0.5 1.0 1.5 2.0
stiffness () 1e 3

0.450

0.445

0.440

0.435

0.430

0.425

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Ornstein-Uhlenbeck process

0 1 2 3 4
forgetting rate () 1e 2

0.450

0.445

0.440

0.435

0.430

0.425

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Bayesian forgetting

0 10 20 30 40 50
memory size

0.450

0.445

0.440

0.435

0.430

0.425

lo
g-

ex
pe

ct
ed

-li
ke

lih
oo

d

Bayesian forgetting with memory

= 0.031

Figure 10: One-step ahead LML on Gas Sensor Array Drift dataset (top) and Weather dataset (bottom). Subplots
show 3 different adaptation methods (left), evaluated for several values of the respective adaptation parameter,
and Bayesian forgetting with ε = 0.0095 (Gas Sensory Array Drift) and ε = 0.031 (Weather), evaluated for
multiple memory sizes (right).

We also evaluated our adaptation methods on 2 additional datasets (Gas Sensor Array Drift, Weather).
In Fig. 10, we visualise the influence of the adaptation parameter for these datasets. Note that the
range of the adaptation parameters is on a much smaller range compared to the experiments on
Covertype (Sec. 6.2). For larger values, the performance starts to degrade. Surprisingly, the memory
degrades the performance in case of the Gas Sensor Array Drift dataset.

A.3 CATASTROPHIC FORGETTING WITH ONLINE VB AND BAYESIAN NEURAL NETWORKS

Here we provide further experimental results for the behavior of online VB (Secs. 2.1, 3) in case of
non-stationary data. For this purpose, we train Bayesian neural networks with different architectures
on the toy classification problem with a rotating decision boundary from Sec. 6.2, however, with
150 data samples per time-step. In Fig. 11, we visualise the training LML for different architectures,
including a linear model. It can be seen that Bayesian neural networks with higher complexity (i.e.
more layers or more units) drop slower in performance compared to the linear model. However,
this is not a desired property for online VB, since exact online Bayesian inference would yield
the same posterior distribution as offline Bayesian inference. In case of our toy classification data
(where the time dependence is ignored), online inference should not be able to classify the data as
t→∞. Instead, this learning behavior shows that online VB with Gaussian approximate posterior
distributions is prone to catastrophic forgetting.

15

53

Published as a conference paper at ICLR 2020

0 100 200 300 400 500 600 700
t

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

lo
g_

ex
pe

ct
ed

_li
ke

lih
oo

d_
pe

r_
sa

m
pl

e

4
8
16
linear

(a) no adaptation (1 layer)

0 100 200 300 400 500 600 700
t

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

lo
g_

ex
pe

ct
ed

_li
ke

lih
oo

d_
pe

r_
sa

m
pl

e

4x4
8x8
16x16

(b) no adaptation (2 layers)

0 100 200 300 400 500 600 700
t

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

lo
g_

ex
pe

ct
ed

_li
ke

lih
oo

d_
pe

r_
sa

m
pl

e

4x4x4
8x8x8
16x16x16

(c) no adaptation (3 layers)

0 100 200 300 400 500 600 700
t

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

lo
g_

ex
pe

ct
ed

_li
ke

lih
oo

d_
pe

r_
sa

m
pl

e

8x8
8x8, BF
8x8, OU

(d) BF and OU (2 layers)

0 100 200 300 400 500 600 700
t

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
lo

g_
ex

pe
ct

ed
_li

ke
lih

oo
d_

pe
r_

sa
m

pl
e

8x8, BF
8x8, BF, 10 samples
8x8, BF, 50 samples

(e) BF with memory

0 100 200 300 400 500 600 700
t

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

lo
g_

ex
pe

ct
ed

_li
ke

lih
oo

d_
pe

r_
sa

m
pl

e

8x8
8x8, 10 samples
8x8, 50 samples

(f) no adaptation with memory

Figure 11: LML for toy classification problem with rotating class boundaries (cf.Sec. A)

B EXPERIMENT SETUP

The following is an explanatory list of the update methods used in Sec. 6.1:

• k-center (VCL): Uses the k-center method (Sec.2.2) for the memory update and Eq. (2) with
(Dtk ∪ Mtk−1

) \Mtk for the Gaussian update.

• random (VCL): Uses random selection (Sec.2.2) for the memory update and Eq. (2) with
(Dtk ∪ Mtk−1

) \Mtk for the Gaussian update.

• GRS (Gaussian Residual Scoring, ours): Uses Eq. (8) for the memory update (Sec. 3.2) and
performs the Gaussian update by first using Eqs. (2) with (Dtk ∪ Mtk−1

) and subsequently
using Eqs. (5a), (5b) for removing the local contributions ofMtk (cf. Sec. 3.3).

Similarly, the following list summarises the adaptation methods used in Sec. 6.2:

• Wiener process: Posterior approximation consists of qθtk (w) only. Transition p(wtk+1
|wtk)

is given by a random walk. We used a diffusion that is proportional to the prior standard
deviation in every neural network layer (cf. Sec. 4.2). No memory used.

• Ornstein-Uhlenbeck process: Posterior approximation consists of qθtk (w) only. Transition
p(wtk+1

|wtk) is given by the Ornstein-Uhlenbeck process (cf. Sec. 4.2). No memory used.

• Bayesian forgetting: Posterior approximation consists of qθtk (w) only. No state-space
model assumption, instead uses Bayesian exponential forgetting (cf. Sec. 4.1).

• Bayesian forgetting with memory: Posterior approximation consists of qθtk (w) andMt. No
state-space model assumption, instead uses Bayesian exponential forgetting (cf. Sec. 4.1).

In Tab. 2, we summarise experimental setup (hyperparameters) used for Secs. 6.1 and 6.2.

C FACTORISATION PROPERTY OF THE GAUSSIAN VARIATIONAL APPROXIMATION

Here we derive the factorisation property of the Gaussian variational approximation distribution by
expressing the natural parameters of the Gaussian approximation as a sum. This can be shown for
the Gaussian approximation at a local optimum of the ELBO. For a Gaussian prior and posterior the

16

54

Published as a conference paper at ICLR 2020

Table 2: Experiment setup for online experiments. Nt0 is the number of observed samples at the first
time-step and Nt1:k

is the dataset size of all other time-steps. M refers to the number of samples
in the memory. We evaluated 5 different memory sizes for each experiment in Sec. 3 and 10 sizes
for experiments in Sec. 4, where the sizes are equally spaced in the given range. Ktrain and Kterm
is the number of MC samples used for training and for estimating the Gaussian terms respectively.
It0 and It1:K

refer to the number of iterations for the first time-step and all subsequent time-steps,
respectively. The architecture denotes the number of units for each hidden layer (e.g. [16, 16] denotes
2 hidden layers with 16 units each).

Nt0 Nt1:k M Ktrain Kterm It0 It1:K Architecture

Concrete 100 10 [5 . . . 25] 1k 50k 50k 10k [16, 16]
Boston 100 10 [5 . . . 25] 1k 50k 50k 10k [16, 16]
Energy 100 10 [5 . . . 25] 1k 50k 50k 10k [16, 16]
Yacht 100 10 [5 . . . 25] 1k 50k 50k 10k [16, 16]
Spam 250 25 [10 . . . 50] 400 50k 50k 10k [32, 32]
Wine 250 25 [10 . . . 50] 400 50k 50k 10k [32, 32]
MNIST 2.5k 250 [50 . . . 250] 40 50k 50k 10k [64, 64]

GasSensorArray 500 50 [5 . . . 50] 200 100k 50k 10k [8, 8]
Weather 1k 100 [5 . . . 50] 100 100k 50k 10k [16, 16]
Covertype 1k 1k [10 . . . 200] 400 100k 50k 10k [32, 32]

ELBO is given as

L(µ∗,Σ∗) = −1

2

(
log |Σ0| − log |Σ∗| − d+ (µ∗ − µ0)TΣ−1

0 (µ∗ − µ0) + Tr(Σ∗Σ−1
0)
)

+
N∑

n=1

Ew∼qθ∗ (w)

[
log p(d(n)|w)

]
.

At a local optimum, we have ∂L(µ∗,Σ∗)
∂µ∗ = 0, which yields

N∑

n=1

∂

∂µ∗
Ew∼qθ∗ (w)

[
log p(d(n)|w)

]
= Σ−1

0 (µ∗ − µ0).

Hence, we obtain

µ∗ = µ0 + Σ0

N∑

n=1

∂

∂µ∗
Ew∼qθ∗ (w)

[
log p(d(n)|w)

]
. (14)

Similarly, we have ∂L(µ∗,Σ∗)
∂Σ∗ = 0, which yields

N∑

n=1

∂

∂Σ∗
Ew∼qθ∗ (w)

[
log p(d(n)|w)

]
= −1

2
(Σ∗)−1 +

1

2
Σ−1

0 . (15)

Hence, we obtain

Σ∗ =
(

Σ−1
0 − 2

N∑

n=1

∂

∂Σ∗
Ew∼qθ∗ (w)

[
log p(d(n)|w)

])−1

. (16)

Next, we calculate the natural parameters from Eqs. (14), (16):

Λ∗ = Λ0 +

N∑

n=1

−2
∂

∂Σ∗
Ew∼qθ∗ (w)

[
log p(d(n)|w)

]

= Λ0 +
N∑

n=1

Λ(n).

17

55

Published as a conference paper at ICLR 2020

η∗ = Λ∗µ∗ =
(

Λ0 +
N∑

n=1

Λ(n)
)
µ∗

= Λ0

(
µ0 + Σ0

N∑

n=1

∂

∂µ∗
Ew∼qθ∗ (w)

[
log p(d(n)|w)

])
+

N∑

n=1

Λ(n)µ∗

= Λ0µ0 +
N∑

n=1

(∂

∂µ∗
Ew∼qθ∗ (w)

[
log p(d(n)|w)

]
+ Λ(n)µ∗

)

= η0 +
N∑

n=1

η(n).

Monte Carlo estimation: The natural parameters Λ(n), η(n) can be estimated with Monte Carlo,
by replacing the expectation with an empirical mean. Since the parameters Λ∗ and Λ0 (and η∗, η0

respectively) are known, the total bias of the parameter estimates can be computed:

Λb = (Λ∗ − Λ0)−
N∑

n=1

Λ(n), ηb = (η∗ − η0)−
N∑

n=1

η(n).

We use this to reduce the bias for the individual terms:

Λ̂(n) = Λ(n) − 1

N
Λb, η̂(n) = η(n) − 1

N
ηb.

D ELBO IN RESIDUALS FORM

Here we show how the ELBO can be written in the form of Eq. (6). Let us define the variational
distribution in the factorised form qθ(w) = Z−1

q p(w)
∏N
n=1 r

(n)(w) (cf. Sec.3.1). We can then
write the ELBO as

L(µ,Σ;D) = Eqθ(w)

[
N∑

n=1

log p(d(n)|w) + log p(w)− log qθ(w)

]

= Eqθ(w)

[
N∑

n=1

(
log p(d(n)|w) + log r(n)(w)− log r(n)(w)

)
+ log p(w)− log qθ(w)

]

= Eqθ(w)

[
N∑

n=1

(
log p(d(n)|w)− log r(n)(w)

)
+ log

p(w)
∏N
n=1 r

(n)(w)

qθ(w)

]

= Eqθ(w)

[
N∑

n=1

(
log p(d(n)|w)− log r(n)(w)

)
+ log

Zq · qθ(w)

qθ(w)

]

= logZq +
∑

n

Eqθ(w)

[
log p(d(n)|w)− log r(n)(w)

]
.

E MEMORY UPDATE SCORE FUNCTION

In Eq. 8, the expectation involving Gaussian terms can be calculated analytically:

Eq̃θtk (w)

[
log r

(m)
tk

(w)
]

=

∫
q̃θtk (w)

(
η(n)w − 1

2
Λ(n)w2

)
dw

= η(n)µ(n) − 1

2
Λ(n)

(
(µ∗)2 + Σ∗

)

= η(n)(Λ∗)−1η∗ − 1

2
Λ(n)

(
(Λ∗)−1η∗

)2 − 1

2
Λ(n)(Λ∗)−1

The expectation involving non-Gaussian terms (in Eq. 8) has no closed-form solution. We therefore
estimate Eq̃θtk (w)

[
log p(d

(n)
tk
|w)
]

using Monte-Carlo.

18

56

Published as a conference paper at ICLR 2020

F BAYESIAN FORGETTING - RECURSIVE FORMULATION

Here we show how Bayesian forgetting can be rearranged into a recursive formulation. We first bring
this formula into a similar form as Eq. (1), extracting the most recent likelihood term:

p(w|Dt1:tK+1
) ∝ p0(w) ·

K+1∏

k=1

p(Dtk |w)(1−ε)
tK+1−tk

τ

= p0(w) ·
K∏

k=1

p(Dtk |w)(1−ε)
tK+1−tk

τ · p(DtK+1
|w).

The first two terms can be rewritten as

p0(w) ·
K∏

k=1

p(Dtk |w)(1−ε)
tK+1−tk

τ = p0(w) ·
K∏

k=1

p(Dtk |w)(1−ε)
tK+1−tK+tK−tk

τ

= p0(w) ·
K∏

k=1

p(Dtk |w)(1−ε)
tK−tk
τ ·(1−ε)

tK+1−tK
τ

= p0(w) ·
(K∏

k=1

p(Dtk |w)(1−ε)
tK−tk
τ

)(1−ε)
tK+1−tK

τ

∝ p0(w) ·
(
p(w|Dt1:tK)

p0(w)

)(1−ε)
tK+1−tK

τ

= p0(w)1−(1−ε)
tK+1−tK

τ · p(w|Dt1:tK)(1−ε)
tK+1−tK

τ

Hence, we have shown that the posterior can be expressed recursively as

p(w|Dt1:tk+1
) ∝ p0(w)1−(1−ε)∆tk+1/τ

p(w|Dt1:tk)(1−ε)∆tk+1/τ

p(Dtk+1
|w).

The parameters of the Gaussian part qθtk (w) of the posterior approximation (after applying the
forgetting operation) can be calculated easily from the above equation.

Natural parameters:

Λtk+1
= Λ0 · (1− (1− ε)

tk+1−tk
τ) + Λtk · ((1− ε)

tk+1−tk
τ)

ηtk+1
= η0 · (1− (1− ε)

tk+1−tk
τ) + ηtk · ((1− ε)

tk+1−tk
τ)

Covariance parameter:

Σtk+1
=
(

Λ0 · (1− (1− ε)
tk+1−tk

τ) + Λtk · ((1− ε)
tk+1−tk

τ)
)−1

=
(

Σ−1
0 · (1− (1− ε)

tk+1−tk
τ) + Σ−1

tk
· ((1− ε)

tk+1−tk
τ)

)−1

Location parameter:

µtk+1
= Σtk+1

· ηtk+1

= Σtk+1

(
η0 · (1− (1− ε)

tk+1−tk
τ) + ηtk · ((1− ε)

tk+1−tk
τ)

)

= Σtk+1

(
Σ−1

0 µ0 · (1− (1− ε)
tk+1−tk

τ) + Σ−1
tk
µtk · ((1− ε)

tk+1−tk
τ)

)

G PSEUDO-ALGORITHM

We provide the pseudo algorithm of GRS (Sec. 3) with Bayesian forgetting in Alg. 1. The compu-
tational complexity (at each of the K time-steps) is dominated by i) the minimisation of the KL

19

57

Published as a conference paper at ICLR 2020

divergence, ii) estimating the Gaussian factors, and iii) scoring the memory. The KL minimisation
requires Itk sequential iterations with Ntk +M data samples and Ktrain Monte Carlo samples. The
latter can both be processed in parallel on parallel hardware. The estimation of the Gaussian factors
requires Ntk +M sequential iterations with Kterm parallel Monte Carlo samples. The dominating
computation for calculating the scores is the evaluation of the likelihood for Ntk +M data samples
and Ktrain Monte Carlo samples, both of which can be processed in parallel. The highest scoring can-
didate memory is given by the top-M highest scoring data points, thus, the computational complexity
of Eq. (8) is only linear in the number of samples.

Algorithm 1 Gaussian Residual Scoring with Bayesian forgetting. The function EstimateGaussian-
Factors corresponds to Eqs. (5a), (5b) (cf. also App. C). The function ApplyForgetting corresponds
to Eq. (12). Note that ptk(w) includes the adapted likelihood of the memory and all subsequent
functions involving the memory use this adapted likelihood.

Inputs: p0(w), qθt0 (w), τ , K
for k in [0...K] do
tk = GetTimeStamp(k)
∆tk = tk − tk−1

Dtk = GetData(tk)
if k == 0 then
ptk(w) = p0(w)

else
ptk(w) = ApplyForgetting

(
p0(w), qθtk−1

,Mtk−1
,∆tk

)
{Sec. 4.1}

end if
q̃θtk (w) = argminqθ KL

[
qθ(w) || Z̃−1

tk
ptk(w) p(Dtk |w)

]
{Sec. 3.2, Sec. 4.1}

{rtk(w;dtk)}dtk∈Dtk∪Mtk−1
= EstimateGaussianFactors

(
q̃θtk (w),Dtk ,Mtk−1

)
{Sec. 3.1}

Mtk = argmaxM Stk(M; Dtk ∪ Mtk−1
) {Sec. 3.2}

if |Dtk | ≤ |Mtk | then
qθtk (w) = ptk(w)

∏
dtk 6∈Mtk

rtk(w;dtk) {Sec. 3.3}
else
qθtk (w) = q̃θtk (w) /

∏
dtk ∈Mtk

rtk(w;dtk) {Sec. 3.3}
end if

end for

H PRIOR PARAMETERS

Here we develop a heuristic to choose the initial prior p0(w). As this will not be specific to the online
or continual setting, we drop the time index in this section, denoting the prior as p(w). Furthermore,
we consider only Gaussian distributions with a diagonal covariance matrix. Assume that the data
is standardised, that is, the first two moments are zero and one. A reasonable choice for the prior
parameters is such that the first two moments of the prior-predictive distribution equals the first two
moments of the data distribution. We go one step further and constrain the pre-activations of every
neural network layer to have moments zero and one. Denote all weight matrices and weight biases
by w = {Wl}l ∪ {bl}l, and let x0 denote the input data. Let us further denote the pre-activation
(before non-linearity) of layer l and unit i as follows.

xil =
∑

j

Wi,j
l fl−1(xjl−1) + bil.

The constraints are then given as follows.

Ew∼p(w)

[
Ex0∼p(D)

[
xil
]]

= 0, Ew∼p(w)

[
Ex0∼p(D)

[
(xil)

2
]]

= 1.

The first constraint can be easily fulfilled by setting the prior mean to zero for all parameters.

µi,jl = 0.

20

58

Published as a conference paper at ICLR 2020

This follows immediately from Wl ⊥⊥ fl−1(xl−1) and the expectation of products of independent
random variables. The second moment can then be calculated as follows.

Ew∼p(w),x0∼p(D)

[
(xil)

2
]

= Ew∼p(w)

[
Ex0∼p(D)

[
(xil)

2
]]

= Ew∼p(w)

[
Varx0∼p(D)

[
xil
]

+ 0
]

= Ew∼p(w)

[
Varx0∼p(D)

[Nl−1∑

j

Wi,j
l fl−1(xjl−1) + bil

]]

= Ew∼p(w)

[
Nl−1∑

j

(
Wi,j

l

)2

·Varx0∼p(D)

[
fl−1(xjl−1)

]]

=

Nl−1∑

j

Ew∼p(w)

[(
Wi,j

l

)2

·Varx0∼p(D)

[
fl−1(xjl−1)

]]

=

Nl−1∑

j

Ew∼p(w)

[(
Wi,j

l

)2
]
· Ew∼p(w)

[
Varx0∼p(D)

[
fl−1(xjl−1)

]]

=:

Nl−1∑

j

Ew∼p(w)

[(
Wi,j

l

)2
]
· cfl−1

= cfl−1
·
Nl−1∑

j

Varw∼p(w)

[
Wi,j

l

]

= Nl−1 · cfl−1
·Varw∼p(w)

[
Wi,j

l

]
.

Here we introduced cfl−1
to denote a correction factor for the non-linearity fl−1. In case of the

linear function, we will have cfl−1
= 1. For arbitrary non-linearities, we can estimate this factor

numerically, assuming that the pre-activations are distributed according to N (0, 1).

cfl−1
= Varxjl−1∼N (0,1)

[
fl−1(xjl−1)

]

This can be done beforehand and the factors for common activation functions can be stored in a
lookup table. Finally, plugging in the constraint for the second moment in the above equation, we
obtain the following prior variance.

(
σi,jl
)2

= Varw∼p(w)

[
Wi,j

l

]
=

1

Nl−1cfl−1

(17)

I POSTERIOR INITIALISATION

It is known that a proper initialisation of standard neural networks is crucial for the optimisation
process Glorot & Yoshua Bengio (2010); He et al. (2015). In Bayesian neural networks, the matter
becomes even more complicated, since we have to deal additionally with the variance of the Monte
Carlo estimator due to re-parametrisation. Analogous to the choice of prior parameters, we seek a
posterior initialisation that yields the first two moments of zero and one. A naive attempt would be to
initialise the posterior with the prior parameters. However, the significant noise in the Monte Carlo
estimation typically leads to bad optimisation results and even numerical instabilities. We propose an
initialisation method which fulfills our constraints but allows us determine the variance of the initial
posterior with two hyperparameters α and β.

Let us denote the mean and log-scale parameters of the approximate posterior as θ = {θµ, θlog σ}.
We choose the following initialisation distributions.

q(w) = N (w; θµ, e
2θlog σ),

where
p(θµ) = N

(
θµ;µθµ , σ

2
θµ

)
,

21

59

Published as a conference paper at ICLR 2020

and
p(θlog σ) = N

(
θlog σ;µθlog σ

, σ2
θlog σ

)
.

Here and in the following, we dropped the time index for the approximate posterior, as well as the
indices l, i, and j for the model parameters θ.

We follow a similar derivation as in Sec. H. As for the prior, the mean of the initialisation distribution
will be zero for all parameters.

µθµ = 0.

For the second moment, the derivation is as follows.

Eθ∼p(θ),w∼q(w|θ),x0∼p(D)

[
(xil)

2
]

= Eθ∼p(θ)

[
Ew∼q(w|θ)

[
Ex0∼p(D)

[(
xil
)2]
]]

= Eθ∼p(θ)

[
Ew∼q(w|θ)

[
Varx0∼p(D)

[Nl−1∑

j

Wi,j
l · fl−1(xjl−1)

]
+ 0

]]

= Eθ∼p(θ)

[
Ew∼q(w|θ)

[Nl−1∑

j

(Wi,j
l)2

]
Varx0∼p(D)

[
xjl−1

]]

= Eθ∼p(θ)

[
Ew∼q(w|θ)

[Nl−1∑

j

(Wi,j
l)2

]]
· Eθ∼p(θ)

[
Ew∼q(w|θ)

[
Varx0∼p(D)

[
fl−1(xjl−1)

]]]

=

Nl−1∑

j

Eθ∼p(θ)
[
Ew∼q(w|θ)

[
(Wi,j

l)2
]]
· Eθ∼p(θ)

[
Ew∼q(w|θ)

[
Varx0∼p(D)

[
fl−1(xjl−1)

]]]

=:

Nl−1∑

j

Eθ∼p(θ)
[
θ2
µ + e2·θlog σ

]
· cfl−1

= Nl−1 · cfl−1
· Eθ∼p(θ)

[
θ2
µ + e2·θlog σ

]

= Nl−1 · cfl−1
·
(
Eθ∼p(θ)

[
θ2
µ

]
+ Eθ∼p(θ)

[
e2·θlog σ

])

= Nl−1 · cfl−1
·
(
Eθ∼p(θ)

[
θµ
]2

+ Varθ∼p(θ)
[
θµ
]

+ e2E[θlog σ]+2Var[θlog σ]

)

= Nl−1 · cfl−1
·
(
µ2
θµ + σ2

θµ + e
2µθlog σ

+2σ2
θlog σ

)

= Nl−1 · cfl−1
·
(
σ2
θµ + e

2µθlog σ
+2σ2

θlog σ

)
.

Hence, the second constraint is as follows.

1

Nl−1 · cfl−1

= σ2
θµ + e

2µθlog σ
+2σ2

θlog σ .

In contrast to Sec. H, we are now under-constrained by 2 parameters. We therefore introduce two
hyperparameters α and β. We first determine α := σθlog σ

, for which we generally choose small
values α ≈ 0 (α = 0 corresponds to initialising all posterior variances in the given layer with the
same value). The second hyperparameter β ∈ [0, 1] determines how much of the total variance is
due to the variance of the location parameter and how much variance is due to the variance of the
log-scale parameter. Inserting α and introducing β we obtain the following equations.

σ2
θµ =

β

Nl−1 · cfl−1

,

and
e2µθlog σ

+2α2

=
1− β

Nl−1 · cfl−1

.

22

60

Published as a conference paper at ICLR 2020

Solving the last equation for µθlog σ
, the result is as follows.

µθlog σ
=

1

2
log

(1− β) · e−2α2

Nl−1 · cfl−1

We choose α = 0.001 and β = 0.999 in all experiments.

A note on the relation to initialisation methods for deterministic neural networks. Our result is
similar to the initialisation methods from Glorot & Yoshua Bengio (2010) and He et al. (2015). The
difference is in the correction factor cfl−1

. Whereas Glorot & Yoshua Bengio (2010) considers linear
functions (or tanh in the linear regime), both methods base their derivation on the assumption that
every data sample x0 is processed by a different, random neural network with independent weights,
drawn from the initialisation distribution. The assumption is made explicit in (He et al., 2015) by the
use of the variance of products of independent variables rule. We note that this assumption is false
for both the initialisation of deterministic neural networks, as well as the graphical model assumption
in Bayesian neural networks. Consequently, (He et al., 2015) obtains different correction factors (in
their case for relu and leaky relu), taking into account the mean after the forward-pass through the
non-linearity.

23

61

7 On the detrimental effect of invariances in
the likelihood for variational inference

During the research conducted for Ch. 6, it became evident that the main bottleneck limiting the
Bayesian continual-learning approach is the poor approximation quality of variational BNNs on
small dataset sizes, even though Bayesian methods should perform well especially in the low-data
regime. This is problematic, because it is natural that only few data points are observed per step
in online/continual learning. This chapter explains a key aspect of this problem: invariances in
the likelihood function—which occur in over-parametrised models—have a detrimental effect on
variational-Bayesian inference. For instance, the function computed by NNs is invariant w.r.t.
permutations of hidden nodes/neurons in each layer, corresponding to the simultaneous permu-
tation of weight matrices from preceding and subsequent layers. Furthermore, the parameter
space of NNs has subspaces that exhibit translation invariance. This theoretical work shows
that invariances lead to an additional and quantifiable (though intractable) gap in the ELBO
objective, compared to a hypothetical approximation that accounts for the known invariances.
The detrimental effect of translation invariance on the mean-field Gaussian approximation is
shown for over-parametrised Bayesian linear regression models: as the over-parametrisation
increases, the optimal (in terms of the ELBO objective) mean-field posterior approximation
collapses to the prior. However, if the objective is corrected by the invariance gap, the optimal
solution is indeed the true posterior. While this work does not propose a solution to this
long-standing problem, it explains why variational Bayes tends to collapse, and provides a
framework for future work to develop approximations that correct for the detrimental invariances.

Authors Richard Kurle
Ralf Herbrich
Tim Januschowski
Yuyang Wang
Jan Gasthaus

Conference Advances in Neural Information
Processing Systems, NeurIPS 2022

Contribution Problem definition significantly contributed
Literature survey significantly contributed
Algorithm development contributed
Method implementation significantly contributed
Experimental evaluation significantly contributed
Preparation of the manuscript significantly contributed

62

On the detrimental effect of invariances in the
likelihood for variational inference

Richard Kurle ∗

AWS AI Labs
kurler@amazon.com

Ralf Herbrich
Hasso-Plattner Institut
ralf.herbrich@hpi.de

Tim Januschowski †

Zalando SE
tim.januschowski@zalando.de

Yuyang Wang
AWS AI Labs

yuyawang@amazon.com

Jan Gasthaus
AWS AI Labs

gasthaus@amazon.com

Abstract

Variational Bayesian posterior inference often requires simplifying approximations
such as mean-field parametrisation to ensure tractability. However, prior work has
associated the variational mean-field approximation for Bayesian neural networks
with underfitting in the case of small datasets or large model sizes. In this work,
we show that invariances in the likelihood function of over-parametrised models
contribute to this phenomenon because these invariances complicate the structure
of the posterior by introducing discrete and/or continuous modes which cannot be
well approximated by Gaussian mean-field distributions. In particular, we show that
the mean-field approximation has an additional gap in the evidence lower bound
compared to a purpose-built posterior that takes into account the known invariances.
Importantly, this invariance gap is not constant; it vanishes as the approximation
reverts to the prior. We proceed by first considering translation invariances in
a linear model with a single data point in detail. We show that, while the true
posterior can be constructed from a mean-field parametrisation, this is achieved
only if the objective function takes into account the invariance gap. Then, we
transfer our analysis of the linear model to neural networks. Our analysis provides
a framework for future work to explore solutions to the invariance problem.

1 Introduction

Bayesian neural networks (BNNs) have several appealing advantages compared to deterministic
neural networks (NN) such as improving generalization [36], capturing epistemic uncertainty [16],
and providing a framework for continual learning methods [17, 22]. Unfortunately, reaping these
theoretical benefits has so far been impeded [35]. In particular, several practical issues with variational
Bayesian inference methods—which are the de-facto standard technique for scaling inference in
BNNs to large datasets [14, 1]—have been identified to be partially responsible for a performance gap
compared to deterministic NNs[15]. The most common variational approximation of the posterior is a
product of independent Normal distributions, commonly referred to as the mean-field approximation.
It has been observed that mean-field variational BNNs (VBNNs) suffer from severe underfitting for
large models and small dataset sizes [12]. Recent work [4] showed that under certain assumptions
such as an odd Lipschitz activation function and a finite dataset with bounded likelihood, the optimal
mean-field approximation collapses to the prior as the NN width increases, ignoring the data.

∗Correspondence to kurler@amazon.com.
†Work done while at AWS AI Labs.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

63

The goal of this work is to shed light on why the mean-field variational approximation collapses
and to provide a new angle for future works to address this shortcoming. To this end, we study
invariances in the likelihood function of overparametrised models and their detrimental effect on
variational inference. For instance, it is well known that NNs exhibit several invariances with respect
to their parameters, including node permutation invariance [18], sign-flip invariance (in the case
of odd activation functions) [27, 2], scaling invariance (in the case of piece-wise linear activations)
[24], and as we will show in Sec. 5, the parameter space of BNNs additionally has subspaces with
translation invariance.

Invariance in the likelihood function does not necessarily pose a challenge if maximum likelihood
point estimation through stochastic gradient descent is used, because convergence to any of the
equivalent optima (resulting from the invariance) suffices for prediction. However, these invariances
are detrimental to the variational Bayesian approach. As a first step to show this, we isolate the impact
of the invariances in Sec. 3. To this end, we construct both a mean-field as well as an invariance-
abiding approximation which explicitly models the invariances by integrating over all transformations
that leave the likelihood invariant. Notably, both aforementioned posterior approximations are
constructed from the same (mean-field) likelihood approximation. We then prove that, under the
conditions outlined in Sec. 3, the mean-field approximation induces the same posterior predictive
distribution as the invariance-abiding approximation. However, we also prove that the ELBO objective
corresponding to these two approximations differs by the KL divergence between both posterior
approximations; we refer to this difference as invariance gap. Importantly, the gap vanishes if both
distributions are identical, which is the case if the mean-field approximation reverts to the prior.

We then demonstrate the detrimental effect of invariances in the likelihood function of an
overparametrised Bayesian linear regression model in Sec. 4. This model is purposely selected
as the canonical model exhibiting (only) translation invariance. We provide a detailed analysis of
this model, including a tractable solution for the invariance-abiding approximation. It turns out that
the optimal parameters w.r.t. the ELBO objective with the invariance-abiding distribution result in
the true posterior. In contrast, posterior approximations with parameters that are optimal w.r.t. the
mean-field ELBO revert to the prior as the number of dimensions increases.

Finally, we transfer our analysis of the linear model to VBNNs in Sec. 5, showing that subspaces
in BNNs exist that exhibit translation invariance. Combined with a previous analysis of the node
permutation invariance (cf. Kurle et al. [18] or App. E of the supplementary material), this provides
the basis for future work to approximate the (generally intractable) invariance gap and thereby
optimise for a tighter and favorable ELBO objective. We start in Sec. 2 by introducing the basic
concepts of VBNNs and recent results on which we build our contribution.

2 Background

2.1 Variational Bayesian Neural Networks

Neural network functional model. Deep NNs are layered models that progressively transform
their inputs in each layer. More formally, an L–layer NN computes algebraically

f(x) = hL
(
wT

L,1zL−1

)
, z1,i = h1

(
wT

1,ix
)
, zl,i = hl

(
wT

l,izl−1

)
,

where the hl : R→ R are monotonic transfer functions that introduce non-linearities. Such a network
has n1 + n2 + · · ·+ nL many nodes zl,i, where i indexes the layer-wise vectors zl. These nodes are
each a weighted linear combination of either the input vector x (first hidden layer) or the value of the
hidden units zl (all other hidden layers and the output f(x)). We denote all learnable parameters of
the model by the stacked weight vectors of each layer and node, w = [wT

1,1, . . . ,w
T
L,nL

]T.

Variational Bayesian treatment. If the weights and biases w are treated as random variables
with a prior distribution p(w), then the posterior p(w | D)—induced by the dataset D through the
likelihood function ℓ(w;D) := p(D |w) that is defined via f(x)—is referred to as a Bayesian
neural network (BNN). The variational Bayesian method approximates the posterior by a distribution
qθ(w) ≈ p(w | D) with variational parameters θ, casting inference as an optimization problem

q∗θ(w) = argmin
qθ ∈Q

KL [qθ || p(· | D)] , (1)

2

64

where KL [qθ || p(· | D)] := Ew∼qθ [ln qθ(w)− ln p(w|D)] andQ is a family of distributions over w.
The optimization of (1) is achieved by maximising a lower bound to the (log) model evidence ln p(D),

LELBO (qθ,D) = ln p(D)−KL [qθ || p(· | D)] = Ew∼qθ

[
ln
ℓ(w;D) p(w)

qθ(w)

]

= ELL (qθ, D)−KL [qθ || p] ,
(2)

where ELL (qθ, D) := Ew∼qθ [ln ℓ(w;D)] is the expected log-likelihood.
Definition 1 (Mean-field variational BNN). A mean-field variational BNN (VBNN) is the minimizer
of (1) where Q is the family of Gaussians with diagonal covariance matrix.

2.2 Data-related bound on the KL divergence

The term KL [qθ || p] in (2) admits a data-dependent upper bound that naturally occurs as a
consequence of the finite information provided by a finite dataset in the presence of noise. This result
has been shown in [4] and we recall the result for a Gaussian likelihood with homogeneous noise (for
other likelihood functions, we refer to App. F in [4]).

Assume a VBNN with Gaussian observation noise defined through y = fw(x)+ϵ, with ϵ ∼ N (0, σ2
y),

an isotropic Gaussian prior p(w) = N (w;0, I), and a mean-field variational approximation qθ(w) =
N (w;m,Diag(v)). Define the NN output variance σ2

L

(
x(n)

)
:= Vw∼p

[
f(x(n); w)

]
for some

fixed input x(n), where L indicates the last layer. Then,

KL [qθ || p] ≤ ELL (q∗,D)− ELL (p,D) =
N∑

n=1

σ2
L

(
x(n)

)
+
(
y(n)

)2

2σ2
y

, (3)

where q∗ is a hypothetical approximation that predicts the data perfectly up to the noise variance σ2
y

(see App. F for details). Prior work [4] has used the data-related bound to prove that the predictive
distribution of mean-field BNNs converges to the prior predictive distribution if the network width
is large and the activation function is odd, ultimately resulting in posterior collapse to the prior. In
contrast, we address the question why the mean-field approximation cannot approximate the posterior
by relating this data-related bound to invariances in neural network functions in the following section.

3 Invariance-abiding variational approximation

We develop a framework that enables modelling the invariances in the likelihood and understanding
their impact on the ELBO objective. To achieve this, we approximate the likelihood by a Gaussian
function with variational parameters and marginalise over all transformations to which the true
likelihood is invariant. By taking the product with the prior, we construct an invariance-abiding
posterior approximation qmix which can be related to a mean-field approximation q0 that does not
model invariances. We then describe conditions under which both approximations yield an identical
posterior predictive, while the KL regularisation term of q0 is lower bounded by the KL of qmix.

Variational likelihood and posterior approximations. Non-identifiability implies that the
posterior does not concentrate on a single set of parameters irrespective of the dataset size, because
the same likelihood is assigned to different parameter values [11]. We model this invariance through
transformations t(·, r) to which the likelihood ℓ(w;D) = p(D |w) is invariant via variables r:

∀r ∼ p(r) : ℓ(t(w, r);D)) = ℓ(w;D). (4)

From (4) it follows that the likelihood is also invariant w.r.t. the marginalisation

ℓ (w;D) = Er∼p [ℓ (t (w, r) ;D)] .
We assume that each of the equivalent parametrisations w′ = t(w, r) of the likelihood has the same
probability a priori. For discontinuous transformations such as node permutations (see App. E), p(r)
is a uniform distribution over discrete variables indexing these transformations. For the continuous
translation invariance (see Sec. 4), we model the uniform distribution as a Gaussian with infinite
variance. It is conceivable that the likelihood can be constructed by marginalising over these
transformations of a simpler function ℓ0(w;D) such that ℓ(w;D) = Er∼p [ℓ0(t(w, r);D)]. For

3

65

instance, permutation invariance induces a factorial number of discontinuous modes that are each
equivalent (cf. [18], App. E); and as we show in Sec. 4, the full covariance Gaussian likelihood and
posterior of an over-parametrised Bayesian linear regression model can be constructed from a product
of independent Gaussians. Curiously, it may be sufficient to approximate ℓ0 while taking into account
the known invariances. To this end, we define a Gaussian variational likelihood approximation
g0(w;θ) ≈ ℓ0(w,D), with variational parameters θ. From this single mode approximation, we
model an invariance-abiding likelihood approximation using the same parametrisation through

gmix(w;θ) := Er∼p [g0(t(w, r);θ)] ≈ Er∼p [ℓ0(t(w, r),D)] = ℓ(w;D). (5)
We consider mean-field Gaussians for the prior p(w) and likelihood approximation g0(w;θ), where
θ = {m,λ} are means and variances of g0. We then define a mean-field posterior as the product

q0(w;θ) := Z−1
0 p(w) · g0(w;θ), Z0 =

∫
p(w) · g0(w;θ)dw. (6a)

Similarly, we define an invariance-abiding posterior as the product of prior and invariant likelihood:

qmix(w;θ) := Z−1
mix p(w) · gmix(w;θ), Zmix =

∫
p(w) · gmix(w;θ)dw, (6b)

where Z0 and Zmix are normalisation constants. While q0(w;θ) is a mean-field approximation, the
invariance-abiding approximation qmix(w;θ) is a mixture with infinite continuous or finite discrete
modes depending on the type of invariance. We will describe continuous translation invariance in
Sec. 4; for the discrete node permutation invariance, see App. E of the supplementary material.

Posterior predictive equivalence. Next, we discuss conditions under which we can construct
approximations qmix(w;θ) and q0(w;θ) that yield the same predictive distribution. We first write
the density qmix as an expectation of product densities,

qmix(w;θ) = Z−1
mix p(w) ·

∫
p(r) g0(t(w, r);θ)dr =

∫
p(r)

p(w) · g0(t(w, r);θ)
Zmix

dr.

Then, we assume that there exists a mapping r′ = φ(r) such that
∀r ∼ p(r) : p(w) · g0(t(w, r);θ) = p(t(w, φ(r))) · g0(t(w, φ(r));θ). (7)

The condition in (7) allows us to exploit the invariance property of the likelihood (approximation)
also for each product density q0(t(w, φ(r));θ) = p(t(w, φ(r))) · g0(t(w, φ(r));θ), because then

qmix(w;θ) =

∫
Z0(r)

Zmix
p(r) · q0(t(w, φ(r));θ)dr,

where the normalisation constants are Z0(r) =
∫
p(w) · g0(t(w, φ(r));θ)dw, and Zmix is defined

in (6b). We show that the condition in (7) holds for translation and permutation invariance in App. C.

The second condition is that all invariance transformations t(·, r) must be volume-preserving, i.e.

∀r ∼ p(r) :
∣∣∣∣det

∂t(w, r)

∂w

∣∣∣∣
−1

= 1. (8)

Although (7) and (8) are fairly restricting, common invariances such as translation and permutation
invariance fulfil these conditions for Gaussian priors and likelihood approximations (see App. C).
With (7) and (8), we can show the posterior predictive equivalence (see Lemma 1 in App. C)

Ew∼qmix
[ln p(D |w)] = Ew∼q0 [ln p(D |w)] . (9)

Invariance gap. If the conditions in (7) and (8) are met, we also show (see Lemma 2 in App. C)
LELBO (q0,D)− LELBO (qmix,D) = KL [q0 || p]−KL [qmix || p] = KL [q0 || qmix] . (10)

Interestingly, the gap between the two respective ELBO objectives is given exactly by the relative
entropy between the mean-field and invariance-abiding approximation; we therefore refer to it as the
invariance gap. We make the following observation about the detrimental effect of the invariances:
when maximising the standard ELBOLELBO (q0,D) instead of the tighter objectiveLELBO (qmix,D)
w.r.t. the parameters of the variational likelihood approximation g0(w;θ) (used to construct both
q0 and qmix), we see that the former objective favors solutions where q0 and qmix coincide. This
suboptimal solution is obtained if the mean-field posterior q0(w) and thus also the invariance-abiding
posterior qmix(w) revert to the prior. This is the case if g0(w) is uniform, because then gmix(w) is
uniform as well, and because both posteriors are constructed as the product of prior and likelihood
approximation (cf. (6a)).

4

66

Implication of data-related bound. Since KL [q0 || p] is upper bounded by the best- and worst-case
ELL as described in Sec. 2.2, the invariance gap is also bounded (using (10) and (3)):

KL [q0 || qmix] ≤ KL [q0 || p] ≤ ELL (q∗,D)− ELL (p,D) . (11)

Consequently, this bound puts a constraint on the achievable solutions to the maximisation of the
ELBO objective w.r.t. the variational parameters of the mean-field approximation q0(w;θ). As
discussed above, one specific parametrisation for which the invariance gap vanishes is the mean-
field posterior collapse, q0(w;θ) ≈ p(w). However, to show that the invariance gap not only
admits posterior collapse as a potential parametrisation but indeed incentivises it, we next tackle the
question how the invariance gap behaves for non-collapsed approximations. One particularly relevant
variational parametrisation is the optimal solution w.r.t. the ELBO objective with the invariance-
abiding approximation. In order to tackle this question, we now consider a simple model for which
the relevant distributions and the invariance gap can be computed exactly.

4 Translation invariance in linear models

We study an over-parametrised Bayesian linear regression model as the canonical model that exhibits
translation invariance. The model serves as a useful tool to understand the detrimental effect of
translation invariance since all interesting quantities can be computed analytically, incl. the mean-field
and invariance-abiding distribution defined in (6) and the invariance gap from (10). We show how to
lift results from this canonical model to the more general case of NNs in Sec. 5.

Likelihood model. Consider a linear model with K latent variables w = [w1, . . . , wK]
T and

assume that we have N observations of variables y given dependent inputs x. To simplify the setting,
we will assume that x = 1 (see App. D for the more general case). We further assume that the
observation depends only on the inner product with the inputs and additive Gaussian noise. That is,
y = 1

K1Tw + ϵ, ϵ ∼ N
(
0, σ2

y

)
. Note that any change in w which leaves the sum of the elements

unaffected does not change the likelihood. In general, we can model this translation invariance using
a K − 1 dimensional vector ∆ ∈ RK−1 and observing that

1Tw = 1T (w+B∆) , B :=

[
I
−1T

]
, (12)

since 1TB∆ = 0. This over-parametrised model exhibits translation invariance t(w,∆) = w−B∆.

Prior. We assume a Gaussian prior p (w) = N (w;µ,Σ) with diagonal covariance Σ =
Diag

(
σ2
)
, where we consider σ2 = K · σ2

0 · 1 proportional to the number of dimensions K,
such that the predictive variance V

[
1
K

∑
k wk + ϵ

]
is constant w.r.t. K. Another way to view this is

to model a prior over parameters that induces the same prior over functions for different K.

Posterior. The posterior of this Gaussian linear model can be computed as (see App. D.3)

p(w |y) = N
(
w;m∗

p,V
∗
p

)
, V∗

p =

(
N

K2σ2
y

11T +Σ−1

)−1

, m∗
p = V∗

p

∑
i yi

Kσ2
y

1 . (13)

As can be seen, the resulting posterior has full covariance with a diagonal plus rank-1 matrix. We will
now show that we can construct this posterior from the prior and a mean-field Gaussian approximation
of the likelihood by marginalising over all translations ∆ ∼ p(∆) to which the likelihood is invariant.

4.1 Mean-field parametrisation of the likelihood function

Next, we construct the mean-field and invariance-abiding posterior approximations defined in (6)
from the prior defined above and the mean-field likelihood approximation with locations m and
variances λ. We model that the likelihood is translation invariant by computing the marginal from (5)
and considering p(∆) = N

(
∆;0, β2I

)
with β →∞ as the uniform distribution over all translations:

gmix (w;θ) =

∫
g0 (t(w,∆);θ) · p (∆) d∆

= lim
β→∞

∫
N (w;m+B∆, Diag (λ)) · N

(
∆;0, β2I

)
d∆ =: N (w;mmix,Vmix) .

5

67

Writing the uniform distribution as the limiting case of a Gaussian with infinite variance allows us
to compute the integral analytically. As shown in App. D, the resulting function is a multivariate
Gaussian with a degenerate rank-1 covariance matrix and the same location parameter as g0(w):

mmix = m, V−1
mix =

1

1Tλ
11T . (14)

However, the invariance-abiding posterior is non-degenerate, and it can be computed efficiently as

qmix (w; θ) = N
(
w; µ+

1T (m− µ)

1T (λ+ σ2)
σ2, Diag

(
σ2
)
− 1

1T (λ+ σ2)
· σ2

(
σ2
)T
)
. (15)

As can be seen, this covariance matrix is not diagonal; it has an additive rank-1 term that vanishes as
λ→∞. Interestingly, the location parameter of qmix is translated from the prior location µ along the
direction of the prior variance vector σ2. This is because gmix is uniform along theK−1 dimensions
hyper-plane determined by its normal vector 1. Taking the Gaussian product then translates the
location in the direction Diag(σ2)1 = σ2. Note also that the invariance-abiding posterior can be
written in the same form as the true posterior in (13) (see App. D.3). The optimal invariance-abiding
posterior is thus the true posterior. We visualise the two respective posterior approximations and the
corresponding likelihood in Fig. 3 of App. D with two different parametrisations (cf. Sec. 4.3).

4.2 Invariance gap

To quantify the detrimental effect of the translation invariance in the considered linear model we now
compute the invariance gap in (11). Note again that we assume a scaled standard normal prior with
variance σ2 = Kσ2

0 · 1. We simplify the form of the KL divergence by assuming that all variances
and means take the same value in the likelihood (and thus also in the posterior) approximation, i.e.

∀k : λk = λ̂, mk = m̂, σk = σ̂, µk = µ̂.

This choice is motivated by the fact that the posterior approximation is a function of the sum 1Tλ
only (cf. (15)), and, hence, it makes no difference for qmix. However, since the prior variance is
proportional to 1, the Gaussian likelihood resulting in the highest ELBO for the approximation q0
also has a variance vector proportional to 1. Using this assumption, the invariance gap is

KL [q0 || qmix] =
K − 1

2

[
ln

(
σ̂2 + λ̂

λ̂

)
+

λ̂

σ̂2 + λ̂
− 1

]
. (16)

This is a convex function in ϕ = σ̂2+λ̂
λ̂

with a minimum at ϕ = 1; it is minimised as λ̂→∞. It is
however not evident whether the gap has a large magnitude compared to the rest of the regularisation
term and over-regularises in practice. In the next section, we therefore analyse this term at the optima
for the mean-field and the invariance-abiding approximations defined in (17). The corresponding
invariance gaps are visualised in Fig. 1 where it can be seen that the invariance gap grows linearly
when using the optimal parameters of the invariance-abiding distribution and the unattainable data-
related bound is reached quickly, thus preventing this optimum if (17b) is optimised instead of (17a).

4.3 Optimal mean-field and invariance-abiding parametrisations

To better understand the detrimental effect of the invariance gap, we now analyse the ELL and KL
terms of the ELBO objective for the mean-field and invariance-abiding variational approximations,
respectively. We compare these terms for both distributions with the parameters optimized for both
posterior distributions, giving 2 × 2 combinations. We denote the optimal parameters w.r.t. the
invariance-abiding approximation and the mean-field approximation, respectively, as

θ∗
mix = argmax

θ
LELBO (qmix (· ; θ) ,D) , (17a)

θ∗
0 = argmax

θ
LELBO (q0 (· ; θ) ,D) . (17b)

Perhaps the simplest way compute these optimal parameters is to notice that qmix in (15) can be
written in the same form as the true posterior and then simply read out the optimal parameters. This
is shown in App. D.3; the resulting optimal variational parameters are

g0(w ; θ∗
mix) = N (w;m∗

mix,Diag (λ∗
mix)) , m∗

mix =
1

N

N∑

n=1

y(n) · 1, λ∗
mix =

Kσ2
y

N
· 1. (18)

6

68

0 200 400 600 800 1000
dimensions

0

25

50

75

100

125

150

175

200

in
va

ria
nc

e-
ga

p

opt. invariance-abiding param.
opt. mean-field param.
data-related bound on KL

(a) N = 10 observations.

0 200 400 600 800 1000
dimensions

0

250

500

750

1000

1250

1500

1750

2000

in
va

ria
nc

e-
ga

p

opt. invariance-abiding param.
opt. mean-field param.
data-related bound on KL

(b) N = 100 observations.

Figure 1: Invariance gap evaluated at different optima (cf. (17)), i.e. KL [q0(·; θ∗
mix) || qmix(·; θ∗

mix)]
and KL [q0(·; θ∗

0) || qmix(·; θ∗
0)]. Prior variances are σ2 = K · 1, where K are the dimensions; the

noise variance is σ2
y = (2πe)

−1; all observations y = 1 and x = 1 are identical. As K increases, the
invariance gap vanishes in case of the optimal parameters θ∗

0. In contrast, the gap for θ∗
mix, which

induces the true posterior predictive, grows linearly. As the data-related bound (cf. Sec. 2.2) can not
be exceeded by the optimal parameters, θ∗

0 can not coincide with the optimal θ∗
mix.

The optimal parameters for the mean-field posterior can also be computed analytically, since the
Gaussian mean-field distribution that minimises the KL divergence to the multivariate Gaussian true
posterior is known [32]. The resulting optimal parameters of the mean-field likelihood are

g0(w ; θ∗
0) = N (w;m∗

0,Diag (λ∗
0)) , m∗

0 = m∗
mix, λ∗

0 =
K2σ2

y

N
1. (19)

As can be seen, the two respective optimal parameters differ by the factorK in the likelihood variance.
We then construct the two respective posterior approximations q0 and qmix with these two optimal
parameters and compare the 2× 2 combinations in Fig. 2, where we visualise the ELBO terms.

Note again that we model prior variances σ2 = Kσ2
0 · 1 such that prior and posterior over functions

are identical for any K. Due to this choice and since qmix(w;θ∗
mix) approximates the true posterior

exactly, it does not suffer from over-parametrisation. This can be seen by the loss terms in Fig. 2 being
constant in K. In contrast, since λ∗

0 depends quadratically on K and σ2 only linearly, qmix(w;θ∗
0)

collapses to the prior as K →∞. This can be seen e.g. by the shrinking KL regularisation (Fig. 2a)
and ELL (in 2b) term. As a consequence, and in line with Coker et al. [4], the posterior predictive
variance of the optimal mean-field approximation reverts to the prior predictive variance (Fig. 2d).

We have shown that—in the simplified setting of a linear model with dependent observations—the
consequence of not handling translation invariance is indeed posterior collapse as K →∞, while
modelling the invariance coincides with the true posterior. An important observation and key takeaway
is that, while we need to optimise for (17a), the mean-field posterior approximation q0(w;θ∗

mix) is
sufficient for prediction. Indeed, for the linear model, we could compute the invariance gap exactly
and thereby correct the ELBO objective for the invariances of this model. For more complex non-
linear models such as BNNs, this section may serve as a direction for approximating the invariance
gap. To this end, the next section describes the layer-wise translation invariance exhibited by BNNs.

5 Translation invariance in Bayesian neural networks

Let us now go back to the general NN model in Sec. 2.1. In order to describe the set of all invariances,
note that for each node zl,j in layer l (or the output node y), there is a subspace that keeps the value
zl,j (or y) invariant when using the translation-invariance model in (12), because the value itself only
depends on the actual activation zl−1 (or the input x).

More formally, the following equations model all translation invariances of a NN at a data point x:

∀∆L,1 : f(x) = hL
(
wT

L,1zL−1

)
= hL

((
wL,1 +BzL−1

∆L,1

)T
zL−1

)
, (20)

∀j ∈ {1, . . . , nl},∆l,j : zl,j = hl
(
wT

l,jzl−1

)
hl

((
wl,j +Bzl−1

∆l,j

)T
zl−1

)
, (21)

∀j ∈ {1, . . . , n1},∆1,j : z1,j = h1
(
wT

1,jx
)
= h1

(
(w1,j +Bx∆1,j)

T
x
)
, (22)

7

69

0 200 400 600 800 1000
dimensions

0

20

40

60

80

100

KL

qmix; opt. invariance-abiding param.
qmix; opt. mean-field param.
q0; opt. mean-field param.
q0; opt. invariance-abiding param

(a) KL [q || p].

0 200 400 600 800 1000
dimensions

175

150

125

100

75

50

25

0

EL
L

qmix; opt. invariance-abiding param.
qmix; opt. mean-field param.
q0; opt. mean-field param.
q0; opt. invariance-abiding param
p

(b) Eq [ln p(D |w)].

0 200 400 600 800 1000
dimensions

500

400

300

200

100

0

EL
BO

qmix; opt. invariance-abiding param.
qmix; opt. mean-field param.
q0; opt. mean-field param.
q0; opt. invariance-abiding param
p

(c) LELBO(q, D) = Eq [ln p(D |w)]−KL [q || p].

0 200 400 600 800 1000
dimensions

0.2

0.4

0.6

0.8

1.0

pr
ed

ict
iv

e
va

ria
nc

e

qmix; opt. invariance-abiding param.
qmix; opt. mean-field param.
q0; opt. mean-field param.
q0; opt. invariance-abiding param
p

(d) Vw∼q

[
1
K
1Tw

]
+ σ2

y .

Figure 2: ELBO loss terms and predictive variance for different posterior approximations. Lines/dots
indicate the invariance-abiding/mean-field posterior, respectively. Red/blue indicates the optimal
invariance-abiding/mean-field parameters (cf. (17)). Prior variance is σ2 = K ·1, and σ2

y = 1/ (2πe);
we used N = 10 identical observations with value y = 1 and inputs x = 1. Notably, both posterior
approximations yield the same predictive distribution as can be seen by the ELL (b) and predictive
variance (d). The variance of the mean-field approximation reverts to the prior variance as K →∞.

where the layer index l ranges from 2, . . . , L− 1 and Bz is given by

Bz :=

[
I

− z1
zk
· · · − zk−1

zk

]
.

In order to efficiently compute the invariance-abiding likelihood gmix, note that it also decomposes
over the NN layers and the associated parameters as follows: For the n1 nodes in the first layer we have

qmix(w1,j) = Ex

[
N

(
w1,j ;µ+

xT (m− µ)

xT (V +Σ)x
(Σx) ,Σ− 1

xT (V +Σ)x
(Σx) (Σx)T

)]
, (23)

P (z1,j) = Ex

[
Ew∼qmix(w1,j)

[
h1

(
wTx

)]]
, (24)

where the outer expectation is taken over x ∼ p(D) and p(D) is the empirical distribution over the
training setD, and where m, V, µ and Σ are constrained to the parts of the overall weight vector that
correspond to w1,j . Now, since the invariance-abiding mechanism for nodes in layer l only depends
on the value zl−1 of the hidden units in layer n− 1 (see (20) and (21)), we have

qmix(wl,j) = Ez

[
N

(
wl,j ;µ+

zT (m− µ)

zT (V +Σ) z
(Σz) ,Σ− 1

zT (V +Σ) z
(Σz) (Σz)T

)]
, (25)

P (zl,j) = Ez

[
Ew∼qmix(wl,j)

[
hl

(
wTzl−1

)]]
, (26)

where again m, V, µ and Σ are constrained to the parts of the overall weight vector that correspond
to wl,j and the expectation over z is taken with respect to z ∼ P (zl−1).

Thus, the invariance-abiding approximation could e.g. be computed with a layer-by-layer iterative
optimisation: First, given data x ∼ p(D) and prior p(w), use (23) and point estimates for all weight
vectors in later layers to optimise the mean m and diagonal covariance V of the weights in the first
layer, i.e., {w1,j |j = 1, . . . , n1}. Then, we can use (24) to generate P samples z1,n of the activations
of the first layer under the (now fitted) optimal qmix({w1,j}). Next, for each of these samples z1,n,
we can use (25) and point estimates for all weight vectors in later layers to optimise the mean m and
diagonal covariance V of the weights in the second layer and average them for the optimal qmix of
the weights in the second layer. Finally, we can use (26) to generate samples z2,i for the second layer.

8

70

This process is repeated until the last layer, and iterated until qmix(w) converges. The complexity of
this procedure is no larger than optimising the weight matrices of a single layer, because all previous
layers are fully characterised by the distribution of the latent activations zl of the hidden layers.

6 Related work

Poor empirical performance of VBNNs has been reported in several previous works, e.g., [35, 15, 31].
For instance, it has been shown that single-layer mean-field VBNNs with ReLU activations can
not have large predictive uncertainty between regions of low uncertainty [9]. In contrast, Farquhar
et al. [7] argue that mean-field approximations are expressive enough for deep BNNs; they prove
a universality result that the predictive distribution of mean-field approximations of BNNs with at
least 2 layers of hidden units can approximate any true posterior distribution over function values
arbitrarily closely. This result seems in conflict with our work and [4], who show that the predictive
distribution of mean-field VBNNs reverts to the prior predictive distribution as the network width
increases. The discrepancy between these two results is resolved by noting that Farquhar et al. [7]
only shows that the expressive power of the model is large enough but not that the approximate
inference algorithms will converge to this solution. Our work sheds light on why the mean-field
approximation fails to approximate expressive posteriors via the invariance gap in the ELBO. Our
framework to model the invariances is similar to and extends previous preliminary works [18, 21].

Other attempts have proposed to approximate the posterior predictive directly, thereby circumventing
the non-identifiability issue [26, 19, 34]. While these approaches have shown promising empirical
performance, estimating the KL regularisation term in function space is more complicated and can
even be ill-defined due to regions of zero prior probability mass [3]. In a similar vein, previous work
also proposed to map the BNN prior to a Gaussian process (functional) prior [8, 30].

Surprisingly, restricting the parametrisation of the variational posterior results in competitive or
even better performance [28, 20, 29, 6]. For example, Dusenberry et al. [6] proposes a variational
approximation only for rank-1 factors, resulting in inference of a lower-dimensional subspace. The
outer product of these low-rank factors perturb a weight matrix that is treated deterministically
through maximum a posteriori (MAP) estimation. This approach avoids the invariance problem
associated with variational Bayesian inference since the MAP estimate is not impeded by this problem
and the subspace of the variational weights do not possess the same invariances.

More broadly, (non-)identifiability of parameters and latent variables in probabilistic models is a
widely-studied topic from frequentist [25] and Bayesian perspectives [5, 23, 10]. Recently, Wang et al.
[33] attributed posterior collapse in variational auto-encoders to non-identifiability of latent variables.

7 Conclusion

We have associated the posterior collapse phenomenon of mean-field VBNNs with invariances in
the likelihood function, in particular translation invariance. While the invariance does not affect
the predictive distribution, the approximations of the posterior—which abide and do not abide the
invariance—differ in the KL regularisation term and consequently in the tightness of the ELBO
objective. We proved that the objectives of the two approximations differ by the relative entropy (KL)
between the standard mean-field approximation and the invariance-abiding distribution. We related
this to a data-related bound on the KL regularisation, which prevents fits for which the gap is large.

We studied over-parametrised Bayesian linear regression as the canonical model that exhibits
translation invariance and for which the relevant terms can be computed exactly. A detailed analysis
of this model confirms our hypothesis that the invariance leads to a significant additional gap in the
ELBO objective compared to approximations that model the invariance. It is this very gap which
prevents mean-field approximation to achieve the same fit as an invariance-abiding approximation
and instead leads to a collapse of the posterior variances to the prior variance.

While we can compute the invariance gap for the over-parametrised linear model, we have not yet
identified a computationally efficient procedure for layered models or for other invariances. However,
our work provides the mathematical tools to address over-regularisation due to invariances. Future
work will focus on approximations of the invariance gap in order to correct the ELBO objective for
translation and permutation invariances in general neural network functions.

9

71

References
[1] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural

networks. In Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, page 1613–1622. JMLR.org, 2015.

[2] J. Brea, B. Simsek, B. Illing, and W. Gerstner. Weight-space symmetry in deep networks gives
rise to permutation saddles, connected by equal-loss valleys across the loss landscape. ArXiv,
abs/1907.02911, 2019.

[3] D. R. Burt, S. W. Ober, A. Garriga-Alonso, and M. van der Wilk. Understanding variational
inference in function-space. In Third Symposium on Advances in Approximate Bayesian
Inference, 2021.

[4] B. Coker, W. P. Bruinsma, D. R. Burt, W. Pan, and F. Doshi-Velez. Wide mean-field variational
Bayesian neural networks ignore the data. In Proceedings of the 25th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2022.

[5] A. P. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical
Society. Series B (Methodological), 41(1):1–31, 1979. ISSN 00359246.

[6] M. W. Dusenberry, G. Jerfel, Y. Wen, Y.-A. Ma, J. Snoek, K. Heller, B. Lakshminarayanan, and
D. Tran. Efficient and scalable Bayesian neural nets with rank-1 factors. In Proceedings of the
37th International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

[7] S. Farquhar, L. Smith, and Y. Gal. Liberty or depth: Deep Bayesian neural nets do not need
complex weight posterior approximations. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
4346–4357. Curran Associates, Inc., 2020.

[8] D. Flam-Shepherd. Mapping gaussian process priors to Bayesian neural networks. In Bayesian
Deep Learning NeurIPS workshop, 2017.

[9] A. Foong, D. Burt, Y. Li, and R. Turner. On the expressiveness of approximate inference in
Bayesian neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 15897–15908.
Curran Associates, Inc., 2020.

[10] A. E. Gelfand and S. K. Sahu. Identifiability, improper priors, and gibbs sampling for generalized
linear models. Journal of the American Statistical Association, 94(445):247–253, 1999.

[11] A. Gelman, D. Simpson, and M. Betancourt. The prior can often only be understood in the
context of the likelihood. Entropy, 19(10), 2017. ISSN 1099-4300. doi: 10.3390/e19100555.

[12] S. Ghosh, J. Yao, and F. Doshi-Velez. Structured variational learning of Bayesian neural
networks with horseshoe priors. In J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1744–1753. PMLR, 10–15 Jul 2018.

[13] R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. The MIT Press, 2nd edition
edition, 2002.

[14] G. E. Hinton and D. van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the Sixth Annual Conference on
Computational Learning Theory, COLT ’93, page 5–13. Association for Computing Machinery,
1993. ISBN 0897916115. doi: 10.1145/168304.168306.

[15] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. G. Wilson. What are Bayesian neural network
posteriors really like? In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 4629–4640. PMLR, 18–24 Jul 2021.

[16] A. Kendall and Y. Gal. What uncertainties do we need in Bayesian deep learning for computer
vision? In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[17] R. Kurle, B. Cseke, A. Klushyn, P. van der Smagt, and S. Günnemann. Continual learning with
Bayesian neural networks for non-stationary data. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

10

72

[18] R. Kurle, T. Januschowski, J. Gasthaus, and B. Wang. On symmetries in variational Bayesian
neural nets. In Bayesian Deep Learning NeurIPS workshop, 2021.

[19] C. Ma, Y. Li, and J. M. Hernandez-Lobato. Variational implicit processes. In K. Chaudhuri
and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 4222–4233. PMLR,
09–15 Jun 2019.

[20] A. Mishkin, F. Kunstner, D. Nielsen, M. W. Schmidt, and M. E. Khan. Slang: Fast structured
covariance approximations for Bayesian deep learning with natural gradient. In NeurIPS, pages
6248–6258, 2018.

[21] D. A. Moore. Symmetrized variational inference. NIPS Workshop on Advances in Approximate
Bayesian Inference, December 2016.

[22] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational continual learning. In International
Conference on Learning Representations, 2018.

[23] D. J. Poirier. Revising beliefs in nonidentified models. Econometric Theory, 14(4):483–509,
1998.

[24] A. Pourzanjani, R. M. Jiang, and L. Petzold. Improving the identifiability of neural networks
for Bayesian inference. In Bayesian Deep Learning NeurIPS workshop, 2017.

[25] B. L. S. Prakasa Rao. Identifiability in Stochastic Models. Academic Press, Oxford, 1992.

[26] S. Sun, G. Zhang, J. Shi, and R. B. Grosse. Functional variational Bayesian neural networks.
ArXiv, abs/1903.05779, 2019.

[27] H. J. Sussmann. Uniqueness of the weights for minimal feedforward nets with a given input-
output map. Neural Networks, 5(4):589–593, 1992. ISSN 0893-6080. doi: https://doi.org/10.
1016/S0893-6080(05)80037-1.

[28] J. Swiatkowski, K. Roth, B. S. Veeling, L. Tran, J. V. Dillon, J. Snoek, S. Mandt, T. Salimans,
R. Jenatton, and S. Nowozin. The k-tied normal distribution: A compact parameterization
of gaussian mean field posteriors in Bayesian neural networks. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

[29] M. Tomczak, S. Swaroop, and R. Turner. Efficient low rank gaussian variational inference for
neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 4610–4622. Curran
Associates, Inc., 2020.

[30] B.-H. Tran, S. Rossi, D. Milios, and M. Filippone. All you need is a good functional prior for
Bayesian deep learning. Journal of Machine Learning Research, 23(74):1–56, 2022.

[31] B. Trippe and R. Turner. Overpruning in variational Bayesian neural networks. arXiv preprint
arXiv:1801.06230, 2018.

[32] M. J. Wainwright, M. I. Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

[33] Y. Wang, D. Blei, and J. P. Cunningham. Posterior collapse and latent variable non-identifiability.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 5443–5455. Curran Associates, Inc.,
2021.

[34] Z. Wang, T. Ren, J. Zhu, and B. Zhang. Function space particle optimization for Bayesian
neural networks. In International Conference on Learning Representations, 2019.

[35] F. Wenzel, K. Roth, B. Veeling, J. Swiatkowski, L. Tran, S. Mandt, J. Snoek, T. Salimans,
R. Jenatton, and S. Nowozin. How good is the Bayes posterior in deep neural networks really?
In H. D. III and A. Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 10248–10259.
PMLR, 13–18 Jul 2020.

[36] A. G. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 4697–4708. Curran
Associates, Inc., 2020.

11

73

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We point out limitations and
future work throughout the paper.

(c) Did you discuss any potential negative societal impacts of your work? [No] This is
purely theoretical work without direct negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...[No] No experiments
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

[No] No existing assets used.
5. If you used crowdsourcing or conducted research with human subjects... [No] No

crowdsourcing/human subjects.

A Notation

We denote matrices and vectors with bold upper- and lower-case letters, e.g. a and A. In order to
address an element of a vector or matrix, we will use non-bold letters, e.g. x = [x1, x2, . . . , xN]T.
We will use the superscript T to denote a transpose of a vector and |A| to denote the determinant of
the matrix A. We use Diag(a) to denote the diagonal matrix constructed from a vector, and diag(A)
to denote the diagonal vector of a matrix. We use the notation N (x;m,V) to denote the density of
the Gaussian distribution given by

N (x;µ,Σ) := |2πΣ|− 1
2 · exp

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)
.

An alternative representation of the Gaussian distribution is in terms of its canonical parameters
η = Σ−1µ and Λ = Σ−1:

G (x;η,Λ) := exp

(
xTη − 1

2
xTΛx− 1

2
ηTΛ−1η − 1

2
ln
(∣∣2πΛ−1

∣∣)
)
.

Note that G (x;η1,Λ1) · G (x;η2,Λ2) ∝ G (x;η1 + η2,Λ1 +Λ2) which renders this canonical
parameterisation very useful when considering the multiplication of Gaussian densities. Furthermore,
we use Ew∼p [f(w)] to denote the expectation of the function f(·) when w is drawn from the
distribution p. Also, we use Vw∼p [f(w)] to denote the variance of the function f(·) when w is
drawn from the distribution p defined by

Vw∼p [f(w)] := Ew∼p

[
(f(w)− Ew′∼p [f(w

′)])
2
]
.

B Convolution of Gaussian Measures

Theorem 1 (Convolution of Gaussian Measures). For any A ∈ Rn×k and b ∈ Rn it holds that

p (x|θ) = N (x;Aθ + b,V) , p (θ) = N (θ;µ,Σ) ,

implies that

p (θ|x) = N
(
θ;C−1

(
ATV−1 (x− b) +Σ−1µ

)
,C−1

)
, (27)

p (x) = N
(
x;Aµ+ b,V +AΣAT) , (28)

C = ATV−1A+Σ−1 .

12

74

Proof. Let’s start by proving (27). First, we note that

p (θ|x) = p (x|θ) · p (θ)
∫
p
(
x|θ̃
)
· p
(
θ̃
)
dθ̃

=
N (x;Aθ + b,V) · N (θ;µ,Σ)

∫
N
(
x;Aθ̃ + b,V

)
· N

(
θ̃;µ,Σ

)
dθ̃

,

where only the numerator depends on θ. Thus, the numerator is given by

c · exp
(
−1

2

[
((x− b)−Aθ)

T
V−1 ((x− b)−Aθ) + (θ − µ)

T
Σ−1 (θ − µ)

])
,

where c = |2πV|− 1
2 ·|2πΣ|− 1

2 is independent of x and θ. Using Theorem A.86 in [13], this quadratic
form in θ can be rewritten as

c · exp
(
−1

2

[
(θ − c)

T
C (θ − c) + d (x)

])
,

where

C = ATV−1A+Σ−1 ,

Cc = ATV−1 (x− b) +Σ−1µ ,

d (x) = (x− b−Aµ)
T (

V +AΣAT)−1
(x− b−Aµ) . (29)

Since d(x) does not depend on θ, it get incorporated into the normalization constant which proves
(27).

In order to prove (28), note that

p (x) =

∫
p
(
x|θ̃
)
· p
(
θ̃
)
dθ̃

=

∫
N
(
x;Aθ̃ + b,V

)
· N

(
θ̃;µ,Σ

)
dθ̃

=

∫
c · exp

(
−1

2

[(
θ̃ − c

)T
C
(
θ̃ − c

)
+ d (x)

])
dθ̃

= c · exp
(
−1

2
d (x)

)
·
∫

exp

(
−1

2

[(
θ̃ − c

)T
C
(
θ̃ − c

)])
dθ̃

= c · exp
(
−1

2
d (x)

)
·
∣∣2πC−1

∣∣ 12

= c̃ · exp
(
−1

2

(
(x− (Aµ+ b))

T (
V +AΣAT)−1

(x− (Aµ+ b))
))

= N
(
x;Aµ+ b,V +AΣAT) ,

where the penultimate line follows again from Theorem A.86 in [13] with d(x) defined in (29).

Theorem 2 (Woodbury formula). Let C be an invertible n × n matrix. Then, for any A ∈ Rn×k

and B ∈ Rk×n,

(C+AB)
−1

= C−1 −C−1A
(
I+BC−1A

)−1
BC−1 .

C Invariance gap and posterior-predictive equivalence

In this section, we show that the posterior predictive distribution of the mean-field and invariance-
abiding distribution are identical (for identical parametrisation of the likelihood approximation) as
stated in (9), and that the difference in the respective KL regularisation terms can be quantified by the
KL defined in (10).

We first discuss the conditions from (7) and (8). The goal is to use the invariance property of the
likelihood function (4). Unfortunately, the prior does not generally have the same invariance. Yet, the
mean-field approximate posterior defined as the product between prior and likelihood approximation

13

75

can still have the invariance property, as we show for permutation and translation invariance with
mean-field Gaussian likelihood approximation and prior. This condition is defined in (7) for each
mean-field posterior in the integral over r:

qmix(w;θ) = Z−1
mix p(w) ·

∫
p(r) g0(t(w, r);θ)dr =

∫
p(r)

1

Zmix
p(w) · g0(t(w, r);θ)dr

=

∫
p(r)

1

Zmix
p(t(w, φ(r))) · g0(t(w, φ(r));θ)dr

=

∫
p(r)

Z0(r)

Zmix
q0(t(w, φ(r));θ)dr,

where Zmix and Z0(r) are normalisation constants. The second line introduced the assumption that
there exists a surjective mapping r′ = φ(r) such that the product of the untransformed prior p(w)
and the transformed likelihood approximation g0(t(w, φ(r));θ) are identical to the product of the
transformed prior and likelihood approximation with r′, i.e. as stated in the main text,

∀r ∼ p(r) : p(w) · g0(t(w, r);θ) = p(t(w, φ(r))) · g0(t(w, φ(r));θ).
This condition may seem quite limiting, however, we show that this condition holds for permutation
invariance with the isotropic Gaussian prior and for translation invariance with Gaussian priors and
Gaussian likelihood approximation.

Condition (7) and (8) for permutation invariance. Consider first permutation invariance
(cf. App. E). It is easy to see that for the isotropic Gaussian prior: p(w) = p(Prw). Also, note that
G(Pw; η,Λ) = G(w;PTη,PTΛP). Thus, the product between the untransformed Gaussian prior
and the permuted Gaussian likelihood approximation is

p(w) · g0(Pw) = p(Pw) · g0(Pw) = G(Pw;ηp,Λp) · G(Pw;ηg,Λg) (30)

= G(w;PTηp,P
TΛpP) · G(w;PTηg,P

TΛgP) (31)

∝ G(w;PT(ηp + ηg),P
T(Λp +Λg)P) (32)

= G(Pw;ηp + ηg,Λp +Λg) = q0(Pw). (33)

Hence, for permutation invariance with the isotropic Gaussian prior and Gaussian likelihood
approximation, we have

∀r ∼ p(r) : p(w) · g0(Prw) = p(Prw) · g0(Prw) ∝ q0(Prw). (34)

The invariance transformation is thus simply t(w, φ(r)) = t(w, r) = Prw (i.e. we do not need the
mapping φ). This is because the prior has no preference over the permutation-induced modes of the
likelihood. Thus, we have

∀r ∼ p(r) :
∣∣∣∣det

∂t(w, r)

∂w

∣∣∣∣
−1

=

∣∣∣∣det
∂Prw

∂w

∣∣∣∣
−1

= |detPr|−1
= 1 .

Condition (7) and (8) for translation invariance. Next, consider translation invariance, and note
thatN (w− v;µ,Σ) = N (w;µ+ v,Σ), and, consequently, G(w− v;η,Λ) = G(w;η +Λv,Λ).
It is easier to show directly that the product between the untransformed Gaussian prior and translated
Gaussian likelihood approximation can be written as a Gaussian posterior translated, because:

p(w) · g0(w − v) = G(w;ηp,Λp) · G(w − v;ηg,Λg) (35)

= G(w;ηp,Λp) · G(w;ηg +Λgv,Λg) (36)

∝ G(w;ηp + ηg +Λgv,Λp +Λg) (37)

= G
(
w;ηp + ηg +

I︷ ︸︸ ︷
(Λp +Λg) (Λp +Λg)

−1
Λgv,Λp +Λg

)
(38)

= G
(
w − (Λp +Λg)

−1
Λgv;ηp + ηg,Λp +Λg

)
(39)

= q0

(
w − (Λp +Λg)

−1
Λgv

)
. (40)

14

76

Since the precision matrices are diagonal, ((Λp +Λg)
−1

Λg)Br = B((Λp +Λg)
−1

Λg)r.
Consequently, for the translation invariance g0(w) = g0(t(w, r)) = g0(w −Br), we have

∀r ∼ p(r) : p(w) · g0(w −Br) = p (w −Br′) · g0 (w −Br′) ∝ q0 (w −Br′) , (41)

where r′ = φ(r) =
(
(Λp +Λg)

−1
Λg

)
r. Thus, we have

∀r ∼ p(r) :
∣∣∣∣det

∂t(w, r)

∂w

∣∣∣∣
−1

=

∣∣∣∣det
∂(w −Br)

∂w

∣∣∣∣
−1

= |det I|−1
= 1 .

Lemma 1. For any distribution p(w), likelihood approximation g0(w;θ), q0(w;θ) as defined in (6),
qmix(w;θ) as defined in (6b) and p(r), assume there exists a mapping φ : r 7→ r′ such that

∀r ∼ p(r) : p(w) · g0(t(w, r);θ) = p(t(w, φ(r))) · g0(t(w, φ(r));θ) , (42)

as well as

∀r ∼ p(r) :
∣∣∣∣det

∂t(w, r)

∂w

∣∣∣∣
−1

= 1 . (43)

Then,

Ew∼qmix(w; θ) [ln p(D |w)] = Ew∼q0(w; θ) [ln p(D |w)] . (44)

Proof. The lemma can be proven by applying the change-of-variables formula and using the
invariance property (42) of g(·;θ):

Ew∼qmix(w; θ) [ln p(D |w)] (45)

=

∫
qmix(w)︷ ︸︸ ︷∫

p(r)
Z0(r)

Zmix
q0(t(w, φ(r)); θ) dr ln [p(D |w)] dw (46)

=

∫
p(r)

Z0(r)

Zmix

∫
q0(t(w, φ(r)); θ) ln [p(D |w)] dw dr (47)

=

∫
p(r)

Z0(r)

Zmix

∫
q0(t(w, φ(r)); θ) ln [p(D | t(w, φ(r)))] dw dr (48)

=

∫
p(r)

Z0(r)

Zmix

∫
q0(w; θ)

1︷ ︸︸ ︷∣∣∣∣det
∂t(w, φ(r))

∂w

∣∣∣∣
−1

ln [p(D |w)] dw dr (49)

=

1︷ ︸︸ ︷∫
p(r)

Z0(r)

Zmix
dr

∫
q0(w; θ) ln [p(D |w)] dw (50)

= Ew∼q0 [ln p(D |w)] . (51)

where the second line uses (42), the third line changes the order of integration (Fubini’s theorem), the
fourth line uses the invariance property ln p(D |w) = ln p(D | t(w, φ(r))), the fifth line then applies
the change of variables theorem together with (43), the sixth line then uses again the invariance
property of the log likelihood, and the seventh line notes that the integral over the normalisation
constants Z0(r) cancels with the normalisation constant Zmix of the invariance-abiding posterior,
since

∫
p(r)Z0(r)dr =

∫ ∫
p(r) p(w) · g0(t(w, r)) dwdr (52)

=

∫
p(w) ·

∫
p(r) g0(t(w, r)) drdw (53)

=

∫
p(w) · gmix(w) dw = Zmix, (54)

where we changed the integration order, resulting in the normalisation constant of the invariance-
abiding likelihood approximation.

15

77

Lemma 2. For any distribution p(w), likelihood approximation g0(w;θ), q0(w;θ) as defined in
(6), qmix(w;θ) as defined in (6b) and p(r), assume there exist two mappings t : w × r 7→ w′ and
φ : r 7→ r′ such that (42) and (43) hold. Then,

KL [q0 || p]−KL [qmix || p] = KL [q0 || qmix] . (55)

Proof. First, note that

KL [q0 || p] = Ew∼q0 [ln [Z0 g0(w)]] , (56)
KL [qmix || p] = Ew∼qmix

[ln [Zmix gmix(w)]] . (57)

Now, in the latter KL, we expand the distribution qmix(w) as in (42),

KL [qmix || p] =
∫

qmix(w)︷ ︸︸ ︷∫
p(r)

Z0(r)

Zmix
q0(t(w, φ(r)); θ)dr ln [Zmix gmix(w)] dw (58)

=

∫ ∫
p(r)

Z0(r)

Zmix
q0(t(w, φ(r)); θ) ln [Zmix gmix(w)] drdw (59)

=

∫ ∫
p(r)

Z0(r)

Zmix
q0(t(w, φ(r)); θ) ln [Zmix gmix(t(w, φ(r)))] drdw (60)

=

∫ ∫
p(r)

Z0(r)

Zmix
q0(w; θ)

1︷ ︸︸ ︷∣∣∣∣det
∂t(w, φ(r))

∂w

∣∣∣∣
−1

ln [Zmix gmix(w)] drdw (61)

=

∫
q0(w; θ)

1︷ ︸︸ ︷∫
p(r)

Z0(r)

Zmix
dr ln [Zmix gmix(w)] dw (62)

=

∫
q0(w; θ) ln [Zmix gmix(w)] dw′ , (63)

where the third line uses the invariance property of the invariance-abiding likelihood approximation,
∀r : gmix(t(w, φ(r))) = gmix(w), the change of variables formula is applied to the fourth line for
the volume-preserving transformation, and the fifth line re-arranges the integration, noting that the
integral over normalisation constants equals one.

The proposition follows by taking the difference between the regularisation terms corresponding to
the respective ELBO objectives:

KL [q0 || p]−KL [qmix || p] = Ew∼q0

[
ln

Z0 g0(w)

Zmixgmix(w)

]
(64)

= Ew∼q0

[
ln

Z0 p(w)g0(w)

Zmixp(w)gmix(w)

]
= KL [q0 || qmix] . (65)

D Translation invariance in linear models

In this section, we derive the results from Sec. 4 for a Bayesian linear regression with a single input
vector x and corresponding target observation y. The result stated in Sec. 4 for x = 1 follows as a
special case.

We assume we have K latent variables w = [w1, . . . , wK]
T and one observation x = [x1, . . . , xK]

T.
We further assume that the likelihood p (y, |w,x) only depend on their inner product, that is, xTw.
Then we know that any change in w, which leaves the sum of the elements weighted by x unaffected,
does not change the likelihood. For example w′ = [w1 + ∆, w2 − ∆ · x1

x2
, w3, . . . , wK]T has the

exact same likelihood than w = [w1, w2, w3, . . . , wK]T. In general, we can model this translation

16

78

invariance using an K − 1 dimensional vector ∆ ∈ RK−1 and noting that

xTw = xT


w+

[
I

−x−1
K xT

K−1

]

︸ ︷︷ ︸
B

∆


 ,

where we used xK−1 := [x1, . . . , xK−1]
T because

xTB∆ =
[
xT
K−1 xK

] [∆
−x−1

K xT
K−1∆

]
= 0 .

D.1 Likelihood Model

Now let us assume that we approximate the likelihood by a function that has Gaussian shape, that is
p (y, |w,x) ≈ q (w) ∝ N (w;m,V). In order to model that the likelihood is translation invariant,
we compute the marginal q (w −B∆) over p (∆) = N

(
∆;0, β2I

)
and considering the case of

β →∞ , that is

qβ (w) :=

∫
q (w −B∆) · p (∆) d∆

=

∫
N (w;m+B∆,V) · N

(
∆;0, β2I

)
d∆ .

According to Theorem 1, for any β ∈ R+ this is another Gaussian given by

qβ (w) = N


w;m+B0,V + βB · βBT

︸ ︷︷ ︸
Vβ




= N
(
w;m,V + β2 ·

[
I −x−1

K xK−1

−x−1
K xT

K−1 x−2
K xT

K−1xK−1

])
.

Note that limβ→∞ qβ (w) = gmix(w) as defined in Subsection 4.1. Using the Woodbury formula in
Theorem 2, the inverse of the covariance can be re-written as

V−1
β :=

(
V + βB · βBT)−1

= V−1 − β2 ·V−1B
(
I+ β2BTV−1B

)−1
BTV−1

= V−1 − β2 ·V−1B
(
β2
(
β−2I+BTV−1B

))−1
BTV−1

= V−1 −V−1B
(
β−2I+BTV−1B

)−1
BTV−1 .

D.2 Posterior Model

If we assume a prior p (w) = N (w;µ,Σ), then the posterior for the Gaussian approximation is
given by

p (w|x) ∝ q (w) · p (w)

∝ G
(
w;V−1m,V−1

)
· G
(
w;Σ−1µ,Σ−1

)

= G
(
w;V−1m+Σ−1µ,V−1 +Σ−1

)

= N
(
w;Σ (V +Σ)

−1
m+V (V +Σ)

−1
µ,V (V +Σ)

−1
Σ
)
,

where we used the identity
(
Σ−1 +V−1

)−1
= V (V +Σ)

−1
Σ = Σ (V +Σ)

−1
V in the last line.

Similarly, if we use the likelihood approximation which has incorporated the translation invariance,

17

79

we get

pβ (w|x) ∝ qβ (w) · p (w)

∝ G
(
w;V−1

β m,V−1
β

)
· G
(
w;Σ−1µ,Σ−1

)

= G
(
w;V−1

β m+Σ−1µ,V−1
β +Σ−1

)

= N
(
w;
(
V−1

β +Σ−1
)−1 (

V−1
β m+Σ−1µ

)
,
(
V−1

β +Σ−1
)−1

)

Observing that limβ→∞ β−2I = 0 we thus see that

p∞ (w|x) = N
(
w;
(
V−1

B +Σ−1
)−1 (

V−1
B m+Σ−1µ

)
,
(
V−1

B +Σ−1
)−1
)
, (66)

V−1
B := V−1 −V−1B

(
BTV−1B

)−1
BTV−1 . (67)

Note again that p∞ (w) = qmix (w;θ) as defined in (15).

D.2.1 Special Case of Diagonal Likelihood Covariance

Now let us consider the special case where the covariance matrix of the Gaussian likelihood
approximation is a diagonal matrix, that is V = Diag(λ). Then, observe that

V−1B =

[
V−1

K−1 0

0 λ−1
K

] [
I

−x−1
K xT

K−1

]
=

[
V−1

K−1

−λ−1
K x−1

K xT
K−1

]
, (68)

V−1BVK−1xK−1 =
(
V−1B

)
·VK−1xK−1 =

[
xK−1

−λ−1
K x−1

K xT
K−1VK−1xK−1

]
, (69)

BTV−1B =
[
I −x−1

K xK−1

] [V−1
K−1

−λ−1
K x−1

K xT
K−1

]
= V−1

K−1 + λ−1
K x−2

K xK−1x
T
K−1 ,

where we used the notation V−1
K−1 to denote the diagonal (K − 1)× (K − 1) matrix with all

λK−1 :=
[
λ−1
1 , λ−1

2 , . . . , λ−1
K−1

]T

on the diagonal. Thus, using Theorem 2 with C =V−1
K−1, A = x−2

K λ−1
K xK−1 and B = xT

K−1, we
see that

(
BTV−1B

)−1
= VK−1 −

1

λKx2K + xT
K−1VK−1xK−1

VK−1xK−1x
T
K−1VK−1

= VK−1 −
1

xTVx
VK−1xK−1x

T
K−1VK−1 ,

Covariance
(
V−1

B +Σ−1
)
. Thus, for the covariance (67) of the posterior we have

V−1−V−1B
(
BTV−1B

)−1
BTV−1

= V−1 −V−1B

[
VK−1 −

1

xTVx
VK−1xK−1x

T
K−1VK−1

]
BTV−1

= V−1 −V−1BVK−1B
TV−1

︸ ︷︷ ︸
S

+
1

xTVx
V−1BVK−1xK−1x

T
K−1VK−1B

TV−1

︸ ︷︷ ︸
T

.

Let’s focus on the expression S first. Using (68) we have

S =

[
V−1

K−1

−λ−1
K x−1

K xT
K−1

]
VK−1

[
V−1

K−1 −λ−1
K x−1

K xK−1

]

=

[
V−1

K−1 −λ−1
K x−1

K xK−1

−λ−1
K x−1

K xT
K−1 λ−2

K x−2
K xT

K−1VK−1xK−1

]
. (70)

18

80

Similarly, for the expression Tusing (69) we have

T =
1

xTVx

[
xK−1

−λ−1
K x−1

K xT
K−1VK−1xK−1

] [
xK−1 −λ−1

K x−1
K xT

K−1VK−1xK−1

]

=
1

xTVx


 xK−1x

T
K−1 −xT

K−1VK−1xK−1

λKxK
xK−1

−xT
K−1VK−1xK−1

λKxK
xT
K−1

(xT
K−1VK−1xK−1)

2

λ2
Kx2

K


 . (71)

Putting (70) and (71) together, we get

V−1
B =

1

xTVx




xK−1x
T
K−1

(
xTVx
λKxK

− xT
K−1VK−1xK−1

λKxK

)
xK−1

(
xTVx
λKxK

− xT
K−1VK−1xK−1

λKxK

)
xT
K−1

xTVx
λK
− xTVx·xT

K−1VK−1xK−1

λ2
Kx2

K
+

(xT
K−1VK−1xK−1)

2

λ2
Kx2

K




=
1

xTVx

[
xK−1x

T
K−1 xKxK−1

xKxT
K−1 x2K

]

=
1

xTVx
xxT , (72)

where we repeatedly used that xTVx− xT
K−1VK−1xK−1 = λKx

2
K . Thus, the covariance in (66)

can be written as

(
V−1

B +Σ−1
)−1

=

(
Σ−1 +

1

xTVx
xxT

)−1

= Σ− 1

xTVx
· 1

1 + (xTVx)
−1

xTΣx
·ΣxxTΣ

= Σ− 1

xT (V +Σ)x
· (Σx) (Σx)

T
, (73)

where we used Theorem 2 in the third step. Note that (14) is a special case of (72) when using x = 1
and observing that V1 = λ. Similarly, the covariance in (15) is a special case of (73) when further
noticing that Σ1 = σ2.

Mean
(
V−1

B +Σ−1
)−1 (

V−1
B m+Σ−1µ

)
. In order to derive an efficient update for the mean of

the posterior, please note that by virtue of (72), V−1
B can be written as ddTwith d =

(
xTVx

)− 1
2 · x.

Thus, using (73) we have
(
V−1

B +Σ−1
)−1 (

V−1
B m+Σ−1µ

)

=

(
Σ− 1

xT (V +Σ)x
· (Σx) (Σx)

T
)(

ddTm+Σ−1µ
)

= ΣddTm+ µ− 1

xT (V +Σ)x
· (Σx) (Σx)

T
ddTm− 1

xT (V +Σ)x
· (Σx) (Σx)

T
Σ−1µ

= µ+

(
xTm

xTVx

)
· (Σx)− (Σx)

T
ddTm

xT (V +Σ)x
· (Σx)− (Σx)

T
Σ−1µ

xT (V +Σ)x
· (Σx)

= µ+

[
xTm

xTVx
− xTm

xTVx
· xTΣx

xT (V +Σ)x
− xTµ

xT (V +Σ)x

]
· (Σx)

= µ+

(
xT (m− µ)

xT (V +Σ)x

)
· (Σx) .

Thus, the location parameter in (15) is a special case of this more general result when using x = 1
and noticing again that Σ1 = σ2 and V1 = λ, respectively. It can be seen that the Gaussian product
updates the prior location in the direction Σx. This is because the likelihood is translation invariant
wrt. all directions perpendicular to x (i.e. the hyper plane determined by the normal vector x).

The two posterior approximations q0 and qmix as well as the corresponding likelihood approximation
is visualised in Fig. 3 for two different parametrisations (cf. Sec. 4.3).

19

81

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Optimal invariance-abiding parametrisation

prior
invariance-abiding posterior
likelihood approximation
mean-field posterior

(a) Optimal parameters θ∗
mix, cf. (17a)

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Optimal mean-field parametrisation

prior
invariance-abiding posterior
likelihood approximation
mean-field posterior

(b) Optimal parameters θ∗
0, cf. (17b)

Figure 3: Gaussian likelihood and posterior approximations q0 and qmix (see (15)) with different
parameter optima (cf. (17)). The dotted circles show alternative parameter values that induce the
same predictive distribution but do not correspond to one of the optima in (17).

D.3 True posterior and optimal invariance-abiding parameters

For the linear model with a single observation y and inputs x, the true posterior p(w |x, y) follows
from the standard Bayesian update equation for Gaussian linear models (cf. (27) in App. B with
A = 1

K · xT):

p(w | y,x) = N
(
w;m∗

p,V
∗
p

)
, V∗

p =

(
1

K2σ2
y

xxT +Σ−1

)−1

, m∗
p = V∗

p

y

Kσ2
y

x . (74)

For N observations Y := {y(n)}Nn=1 with identical input x, the posterior is

p (w |Y,x) = N
(
w;m∗

p,V
∗
p

)
,V∗

p =

(
N

K2σ2
y

xxT +Σ−1

)−1

,m∗
p = V∗

p

∑N
n=1 y

(n)

Kσ2
y

x . (75)

We want to relate the true posterior (75) to the parameters of the invariance-abiding posterior
qmix(w;θ). It suffices to consider the special case x = 1 from the main text. We will use the form

qmix(w) = N
(
w;
(
Σ−1 +V−1

mix

)−1 (
Σ−1µ+V−1

mixmmix

)
,Σ−1 +V−1

mix

)
(76)

For the precision matrix Σ−1 +V−1
mix, using the form in (72) with x = 1 gives

V−1
mix =

1

xTVx
xxT =

1

1Tλ
11T, (77)

since V1 = λ. Comparing this to (75), we see that Σ−1 + V−1
mix has the same structure as the

precision matrix of the true posterior. By setting the optimal variances as 1Tλ∗ =
K2σ2

y

N , and using
K2σ2

y

N =
Kσ2

y

N · 1T1, we see that one possible choice for the optimal variance parameters is

λ∗ =
Kσ2

y

N
· 1. (78)

We note that other vectors that are not proportional to 1 and also sum to
K2σ2

y

N are also valid optima.

Similarly, with µ = 0, and by noting that Σ−1 +V−1
mix = V−1

p , we see that

m∗ =
1

N

N∑

n=1

y(n) · 1. (79)

20

82

E Permutation invariance in Bayesian neural networks

Here we analyse the permutation invariance in BNNs. This invariance is independent of the data,
persisting for any dataset size.

We first describe the set of permutation matrices corresponding to the transformations that leave
the likelihood invariant, i.e. t(w, r) = Prw. We ignore the biases for simplicity and describe these
permutations first on a node/neuron level, then layer-wise for the weight matrices, and finally on the
weight vector that is obtained by stacking all weight matrices. We will denote layers with indices
l and the number of layers by L. Layer-wise permutation matrices are then denoted as P̃l and the
corresponding weight matrices are denoted as Wl. The permutation matrix that results when stacking
all weights matrices into a vector w is denoted as P. When necessary, one particular permutation
matrix from the set of all possible permutation matrices for a given architecture is indexed with
superscript (i), i.e. P = {P(i)}i and |P| =∏L−1

l=1 kl!, where kl is the number of nodes in layer l.

Node permutations. Each hidden layer zl ∈ z1, . . . , zL−1 is a set of nodes that can be permuted
in kl! possible ways, relabelling the corresponding parameters attached to these nodes. Each of these
kl! permutations per layer can be combined with any of the permutations of another layer. Each
permutation matrix P̃l for a layer l corresponds to one of the unique orderings of nodes zl. For
instance, the permutation matrix that reorders the first 3 nodes as (zl,3, zl,1, zl,2) is

P̃l =




0 0 1 . . .
1 0 0 . . .
0 1 0 . . .
.


 . (80)

The remaining entries in the matrix are ones on the diagonal and zeros elsewhere.

Layer-wise permutation of weight matrices. Next, we describe how node permutations correspond
to permutations of weight matrices in terms of permutations to the in- and outgoing weights. For
one particular instance of permutations (omitting superscript (i)) to each of the hidden layers, the
corresponding weight matrices can be permuted as follows:

∀l ∈ 1, . . . , L : w′
l = P̃lWlP̃

T
l−1, P̃0 = P̃L = I. (81)

The identities corresponding to the first and last layers is because only hidden layer nodes can be
permuted but not the data itself. Note also that each permutation matrix is applied to two weight
matrices, since permutations to nodes of a particular layer correspond to the simultaneous permutation
of the weight matrices from the preceding and subsequent layer.

Permutation of stacked weight vectors. The layer-wise formulation can be written in terms of the
stacked weight vector w = [vec(W1), . . . , vec(WL+1)]

T, using vec(ABC) =
(
CT ⊗A

)
vec(B):

vec(W′
l) =

(
P̃l−1 ⊗ P̃l

)
vec(Wl) =: Pl,l−1vec(Wl), (82)

where we denote the new permutation matrix that is applied to the vectorised weights with a bar and
the subscripts correspond to the two successive layers. The overall permutation matrix corresponding
to the entire weight vector w is given by forming the block-diagonal matrix

P =



P1,0 0 0 . . .
0 P2,1 0 . . .
0 0 P3,2 . . .
.


 , (83)

where each denotes block-matrices of zeros with the respective dimensions and the remaining parts
of the matrix are the identity on the diagonal and zeros elsewhere.

Invariance gap. Note again that the permutation invariance for BNNs is independent of the data.
The invariance gap KL [q0 || qmix] takes values in the range [0, ln |P|], where |P| is the factorial
number of modes. The gap takes the maximal value when each mode is completely separated from
the other modes, and the gap is zero when both q0(w) and qmix(w) are identical. This is the case e.g.
if q0(w) reverts to the prior p(w) since all modes are then identical, i.e. q0(Pw) = q(w).

21

83

F Data-related bound on the mean-field KL divergence

Assume the regression setting described in Sec. 2.2, where we assume a finite dataset D =
{(x(n), y(n))}Nn=1 and a regression setting with fixed homogeneous noise variance σ2

y . We can
further assume that the prior is chosen such that it induces a reasonably bounded output variance of
the neural network, σ2

L

(
x(n)

)
:= Vw∼p

[
f(x(n); w)

]
, for some fixed input x(n). We will then have

a finite expected log-likelihood and the ELBO for a mean-field variational approximation qθ is

LELBO (qθ,D) =
N∑

n=1

Ew∼qθ

[
ln p(y(n) |x(n), w)

]

︸ ︷︷ ︸
ELL(qθ,D)

−KL [qθ || p] . (84)

Let us now consider a hypothetical worst-case fit in terms of the ELBO objective. This is when
the data is completely ignored with qθ(w) = p(w), as any worse fit could be trivially improved by
setting the approximation to the prior. This gives then the inequality (using (84))

∀qθ : LELBO (qθ,D) ≥ LELBO (p,D) ⇔ ELL (qθ,D)−KL [qθ || p] ≥ ELL (p,D) . (85)

Although we can not compute the expected log-likelihood for an arbitrary fit qθ , we can quantify the
upper bound given above, by considering the best-case fit q∗, i.e. a hypothetical optimum where the
data is perfectly predicted up to the known observation noise variance σ2

y . The resulting bound is then

KL [qθ || p] ≤ ELL (q∗,D)− ELL (p,D) . (86)

Next, we compute the two expected log-likelihood terms in (86). We first consider the worst-case,
where we have

ELL(p,D) =
N∑

n=1

Ew∼p

[
ln p(y(n)|x(n),w)

]
(87)

=

N∑

n=1

− 1

2σ2
y

Ew∼p

[(
y(n) − zL

)2]
− N

2
ln
[
2πσ2

y

]
, (88)

where zL is the noisy output of the neural network given by

zL = f(x(n); w) + ϵ, w ∼ p(w), ϵ ∼ N
(
0, σ2

y

)
. (89)

Splitting the expectation of the quadratic term into variance and square of the expectation, we have

Ew∼p

[(
y(n) − zL

)2]
= Ew∼p

[
y(n) − zL

]2
+ Vw∼p

[
y(n) − zL

]
(90)

Since the last layer computes f(x(n); w) = wT
L,1zL−1 in the regression setting and the prior weights

are independent of zL−1 and centred at zero, i.e. Ew∼p [wL,1] = 0, it follows that

Ew∼p

[
y(n) − zL

]
= y(n). (91)

Vw∼p

[
y(n) − zL

]
= Ew∼p

[
z2L
]
= σ2

L

(
x(n)

)
+ σ2

y, (92)

where we denote the variance of the neural network outputs by σ2
L

(
x(n)

)
:= Vw∼p

[
f(x(n); w)

]
.

Hence, the expected log likelihood under the prior is

ELL(p,D) =
N∑

n=1

− 1

2σ2
y

[
σ2
L

(
x(n)

)
+ σ2

y +
(
y(n)

)2]− N

2
ln
[
2πσ2

y

]
(93)

= −1

2

N∑

n=1

σ2
L

(
x(n)

)
+
(
y(n)

)2

σ2
y

− N

2

(
1 + ln

[
2πσ2

y

])
. (94)

For the best-case fit in terms of the ELBO, we assume that we completely overfit and perfectly predict
the data by putting the mean of the Gaussian exactly on the data, i.e.

p(y(n)|x(n),w) = N (y; y(n), σ2
y).

22

84

Then, we have

Ew∼q∗

[
y(n) − zL

]
= 0, (95)

Vw∼q∗

[
y(n) − zL

]
= σ2

y. (96)

Hence, the expected log likelihood of the best case fit is

ELL(q∗,D) =
N∑

n=1

Ew∼q∗

[
ln p(y(n) |x(n),w)

]
(97)

=

N∑

n=1

− 1

2σ2
y

[
σ2
y

]
− N

2
ln
[
2πσ2

y

]
(98)

= −N
2

(
1 + ln

[
2πσ2

y

])
. (99)

Taking the difference between (93) and (97), we obtain the result in (3),

KL [qθ || p] ≤
N∑

n=1

σ2
L

(
x(n)

)
+
(
y(n)

)2

2σ2
y

.

23

85

8 Multi-source Neural Variational Inference

When making inferences from multiple sources (modalities or views), a key challenge is to learn
probabilistic representations that allow for comparing and combining information from different
sources in a principled manner, while dealing with missing or anomalous data. This problem is
addressed in this chapter by using a modular amortised variational inference approach (akin
to variational autoencoders [26, 27]) and a generative model with conditionally independent
observations: individual posterior approximations (beliefs)—each informed by a single source—
are learned jointly. The resulting beliefs can be fused with and related to each other through a
shared latent variable that represents the state underlying all observed data sources.

In contrast to the previous chapters, neural network weights are here treated as parameters
rather than random variables. The relevant background is provided in Sec. 2.3 and2.4, and
Ch. 4. Note that in the background sections (for consistency reasons), latent variables and
observed variables are denoted by x and y, respectively, whereas in the following publication,
latent variables are denoted by z and observations by x.

Authors Richard Kurle
Stephan Günnemann
Patrick Van der Smagt

Conference Association for the Advancement of
Artificial Intelligence , AAAI 2019

Contribution Problem definition significantly contributed
Literature survey significantly contributed
Algorithm development significantly contributed
Method implementation significantly contributed
Experimental evaluation significantly contributed
Preparation of the manuscript significantly contributed

86

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Multi-Source Neural Variational Inference

Richard Kurle
Department of Informatics

Technical University of Munich,
Data:Lab, Volkswagen Group

80805 Munich, Germany
richard.kurle@tum.de

Stephan Günnemann
Department of Informatics

Technical University of Munich
guennemann@in.tum.de

Patrick van der Smagt
Data:Lab, Volkswagen Group

80805 Munich, Germany

Abstract

Learning from multiple sources of information is an impor-
tant problem in machine-learning research. The key chal-
lenges are learning representations and formulating inference
methods that take into account the complementarity and re-
dundancy of various information sources. In this paper we
formulate a variational autoencoder based multi-source learn-
ing framework in which each encoder is conditioned on a dif-
ferent information source. This allows us to relate the sources
via the shared latent variables by computing divergence mea-
sures between individual source’s posterior approximations.
We explore a variety of options to learn these encoders and to
integrate the beliefs they compute into a consistent posterior
approximation. We visualise learned beliefs on a toy dataset
and evaluate our methods for learning shared representations
and structured output prediction, showing trade-offs of learn-
ing separate encoders for each information source. Further-
more, we demonstrate how conflict detection and redundancy
can increase robustness of inference in a multi-source setting.

1 Introduction
An essential feature of most living organisms is the ability to
process, relate, and integrate information coming from a vast
number of sensors and eventually from memories and pre-
dictions (Stein and Meredith 1993). While integrating infor-
mation from complementary sources enables a coherent and
unified description of the environment, redundant sources
are beneficial for reducing uncertainty and ambiguity. Fur-
thermore, when sources provide conflicting information, it
can be inferred that some sources must be unreliable.

Replicating this feature is an important goal of multi-
modal machine learning (Baltrušaitis, Ahuja, and Morency
2017). Learning joint representations of multiple modalities
has been attempted using various methods, including neural
networks (Ngiam et al. 2011), probabilistic graphical models
(Srivastava and Salakhutdinov 2014), and canonical correla-
tion analysis (Andrew et al. 2013). These methods focus on
learning joint representations and multimodal sensor fusion.
However, it is challenging to relate information extracted
from different modalities. In this work, we aim at learning
probabilistic representations that can be related to each other
by statistical divergence measures as well as translated from

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one modality to another. We make no assumptions about
the nature of the data (i.e. multimodal or multi-view) and
therefore adopt a more general problem formulation, namely
learning from multiple information sources.

Probabilistic graphical models are a common choice to
address the difficulties of learning from multiple sources
by modelling relationships between information sources—
i.e., observed random variables—via unobserved, random
variables. Inferring the hidden variables is usually only
tractable for simple linear models. For nonlinear models,
one has to resort to approximate Bayesian methods. The
variational autoencoder (VAE) (Kingma and Welling 2013;
Rezende, Mohamed, and Wierstra 2014) is one such method,
combining neural networks and variational inference for
latent-variable models (LVM).

We build on the VAE framework, jointly learning the
generative and inference models from multiple information
sources. In contrast to the VAE, we encapsulate individual
inference models into separate “modules”. As a result, we
obtain multiple posterior approximations, each informed by
a different source. These posteriors represent the belief over
the same latent variables of the LVM, conditioned on the
available information in the respective source.

Modelling beliefs individually—but coupled by the gen-
erative model—enables computing meaningful quantities
such as measures of surprise, redundancy, or conflict be-
tween beliefs. Exploiting these measures can in turn increase
the robustness of the inference models. Furthermore, we ex-
plore different methods to integrate arbitrary subsets of these
beliefs, to approximate the posterior for the respective sub-
set of observations. We essentially modularise neural vari-
ational inference in the sense that information sources and
their associated encoders can be flexibly interchanged and
combined after training.

2 Background—Neural variational inference
Consider a dataset X = {x(n)}Nn=1 of N i.i.d. samples of
some random variable x and the following generative model:

pθ(x
(n)) =

∫
pθ(x

(n) | z(n)) p(z(n)) dz(n),

where θ are the parameters of a neural network, defining the
conditional distribution between latent and observable ran-
dom variables z and x respectively. The variational autoen-

4114

87

coder (Kingma and Welling 2013; Rezende, Mohamed, and
Wierstra 2014) is an approximate inference method that en-
ables learning the parameters of this model by optimising
an evidence lower bound (ELBO) to the log marginal like-
lihood. A second neural network with parameters φ defines
the parameters of an approximation qφ(z |x) of the poste-
rior distribution. Since the computational cost of inference
for each data point is shared by using a recognition model,
some authors refer to this form of inference as amortised or
neural variational inference (Gershman and Goodman 2014;
Mnih and Gregor 2014).

The importance weighted autoencoder (Burda, Grosse,
and Salakhutdinov 2015) (IWAE) generalises the VAE by
using a multi-sample importance weighting estimate of the
log-likelihood. The IWAE ELBO is given as:

ln pθ(x
(n)) ≥ E

z
(n)
1:K∼qφ(z(n)|x(n))

[
ln

1

K

K∑

k=1

w
(n)
k

]
,

whereK is the number of importance samples, and w(n)
k are

the importance weights:

w
(n)
k =

pθ(x
(n) | z(n)k) p(z

(n)
k)

qφ(z
(n)
k |x(n))

.

Besides achieving a tighter lower bound, the IWAE was mo-
tivated by noticing that a multi-sample estimate does not re-
quire all samples from the variational distribution to have
a high posterior probability. This enables the training of a
generative model using samples from a variational distribu-
tion with higher uncertainty. Importantly, this distribution
need not be the posterior of all observations in the gener-
ative model. It can be a good enough proposal distribution,
i.e. the belief from a partially-informed source.

3 Multi-source neural variational inference
We are interested in datasets consisting of tuples {x(n) =

(x
(n)
1 , . . . , x

(n)
M)}Nn=1, we use m ∈ {1, . . . ,M} to denote

the index of the source. Each observation x
(n)
m ∈ RDm may

be embedded in a different space but is assumed to be gen-
erated from the same latent state z(n). Therefore, each x

(n)
m

corresponds to a different, potentially limited source of in-
formation about the underlying state z(n). From now on we
will refer to xm in the generative model as observations and
the same xm in the inference model as information sources.

We model each observation xm in the generative model
with a distinct set of parameters θm, although some param-
eters could be shared. The likelihood function is given as:

pθ(x
(n) | z(n)) =

M∏

m=1

pθm
(
x(n)
m | z(n)

)
.

For inference, the VAE conditions on all observable
data x(n). However, one can condition (amortize) the
approximate posterior distribution on any set of infor-
mation sources. In this paper we limit ourselves to
x
(n)
S , S ⊂ {1, . . . ,M}. An approximate posterior distribu-

tion qφS (z
(n) |x(n)

S) may then be interpreted as the belief of

the respective information sources about the latent variables,
underlying the generative process.

In contrast to the VAE, we want to calculate the be-
liefs from different information sources individually, com-
pare them, and eventually integrate them. In the following,
we address each of these desiderata.

3.1 Learning individual beliefs
In order to learn individual inference models as in Fig. 1a,
we propose an average of M ELBOs, one for each informa-
tion source and its respective inference model. The resulting
objective is an ELBO to the log marginal likelihood itself
and referred to as L(ind):

L(ind) =:
M∑

m=1

πmE
z
(n)
1:K∼qφm

(
z(n)|x(n)

m

)
[
ln

1

K

K∑

k=1

w
(n)
m,k

]
,

(1)
with

w
(n)
m,k =

pθ
(
x(n) | z(n)k

)
p
(
z
(n)
k

)

qφm
(
z
(n)
k |x

(n)
m

) .

The indices n, m and k refer to the data sample, informa-
tion source, and importance sample index. The factors πm
are the weights of the ELBOs, satisfying 0 ≤ πm ≤ 1 and∑M
m=1 πm = 1. Although the πm could be inferred, we set

πm = 1/M, ∀m. This ensures that all parameters φm are
optimised individually to their best possible extent instead
of down-weighting less informative sources.

Since we are dealing with partially-informed encoders
qφm(z

(n) |x(n)
m) instead of qφ(z(n) |x(n)), the beliefs can be

more uncertain than the posterior of all observations x. This
in turn degrades the generative model, as it requires samples
from the posterior distribution. We found that the generative
model becomes biased towards generating averaged samples
rather than samples from a diverse, multimodal distribution.
This issue arises in VAE-based objectives, irrespective of the
complexity of the variational family, because each Monte-
Carlo sample of latent variables must predict all observa-
tions. To account for this, we propose to use importance
sampling estimates of the log-likelihood (see Sec. 2). The
importance weighting and sampling-importance-resampling
can be seen as feedback from the observations, allowing to
approximate the true posterior even with poorly informed
beliefs.

3.2 Comparing beliefs
Encapsulating individual inferences has an appealing advan-
tage compared to an uninterpretable, deterministic combina-
tion within a neural network: Having obtained multiple be-
liefs w.r.t. the same latent variables, each informed by a dis-
tinct source, we can calculate meaningful quantities to relate
the sources. Examples are measures of redundancy, surprise,
or conflict. Here we focus on the latter.

Detecting conflict between beliefs is crucial to avoid false
inferences and thus increase robustness of the model. Con-
flicting beliefs may stem from conflicting data or from un-
reliable (inference) models. The former is a form of data
anomaly, e.g. due to a failing sensor. An unreliable model

4115

88

z z z. . .

x1 x2 xM. . .

N N N

φ1 φ2 φM. . .

(a) Individual inferences

λ1 λ2 λM. . .

z c

π

x1 x2 xM. . .

N

φ1 φ2 φM. . .

(b) Mixture of experts inference.

λ1 λ2 λM. . .

z

x1 x2 xM. . .

N

φ1 φ2 φM. . .

(c) Product of experts inference

Figure 1: Graphical models of inference models. White circles denote hidden random variables, grey-shaded circles—observed
random variables, diamonds—deterministic variables. N is the number of i.i.d. samples in the dataset. To better distinguish the
mixture or product of expert models from an IWAE with hard-wired integration in a neural-network layer, we explicitly draw
the deterministic variables λ1, . . . , λM , denoting the parameters of the variational distributions.

on the other hand may result from model misspecification
or optimisation problems, i.e. due to the approximation or
amortisation gap, respectively (Cremer, Li, and Duvenaud
2018). Distinguishing between the two causes of conflict is
challenging however and requires evaluating the observed
data under the likelihood functions.

Previous work has used the ratio of two KL divergences as
a criterion to detect a conflict between a subjective prior and
the data (Bousquet 2008). The nominator is the KL between
the posterior and the subjective prior, and denominator is the
KL between posterior and a non-informative reference prior.
The two KL divergences measure the information gain of
the posterior—induced by the evidence—w.r.t. the subjec-
tive prior and the non-informative prior, respectively. The
decision criterion for conflict is a ratio greater than 1.

We propose a similar ratio, replacing the subjective prior
with qφm and taking the prior as reference:

c(m ||m′) = DKL

(
qφm′ (z |xm′) || qφm(z |xm)

)

DKL

(
qφm′ (z |xm′) || p(z)

) . (2)

This measure has the property that it yields high values if
the belief of source m is significantly more certain than that
of m′. This is desirable for sources with redundant informa-
tion. For complementary information sources other conflict
measures, e.g. the measure defined in (Dahl, Gåsemyr, and
Navig), may be more appropriate.

3.3 Integrating beliefs
So far, we have shown how to learn separate beliefs from dif-
ferent sources and how to relate them. However, we have not
readily integrated the information from these sources. This
can be seen by noticing that the gap between L(ind) and the
log marginal likelihood is significantly larger compared to
an IWAE with an unflexible, hard-wired combination (see
supplementary material of our accompanying technical re-
port (Kurle, Günnemann, and Smagt 2018)). Here we pro-
pose two methods to integrate the beliefs qφm(z |xm) to an
integrated belief qφ(z |x).
Disjunctive integration—Mixture of Experts One ap-
proach to combine individual beliefs is by treating them

as alternatives, which is justified if some (but not all)
sources or their respective models are unreliable or in con-
flict (Khaleghi et al. 2013). We propose a mixture of experts
(MoE) distribution, where each component is the belief, in-
formed by a different source. The corresponding graphical
model for inference is shown in Fig. 1b. As in Sec. 3.1, the
variational parameters are each predicted from one source
individually without communication between them. The dif-
ference is that each qφm(z |xm) is considered as a mixture
component, such that the whole mixture distribution approx-
imates the true posterior.

Instead of learning individual beliefs qφm(z |xm) by op-
timising L(ind) and integrating them subsequently into a
combined qφ(z |x), we can design an objective function for
learning the MoE posterior directly. We refer to the corre-
sponding ELBO as L(MoE). It differs from L(ind) only by
the denominator of the importance weights, using the mix-
ture distribution with component weights πm:

w
(n)
m,k =

pθ
(
x(n) | z(n)k

)
p
(
z
(n)
k

)
∑M
m′=1 πm′qφm′

(
z
(n)
k |x

(n)
m′
) ,

Conjunctive integration—Product of Experts Another
option for combining beliefs are conjunctive methods, treat-
ing each belief as a constraint. These are applicable in
the case of equally reliable and independent evidences
(Khaleghi et al. 2013). This can be seen by inspecting the
mathematical form of the posterior distribution of all ob-
servations. Applying Bayes’ rule twice reveals that the true
posterior of a graphical model with conditionally indepen-
dent observations can be decomposed as a product of experts
(Hinton 2002) (PoE):

p(z |x) =
∏M
m′=1 p(xm′)

p(x)
· p(z) ·

M∏

m=1

p(z |xm)

p(z)
. (3)

We propose to approximate Eq. (3) by replacing the true pos-
teriors of single observations p(z |xm) by the variational
distributions qφm(z |xm), obtaining the inference model
shown in Fig. 1c. In order to make the PoE distribution com-
putable, we further assume that the variational distributions

4116

89

and the prior are conjugate distributions in the exponential
family. Probability distributions in the exponential family
have the well-known property that their product is also in the
exponential family. Hence, we can calculate the normalisa-
tion constant in Eq. (3) from the natural parameters. In this
work, we focus on the popular case of normal distributions.
For the derivation of the natural parameters and normalisa-
tion constant, we refer to the supplementary material of our
technical report (Kurle, Günnemann, and Smagt 2018).

Analogous to Sec. 3.3, we can design an objective to learn
the PoE distribution directly, rather than integrating individ-
ual beliefs. We refer to the corresponding ELBO as L(PoE):

L(PoE) =: E
z
(n)
1:K∼qφ

(
z(n)|x(n)

)
[
ln

1

K

K∑

k=1

w
(n)
k

]
, (4)

where w(n)
k are the standard importance weights as in the

IWAE and where qφ(z(n) |x(n)) is the PoE inference dis-
tribution. However, the natural parameters of the individual
normal distributions are not uniquely identifiable by the nat-
ural parameters of the integrated normal distribution. Thus,
optimising L(PoE) leads to inseparable individual beliefs. To
account for this, we propose a hybrid between individual and
integrated inference distribution:

L(hybrid) = λ1L(ind) + λ2L(PoE), (5)
where we choose λ1 = λ2 = 1

2 in practice for simplicity.
In Sec. 5 we evaluate the proposed integration methods

both as learning objectives, and for integrating the beliefs
obtained by optimising L(ind) or L(hybrid). Note again how-
ever, that L(PoE) or L(hybrid) assume conditionally indepen-
dent observations and equally reliable sources. In contrast,
L(ind) makes no assumptions about the structure of the gen-
erative model. This allows for any choice of appropriate in-
tegration method after learning.

4 Related Work
Canonical correlation analysis (CCA) (Hotelling 1936) is an
early attempt to examine the relationship between two sets
of variables. CCA and nonlinear variants (Shon et al. 2005;
Andrew et al. 2013; Feng, Li, and Wang 2015) propose pro-
jections of pairs of features such that the transformed rep-
resentations are maximally correlated. CCA variants have
been widely used for learning from multiple information
sources (Hardoon, Szedmak, and Shawe-taylor 2004; Rasi-
wasia et al. 2010). These methods have in common with
ours, that they learn a common representational space for
multimodal data. Furthermore, a connection between lin-
ear CCA and probabilistic graphical models has been shown
(Bach and Jordan 2005).

Dempster-Shafer theory (Dempster 1967; Shafer 1976) is
a widely used framework for integration of uncertain infor-
mation. Similar to our PoE integration method, Dempster’s
rule of combination takes the pointwise product of belief
functions and normalises subsequently. Due to apparently
counterintuitive results obtained when dealing with conflict-
ing information (Zadeh 1986), the research community pro-
posed various measures to detect conflicting belief func-
tions and proposed alternative integration methods. These

include disjunctive integration methods (Jiang et al. 2016;
Denœux 2008; Deng 2015; Murphy 2000), similar to our
MoE integration method.

A closely related line of research is that of multimodal
autoencoders (Ngiam et al. 2011) and multimodal Deep
Boltzmann machines (DBM) (Srivastava and Salakhutdinov
2014). Multimodal autoencoders use a shared representation
for input and reconstructions of different modalities. Since
multimodal autoencoders learn only deterministic functions,
the interpretability of the representations is limited. Multi-
modal DBMs on the other hand learn multimodal generative
models with a joint representation between the modalities.
However, DBMs have only been shown to work on binary
latent variables and are notoriously hard to train.

More recently, variational autoencoders were applied
to multimodal learning (Suzuki, Nakayama, and Matsuo
2016). Their objective function maximises the ELBO using
an encoder with hard-wired sources and additional KL di-
vergence loss terms to train individual encoders. The differ-
ence to our methods is that we maximise an ELBO for which
we require only M individual encoders. We may then inte-
grate the beliefs of arbitrary subsets of information sources
after training. In contrast, the method in (Suzuki, Nakayama,
and Matsuo 2016) would require a separate encoder for each
possible combination of sources. Similarly, (Vedantam et al.
2017) first trains a generative model with multiple obser-
vations, using a fully-informed encoder. In a second train-
ing stage, they freeze the generative model parameters and
proceed by optimising the parameters of inference models
which are informed by a single source. Since the topology
of the latent space is fixed in the second stage, finding good
weights for the inferenc models may be complicated.

Concurrently to this work, (Wu and Goodman 2018) pro-
posed a method for weakly-supervised learning from mul-
timodal data, which is very similar to our hybrid method
discussed in Sec. 3.3. Their method is based on the VAE,
whereas we find it crucial to optimise the importance-
sampling based ELBO to prevent the generative models
from generating averaged conditional samples (see Sec. 3.1).

5 Experiments
We visualise learned beliefs on a 2D toy problem, evalu-
ate our methods for structured prediction and demonstrate
how our framework can increase robustness of inference.
Model and algorithm hyperparameters are summarised in
the supplementary material of our technical report (Kurle,
Günnemann, and Smagt 2018).

5.1 Learning beliefs from complementary
information sources

We begin our experiments with a toy dataset with com-
plementary sources. As a generative process, we consider
a mixture of bi-variate normal distributions with 8 mix-
ture components. The means of each mixture component
are located on the unit circle with equidistant angles, and
the standard deviations are 0.1. To simulate complemen-
tary sources, we allow each source to perceive only one di-
mension of the data. As with all our experiments, we as-

4117

90

sume a zero-centred normal prior with unit variance and
z ∈ R2. We optimise L(ind) with two inference models
qφ1

(z |x1), qφ2
(z |x2), and two separate likelihood func-

tions pθ1(x1 | z), pθ2(x2 | z). Fig. 2a (right) shows the be-
liefs of both information sources for 8 test data points. These
test points are the means of the 8 mixture components of the
observable data, rotated by 2◦. The small rotation is only for
visualisation purposes, since each source is allowed to per-
ceive only one axis and would therefore produce indistin-
guishable beliefs for data points with identical values on the
perceived axis. We visualise the two beliefs corresponding
to the same data point with identical colours. The height and
width of the ellipses correspond to the standard deviations of
the beliefs. Fig. 2a (left) shows random samples in the ob-
servation space, generated from 10 random latent samples
z ∼ qφm(z |xm) for each belief. The generated samples are
colour-coded in correspondence to the figure on the right.
The 8 circles in the background visualise the true data dis-
tribution with 1 and 2 standard deviations. The two types of
markers distinguish the information sources x1 and x2 used
for inference. As can be seen, the beliefs reflect the ambigu-
ity as a result of perceiving a single dimension xm. 1

Next we integrate the two beliefs using Eq. (3). The re-
sulting integrated belief and generated data from random
latent samples of the belief are shown in Figs. 2b (right)
and 2b (left) respectively. We can see that the integration
resolves the ambiguity. In the supplementary material of
our accompanying technical report (Kurle, Günnemann, and
Smagt 2018), we plot samples from the individual and in-
tegrated beliefs, before and after a sampling importance re-
sampling procedure.

5.2 Learning and inference of shared
representations for structured prediction

Models trained with L(ind) or L(hybrid) can be used to pre-
dict structured data of any modality, conditioned on any
available information source. Equivalently, we may impute
missing data if modelled explicitly as an information source:

p(xm |xm′) = E
z∼qφ

m′

(
z|xm′

)
[
pθm(xm | z)

]
. (6)

MNIST variants We created 3 variants of MNIST (Lecun
et al. 1998), where we simulate multiple information sources
as follows:

• MNIST-TB: x1 perceives the top half and x2 perceives
the bottom half of the image.

• MNIST-QU: 4 information sources that each perceive
quarters of the image.

• MNIST-NO: 4 information sources with independent bit-
flip noise with p = 0.05. We use these 4 sources to amor-
tise inference. In the generative model, we use the stan-
dard, noise-free digits as observable variables.

1The true posterior (of a single source) has two modes for most
data points. The uni-modal (Gaussian) proposal distribution learns
to cover both modes.

(a) Individual beliefs and their predictions. Left: 8 coloured cir-
cles are centred at the 8 test inputs from a mixture of Gaussians
toy dataset. The radii indicate 1 and 2 standard deviations of the
normal distributions. The two types of markers represent gener-
ated data from random samples of one of the information sources
(data axis 0 or 1). Right: Corresponding individual beliefs. Ellipses
show 1 standard deviation of the individual approximate posterior
distributions.

(b) Integrated belief and its predictions.

Figure 2: Approximate posterior distributions and samples
from the predicted likelihood function with and without in-
tegration of beliefs

First, we assess how well individual beliefs can be inte-
grated after learning, and whether beliefs can be used in-
dividually when learning them as integrated inference distri-
butions. On all MNIST variants, we train 5 different mod-
els by optimising the objectives L(ind), L(MoE), L(PoE), and
L(hybrid) withK = 16, as well as L(hybrid) withK = 1. All
other hyperparameters are identical. We then evaluate each
model under the 3 objectives L(ind), L(MoE) and L(PoE).
For comparison, we also train a standard IWAE with hard-
wired sources on MNIST and on MNIST-NO with a single
noisy source. The ELBOs on the test set are estimated using
K = 16 importance samples. The obtained estimates are
summarised in Tab. 1. The results confirm that learning the
PoE inference model directly leads to inseparable individual
beliefs. As expected, learning individual inference models
and integrating them subsequently as a PoE comes with a
tradeoff for L(PoE), which is mostly due to the low entropy
of the integrated distribution. On the other hand, optimising
the model with L(hybrid) achieves good results for both in-
dividual and integrated beliefs. On MNIST-NO, we can get
an improvement of 2.74 nats by integrating the beliefs of
redundant sources, compared to the standard IWAE with a
single source.

Next, we evaluate our method for conditional (structured)

4118

91

Table 1: Negative evidence lower bounds on variants of ran-
domly binarised MNIST. Lower is better.

MNIST-TB

L(ind) L(MoE) L(PoE) L(hybrid) L(hybrid)
(K=1) IWAE

L(ind) 102.20 102.40 265.59 104.03 108.97 -
L(MoE) 101.51 101.82 264.48 103.37 108.30 -
L(PoE) 94.38 94.39 87.59 90.07 90.81 88.79

MNIST-QU

L(ind) L(MoE) L(PoE) L(hybrid) L(hybrid)
(K=1) IWAE

L(ind) 120.46 120.37 447.67 129.63 140.61 -
L(MoE) 119.10 119.98 446.02 128.16 139.19 -
L(PoE) 108.07 107.85 87.67 89.20 90.17 88.79

MNIST-NO

L(ind) L(MoE) L(PoE) L(hybrid) L(hybrid)
(K=1) IWAE

L(ind) 94.81 94.86 101.20 96.27 95.31 -
L(MoE) 93.98 94.03 100.36 95.58 94.55 -
L(PoE) 94.52 94.65 92.27 92.21 94.49 94.95

prediction using Eq. (6). Fig. 3a shows the means of the like-
lihood functions, with latent variables drawn from individ-
ual and integrated beliefs. To demonstrate conditional image
generation from labels, we add a third encoder that perceives
class labels. Fig. 3b shows the means of the likelihood func-
tions, inferred from labels.

We also compare our method to the missing data im-
putation procedure described in (Rezende, Mohamed, and
Wierstra 2014) for MNIST-TB und MNIST-QU. We run
the Markov chain for all samples in the test set for 150
steps each and calculate the log likelihood of the imputed
data at every step. The results—averaged over the dataset—
are compared to our multimodal data generation method in
Fig. 4. For large portions of missing data as in MNIST-TB,
the Markov chain often fails to converge to the marginal dis-
tribution. But even for MNIST-QU with only a quarter of the
image missing, our method outperforms the Markov chain
procedure by a large margin. Please consult the supplemen-
tary material for a visualisation of the stepwise generations
during the inference procedure.

Caltech-UCSD Birds 200 Caltech-UCSD Birds 200
(Welinder et al. 2010) is a dataset with 6033 images of birds
with 128 × 128 resolutions, split into 3000 train and 3033
test images. As a second source, we use segmentation masks
provided by (Yang, Safar, and Yang 2014). On this dataset
we assess whether learning with multiple modalities can be
advantageous in scenarios where we are interested only in
one particular modality. Therefore, we evaluate the ELBO
for a single source and a single target observation, i.e. encod-
ing images and decoding segmentation masks. We compare
models that learned with multiple modalities using L(ind)

and L(hybrid) with models that learnt from a single modality.
Additionally, we evaluate the segmentation accuracy using
Eq. (6). The accuracy is estimated with 100 samples, drawn
from the belief informed by image data. The results are sum-
marised in Tab. 2. We distinguish between objectives that in-
volve both modalities in the generative model and objectives
where we learn only the generative model for the modality

(a) Row 1: Original images.
Row 2–4: Belief informed by
top half of the image. Row 5–7:
Informed by bottom half. Row
8–10: Integrated belief.

(b) Predictions from 10 random
samples of the latent variables,
inferred from one-hot class la-
bels.

Figure 3: Predicted images, where latent variables are in-
ferred from the variational distributions of different sources.
Sources with partial information generate diverse samples,
the integration resolves ambiguities. E.g. in Fig. 3a, the
lower half of digit 3 randomly generates digits 5 and 3 and
the upper half generates digits 3 and 9. In contrast, the inte-
gration resolves ambiguities.

(a) MNIST-TB, where bottom
half is missing.

(b) MNIST-QU, where bottom
right quarter is missing.

Figure 4: Missing data imputation with Monte Carlo proce-
dure described in (Rezende, Mohamed, and Wierstra 2014)
and our method. For the Markov chain procedure, the ini-
tial missing data is drawn randomly from Ber (0.5) and im-
puted from the previous random generation in subsequent
steps. MSNVI was trained with L(ind). For MNIST-QU, we
used the PoE belief of the three observed quarters. The plots
show the log-likelihood at every step of the Markov chain,
marginalised over the dataset. Higher is better.

Table 2: Negative ELBOs and segmentation accuracy on
Caltech-UCSD Birds 200. The IWAE was trained with a
single source and target observation. Models trained with
L(ind) and L(hybrid) use all sources and targets, and L(ind)*
and L(hybrid)* use all sources for inference, but learn the
generative model of a single modality.

L(ind) L(ind)* L(hybrid) L(hybrid)* IWAE

img-to-seg 5326 3264 5924 3337 3228
img-to-img -26179 -26663 -29285 -29668 -30415
accuracy 0.808 0.870 0.810 0.872 0.855

4119

92

Figure 5: Predictions (x- and y-coordinates) of the pendulum position (figures 1, 2, 3, 5, 6) and conflict measure (figure 4).
For the predictions, latent variables are inferred from images of 3 sensors with different views (top row) as well as their
integrated beliefs (bottom mid and right). The figures show predictions (of the static model) for different angles of the pendulum,
performing 3 rotations. After 2 rotations, failure of sensor 0 is simulated by outputting noise only. Lines show the mean and
shaded areas show 1 and 2 standard deviations, estimated using 500 random samples of latent variables. Bottom left: The
conflict measure of Eq. (2) for different angles of the pendulum.

of interest (segmentation), denoted with an asterisk. Mod-
els that have to learn the generative models for images and
segmentations show worse ELBOs and accuracy, when eval-
uated on one modality. In contrast, the accuracy is slightly
increased when we learn the generative model of segmenta-
tions only, but use both sources for inference.
We also refer the reader to the supplementary material of
our technical report (Kurle, Günnemann, and Smagt 2018),
where we visualise conditionally generated images, show-
ing that learning with the importance sampling estimate of
the ELBO is crucial to generate diverse samples from par-
tially informed sources.

5.3 Robustness via conflict detection and
redundancy

In this experiment we demonstrate how a shared latent rep-
resentation can increase robustness, by exploiting sensor re-
dundancy and the ability to detect conflicting data. We cre-
ated a synthetic dataset of perspective images of a pendulum
with different views of the same scene. The pendulum ro-
tates along the z-axis and is centred at the origin. We simu-
late three cameras with 32× 32-pixel resolution as informa-
tion sources for inference and apply independent noise with
std 0.1 to all sources. Each sensor is directed towards the ori-
gin (centre of rotation) from different view-points: Sensor 0
is aligned with the z-axis, and sensor 1 and 2 are rotated by
45 deg along the x- and y-axis, respectively. The distance
of all sensors to the origin is twice the radius of the pen-
dulum rotation. For the generative model we use the x- and
y-coordinate of the pendulum rather than reconstructing the
images. The model was trained with L(ind).

In Fig. 5, we plot the mean and standard deviation of pre-
dicted x- and y-coordinates, where latent variables are in-
ferred from a single source as well as from the PoE posteri-
ors of different subsets. As expected, integrating the beliefs

from redundant sensors reduces the predictive uncertainty.
Additionally, we visualise the three images used as informa-
tion sources above these plots.

Next, we simulate an anomaly in the form of a defect sen-
sor 0, outputting random noise after 2 rotations of the pen-
dulum. This has a detrimental effect on the integrated be-
liefs, where sensor 0 is part of the integration. We also plot
the conflict measure of Eq. (2). As can be seen, the conflict
measures for sensor 0 increases significantly when sensor 0
fails. In this case, one should integrate only the two remain-
ing sensors with low conflict conjunctively.

6 Summary and future research directions
We extended neural variational inference to scenarios where
multiple information sources are available. We proposed
an objective function to learn individual inference models
jointly with a shared generative model. We defined an ex-
emplar measure (of conflict) to compare the beliefs from
distinct inference models and their respective information
sources. Furthermore, we proposed a disjunctive and a con-
junctive integration method to combine arbitrary subsets of
beliefs.

We compared the proposed objective functions exper-
imentally, highlighting the advantages and drawbacks of
each. Naive integration as a PoE (L(PoE)) leads to insepa-
rable individual beliefs, while optimising the sources only
individually (L(ind)) worsens the integration of the sources.
On the other hand, a hybrid of the two objectives (L(hybrid))
achieves a good trade-off between both desiderata. More-
over, we showed how our method can be applied to struc-
tured output prediction and the benefits of exploiting the
comparability of beliefs to increase robustness.

This work offers several future research directions. As an
initial step, we considered only static data and a simple la-
tent variable model. However, we have made no assumptions

4120

93

about the type of information source. Interesting research
directions are extensions to sequence models, hierarchical
models and different forms of information sources such as
external memory. Another important research direction is
the combination of disjunctive and conjunctive integration
methods, taking into account the conflict between sources.

Acknowledgements
We would like to thank Botond Cseke for valuable sugges-
tions and discussions.

References
Andrew, G.; Arora, R.; Bilmes, J.; and Livescu, K. 2013. Deep
canonical correlation analysis. In Proceedings of the 30th Interna-
tional Conference on International Conference on Machine Learn-
ing - Volume 28, ICML’13, III–1247–III–1255. JMLR.org.
Bach, F., and Jordan, M. 2005. A probabilistic interpretation of
canonical correlation analysis.
Baltrušaitis, T.; Ahuja, C.; and Morency, L.-P. 2017. Multi-
modal machine learning: A survey and taxonomy. arXiv preprint
arXiv:1705.09406.
Bousquet, N. 2008. Diagnostics of prior-data agreement in applied
Bayesian analysis. Journal of Applied Statistics 35(9):1011–1029.
Burda, Y.; Grosse, R. B.; and Salakhutdinov, R. 2015. Importance
weighted autoencoders. CoRR abs/1509.00519.
Cremer, C.; Li, X.; and Duvenaud, D. K. 2018. Inference subopti-
mality in variational autoencoders. CoRR abs/1801.03558.
Dahl, F. A.; Gåsemyr, J.; and Navig, B. A robust conflict measure
of inconsistencies in Bayesian hierarchical models. Scandinavian
Journal of Statistics 34(4):816–828.
Dempster, A. P. 1967. Upper and lower probabilities induced by a
multivalued mapping. Ann. Math. Statist. 38(2):325–339.
Deng, Y. 2015. Generalized evidence theory. Applied Intelligence
43(3):530–543.
Denœux, T. 2008. Conjunctive and disjunctive combination of be-
lief functions induced by nondistinct bodies of evidence. Artificial
Intelligence 172(2):234 – 264.
Feng, F.; Li, R.; and Wang, X. 2015. Deep correspondence re-
stricted boltzmann machine for cross-modal retrieval. Neurocom-
puting 154:50–60.
Gershman, S., and Goodman, N. D. 2014. Amortized inference in
probabilistic reasoning. In Proceedings of the 36th Annual Meet-
ing of the Cognitive Science Society, CogSci 2014, Quebec City,
Canada, July 23-26, 2014.
Hardoon, D. R.; Szedmak, S. R.; and Shawe-taylor, J. R. 2004.
Canonical correlation analysis: An overview with application to
learning methods. Neural Comput. 16(12):2639–2664.
Hinton, G. E. 2002. Training products of experts by minimizing
contrastive divergence. Neural Comput. 14(8):1771–1800.
Hotelling, H. 1936. Relations between two sets of variates.
Biometrika 28(3/4):321–377.
Jiang, W.; Xie, C.; Zhuang, M.; Shou, Y.; and Tang, Y. 2016. Sen-
sor data fusion with z-numbers and its application in fault diagno-
sis. Sensors 16(9).
Khaleghi, B.; Khamis, A.; Karray, F.; and Razavi, S. 2013. Multi-
sensor data fusion: A review of the state-of-the-art. 14.
Kingma, D. P., and Welling, M. 2013. Auto-encoding variational
Bayes. CoRR abs/1312.6114.

Kurle, R.; Günnemann, S.; and Smagt, P. v. d. 2018. Multi-Source
Neural Variational Inference. ArXiv e-prints abs/1811.04451.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of
the IEEE 86(11):2278–2324.
Mnih, A., and Gregor, K. 2014. Neural variational inference and
learning in belief networks. In Proceedings of the 31th Inter-
national Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, 1791–1799.
Murphy, C. K. 2000. Combining belief functions when evidence
conflicts. Decis. Support Syst. 29(1):1–9.
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng, A. Y.
2011. Multimodal deep learning. In Getoor, L., and Scheffer, T.,
eds., ICML, 689–696. Omnipress.
Rasiwasia, N.; Costa Pereira, J.; Coviello, E.; Doyle, G.; Lanckriet,
G. R.; Levy, R.; and Vasconcelos, N. 2010. A new approach to
cross-modal multimedia retrieval. In Proceedings of the 18th ACM
International Conference on Multimedia, MM ’10, 251–260. New
York, NY, USA: ACM.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochas-
tic backpropagation and approximate inference in deep generative
models. In Proceedings of the 31th International Conference on
Machine Learning (ICML), 1278–1286.
Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton:
Princeton University Press.
Shon, A. P.; Grochow, K.; Hertzmann, A.; and Rao, R. P. N. 2005.
Learning shared latent structure for image synthesis and robotic
imitation. In Proceedings of the 18th International Conference
on Neural Information Processing Systems, NIPS’05, 1233–1240.
Cambridge, MA, USA: MIT Press.
Srivastava, N., and Salakhutdinov, R. 2014. Multimodal learning
with deep boltzmann machines. Journal of Machine Learning Re-
search 15:2949–2980.
Stein, B. E., and Meredith, M. A. 1993. The merging of the senses.
Cambridge, MA, US: The MIT Press.
Suzuki, M.; Nakayama, K.; and Matsuo, Y. 2016. Joint multimodal
learning with deep generative models.
Vedantam, R.; Fischer, I.; Huang, J.; and Murphy, K. 2017.
Generative models of visually grounded imagination. CoRR
abs/1705.10762.
Welinder, P.; Branson, S.; Mita, T.; Wah, C.; Schroff, F.; Belongie,
S.; and Perona, P. 2010. Caltech-UCSD Birds 200. Technical
Report CNS-TR-2010-001, California Institute of Technology.
Wu, M., and Goodman, N. 2018. Multimodal generative models
for scalable weakly-supervised learning. CoRR abs/1802.05335.
Yang, J.; Safar, S.; and Yang, M.-H. 2014. Max-margin boltz-
mann machines for object segmentation. 2014 IEEE Conference
on Computer Vision and Pattern Recognition 320–327.
Zadeh, L. A. 1986. A simple view of the dempster-shafer theory of
evidence and its implication for the rule of combination. AI Mag.
7(2):85–90.

4121

94

7 Appendix
A Individual inferences
In this section we derive the L(ind). Since any proposal distribu-
tion yields an ELBO to the log-marginal likelihood, the (weighted)
average is also an ELBO.

ln pθ(X) =

N∑

n=1

ln pθ(x
(n))

ln pθ(x
(n)) = ln

M∑

m=1

πmE
z
(n)
1:K
∼qφm

(
z(n)|x(n)

m

)
[1

K

K∑

k=1

w
(n)
m,k

]

≥
M∑

m=1

πm lnE
z
(n)
1:K
∼qφm

(
z(n)|x(n)

m

)
[1

K

K∑

k=1

w
(n)
m,k

]

≥
M∑

m=1

πmE
z
(n)
1:K
∼qφm

(
z(n)|x(n)

m

)
[

ln
1

K

K∑

k=1

w
(n)
m,k

]
,

where

w
(n)
m,k =

pθ(x
(n) | z(n)k) pθ(z

(n)
k)

qφm(z
(n)
k |x

(n)
m)

.

The factors πm are the weights for each ELBO term, satisfying
0 ≤ πm ≤ 1 and

∑M
m=1 πm = 1.

When K = 1, the gap between L(ind) and the marginal log-
likelihood is the average Kullback-Leibler (KL) divergence be-
tween individual approximate posteriors and the true posterior
from all sources:

ln pθ(x
(n))− L(ind)

=

M∑

m=1

πmDKL

(
qφm(z(n) |x(n)

m) || pθ(z(n) |x(n))
)

This gap can be further decomposed as:

M∑

m=1

πmKL(qφm(z |xm) || p(z |x))

=

M∑

m=1

πmKL(qφm(z |xm) || p(z |xm))

−
M∑

m=1

πmEz∼qθm (z|xm)

[
ln pθ−m(x−m | z)

]

+

M∑

m=1

πm ln pθ−m(x−m |xm)

=

M∑

m=1

πmKL(qφm(z |xm) || p(z |xm))

−
M∑

m=1

πmEz∼qθm (z|xm)

[
ln pθ−m(x−m | z)

]

+

M∑

m=1

πm lnEz∼p(z|xm)

[
pθ−m(x−m | z)

]
.

To minimise L(ind), not only the KL divergence of the individ-
ual approximate posterior and the respective true posterior need to
be minimised, but also two additional terms which depend on the
likelihood of those observations that have not been used as an in-
formation source for inference.

B Mixture of experts inference
The ELBO for the mixture distribution L(MoE) can be derived sim-
ilarly. We employ a Monte Carlo approximation only w.r.t. each
mixture component but not w.r.t. the mixture weights. That is,
we enumerate all possible mixture components rather than sam-
pling each from an indicator variable. This reduces variance of
the estimate and circumvents the problem of propagating gradients
through the sampling process of discrete random variables.

ln pθ
(
x(n))

= ln

∫
pθ
(
x(n), z(n)

) ∑M
m=1 πmqφm(z(n) |x(n)

m)
∑M
m′=1 πm′qφm′ (z

(n) |x(n)

m′)
dz(n)

= ln

M∑

m=1

πmE
z(n)∼qφm

(
z(n)|x(n)

m

)
[
w

(n)
m,k

]

= ln

M∑

m=1

πmE
z(n)∼qφm

(
z(n)|x(n)

m

)
[

1

K

K∑

k=1

w
(n)
m,k

]

≥
M∑

m=1

πm lnE
z(n)∼qφm

(
z(n)|x(n)

m

)
[

1

K

K∑

k=1

w
(n)
m,k

]

≥
M∑

m=1

πmE
z
(n)
1:K
∼qφm

(
z(n)|x(n)

m

)
[

ln
1

K

K∑

k=1

w
(n)
m,k

]
,

L(MoE) minimises the average KL-divergence between the mixture
of approximate posteriors and the true posterior from all sources:

ln p(x)− L(MoE)

=

M∑

m=1

πmDKL

(M∑

m′=1

πm′qφm′ (z |xm′) || p(z |x)
)
.

C Product of Gaussian experts
Here we consider the popular case of individual Gaussian approx-
imate posteriors and a zero-centred Gaussian prior. Let the normal
distributions be represented in the canonical form with canonical
parameters {Λ; η}:

p(z) =
1

Z(µ,Λ)
exp

(
ηT z− 1

2
zTΛz

)
.

Λ denotes the precision matrix and η = Λµ, where µ is the mean.
Furthermore, Z(µ,Λ) = (2π)Dz/2|Λ|−1/2 exp(1

2
ηTΛ−1η) is the

partition function.
Let the subscriptsm, 0 and ∗ indicate them-th approximate dis-

tribution, the prior and the integrated distribution. The natural pa-
rameters of the integrated variational posterior qφ(zx) from Eq. (3)
can then be calculated as follows:

Λ∗ =

M∑

m=1

Λm − (M − 1)Λ0,

η∗ =

M∑

m=1

ηm − (M − 1)η0.

To obtain a valid integrated variational posterior, we require the
precision matrix Λ∗ to be positive semi-definite. This enforces re-
quirements for the precision matrices Λm. In the case of diagonal
precision matrices, the necessary and sufficient condition is that Λ∗
has all positive entries. A sufficient condition for each entry Λm[i]
is Λ0[i] ≤ Λm[i].

The partition function of the integrated belief can be calculated
from the natural parameters, taking η∗ = Λ∗µ∗:

Z(µ∗,Λ∗) = (2π)Dz/2|Λ∗|−1/2 exp
(1

2
(η∗)

T (Λ∗)
−1η∗

)
. (7)

95

D Point-wise mutual information
Inspecting Eq. (3), we can see that the negative logarithm of
the constant term corresponds to the pointwise mutual informa-
tion (PMI) between the observations. We do not need to calculate
this constant since we impose assumptions about the parametric
forms of the distributions and can calculate the partition function
Z(µ∗,Λ∗) of the integrated belief using Eq. (7).

However, we can also calculate this partition function from the
product of individual partition functions and the above mentioned
constant in Eq. (3):

1

Z(µ∗,Λ∗)

=

[
M∏

m=1

1

Z(µm,Λm)

]
· Z(µ0,Λ0)(M−1) ·

∏M
m=1 p(xm)

p(x)
.

The PMI can then be calculated as:

PMI = ln

(
Z(µ0,Λ0)M−1

∏M
m=1 Z(µm,Λm)

· Z(µ∗,Λ∗)

)
.

The pointwise mutual information can be calculated between any
subset of information sources. We note however, that it is based
on the assumption that all involved probability density functions—
the prior and all approximate posterior distributions—are normal
distributions.

E Visualisation of samples from individual and
integrated beliefs on mixture of bi-variate
Gaussians dataset

For the mixture of bi-variate Gaussians dataset, we show latent
samples from both information sources in Fig. 6a (left) and sam-
ples obtained by sampling importance re-sampling (SIR) using the
full likelihood model in 6a (right). We also show random samples
from the integrated beliefs as well as samples obtain by SIR in
Fig. 6b (left) and 6b (right) respectively. We conclude that the inte-
grated beliefs are much better proposal distributions, resolving the
ambiguity of the individual sources.

F Visualisation of missing data imputation
Fig. 7 shows the mean of generated images for 50 steps of the
Markov chain procedure for missing data imputation. As can be
seen in Fig. 7a, the chain does not converge for many digits within
50 steps if too large portions of the data are missing. Indeed, we
observed that the procedure randomly fails or succeeds to converge
for the same input even after 150 steps.

G Conditional generations on Caltech-UCSD
Birds 200

We show conditional generations of images, inferred from images
or segmentation masks in Fig. 8. When inferring from segmenta-
tion masks, the conditional distribution pθimg (ximg |xlabel) should
be highly multimodal due to the missing colour information. This
uncertainty should ideally be covered in the uncertainty of the be-
lief. As can be seen in Fig. 8c, learning with a single importance
sample leads to predictions of average images. For completeness,
generated segmentation masks are shown in Fig. 9.

H Experiment setups
All inference (generative) models use the same neural network ar-
chitectures for the different sources, except the first (last) layer,
which depends on the dimensions of the data. We refer to main
parts of the architectures, identical for each source, as “stem”. In

Figure 6: Samples from individual and integrated beliefs and
samples obtained after SIR

(a) Individual beliefs and their predictions. Left: Random sam-
ples from variational posterior without integration. Colours cor-
respond to 8 test points, located at the means of the mixture of
Gaussians data distribution. Right: Samples after sampling im-
portance re-sampling using all likelihood functions.

(b) Integrated belief and its predictions. Left: Random sam-
ples from integrated variational posterior. Colours correspond
to the test points. Right: Samples after sampling importance re-
sampling using all likelihood functions.

case of inference models, the stem is the input to a dense layer
with linear (no activation) and sigmoid activations, parameterising
the mean and std-dev of the approximate posterior distribution. In
case of generative models, refer to the respective subsections.

We use the Adam optimiser (Kingma and Ba 2014) with β1 =
0.9 and β2 = 0.999 in all experiments. In the tables, “dense” de-
notes fully connected layers, “conv” refers to convolutional layers,
“pool” refers to pooling (down-sampling), and “interpol” refers
to a bilinear interpolation (up-sampling). K is the number of
importance-weighted samples and Dz refers to the number of la-
tent dimensions, each modelled with a diagonal normal distribution
with zero mean and unit standard deviation.

Partially observable mixture of bi-variate Gaussians In
the pendulum experiment, we use 2 sources, corresponding to the
x- and y-coordinates of the sample from a mixture of bi-variate
Gaussians distribution. The neural network stems and training hy-
perparameters are summarised in Tab. 3. The generative models are
both 1D Normal distributions, parameterised by linear dense lay-
ers, taking inputs from their respective stems.

MNIST variants The neural network stems are summarised in
Tab. 4. The data is modelled as Bernoulli distributions of dimen-
sions 784 for MNIST-NO, 392 for MNIST-TB and 196 for MNIST-
QU. The Bernoulli parameters are parameterised by linear dense
layers, taking inputs from their respective stems.

Pendulum In the pendulum experiment, we use 3 sources with
32 × 32 images for the inference model, but a single observation
of x- and y-coordinates of the pendulum centre. The generative

96

(a) Bottom half of the image is missing

(b) Bottom right quarter of the image is missing

Figure 7: Missing data imputation results: Mean of generated images. Observed data (fixed binarised) is kept unchanged, miss-
ing data is replaced with randomly generated (binary) image of previous iteration. The initial missing data is drawn randomly
from Ber (0.5). Each of the 10 rows is an exemplar image of digits 0–9.

(a) Trained with L(ind). (b) Trained with L(hybrid). (c) Trained with L(hybrid), K=1.

Figure 8: Conditional image generations, where latent variables are inferred from different sources. Row 1: Target observations.
Row 2–4: Latent variables inferred from images. Row 5–15: Latent variables inferred from segmentation masks.

97

(a) Trained with L(ind). (b) Trained with L(hybrid). (c) Trained with L(hybrid), K=1.

Figure 9: Conditional segmentation mask generations, where latent variables are inferred from different sources. Row 1: Target
observations. Row 2–4: Latent variables inferred from segmentation masks. Row 5–15: Latent variables inferred from images.

Table 3: Neural network architectures (stem) and hyper-
parameters used for experiments with partially observable
mixture of bi-variate Gaussians

Inference models
layer activation output shape

dense tanh 32
dense tanh 32

Generative models
layer activation output shape

dense tanh 32
dense tanh 32

Hyperparameters
K Dz batch size learning rate #iterations

8 2 32 0.0001 25k

Table 4: Neural network architectures and hyperparameters
used for experiments with MNIST variants.

Inference models
layer activation output shape

dense elu 200
dense elu 200

Generative models
layer activation output shape

dense elu 200
dense elu 200

Hyperparameters
K Dz batch size learning rate #iterations

16 16 128 0.00005 250k

model is assumed Normal for both coordinates, where the mean is
predicted by a linear dense layer taking inputs from the stem, and
the std deviation is a global variable. The neural network stems and
training hyperparameters are summarised in Tab. 5.

Caltech-UCSD Birds 200 The neural network stems are sum-
marised in Tab. 6. Images are modelled as diagonal normal distribu-
tions and segmentation masks as Bernoulli distributions. The gen-
erative model stem is the input to a 5× 5-transposed convolutional
layers with stride 2, yielding the mean of the likelihood function.
The standard deviations are global and shared for all pixels. Leaky
rectified linear units (lrelu) use α = 0.10.

98

Table 5: Neural network architectures and hyperparameters
used for perspective pendulum experiments

Inference models
layer activation output shape

dense tanh 32
dense tanh 32

Generative models
layer activation output shape

dense tanh 256
dense tanh 64
dense tanh 16

Hyperparameters
K Dz batch size learning rate #iterations

16 2 16 0.00005 50k

Table 6: Neural network architectures and hyperparameters
used for Caltech-UCSD Birds 200 experiments

Inference models
layer kernel stride activation output shape

conv 3×3 1 lrelu 128x128x16
conv 3×3 1 lrelu 128x128x16
pool 3×3 2 - 64x64x16
conv 3×3 1 lrelu 64x64x32
conv 3×3 1 lrelu 64x64x32
pool 3×3 2 - 32x32x32
conv 3×3 1 lrelu 32x32x48
conv 3×3 1 lrelu 32x32x48
pool 3×3 2 - 16x16x48
conv 3×3 1 lrelu 16x16x64
conv 3×3 1 lrelu 16x16x64
pool 3×3 2 - 8x8x64
conv 3×3 1 lrelu 8x8x96
conv 3×3 1 lrelu 8x8x96
pool 3×3 2 - 4x4x96

dense - - linear 256
Generative models

layer kernel stride activation output shape

dense - - linear 4x4x96
conv 3×3 1 lrelu 4x4x64
conv 3×3 1 lrelu 4x4x64

interpol 3×3 2 - 8x8x64
conv 3×3 1 lrelu 8x8x48
conv 3×3 1 lrelu 8x8x48

interpol 3×3 2 - 16x16x48
conv 3×3 1 lrelu 16x16x32
conv 3×3 1 lrelu 16x16x32

interpol 3×3 2 - 32x32x32
conv 3×3 1 lrelu 32x32x16
conv 3×3 1 lrelu 32x32x16

interpol 3×3 2 - 64x64x16
Hyperparameters

K Dz batch size learning rate #iterations

80 96 16 0.0002 25k

99

9 Deep Rao-Blackwellised Particle Filters for
Time Series Forecasting

In the domain of time-series forecasting, learning probabilistic sequence models with accurate
and efficient posterior approximations is complicated. The reason is that approximation errors
typically accumulate with the length of the time series. While tractable models are usually
too simple, particle filter approximations scale poorly with the state dimension. The approach
taken in this chapter builds on the well-known SGLS that allows for efficient inference with a
Rao-Blackwellised particle filter. In order to address two significant limitations of SGLSs, a state-
to-switch recurrence and a decoder-type emission model are introduced. The state-to-switch
recurrence improves long-term forecasts by propagating relevant information forward in time,
and the emission model allows for non-linear emissions with non-Gaussian noise. An efficient
Rao-Blackwellised particle filter is developed for this new model that computes expectations w.r.t.
variables in the conditionally Gaussian linear part of the model in closed-form and approximates
expectations w.r.t. the remaining variables using SMC.

The relevant background is provided in Sec. 2.3 – 2.5, and Ch. 5.

Authors Richard Kurle
Syama Sundar Rangapuram
Emmanuel de Bézenac
Stephan Günnemann
Jan Gasthaus

Conference Advances in Neural Information
Processing Systems, NeurIPS 2020

Contribution Problem definition significantly contributed
Literature survey contributed
Algorithm development significantly contributed
Method implementation significantly contributed
Experimental evaluation significantly contributed
Preparation of the manuscript significantly contributed

100

Deep Rao-Blackwellised Particle Filters for Time
Series Forecasting

Richard Kurle∗† 2 Syama Sundar Rangapuram1 Emmanuel de Bezenac† 3

Stephan Günnemann2 Jan Gasthaus1
1AWS AI Labs 2Technical University of Munich 3Sorbonne Université

Abstract

This work addresses efficient inference and learning in switching Gaussian linear
dynamical systems using a Rao-Blackwellised particle filter and a corresponding
Monte Carlo objective. To improve the forecasting capabilities, we extend this
classical model by conditionally linear state-to-switch dynamics, while leaving
the partial tractability of the conditional Gaussian linear part intact. Furthermore,
we use an auxiliary variable approach with a decoder-type neural network that
allows for more complex non-linear emission models and multivariate observations.
We propose a Monte Carlo objective that leverages the conditional linearity by
computing the corresponding conditional expectations in closed-form and a suitable
proposal distribution that is factorised similarly to the optimal proposal distribution.
We evaluate our approach on several popular time series forecasting datasets as
well as image streams of simulated physical systems. Our results show improved
forecasting performance compared to other deep state-space model approaches.

1 Introduction

The Gaussian linear dynamical system (GLS) [4, 38, 31] is one of the most well-studied dynamical
models with wide-ranging applications in many domains, including control, navigation, and time-
series forecasting. This state-space model (SSM) is described by a (typically Markovian) latent linear
process that generates a sequence of observations. The assumption of Gaussian noise and linear state
transitions and measurements allows for exact inference of the latent variables—such as filtering
and smoothing—and computation of the marginal likelihood for system identification (learning).
However, most systems of practical interest are non-linear, requiring more complex models.

Many approximate inference methods have been developed for non-linear dynamical systems: Deter-
ministic methods approximate the filtering and smoothing distributions e.g. by using a Taylor series
expansion of the non-linear functions (known as extended Kalman filter (EKF) and second-order
EKF) or by directly approximating these marginal distributions by a Gaussian using moment matching
techniques [26, 27, 2, 3, 36]. Stochastic methods such as particle filters or smoothers approximate
the filtering and smoothing distributions by a set of weighted samples (particles) using sequential
Monte Carlo (SMC) [13, 16]. Furthermore, system identification with deep neural networks has been
proposed using stochastic variational inference [17, 15] and variational SMC [23, 29, 20].

A common challenge with both types of approximations is that predictions/forecasts over long forecast
horizons suffer from accumulated errors resulting from insufficient approximations at every time step.
Switching Gaussian linear systems (SGLS) [1, 12]—which use additional latent variables to switch
between different linear dynamics—provide a way to alleviate this problem: the conditional linearity
can be exploited by approximate inference algorithms to reduce approximation errors. Unfortunately,
this comes at the cost of reduced modelling flexibility compared to more general non-linear dynamical
systems. Specifically, we identify the following two weaknesses of the SGLS: i) the switch transition
∗Correspondence to richard.kurle@tum.de. †Work done while at AWS AI Labs.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

101

model is assumed independent of the GLS state and observation; ii) conditionally-linear emissions
are insufficient for modelling complex multivariate data streams such as video data, while more
suitable emission models (e.g. using convolutional neural networks) exist. The first problem has been
addressed in [21] through augmentation with a Polya-gamma-distributed variable and a stick-breaking
process. However, this approach uses Gibbs sampling to infer model parameters and thus does not
scale well to large datasets. The second problem is addressed in [11] using an auxiliary variable
between GLS states and emissions and stochastic variational inference to obtain a tractable objective
function for learning. Yet, this model predicts the GLS parameters deterministically using an LSTM
with an auto-regressive component, resulting in poor long-term forecasts.

We propose auxiliary variable recurrent switching Gaussian linear systems (ARSGLS), an extension
of the SGLS to address both weaknesses by building on ideas from [21] and [11]. ARSGLS improves
upon the SGLS by incorporating a conditionally linear state-to-switch dependence, which is crucial
for accurate long-term out-of-sample predictions (forecasting), and a decoder-type neural network
that allows modelling multivariate time-series data with a non-linear emission/measurement process.
As in the SGLS, a crucial feature of ARSGLS is that approximate inference and likelihood estimation
can be Rao-Blackwellised, that is, expectations involving the conditionally linear part of the model
can be computed in closed-form, and only the expectations wrt. the switch variables need to be
approximated. We leverage this feature and propose a Rao-Blackwellized filtering objective function
and a suitable proposal distribution for this model class.

We evaluate our model with two different instantiations of the GLS: in the first scenario, the GLS is
implemented with a constrained structure that models time-series patterns such as level, trend and
seasonality [14, 34]; the second scenario considers a general, unconstrained conditional GLS. We
compare our approach to closely related methods such as Deep State Space Models (DeepState)
[30] and Kalman Variational Auto-Encoders (KVAE) [11] on 5 popular forecasting datasets and
multivariate (image) data streams generated from a physics engine as used in [11]. Our results show
that the proposed model achieves improved performance for univariate and multivariate forecasting.

2 Background

2.1 Gaussian Linear Dynamical Systems

The GLS models sequence data using a first-order Markov linear latent and emission process:
xt = Axt−1 +But + wt, wt ∼ N (0, R), (1a)
yt = Cxt +Dut + vt, vt ∼ N (0, Q), (1b)

where the vectors u, x and y denote the inputs (also referred to as covariates or controls), latent
states, and targets (observations). A, and C are the transition and emission matrix, B and D are
optional control matrices, and R, Q are the state and emission noise covariances. In the follow-
ing, we will omit the optional inputs u to ease the presentation, however, we use inputs e.g. for
our experiments in Sec. 5.2. The appealing property of the GLS is that inference and likelihood
computation is analytically tractable using the well-known Kalman filter algorithm, alternating
between a prediction step p(xt | y1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1 and update step

p(xt | y1:t) ∝ p(xt | y1:t−1)p(yt | xt), where p(xt | xt−1) is the state transition and p(yt | xt) is
the emission/measurement process corresponding to Eqs. (1a) and (1b), respectively.

2.2 Particle Filters

In non-linear dynamical systems, the filter distribution p(xt | y1:t) is intractable and needs to be
approximated. Particle filters are SMC algorithms that approximate the filter distribution at every time-
step t by a set of P weighted particles {x(p)}P , combining importance sampling and re-sampling.
Denoting the Dirac measure centred at xt by δ(xt), the filter distribution is approximated as

p(xt | y1:t) ≈
P∑

p=1

w
(p)
t δ(x

(p)
t). (2)

In first-order Markovian dynamical systems, the importance-weights are computed recursively as

w̃
(p)
t = w

(p)
t−1γ(x

(p)
t ,x

(p)
t−1), w

(p)
t =

w̃
(p)
t∑P

p=1 w̃
(p)
t

, γ(x
(p)
t ;x

(p)
t−1) =

p(yt | x(p)
t)p(x

(p)
t | x(p)

t−1)

π(x
(p)
t | x(p)

1:t−1)
, (3)

2

102

where w̃(p)
t and w(p)

t denote the unnormalised and normalised importance-weights, respectively,
γ(x

(p)
t ;x

(p)
t−1) is the incremental importance-weight, and π(xt | x(p)

1:t−1) is the proposal distribution.
To alleviate weight degeneracy issues, a re-sampling step is performed if the importance-weights
satisfy a chosen degeneracy criterion. A common criterion is to re-sample when the effective sample
size (ESS) drops below half the number of particles, i.e. PESS =

(∑P
p=1(w(p))2

)−1 ≤ P/2.

2.3 Switching Gaussian Linear Systems with Rao-Blackwellised Particle Filters

Switching Gaussian linear systems (SGLS), also referred to as conditional GLS or mixture GLS,
are a class of non-linear SSMs that use additional (non-linear) latent variables s1:t that index the
parameters (transition, emission, control, and noise covariance matrices) of a GLS, allowing them to
“switch” between different (linear) regimes:

xt = A(st)xt−1 +B(st)ut + wt(st), wt(st) ∼ N (0, R(st)),

yt = C(st)xt +D(st)ut + vt(st), vt(st) ∼ N (0, Q(st)).
(4)

The switch variables st are typically categorical variables, indexing one of K base matrices; however,
other choices are possible (see Sec. 3.1). Omitting the inputs u again, the graphical model factorises
as p(y1:T ,x0:T , s1:T) = p(x0)

∏T
t=1 p(yt | xt, st)p(xt | xt−1, st)p(st | st−1), where p(s1 | s0) =

p(s1) is the switch prior (conditioned on u1 if inputs are given). Note that we use an initial state x0

without corresponding observation for convenience.2

A crucial property of this model is that, while the complete model exhibits non-linear dynamics, given
a sample of the trajectory s

(p)
1:T , the rest of the model is (conditionally) linear. This allows for efficient

approximate inference and likelihood estimation. The so-called Rao-Blackwellised particle filter
(RBPF) leverages the conditional linearity by approximating expectations—that occur in filtering and
likelihood computation—wrt. the switch variables s1:T using SMC, while computing expectations
wrt. the state variables x1:T analytically. To achieve this, the posterior distribution is factorised as

p(x1:t, s1:t | y1:t) = p(x1:t | s1:t,y1:t)p(s1:t | y1:t). (5)

The first term of Eq. (5) is tractable given a sample trajectory s
(p)
1:t using a Kalman smoother. How-

ever, for forecasting and loss computation (Sec. 3.3.2) we only require the state from the last step
p(xt | s1:t,y1:t) for which even the Kalman filter suffices (cf. supplementary material for details).
The second term of Eq. (5) can also be computed recursively using Bayes rule:

p(s1:t | y1:t) ∝ p(yt | s1:t,y1:t−1) p(st | st−1,���s1:t−2,���y1:t−1) p(s1:t−1 | y1:t−1). (6)

Here and in the following we explicitly show the terms that cancel due to the Markov-property. The
predictive distribution

p(yt | s1:t,y1:t−1) =

∫
p(yt | xt, st,���s1:t−1,���y1:t−1)p(xt | s1:t,y1:t−1)dxt

is a by-product of the first term in Eq. (5); it can be computed in closed-form using the Kalman filter.
Since all terms in p(s1:t | y1:t) can be computed in closed-form, this distribution can be approximated
by a set of particles using SMC (cf. Eq. (2)). The corresponding incremental importance-weights are

γ(s
(p)
t ; s

(p)
1:t−1) =

p(yt | s(p)1:t , y1:t−1)p(s
(p)
t | s(p)t−1)

π(s
(p)
t | s(p)1:t−1)

. (7)

The resulting joint filter distribution for both the state and switch variables is a mixture of Gaussians:

p(xt, st | y1:t) ≈
P∑

p=1

w
(p)
t δ(s

(p)
t) N

(
xt |mt(s

(p)
1:t), Vt(s

(p)
1:t)
)
, (8)

where the history s
(p)
1:t−1 is dropped. To be precise, the mean mt(s

(p)
1:t) and variance Vt(s

(p)
1:t) of the

filtered state xt depend on the whole trajectory s
(p)
1:t , although from an algorithmic perspective, only

the current switch s
(p)
t is required to compute the incremental importance-weights in Eq.(7).

2We do not include an initial, unconditional switch variable s0, as the optimal proposal distribution would be
proportional to p(s0,x0); thus not using observations in the initial proposal distribution would lead to inefficient
proposals for the following time steps.

3

103

3 Auxiliary Variable Recurrent Switching Gaussian Linear Systems

The SGLS provides an attractive tradeoff between model complexity and efficient inference. However,
this model is limited in the following respects: i) switch transitions are assumed to be independent
of the state variable; ii) multivariate observations with a complex non-linear dependence—such as
streams of image data—are not well-described by a conditionally linear emission model. We propose
the auxiliary variable recurrent SGLS (ARSGLS) to address both of these issues in Secs. 3.1 and 3.2.
Furthermore, we leverage the conditional linearity using a RBPF (Sec. 3.3) with a suitable proposal
distribution that is structurally simliary to the optimal (minimum variance) proposal distribution. The
resulting graphical model and corresponding proposal distribution is visualised in Fig. 1 and the
algorithm for filtering and loss computation is presented in Alg. 1 in the supplementary material.

yt−1 yt yt+1

zt−1 zt zt+1

xt−1 xt xt+1

st−1 st st+1

ut−1 ut ut+1

zt

st

φzq

φsq

hz

hs

ytut

φzt

φxtφxt−1

φstst−1

EncoderForward model Proposal

ut

Figure 1: Left: Forward graphical model of ARSGLS, incl. inputs (controls) ut. Shaded/unshaded nodes
indicate observed/hidden variables. New components (auxiliary variable, state-to-switch recurrence) are marked
in red. Right: Inference proposal distribution for time step t. The left part is identical (shared) to the forward
model, the right part is the approximated likelihood function given by a ladder-type encoder, and the proposal
distribution results from taking the product of the two respective Gaussian functions (cf. Sec. 3.3.3, Eq. (14)).
To visualise the marginalisation of xt−1 and xt as well as the product of Gaussian functions of the variables st
and zt, we explicitly denote the distribution parameters (location, covariance) of the respective Gaussians by φ.

3.1 Gaussian Recurrent Switch Transition

Although the classical SGLS is capable of generating sequences with non-linear dynamics (due to
non-linear switches), it makes a very limiting assumption: the switch variables s1:T are independent
of the state variables x1:T , resulting in open loop switch dynamics. However, most non-linear
systems can be approximated by a conditionally linear system only through linearisation at the
current state. Thus, a feedback (closed loop) coupling with the states xt−1 would be necessary
(cf. Fig. 2 for an example with a simple non-linear system). Unfortunately, using a more powerful
switch transition model p(st | st−1,xt−1) complicates inference [5, 21]: In order to compute
p(s1:t | y1:t) =

∫
p(s1:t,xt | y1:t)dxt, the previous state variable must be integrated out in closed-

form (since we want to avoid sampling the states). While this problem has been addressed in [21],
we take a different route that admits a re-parametrised proposal distribution, suitable for optimisation
with stochastic gradient descent. It has been shown that Gaussian-distributed switch variables [6] can
perform as well or better than continuous relaxations of categorical variables [24] in this setting. We
propose to use Gaussian switch variables with a learnable Gaussian prior p(s1) and conditionally
linear state-to-switch transformations that allow for closed-form marginalisation of the state variable:

s
(p)
t = F (s

(p)
t−1)xt−1 + f(s

(p)
t−1) + εt(s

(p)
t−1), εt(s

(p)
t−1) ∼ N

(
0, S(s

(p)
t−1)

)
, (9)

where f is a non-linear function (neural network), and F (st−1) and S(st−1) are the transition and
covariance matrix predicted by the previous switch variable. Marginalising the states results in
p(st|s(p)1:t−1) = N

(
st;F (s

(p)
t−1)mt−1(s

(p)
1:t−1)+f(s

(p)
t−1), F (s

(p)
t−1)Vt−1(s

(p)
1:t−1)F

T (s
(p)
t−1)+S(s

(p)
t−1)

)
. (10)

The SGLS parameters {A,B,C,D,R,Q, F, S} can be predicted from the Gaussian s
(p)
t and s

(p)
t−1

in different ways, e.g. i) as the direct outputs a neural network; or ii) as a weighted average of a set
of base matrices, where the weights are predicted by a neural network. We use the latter approach,
which has been shown to be effective by previous work [6]. Deterministic weighted averages are also
used in [37, 15, 11], while the “direct” approach of predicting the parameters is used e.g. by [30].

4

104

3.2 Non-linear Multivariate Emission Model

Time-series data is often non-Gaussian or multivariate with a complex dependence on hidden variables
(e.g. images, point clouds, discrete data). To model such data, we augment the recurrent SGLS with a
Gaussian latent variable z1:T that decouples the observations from the SGLS through the conditional
independence p(x1:t | s1:t, z1:t,y1:t) = p(x1:t | s1:t, z1:t). The resulting joint distribution is given as

p(y1:T , z1:T ,x0:T , s1:T) = p(x0)

T∏

t=1

p(yt | zt)p(zt | xt, st)p(xt | xt−1, st)p(st | st−1,xt−1).

This auxiliary variable zt enables the use of arbitrary conditional distributions p(yt | zt) for which
the distribution parameters are predicted by a non-linear emission model such as a neural network.
Samples of the auxiliary variables can be interpreted as pseudo-observations in the SGLS. This
emission model and auxiliary is similar to the additional latent variable in the KVAE [11]; cf. Sec. 4
for further details on the similarities and differences.

3.3 Inference and Parameter Estimation

We extend the RBPF from Sec. 2.3 to infer the latent variables {s,x, z}; and we use maximum
likelihood estimation to learn the model parameters θ (shared between multiple time-series). These
include i) the base matrices of the (recurrent) SGLS, ii) the parameters of the state prior, iii) the
switch prior and transition (neural network), and iv) the auxiliary variable decoder (neural network).

3.3.1 Rao-Blackwellised Particle Filtering

Filtering can be performed analogous to the standard Rao-Blackwellised particle filter (cf. Sec. 2.3).
To this end, we factorise the posterior distribution similarly as was shown for the SGLS:

p(z1:t,x1:t, s1:t | y1:t) = p(x1:t | z1:t, s1:t,��y1:t) p(z1:t, s1:t | y1:t). (11)
The first term in Eq. (11) can again be computed in closed-form while the second density can be
approximated using SMC. The incremental importance-weights for this model are given as

γ(s
(p)
t , z

(p)
t ; s

(p)
1:t−1, z

(p)
1:t−1) =

p(yt | z(p)t) p(z
(p)
t | z(p)1:t−1, s

(p)
1:t) p(s

(p)
t | z(p)1:t−1, s

(p)
1:t−1)

π(z
(p)
t , s

(p)
t | s(p)1:t−1, z

(p)
1:t−1)

. (12)

The numerator p(yt, zt, st | y1:t−1, z1:t−1, s1:t−1) reveals that the switch transition (last term) with
state-to-switch dynamics is no longer Markovian. This is because we marginalise the filtered
state p(st | s1:t−1, z1:t−1) =

∫
p(st | st−1,xt−1)p(xt−1 | z1:t−1, s1:t−1)dxt−1 that depends on all

previous switches and pseudo-observations similarly to the generative case in Eq. (10). As for the
SGLS in Sec. 2.3, the conditional distribution of the auxiliary variable (second term) is a by-product
of the Kalman filter prediction and update step that is required for computing the first term in Eq. (11):

p(zt | z(p)1:t−1, s
(p)
1:t) =

∫
p(zt | xt)p(xt | z(p)1:t−1, s

(p)
1:t)dxt,

p(xt | z(p)1:t−1, s
(p)
1:t) =

∫
p(xt | xt−1, s(p)t)p(xt−1 | z(p)1:t−1, s

(p)
1:t−1)dxt−1.

3.3.2 Parameter Estimation

For learning the model parameters shared between different time-series we use maximum like-
lihood estimation and stochastic gradient descent (SGD). In the SMC setting, an unbiased es-
timator of the marginal likelihood p̂(y1:T ; θ) =

∏T
t=1

∑P
p=1 w̃

(p)
t (θ) can be obtained from the

unnormalised importance-weights [9] (cf. supplementary material for more details). Consequently,
E
[

log p̂(y1:T ; θ)
]
≤ log p(y1:T ; θ) due to Jensen’s inequality. Based on this, [29, 23, 20] proposed

a tractable lower bound to the log-marginal likelihood that can be optimised with SGD:

L(y1:T ; θ) =
T∑

t=1

log p̂(yt | y1:t−1; θ) =
T∑

t=1

log
P∑

p=1

w̃
(p)
t (θ) ≤ log p(y1:T ; θ). (13)

We propose to use the same objective function, however, leveraging the conditional linearity of our
model, using the incremental importance-weights of Eq. (12) for computing the importance-weights
(cf. Eq. (3)).

5

105

3.3.3 Ladder Proposal Distribution

Choosing a good proposal distribution is essential to obtain reliable estimates with low variance.
The optimal (minimum variance) proposal distribution is proportional to the joint distribution
p(yt, zt, st | s1:t−1, z1:t−1,���y1:t−1), i.e. the numerator of the incremental importance-weights. We
therefore propose a proposal distribution with similar structure, while reusing the known densities:

π(zt, st | z1:t−1, s1:t−1,yt) ∝ q(zt, st | yt)p(zt, st | z1:t−1, s1:t−1)

= q(zt, st | yt)p(zt | z1:t−1, s1:t)p(st | z1:t−1, s1:t−1)
(14)

The last two terms are the transition of the switches and the resulting auxiliary variable in the
generative model; the first term is a Gaussian approximation of the likelihood, predicted by an
encoder neural network.3 Both pairs of Gaussians are combined as a product of experts, resulting in a
Gaussian proposal distribution. The switch transition is readily available from the previous step t− 1,
while the predictive distribution for the auxiliary variable requires sampling st first. We therefore
propose to structure the encoder with dependencies in the same direction as the generative model,
i.e. as presented in Eq. (14). The resulting encoder resembles the encoder in the Ladder VAE [35].
Thus, combining it with the densities from the forward model, we obtain a proposal distribution
π(zt, st | z1:t−1, s1:t−1,yt) = π(st | z1:t−1, s1:t−1,yt)π(zt | z1:t−1, s1:t,yt) that is factorised such
that samples can be drawn in the same direction as the generative process, while reusing the predictive
quantities of the forward (generative) model. The proposal distribution is optimal if the Gaussian
encoder distribution is proportional to the likelihood.

We use the effective sample-size criterion mentioned in Sec. 2.2 with systematic re-sampling [8].
Following previous work, we omit the score function estimator term for re-sampled variables, resulting
in biased but lower variance gradient estimates. We refer to [23, 29, 20] for a discussion.

4 Related work

Extensions of the classical SGLS with a state-to-switch dependence have been proposed in previous
work [5, 21, 6]: In [5], the required marginalisation of previous Gaussian states is approximated
numerically through sampling. [21] uses logistic stick-breaking for the discrete switches and augments
the model with a Polya-Gamma distributed auxiliary variable, rendering the states conjugate to the
switch variables such that marginalising the Polya-Gamma variables leaves the original model intact.
Inference in this model is accomplished through Gibbs sampling, whereas our work uses a RBPF and
SGD for state and parameter inference. Different from these two approaches, [6] uses a Gaussian
switch variable. In contrast to our work, inference is performed using stochastic variational inference
without exploiting the conditional tractability of the SGLS, instead sampling both states and switches.

Many efficient approximate inference methods have been proposed for the classical SGLS, including
approaches using variational inference [12], expectation propagation [39], and a RBPF [10]. Our
ARSGLS uses an extension of RBPF that includes the additional auxiliary variable (cf. Sec. 3.2) in
the SMC approximation. Learning through Monte Carlo objectives [28] for particle filters has been
proposed in [23, 29, 20]. Our objective function is a special case that exploits the conditionally linear
structure of the ARSGLS through Rao-Blackwellisation to reduce variance in the estimates.

Parameter learning with a conditional GLS and closed-form inference has been proposed previously
in DeepState [30] and the KVAE [11]. Our model differs substantially in the i) graphical model, ii)
latent variable inference and iii) parameter learning:
i) DeepState and KVAE can be interpreted as a deterministic SGLS, where the GLS parameters
are predicted by an RNN, whereas our proposed model uses probabilistic switch transitions that
receive feedback from the previous state. Furthermore, the GLS parameters in DeepState have a fixed
structure that model time-series patterns such as level, trend and seasonality; transition and emission
matrices are fixed and the two (diagonal) noise covariance matrices are predicted by the RNN directly.
The KVAE uses unrestricted GLS parameters, which are predicted as a weighted average of a set of
base matrices, where the weights are given by the RNN. Our proposed model uses a similar weighted

3Note that we omitted inputs ut; however we use both ut and yt in the encoder. Furthermore, we made the
simplifying assumption that q only depends on the latest observation yt. One way to go beyond that would be
to include y1:t−1 through sufficient statistics, such as the natural parameters, of the state variable xt−1. We
decided to use only the latest observation yt in our model, since information from xt−1 and thus y1:t−1 is
incorporated into the proposal distribution through the state-to-switch recurrence.

6

106

0 20 40 60 80 100 120 140
t

0.6

0.4

0.2

0.0

0.2

0.4

0.6
y

0 20 40 60 80 100 120 140
t

1.0

0.5

0.0

0.5

1.0

y

Figure 2: Filtered and forecasted emissions of a recurrent (left) and non-recurrent (right) SGLS for synthetic
data of a swinging pendulum. Observations are noisy x-/y-position (blue/orange). The plots show the mean (line)
and 3 std. deviations (shaded); filter and forecast range are separated by a vertical line, 50 (noisy) observations
(dots) are used for filtering, the forecast ground-truth is shown as a dashed line. The SGLS relies on the filter
update, whereas the RSGLS successfully uses state information to select the correct base matrices for prediction.

average of base matrices, but the weights are functions of a probabilistic Gaussian switch variable. A
further difference to both models is the dependence of the RNN/switch transition on observations
and controls: The RNN in DeepState is conditioned on inputs (controls), whereas the RNN in the
KVAE depends (auto-regressively) on samples of the previous (pseudo-) observation of the GLS.
In contrast, the switch transition of the ARSGLS is conditioned on the previous GLS state variable,
thus using information from all previous inputs and observations. Finally, the KVAE uses the same
type of auxiliary variable and non-linear emission model as our ARSGLS. However, the encoder is
conditioned only on the current observations; in contrast, the structure of our proposal distribution
(corresponding to the encoder in the KVAE) is chosen to resemble the optimal (minimum variance)
proposal distribution, thus including the current observation and inputs as well as the predictive
distribution of the previous state.
ii) Given the deterministically predicted GLS parameters, DeepState/KVAE uses the Kalman fil-
ter/smoother for inference. In contrast, we use a Rao-Blackwellised particle filter to infer non-linear
switch variables through SMC and the conditionally linear states through the Kalman filter.
iii) DeepState uses maximum likelihood for parameter learning where the log-likelihood is estimated
using the filter formulation (normalisation constants), whereas the KVAE is learnt using a variational
EM objective. Our proposed model is learnt through a (Rao-Blackwellised) particle filter-based
Monte Carlo objective (cf. prev. paragraph).

5 Experiments

5.1 Pendulum

We start with a qualitative assessment of the state-to-switch dependence from Sec. 3.1. We refer to
this model (without the auxiliary variable of Sec. 3.2) as RSGLS. We consider noisy observations of
the xy-positions of a dampened pendulum. Initial states (angle, angular velocity) are drawn randomly
from a Gaussian centred at 180 deg (top position) and zero velocity. Both models are trained on 5000
sequences with 50 time-steps. For evaluation, we filter for 50 time-steps and forecast the next 100
time-steps. We visualise the resulting filter and forecast distribution together with noisy observations
(t ≤ 50) and ground-truth (t > 50) in Fig. 2. As can be seen, the SGLS can not learn linearised
dynamics without information from the state. On the other hand, the RSGLS generates very accurate
forecasts with reasonable predictive uncertainty, showing the necessity of state-to-switch dynamics.

5.2 Time series forecasting

We evaluate our approach in the context of time-series forecasting on 5 popular public datasets
(electricity, traffic, solar, exchange, wiki) used in [32]. The data is recorded with hourly
or daily frequency and exhibits seasonal patterns with different frequency (e.g. daily and weekly).

We experimented with two instantiations of our proposed model: Similar to previous work [30], we
implement the GLS as an innovation state space model (ISSM) with a constrained structure that
models temporal patterns such as level, trend and seasonality (cf. supplementary material for details).
In this model, labelled as RSGLS-ISSM, the dimension of the state xt and the transition and emission

7

107

CRPS rolling

exchange solar electricity traffic wiki

DeepAR 0.009±0.001 0.357±0.002 0.057±0.003 0.120±0.003 0.281±0.008
DeepState 0.010±0.001 0.379±0.002 0.071±0.000 0.131±0.002 0.296±0.007
KVAE-MC 0.010±0.000 0.377±0.005 0.319±0.010 0.233±0.014 0.276±0.028
KVAE-RB 0.009±0.000 0.384±0.005 0.296±0.024 0.179±0.001 0.245±0.004
RSGLS-ISSM (ours) 0.007±0.000 0.355±0.004 0.070±0.001 0.148±0.003 0.248±0.006
ARSGLS (ours) 0.009±0.000 0.369±0.008 0.138±0.003 0.136±0.005 0.217±0.010

CRPS long-term

DeepAR 0.019±0.002 0.440±0.004 0.062±0.004 0.138±0.001 0.855±0.552
DeepState 0.017±0.002 0.379±0.002 0.088±0.007 0.131±0.005 0.338±0.017
KVAE-MC 0.020±0.001 0.389±0.005 0.318±0.011 0.261±0.016 0.341±0.032
KVAE-RB 0.018±0.001 0.393±0.006 0.305±0.022 0.221±0.002 0.317±0.013
RSGLS-ISSM (ours) 0.014±0.001 0.358±0.001 0.091±0.004 0.206±0.002 0.345±0.010
ARSGLS (ours) 0.022±0.001 0.371±0.007 0.154±0.005 0.175±0.008 0.283±0.006

Table 1: CRPS metrics (lower is better). Mean and std. deviation are computed over 4 independent runs for our
method and 3 runs for the competing methods. The method achieving the best result is highlighted in bold.

Figure 3: 20 time-steps of groundtruth (1st row) and 3 random trajectories from forecast distribution (remaining
rows) for ARSGLS on box dataset. Forecasts were generated after 20 filtering time-steps (not shown).

matrices A and C are pre-defined and not learned; for this model, we do not use the non-linear
emission model from Sec. 3.2. The second model, labelled ARSGLS, uses a general, unrestricted GLS;
here we use the complete model, including a non-linear emission model. We compare to two closely
related methods, i.e. DeepState [30] and KVAE [11], and a strong baseline that uses an autoregressive
RNN (DeepAR) [33]. DeepState is implemented with the same ISSM structure as RSGLS-ISSM,
whereas KVAE is implemented with the same unconstrained GLS and measurement model as ARSGLS.
Furthermore, we note that the objective function proposed in [11] uses samples from the smoothing
distribution. However, in line with this work, the corresponding expectation can be computed in
closed-form; the resulting objective function has lower variance. We implemented both objective
functions, denoting them as KVAE-MC (Monte Carlo) and KVAE-RB (Rao-Blackwellised), respectively.

We use data prior to a fixed forecast date for training and test the forecasts on the remaining data.
The probabilistic forecasts are conditioned on the training range and computed with 100 samples
for each method. We evaluate in a rolling fashion and with a single long-term forecast. In case of
daily/hourly data, the rolling evaluation uses 5/7 windows each with a forecast covering 30 days/24
hours; long-term evaluation uses all 5/7 windows (i.e. 150 days/168 hours) without updating the
model with the new data. We score forecasts using the continuous ranked probability score (CRPS)
[25].

CRPS(F−1, y) =

∫ 1

0

2Λα(F−1(α), y)dα, (15)

where Λα(q, y) = (α − I[y<q])(y − q) is the quantile loss at the quantile level α ∈ [0, 1], q is the
predicted α-th quantile level and y is the observation. The results are summarised in Tab. 1. Both
of our model variants compare favorably or similarly to their respective closely related competitive
model (i.e. RSGLS-ISSM and DeepState; ARSGLS and KVAE). Only the auto-regressive baseline
DeepAR remains challenging on 2/5 datasets.

5.3 Simulated physical environments

We evaluate our model for unsupervised forecasting of high-dimensional multivariate data streams
(video), emitted from simulated physical environments. To this end, we consider the 4 synthetic

8

108

0 10 20 30 40 50 60
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
box

ARSGLS
KVAE-MC
KVAE-RB

0 10 20 30 40 50 60
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

box_gravity
ARSGLS
KVAE-MC
KVAE-RB

0 10 20 30 40 50 60
t

0.0

0.5

1.0

1.5

2.0

polygon
ARSGLS
KVAE-MC
KVAE-RB

0 10 20 30 40 50 60
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
pong

ARSGLS
KVAE-MC
KVAE-RB

Figure 4: Wasserstein distance in filter/smoothing (ARSGLS/ KVAE) range (t < 20) and forecast range (t ≥ 20).
Results are averaged over 1000 test samples and 3 independent runs.

video datasets (Box, Box-Gravity, Polygon, Pong) used in [11], consisting of streams of 32× 32
binary images of an object moving in an environment and colliding with walls. We compare our
model to the KVAE-MC (proposed in [11]) and our Rao-Blackwellised version KVAE-RB cf. 5.2). We
use the same model architecture as in [11], except that each model has 10-dimensional states and
10 base matrices (cf. App. 7.7.3 for more details). All models are trained on 5000 time-series of 20
time-steps. We visualise forecasted trajectories in Fig. 3.

Next, we test the learned hidden dynamics quantitatively, comparing the forecasts to the true data.
This is challenging for image data: standard metrics such as predictive log-likelihood, (pixel-wise)
accuracy or squared error do not differentiate between small and large dis-placements of object in the
environment (e.g. if all pixels corresponding to the object are falsely predicted). Interpreting these
binary images as a 2D distribution over the xy-positions of the objects in the scene, we propose to
score the models using the Wasserstein metric with the Euclidean norm as distance function:

D(yτ , ŷτ) =

∫
W(yτ , ŷτ)p(ŷτ | y1:t)dŷτ , (16)

where p(ŷτ | y1:t) is the forecast distribution (time-steps τ > t) or predictive distribution from the
filter (t = τ). The natural interpretation of this metric is the minimum average distance (in pixel
coordinates) needed to move each pixel from the forecast to its true position in the xy-plane. We
approximate p(ŷτ | y1:t) =

∫
p(ŷτ | zt,xt, st)p(zt,xt, st | y1:t)dztxtst (no st in KVAE) using

32 samples and Monte Carlo integration. We evaluate the metric from Eq. (16)—averaged over
3 independent runs and 1000 test data points—for 20 time-steps of filtering (in case of ARSGLS)
and smoothing (in case of KVAE) and 40 time-steps forecasting. Results (Fig. 4) show that ARSGLS
produces more accurate forecasts.

6 Conclusion

In this work, we proposed an extension of the classical SGLS that addresses two weaknesses, while
leaving the conditional tractability of this model intact. We improve the forecasting capabilities by
conditionally linear state-to-switch recurrence with Gaussian switch variables, keeping the conditional
tractability of the GLS intact. Furthermore, we augment the emission model by an auxiliary variable
that allows for modelling multi-variate and non-Gaussian observations with complex non-linear
transformations such as convolutional neural networks. We leverage the conditional linear structure
of this model using Rao-Blackwellised particle filtering and we propose a corresponding Monte
Carlo objective for parameter estimation. Experiments on popular time series forecasting datasets
and simulated video data from physical environments demonstrate improvements compared to other
deep state-space model approaches.

This work offers several interesting research directions: the proposed approach can be generalised to
hierarchical models, interleaving linear and non-linear variables; observed data and the corresponding
ladder-encoder can be extended to handle multimodal and missing data similar to [19]; offline
inference can be done through Rao-Blackwellised particle smoothing [22] and used for learning with
a corresponding variational EM objective function; finally, the model parameters may be inferred
by means of a variational Bayesian approximation [7] with further extensions to online learning
scenarios under data drift [18].

9

109

Broader impact

This paper stems from the author’s work on time series forecasting and anomaly detection in industrial
settings. The proposed methods are applicable to forecasting from univariate and multivariate data
streams more generally. Business applications include supply chain monitoring and sales prediction.
Furthermore, accurate forecasts allows better resource management, such as waste reduction and
optimisation of energy consumption.

Funding disclosure

This work was funded by Amazon Research.

References
[1] G Ackerson and K Fu. On state estimation in switching environments. IEEE Transactions on

Automatic Control, 15:10–17, 1970.

[2] I. Arasaratnam and S. Haykin. Cubature kalman filters. IEEE Transactions on Automatic
Control, 54:1254–1269, 2009.

[3] I. Arasaratnam, S. Haykin, and R. J. Elliott. Discrete-time nonlinear filtering algorithms using
gauss–hermite quadrature. Proceedings of the IEEE, 95:953–977, 2007.

[4] Yaakov Bar-Shalom and Xiao-Rong Li. Estimation and Tracking: Principles, Techniques, and
Software. Artech House, 1993.

[5] David Barber. Expectation correction for smoothed inference in switching linear dynamical
systems. J. Mach. Learn. Res., 7:2515–2540, 2006.

[6] Philip Becker-Ehmck, Jan Peters, and Patrick Van Der Smagt. Switching linear dynamics
for variational Bayes filtering. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97, pages
553–562. PMLR, 2019.

[7] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. volume 37 of Proceedings of Machine Learning Research, pages 1613–1622.
PMLR, 2015.

[8] J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for nonlinear problems. IEE
Proceedings - Radar, Sonar and Navigation, 146:2–7, 1999.

[9] Pierre Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems With
Applications. 2004.

[10] Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. Rao-blackwellised
particle filtering for dynamic bayesian networks. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, UAI ’00, page 176–183. Morgan Kaufmann Publishers
Inc., 2000.

[11] Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recogni-
tion and nonlinear dynamics model for unsupervised learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 3601–3610. Curran Associates, Inc., 2017.

[12] Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching state-space
models. Neural Computation, 12:831–864, 2000.

[13] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140:107–113(6),
1993.

10

110

[14] Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with exponential
smoothing: the state space approach. Springer Science & Business Media, 2008.

[15] Maximilian Karl, Maximilian Sölch, Justin Bayer, and Patrick van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

[16] Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space
models. Journal of Computational and Graphical Statistics, 5:1–25, 1996.

[17] Rahul G. Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear
state space models. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
page 2101–2109. AAAI Press, 2017.

[18] Richard Kurle, Botond Cseke, Alexej Klushyn, P. V. D. Smagt, and Stephan Günnemann.
Continual learning with bayesian neural networks for non-stationary data. In ICLR, 2020.

[19] Richard Kurle, Stephan Günnemann, and P. V. D. Smagt. Multi-source neural variational
inference. In AAAI, 2019.

[20] Tuan Anh Le, Maximilian Igl, Tom Jin, Tom Rainforth, and Frank Wood. Auto-encoding
sequential monte carlo. 2017.

[21] Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam
Paninski. Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems.
In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, volume 54, pages 914–922. PMLR, 20–22 Apr 2017.

[22] F. Lindsten, P. Bunch, S. Särkkä, T. B. Schön, and S. J. Godsill. Rao-blackwellized particle
smoothers for conditionally linear gaussian models. IEEE Journal of Selected Topics in Signal
Processing, 10(2):353–365, 2016.

[23] Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy
Mnih, Arnaud Doucet, and Yee Whye Teh. Filtering variational objectives. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 6573–6583. Curran Associates, Inc., 2017.

[24] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. ArXiv, 2016.

[25] James E. Matheson and Robert L. Winkler. Scoring rules for continuous probability distributions.
Management Science, 22:1087–1096, 1976.

[26] P. S. Maybeck. Stochastic Models, Estimation and Control. Mathematics in science and
engineering. Academic Press, 1982.

[27] Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.

[28] Andriy Mnih and Danilo J. Rezende. Variational inference for monte carlo objectives. In
Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 2188–2196. JMLR.org, 2016.

[29] Christian A. Naesseth, Scott W. Linderman, Rajesh Ranganath, and David M. Blei. Variational
sequential Monte Carlo. In 21st International Conference on Artificial Intelligence and Statistics
(AISTATS 2018), pages 968–977, January 2018.

[30] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang,
and Tim Januschowski. Deep state space models for time series forecasting. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 7785–7794. Curran Associates, Inc., 2018.

[31] Sam Roweis and Zoubin Ghahramani. A unifying review of linear Gaussian models. Neural
Computation, 11:305–345, 1999.

11

111

[32] David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus.
High-dimensional multivariate forecasting with low-rank gaussian copula processes. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 6827–6837. Curran Associates, Inc., 2019.

[33] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 2019.

[34] Matthias Seeger, Syama Rangapuram, Yuyang Wang, David Salinas, Jan Gasthaus, Tim
Januschowski, and Valentin Flunkert. Approximate Bayesian inference in linear state space
models for intermittent demand forecasting at scale. arXiv preprint arXiv:1709.07638, 2017.

[35] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, page 3745–3753. Curran Associates Inc., 2016.

[36] E. A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation. In
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No.00EX373), pages 153–158, 2000.

[37] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2746–2754. Curran Associates, Inc., 2015.

[38] Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models (2nd Ed.). Springer,
1997.

[39] Onno Zoeter and Tom Heskes. Change point problems in linear dynamical systems. J. Mach.
Learn. Res., 6:1999–2026, 2005.

12

112

7 Supplementary Material

7.1 Conditional Kalman Filter equations

As mentioned in Sec. 2.3, the first term in Eq. (5) can be computed using the standard Kalman
smoother. In this work, we are interested mainly in forecasting and parameter estimation (Sec. 3.3.2).
Thus, the filter distribution p(xt | s(p)1:t ,y1:t−1) suffices, however the (conditionally) Gaussian joint
distribution p(x1:t | s(p)1:t ,y1:t−1) could be computed straightforwardly using a Kalman smoother
(e.g. running the RTS smoother backwards). Here we denote the location and covariance parameters
of the Gaussian distributions corresponding to the prediction step as mt|t−1, Vt|t−1, the predictive
distribution (wrt. targets yt) as mt|t, Vt|t, and the update (measurement) step as mt, Vt.

The prediction step is given as

p(xt | s(p)1:t ,y1:t−1) =

∫
p(xt | xt−1, s(p)t) p(xt−1 | s(p)1:t−1,y1:t−1) dxt−1

= N
(
xt;mt|t−1(s

(p)
1:t), Vt|t−1(s

(p)
1:t)
)
, (17)

where
mt|t−1(s

(p)
1:t) = A(s

(p)
t)mt−1(s

(p)
1:t−1) +B(s

(p)
t)ut,

Vt|t−1(s
(p)
1:t) = A(s

(p)
t)Vt−1(s

(p)
1:t−1)A(s

(p)
t)T +R(s

(p)
t).

Similarly, the predictive distribution (used in the update step below) is given as

p(yt | s(p)1:t ,y1:t−1) =

∫
p(yt | xt, s(p)t)p(xt | s(p)1:t ,y1:t−1)dxt

= N
(
yt;mt|t(s

(p)
1:t), Vt|t(s

(p)
1:t)
)
, (18)

where
mt|t(s

(p)
1:t) = C(s

(p)
t)mt|t−1(s

(p)
1:t) +D(s

(p)
t)ut,

Vt|t(s
(p)
1:t) = C(s

(p)
t)Vt|t−1(s

(p)
1:t)C(s

(p)
t)T +Q(s

(p)
t).

And the update step yields

p(xt | s(p)1:t ,y1:t) =
1

Z
p(yt | xt, st) p(xt | s(p)1:t ,y1:t−1)

= N
(
xt;mt(s

(p)
1:t), Vt(s

(p)
1:t)
)
, (19)

where Z is the normalisation constant and where
mt(s

(p)
1:t) = mt|t−1(s

(p)
1:t) + V Tt|t−1(s

(p)
1:t)C

T (s
(p)
t)V −1t|t (s

(p)
1:t)
(
yt −mt|t(s

(p)
1:t)
)
,

Vt(s
(p)
1:t) = Vt|t−1(s

(p)
1:t)− V Tt|t−1(s

(p)
1:t)C

T (s
(p)
t)V −1t|t (s

(p)
1:t)C(s

(p)
t)Vt|t−1(s

(p)
1:t).

7.2 SMC marginal likelihood estimate

SMC provides unbiased estimates of the marginal likelihood p(y1:T) =
∏T
t=1 p(yt | y1:t−1) as a

by-product [9] that can be used for learning (cf. Sec. 3.3.2). The conditionals p(yt | y1:t−1) can be
estimated by

p(yt | y1:t−1) =

∫ ∫
p(s1:t−1 | y1:t−1)p(st,yt | y1:t−1, s1:t−1) dstds1:t−1

=

∫
p(s1:t−1 | y1:t−1)

∫
p(yt | y1:t−1, s1:t)p(st | st−1) dstds1:t−1

=

∫
p(s1:t−1 | y1:t−1) Eπ(st | s1:t−1)

[
p(yt | y1:t−1, s1:t)p(st | s1:t−1)

π(st | s1:t−1)

]
ds1:t−1

≈
P∑

p=1

w
(p)
t−1

1

N

N∑

n=1

γt(s
(n,p)
t , s

(p)
1:t−1)

≈
P∑

p=1

w
(p)
t−1γt(s

(p)
t , s

(p)
1:t−1) =

P∑

p=1

w̃
(p)
t .

13

113

The approximation of the inner importance-sampling expectation implies using a single sample
(conditioned on s

(p)
1:t−1) as is standard in SMC. The approximation wrt. the outer integral follows

from p(s1:t−1 | y1:t−1) ≈ ∑P
p=1 w

(p)
t−1δ(s

(p)
1:t−1), using the normalised importance-weights of the

previous step w(p)
t−1 = w

(p)
t−1/

∑P
p′=1 w

(p′)
t−1.

Note that the above estimate of the conditional p(yt | y1:t−1) = p(y1:t)/p(y1:t−1) is a ratio estimate,
since the previous importance-weights are normalized by the sum of importance-weights. Although
these ratio estimates are in general not unbiased, the product p(y1:T) ≈∏T

t=1

∑P
p=1 w̃

(p)
t yields an

unbiased estimator of the marginal likelihood [9, 23].

7.3 Innovation State Space Model

Here we describe the structure of ISSM models used for RSGLS-ISSM. We start by simpler exemplar
instantiations of the ISSM that use a level, level-trend, or seasonality component. In the ISSMs
considered here, the emission and control matrices A,C are determined entirely by the assumed time
series patterns. Only the diagonal state and observation noise covariances Q,R and optionally the
control matrices B,D are learnable; these are computed as a weighted average of base matrices in
our model. We will omit the optional matrices B,D in the following for simplification.

An ISSM with only a level component has just a single latent variable; A = [1], C = [1], and noise
covariances Q = [q1], R = [r1] are positive scalars. The latent state (level) evolves over time only
through innovation with additive noise, and the innovation strength is given by the (square root of
the) scalar covariance R.

An ISSM with level-trend components has a 2-dimensional latent state, one representing the level
and the other representing the slope of a linear trend; the model is defined by

A =

[
1 1
0 1

]
, C =

[
1 1

]
, R =

[
r1 0
0 r2

]
, Q =

[
q1
]
.

Both level and trend component evolve over time through additive noise (with covariance R), and the
level is additionally updated with the (previous) slope of the trend. The sum of the current level and
trend components are emitted (with additive noise given by scalar covariance Q).

ISSMs with seasonal component can be instantiated in several ways. Here we use the same seasonality
models as in [30]. These models are described by a set of seasonal factors that assume a certain
periodicity. For example, day-of-week patterns use 7 factors, one for each day of the week; similarly,
hour-of-day patterns use 24 factors. Each factor can be represented by one component of the latent
state. For day-of-week seasonality, we thus have a 7-dimensional latent state. The transition matrix A
is then the identity matrix, and the emission matrix C = 1{day(t)=j}7j=1

is an indicator (vector) that
selects the component corresponding to the current day, zeroing out all other components. The noise
covariance matrix Q is a (positive) scalar, and R = diag

(
[r1, . . . , r7]� 1{day(t)=j}7j=1

)
is a diagonal

matrix, where all components except the one corresponding to the current day are zeroed out. This is
done here through element-wise multiplication (of the diagonal) with the same indicator as used for
the emission matrix.

As in [30], ISSMs with multiple seasonal components (corresponding to different periodicities) as
well as level or level-trend can be combined. The resulting transition matrix A and noise covariance
matrix R are block-diagonal, where each block corresponds to one component. Similarly, C is a
concatenation of the corresponding components; consequently, the sum of the level, trend and each
currently "active" seasonal component is emitted with additive noise.

In the experiments of this paper, we used a combination of level component and 1 or 2 seasonal
components for the model variant RSGLS-ISSM: For data with daily measurement frequency (wiki,
exchange), we used only day-of-week seasonality, resulting in a latent state with 7 + 1 dimensions.
In case of hourly data (electricity, traffic, solar), we used both hour-of-day and day-of-week
seasonality, resulting in a latent state with 24 + 7 + 1 dimensions.

7.4 Algorithm

The algorithm for Rao-Blackwellised particle filtering and loss computation for the ARSGLS pro-
posed in Sec. 3 is presented in Alg. 1.

14

114

Algorithm 1 Rao-Blackwellised particle filter with parameter estimation.

Require: st−1, zt−1, mt−1, Vt−1 are tensors with a particle, data, feature dimension. log w̃t−1 has
particle, data dimensions. Data ut, yt have data, feature dimensions. Tensors with counting
indices, i.e. s1:T , have an additional time dimension that is indexed as e.g. st.

1: function FILTER_LOSS(s1:T , z1:T , m1:T , V1:T , u1:T , y1:T)
2: log w̃1, s1, z1, m1, V1← FILTER_STEP(u1,y1)
3: for t← 2 . . . T do
4: log w̃t, st, zt, mt, Vt← FILTER_STEP(log w̃t−1, st−1, zt−1,mt−1, Vt−1,ut,yt)
5: end for
6: L← compute_marginal_estimate(w̃1:T) . Eq. (13)
7: return L
8: end function

9: function FILTER_STEP(log w̃t−1, st−1, zt−1, mt−1, Vt−1, ut, yt)
10: initial_step← is_initial(log w̃t−1, st−1, zt−1,mt−1, Vt−1) . if not provided (None)
11: if initial_step then
12: logwt ← log(1/P) . uniform weights, P is the number of particles
13: mt−1, Vt−1←m0, V0 . initial state prior p(x0)
14: p(st)← switch_prior(ut) . initial switch prior p(s1)
15: else
16: logwt ← normalise(log w̃t)
17: logwt, st−1, zt−1,mt−1, Vt−1← resample(logwt, st−1, zt−1,mt−1, Vt−1)
18: p(st)← SWITCH_RECURRENT_TRANSITION(st−1,mt−1, Vt−1) . cf. below
19: end if
20: q(st), q(zt)← encoder(yt,ut) . Sec. 3.3.3
21: π(st)← p(st)× q(st) . Eq. (14)
22: st ∼ π(st) . sample switch particles
23: ψt←make_base_params(st,ut) . base matrices A,B,C,D,Q,R
24: mt|t−1, Vt|t−1 ← prediction_step(mt−1,Vt−1, ψt) . Eq. (17) in App. 7.1
25: mt|t, Vt|t← auxiliary_predictive(mt|t−1, Vt|t−1, ψt) . Eq. (18) in App. 7.1
26: p(zt)←N (zt; mt|t, Vt|t)
27: π(zt)← p(zt)× q(zt) . Eq. (14)
28: zt ∼ π(zt) . sample auxiliary particles
29: mt, Vt ← update_step(yt,mt|t, Vt|t, ψt) . Eq. (19) in App. 7.1
30: p(yt)← decoder(zt) . Sec. 3.2
31: log γt← log p(yt) + log p(zt) + log p(st)− log q(zt)− log q(st) . Eq. (12)
32: log w̃t ← logwt + log γt
33: return log w̃t, st, zt, mt, Vt
34: end function

35: function SWITCH_RECURRENT_TRANSITION(st−1,mt−1, Vt−1)
36: Ft, St← make_recurrent_base_params(st−1) . cond. linear state-to-switch transition
37: ms, Vs←marginalise_state(mt−1, Vt−1, Ft, St) . state-to-switch prediction step
38: ps|x ←N (st; ms, Vs) . Gaussian state-to-switch transition
39: ps|s← switch_transition(st−1,ut) . Gaussian switch-to-switch transition
40: p(st)← gaussian_linear_combination(ps|x, ps|s) . sum of means and covariances
41: return p(st)
42: end function

15

115

7.5 Further results

Here we provide further results for ARSGLS on wiki and Box datasets, evaluating the impact of the
encoder and the number of particles during training. Furthermore, we provide pixel accuracy results
for the experiments described in Sec. 5.3. On Box, we run each experiment with 3 different seeds
and for wiki, we run with 4 random seeds as in the main text. Note that for wiki we use a different
initialisation scheme compared to the experiments in the main text (Xavier instead of the default in
Pytorch 1.6), resulting in better scores.

7.5.1 Encoder and proposal distribution

0 10 20 30 40 50 60
t

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

box
with encoder
without encoder

0 10 20 30 40 50 60
t

0.0

0.5

1.0

1.5

2.0

2.5

wa
ss

er
st

ei
n

box

with encoder
without encoder

Figure 5: Pixel accuracy (left) and Wasserstein distance (right) on Box with/without encoder.

Here we show the importance of the encoder that approximates the likelihood function by a Gaussian
(cf. Sec. 3.3.3). We conducted experiments where we omit the encoder and thus use a bootstrap
proposal distribution. On wiki, using 32 particles during training without encoder yields CRPS
scores 0.265± 0.010 for rolling evaluation and 0.360± 0.006 for non-rolling (long-term) evaluation,
respectively. In contrast, the same number of particles with encoder yields significantly better CRPS
scores of 0.207± 0.000 and 0.263± 0.003, respectively.

Similarly, the accuracy and Wasserstein distance for the Box dataset is significantly better when using
our ladder-type encoder, as shown in Fig. 5. Without encoder for the proposal distribution, the model
is not able to learn the dynamics and fails to converge to a reasonable fit.

7.6 Number of particles

We evaluate our model for a different numbers of particles (1, 8, 16, 32, 64, 96) used during training.
The performance on the wiki dataset is shown in Fig. 6. Surprisingly, the forecasting performance
does not improve with more particles.

0 20 40 60 80 100
particles

0.22

0.24

0.26

0.28

CR
PS

CRPS-rolling
CRPS-full

Figure 6: CRPS scores on wiki dataset for varying number of particles used for training.

In contrast, Fig. 7 shows that using more particles leads to a significantly better forecasting perfor-
mance on the Box dataset as expected.

0 10 20 30 40 50 60
t

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

box
1
8
16
32
64
96

0 10 20 30 40 50 60
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

wa
ss

er
st

ei
n

box
1
8
16
32
64
96

Figure 7: Accuracy (left), Wasserstein distance (right) on Box for varying number of particles used for training.

16

116

0 10 20 30 40 50 60
t

0.96

0.97

0.98

0.99

1.00
box

ARSGLS
KVAE-MC
KVAE-RB

0 10 20 30 40 50 60
t

0.96

0.97

0.98

0.99

1.00
box_gravity

ARSGLS
KVAE-MC
KVAE-RB

0 10 20 30 40 50 60
t

0.96

0.97

0.98

0.99

1.00
polygon

ARSGLS
KVAE-MC
KVAE-RB

0 10 20 30 40 50 60
t

0.92

0.94

0.96

0.98

1.00
pong

ARSGLS
KVAE-MC
KVAE-RB

Figure 8: Pixel accuracies in filter/smoothing (ARSGLS/ KVAE) range (t < 20) and forecast range (t ≥ 20).
Results are averaged over 1000 test samples and 3 independent runs.

7.6.1 Simulated physical environments

Additional to the the Wasserstein distance reported in the main text, we provide pixel accuracies in
Fig. 8

7.7 Experiment details

7.7.1 Pendulum

The model used in the pendulum experiment has 3 and 5 state and switch dimensions, respectively. We
used 10 base matrices (for each of A,C,Q,R and additionally F, S in case of the recurrent model);
the weights are predicted by an MLP with 1 hidden layer of 32 units with leaky relu activations (and a
softmax output). All covariance matrices (R,Q, S) are diagonal and represented as log of the inverse
scale to ensure positive variance. State and switch prior p(x0), p(s1) are both trainable diagonal
Gaussians (scale parameters are again represented as log inverse scale), initialised as the standard
Normal. The switch transition function f(st−1) (cf. Eq.(9)) is an MLP with 1 hidden layer of 32
units and leaky relu activations; no encoder (cf. Sec.3.3.3) is used in this experiment.

Both models are trained using the Adam optimizer with β1 = 0.9, β2 = 0.95, and (initial) learning
rate 1× 10−2 with an exponential decay to 1× 10−4 over a total of 50 epochs. The batch size is 100,
P = 64 particles are used for learning and P = 100 particles for computing the empirical mean and
std. deviation of the GMM (cf. Eq. (8)) filter and forecast distribution in the evaluation plot.

7.7.2 Univariate time series forecasting

A short summary of the datasets, as used in [32], considered for these experiments are given:

• electricity: hourly electricity consumption of 370 customers;
• traffic: hourly occupancy rates of 963 car lanes of San Francisco bay area freeways;
• solar: hourly photo-voltaic production of 137 stations;
• exchange: daily exchange rate of 8 currencies;
• wiki: daily page view of 2000 Wikipedia pages.

For all datasets, the same model and training hyper-parameters (except learning rate) were used.
Furthermore, RSGLS-ISSM and ARSGLS use the same model architecture where possible. For these
datasets, each model are given time-features (hour of day, day of week, etc.) and time-series
indicators as inputs u1:T as in [30, 33]. Time-series indicators are embedded in 50 dimensions
(except 8 dimensions for exchange dataset), and combined with the time-features by a single neural
network layer with 64 units and leaky relu activations.

The state dimension of RSGLS-ISSM is determined by the ISSM structure (cf. App.7.3), whereas for
ARSGLS the state has 16 dimensions. The switch s and auxiliary variable z (in case of ARSGLS) have
10 dimensions each. Furthermore, 20 base matrices are used. In case of RSGLS these include only

17

117

D,Q,R, F, S since A,C are determined by the ISSM. ARSGLS uses additionally learnable matrices
A,C. For both models B was not used. The weights for averaging the matrices are predicted by an
MLP with 1 hidden layer of 64 units with leaky relu activations and a softmax output (taking st as
input). Covariance matrices (R,Q, S) are diagonal and parametrised as the log of the inverse scale.

The state prior p(x0) is a trainable diagonal Gaussian, initialised as the standard Normal; the switch
prior p(s1 | u1) is a diagonal Gaussian for which the location and scale parameters are predicted by
a linear transformation (and additional softplus in case of scale), taking the 64 input features from
the embedding and subsequent neural network layer (see above) as inputs. Similarly, the switch
transition function f(st−1,ut) (cf. Sec. 3.1) is an MLP with 1 hidden layer of 64 units and leaky relu
activations, which takes both the 64 input features and the previous switch as inputs.

Encoders differ for RSGLS-ISSM and ARSGLS, respectively, since the latter has the additional auxiliary
variable (cf. Sec. 3.2). However, in both cases the proposal distribution is formed as a product of
Gaussians as described in Sec. 3.3.3. For RSGLS-ISSM, the encoder is a diagonal Gaussian for which
the parameters are predicted by an MLP with 1 hidden layer of 64 units and leaky relu activations
(outputs corresponding to the scale use softplus activations). The additional non-linear emission
model of ARSGLS is a diagonal Gaussian for which the parameters are predicted by an MLP with 2
hidden layers with 64 units and leaky relu activations. The ladder encoder shares an MLP that predicts
the parameters of the Gaussians corresponding to the auxiliary and switch variable, respectively. This
shared MLP has 3 hidden layers with leaky relu activations; the parameters of the Gaussians are
predicted from the 2nd and 3rd (last) hidden layer, respectively.

Each model is trained using the Adam optimizer with β1 = 0.9, β2 = 0.95. For solar, the initial
learning rate is 1× 10−2, for electricity 1× 10−3 and for all other datasets 5× 10−3. In each
experiment, the learning rate is decayed over a total of 2500 iterations by a factor 10−2. The batch
size is 50 and P = 10 particles are used.

7.7.3 Simulated physical environments

Model architectures (for components that are similar between both models) are chosen as in [11],
except that the state dimension and number of base matrices is 10 for both, instead of 4 and 3,
respectively. Furthermore, the (diagonal) covariance matrices R,Q (parameterised as log inverse
scale, i.e. logR−1/2) are learnable, whereas in [11] these are fixed hyperparameters.

The switch in ARSGLS has 8 dimensions, and the switch prior is a trainable diagonal Gaussian,
initialised as the standard Normal. The auxiliary variable has 6 dimensions for Pong (to encode the
position of the ball and both pads) and 2 dimensions for all other datasets as in [11]. The switch
transition function f(st−1) from Eq. (9) is an MLP with 1 hidden layer of 64 units and relu activations.
The ladder encoder of ARSGLS uses the same convolutional architecture for the auxiliary variable
as the encoder in KVAE, and an additional hidden layer with 64 units for the switch. In contrast to
the KVAE, the Gaussian from the encoder is combined with the respective Gaussian of the generative
model as a product of these densities (cf. Sec. 3.3.3).

The same optimisation hyper-parameters are used for training as in [11], with the exception that we
train each model for 400 epochs with an initial learning rate of 0.002, decaying every 20 epochs
by 0.85 (instead of 80 epochs with initial learning rate 0.007 with the same decay). The number of
particles in ARSGLS is P = 32.

18

118

Part III

Conclusion and Outlook

119

10 Summary

This cumulative dissertation has extended several Bayesian approximate-inference methods
in the context of NNs. Part I provided an introduction and the fundamentals for this broad
area of research that combines the principles of Bayesian inference with NN models. Two
types of Bayesian deep learning methods have been distinguished: i) approximate inference
of the NN weights (Ch. 3), and ii) methods that use deterministic NNs to parametrise the
conditional distributions in DLVMs (Ch. 4) and DSSMs (Ch. 5) and the distributions of the
corresponding inference models. The publications in Part II—which constitute the contributions
of this cumulative dissertation—have shown that NN models can be successfully combined with
variational inference algorithms to tackle different problem areas: for instance, continual learning
for non-stationary data can be approached using variational BNNs (see Ch. 6), though problems
due the detrimental effect of invariances in these models remain challenging (see Ch. 7). On
the other hand, the latent variables in models of multiple modalities/views can be inferred in
a principled manner (Ch. 8), and DSSMs can be trained successfully to provide competitive
probabilistic long-term forecasts (Ch. 9). By building on the probabilistic framework, the main
challenges arising in these domains are addressed in a principled manner through modelling
assumptions and approximate inference, as summarised subsequently.

Ch. 6 addressed learning BNN parameters continually from a stream of datasets under the
assumption that the marginal distribution of the data changes over time. The main challenge
is how to retain previous inference results efficiently, while adapting to the changing data
distribution, i.e. finding a trade-off between plasticity and stability, which is the ability to learn
and retain knowledge, respectively. The proposed method provides a principled approach that
explicitly defines the mechanism for forgetting and thus enables adaptation. The posterior
approximation for the BNN model consists of two components: a Gaussian distribution and
a complementary running memory, which are updated jointly as new data arrives by using a
variational inference algorithm. Two alternative adaptation methods—which assume evolving
NN weights or an exponential decay of the likelihood—enable adapting to distribution shifts.
An advantage of the proposed framework is that novel time-varying priors corresponding to
different drift assumptions (e.g. [141]) can be implemented.

The predominant and currently remaining downside of the above described continual-learning
method is that variational Bayes for BNN often suffers from poor posterior approximations
and even posterior collapse, where the posterior revert to the prior. The contribution in Ch. 7
explained an important factor contributing to this problem: invariances in the likelihood of over-
parametrised models have a detrimental effect for variational inference. An important insight
from this work is that certain invariances—such as translation and permutation invariance—
leave the posterior predictive unchanged, but introduce an additional, non-constant gap in the
ELBO objective. This invariance gap incentives posterior collapse, since the gap vanishes as

120

10 Summary

the posterior reverts to the prior. To show this, the detrimental effect of translation invariance
for mean-field variational inference in an over-parametrised linear model has been studied. It
turned out that ignoring the invariance indeed leads to posterior collapse, while correcting for
the invariance gap in the ELBO optimisation achieves the true posterior.

In Ch. 8, amortised variational inference is extended to infer latent variables underlying data
from different modalities or views (referred to as sources). The main assumption that each
modality/view is generated from a shared latent state with independent noise is imposed
straightforwardly by using distinct likelihood models (decoder) for each source and assuming
conditional independence (given the state). Similarly, an important requirement is to also have
individual inference models corresponding to each source. The proposed method addresses this
requirement, noting that the factorisation of the generative model implicates that the optimal
integration of the individual inference models is achieved by a product of experts. Having
individual inference models has the advantage that missing sources are handled naturally by
leaving out the corresponding inference model from the product of experts. Furthermore, it
enables computing meaningful quantities between beliefs that relate these sources. To this end,
a measure of conflict between the sources is proposed, and it is shown experimentally that it
can be used to detect anomalies, such as failing sensors.

Ch. 9 addresses probabilistic forecasting, efficient inference, and parameter estimation in DSSMs.
One appealing property that motivated using SSMs is that the latent variables (states) naturally
encode the aleatoric uncertainty in the model’s dynamics and forecast distribution. Building on
amortised variational inference, both inference and likelihood estimation in DSSMs has high
variance due to inefficient MC approximation. The proposed model builds on the classical SGLS,
which allows for conditionally tractable inference. Two weaknesses of the classical SGLS are
identified and addressed without compromising the conditional tractability: first, the model is
extended by a state-to-switch recurrence that provides a closed-loop between states and switches;
the importance of this dependency for accurate long-term forecasting of non-linear dynamical
systems (e.g. pendulum dynamics) is shown in the paper. Second, a linear emission model is
not suitable for highly-structured and high-dimensional data, such as images. This is addressed
by introducing an auxiliary variable that decouples the conditionally linear SGLS from the
observations and allows using a NN emission model that is suitable for the data. The main
technical contribution of the paper is i) the extension of Rao-Blackwellised particle filtering
from a classical SGLS to the proposed model, ii) the design of a suitable NN-based proposal
distribution, and iii) the derivation of a variational SMC objective that can be successfully used
for learning both model and variational parameters.

121

11 Future Research

This dissertation presented contributions in multiple, diverse research areas, building on
variational-Bayesian methods for inference in probabilistic models. While concrete research
directions for each of the individual methods are provided in the respective chapters in Part II,
this section outlines promising directions for potential syntheses of these contributions and
discusses important future directions on a wider scope.

The DSSM from Ch. 9 can be extended to include multi-modal/multi-view observations and
missing data as considered in Ch. 8. The observations can be assumed conditionally independent
given the auxiliary variable. Gaussian ladder-encoders for each source can be used to improve the
proposal distribution. To this end, the different modalities can be combined with the sequential
prior through a product-of-experts approach. This is feasible, since the prior distribution—
resulting from the prediction step—and each of the likelihood approximations are Gaussian
functions. Missing data can then be handled naturally by omitting the respective source, which
corresponds to a non-informative (uniform) likelihood.

Both of the above discussed methods (from Ch. 9, and Ch. 8) can in principle be combined
with the continual-learning method for non-stationary streaming data presented in Ch. 6.
The continual-learning method uses a variational-Bayesian approach for the NN parameters,
whereas the methods developed for DSSMs and DLVMs approximate the posterior of additional
latent variables per observation. These can be combined by approximating the posterior of the
parameters using variational Bayes (Sec. 3.4) and the latent variables using amortised/neural
variational inference or variational SMC. Short-term temporal patterns are then modelled
by the sequence model, while data drift over longer time periods (i.e. changing patterns of
the time series) can be accounted for by the variational continual learning and adaptation
methods proposed in Ch. 6. One possible challenge in combining the inference methods for
parameters and latent variables is the increased computational and memory cost due to using
independent sampling approaches for the two types of latent variables. Another challenge is
the increased variance in the estimates of the objective function and its gradients. This is
especially complicated for CNNs and sequence models, since the local reparametrisation trick is
not applicable without further approximations.

Despite major efforts to scale variational BNNs to large model sizes and to modern NN
architectures, these approaches still have not replaced deterministic NNs despite having only a
minor increase in computational complexity. To further reap the benefits of variational BNNs for
epistemic uncertainty estimation and continual learning under distribution shift, further progress
must be made. In particular, it is essential to develop sound and provable/testable explanations
for the performance difference between practical variational-Bayesian and point-estimation
methods for NN models. Ch. 7 already made progress towards this ambitious goal with the

122

11 Future Research

developed framework. However, while both permutation and translation invariance in BNNs
have been fully characterised, concrete and tractable approximations of the corresponding
invariance gap are yet to be developed. Similarly, this novel view on the underfitting problem of
variational Bayes could inform alternative approximation methods that circumvent this problem,
similarly to [142, 31, 143].

Diffusion probabilistic models [144] have recently gained substantial attention as a novel type
of DLVM that are closely related to hierarchical VAEs [145, 146]. Both models optimise the
variational ELBO objective, however, diffusion models use a much simpler inference model.
These models have now established state-of-the-art performance in the computer-vision domain,
achieving impressive results in density estimation, data compression, and image generation.
Building on these advances in computer vision, it seems very promising to explore how to build
on ideas and insights from these models in order to inform the development of novel time-series
forecasting models, potentially leading to similar performance improvements. A particularly
promising direction is to relate latent diffusion models (e.g. [147]) to DSSMs.

123

Bibliography

[1] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. “Deep Learning for
Computer Vision: A Brief Review”. In: Computational Intelligence and Neuroscience
2018 (2018). Ed. by D. Andina, p. 7068349. issn: 1687-5265.

[2] D. W. Otter, J. R. Medina, and J. K. Kalita. “A Survey of the Usages of Deep Learning for
Natural Language Processing”. In: IEEE Transactions on Neural Networks and Learning
Systems 32.2 (2021), pp. 604–624. doi: 10.1109/TNNLS.2020.2979670.

[3] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez.
“Continual learning for robotics: Definition, framework, learning strategies, opportunities
and challenges”. In: Information Fusion 58 (2020), pp. 52–68. issn: 1566-2535.

[4] S. Athey and G. W. Imbens. “Machine Learning Methods That Economists Should Know
About”. In: Annual Review of Economics 11.1 (2019), pp. 685–725.

[5] A. Rajkomar, J. Dean, and I. Kohane. “Machine Learning in Medicine”. In: New England
Journal of Medicine 380.14 (2019). PMID: 30943338, pp. 1347–1358.

[6] M. W. Libbrecht and W. S. Noble. “Machine learning applications in genetics and
genomics”. In: Nature Reviews Genetics 16.6 (2015), pp. 321–332. issn: 1471-0064.

[7] J. M. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunya-
suvunakool, R. Bates, A. Zídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A.
Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,
D. A. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D.
Hassabis. “Highly accurate protein structure prediction with AlphaFold”. In: Nature 596
(2021), pp. 583 –589.

[8] Z. Ghahramani. “Probabilistic machine learning and artificial intelligence”. In: Nat.
521.7553 (2015), pp. 452–459.

[9] J. Schmidhuber. “Deep Learning in Neural Networks: An Overview”. In: Neural Networks
61 (2015). Published online 2014; based on TR arXiv:1404.7828 [cs.NE], pp. 85–117. doi:
10.1016/j.neunet.2014.09.003.

[10] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (2015),
pp. 436–444. issn: 1476-4687.

[11] Y. Gal. “Uncertainty in Deep Learning”. PhD thesis. University of Cambridge, 2016.

[12] H. Wang and D.-Y. Yeung. “A Survey on Bayesian Deep Learning”. In: ACM Comput.
Surv. 53.5 (2020). issn: 0360-0300.

124

https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1016/j.neunet.2014.09.003

Bibliography

[13] A. G. Wilson. “The case for Bayesian deep learning”. In: arXiv preprint arXiv:2001.10995
(2020).

[14] Tishby, Levin, and Solla. “Consistent inference of probabilities in layered networks:
predictions and generalizations”. In: International 1989 Joint Conference on Neural
Networks. 1989, 403–409 vol.2.

[15] W. L. Buntine and A. Weigend. “Bayesian Back-Propagation”. In: Complex Syst. 5 (1991).

[16] J. S. Denker and Y. LeCun. “Transforming Neural-Net Output Levels to Probability
Distributions”. In: Advances in Neural Information Processing Systems 3. Ed. by R. P.
Lippmann, J. E. Moody, and D. S. Touretzky. Morgan-Kaufmann, 1991, pp. 853–859.

[17] D. J. C. MacKay. “A Practical Bayesian Framework for Backpropagation Networks”. In:
Neural Comput. 4.3 (1992), 448–472. issn: 0899-7667.

[18] R. M. Neal. “Bayesian Learning via Stochastic Dynamics”. In: Advances in Neural
Information Processing Systems 5. Ed. by S. J. Hanson, J. D. Cowan, and C. L. Giles.
Morgan-Kaufmann, 1993, pp. 475–482.

[19] G. E. Hinton and D. van Camp. “Keeping the Neural Networks Simple by Minimizing
the Description Length of the Weights”. In: Proceedings of the Sixth Annual Conference
on Computational Learning Theory. COLT ’93. Santa Cruz, California, USA: Association
for Computing Machinery, 1993, 5–13. isbn: 0897916115.

[20] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988. isbn: 1558604790.

[21] R. Neal. “MCMC using Hamiltonian dynamics”. In: Handbook of Markov Chain Monte
Carlo (June 2012).

[22] M. Welling and Y. W. Teh. “Bayesian Learning via Stochastic Gradient Langevin
Dynamics”. In: ICML’11. Bellevue, Washington, USA: Omnipress, 2011, 681–688. isbn:
9781450306195.

[23] A. Graves. “Practical Variational Inference for Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K. Q. Weinberger. Vol. 24. Curran Associates, Inc., 2011, pp. 2348–2356.

[24] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. “Weight Uncertainty in
Neural Networks”. In: Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015,
1613–1622.

[25] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. “Stochastic Variational Inference”.
In: Journal of Machine Learning Research 14.4 (2013), pp. 1303–1347.

[26] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. 2014.

[27] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic Backpropagation and Approx-
imate Inference in Deep Generative Models”. In: Proceedings of the 31st International
Conference on Machine Learning. Ed. by E. P. Xing and T. Jebara. Vol. 32. Proceedings
of Machine Learning Research 2. Bejing, China: PMLR, 2014, pp. 1278–1286.

125

Bibliography

[28] C. Louizos and M. Welling. “Multiplicative Normalizing Flows for Variational Bayesian
Neural Networks”. In: Proceedings of the 34th International Conference on Machine
Learning. Ed. by D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine Learning
Research. International Convention Centre, Sydney, Australia: PMLR, 2017, pp. 2218–
2227.

[29] G. Dikov and J. Bayer. “Bayesian Learning of Neural Network Architectures”. In: Pro-
ceedings of Machine Learning Research. Ed. by K. Chaudhuri and M. Sugiyama. Vol. 89.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 730–738.

[30] S. Ghosh, J. Yao, and F. Doshi-Velez. “Structured Variational Learning of Bayesian Neural
Networks with Horseshoe Priors”. In: Proceedings of the 35th International Conference
on Machine Learning. Ed. by J. Dy and A. Krause. Vol. 80. Proceedings of Machine
Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 1744–1753.

[31] S. Sun, G. Zhang, J. Shi, and R. Grosse. “Functional Variational Bayesian Neural
Networks”. In: International Conference on Learning Representations. 2019.

[32] A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernández-Lobato, and A. L. Gaunt.
“Deterministic Variational Inference for Robust Bayesian Neural Networks”. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

[33] Y. Burda, R. B. Grosse, and R. Salakhutdinov. “Importance Weighted Autoencoders”. In:
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun.
2016.

[34] T. Salimans, D. P. Kingma, and M. Welling. “Markov Chain Monte Carlo and Variational
Inference: Bridging the Gap”. In: Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37. ICML’15. Lille, France:
JMLR.org, 2015, 1218–1226.

[35] D. Rezende and S. Mohamed. “Variational Inference with Normalizing Flows”. In: Pro-
ceedings of the 32nd International Conference on Machine Learning. Ed. by F. Bach and
D. Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, 2015,
pp. 1530–1538.

[36] L. Mescheder, S. Nowozin, and A. Geiger. “Adversarial Variational Bayes: Unifying
Variational Autoencoders and Generative Adversarial Networks”. In: Proceedings of the
34th International Conference on Machine Learning. Vol. 70. Proceedings of Machine
Learning Research. PMLR, 2017.

[37] A. Klushyn, N. Chen, R. Kurle, B. Cseke, and P. van der Smagt. “Learning Hierarchical
Priors in VAEs”. In: Advances in Neural Information Processing Systems. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Vol. 32.
Curran Associates, Inc., 2019, pp. 2870–2879.

[38] M. Karl, M. Sölch, J. Bayer, and P. van der Smagt. “Deep Variational Bayes Filters:
Unsupervised Learning of State Space Models from Raw Data”. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

126

Bibliography

[39] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther. “A Disentangled Recognition
and Nonlinear Dynamics Model for Unsupervised Learning”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

[40] C. J. Maddison, J. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet,
and Y. W. Teh. “Filtering Variational Objectives”. In: Advances in Neural Information
Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017, pp. 6573–6583.

[41] A. Moretti, Z. zhao Wang, L. Wu, and I. Drori. “Variational Objectives for Markovian
Dynamics with Backward Simulation”. In: ECAI. 2020.

[42] Y. Wang, D. Blei, and J. P. Cunningham. “Posterior Collapse and Latent Variable
Non-identifiability”. In: Advances in Neural Information Processing Systems. Ed. by M.
Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran
Associates, Inc., 2021, pp. 5443–5455.

[43] R. Kurle, B. Cseke, A. Klushyn, P. van der Smagt, and S. Günnemann. “Continual
Learning with Bayesian Neural Networks for Non-Stationary Data”. In: 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

[44] R. Kurle, T. Januschowski, J. Gasthaus, and Y. Wang. “On Symmetries in Variational
Bayesian Neural Nets”. In: Bayesian Deep Learning NeurIPS workshop. 2021.

[45] R. Kurle, R. Herbrich, T. Januschowski, Y. Wang, and J. Gasthaus. “On the detrimental
effect of invariances in the likelihood for variational inference”. In: Advances in Neural
Information Processing Systems. Vol. 35. Curran Associates, Inc., 2022.

[46] N. Chen, A. Klushyn, R. Kurle, X. Jiang, J. Bayer, and P. Smagt. “Metrics for Deep
Generative Models”. In: Proceedings of the Twenty-First International Conference on
Artificial Intelligence and Statistics. Ed. by A. Storkey and F. Perez-Cruz. Vol. 84.
Proceedings of Machine Learning Research. PMLR, 2018, pp. 1540–1550.

[47] R. Kurle and S. G. aßnd P. V. D. Smagt. “Multi-Source Neural Variational Inference”.
In: AAAI. 2019.

[48] E. de Bézenac, S. S. Rangapuram, K. Benidis, M. Bohlke-Schneider, R. Kurle, L. Stella, H.
Hasson, P. Gallinari, and T. Januschowski. “Normalizing Kalman Filters for Multivariate
Time Series Analysis”. In: Advances in Neural Information Processing Systems. Ed. by
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates,
Inc., 2020, pp. 2995–3007.

[49] R. Kurle, S. S. Rangapuram, E. de Bézenac, S. Günnemann, and J. Gasthaus. “Deep
Rao-Blackwellised Particle Filters for Time Series Forecasting”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 15371–15382.

[50] A. Klushyn, R. Kurle, M. Soelch, B. Cseke, and P. van der Smagt. “Latent Matters:
Learning Deep State-Space Models”. In: Advances in Neural Information Processing
Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan.
Vol. 34. Curran Associates, Inc., 2021, pp. 10234–10245.

127

Bibliography

[51] A. F. Ansari, K. Benidis, R. Kurle, A. C. Turkmen, H. Soh, A. Smola, B. Wang, and T.
Januschowski. “Deep Explicit Duration Switching Models for Time Series”. In: Advances in
Neural Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 29949–29961.

[52] R. T. Cox. “Probability, Frequency and Reasonable Expectation”. In: American Journal
of Physics 14.1 (1946), pp. 1–13.

[53] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Copyright
Cambridge University Press, 2003.

[54] E. T. Jaynes. Probability Theory: The Logic of Science. Ed. by G. L. Bretthorst. Cambridge
University Press, 2003.

[55] K. P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022.
[56] Y. Gal. “Uncertainty in Deep Learning”. PhD thesis. University of Cambridge, 2016.
[57] S. Depeweg. “Modeling Epistemic and Aleatoric Uncertainty with Bayesian Neural

Networks and Latent Variables”. Dissertation. München: Technische Universität München,
2019.

[58] P. Grünwald and T. van Ommen. “Inconsistency of Bayesian Inference for Misspecified
Linear Models, and a Proposal for Repairing It”. In: Bayesian Anal. 12.4 (2017), pp. 1069–
1103.

[59] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. “Variational Inference: A Review for
Statisticians”. In: Journal of the American Statistical Association 112.518 (2017), pp. 859–
877.

[60] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. “An Introduction to
Variational Methods for Graphical Models”. In: Mach. Learn. 37.2 (1999), 183–233. issn:
0885-6125.

[61] J. V. Jensen. “Sur les fonctions convexes et les inégalités entre les valeurs moyennes”. In:
Acta Mathematica 30 (), pp. 175–193.

[62] R. Ranganath, S. Gerrish, and D. Blei. “Black Box Variational Inference”. In: Proceedings
of the Seventeenth International Conference on Artificial Intelligence and Statistics.
Ed. by S. Kaski and J. Corander. Vol. 33. Proceedings of Machine Learning Research.
Reykjavik, Iceland: PMLR, 2014, pp. 814–822.

[63] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. “Monte Carlo Gradient Estimation
in Machine Learning”. In: J. Mach. Learn. Res. 21.1 (2020). issn: 1532-4435.

[64] R. J. Williams. “Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning”. In: Mach. Learn. 8.3–4 (1992), 229–256. issn: 0885-6125.

[65] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. “Policy Gradient Methods
for Reinforcement Learning with Function Approximation”. In: Advances in Neural
Information Processing Systems. Ed. by S. Solla, T. Leen, and K. Müller. Vol. 12. MIT
Press, 1999.

[66] J. Schulman. “Optimizing Expectations: From Deep Reinforcement Learning to Stochastic
Computation Graphs”. PhD thesis. EECS Department, University of California, Berkeley,
2016.

128

Bibliography

[67] F. J. R. Ruiz, M. K. Titsias, and D. M. Blei. “The Generalized Reparameterization
Gradient”. In: Proceedings of the 30th International Conference on Neural Information
Processing Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc., 2016, 460–468.
isbn: 9781510838819.

[68] M. Figurnov, S. Mohamed, and A. Mnih. “Implicit Reparameterization Gradients”. In:
Proceedings of the 32nd International Conference on Neural Information Processing
Systems. NIPS’18. Montréal, Canada: Curran Associates Inc., 2018, 439–450.

[69] C. J. Maddison, A. Mnih, and Y. W. Teh. “The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables”. In: International Conference on Learning
Representations. 2017.

[70] F. Nielsen and R. Nock. “Entropies and cross-entropies of exponential families”. In: 2010
IEEE International Conference on Image Processing. 2010, pp. 3621–3624.

[71] A. B. Owen. Monte Carlo theory, methods and examples. 2013.

[72] J. E. Matheson and R. L. Winkler. “Scoring Rules for Continuous Probability Distribu-
tions”. In: Management Science 22.10 (1976), pp. 1087–1096. issn: 00251909, 15265501.
(Visited on 07/14/2022).

[73] H. Hersbach. “Decomposition of the Continuous Ranked Probability Score for Ensemble
Prediction Systems”. In: Weather and Forecasting - WEATHER FORECAST 15 (Oct.
2000), pp. 559–570.

[74] T. Gneiting and A. E. Raftery. “Strictly Proper Scoring Rules, Prediction, and Estimation”.
In: Journal of the American Statistical Association 102.477 (2007), pp. 359–378.

[75] N. Gordon, D. Salmond, and A. Smith. “Novel approach to nonlinear/non-Gaussian
Bayesian state estimation”. English. In: IEE Proceedings F (Radar and Signal Processing)
140 (2 1993), 107–113(6).

[76] G. Kitagawa. “Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space
Models”. In: Journal of Computational and Graphical Statistics 5 (1996), pp. 1–25.

[77] A. Doucet and A. Johansen. “A Tutorial on Particle Filtering and Smoothing: Fifteen
years later”. In: 2008.

[78] C. A. Naesseth, F. Lindsten, and T. B. Schön. “Elements of Sequential Monte Carlo”. In:
Found. Trends Mach. Learn. 12 (2019), pp. 307–392.

[79] P. Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems
With Applications. 2004.

[80] N. Chopin. “Central limit theorem for sequential Monte Carlo methods and its application
to Bayesian inference”. In: Ann. Statist. 32.6 (2004), pp. 2385–2411.

[81] J. Carpenter, P. Clifford, and P. Fearnhead. “Improved particle filter for nonlinear
problems”. In: IEE Proceedings - Radar, Sonar and Navigation 146 (1999), pp. 2–7.

[82] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 770–778.

129

Bibliography

[83] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[84] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. “Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation”. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, 2014, pp. 1724–1734.

[85] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin. “Attention is All you Need”. In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017, pp. 5998–6008.

[86] R. M. Neal. “Bayesian Learning for Neural Networks”. PhD thesis. CAN, 1995. isbn:
0612026760.

[87] J. F. G. De Freitas. “Bayesian methods for neural networks”. PhD thesis. University of
Cambridge, 2003.

[88] D. M. Titterington. “Bayesian Methods for Neural Networks and Related Models”. In:
Statist. Sci. 19.1 (2004), pp. 128–139.

[89] T. Chen, E. Fox, and C. Guestrin. “Stochastic Gradient Hamiltonian Monte Carlo”. In:
Proceedings of the 31st International Conference on Machine Learning. Ed. by E. P. Xing
and T. Jebara. Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China:
PMLR, 2014, pp. 1683–1691.

[90] J. S. Denker and Y. LeCun. “Transforming Neural-Net Output Levels to Probability
Distributions”. In: Advances in Neural Information Processing Systems 3. Ed. by R. P.
Lippmann, J. E. Moody, and D. S. Touretzky. Morgan-Kaufmann, 1991, pp. 853–859.

[91] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran,
and R. Hadsell. “Overcoming catastrophic forgetting in neural networks”. In: Proceedings
of the National Academy of Sciences 114 (2016).

[92] H Ritter, A Botev, and D Barber. “A Scalable Laplace Approximation for Neural
Networks”. In: 2018.

[93] N. Lawrence. “Variational inference in probabilistic models”. In: (2000).

[94] A. Y. K. Foong, Y. Li, J. M. Hernández-Lobato, and R. Turner. “’In-Between’ Uncertainty
in Bayesian Neural Networks”. In: ArXiv abs/1906.11537 (2019).

[95] D. P. Kingma, T. Salimans, and M. Welling. “Variational Dropout and the Local
Reparameterization Trick”. In: Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2. NIPS’15. Montreal, Canada: MIT
Press, 2015, 2575–2583.

[96] M. B. Tomczak, S. Swaroop, and R. E. Turner. “Efficient Low Rank Gaussian Variational
Inference for Neural Networks”. In: Advances in Neural Information Processing Systems.
Vol. 33. 2020.

130

Bibliography

[97] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
isbn: 0262018020.

[98] B. Fruchter. Introduction to factor analysis. Introduction to factor analysis. Oxford,
England: Van Nostrand, 1954.

[99] H. H. Harman. Modern factor analysis. Modern factor analysis. Oxford, England: U
Chicago Press, 1976.

[100] M. E. Tipping and C. M. Bishop. “Probabilistic Principal Component Analysis”. In:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B 61.3 (1999), pp. 611–
622.

[101] S. Roweis. “EM Algorithms for PCA and SPCA”. In: Proceedings of the 1997 Conference
on Advances in Neural Information Processing Systems 10. NIPS ’97. Denver, Colorado,
USA: MIT Press, 1998, 626–632. isbn: 0262100762.

[102] C. F. Beckmann and S. M. Smith. “Probabilistic independent component analysis for
functional magnetic resonance imaging”. In: IEEE Transactions on Medical Imaging 23.2
(2004), pp. 137–152.

[103] D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent Dirichlet Allocation”. In: J. Mach. Learn.
Res. 3.null (2003), 993–1022. issn: 1532-4435.

[104] R. M. Neal. “Connectionist Learning of Belief Networks”. In: Artif. Intell. 56.1 (1992),
71–113. issn: 0004-3702.

[105] L. K. Saul, T. Jaakkola, and M. I. Jordan. “Mean Field Theory for Sigmoid Belief
Networks”. In: J. Artif. Int. Res. 4.1 (1996), 61–76. issn: 1076-9757.

[106] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. “The Helmholtz Machine”. In:
Neural Comput. 7.5 (1995), 889–904.

[107] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. “Ladder Varia-
tional Autoencoders”. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc.,
2016, 3745–3753. isbn: 9781510838819.

[108] A. Vahdat and J. Kautz. “NVAE: A Deep Hierarchical Variational Autoencoder”. In:
Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R.
Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 19667–19679.

[109] R. Child. “Very Deep {VAE}s Generalize Autoregressive Models and Can Outperform
Them on Images”. In: International Conference on Learning Representations. 2021.

[110] K. Sohn, H. Lee, and X. Yan. “Learning Structured Output Representation using Deep
Conditional Generative Models”. In: Advances in Neural Information Processing Systems.
Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran
Associates, Inc., 2015, pp. 3483–3491.

[111] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling. “Semi-supervised
Learning with Deep Generative Models”. In: Advances in Neural Information Process-
ing Systems. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger. Vol. 27. Curran Associates, Inc., 2014, pp. 3581–3589.

131

Bibliography

[112] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete
Data via the EM Algorithm”. In: Journal of the Royal Statistical Society. Series B
(Methodological) 39.1 (1977), pp. 1–38.

[113] M. J. Beal. “Variational Algorithms for Approximate Bayesian Inference”. PhD thesis.
Gatsby Computational Neuroscience Unit, University College London, 2003.

[114] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling.
“Improved Variational Inference with Inverse Autoregressive Flow”. In: Advances in
Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I.
Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc., 2016, pp. 4743–4751.

[115] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. “Neural Autoregressive Flows”.
In: Proceedings of the 35th International Conference on Machine Learning. Ed. by J. Dy
and A. Krause. Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan,
Stockholm Sweden: PMLR, 2018, pp. 2078–2087.

[116] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan.
“Normalizing Flows for Probabilistic Modeling and Inference”. In: Journal of Machine
Learning Research 22.57 (2021), pp. 1–64.

[117] S. Särkkä. Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Text-
books. Cambridge University Press, 2013.

[118] G. Kitagawa. “The two-filter formula for smoothing and an implementation of the
Gaussian-sum smoother”. In: Annals of the Institute of Statistical Mathematics 46.4
(1994), pp. 605–623. issn: 1572-9052.

[119] M. Briers, A. Doucet, and S. Maskell. “Smoothing algorithms for state–space models”.
In: Annals of the Institute of Statistical Mathematics 62.1 (2009), p. 61. issn: 1572-9052.

[120] O. Zeitouni and A. Dembo. “Exact filters for the estimation of the number of transitions
of finite-state continuous-time Markov processes”. In: IEEE Transactions on Information
Theory 34.4 (1988), pp. 890–893.

[121] P. Del Moral, A. Doucet, and S. Singh. “Forward Smoothing using Sequential Monte
Carlo”. In: (2010).

[122] O. Cappé. “Online EM Algorithm for Hidden Markov Models”. In: Journal of Computa-
tional and Graphical Statistics 20.3 (2011), pp. 728–749. issn: 10618600.

[123] J. Olsson and J. Westerborn. “Efficient particle-based online smoothing in general hidden
Markov models: The PaRIS algorithm”. In: Bernoulli 23.3 (2017), pp. 1951–1996.

[124] O. Cappé, E. Moulines, and T. Ryden. Inference in Hidden Markov Models (Springer
Series in Statistics). Berlin, Heidelberg: Springer-Verlag, 2005. isbn: 0387402640.

[125] R. K. Olsson, K. B. Petersen, and T. Lehn-Schiøler. “State-Space Models: From the EM
Algorithm to a Gradient Approach”. In: Neural Comput. 19.4 (2007), 1097–1111. issn:
0899-7667.

[126] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In:
Transactions of the ASME–Journal of Basic Engineering 82.Series D (1960), pp. 35–45.

132

Bibliography

[127] H. E. RAUCH, F. TUNG, and C. T. STRIEBEL. “Maximum likelihood estimates of
linear dynamic systems”. In: AIAA Journal 3.8 (1965), pp. 1445–1450.

[128] A. Jazwinski. Stochastic processes and filtering theory. Mathematics in science and
engineering 64. New York, NY [u.a.]: Acad. Press, 1970. XIV, 376. isbn: 0123815509.

[129] P. S. Maybeck. Stochastic Models, Estimation and Control. Mathematics in science and
engineering. Academic Press, 1982.

[130] M. Roth and F. Gustafsson. “An efficient implementation of the second order extended
Kalman filter”. In: 14th International Conference on Information Fusion. 2011, pp. 1–6.

[131] T. P. Minka. “A family of algorithms for approximate Bayesian inference”. PhD thesis.
Massachusetts Institute of Technology, 2001.

[132] I. Arasaratnam and S. Haykin. “Cubature Kalman Filters”. In: IEEE Transactions on
Automatic Control 54 (2009), pp. 1254–1269.

[133] I. Arasaratnam, S. Haykin, and R. J. Elliott. “Discrete-Time Nonlinear Filtering Al-
gorithms Using Gauss–Hermite Quadrature”. In: Proceedings of the IEEE 95 (2007),
pp. 953–977.

[134] E. A. Wan and R. Van Der Merwe. “The unscented Kalman filter for nonlinear es-
timation”. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No.00EX373). 2000, pp. 153–158.

[135] M. Beal and Z. Ghahramani. “The variational Kalman smoother”. In: 2001.

[136] V. Smidl and A. Quinn. “Variational Bayesian Filtering”. In: IEEE Transactions on
Signal Processing 56.10 (2008), pp. 5020–5030.

[137] S. J. Godsill, A. Doucet, and M. West. “Monte Carlo Smoothing for Nonlinear Time
Series”. In: Journal of the American Statistical Association 99.465 (2004), pp. 156–168.

[138] G. Poyiadjis, A. Doucet, and S. S. Singh. “Particle approximations of the score and ob-
served information matrix in state space models with application to parameter estimation”.
In: Biometrika 98.1 (2011), pp. 65–80. issn: 0006-3444.

[139] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei. “Variational Sequential Monte
Carlo”. English (US). In: 21st International Conference on Artificial Intelligence and
Statistics (AISTATS 2018). 2018, pp. 968–977.

[140] T. A. Le, M. Igl, T. Jin, T. Rainforth, and F. Wood. “Auto-Encoding Sequential Monte
Carlo”. In: (2017).

[141] A. Li, A. Boyd, P. Smyth, and S. Mandt. “Detecting and Adapting to Irregular Distribu-
tion Shifts in Bayesian Online Learning”. In: Advances in Neural Information Processing
Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan.
Vol. 34. Curran Associates, Inc., 2021, pp. 6816–6828.

[142] W. J. Maddox, T. Garipov, P. Izmailov, D. Vetrov, and A. G. Wilson. “A Simple Baseline
for Bayesian Uncertainty in Deep Learning”. In: Proceedings of the 33rd International
Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran
Associates Inc., 2019.

133

Bibliography

[143] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig.
“Laplace Redux - Effortless Bayesian Deep Learning”. In: Advances in Neural Information
Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 20089–20103.

[144] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. “Deep Unsupervised
Learning using Nonequilibrium Thermodynamics”. In: Proceedings of the 32nd Interna-
tional Conference on Machine Learning. Ed. by F. Bach and D. Blei. Vol. 37. Proceedings
of Machine Learning Research. Lille, France: PMLR, 2015, pp. 2256–2265.

[145] D. P. Kingma, T. Salimans, B. Poole, and J. Ho. “On Density Estimation with Diffusion
Models”. In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan. 2021.

[146] C.-W. Huang, J. H. Lim, and A. Courville. “A Variational Perspective on Diffusion-Based
Generative Models and Score Matching”. In: Advances in Neural Information Processing
Systems. Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. 2021.

[147] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. “High-resolution image
synthesis with latent diffusion models”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022, pp. 10684–10695.

134

	Abstract
	Acknowledgements
	Contents
	Acronyms
	Introduction and Fundamentals
	Introduction
	Motivation
	Outline and Contributions
	List of Contributions

	Probabilistic Modelling and Inference
	Probabilistic Modelling
	Bayesian Inference for Machine Learning
	Variational Bayes
	Evidence Lower Bound: Variational Inference as Optimisation
	Monte Carlo Approximation and Stochastic Backpropagation

	Importance Sampling
	Sequential Monte Carlo

	Bayesian Neural Networks
	Model Formulation
	Maximum a Posteriori Approximation
	Laplace Approximation
	Variational-Bayesian Approximation

	Deep Latent-Variable Models
	Model Formulation
	Neural Variational Inference for DLVMs
	Variational Autoencoder
	Importance-weighted Autoencoder
	Hierarchical Variational Approximation

	Deep State-Space Models
	Model Formulation
	Inference and Parameter Estimation
	Inference and Prediction
	Parameter Estimation

	Gaussian Linear Dynamical Systems
	Inference
	Parameter Estimation

	Variational Sequential Monte Carlo

	Own Publications
	Continual Learning with Bayesian Neural Networks for Non-stationary Data
	On the detrimental effect of invariances in the likelihood for variational inference
	Multi-source Neural Variational Inference
	Deep Rao-Blackwellised Particle Filters for Time Series Forecasting

	Conclusion and Outlook
	Summary
	Future Research
	Bibliography

