Towards High Performability in Advanced Metering Infrastructures

  • The current movement towards a smart grid serves as a solution to present power grid challenges by introducing numerous monitoring and communication technologies. A dependable, yet timely exchange of data is on the one hand an existential prerequisite to enable Advanced Metering Infrastructure (AMI) services, yet on the other a challenging endeavor, because the increasing complexity of the grid fostered by the combination of Information and Communications Technology (ICT) and utility networks inherently leads to dependability challenges. To be able to counter this dependability degradation, current approaches based on high-reliability hardware or physical redundancy are no longer feasible, as they lead to increased hardware costs or maintenance, if not both. The flexibility of these approaches regarding vendor and regulatory interoperability is also limited. However, a suitable solution to the AMI dependability challenges is also required to maintain certain regulatory-set performance and Quality of Service (QoS) levels. While aThe current movement towards a smart grid serves as a solution to present power grid challenges by introducing numerous monitoring and communication technologies. A dependable, yet timely exchange of data is on the one hand an existential prerequisite to enable Advanced Metering Infrastructure (AMI) services, yet on the other a challenging endeavor, because the increasing complexity of the grid fostered by the combination of Information and Communications Technology (ICT) and utility networks inherently leads to dependability challenges. To be able to counter this dependability degradation, current approaches based on high-reliability hardware or physical redundancy are no longer feasible, as they lead to increased hardware costs or maintenance, if not both. The flexibility of these approaches regarding vendor and regulatory interoperability is also limited. However, a suitable solution to the AMI dependability challenges is also required to maintain certain regulatory-set performance and Quality of Service (QoS) levels. While a part of the challenge is the introduction of ICT into the power grid, it also serves as part of the solution. In this thesis a Network Functions Virtualization (NFV) based approach is proposed, which employs virtualized ICT components serving as a replacement for physical devices. By using virtualization techniques, it is possible to enhance the performability in contrast to hardware based solutions through the usage of virtual replacements of processes that would otherwise require dedicated hardware. This approach offers higher flexibility compared to hardware redundancy, as a broad variety of virtual components can be spawned, adapted and replaced in a short time. Also, as no additional hardware is necessary, the incurred costs decrease significantly. In addition to that, most of the virtualized components are deployed on Commercial-Off-The-Shelf (COTS) hardware solutions, further increasing the monetary benefit. The approach is developed by first reviewing currently suggested solutions for AMIs and related services. Using this information, virtualization technologies are investigated for their performance influences, before a virtualized service infrastructure is devised, which replaces selected components by virtualized counterparts. Next, a novel model, which allows the separation of services and hosting substrates is developed, allowing the introduction of virtualization technologies to abstract from the underlying architecture. Third, the performability as well as monetary savings are investigated by evaluating the developed approach in several scenarios using analytical and simulative model analysis as well as proof-of-concept approaches. Last, the practical applicability and possible regulatory challenges of the approach are identified and discussed. Results confirm that—under certain assumptions—the developed virtualized AMI is superior to the currently suggested architecture. The availability of services can be severely increased and network delays can be minimized through centralized hosting. The availability can be increased from 96.82% to 98.66% in the given scenarios, while decreasing the costs by over 60% in comparison to the currently suggested AMI architecture. Lastly, the performability analysis of a virtualized service prototype employing performance analysis and a Musa-Okumoto approach reveals that the AMI requirements are fulfilled.show moreshow less

Download full text files

Export metadata

Metadaten
Author:Michael NiedermeierORCiD
URN:urn:nbn:de:bvb:739-opus4-8597
Advisor:Hermann De Meer, Anne Remke
Document Type:Doctoral Thesis
Language:English
Year of Completion:2020
Date of Publication (online):2020/12/04
Date of first Publication:2020/12/04
Publishing Institution:Universität Passau
Granting Institution:Universität Passau, Fakultät für Informatik und Mathematik
Date of final exam:2020/10/20
Release Date:2020/12/04
Tag:Advanced Metering Infrastructure; Performability; Virtualization
GND Keyword:Energieversorgung; Virtualisierung
Page Number:xvii, 198 Seiten
Institutes:Fakultät für Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
open_access (DINI-Set):open_access
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International