Hardware extensions for a timing-predictable many-core processor

  • The requirements for today's embedded hard real-time systems are high: They should deliver high performance, be energy-efficient and always react in time. This leads to the use of processors with several cores. However, when the cores are connected via a shared memory, static timing analysis suffers from high pessimism. We see distributed memory many-core processors as a solution where cores communicate via messages. One of them is the Reduced Complexity Many-Core (RC/MC) architecture. It was developed with the goal of high timing predictability. In our thesis, we present an approach to estimate the Worst-Case Execution Time (WCET) of programs running on this platform. Furthermore, we extend the RC/MC to improve its timing predictability and its worst-case performance. Our first step is the introduction of ready synchronization, which avoids buffer overflows. Second, we design hardware support for broadcasts and multicasts. Third, the RC/MC is extended with hardware supportedThe requirements for today's embedded hard real-time systems are high: They should deliver high performance, be energy-efficient and always react in time. This leads to the use of processors with several cores. However, when the cores are connected via a shared memory, static timing analysis suffers from high pessimism. We see distributed memory many-core processors as a solution where cores communicate via messages. One of them is the Reduced Complexity Many-Core (RC/MC) architecture. It was developed with the goal of high timing predictability. In our thesis, we present an approach to estimate the Worst-Case Execution Time (WCET) of programs running on this platform. Furthermore, we extend the RC/MC to improve its timing predictability and its worst-case performance. Our first step is the introduction of ready synchronization, which avoids buffer overflows. Second, we design hardware support for broadcasts and multicasts. Third, the RC/MC is extended with hardware supported barriers. Each of these techniques is evaluated for its impact. We carry out timing analyses of the hardware operations for broadcasts/multicasts and barriers and compare them with their variants without hardware support. Finally, we present three case studies, where we analyze benchmarks taken from the NAS parallel benchmark suite to evaluate the worst-case performance of our extensions in the context of real use cases.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin Frieb
URN:urn:nbn:de:bvb:384-opus4-893331
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/89333
Advisor:Theo Ungerer
Type:Doctoral Thesis
Language:English
Year of first Publication:2019
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Fakultät für Angewandte Informatik
Date of final exam:2019/11/19
Release Date:2021/09/30
Tag:Many-Core; Network Interface; Hardware Design; Timing Analysis; Parallel Computing
GND-Keyword:Computerarchitektur; Mehrkernprozessor; Hardwareentwurf; Parallelverarbeitung; Worst-Case-Laufzeit
Pagenumber:185
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Systemnahe Informatik und Kommunikationssysteme
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Systems
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht mit Print on Demand