Generic analysis support for understanding, evaluating and comparing enterprise architecture models

  • Enterprise Architecture Management (EAM) is one mean to deal with the increasing complexity of today’s IT landscapes. Architectural models are used within EAM to describe the business processes, the used applications, the required infrastructure as well as the dependencies between them. The creation of those models is expensive, since the whole organization and therewith a large amount of data has to be considered. It is important to make use of these models and reuse them for planning purposes and decision making. The models are a solid foundation for various kinds of analyses that support the understanding, evaluation and comparisons of them. Analyses can approximate the effects of the retirement of an application or of a server failure. It is also possible to quantify the models using metrics like the IT coverage of business processes or the workload of a server. The generation of views sets the focus on a specific aspect of the model. An example is the limitation to the processesEnterprise Architecture Management (EAM) is one mean to deal with the increasing complexity of today’s IT landscapes. Architectural models are used within EAM to describe the business processes, the used applications, the required infrastructure as well as the dependencies between them. The creation of those models is expensive, since the whole organization and therewith a large amount of data has to be considered. It is important to make use of these models and reuse them for planning purposes and decision making. The models are a solid foundation for various kinds of analyses that support the understanding, evaluation and comparisons of them. Analyses can approximate the effects of the retirement of an application or of a server failure. It is also possible to quantify the models using metrics like the IT coverage of business processes or the workload of a server. The generation of views sets the focus on a specific aspect of the model. An example is the limitation to the processes and applications of a specific organization unit. Architectural models can also be used for planning purposes. The development of a target architecture is supported by identifying weak points and evaluating planning scenarios. Current approaches for EAM analysis are typically isolated ones, addressing only a limited subset of the different analysis goals. An integrated approach that covers the different information demands of the stakeholders is missing. Additionally, the analysis approaches are highly dependent on the utilized meta model. This is a serious problem since the EAM domain is characterized by a large variety of frameworks and meta models. In this thesis, we propose a generic framework that supports the different analysis activities during EAM. We develop the required techniques for the specification and execution of analyses, independently from the utilized meta model. An analysis language is implemented for the definition and customization of the analyses according to the current needs of the stakeholder. Thereby, we focus on reuse and a generic definition. We utilize a generic representation format to be able to abstract from the great variety of used meta models in the EAM domain. The execution of the analyses is done with Semantic Web Technologies and data-flow based model analysis. The framework is applied for the identification of weak points as well as the evaluation of planning scenarios regarding consistency of changes and goal fulfillment. Two methods are developed for these tasks, as well as respective analysis support is identified and implemented. These are, for example, a change impact analysis, specific metrics or the scoping of the architectural model according to different aspects. Finally, the coverage of the framework regarding existing EA analysis approaches is determined with a scenario-based evaluation. The applicability and relevance of the language and of the proposed methods is proved within three large case studies.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Melanie Langermeier
URN:urn:nbn:de:bvb:384-opus4-776097
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/77609
Advisor:Bernhard Bauer
Type:Doctoral Thesis
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Fakultät für Angewandte Informatik
Date of final exam:2019/07/24
Release Date:2020/08/06
GND-Keyword:Unternehmensarchitektur; Unternehmensmodell; Semantic Web; Framework <Informatik>
Pagenumber:290
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht