SON function performance prediction in a cognitive SON management system

  • As a reply to the increasing demand for fast mobile network connections the concept of Self-Organising Networks (SONs) has been developed, reducing the need for humans to execute Operation, Administration and Maintenance (OAM) tasks for mobile networks. However, a SON contains functions which are provided by different vendors as black boxes, making it hard to predict the performance of the network, especially under untested configurations. Since Mobile Network Operators (MNOs) have to fulfil rising mobile network performance demands while reducing costs at the same time, it is crucial to gain a better understanding of the network behaviour to allow a costneutral performance improvement while simultaneously reducing the risk of network misconfiguration and service disturbance. In this paper an approach is introduced to enhance SON Management models with cognitive Machine Learning (ML) methods. Therefore, the simulated behaviour of three different SON Functions is analysed andAs a reply to the increasing demand for fast mobile network connections the concept of Self-Organising Networks (SONs) has been developed, reducing the need for humans to execute Operation, Administration and Maintenance (OAM) tasks for mobile networks. However, a SON contains functions which are provided by different vendors as black boxes, making it hard to predict the performance of the network, especially under untested configurations. Since Mobile Network Operators (MNOs) have to fulfil rising mobile network performance demands while reducing costs at the same time, it is crucial to gain a better understanding of the network behaviour to allow a costneutral performance improvement while simultaneously reducing the risk of network misconfiguration and service disturbance. In this paper an approach is introduced to enhance SON Management models with cognitive Machine Learning (ML) methods. Therefore, the simulated behaviour of three different SON Functions is analysed and described by a Linear Regression (LR) Model. In a second step, performance data of network cells are analysed for similarities using k-Means Clustering. The findings of these two steps are then combined by fitting the models onto smaller clusters of cells. Finally, the utility of these models for predicting the performance of the network is evaluated and the different stages of refinement are compared with each other.show moreshow less

Download full text files

  • 71811.pdfeng
    (1046KB)

    Postprint. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Simon LohmüllerGND, Fabian RabeGND, Andrea FendtGND, Bernhard BauerORCiDGND, Lars Christoph Schmelz
URN:urn:nbn:de:bvb:384-opus4-718111
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/71811
ISBN:9781538611548OPAC
Parent Title (English):2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 15-18 April 2018, Barcelona, Spain
Publisher:IEEE
Place of publication:Piscataway, NJ
Editor:Jordi Pérez-Romero, Stephan F. Pfletschinger
Type:Part of a Book
Language:English
Year of first Publication:2018
Publishing Institution:Universität Augsburg
Release Date:2020/03/04
First Page:13
Last Page:18
DOI:https://doi.org/10.1109/wcncw.2018.8368999
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Software & Systems Engineering
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik / Professur Softwaremethodik für verteilte Systeme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht