Spin conversion rates due to dipolar interactions in mono-isotopic quantum dots at vanishing spin-orbit coupling

  • Dipolar interaction between the magnetic moments of electrons is studied as a source for electron spin decay in quantum dots or arrays of quantum dots. This magnetic interaction will govern spin decay, after other sources, such as the coupling to nuclear spins or spin orbit coupling, have been eliminated by a suitable sample design. Electron-electron (Coulomb) interactions, important for magnetic properties, are included. Decomposing the dipolar operator according to the symmetric group of electron permutations allows one to deduce vanishing decay channels as a function of electron number and spatial symmetries of the quantum dot(s). Moreover, we incorporate the possibility of rapid phonon induced spin conserving transitions which crucially affect the temperature dependence of spin decay rates. An interesting result is that a sharp increase of the spin decay rate occurs already at relatively low temperatures.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wolfgang HäuslerGND, Peter HänggiORCiDGND
URN:urn:nbn:de:bvb:384-opus4-2630
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/329
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2006/08/31
Tag:semiconductor quantum dots; spin-orbit interactions; magnetic moments; phonons
GND-Keyword:Quantenpunkt; Halbleiter; Spin; Magnetisches Moment; Phonon
Note:
erschienen in: Phys. Rev. B 73, 125329 (2006); DOI: 10.1103/PhysRevB.73.125329; URL: http://link.aps.org/abstract/PRB/v73/e125329
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik I
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik