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Trajectory surface hopping (TSH) is one of the most widely used quantum-classical algorithms
for nonadiabatic molecular dynamics. Despite its empirical effectiveness and popularity, a rigor-
ous derivation of TSH as the classical limit of a combined quantum electron-nuclear dynamics is
still missing. In this work, we aim to elucidate the theoretical basis for the widely used hopping
rules. Naturally, we concentrate thereby on the formal aspects of the TSH. Using a Gaussian wave
packet limit, we derive the transition rates governing the hopping process at a simple avoided level
crossing. In this derivation, which gives insight into the physics underlying the hopping process,
some essential features of the standard TSH algorithm are retrieved, namely (i) non-zero electronic
transition rate (“hopping probability”) at avoided crossings; (ii) rescaling of the nuclear velocities to
conserve total energy; (iii) electronic transition rates linear in the nonadiabatic coupling vectors. The
well-known Landau-Zener model is then used for illustration. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4770280]

I. INTRODUCTION

Practical molecular modeling is based on the Born-
Oppenheimer approximation (BOA), which allows one to
decouple the fast electronic motion from the usually slower
nuclear motion by introducing (i) the (adiabatic) potential
energy surfaces (PESs), provided by the electrons in a spe-
cific eigenstate, and (ii) the nonadiabatic couplings (NACs).1

When the latter are neglected, nuclei move on a single PES.
Despite the success of the BOA, there are many physical sit-
uations, such as photo-reaction, electron transfer, or any form
of non-radiative electronic relaxation, which involve more
than one PES.2 In these cases, one has to take into account
the coupling between various PESs.

One of the techniques most widely applied to treat nona-
diabatic effects in molecular dynamics is the trajectory sur-
face hopping (TSH), with its several variants.3–14 The main
idea behind this technique is that, while the electronic wave
function is propagated coherently, the force field felt by the
nuclei varies in a discontinuous, stochastic way—the nuclei
move along a single adiabatic PES, selected according to the
electronic population of the corresponding state; time changes
in the electronic populations can result in a sudden hop to an-
other adiabatic energy surface. In order to conserve the to-
tal energy after each hop, the nuclear velocities are rescaled.
This leads to a discontinuity in the nuclear velocities which,
however, is generally small since the hops are more likely
to occur between PESs which are close in energy. Yet, en-
ergy conservation is obtained in a rather ad hoc way and, al-
though it is common practice to rescale the velocities along
the direction of the nonadiabatic coupling vectors (which cou-

ple different adiabatic states),4, 15 in principle other choices
are possible.11, 12, 15 As a consequence, most surface hopping
algorithms are justified on an empirical basis, by direct com-
parison with exact analytical results in model systems or ex-
perimental data. A further issue concerns the loss of electron-
nuclear coherence in the course of the dynamics. This aspect
is directly related to the scaling of the transition probability
with respect to the nonadiabatic couplings. It is traditionally
linear in standard TSH,4 but it was recently shown to be incor-
rect for some model cases,12 the effect being directly traced
back to the treatment of decoherence over time.

In this work, emphasis is put on the formal analysis
in order to provide a basis for better understanding surface
hopping techniques, rather than concentrating on numeri-
cal aspects. This aim is similar in spirit to that of previous
works,7, 16–18 but in a simpler framework. The paper is orga-
nized as follows. In Sec. II, we briefly introduce the formal-
ism, which will be used in the rest of the paper. In Sec. III,
we derive the equations governing the electronic transition
rates at an avoided crossing by using a Gaussian wave packet
limit for the nuclear wave function. The equations directly
display the physics behind the TSH, i.e., the physics govern-
ing a hop at an avoided crossing followed by rescaling of the
nuclear velocities in order to conserve total energy. We find
that the physical source of the velocity rescaling is related
to the speed of variation of the NACs and that the rescaling
only affects the nuclear velocity components parallel to the
NAC vectors. We further discuss some general consequences
of our theoretical approach and its relevance in the context
of practical nonadiabatic molecular dynamics. In Sec. IV, the
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electronic transition rates are explored by using the Landau-
Zener model as a paradigmatic test case. We finally draw our
conclusions and future perspectives.

II. BASICS

We consider a quantum mechanical system of n electrons
and N nuclei with the total Hamiltonian Ĥ = T̂ + Ĥ el being
the sum of the kinetic energy of the nuclei, T̂ = −∇2

R/2M ,
and the electronic Hamiltonian, Ĥ el, which contains the ki-
netic energy of the electrons, the electron-electron potential,
the electron-nuclear coupling, and the nucleus-nucleus poten-
tial. To keep notations simple, throughout this paper we de-
note the set of electronic coordinates by r and the nuclear ones
by R; moreover, we consider all nuclei having the same mass
M and we use atomic units.

The nuclei are much heavier than the electrons and thus
it is a natural first approximation to consider them as classi-
cal particles, having at all times well-defined positions R and
momenta P. This suggests an adiabatic procedure where the
electronic problem is solved for nuclei momentarily clamped
to fixed positions in space: Ĥ el(R)φi(r; R) = Ei(R)φi(r; R).
The (adiabatic) electronic eigenfunctions {φi(r; R)} depend
parametrically on the atomic positions and form a complete
and orthonormal set. They can be used as a basis to expand
the total wave function of the system as

�(r, R; t) =
∑

j

χj (R; t)φj (r; R), (1)

and solve the time-dependent Schrödinger equation

i∂t�(r, R; t) = Ĥ�(r, R; t). (2)

The expansion coefficients χj (R; t), which depend on the nu-
clear positions, will be identified as nuclear wave packets.
Such wave packets are neither orthogonal nor normalized. In
fact, the integral

∫
d3N R |χj (R; t)|2 = ‖χj (t)‖2 gives the in-

stantaneous electronic population of the j th quantum state.
By inserting expansion (1) for the total wave function into
the Schrödinger equation (2) and projecting out the resulting
equation on the electronic state φi, one obtains

i
∂

∂t
χi(R; t) = [T̂ + Ei(R)]χi(R; t)

− i
∑

j

Dij (R) · P̂χj (R; t), (3)

with

Dij (R) = 1

M
〈φi(r; R)|∇R|φj (r; R)〉 (4)

being the NAC vectors and P̂ = −i∇R the momentum op-
erator for the nuclei, and where we used the notation
〈φi(r; R)|Ô|φj (r; R)〉 = ∫

d3nr φ∗
i (r; R)Ôφj (r; R), with Ô a

generic operator. Note that in (3) we neglected the terms
〈φi(r; R)|T̂ |φj (r; R)〉, being of order 1/M smaller than the ki-
netic energy of the electrons.19

The NAC vectors Dij (R) couple different adiabatic en-
ergy surfaces. Generally, the coupling terms in Eq. (3) are of
order 1/

√
M smaller than the electronic energy,19 and there-

fore they can be safely neglected. In this case, the adiabatic

nuclear wave functions are evolved independently, i.e., their
normalizations—which give the adiabatic populations—are
constants of motion. The Born-Oppenheimer approximation
is based on this decoupling. However, as the gap between two
PESs narrows, the NAC vectors become large, as it can be
seen from the following expression:20

Dij (R) = − 1

M

〈φi(r; R)|(∇RĤ el)|φj (r; R)〉
Ei(R) − Ej (R)

, (5)

where Ei(R) − Ej (R) �= 0 and the numerator remains finite.
This allows mixing between eigenstates for large enough nu-
clear velocities. TSH then provides a convenient approxi-
mation of the nonadiabatic molecular dynamics, i.e., of the
electronic transitions that can occur along with the nuclear
motion.

III. BEYOND THE BORN-OPPENHEIMER
APPROXIMATION

A. Time-dependent perturbation theory

A statistical reduction of a correlated electron-nuclear
dynamics into occasional, independent, PES hopping is pos-
sible only if one transition (hop) is fully completed before the
next can take place. This requires that the nonadiabatic cou-
pling terms Dij (R), although not negligible, are small enough
to be considered as a perturbation during a short time in-
terval �t, as typically assumed in analogous analyses, see,
e.g., Refs. 17, 21, and 22. In such a case, we can sepa-
rate the Hamiltonian of the system in an unperturbed part
Ĥ0,i = T̂ + Ei(R) and a perturbation part −i

∑
j Dij (R) · P̂.

The aim is to find an approximate solution of the time-
dependent Schrödinger equation (3) according to the time-
dependent perturbation theory. In order to achieve this aim,
it is convenient to work in the interaction picture,23 where

χi,I = eiĤ0,i tχi,

i∂tχi,I =
∑

j

Ŵij,I χj,I ,

Ŵij,I = −i eiĤ0,i t [Dij (R) · P̂]e−iĤ0,j t .

Note that in the adiabatic representation no time-ordering
is needed in the definition of Ŵij . Therefore, the solution of
the equation of motion for χ i, I, between initial time zero and
final time t, at first order in the perturbation

∑
j Ŵij,I reads

χi,I (R; t) ≈ χi(R; 0)

−
∑

j

∫ t

0
dt ′ eiĤ0,i t

′
Dij (R) · P̂ e−iĤ0,j t

′
χj (R; 0).

(6)

B. Approximations through Gaussians

Eventually, ionic motion is treated classically while the
computation of a hopping probability has to proceed in a
quantum mechanical framework. In order to establish the link
between these two descriptions, we need a semi-classical ap-
proximation for the wave functions χ . Inspired by Heller’s

Downloaded 16 Jan 2013 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



234113-3 Escartín et al. J. Chem. Phys. 137, 234113 (2012)

work,24 the initial state χj (R; 0) is represented in terms of
Gaussian wave packets

GRiPi λi
(R) =

(
λi

π

)3N/4

exp

[
iPi · R − λi

2
(R − Ri)

2

]
(7)

as

χj (R; 0) = αjGRj0Pj0λj
(R), (8)

with Rj0, Pj0, and αj being the average positions, average
momenta, and amplitudes, respectively, of the wave packet at
t = 0 (see Appendix A for more details on the Gaussian
wave packets). All Gaussians are normalized to one. The
(complex) coefficient αj regulates the contribution from each
Gaussian to the whole state. It expresses the correlations ac-
cumulated in previous time steps. The propagator e−iĤ0,j t

′
in

(6) then evolves this wave packet from the initial time t = 0
to a time t′. At this point, we make use of a semi-classical
approximation for the nuclei: in the spirit of the frozen Gaus-
sian approximation proposed by Heller,24 we impose that,
for a short time interval, the width of the Gaussian is fixed
(“frozen”) and that the time evolution of the parameters Rj (t)
and Pj (t) is given by the solution of the classical equations
of motion for an effective nuclear potential given by the j th
PES. Note that the use of frozen Gaussians is a common
practice both in numerical applications and formal develop-
ments in the field.12, 18, 21, 25–29 One can then use the following
approximation:

e−iĤ0,j t
′GRj0Pj0λj

≈ e−i(Ej +Tj )t ′GRj (t ′)Pj (t ′)λj
(9)

with Tj = P2
j

2M
, Ej = Ej (Rj ), and their sum Tj + Ej being

constant along the classical evolution. In doing so, we are ne-
glecting the term − ∫ t ′

0 dt Ṗj (t) · Rj (t) in the quantum phase
accumulated during the time evolution. This approximation
is justified for small momentum changes during short-time
propagation, which is in line with our derivation. In the fol-
lowing, we will refer to this semi-classical limit as the wave
packet limit. Note that this limit is in the spirit of the short-
time expansion to a semi-classical golden rule employed, e.g.,
in Refs. 25–27 and 30.

For the sake of simplicity, we use a multivariate Gaus-
sian with the same (frozen) width λj for all nuclear Cartesian
coordinates. This is justified in the classical limit λj → ∞,
which will be taken at the end of our derivation. Moreover, in
the following we will drop the time dependence of the aver-
age positions and momenta, if not needed. At each time the
Gaussian wave packets fulfill the completeness relation

δ3N (R − R′) =
∫

d3NPk

∫
d3N P�GRiPkλi

(R)

I−1
Riλi

(Pk, P�)G∗
RiP�λi

(R′), (10)

where I−1
Riλi

is the inverse of the overlap IRiλi
(Pk, P�)

= 〈GRiPkλi
|GRiP�λi

〉 (see Appendix A for details). Inserting (8)

and (10) in (6) and applying the wave packet limit (9) yields

χi,I (R; t) ≈ χi(R; 0) −
∑

j

αj

∫ t

0
dt ′

∫
d3N Pk

∫
d3NP�

ei(Ei+Tk−Ej −Tj )t ′GRi0Pk0λi
(R)I−1

Riλi
(Pk, P�)

〈GRiP�λi
|Dij |GRj Pj λj

〉 · Pj , (11)

where we applied the wave packet limit also to the P̂ op-
erator in (6) allowing the identification P̂ ≡ Pj . Note that,
in Eq. (11), GRi0Pk0λi

= e−i(Ei+Tk )t ′eiĤ0,i t
′GRi (t ′)Pk (t ′)λi

implicitly
depends on t′ as initial time of the backward evolution of
(Ri(t), Pk(t)) from t′ to t = 0.

We have now to decide how to deal with the NAC vectors
Dij . The adiabatic basis is associated with strongly varying
Dij (R). Therefore, we will consider the following Gaussian
distribution for the coupling vectors

Dij (R) = D(ij )
0 exp

[
− (

R − R(ij )
c

)T
μ̂(ij )

(
R − R(ij )

c

)]
, (12)

where T denotes transposition, D(ij )
0 is a constant, and R(ij )

c the
position of the avoided crossing. For notational convenience,
we will drop the superscript “(ij)” on the right-hand side of
Eq. (12). The Gaussian “width” μ̂(ij ) is a rank 2 tensor, whose
form will be discussed in Sec. III C. Ansatz (12) is in line with
the avoided crossing model proposed, e.g., in Ref. 4, and with
the analysis of Ref. 21 based on a semi-classical propagator;
moreover, it allows the NACs to fulfill the curl condition,31 at
least in the case of a two-level system (2LS), as it is illustrated
in Sec. III C.

The Gaussian form for Dij allows an analytical evalua-
tion of the transition matrix elements. Moreover, to keep con-
tact with the TSH technique, we consider that transitions j → i
at an avoided crossing produce again wave packets of about
the same spatial width (i.e., λi = λj = λ) and same average po-
sition (i.e., Rj = Ri). Therefore, using the folding relations of
Gaussians and the inverse I−1

Rj λ
(Pk, P�) given in Appendix A,

one obtains

χi,I (R; t)

≈ χi(R; 0) −
(

1

4π

)3N/2 ∑
j

αj√
det (μ̂)

∫ t

0
dt ′

∫
d3N Pk

ei(Ei+Tk−Ej −Tj )t ′GRi0Pk0λ(R) ei(Pj −Pk )Rc

D0 · Pj exp

[
−1

4
(Pj − Pk)Tμ̂−1(Pj − Pk)

]
. (13)

In principle, one cannot move the exponentials out of the time
integral because the wave packet parameters—being evolved
according to the classical equations of motion—can display a
non-trivial time dependence. On the other hand, we eventually
consider the classical limit λ → ∞ of the previous equation.
In this limit, one can consider the evolution of the wave packet
parameters to be smooth over a time scale, t, large enough
to approximate the time-integral with a Dirac delta-function.
This is also justified in the proper classical limit because en-
ergy fluctuations are suppressed, as in classical molecular dy-
namics the total energy is exactly conserved at each time-step.
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The result then becomes

χi,I (R; t)

≈ χi(R; 0) −
(

1

4π

)3N/2 ∑
j

αj√
det (μ̂)

∫
d3N Pk

GRi0Pk0λ(R)ei(Pj −Pk )Rc D0 · Pj

exp

[
−1

4
(Pj − Pk)Tμ̂−1(Pj − Pk)

]

δ

(
Ei + P2

k

2M
− Ej − P2

j

2M

)
. (14)

We can now take the limit λ → ∞, which simply localizes the
Gaussian wave packet GRi0Pk0λ(R) while leaving unchanged
the rest of the expression.

C. The curl condition for the NACs

The NAC vectors are known to satisfy the so-called curl
condition if they are not in the neighborhood of a conical
intersection.31 For an arbitrary number of electronic PESs, the
curl condition is nonlinear in the components of the NAC vec-
tors, and its analysis is beyond the scope of this article. How-
ever, for a 2LS with real wave functions the curl condition is
linear, and reads

∂D(12)
α (R)

∂Rβ

− ∂D
(12)
β (R)

∂Rα

= 0 , (15)

where D(12)
α (R) are the components of the single nonzero in-

dependent NAC vector of the system, D(12)(R) = −D(21)(R),
and the equation holds for all pairs of nuclear coordinates
(α, β).

Ansatz (12) is flexible enough to adapt to the curl con-
dition for a 2LS, Eq. (15). First, μ̂ should be a semi-positive
symmetric matrix in the nuclear coordinates, i.e., it should
satisfy μαβ = μβα and RTμ̂R ≥ 0 for all R. The properties
of such a matrix μ̂ guarantee that (i) there is a change of nu-
clear coordinates associated to an orthonormal basis change
(i.e., a rotation) which transforms μ̂ into diagonal form, and
that (ii) some of its eigenvalues are positive, and some may be
zero. Directions with zero eigenvalues of μ̂ give rise to Dirac
deltas in momentum space instead of finite-width Gaussians,
and hence there is strict momentum conservation along these
directions; eigen-directions with nonzero eigenvalues are de-
scribed via Gaussians in momentum space, with the μ̂ re-
stricted to this invertible subspace, and hence small changes
of the nuclear momentum along these directions are allowed.

It is possible to prove (see Appendix B) that for such an
ansatz the curl condition is satisfied for all nuclear configura-
tions R if and only if

μ̂ ∝ D0 ⊗ D0, (16)

with a positive proportionality constant. Such a μ̂ has a single
nonzero eigenvalue, which corresponds to the direction of D0.
In the following, we will consider a μ̂ as given in (16) also for
the general case of multiple PESs.

D. Transition rates

From the final result (14) of perturbation theory in the
Gaussian wave packet approximation, we can derive the
change in time of the electronic population in the ith state,
‖χ i(t)‖2 − ‖χ i(0)‖2, from which the electronic transition
rates between an initial state χ j and the final states χ i are ob-
tained as

WjPj →iPk
∝ Re(α∗

i αj ) D0 · Pj

exp

[
−1

4
(Pj − Pk)Tμ̂−1(Pj − Pk)

]

δ

(
Ei + P2

k

2M
− Ej − P2

j

2M

)
+ O((D0 · Pj )2).

(17)

Equation (17) is the central result of this paper: it de-
scribes hopping between an initial adiabatic energy sur-
face Ej, along which nuclei move with momenta Pj , and
a final adiabatic surface Ei, along which nuclei move with
rescaled momenta Pk in order to conserve the total energy.
This is precisely the framework common to the various TSH
approaches.

Besides recovering the essential features of the TSH al-
gorithm, our derivation provides a better understanding of the
underlying physics. In particular, the change Pj → Pk in the
nuclear momenta occurs within a range set by μ̂, which is
related to the spatial variation of the nonadiabatic coupling
vector. A similar result can be found in Ref. 21. We note that
when considering nearly constant Dij , i.e., when μ̂ −→ 0, the
exponential in Eq. (17) becomes δ3N (Pk − Pj ) and the energy
matching becomes δ(Ei − Ej) requiring a strict level cross-
ing. This is the case in a diabatic basis, as we will see in
Sec. IV.

The allowed changes in momentum are aligned along
the direction of D0, i.e., the direction of the NAC vectors,
as discussed in Sec. III C. This result supports hence the
widely used procedure of adjusting the nuclear velocities
along the NAC vectors and it is in line with previous find-
ings in this direction.16–18, 32, 33 Note that this result strongly
relies on the ansatz (12) and (16) for the NACs. This choice
allows the NACs to satisfy the curl condition for a 2LS
(with real wave functions), Eq. (15), and in our derivation
we assume the same form also for a general multi-level
system.

Finally, we find a transition rate linear in the coupling
vector D0, typical of the standard surface hopping algorithm.4

Crucial in getting this scaling is to assume that the state χ i

is initially populated in Eq. (6), which means a non-zero αi

in Eq. (17). This requires that the electronic correlations con-
tained in the αj coefficients were propagated coherently over
the history of the process.

If one requires, instead, that a full state reduction is per-
formed at each time when evaluating the transition rates, then
each coherent propagation starts from a pure single state j′,
i.e., αj = δjj ′ , which removes the sum over j in (14). In this
case, the transition rates to previously unoccupied levels i �= j′
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FIG. 1. Schematic plot of the diabatic energies ±RE′ (dotted lines) and adi-
abatic energies E1,2 (solid lines) in the Landau-Zener model as functions of
the ionic distance R.

are quadratic in D0, since the linear term drops from Eq. (17):

Wj ′Pj ′→iPk
∝ |D0 · Pj ′ |2 exp

[
−1

2
(Pj ′ − Pk)Tμ̂−1(Pj ′ − Pk)

]

δ

(
Ei + P2

k

2M
− Ej ′ − P2

j ′

2M

)
. (18)

These results are in line with the recent findings that Tully’s
surface hopping gives the wrong scaling in the spin-boson
model (the correct scaling being quadratic in the coupling
vector) and that this is due to an incorrect description of de-
coherence in the standard TSH.34

IV. ILLUSTRATION IN THE LANDAU-ZENER MODEL

The final formula (17) can be illustrated in the well-
known Landau-Zener model.35 The basics of the model are
sketched schematically in Fig. 1. The nuclear degree of free-
dom is described by one coordinate R. The electronic degrees
of freedom are related to a system of two levels i = 1, 2.
The unperturbed system, standing for the diabatic situation,
has a linear level crossing at R = 0. The slope E′ is the first
model parameter. The strength of the interaction between the
two diabatic levels is set by the coupling constant V , which
constitutes the second model parameter. The adiabatic rep-
resentation is obtained by solving the 2×2 model Hamilto-
nian for fixed ionic position. This yields the well-known adi-
abatic PESs E1,2 = ±

√
(RE′)2 + V 2 as indicated in the fig-

ure (solid lines). These are the PESs which enter the hopping
formula (17). The deviation from the diabatic energy levels is
particularly strong around R ≈ 0, which leads to a strongly
varying nonadiabatic coupling Dij (R) as was assumed in our
derivation. It is a textbook exercise to work that out for the
Landau-Zener model. We find

|D12(R)| ∝ |E′/V |
1 + (E′/V )2R2

. (19)

This matrix element is strongly peaked at the avoided level
crossing, i.e., around R = 0, with a characteristic R width
μ−1/2 ∼ |V/E′|. This translates to a typical width of the mo-
mentum distribution of |E′/V |. The example demonstrates
that some non-negligible momentum spread in the hopping is
expected as we usually encounter avoided crossings as mod-
eled in the Landau-Zener model. The overall strength of the
hopping matrix element is governed by the same parameter

combination |E′/V | that determines the momentum width.
We thus find that larger hopping probabilities are associated
with larger momentum widths.

One can also try to generalize the Landau-Zener model
to higher dimensions. A simplistic way to achieve this is to
promote E′ to a vector, and, consequently, to interpret RE′

as a scalar product. In this case, Eq. (19) indicates that the
direction of D12 is along E′ and μ is proportional to the ten-
sor product E′ ⊗ E′. This further supports ansatz (12), with
μ̂ ∝ D0 ⊗ D0, for the NACs, and our findings of Sec. III D.

V. CONCLUSIONS

We propose a derivation of the trajectory surface-hopping
(TSH) technique based on a semi-classical approximation to
the nuclear dynamics in the spirit of a wave packet limit.

The equations governing the electronic transition rates at
a simple avoided level crossing display the essential features
of the TSH algorithm and allow us to elucidate the underly-
ing physics. We find a nonzero electronic transition rate at
avoided crossings, which allows for small changes in the nu-
clear momenta accounted for properly in the energy matching.
This justifies the rescaling of the classical velocities done in
practice after each hop. Moreover, we find that the physical
source of the width of allowed hops in momentum space is
related to the speed of variation of the nonadiabatic coupling
elements in the adiabatic basis. In the classical limit for the
nuclei, the derivation supports the rescaling of the momenta
along the nonadiabatic coupling vectors. This result strongly
relies on the ansatz employed for the nonadiabatic couplings
(NACs). In our derivation, we assume a multivariate Gaussian
form for the NACs, which allows the NACs to fulfill the so-
called curl condition, at least in a two-level case. We also find
that the final electronic transition rate is linear in the nonadia-
batic coupling vectors, as in the standard TSH algorithm, and
that incorporating quantum decoherence makes this scaling
quadratic.

Illustration through the Landau-Zener model supports
our findings.
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APPENDIX A: GAUSSIAN WAVE PACKETS

In this appendix, we collect a few general properties
of the Gaussian wave packets, for which most integrals are
known analytically. For example, the folding of Gaussians in
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general obeys the simple rule

∫
d3N R eiP·R exp

(
− (R′ − R)2

a

)
exp

(
− (R − R′′)2

b

)

=
(

abπ

a + b

)3N/2

exp

(
iP

bR′ + aR′′

a + b

)

exp

(
− ab

4(a + b)
P2 − (R′ − R′′)2

a + b

)
. (A1)

The basic multivariate isotropic Gaussian wave function
reads

GRiPi λ(R) =
(

λ

π

)3N/4

exp

(
iPi · R − λ

2
(R − Ri)

2

)
, (A2)

where λ controls the spatial width of the Gaussian. In the
present work, we only consider overlaps between two Gaus-
sian wave packets with the same spatial widths and centers,

IRiλ(Pi , Pj ) = 〈GRiPi λ|GRiPj λ〉

= ei(Pj −Pi )·Ri exp

(
− (Pi − Pj )2

4λ

)
. (A3)

The inverse of these overlaps, I−1
Riλ

(Pk, Pj ) defined to satisfy∫
d3NPk IRiλ(Pi , Pk)I−1

Riλ
(Pk, Pj ) = δ3N (Pi − Pj ), (A4)

may be expressed as

I−1
Riλ

(Pi , Pj ) =
(

1

4πλ

)3N/2

e−i(Pi−Pj )·Ri

∫
d3N Y

(2π )3N
exp(λY2)eiY·(Pi−Pj ). (A5)

One can verify that such an inverse also satisfies the complete-
ness relation (10).

Details on more general multivariate Gaussians can be
found, e.g., in Ref. 36.

APPENDIX B: PROOF OF THE CURL-CONSISTENCY
OF μ̂ FOR A TWO-LEVEL SYSTEM

In the basis where μ̂ is diagonal,

D(R) = D0 exp

{
−

3N∑
α=1

μα[(R − Rc)α]2

}
, (B1)

so

∂Dα(R)

∂Rβ

− ∂Dβ(R)

∂Rα

= −2[μβ (R − Rc)β Dα(R) − μα (R − Rc)α Dβ(R)].

(B2)

If we enforce the curl condition for two levels at the point
R = Rc + cêγ , where (R − Rc)α = cδαγ , we get

δβγ μγ D
(12)
0,α exp(−μγ c2) = δαγ μγ D

(12)
0,β exp(−μγ c2) (B3)

for all pairs of directions (α, β). If we take β = γ , we have

μγ D
(12)
0,α = δαγ μγ D

(12)
0,γ (B4)

for all components α. There are only two ways to satisfy these
equations: either μγ = 0, or D

(12)
0,α = δαγ D

(12)
0,γ ∀α. This im-

plies that, if γ is a direction such that μγ �= 0, then, for all
components α �= γ , D(12)

0,α = 0. Since, in order to have nonzero
Gaussian NAC vectors, at least one component of D and one
eigenvalue of μ̂ should be different from zero, there can only
be one non-zero eigenvalue of μ̂, and it will correspond to
the same direction of the single non-zero component of D(12)

0 .
Therefore, in a base-independent expression, μ̂ ∝ D0 ⊗ D0,
where the tensor product is defined in terms of components
as (a ⊗ b)αβ = aαbβ , and the proportionality constant must
be a positive real number. It is straightforward that this con-
dition is not only necessary, but sufficient, since such a μ̂ will
always satisfy Eq. (B2).
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