Beyond classical metapopulations: trade-offs and information use in dispersal ecology

Differentielle Energieallokation und informierte Emigration: Eine Erweiterung des Metapopulationskonzeptes

Please always quote using this URN: urn:nbn:de:bvb:20-opus-85816
  • All animal and plant species must disperse in order to survive. Although this fact may seem trivial, and the importance of the dispersal process is generally accepted, the eco-evolutionary forces influencing dispersal, and the underlying movement elements, are far from being comprehensively understood. Beginning in the 1950s scientists became aware of the central role of dispersal behaviour and landscape connectivity for population viability and species diversity. Subsequently, dispersal has mainly been studied in the context ofAll animal and plant species must disperse in order to survive. Although this fact may seem trivial, and the importance of the dispersal process is generally accepted, the eco-evolutionary forces influencing dispersal, and the underlying movement elements, are far from being comprehensively understood. Beginning in the 1950s scientists became aware of the central role of dispersal behaviour and landscape connectivity for population viability and species diversity. Subsequently, dispersal has mainly been studied in the context of metapopulations. This has allowed researchers to take into account the landscape level, e.g. for determining conservation measures. However, a majority of theses studies classically did not include dispersal evolution. Yet, it is well known that dispersal is subject to evolution and that this process may occur (very) rapidly, i.e. over short ecological time-scales. Studies that do take dispersal evolution into account, mostly focus on eco-evolutionary forces arising at the level of populations - intra-specific competition or Allee effects, for example - and at the level of landscapes - e.g. connectivity, patch area and fragmentation. Yet, relevant ecological and evolutionary forces can emerge at all levels of biological complexity, from genes and individuals to populations, communities and landscapes. Here, I focus on eco-evolutionary forces arising at the gene- and especially at the individual level. Combining individual-based modelling and empirical field work, I explicitly analyse the influence of mobility trade-offs and information use for dispersal decisions - i.e. individual level factors - during the three phases of dispersal - emigration, transfer and immigration. I additionally take into account gene level factors such as ploidy, sexual reproduction (recombination) and dominance. Mobility-fertility trade-offs may shape evolutionarily stable dispersal strategies and lead to the coexistence of two or more dispersal strategies, i.e. polymorphisms and polyphenisms. This holds true for both dispersal distances (chapter 3) and emigration rates (chapter 4). In sessile organisms - such as trees or corals - maternal investment, i.e. transgenerational trade-offs between maternal fertility and propagule dispersiveness, can be the cause of bimodal and fat-tailed dispersal kernels. However, the coexistence of two or more dispersal strategies may be critically dependent on gene level factors, such as ploidy or dominance (chapter 4). Passively dispersing individuals may realize such multimodal dispersal kernels by mixing different dispersal vectors. Active choice of these vectors allows to optimize the kernel. As most animals have evolved some kind of memory and sensory apparatus - chemical, acoustic or optical sensors - it is obvious that these capacities should be used for dispersal decisions. Chapter 5 explores the use of chemical cues for vector choice in passively dispersed animals. I find that the neotropical phoretic flower mites Spadiseius calyptrogynae non-randomly mix different dispersal vectors, i.e. one short- and one long-distance disperser, in order to achieve fat-tailed dispersal kernels. Such kernels allow an optimal exploitation of patchily distributed habitats. In addition, this strategy increases the probability of successful immigration as the short-distance dispersal vectors show directed dispersal towards suitable habitats. Results from individual-based simulations support and explain my empirical findings. The use of memory and sensory apparatus in dispersal is also the main topic of chapter 6 which strives to bridge the gap between dispersal and movement ecology. In this part of my thesis I develop a model of non-random, memory-based animal movement strategies. Extending the movement ecology paradigm of Nathan (2008a) I postulate that four elements may be relevant for the emergence of efficient movement strategies: perception, memory, inference and anticipation. Movement strategies including these four elements optimize search efficiency at two scales: within patches and between patches. This leads to a significantly increased search efficiency over a comparable area restricted search strategy. These four chapters are completed by a general analysis of metapopulation dynamics (chapter 2). I find that although the metapopulation concept is very popular in theoretical ecology, classical metapopulations can be predicted to be rare in nature, as suggested by lacking empirical evidence. This is especially the case when gene level factors, such as ploidy and sex, are taken into account. In summary, my work analyses the effects of ecological and evolutionary forces arising at the gene- and individual level on the evolution of dispersal and movement strategies. I highlight the importance of including these limiting factors, mechanisms and processes and show how they impact the evolution of dispersal in spatially structured populations. All chapters demonstrate that these forces may have dramatic effects on resulting ecological and evolutionary dynamics. If we intend to understand animal and plant dispersal or movement, it is crucial to include eco-evolutionary forces emerging at all levels of complexity, from genes to communities and landscapes. This endeavour is certainly not purely academic. Particularly nowadays, with rapidly changing landscape structures and anticipated drastic shifts of climatic zones due to global change, dispersal is a factor that cannot be overestimated.show moreshow less
  • Alle Tier- und Pflanzenarten müssen sich ausbreiten, um ihr Überleben zu sichern. Diese Feststellung mag trivial erscheinen und es wird inzwischen allgemein anerkannt, dass Ausbreitungsverhalten von groß er Relevanz ist. Trotzdem sind wir weit davon entfernt, die öko-evolutionären Kräfte zu verstehen, die Ausbreitungsverhalten und zu Grunde liegende Bewegungsstrategien determinieren. Erst in den 50er Jahren des 20. Jahrhunderts begannen Ökologen die zentrale Rolle von Ausbreitungsverhalten und Konnektivität für die langfristigeAlle Tier- und Pflanzenarten müssen sich ausbreiten, um ihr Überleben zu sichern. Diese Feststellung mag trivial erscheinen und es wird inzwischen allgemein anerkannt, dass Ausbreitungsverhalten von groß er Relevanz ist. Trotzdem sind wir weit davon entfernt, die öko-evolutionären Kräfte zu verstehen, die Ausbreitungsverhalten und zu Grunde liegende Bewegungsstrategien determinieren. Erst in den 50er Jahren des 20. Jahrhunderts begannen Ökologen die zentrale Rolle von Ausbreitungsverhalten und Konnektivität für die langfristige Überlebensfähigkeit von Populationen sowie für die Entstehung und Aufrechterhaltung von Artenvielfalt zu begreifen. Bis heute wurde Ausbreitungsverhalten vor allem im Kontext von Metapopulationen analysiert. So konnte, über die Untersuchung der Dynamik von lokalen Populationen hinaus, die Landschaftsebene mit einbezogen werden, um beispielsweise effiziente Naturschutzmaßnahmen abzuleiten. Die Evolution von Ausbreitungsverhalten wurde in diesen Studien allerdings traditionellerweise nicht berücksichtigt. Inzwischen ist jedoch zweifelsfrei erwiesen, dass Ausbreitungsverhalten sehr schnell evolvieren kann, wodurch dieser Prozess bereits auf kurzen ökologischen Zeitskalen von Bedeutung ist. Untersuchungen zur Evolution von Ausbreitungsverhalten berücksichtigen aber meist nur öko-evolutionäre Kräfte die auf der Populations- und Landschaftsebene entstehen, wie etwa intra-spezifische Konkurrenz oder Allee Effekte beziehungsweise Konnektivität, Habitatgröße und Fragmentierungsgrad. Es ist jedoch einleuchtend, dass ökologische und evolutionäre Kräfte auf allen Ebenen biologischer Komplexität, von Genen und Individuen über Populationen und Artengemeinschaften bis hin zu Landschaften, entstehen können. In dieser Arbeit möchte ich die Bedeutung von öko-evolutionären Kräften, die speziell auf der individuellen und genetischen Ebene begründet sind, näher beleuchten. Ich verbinde einen individuen-basierten Modellierungsansatz mit empirischer Feldforschung, um den Einfluss von differentieller Energieallokation (“life-history trade-offs'”) und Informationsnutzung für Ausbreitungsentscheidungen während der drei Ausbreitungsphasen - Emigration, Transition und Immigration - zu untersuchen. Zusätzlich berücksichtige ich genetische Mechanismen und Rahmenbedigungen wie Ploidie, sexuelle Reproduktion (Rekombination) und Dominanz. Differentielle Allokation von Energie für Ausbreitungsverhalten und Reproduktion kann evolutionär stabile Ausbreitungsstrategien entscheidend beeinflussen und zur stabilen Koexistenz zweier oder mehrerer Strategien führen, also Polymorphismen und Polyphenismen bedingen. Dies gilt sowohl für Ausbreitungsdistanzen (Kapitel 3) als auch für Ausbreitungsraten (Kapitel 4). In sessilen Organismen, wie beispielsweise Bäumen oder Korallen, kann mütterliche Investition in die Ausbreitungsfähigkeit von Propagulen zu Bimodalität und zu einer Häufung von besonders langen Ausbreitungsdistanzen (“fat tail”) in der evolutionär stabilen Häufigkeitsverteilung der Ausbreitungsdistanzen (“dispersal kernel”) führen. Die stabile Koexistenz zweier oder mehrerer Ausbreitungsstrategien kann jedoch sehr stark von genetischen Faktoren, wie Ploidie oder Dominanz, abhängen. Arten, die sich aufgrund zu geringer Mobilität nicht selbst aktiv ausbreiten können, werden solch bimodale Häufigkeitsverteilungen von Ausbreitungsdistanzen, z.B. durch eine gezielte Mischstrategie mit zwei Vektoren, realisieren. Eine aktive Auswahl der entsprechenden Vektoren ermöglicht es, die resultierende Verteilung der Ausbreitungsdistanzen zu optimieren. Da die meisten Tiere über eine Form von Gedächtnis und sensorischem Apparat verfügen - um chemische, akustische oder optische Reize aufzunehmen und zu verarbeiten - ist es naheliegend, dass diese Fähigkeiten auch für Ausbreitungsentscheidungen genutzt werden. In Kapitel 5 untersuche ich die Nutzung chemischer Signale für die Auswahl von Ausbreitungsvektoren bei Tieren mit passiver Ausbreitung. Ich zeige, dass die neotropischen, phoretischen Blütenmilben der Art Spadiseius calyptrogynae gezielt zwei Ausbreitungsvektoren nutzen - einen Vektor, der v.a. kurze Strecken, und einen, der besonders lange Strecken zurücklegt - und damit, wie oben beschrieben, eine Häufung von groß en Werten in der Häufigkeitsverteilung der Ausbreitungdistanzen (“fat-tailed dispersal kernel”) erzielen. Solche Strategien sind optimal an die Ausbreitung in fragmentierten Habitaten angepasst. Zusätzlich erhöhen diese Blütenmilben durch ihre Vektorwahl die Wahrscheinlichkeit, sich erfolgreich auszubreiten, da einer der beiden Vektoren bevorzugt die Futterpflanze der Milben, also geeignetes Habitat, anfliegt. Diese empirische Studie wird durch eine individuen-basierte Simulation des Systems vervollständigt, deren Ergebnisse die empirischen Befunde erklären und deren Interpretation bestätigen. Die Nutzung von Gedächtnis und sensorischen Kapazitäten steht auch in Kapitel 6 im Vordergrund. In diesem Teil meiner Arbeit entwickle ich ein individuen-basiertes Modell für Bewegungs- und Suchstrategien, das, im Gegensatz zu den meisten Modellen in diesem Bereich, nicht auf Diffusionsprozessen (“random walks”) sondern auf der Nutzung von mentalen und sensorischen Kapazitäten basiert. Ziel ist es, ein mechanistisches Bewegungsmodell im Sinne von Nathan und Kollegen (2008a) zu schaffen und dadurch Ausbreitungs- und Bewegungsökologie zu vereinen. Ich postuliere, dass vier Elemente für die Emergenz von effizienten Bewegungs- und Suchstrategien von zentraler Bedeutung sind: Wahrnehmung, Erinnerung, Inferenz und Antizipation. Suchstrategien, die diese vier Elemente berücksichtigen, sind im Vergleich zu analogen Modellen, die auf Diffusionsprozessen basieren, besonders effizient, da sie ihre Sucheffizienz auf zwei Skalen, nämlich innerhalb und außerhalb von Ressourcenansammlungen, optimieren. Diese vier Kapitel werden durch eine allgemeine Analyse von Metapopulationsdynamiken in Kapitel 2 ergänzt. Hier zeige ich, dass, obwohl sich das Metapopulationskonzept in der theoretischen Ökologie großer Beliebtheit erfreut, klassische Metapopulationsdynamiken in natürlichen Systemen selten zu erwarten sind. Damit bestätigen sich Hinweise empirischer Studien, die seit Längerem berichten, dass klassische Metapopulationen wenig häufig aufzutreten scheinen. Klassische Metapopulationsdynamiken entstehen auch in Modellen besonders selten, wenn diese evolutionäre Faktoren, die auf der Genebene begründet sind, wie Ploidie und Rekombination, berücksichtigen. In der vorliegenden Arbeit analysiere ich die Effekte von ökologischen und evolutionären Kräften, die auf der Gen- und Individuenebene entstehen und evolutionär stabile Ausbreitungs- und Suchstrategien bestimmen. Ich hebe die zentrale Bedeutung dieser Rahmenbedigungen, Mechanismen und Prozesse hervor und zeige, wie sie die Evolution von Ausbreitungsstrategien in räumlich strukturierten Populationen maßgeblich beeinflussen. Aus meiner Arbeit wird unmittelbar ersichtlich, dass die Berücksichtigung öko-evolutionärer Kräfte auf allen Ebenen, von Genen bis hin zu Artengemeinschaften und Landschaften, von zentraler Bedeutung ist, wenn wir Ausbreitungsstrategien von Tieren und Pflanzen verstehen wollen. Dieses Ziel ist über den rein akademischen Bereich hinaus, z.B. auch für den Naturschutz, von großer Relevanz, denn besonders heutzutage, in Anbetracht schneller, anthropogener Veränderungen von Landschaftsstrukturen und des globalen Klimawandels ist die Fähigkeit zur Ausbreitung essentiell.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Emanuel Alexis Fronhofer
URN:urn:nbn:de:bvb:20-opus-85816
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Date of final exam:2013/03/21
Language:English
Year of Completion:2013
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Metapopulation; Verbreitungsökologie; Ressourcenallokation
Tag:Ausbreitungsverhalten; Differentielle Ressourcenallokation; Informationsnutzung
dispersal; information use; metapopulation; trade-offs
Release Date:2014/03/27
Advisor:Prof. Dr. Hans Joachim Poethke
Licence (German):License LogoDeutsches Urheberrecht