Genotyping Fanconi Anemia : From Known to Novel Genes -From Classical Genetic Approaches to Next Generation Sequencing

Genotypisierung der Fanconi Anämie

Please always quote using this URN: urn:nbn:de:bvb:20-opus-85515
  • Fanconi anemia (FA) is an autosomal recessive or X-chromosomal inherited disorder, which is not only phenotypically but also genotypically very heterogeneous. While its hallmark feature is progressive bone marrow failure, many yet not all patients suffer additionally from typical congenital malformations like radial ray defects and growth retardation. In young adulthood the cumulative risk for developing hematological or other malignancies is compared to the general population several hundred-fold increased. The underlying molecular defect isFanconi anemia (FA) is an autosomal recessive or X-chromosomal inherited disorder, which is not only phenotypically but also genotypically very heterogeneous. While its hallmark feature is progressive bone marrow failure, many yet not all patients suffer additionally from typical congenital malformations like radial ray defects and growth retardation. In young adulthood the cumulative risk for developing hematological or other malignancies is compared to the general population several hundred-fold increased. The underlying molecular defect is the deficiency of DNA interstrand crosslink (ICL) repair. ICLs are deleterious lesions, which interfere with crucial cellular processes like transcription and replication and thereby can lead to malignant transformation, premature senescence or cell death. To overcome this threat evolution developed a highly complex network of interacting DNA repair pathways, which is conserved completely only in vertebrates. The so called FA/BRCA DNA damage response pathway is able to recognize ICLs on stalled replication forks and promotes their repair through homologous recombination (HR). Today we know 15 FA genes (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O and -P) whose products are involved in this pathway. Although more than 80% of FA patients carry biallelic mutations in either FANCA, FANCC or FANCG, there are still some who cannot be assigned to any of the known complementation groups. This work aimed to indentify the di¬sease causing mutations in a cohort of those unassigned patients. Initial screens of the candidate genes FAN1, MHF1 and MHF2 did not reveal any pathogenic alterations. Moreover, FAN1 could be excluded as FA candidate gene because patients carrying a homozygous microdeletion including the FAN1 locus did not show a phenotype comparable to FA patients. In the case of MHF1 and MHF2 the reason for the negative screening result is not clear. Mutation carriers might be rare or, regarding the diverse and also FA pathway independent protein functions, phenotypically not comparable to FA patients. Nevertheless, this study contri¬buted to the identification and characterization of the most recent members of the FA pathway - RAD51C (FANCO), SLX4 (FANCP) and XPF (FANCQ). FANCO is one of the RAD51 paralogs and is involved in crucial steps of HR. But since the only reported FA-O patient has so far not developed any hematological anomalies, FANCO is tentatively designated as gene underlying an FA-like disorder. In contrast, patients carrying biallelic mutations in FANCP do not only show hematological anomalies, but as well congenital malformations typical for FA. The distinct role of FANCP in the FA pathway could not be determined, but it is most likely the coordination of structure-specific nucleases during ICL excision. One of these nucleases is the heterodimer XPF/ERCC1. XPF is probably disease causing in the complementation group FA-Q and is the first FA gene, which was identified by Next Generation Sequencing (NGS). Extraordinarily is that mutations in this gene had previously been reported to cause two other disorders, xeroderma pigmentosum and segmental progeria. Despite some overlaps, it was shown that the divergent phenotypes could clearly be distinguished and are caused by distinct functional defects of XPF. Additionally, this work aimed to improve and accelerate the genotyping process of FA patients in general. Therefore, classical approaches should be complemented or fully replaced by approa¬ches using NGS. Massively parallel sequencing of the whole exome proved to be most appro¬priate and the establishment of an FA-specific analysis pipeline facilitated improved molecular diagnostics by combining complementation group assignment and mutation analysis in one step. Consequently two NGS studies revealed the pathogenic defect in several previously unassigned FA patients and thereby added another patient to one of the most recent subtypes, FA-P. In summary, this work contributed not only to further completion of the FA/BRCA DNA repair network by adding three novel genes, it also showed that classical molecular approaches for re¬search as well as for diagnostics could be replaced by NGS.show moreshow less
  • Die Fanconi Anämie (FA) ist eine autosomal rezessiv oder X-chromosomal vererbte Erkrankung, deren charakteristisches diagnostisches Merkmal das progressive Versagen des Knochenmarks darstellt. Viele, jedoch nicht alle Patienten leiden zusätzlich an kongenitalen Fehlbildungen, wie Radialstrahl-Anomalien oder Minderwuchs. Im Vergleich zur normalen Bevölkerung steigt zu¬dem im jungen Erwachsenenalter das Risiko für hämatologische und auch solide Tumoren um ein Vielfaches. Verantwortlich hierfür ist sehr wahrscheinlich der zugrunde liegende DefektDie Fanconi Anämie (FA) ist eine autosomal rezessiv oder X-chromosomal vererbte Erkrankung, deren charakteristisches diagnostisches Merkmal das progressive Versagen des Knochenmarks darstellt. Viele, jedoch nicht alle Patienten leiden zusätzlich an kongenitalen Fehlbildungen, wie Radialstrahl-Anomalien oder Minderwuchs. Im Vergleich zur normalen Bevölkerung steigt zu¬dem im jungen Erwachsenenalter das Risiko für hämatologische und auch solide Tumoren um ein Vielfaches. Verantwortlich hierfür ist sehr wahrscheinlich der zugrunde liegende Defekt in der Reparatur von DNA-Interstrang-Quervernetzungen. Diese Art der Läsion blockiert wich¬tige zelluläre Prozesse wie Transkription und Replikation, und kann daher nicht nur zur Ent¬artung oder vorzeitigen Alterung der Zellen, sondern auch zu stark erhöhten Apoptose-Raten führen. Zur Entfernung dieser Quervernetzungen hat die Evolution ein komplexes Netzwerk an verschiedenen Reparaturwegen hervorgebracht, das nur in Vertebraten vollständig konserviert ist. Der sogenannte FA/BRCA-Reparaturweg ist in der Lage Quervernetzungen an stagnierten Replikationsgabeln zu erkennen und zu entfernen. Heute kennen wir 15 Gene (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O und -P), deren Produkte in diesem Weg involviert sind und deren pathogene Veränderung zur Ausprägung des FA-Phänotyps führen. Rund 80% aller Fälle können durch biallelische Mutationen in FANCA, FANCC und FANCG erklärt werden. Pa¬thogene Varianten in anderen Genen werden weitaus seltener gefunden und ein kleiner Anteil der Patienten kann keiner der bekannten Komplementationsgruppen zugeordnet werden. Das Ziel dieser Arbeit war es, den ursächlichen genetischen Defekt in diesen Patienten aufzudecken. Untersuchungen an den Kandidatengenen FAN1, MHF1 und MHF2 konnten keine pathoge¬nen Veränderungen identifizieren. FAN1 konnte darüber hinaus gänzlich als Kandidatengen aus¬geschlossen werden, da Patienten mit einer homozygoten FAN1-Deletion keinen FA-Phänotyp zeigten. Im Fall von MHF1 und MHF2 sind Mutationsträger wahrscheinlich sehr selten oder unterscheiden sich in ihrem Phänotyp von den bisher bekannten FA Patienten. Nichtsdestotrotz trug diese Arbeit maßgeblich zur Aufklärung der genetischen Ursache in den Untergruppen FA-O, FA-P und FA-Q bei. Ursächlich für den Subtyp FA-O sind biallelische Mutationen in RAD51C, einem Paralog der Rekombinase RAD51, mit offenbar entscheidender Funktion in der homolo¬gen Rekombinationsreparatur. Da der einzige bislang beschriebene Patient zum Zeitpunkt der Veröffentlichung zwar charakteristische Fehlbildungen, aber weder hämatologische Auffälligkei¬ten, noch maligne Veränderungen zeigte, wird RAD51C (FANCO) bisher als zugrunde liegendes Gen einer FA-ähnlichen Krankheit bezeichnet. Bei der Identifizierung von SLX4 als ursächliches Gen der Untergruppe FA-P gab es hingegen keine Zweifel; alle Patienten zeigten einen sehr ty¬pischen Phänotyp. SLX4 (FANCP) scheint eine entscheidende Rolle bei der Exzision von DNA-Quervernetzungen zu spielen, indem es die Funktion oder richtige Positionierung von Struktur-spezifischen Nukleasen koordiniert. Eine dieser Nukleasen ist das Heterodimer XPF/ERCC1. XPF liegt wahrscheinlich der Komplementationsgruppe FA-Q zugrunde und ist das erste FA-Gen, das mittels Next Generation Sequencing (NGS) identifiziert wurde. Interessanterweise wurde es zuvor bereits als genetische Ursache von Xeroderma pigmentosum und segmentärer Progerie beschrieben. Diese Studie konnte jedoch belegen, dass die jeweiligen Mutationen die Proteinfunktion derart unterschiedlich beeinflussen, dass es tatsächlich zur Ausprägung von drei divergenten Phänotypen kommen kann. Neben der Kandidatengensuche war ein weiteres Ziel dieser Arbeit die Implementierung neuer Techniken für die FA-Genotypisierung. Klassische Methoden der Molekulargenetik sollten hier¬für durch Anwendungen des NGS ergänzt oder gänzlich ersetzt werden. Die Hochdurchsatz- Sequenzierung des gesamten Exoms erwies sich als geeignet und kann Komplementationsgrup¬pen-Zuordnung und Mutationsanalyse in einem Schritt vereinen. Durch die Etablierung einer FA-spezifischen bioinformatischen Datenanalyse konnte im Rahmen dieser Arbeit der genetische Defekt bereits mehrerer Patienten aufgeklärt werden. Im Besonderen konnte ein weiterer Patient der neuen, noch wenig charakterisierten Untergruppe FA-P zugeordnet werden. Insgesamt trug diese Arbeit also nicht nur zur weiteren Vervollständigung des FA/BRCA-Re-paraturweges bei, indem drei neue FA-Gene hinzugefügt wurden; sie zeigte außerdem, dass klas¬sische Methoden der Molekulargenetik sowohl in Forschung als auch Diagnostik künftig durch das NGS ersetzt werden könnten.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Beatrice Schuster
URN:urn:nbn:de:bvb:20-opus-85515
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Medizinische Fakultät / Institut für Humangenetik
Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2012/12/05
Language:English
Year of Completion:2012
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Fanconi Anämie; DNA Reparatur; DNS-Reparatur
Tag:DNA repair; Fanconi Anemia; Next generation sequencing
Release Date:2014/01/27
Advisor:Prof. Dr. Detlev Schindler
Licence (German):License LogoDeutsches Urheberrecht