Molekulare und phänotypische Charakterisierung von Drosophila melanogaster Synapsin Mutanten und In-vivo Calcium Imaging

Molecular and phenotypical characterization of Drosophila melanogaster Synapsin mutants and In-vivo Calcium Imaging

Please always quote using this URN: urn:nbn:de:bvb:20-opus-8513
  • Durch genaue Kartierung der Defizienzen in den Mutanten konnten bislang unbekannte regulatorische Elemente des Synapsin Gens identifiziert werden. Mit dieser Information sollte es möglich sein, einen Synapsin-„Rescue“ Vektor zu konstruieren, der nach Transformation in die Nullmutante den wildtypischen Phänotyp wiederherstellt. Beim Vergleich der im Rahmen des Berkeley Drosophila Genom Projekt veröffentlichten Sequenz des Synapsin Gens mit vor sieben Jahren publizierten Sequenzdaten fielen Diskrepanzen sowohl in der genomischen Sequenz als auchDurch genaue Kartierung der Defizienzen in den Mutanten konnten bislang unbekannte regulatorische Elemente des Synapsin Gens identifiziert werden. Mit dieser Information sollte es möglich sein, einen Synapsin-„Rescue“ Vektor zu konstruieren, der nach Transformation in die Nullmutante den wildtypischen Phänotyp wiederherstellt. Beim Vergleich der im Rahmen des Berkeley Drosophila Genom Projekt veröffentlichten Sequenz des Synapsin Gens mit vor sieben Jahren publizierten Sequenzdaten fielen Diskrepanzen sowohl in der genomischen Sequenz als auch in der cDNA auf. Um zu klären, ob es sich hier um Artefakte, Polymorphismen oder systematische Modifikationen handelt, wurde der entsprechende Bereich von neun an verschiedenen Orten gefangenen Wildtypen genomisch und auf der cDNA Ebene amplifiziert und sequenziert. In allen Fällen wurde die genomische Sequenz des Genomprojekts verifiziert, so dass von einem Sequenzierfehler in der früheren Sequenz auszugehen ist. Als Folge ergibt sich eine Exon-Intron Struktur, bei der die Spleiß-Konsensussequenz (GT-AG Regel) im Intron 4 des Synapsins gewahrt bleibt. Dagegen bestätigten die RT-PCR Sequenzen die früheren cDNA-Daten, so dass ein A zu G Austausch zwischen der genomischen Sequenz und der cDNA des Proteins aufgedeckt wird. Dieser Austausch führt zu einer Veränderung der in allen bisher bekannten Synapsinen konservierten Zielsequenz der Proteinkinase CaMK I/ IV und PKA, was interessante Fragen zu seiner funktionellen Bedeutung aufwirft. Die Basensubstitution spricht für ein A-zu-I RNA-Editing auf der Ebene der Ribonukleinsäure. Dieser Vorgang wird durch das Enzym dADAR katalysiert und wurde bereits für verschiedene neuronale Proteine nachgewiesen. Die für die Reaktion benötigte doppelsträngige Sekundärstruktur der RNA kann durch die Sequenz der prä-mRNA des Synapsins gebildet werden. Die potentielle „Editing site Complementary Sequence“ (ECS) konnte im Intron 4 in einem Abstand von ca. 90 Basen stromabwärts der Editing-Stelle durch ein Computerprogramm ermittelt werden. Der A zu G Austausch wird in allen Laborwildtypen und allen neu etablierten Stämmen, sowie in verschiedenen Entwicklungsstadien beobachtet. Lediglich in einem cDNA-Gemisch aus Eiern, Embryonen und 1. Larven findet man neben der editierten auch die nicht-editierte Sequenz. Um in späteren Experimenten die Funktion der Phosphorylierung und die Auswirkung der mRNA Editierung ermitteln zu können wurden in einem weiteren Versuch die beiden Erkennungsstellen der PKA in der cDNA durch Mutationen modifiziert, so dass Phosphorylierungstests an den Konstrukten durchgeführt werden können. Zur phänotypischen Charakterisierung der Nullmutante wurde die Defizienz-Linie Syn97 durch extensive Rückkreuzung in den genetischen Hintergrund des Wildtyps CantonS eingebracht, der als Standard-Kontrollstamm für Verhaltensexperimente und insbesondere Lernversuche dient. Die Linie Syn97CS wurde im Rahmen einer Kooperation von Mitarbeitern des Lehrstuhls in verschiedenen Verhaltenstests und Lernparadigmen auf phänotypische Veränderungen überprüft. Dabei fanden sich mehrere Verhaltensunterschiede zum Wildtyp, die vermutlich auf geringfügigen Modifikationen in komplexen neuronalen Netzwerken beruhen. In operanten Lernparadigmen konnte ein Einfluss der Synapsin-Elimination auf den Lernerfolg detektiert werden. Dabei trat die Reduktion des Lernindex bereits im dritten Larvenstadien auf und setzte sich in der adulten Fliege fort. Der Einfluss des Fehlens des Synapsins auf Lernprozesse in Drosophila steht im Einklang mit Befunden aus Knock-out Mäusen für SynI + II. Im reduzierten Courtship Index der Syn97CS Männchen offenbart sich ein konkreter Hinweis auf eine verringerte Darwin’sche Fitness der Synapsin-Nullmutante. Die Gesamtheit der in der Synapsin-Nullmutante entdeckten Phänotypen könnte den hohen Konservierungsgrad des Proteins zwischen Vertebraten und Invertebraten erklären. In einem weiteren Teil-Projekt konnten Mutationen in die cDNA des Calciumsensor Cameleon 2.0 Proteins eingebracht werden, um so die verbesserte Version Cam 2.1 zu erhalten. Daraufhin wurden mehrere transgene UAS-Cam 2.1 Linien hergestellt, die bei der Kreuzung mit verfügbaren Gal4 Linien den Calciumsensor für eine Expression in definierten Neuronenpopulationen von Drosophila zugänglich machen. In weiterführenden Arbeiten konnte die Funktionalität des Fusionsproteins überprüft werden und somit die ersten Schritte hin zur Anwendung der in-vivo Calcium Imaging Methode am Lehrstuhl durchgeführt werden.show moreshow less
  • Synapsins are abundant synaptic vesicle-associated phosphoproteins which are highly conserved between species. They are involved in anchoring the synaptic vesicle to the cytoskeleton and in the neurotransmitter release. Previously the synapsin gene (syn) in Drosophila melanogaster was cloned and characterized. Several deletions in the locus were generated by jump-out mutagenesis. In this thesis I present further details on the molecular characterization of the synapsin gene as well as data on the phenotypical relevance of the protein.Synapsins are abundant synaptic vesicle-associated phosphoproteins which are highly conserved between species. They are involved in anchoring the synaptic vesicle to the cytoskeleton and in the neurotransmitter release. Previously the synapsin gene (syn) in Drosophila melanogaster was cloned and characterized. Several deletions in the locus were generated by jump-out mutagenesis. In this thesis I present further details on the molecular characterization of the synapsin gene as well as data on the phenotypical relevance of the protein. Previously unknown regulatory elements for the synapsin gene were identified by mapping the breakpoints of several mutants. By using this information it should be possible to generate a rescue constuct for syn mutants apsin to create a transgenic line with a wild-type-like expression. By comparing the synapsin sequence published seven years ago with the sequence from the Berkeley Drosophila Genome Project a discrepancy was detected regarding both the genomic and the cDNA sequence. In order to clarify if this discrepancy is based on an artefact, a polymorphism or a systematic modification, the region was amplified and sequenced at the genomic and cDNA level in nine different wild-type lines. In all cases the genomic sequence was identical to the data of the genome project, giving rise to the suspicion that the previously published sequence contained a sequencing artefact. This result eliminates the need to postulate an unconventional exon-intron structure that would violate the GT-AG splice consensus for in intron 4 of the synapsin gene. However the data from RT-PCR confirmed the cDNA sequence, proving an A to G exchange between genomic DNA and cDNA. This exchange leads to a modification of the aminoacid sequence at the highly conserved target site of the protein kinases CaMK I/ IV and PKA, raising interesting questions about the functional significance of the modification. The substitution is typical for an A-to-I editing event at the RNA level. The modification is catalysed by the dADAR enzyme and was already identified in several neuronal proteins. The necessary double-stranded secondary structure of the RNA can be formed by the synapsin pre-mRNA. The possible editing site complementary sequence (ECS) was detected 90 base downstream of the editing site within intron 4 by computer analysis. The A-to-G exchange was observed in all laboratory and new established wild-type strains as well as during most development stages. Only in a mixed cDNA fraction from eggs, embryos and first larvae a non-edited version coexists with the edited form. For further experiments on the function of phosphorylation at this site and on the relevance of the RNA-editing mutations were introduced into the cDNA in order to generate informative constructs for phosphorylation assays. For the phenotypical characterization of the flies lacking synapsin the null-mutant Syn97 was intensively crossed into the genetic background of the wild-type control strain CantonS, which normally serves as a control in behavioral and especially learning paradigms. The newly established Syn97CS line was tested in collaboration with colleagues at the department for significant differences in behavior or learning compared to the wild-type. Several behavioral abnormalities were found which probably are due to minor modifications in complex neuronal networks. In operant learning tasks we found influences of the protein deficiency. A reduction in the learning index already exists at the 3rd larval stage and persists in the adult fly. The influence of the elimination of synapsin on learning processes in Drosophila is in aggreement with results from synI+II knock-out mice. A link to a reduction of the Darwinian fitness of Syn97CS mutants came from experiments using the courtship suppression paradigm, where mutant males showed a reduced courtship index. In combination these phenotypes may well explain the high conservation of the protein between vertebrates and invertebrates. In another project a mutation was introduced in the cDNA of the calcium sensor cameleon 2.0 in order to create the improved version cameleon 2.1. Several UAS-Cam 2.1 transgenic lines could be established. By crossing these lines with Gal4 flies the calcium sensor could be expressed in a subset of defined neurons. In subsequent experiments the function of the modified protein could be demonstrated establishing the first steps towards in-vivo calcium imaging at the department.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sören Diegelmann
URN:urn:nbn:de:bvb:20-opus-8513
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2004/04/07
Language:German
Year of Completion:2003
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:Calcium Imaging; Drosophila; Mutanten; Synapsin
Calcium Imaging; Drosophila; Synapsin; mutants
Release Date:2004/05/12
Advisor:Prof. Dr. Erich Buchner