Chaos Synchronization in Time-Delayed Coupled Networks

Chaos Synchronisation in zeitverzögert gekoppelten Netzwerken

Please always quote using this URN: urn:nbn:de:bvb:20-opus-78966
  • In this thesis we study various aspects of chaos synchronization of time-delayed coupled chaotic maps. A network of identical nonlinear units interacting by time-delayed couplings can synchronize to a common chaotic trajectory. Even for large delay times the system can completely synchronize without any time shift. In the first part we study chaotic systems with multiple time delays that range over several orders of magnitude. We show that these time scales emerge in the Lyapunov spectrum: Different parts of the spectrum scale with theIn this thesis we study various aspects of chaos synchronization of time-delayed coupled chaotic maps. A network of identical nonlinear units interacting by time-delayed couplings can synchronize to a common chaotic trajectory. Even for large delay times the system can completely synchronize without any time shift. In the first part we study chaotic systems with multiple time delays that range over several orders of magnitude. We show that these time scales emerge in the Lyapunov spectrum: Different parts of the spectrum scale with the different delays. We define various types of chaos depending on the scaling of the maximum exponent. The type of chaos determines the synchronization ability of coupled networks. This is, in particular, relevant for the synchronization properties of networks of networks where time delays within a subnetwork are shorter than the corresponding time delays between the different subnetworks. If the maximum Lyapunov exponent scales with the short intra-network delay, only the elements within a subnetwork can synchronize. If, however, the maximum Lyapunov exponent scales with the long inter-network connection, complete synchronization of all elements is possible. The results are illustrated analytically for Bernoulli maps and numerically for tent maps. In the second part the attractor dimension at the transition to complete chaos synchronization is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated. Finally, we study the change in the attractor dimension for systems with parameter mismatch. In the third and last part the linear response of synchronized chaotic systems to small external perturbations is studied. The distribution of the distances from the synchronization manifold, i.e., the deviations between two synchronized chaotic units due to external perturbations on the transmitted signal, is used as a measure of the linear response. It is calculated numerically and, for some special cases, analytically. Depending on the model parameters this distribution has power law tails in the region of synchronization leading to diverging moments. The linear response is also quantified by means of the bit error rate of a transmitted binary message which perturbs the synchronized system. The bit error rate is given by an integral over the distribution of distances and is studied numerically for Bernoulli, tent and logistic maps. It displays a complex nonmonotonic behavior in the region of synchronization. For special cases the distribution of distances has a fractal structure leading to a devil's staircase for the bit error rate as a function of coupling strength. The response to small harmonic perturbations shows resonances related to coupling and feedback delay times. A bi-directionally coupled chain of three units can completely filter out the perturbation. Thus the second moment and the bit error rate become zero.show moreshow less
  • Die vorliegende Arbeit befasst sich mit der Untersuchung verschiedener Aspekte der Chaos Synchronisation von Netzwerken mit zeitverzögerten Kopplungen. Ein Netzwerk aus identischen chaotischen Einheiten kann vollständig und isochron synchronisieren, auch wenn der Signalaustausch einer starken Zeitverzögerung unterliegt. Im ersten Teil der Arbeit werden Systeme mit mehreren Zeitverzögerungen betrachtet. Dabei erstrecken sich die verschiedenen Zeitverzögerungen jeweils über einen weiten Bereich an Größenordnungen. Es wird gezeigt, dass dieseDie vorliegende Arbeit befasst sich mit der Untersuchung verschiedener Aspekte der Chaos Synchronisation von Netzwerken mit zeitverzögerten Kopplungen. Ein Netzwerk aus identischen chaotischen Einheiten kann vollständig und isochron synchronisieren, auch wenn der Signalaustausch einer starken Zeitverzögerung unterliegt. Im ersten Teil der Arbeit werden Systeme mit mehreren Zeitverzögerungen betrachtet. Dabei erstrecken sich die verschiedenen Zeitverzögerungen jeweils über einen weiten Bereich an Größenordnungen. Es wird gezeigt, dass diese Zeitverzögerungen im Lyapunov Spektrum des Systems auftreten; verschiedene Teile des Spektrums skalieren jeweils mit einer der Zeitverzögerungen. Anhand des Skalierungsverhaltens des maximalen Lyapunov Exponenten können verschiedene Arten von Chaos definiert werden. Diese bestimmen die Synchronisationseigenschaften eines Netzwerkes und werden insbesondere wichtig bei hierarchischen Netzwerken, d.h. bei Netzwerken bestehend aus Unternetzwerken, bei welchen Signale innerhalb des Unternetzwerkes auf einer anderen Zeitskala ausgetauscht werden als zwischen verschiedenen Unternetzwerken. Für ein solches System kann sowohl vollständige als auch Unternetzwerksynchronisation auftreten. Skaliert der maximale Lyapunov Exponent mit der kürzeren Zeitverzögerung des Unternetzwerkes dann können nur die Elemente des Unternetzwerkes synchronisieren. Skaliert der maximale Lyapunov Exponent allerdings mit der längeren Zeitverzögerung kann das komplette Netzwerk vollständig synchronisieren. Dies wird analytisch für die Bernoulli Abbildung und numerisch für die Zelt Abbildung gezeigt. Der zweite Teil befasst sich mit der Attraktordimension und ihrer Änderung am Übergang zur vollständiger Chaos Synchronisation. Aus dem Lyapunov Spektrum des Systems wird die Kaplan-Yorke Dimension berechnet und es wird gezeigt, dass diese am Synchronisationsübergang aus physikalischen Gründen einen Sprung haben muss. Aus der Zeitreihe der Dynamik des Systems wird die Korrelationsdimension bestimmt und anschließend mit der Kaplan-Yorke Dimension verglichen. Für Bernoulli Systeme finden wir in der Tat eine Diskontinuität in der Korrelationsdimension. Die Stärke des Sprungs der Kaplan-Yorke Dimension wird für ein Netzwerk aus Bernoulli Einheiten als Funktion der Netzwerkgröße berechnet. Desweiteren wird das Skalierungsverhalten der Kaplan-Yorke Dimension sowie der Kolmogoroventropie in Abhängigkeit der Systemgröße und der Zeitverzögerung untersucht. Zu guter Letzt wird eine Verstimmung der Einheiten, d.h., ein "parameter mismatch", eingeführt und analysiert wie diese das Verhalten der Attraktordimension ändert. Im dritten und letzten Teil wird die lineare Antwort eines synchronisierten chaotischen Systems auf eine kleine externe Störung untersucht. Diese Störung bewirkt eine Abweichung der Einheiten vom perfekt synchronisierten Zustand. Die Verteilung der Abstände zwischen zwei Einheiten dient als Maß für die lineare Antwort des Systems. Diese Verteilung sowie ihre Momente werden numerisch und für Spezialfälle auch analytisch berechnet. Wir finden, dass im synchronisierten Zustand, in Abhängigkeit der Parameter des Systems, Verteilungen auftreten können die einem Potenzgesetz gehorchen und dessen Momente divergieren. Als weiteres Maß für die lineare Antwort wird die Bit Error Rate einer übermittelten binären Nachricht verwendet. The Bit Error Rate ist durch ein Integral über die Verteilung der Abstände gegeben. In dieser Arbeit wird sie vorwiegend numerisch untersucht und wir finden ein komplexes, nicht monotones Verhalten als Funktion der Kopplungsstärke. Für Spezialfälle weist die Bit Error Rate eine "devil's staircase" auf, welche mit einer fraktalen Struktur in der Verteilung der Abstände verknüpft ist. Die lineare Antwort des Systems auf eine harmonische Störung wird ebenfalls untersucht. Es treten Resonanzen auf, welche in Abhängigkeit von der Zeitverzögerung unterdrückt oder verstärkt werden. Eine bi-direktional gekoppelte Kette aus drei Einheiten kann eine Störung vollständig heraus filtern, so dass die Bit Error Rate und auch das zweite Moment verschwinden.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Steffen Zeeb
URN:urn:nbn:de:bvb:20-opus-78966
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Date of final exam:2013/07/16
Language:English
Year of Completion:2013
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Chaostheorie; Synchronisierung; Netzwerk
Tag:Attraktor; Chaotisches System; Dynamisches System; Nichtlineares System
Chaos; Networks; Nonlinear Dynamics; Synchronization
Release Date:2013/07/17
Advisor:Prof. Dr. Wolfgang Kinzel
Licence (German):License LogoDeutsches Urheberrecht