Einfluss von hydrostatischem Druck auf die Integrität des endothelialen Zellverbands

Physiological hydrostatic pressure affects endothelial monolayer integrity

Please always quote using this URN: urn:nbn:de:bvb:20-opus-52039
  • Endothelzellen kleiden als einschichtiger Zellverband die Blutgefäße aus und bilden so eine Barriere zwischen Blut und Interstitium. Der Austausch von Flüssigkeit und Makromolekülen über diese Barriere wird durch die transzelluläre und parazelluläre Permeabilität reguliert. Die parazelluläre Permeabilität ist von der Integrität der interzellulären endothelialen Junktionen abhängig. Eine Schwächung der Adhäsion und Öffnung der Tight Junctions bedingt unweigerlich einen Anstieg der Permeabilität, die bei verschiedenen pathologischen Bedingungen,Endothelzellen kleiden als einschichtiger Zellverband die Blutgefäße aus und bilden so eine Barriere zwischen Blut und Interstitium. Der Austausch von Flüssigkeit und Makromolekülen über diese Barriere wird durch die transzelluläre und parazelluläre Permeabilität reguliert. Die parazelluläre Permeabilität ist von der Integrität der interzellulären endothelialen Junktionen abhängig. Eine Schwächung der Adhäsion und Öffnung der Tight Junctions bedingt unweigerlich einen Anstieg der Permeabilität, die bei verschiedenen pathologischen Bedingungen, z.B. inflammatorischen Ödemen und allergischem Schock, lebensbedrohlich werden kann. Unter physiologischen Be-dingungen ist das Endothel verschiedenen mechanischen Stimuli wie Scherstress durch den Blutfluß, zyklischer Dehnung durch die Wandspannung und hydrostatischem Druck durch den Blutdruck ausgesetzt. Da die Effekte des hydrostatischen Drucks auf die Biologie der Endothelzelle weitgehend unverstanden sind, sollte in der vorliegenden Arbeit der Einfluss des physiologischen hydrostatischen Drucks auf die Integrität des endothelialen Zellverbands näher untersucht werden. Sowohl in mikrovaskulären Endothelzellen als auch in makro-vaskulären Endothelzellen wurde gefunden, dass hydrostatischer Druck von 5-15 cmH2O, wie er typischerweise in Blutkapillaren in vivo herrscht, einen protektiven Einfluss auf die Endothelbarriere gegenüber permeabilitätssteigernden Einflüssen vermittelt. Es konnte gezeigt werden, dass eine extrazelluläre Depletion von Ca2+ durch EGTA zu einem Verlust von VE-Cadherin aus den endothelialen Junktionen mit Lückenbildung zwischen den Zellen führt (dargestellt durch Immunfluoreszenz) und dass dieser Effekt durch die gleichzeitige Applikation eines hydrostatischen Drucks von 15 cmH2O weitgehend verhindert werden konnte. Auch die durch Cytochalasin D induzierte Actindepolymerisation und interzelluläre Lückenbildung sowie die Dissoziation der Zellkontakte und Zellablösung nach Zugabe des Ca2+/Calmodulin-Antagonisten Trifluperazin und die Thrombin-induzierte Zelldissoziation konnten durch gleichzeitige Druckexposition von 15 cmH2O inhibiert werden. Darüberhinaus konnte mit Hilfe der Laserpinzetten-Technik gezeigt werden, dass hydrostatischer Druck die Haftung von mit VE-Cadherin beschichteten Mikroperlen an der endothelialen Zelloberfläche sowohl in Abwesenheit von extrazellulärem Ca2+ als auch unter Einfluss von Cytochalasin D und Trifluperazin nahezu unvermindert ermöglichte, während ohne hydrostatischen Druck die Mikroperlen unter diesen Bedingungen (Ca2+-Depletion, Cytochalasin D, Trifluperazin) nicht mehr hafteten. Im weiteren Verlauf der Arbeit wurde untersucht, welche Mechanismen an den druckvermittelten Signalwegen beteiligt sein könnten. Es ist bekannt, dass cAMP und auch die Mitglieder der Rho-GTPasen-Familie Endothelbarriere-stabilisierende Funktionen haben. Es konnten jedoch keine signifikanten Veränderungen der cAMP-Konzentrationen sowie der Rho A- und Rac 1-Aktivität in makrovaskulären Endothelzellen unter hydrostatischem Druck von 15 cmH2O innerhalb von 45 Minuten nachgewiesen werden. Da Caveolin-1 in der Literatur eine Rolle in der Mechanotransduktion von zyklischer Dehnung und Scherstress zugesprochen wird, wurden im Labor generierte Endothelzellen aus Caveolin-1-defizienten Mäusen untersucht. Caveolin-1 stabilisiert plasmalemmale Invaginationen, die Caveolae, die eine Vielzahl an Molekülen mit signalgebenden und -weiterleitenden Funktionen beherbergen. In Caveolin-1-defizienten Endothelzellen war hydrostatischer Druck nicht in der Lage eine Destabilisierung des endothelialen Zellrasens durch Cytochalsin D, Trifluperazin und EGTA zu unterdrücken. Die Ergebnisse dieser Arbeit haben gezeigt, dass ein physiologischer hydrostatischer Druck zur Erhaltung der endothelialen Integrität und ihrer Barrierefunktion beiträgt und Caveolin-1-vermittelte Mechanismen bei der Mechanotransduktion des hydrostatischen Drucks eine Rolle spielen.show moreshow less
  • Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostaticEndothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Katharina Müller-Marschhausen
URN:urn:nbn:de:bvb:20-opus-52039
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Medizinische Fakultät
Faculties:Medizinische Fakultät / Institut für Anatomie und Zellbiologie
Date of final exam:2010/09/15
Language:German
Year of Completion:2009
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
GND Keyword:Endothel; hydrostatischer Druck
Tag:VE-Cadherin
VE cadherin; endothelium
Release Date:2010/11/25
Advisor:Prof. Dr. med. Detlev Drenckhahn
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung