Adaptations of the reed frog Hyperolius viridiflavus to its arid environment. I. The skin of Hyperolius viridiflavus nitidulus in wet and dry season conditions.

Please always quote using this URN: urn:nbn:de:bvb:20-opus-30551
  • Hyperolius viridiflavus nitidulus inhabits parts of the seasonally very hot and dry West African savanna. During the long lasting dry season, the small frog is sitting unhidden on mostly dry plants and has to deal with high solar radiation load (SRL), evaporative water loss (EWL) and small energy reserves. It seems to be very badly equipped to survive such harsh climatic conditions (unfavorable surface to volume ratio, very limited capacity to störe energy and water). Therefore, it must have developed extraordinary efficient mechanisms to solveHyperolius viridiflavus nitidulus inhabits parts of the seasonally very hot and dry West African savanna. During the long lasting dry season, the small frog is sitting unhidden on mostly dry plants and has to deal with high solar radiation load (SRL), evaporative water loss (EWL) and small energy reserves. It seems to be very badly equipped to survive such harsh climatic conditions (unfavorable surface to volume ratio, very limited capacity to störe energy and water). Therefore, it must have developed extraordinary efficient mechanisms to solve the mentioned Problems. Some of these mechanisms are to be looked for within the skin of the animal (e.g. protection against fast desiccation, deleterious effects of UV radiation and over-heating). The morphology of the wet season skin is, in most aspects, that of a "normal" anuran skin. It differs in the Organization of the processes of the melanophores and in the arrangement of the chromatophores in the Stratum spongiosum, forming no "Dermal Chromatophore Unit". During the adaptation to dry season conditions the number of iridophores in dorsal and ventral skin is increased 4-6 times compared to wet season skin. This increase is accompanied by a very conspicuous change of the wet season color pattern. Now, at air temperatures below 35° C the color becomes brownish white or grey and changes to a brilliant white at air temperatures near and over 40° C. Thus, in dry season State the frog retains its ability for rapid color change. In wet season State the platelets of the iridophores are irregularly distributed. In dry season State many platelets become arranged almost parallel to the surface. These purine crystals probably act as quarter-wave-length interference reflectors, reducing SRL by reflecting a considerable amount of the radiated energy input. EWL is as low as that of much larger xeric reptilians. The impermeability of the skin seems to be the result of several mechanisms (ground substance, iridophores, lipids, mucus) supplementing each other. The light red skin at the pelvic region and inner sides of the limbs is specialized for rapid uptake of water allowing the frog to replenish the unavoidable EWL by using single drops of dew or rain, available for only very short periods.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Frank Kobelt, Karl Eduard Linsenmair
URN:urn:nbn:de:bvb:20-opus-30551
Document Type:Journal article
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Year of Completion:1986
Source:Oecologia (1986) 68, 533-541
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Release Date:2009/01/20