Quantification correction for free-breathing myocardial T1ρ mapping in mice using a recursively derived description of a T\(_{1p}\)\(^{*}\) relaxation pathway

Please always quote using this URN: urn:nbn:de:bvb:20-opus-300491
  • Background Fast and accurate T1ρ mapping in myocardium is still a major challenge, particularly in small animal models. The complex sequence design owing to electrocardiogram and respiratory gating leads to quantification errors in in vivo experiments, due to variations of the T\(_{1p}\) relaxation pathway. In this study, we present an improved quantification method for T\(_{1p}\) using a newly derived formalism of a T\(_{1p}\)\(^{*}\) relaxation pathway. Methods The new signal equation was derived by solving a recursion problem forBackground Fast and accurate T1ρ mapping in myocardium is still a major challenge, particularly in small animal models. The complex sequence design owing to electrocardiogram and respiratory gating leads to quantification errors in in vivo experiments, due to variations of the T\(_{1p}\) relaxation pathway. In this study, we present an improved quantification method for T\(_{1p}\) using a newly derived formalism of a T\(_{1p}\)\(^{*}\) relaxation pathway. Methods The new signal equation was derived by solving a recursion problem for spin-lock prepared fast gradient echo readouts. Based on Bloch simulations, we compared quantification errors using the common monoexponential model and our corrected model. The method was validated in phantom experiments and tested in vivo for myocardial T\(_{1p}\) mapping in mice. Here, the impact of the breath dependent spin recovery time T\(_{rec}\) on the quantification results was examined in detail. Results Simulations indicate that a correction is necessary, since systematically underestimated values are measured under in vivo conditions. In the phantom study, the mean quantification error could be reduced from − 7.4% to − 0.97%. In vivo, a correlation of uncorrected T\(_{1p}\) with the respiratory cycle was observed. Using the newly derived correction method, this correlation was significantly reduced from r = 0.708 (p < 0.001) to r = 0.204 and the standard deviation of left ventricular T\(_{1p}\) values in different animals was reduced by at least 39%. Conclusion The suggested quantification formalism enables fast and precise myocardial T\(_{1p}\) quantification for small animals during free breathing and can improve the comparability of study results. Our new technique offers a reasonable tool for assessing myocardial diseases, since pathologies that cause a change in heart or breathing rates do not lead to systematic misinterpretations. Besides, the derived signal equation can be used for sequence optimization or for subsequent correction of prior study results.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Maximilian Gram, Daniel Gensler, Petra Albertova, Fabian Tobias Gutjahr, Kolja Lau, Paula-Anahi Arias-Loza, Peter Michael Jakob, Peter Nordbeck
URN:urn:nbn:de:bvb:20-opus-300491
Document Type:Journal article
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Medizinische Fakultät / Klinik und Poliklinik für Nuklearmedizin
Medizinische Fakultät / Medizinische Klinik und Poliklinik I
Medizinische Fakultät / Deutsches Zentrum für Herzinsuffizienz (DZHI)
Language:English
Parent Title (English):Journal of Cardiovascular Magnetic Resonance
Year of Completion:2022
Volume:24
Issue:1
Article Number:30
Source:Journal of Cardiovascular Magnetic Resonance 2022, 24(1):30. DOI: 10.1186/s12968-022-00864-2
DOI:https://doi.org/10.1186/s12968-022-00864-2
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:T1rho; T1ρ; cardiac; correction; mapping; quantitative MRI; radial; spin-lock
Release Date:2023/03/15
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2022
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung