Permeationseigenschaften von Polydimethylsiloxan-Membranen in Abhängigkeit von der Netzbogenlänge

Permeation properties of polydimethylsiloxane-membranes in dependence of the network chain length

Please always quote using this URN: urn:nbn:de:bvb:20-opus-2927
  • Für die definierte und konstante Wirkstofffreigabe aus therapeutischen Systemen sind Kenntnisse der Mikrostruktur vonKontrollmembranen von großer Bedeutung. Durch eine Additionsreaktion können Polydimethylsiloxan-Membranen ausvinylendgestoppten linearen Polydimethylsiloxanen und niedermolekularen Si-H-funktionalisierten Polydimethylsiloxanen unterEinfluss eines Platin- Katalysators hergestellt werden. Hierbei ist es durch den Einsatz genau charakterisierterAusgangspolymere möglich, Membranen mit einer statistisch definierten Mikrostruktur zuFür die definierte und konstante Wirkstofffreigabe aus therapeutischen Systemen sind Kenntnisse der Mikrostruktur vonKontrollmembranen von großer Bedeutung. Durch eine Additionsreaktion können Polydimethylsiloxan-Membranen ausvinylendgestoppten linearen Polydimethylsiloxanen und niedermolekularen Si-H-funktionalisierten Polydimethylsiloxanen unterEinfluss eines Platin- Katalysators hergestellt werden. Hierbei ist es durch den Einsatz genau charakterisierterAusgangspolymere möglich, Membranen mit einer statistisch definierten Mikrostruktur zu erhalten. Die Mikrostruktur kanndurch die Netzbogenlänge charakterisiert werden. Der Abschnitt zwischen zwei Verknüpfungspunkten in einem Netzwerk wirdals Netzbogenlänge (NBL) bezeichnet. Diese beschreibt die Anzahl der Dimethyl-siloxan-Einheiten zwischen zweiVerknüpfungen. Die Permeationseigenschaften wurden mit Hilfe des standardisierten Permeationskoeffizienten untersucht. Derstandardisierte Permeationskoeffizient ist von der mittleren Netzbogenlänge der Polydimethylsiloxan-Membranen abhängig. Dieser Zusammenhang wurde an elf Benzoesäure- und Naphthalinderivaten als Modellsubstanzen untersucht und bestätigt.Hierbei wurden Membranen mit den mittleren Netzbogenlängen 65, 99 und 122 Siloxan-Einheiten für die Untersuchungeneingesetzt. Bei allen untersuchten Substanzen stieg der Permeationskoeffizient mit größer werdender Netzbogenlänge derMembranen geringfügig an. Die Permeationskoeffizienten von Membranen mit der Netzbogenlänge 122 waren dabei - mitlediglich vier Ausnahmen - stets statistisch signifikant größer als von Membranen mit der Netzbogenlänge 65. Als mögliche weitere Einflussfaktoren auf die Permeationsgeschwindigkeit wurden der Membran/Wasser-Verteilungskoeffizient, dasDipolmoment und das van der Waals-Volumen der elf Modellsubstanzen untersucht. Es konnte ein Zusammenhang zwischendem Membran/Wasser-Verteilungskoeffizienten und dem Permeationskoeffizienten aufgezeigt werden. Das Volumen deruntersuchten permeierenden Moleküle hat jedoch nur bei Netzbogenlängen kleiner als 122 einen Einfluss auf diePermeationsgeschwindigkeit. Als neue Möglichkeit zur Untersuchung der Diffusionskinetik vor Erreichen des stationärenZustands in Polydimethylsiloxan-Membranen wurde die konfokale Raman-Spektroskopie eingesetzt. Bei derRaman-Spektroskopie wird das Probensystem während der Messung weder zerstört noch verändert. Weiterhin ist es möglich,durch das gekoppelte konfokale Mikroskop gezielt an einem bestimmten Punkt innerhalb der Membran zu messen. Damitkönnen nun dynamische Vorgänge wie der Aufbau eines Konzentrationsgradienten vor Erreichen des stationären Zustandes aneinem bestimmten Punkt in einer Membran über einen längeren Zeitraum gemessen werden. Anhand von Intensitätsänderungencharakteristischer Peaks oder der Verschiebung von Banden werden Konzentrations- und Strukturänderungen der Membranund der permeierenden Moleküle sichtbar. Die Untersuchungen mit der konfokalen Raman-Spektroskopie zeigten, dass dieseMethode geeignet ist, Diffusionskinetiken im nicht stationären Zustand innerhalb der Membranen zu beobachten.show moreshow less
  • The knowledge of the microstructure of controlling membranes is very important in order to achieve a defined and constantdrug release from therapeutic systems. Poly(dimethylsiloxane) membranes can be prepared by an addition reaction of linearpoly(dimethylsiloxanes) with terminal vinyl groups and low molecular poly(dimethylsiloxanes) with Si-H functional groups. Forthis reaction a Platinum catalyst is used. By using well characterized starting polymers it is possible to get membranes with astatistically defined microstructure. The network chainThe knowledge of the microstructure of controlling membranes is very important in order to achieve a defined and constantdrug release from therapeutic systems. Poly(dimethylsiloxane) membranes can be prepared by an addition reaction of linearpoly(dimethylsiloxanes) with terminal vinyl groups and low molecular poly(dimethylsiloxanes) with Si-H functional groups. Forthis reaction a Platinum catalyst is used. By using well characterized starting polymers it is possible to get membranes with astatistically defined microstructure. The network chain length can characterize the microstructure. The distance between twopoints of cross-linking within the network is called network chain length (NCL). The network chain length describes the numberof the dimethyl- siloxane-units between two cross-linking points. The properties of permeation were investigated by using the stadardized permeation coefficient. The permeation coefficient is dependent on the average network chain length of thepoly(dimethylsiloxane) membranes. This relationship was confirmed for 11 benzoic acid and hydroxynaphthalene derivates.Membranes with network chain lengths of 65, 99 and 122 were used for these investigations. The permeation coefficient P*increases slightly with rising network chain length for all 11 model substances. The permeation coefficient of the membraneswith network chain length of 122 was found to be higher by a statistically significant amount than those of membranes with anetwork chain length of 65 - having only 4 exceptions. In order to find other factors which influence the permeation rate, the membrane/water-partition coefficient, the dipole moment and the van der Waals volume were investigated. There was amathematically relationship between the membrane/water-partition coefficient and the permeation coefficient. The volume of themoleculeshad only with membranes with a network chain length of 122 an influence on the permeation. ConfocalRaman-spectroscopy was taken as a pioneering method to investigate the kinetics of diffusion before reaching the steady statein poly(dimethylsiloxane) membranes. Up to now it was only possible to investigate the diffusion process in the steady state. The membrane was always taken as a whole. Raman-spectroscopic measurements do not destroy or change the probe system.Because of the coupled confocal microscope it is possible to measure selectively at a defined point in the membrane. Thereforedynamic processes e.g. can be investigated before reaching the steady state flux. The investigations with confocalRaman-spectroscopy show the possibility to observe diffusion processes in and before the steady state flux with this method.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Barbara Weh
URN:urn:nbn:de:bvb:20-opus-2927
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Pharmazie und Lebensmittelchemie
Date of final exam:2002/07/23
Language:German
Year of Completion:2002
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Polydimethylsiloxane; Membran; Permeabilität
Tag:Membran; Netzbogenlänge; Permeation; Polydimethylsiloxan; konfokale Raman-Spektroskopie
confocal Raman-spectroscopy; membrane; network chain length; permeation; poly(dimethylsiloxane)
Release Date:2002/09/02
Advisor:Prof. Dr. Ingrfried Zimmermann