Nahinfrarot-Ultrakurzzeitspektroskopie an einwandigen Kohlenstoffnanoröhren in dotierten Dünnfilmen und Polymermatrizen

Near-infrared ultrafast spectroscopy on single-walled carbon nanotubes in doped thin films and polymer matrices

Please always quote using this URN: urn:nbn:de:bvb:20-opus-269004
  • Nanoröhren, die auf dem Element Kohlenstoff basieren, besitzen ein großes Potential für ihre Anwendung als neuartige und nachhaltige Materialien im Bereich der Optoelektronik und weiteren zukunftsweisenden Technologiefeldern. Um jedoch hierfür genutzt werden zu können, ist ein tiefgreifendes Kenntnis über ihre außergewöhnlichen photophysikalischen Eigenschaften notwendig. Kohlenstoffnanoröhren sind als eindimensionale Halbleiter sehr vielseitige Materialien. Jedoch ist der Zusammenhang zwischen ihrer Eignung als Halbleiter und der dafürNanoröhren, die auf dem Element Kohlenstoff basieren, besitzen ein großes Potential für ihre Anwendung als neuartige und nachhaltige Materialien im Bereich der Optoelektronik und weiteren zukunftsweisenden Technologiefeldern. Um jedoch hierfür genutzt werden zu können, ist ein tiefgreifendes Kenntnis über ihre außergewöhnlichen photophysikalischen Eigenschaften notwendig. Kohlenstoffnanoröhren sind als eindimensionale Halbleiter sehr vielseitige Materialien. Jedoch ist der Zusammenhang zwischen ihrer Eignung als Halbleiter und der dafür notwendigen Dotierung nur sehr unzureichend verstanden. Die Ziele der vorliegenden Dissertation waren deshalb, ein grundlegendes Verständnis der photophysikalischen Energietransferprozesse in Nanoröhren zu erlangen und den Einfluss von gezielten Dotierungen auf diese Prozesse im Hinblick auf ihre Eigenschaften als eindimensionale Halbleiter detailliert zu untersuchen. Die Grundlage für die Experimente bildeten verschiedene Filme aus einwandigen (6,5)-Kohlenstoffnanoröhren, die durch ein Polyfluoren-Copolymer in einer organischen Lösungsmittelumgebung isoliert wurden. Mit Hilfe der Ultrakurzzeitspektroskopie wurden die auf einer schnellen (ps-ns) Zeitskala ablaufenden photophysikalischen Prozesse an diesen Filmen unter verschiedenen Bedingungen untersucht und analysiert. In Kapitel 4 wurde der generelle Energietransfer der Kohlenstoffnanoröhren in Polymermatrizen im Detail studiert. Hierbei wurden durch Simulationen theoretische dreidimensionale Verteilungen von Kohlenstoffnanoröhren erzeugt und die nach einem Energietransfer vorliegenden Polarisationsanisotropien berechnet. Verschiedene Berechnungsansätze ergaben, dass die Nanorohrdichte ϱSWCNT für ein Massenüberschuss X der Matrix nahezu unabhängig von dem Röhrenvolumen war und durch ϱSWCNT = X−1 · 40 000 μm−1 angenähert werden konnte. Die Simulationen lieferten von der Röhrendichte abhängige Gaußverteilungen der zwischen den Nanoröhren vorliegenden Abständen. Aus den Verteilungen konnte weiterhin der Anteil an Röhren bestimmt werden, die für einen Energietransfer zur Verfügung stehen. Weitere Simulationen von Nanorohrverteilungen lieferten die Polarisationsanisotropie in Abhängigkeit von der Anzahl an durchgeführten Energietransferschritten. Die Ergebnisse aus den Simulationen wurden zur Interpretation der Ultrakurzzeitmessungen angewandt. Hierbei wurden durch die Variation der Polymermatrix die zwischen den Nanoröhren vorliegenden Abstände verändert und damit die Art und Intensität des Energietransfers kontrolliert. In Messungen der transienten Anisotropie zeigte sich, dass ein Exziton nach seiner Erzeugung zwei depolarisierende Energietransferschritte durchführte. Die Zerfallsdynamiken des Exzitons gaben auch klare Hinweise auf weitere nicht depolarisierende Energietransferprozesse, die durch parallel zueinander stehende Übergangsdipolmomente ermöglicht wurden. Eine Erklärung für dieses Verhalten lieferte die faserige Struktur der Filme, die sich in Aufnahmen durch das Elektronenmikroskop zeigte. Das Kapitel 5 beschäftigte sich mit dem Aufbau eines transienten Nahinfrarotspektrometers und den nötigen experimentellen Umbauten zur Messung der transienten Absorption für energiearme Signale im Spektralbereich unterhalb von 1.4 eV. Hierzu wurde die Weißlichterzeugung für die Verwendung von Calciumfluorid umgebaut. Das erzeugte Weißlicht wurde in das aufgebaute Prismenspektrometer eingekoppelt, um es weitestgehend linear auf einer Energieskala zu dispergieren. Auf diese Weise wurden energiearme Spektralkomponenten nicht auf unverhältnismäßig viele Pixel verteilt und konnten mit ausreichender Intensität detektiert werden. Die Lichtdetektion erfolgte mittels zweier Detektorzeilen aus Indiumgalliumarsenid, die das transiente Signal durch eine direkte Referenzierung stabilisierten. Weiterhin wurde in diesem Kapitel die Justage und die programmierte Ansteuerung des Systems detailliert beschrieben. Hierbei wurde auf die Justage der Einkopplung per Freistrahl, die Kalibrierung mittels Bandpassspektren sowie auf die Aufnahme von Weißlichtspektren und transienten Karten detailliert eingegangen. An Nanorohrdispersionen durchgeführten Testmessungen zeigten, dass das transiente Nahinfrarotspektrometer mit direkter Signalreferenzierung einwandfrei funktionierte und daher den beobachtbaren Spektralbereich auf den Bereich von Energien bis unterhalb von 1 eV erweiterte. Damit ermöglichte der Aufbau einen Zugang zu der Beobachtung größerer Nanorohrchiralitäten sowie zu der Untersuchung von energiearmen, spektralen Signaturen von Nanorohrdefekten. In Kapitel 6 wurde das transiente Nahinfrarotspektrometer genutzt, um das zeitabhängige Verhalten von redoxchemisch p-dotierten Nanoröhren zu charakterisieren und quantitativ zu beschreiben. Hierzu wurden die spektralen Eigenschaften von SWCNT-Dünnfilmen als Funktion eines steigenden Dotierungsgrades durch die Messungen der transienten und linearen Absorption studiert. In der linearen Absorption im Bereich von 0.9 - 2.5 eV vereinfachte sich das Spektrum mit ansteigender Dotierung stark und verlor vor allem im Bereich des ersten Subbandes deutlich an Oszillatorstärke. Bei starker Dotierung verschwanden die Signalbeiträge von X1 und der Phononenseitenbande. Weiterhin bleichte auch die bei mittleren Dotierungsgraden auftauchende Trionenabsorption aus und ging in die breite Absorptionsbande der H-Bande über. Das Erscheinen und Verschwinden der trionischen sowie exzitonischen Absorption war ebenfalls in der transienten Absorption durch zeitgleich auftretende/verschwindende Photobleichsignale zu erkennen. Sowohl der Zerfall des exzitonischen PB-Signals wie auch des Trions beschleunigte sich mit einer steigenden Dotierung. Die Zerfallszeit des Exzitons im undotierten Film betrug 6.87 ps und verkürzte sich auf 0.732 ps bei höheren Dotierungsgraden. Die Zerfallszeit des Photobleichens des Trions reduzierte sich von 2.02 ps auf 0.440 ps. Auffallend war hierbei, dass das Trion im Vergleich zu dem Exziton exponentiell zerfiel und damit auf eine Lokalisierung dieses Zustandes hinweist. Bei höheren Dotierungsmittelkonzentrationen tauchte in der transienten Absorption ein neuer Signalbeitrag auf. Die Existenz dieses Signals konnte auf die H-Bande zurückgeführt werden und könnte auf einer Verschiebung des linearen Absorptionsspektrums aufgrund einer Renormalisierung der Bandlücke oder der Sättigung von Ladungsträgern beruhen. Das Signal zeigte eine klare Abhängigkeit vom Dotierungsgrad des Nanorohrfilmes. So wies es eine hypsochrome Verschiebung auf, wurde spektral breiter und seine Zerfallsdauer reduzierte sich von 1.62 ps auf 0.520 ps mit steigendem Dotierungsgrad.show moreshow less
  • Carbon based nanotubes possess a tremendous potential as novel and sustainable materials in application areas such as optoelectronics and other prospective technologies. However to fully exploit it, an in-depth understanding of their unique photophysical features is essential. Carbon nanotubes are one-dimensional semiconductors and are therefore very versatile materials. However, the relationship between their suitability as semiconductors and the required doping for this purpose, is only scarcely understood. The main aim of this thesisCarbon based nanotubes possess a tremendous potential as novel and sustainable materials in application areas such as optoelectronics and other prospective technologies. However to fully exploit it, an in-depth understanding of their unique photophysical features is essential. Carbon nanotubes are one-dimensional semiconductors and are therefore very versatile materials. However, the relationship between their suitability as semiconductors and the required doping for this purpose, is only scarcely understood. The main aim of this thesis was to provide a fundamental understanding of photophysical events such as energy transfer processes in those nanotubes and to elucidate the impact of controlled doping on those events with respect to their one-dimensional semiconductor properties. The experiments performed were based on films made from single-walled (6,5)-carbon nanotubes isolated by a polyfluorene copolymer in organic solvent. By applying ultrafast laser spectroscopy one was able to monitor and analyse photophysical events occurring on a short (ps-ns) time scale in these films under varying conditions. Chapter 4 presented an detailed investigation of the general energy transfer occurring in carbon nanotubes embedded into polymeric matrices. For this purpose, simulations were carried out to generate theoretical, three-dimensional distributions of the nanotubes to calculate the corresponding polarization anisotropy upon energy transfer. Varying computational approaches clearly showed that the nanotube density ϱSWCNT for a mass excess X of the matrix was nearly completely independent of the tube volume: The relationship could be approximated with ϱSWCNT = X−1 · 40 000 μm−1. The simulations provided Gaussian distributions of the intertube distances, which were shown to be dependent on the density of the nanotubes in the films. The distributions even provided the fraction of tubes available for energy transfer to occur. Further simulations of nanotube distributions were carried out to establish the relationship between the polarization anisotropy and the number of energy transfer steps taken. These results were then used for a detailed analysis of the measured ultrafast photo-events in those nanotubes. In the corresponding experiments the polymer matrix was varied to alter the intertube distances between the embedded nanotubes in a controlled manner and as a result also control the intensity of the possible energy transfer. The observed transient anisotropy clearly indicated that an exciton was carrying out two depolarizing steps of energy transfer upon its generation. The exciton decay dynamics indicated the presence of addition non-depolarizing energy transfer processes due to the presence of parallel dipole moments in those events. This behavior was caused by the fibrous nature of the films, as clearly seen by electron microscopy. Chapter 5 presented the experimental setup of the transient near-infrared spectrometer, built and used for this PhD, including the necessary experimental modifications to measure transient absorption for low-energy signals in the spectral range below 1.4 eV. For this purpose a calcium fluoride based white light had to be generated. The generated white light was then coupled into a specifically constructed prism spectrometer to disperse the light on a mostly linear energy scale. By using this principle, low-energy spectral components were not distributed over a disproportionate number of pixels and could therefore be detected with sufficient intensity. The corresponding detection of light was achieved using two lines of indium gallium arsenide detectors. This setup stabilized the transient signal through direct referencing. Furthermore, this chapter also described in detail the required experimental adjustment and control program, which was written for this purpose. In addition, the adjustment of the coupling of the light into the system via free beam, the calibration via bandpass spectra and the acquisition of white light spectra and transient maps were discussed in-detail. Test measurements carried out on dispersions of nanotubes, confirmed the design and flawless functioning of the transient nearinfrared spectrometer with direct signal referencing, extending the observable spectral range to energies below 1 eV. The setup even enabled the study of nanotube samples with low-energy spectral signatures due to nanotube defects and it can even be used to investigate nanotubes with large chiralities. In chapter 6, the time-dependent photophysical behavior of p-doped nanotubes (by redoxchemical means) was discussed, based on detailed investigations and quantitative analysis of results obtained by the transient near-infrared spectrometer presented in chapter 5. In particular, the spectral properties of thin films of SWCNT were studied as a function of increasing levels of p-doping by monitoring their corresponding transient and linear absorption behavior. In the range of 0.9 - 2.5 eV the linear absorption spectrum simplified with increasing doping levels. The oscillator strength decreased significantly, especially in the area of the first sub band. In samples doped at high levels, the signal contributions from X1 and the phonon sidebands disappeared. In addition, the absorption of trions, which appeared at medium doping levels, also bleached and merged into the broad absorption band of the H-band. The appearance and disappearance of trionic and excitonic absorption was also observable in the transient absorption by simultaneously appearance/disappearance of photobleaching signals. Both, the decay of the excitonic and the trionic PB signal accelerated with increasing doping levels. The excitonic decay time of 6.87 ps in the pristine film became only 0.732 ps in nanotube films doped at high levels. The decay time for the trionic photo-bleaching also dropped from 2.02 ps to 0.440 ps. Interestingly, the trionic decay occurred exponentially in contrast to the excitonic decay; a behavior which clearly indicated the localization of this state. At higher concentrations of dopant, a new signal contribution emerged in the transient absorption spectra. The existence of this signal could be attributed to the H-band and could be caused by a shift of the linear absorption spectrum due to a band gap renormalization or by saturation of the charge carriers. The signal exhibited a clear dependence on the doping levels of the nanotube film. It also showed a hypsochromic shift and became spectrally broadened. The decay time also dropped from 1.62 ps to 0.520 ps for samples doped at higher levels.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Pascal Gerhard KunkelGND
URN:urn:nbn:de:bvb:20-opus-269004
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Referee:Prof. Dr. Tobias Hertel, Prof. Dr. Ingo FischerORCiD
Date of final exam:2022/04/20
Language:German
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-26900
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 541 Physikalische Chemie
GND Keyword:Einwandige Kohlenstoff-Nanoröhre; Ultrakurzzeitspektroskopie; Dotierung; NIR
Tag:Energietransfer; Nahinfrarot; Spektroskopie
Release Date:2022/04/25
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand