Relationships of insect biomass and richness with land use along a climate gradient

Please always quote using this URN: urn:nbn:de:bvb:20-opus-265058
  • Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass betweenRecently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42%), whereas differences in total richness (-29%) and the richness of threatened species (-56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Johannes Uhler, Sarah Redlich, Jie Zhang, Torsten Hothorn, Cynthia Tobisch, Jörg Ewald, Simon Thorn, Sebastian Seibold, Oliver Mitesser, Jérôme Morinère, Vedran Bozicevic, Caryl S. Benjamin, Jana Englmeier, Ute Fricke, Cristina Ganuza, Maria Haensel, Rebekka Riebl, Sandra Rojas-Botero, Thomas Rummler, Lars Uphus, Stefan Schmidt, Ingolf Steffan-Dewenter, Jörg Müller
URN:urn:nbn:de:bvb:20-opus-265058
Document Type:Journal article
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Parent Title (English):Nature Communications
Year of Completion:2021
Volume:12
Issue:1
Article Number:5946
Source:Nature Communications (2021) 12:1, 5946. https://doi.org/10.1038/s41467-021-26181-3
DOI:https://doi.org/10.1038/s41467-021-26181-3
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:biodiversity; ecology
Release Date:2022/04/29
Open-Access-Publikationsfonds / Förderzeitraum 2021
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International