An effective model of endogenous clocks and external stimuli determining circadian rhythms

Please always quote using this URN: urn:nbn:de:bvb:20-opus-261655
  • Circadian endogenous clocks of eukaryotic organisms are an established and rapidly developing research field. To investigate and simulate in an effective model the effect of external stimuli on such clocks and their components we developed a software framework for download and simulation. The application is useful to understand the different involved effects in a mathematical simple and effective model. This concerns the effects of Zeitgebers, feedback loops and further modifying components. We start from a known mathematical oscillator model,Circadian endogenous clocks of eukaryotic organisms are an established and rapidly developing research field. To investigate and simulate in an effective model the effect of external stimuli on such clocks and their components we developed a software framework for download and simulation. The application is useful to understand the different involved effects in a mathematical simple and effective model. This concerns the effects of Zeitgebers, feedback loops and further modifying components. We start from a known mathematical oscillator model, which is based on experimental molecular findings. This is extended with an effective framework that includes the impact of external stimuli on the circadian oscillations including high dose pharmacological treatment. In particular, the external stimuli framework defines a systematic procedure by input-output-interfaces to couple different oscillators. The framework is validated by providing phase response curves and ranges of entrainment. Furthermore, Aschoffs rule is computationally investigated. It is shown how the external stimuli framework can be used to study biological effects like points of singularity or oscillators integrating different signals at once. The mathematical framework and formalism is generic and allows to study in general the effect of external stimuli on oscillators and other biological processes. For an easy replication of each numerical experiment presented in this work and an easy implementation of the framework the corresponding Mathematica files are fully made available. They can be downloaded at the following link: https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/circadian/.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Tim Breitenbach, Charlotte Helfrich-Förster, Thomas Dandekar
URN:urn:nbn:de:bvb:20-opus-261655
Document Type:Journal article
Faculties:Fakultät für Mathematik und Informatik / Institut für Mathematik
Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Parent Title (English):Scientific Reports
Year of Completion:2021
Volume:11
Issue:1
Pagenumber:16165
Source:Scientific Reports (2021) 11:1, 16165. https://doi.org/10.1038/s41598-021-95391-y
DOI:https://doi.org/10.1038/s41598-021-95391-y
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:computational biology and bioinformatics; systems biology
Release Date:2022/04/22
Open-Access-Publikationsfonds / Förderzeitraum 2021
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International