Metabolic glycoengineering in hMSC-TERT as a model for skeletal precursors by using modified azide/alkyne monosaccharides

Please always quote using this URN: urn:nbn:de:bvb:20-opus-259247
  • Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation ofMetabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac\(_4\)ManNAz) and N-alkyneacetylmannosamine (Ac\(_4\)ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac\(_4\)ManNAz was detectable for up to six days while Ac\(_4\)ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Stephan Altmann, Jürgen Mut, Natalia Wolf, Jutta Meißner-Weigl, Maximilian Rudert, Franz Jakob, Marcus Gutmann, Tessa Lühmann, Jürgen Seibel, Regina Ebert
URN:urn:nbn:de:bvb:20-opus-259247
Document Type:Journal article
Faculties:Medizinische Fakultät / Lehrstuhl für Orthopädie
Fakultät für Chemie und Pharmazie / Institut für Organische Chemie
Fakultät für Chemie und Pharmazie / Institut für Pharmazie und Lebensmittelchemie
Language:English
Parent Title (English):International Journal of Molecular Sciences
ISSN:1422-0067
Year of Completion:2021
Volume:22
Issue:6
Article Number:2820
Source:International Journal of Molecular Sciences (2021) 22:6, 2820. https://doi.org/10.3390/ijms22062820
DOI:https://doi.org/10.3390/ijms22062820
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:click chemistry; glycocalyx; hMSC-TERT; metabolic glycoengineering; modified monosaccharides
Release Date:2022/03/26
Open-Access-Publikationsfonds / Förderzeitraum 2021
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International