Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay

Please always quote using this URN: urn:nbn:de:bvb:20-opus-259029
  • In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. HereIn Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Freya D. R WenckerORCiD, Gabriella MarincolaORCiD, Sonja M. K. SchoenfelderORCiD, Sandra MaaßORCiD, Dörte BecherORCiD, Wilma ZiebuhrORCiD
URN:urn:nbn:de:bvb:20-opus-259029
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für Molekulare Infektionsbiologie
Language:English
Parent Title (English):Nucleic Acids Research
Year of Completion:2021
Volume:49
Issue:4
Pagenumber:2192-2212
Source:Nucleic Acids Research (2021) 49:4, 2192-2212. https://doi.org/10.1093/nar/gkaa1277
DOI:https://doi.org/10.1093/nar/gkaa1277
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:acid; allelic replacement; antitermination; endoribonuclease; expression; geometry; mechanism; proteins; transcription; translation
Release Date:2022/05/05
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2021
Licence (German):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International