Electrochromic systems based on metallopolymers and metal oxides: towards neutral tint and near-infrared transmission modulation

Elektrochrome Systeme basierend auf Metallopolymeren und Metalloxiden: Auf dem Weg Richtung Neutralfärbung und Modulation im infraroten Bereich

Please always quote using this URN: urn:nbn:de:bvb:20-opus-258554
  • While the field of electrochromic (EC) materials and devices (ECDs) continues to advance in terms of color palette and understanding the underlying mechanism, several scientific and technological challenges need to be addressed by optimizing the materials and understanding the electrochemical interplay of these materials in full cells. The main issue here is to further improve the EC profile for color neutrality and cycling stability in order to commercialize dimmable EC products. The transparent conductive substrates used in this work (FTO andWhile the field of electrochromic (EC) materials and devices (ECDs) continues to advance in terms of color palette and understanding the underlying mechanism, several scientific and technological challenges need to be addressed by optimizing the materials and understanding the electrochemical interplay of these materials in full cells. The main issue here is to further improve the EC profile for color neutrality and cycling stability in order to commercialize dimmable EC products. The transparent conductive substrates used in this work (FTO and ultra-thin ITO glass) have high visible light transmittance (τv > 85%) and low sheet resistance (< 25 Ω·sq-1). In addition, the Li+-containing gel electrolyte has sufficient ionic conductivity (2.8·10-4 S·cm-1 at 25 °C), so the investigated ECDs could achieve a fast response (required ionic conductivity is between 10−3 and 10−7 S·cm-1). This work shows that the combination of cathodically-coloring Fe-MEPE with anodically-coloring non-stoichiometric nickel oxide (Ni1-xO) electrodes (prepared by the National Institute of Chemistry in Ljubljana, Slovenia) can be used in neutral-coloring type III ECDs. The Fe-MEPE/Ni1-xO ECD with the underbalanced CE (ECD1-1, 2: 1) and the balanced configuration (ECD1-2, 1: 1) are both nearly neutrally-colored (ECD1-1: a* = -6.7, b* = 8.8; ECD1-2: a* = -9.0, b* = 10.1) in the bright state with a τv of almost 70%. Due to the overbalancing of the CE (ECD1-3, 1:3), a deviation (a* = -2.8, b* = 19.9) from the neutral coloration occurred here. The balanced as well as the overbalanced ECD configurations show high electrochemical cycling stability (over 1,000 potentiostatic switching cycles). In general, the overbalanced configuration offers the advantage of a smaller operating voltage range (-1 V ↔ 2.5 V to -1 V ↔ 1.5 V), i.e., avoiding possible electrochemical degradation of the EC materials, electrolyte, or conductive layers. By using a Li RE in the full cell, insights into the optimal matching of electrochemical and optical properties between the two electrodes are obtained to achieve more stable ECDs. Thereby, the redox potentials of both EC electrodes (Fe-MEPE and Ni1-xO) can be measured during operation. The incomplete decolorization of ECD1-1 can be explained by the measured electrode potentials (below the required 4 V vs. Li/Li+), excluding side reactions and degradation at both electrodes. The results demonstrate the importance of using balanced and (slightly) overbalanced ECD configurations with complementary-coloring EC electrodes to achieve high cycling stability and fast switching at low operating voltages. Therefore, this three-electrode configuration provides an excellent method for in situ electrochemical characterization of the individual EC electrodes to better understand the redox processes during device operation and to further improve the optical contrast and cycle stability of ECDs. The Fe-MEPE/Ni1-xO combination was tested on flexible ultrathin ITO glass (ECD1-4). Here, by applying a low voltage of -1 V ↔ 2.5 V, the MEPE/Ni1-xO ECDs can be reversibly switched from a colored (L* = 35.6, a* = 19.4, b* = -26.7) to a nearly colorless (L* = 78.5, a* = -14.0, b* = 21.3) state. This is accompanied by a change in τv from 6% to 53%. The ECDs exhibit fast response and good cycling stability (5% loss of optical contrast over 100 switching cycles). To further improve color neutrality and cycling stability, ECDs combining Fe-MEPE and mixed metal oxides as ion storage layers were investigated. Titanium manganese oxide (TMO, Fraunhofer IST) and titanium vanadium oxide (TiVOx, EControl-Glas GmbH & Co. KG) electrodes are compared for use as optically-passive ion storage layers. TiVOx with a maximum charge density of approx. 27 mC·cm-2 and a coloration efficiency of η = 2 cm·C-1 at 584 nm shows a color change from yellow to light gray at 2 V vs. Ag/AgCl, while the slightly anodically-coloring Ti-rich TMO (10.5 mC·cm-², η584 nm = -4 cm·C-1) switches from light yellow to colorless at -2.5 V vs. Ag/AgCl. These materials show only a slight change in τv value from 85% to 75% and from 72% to 81%, respectively, thus reaching the requirements for highly transmissive optical-passive ion storage layers. The ECDs with Fe-MEPE in combination with TiVOx (ECD2-1) and TMO-1 (ECD2-2) are blue-purple in the dark state (0 V) and turn colorless by applying a voltage of 1.5 V, changing the τv value from 28% to 69% and from 21% to 57% in 3 s and 13 s, respectively. The ECDs show fast responses and high cyclability over more than 100 cycles. In the last section, the simplification of cell architecture by using redox mediators shows that different redox mediators (KHCF(III), Fc-PF6, Fc-BF4, and TMTU) can be used in type II ECDs (4 instead of 5 layers) consisting of Fe-MEPE or Ni1-xO thin film electrodes. The combination of KHCF(III) with Fe-MEPE has a low cycling stability due to the electrochemical formation of Prussian blue (PB). This side reaction is undesirable as it decreases the optical contrast. It can be avoided by using Fc+- (ECD3-5/6) or TMTU-based (ECD3-7) redox mediators, which exhibit reversible redox behavior. A high τv value of 72% is obtained for the use of TMTU. Low concentrations (<0.1 M) of redox mediators decrease the cell voltage for complete switching without affecting the optical properties of the ECDs. The redox couple TMTU/TMFDS2+ (molar ratio of 1:0.1 in 1 M LiClO4/PC as electrolyte) works well in combination with Ni1-xO electrodes (ECD3-10), with a change in τv value from 38% (colored at 2 V, L* = 67.1, a* = 3.9, b* = 17.2) to 70% at (decolored at -2 V, L* = 86.6, a* = -0.6, b* = 17.2). This result implies that incorporating redox mediators into the electrolyte is an effective means to simplify the cell assembly and color neutrality can be obtained with one optically active WE and a color-neutral redox mediator. Moreover, the combination of Ni1-xO and the colorless TMTU/TMFDS2+ redox mediator is a potential candidate to obtain neutrally colored ECDs. It is shown that the lab-sized FTO- and ultra-thin ITO-glass-based ECDs are very attractive for energy-efficient EC applications, e.g., in architectural or automotive glazing, aircraft, ships, home appliances and displays. To monitor the EC performance and to prevent diverging electrode potentials during the switching process, the studied three-electrode configuration can help to extend the cycle stability as well as to improve the charge balancing of dimmable applications. The studied ECDs display a route towards neutral tint, e.g., EC active Ni1-xO, optically-inactive mixed metal oxides, and colorless redox mediators. Nevertheless, color neutrality should be further improved to meet the requirements for industrial applications. For future work, a scale-up process from lab-sized (few cm²) to prototype (few m²) ECDs will be necessary.show moreshow less
  • Während das Gebiet der elektrochromen (EC) Materialien in Bezug auf die Farbpalette und das Verständnis des zugrundeliegenden Mechanismus weiter erforscht wird, bleiben einige wissenschaftliche und technologische Herausforderungen bestehen, die sowohl durch Optimierung der EC Materialien als auch durch tiefergehendes Verständnis des elektrochemischen Zusammenspiels dieser Materialien in elektrochromen Elementen (ECD) angegangen werden müssen. Hier geht es vor allem darum, das EC-Profil in Bezug auf Farbneutralität und Stabilität weiter zuWährend das Gebiet der elektrochromen (EC) Materialien in Bezug auf die Farbpalette und das Verständnis des zugrundeliegenden Mechanismus weiter erforscht wird, bleiben einige wissenschaftliche und technologische Herausforderungen bestehen, die sowohl durch Optimierung der EC Materialien als auch durch tiefergehendes Verständnis des elektrochemischen Zusammenspiels dieser Materialien in elektrochromen Elementen (ECD) angegangen werden müssen. Hier geht es vor allem darum, das EC-Profil in Bezug auf Farbneutralität und Stabilität weiter zu verbessern, um kostengünstige und energieeffiziente Produkte zu kommerzialisieren. Die in der Arbeit verwendeten Substrate (FTO-Glas und ultradünnes ITO-Glas) weisen einen hohen Transmissionsgrad (τv > 85 %) und einen geringen Oberflächenwiderstand (< 25 Ω·sq-1) auf. Zusätzlich hat der eingesetzte Li+-haltige Elektrolyt ausreichend Ionenleitfähigkeit (2.8·10-4 S·cm-1 bei 25 °C), so dass die untersuchten ECDs schnelle Schaltzeiten erreichen konnten (erforderliche Ionenleitfähigkeit: 10-3 und 10-7 S·cm-1). Die Ergebnisse dieser Arbeit zeigen, dass die Kombination aus kathodisch färbenden Fe-MEPE-Elektroden mit anodisch färbenden Ni1-xO Gegenelektroden (National Institute of Chemistry, Ljubljana, Slovenia) in neutralfärbenden Typ III ECDs verwendet werden kann. Sowohl die Fe-MEPE/Ni1-xO ECD mit einer unterdimensionierten Gegenelektrode (ECD1-1, 2: 1) und die balancierte Konfiguration (ECD1-2, 1: 1) sind beide im entfärbten Zustand mit einem τv von fast 70 % zudem fast neutral gefärbt (ECD1-1: a* = -6,7, b* = 8,8; ECD1-2: a* = -9,0, b* = 10,1). Durch die Überdimensionierung der Gegenelektrode (ECD1-3, 1:3) entstand hier eine Abweichung (a* = -2,8, b* = 19,9) von der geforderten Neutralfärbung. Die balancierte sowie die überdimensionierte ECD-Konfiguration zeigen eine hohe elektrochemische Zyklenstabilität (über 1.000 potentiostatische Schaltvorgänge). Im Allgemeinen bot die überdimensionierte Konfiguration den Vorteil eines kleineren Spannungsfensters (-1 V ↔ 1,5 V statt -1 V ↔ 2,5 V), d.h. der Vermeidung einer möglichen Degradation der EC Materialien, des Elektrolyten oder der leitfähigen Schichten. Durch den Einsatz einer Li RE in der ECD wurden Erkenntnisse über die optimale Anpassung der elektrochemischen und optischen Eigenschaften zwischen beiden Elektroden erhalten. Hierdurch konnten die Redoxpotentiale beider EC Elektroden (Fe-MEPE und Ni1-xO) während des Schaltvorgangs gemessen werden. Das unvollständige Entfärben von ECD1-1 kann durch die gemessenen Elektrodenpotentiale (unter den geforderten 4 V vs. Li/Li+) erklärt werden, wobei Nebenreaktionen und Degradation an beiden Elektroden ausgeschlossen sind. Die Ergebnisse zeigen, wie wichtig es ist, balancierte und (leicht) überdimensionierte Konfigurationen mit komplementär färbenden Elektroden für stabil schaltende ECDs mit niedriger Zellenspannung zu verwenden. Somit bietet die Drei-Elektroden-Konfiguration eine hervorragende Methode zur elektrochemischen in situ Charakterisierung der einzelnen EC-Elektroden, um die Redoxprozesse während des Schaltvorgangs besser zu verstehen und den optischen Kontrast und die Stabilität von ECDs weiter zu verbessern. Die Fe-MEPE/Ni1-xO Kombination wurde auf flexibles ultradünnes ITO-Glas übertragen (ECD1-4). Hier schaltet die MEPE/Ni1-xO-ECD durch das Anlegen einer niedrigen Spannung von -1 V ↔ 2,5 V reversibel von einem gefärbten Zustand (L* = 35,6, a* = 19,4, b* = -26,7) in einen nahezu farblosen Zustand (L* = 78,5, a* = -14,0, b* = 21,3). Dies geht mit einer Änderung des τv-Wertes von 6% auf 53% einher. Die ECD weist schnelle Schaltzeiten sowie eine gute Zyklenstabilität (5% Verlust des optischen Kontrasts über 100 Schaltzyklen) auf. Um die Farbneutralität und Langzeitstabilität weiter zu verbessern, werden ECDs aus Fe-MEPE Arbeits- und mischmetalloxidische Ionenspeicherelektroden untersucht. Titan-Manganoxid (TMO)-Elektroden (vom Fraunhofer IST) wurden mit kommerziell erhältlichem Titan-Vanadiumoxid (TiVOx, EControl-Glas GmbH & Co. KG) zur Verwendung als optisch passive Ionenspeicherschichten verglichen. TiVOx mit einer maximalen Ladungsdichte von ca. 27 mC·cm-² und einer Färbeeffizienz von η584 nm = 2 cm·C-1 weist eine Farbänderung von gelb nach hellgrau bei 2 V vs. Ag/AgCl, während das anodisch färbende Ti-reichen TMO (10,5 mC·cm-², η584 nm = -4 cm·C-1) bei -2,5 V vs. Ag/AgCl von hellgelb nach farblos schaltete. Diese Materialien zeigen nur eine geringe Änderung des τv-Wertes von 85 % auf 75 % bzw. von 72 % auf 81 %, wodurch die Anforderungen an hoch transmissive optisch-passive Ionenspeicherschichten erfüllt sind. Die ECDs mit Fe-MEPE in Kombination mit TiVOx (ECD2-1) und TMO-1 (ECD2-2) sind im gefärbten Zustand (0 V) blau-lila gefärbt und werden durch Anlegen einer Zellspannung von 1,5 V farblos, wobei sich der τv-Wert in 3 s bzw. 13 s von 28 % auf 69 % und von 21 % auf 57 % ändert. Die ECDs zeigen schnelle Reaktionen und eine gute Reversibilität (> 100 Zyklen). Kapitel 4 befasste sich mit der Vereinfachung der Zellarchitektur durch Verwendung von Redoxmediatoren. Diese Arbeit zeigt, dass verschiedene Redoxmediatoren (KHCF (III), Fc-PF6, Fc-BF4 und TMTU) in Typ II ECDs (4 statt 5 Schichten) verwendet werden können, die aus Fe-MEPE oder Ni1-xO Elektroden bestehen. Die Kombination von KHCF(III) mit Fe-MEPE-Elektroden hat aufgrund der Bildung von Preußisch Blau (PB) eine geringe Zyklenstabilität. Diese Nebenreaktion ist unerwünscht, da sie den optischen Kontrast vermindert. Sie kann durch die Verwendung von Redoxmediatoren auf Fc+- (ECD3-5/6) oder TMTU-Basis (ECD3-7) vermieden werden, da diese ein reversibles Redoxverhalten aufweisen. Für den Einsatz von TMTU wurde ein hoher τv-Wert von 72 % (L* = 87,7, a* = -9,2, b* = 11,6) erhalten. Niedrige Konzentrationen von Redoxmediatoren (< 0,1 M) verringern die Zellspannung, ohne die optischen Eigenschaften der ECDs zu beeinflussen. TMTU/TMFDS2+ (Molverhältnis von 1:0,1 in 1 M LiClO4/PC als Elektrolyt) wurde erfolgreich als Redoxmediator in Kombination mit Ni1-xO-Elektroden eingesetzt, wobei eine Änderung des τv-Wertes von 38 % (gefärbt bei 2 V, L* = 67,1, a* = 3,9, b* = 17,2) auf 70 % bei (entfärbt bei -2 V, L* = 86,6, a* = -0,6, b* = 17,2) erzielt wurde. Dieses Ergebnis impliziert, dass der Einsatz von Redoxmediatoren in den Elektrolyten ein effektives Mittel zur Vereinfachung des Zellaufbaus sind und Farbneutralität mit einer optisch aktiven WE und einem farbneutralen Redoxmediator erreicht werden kann. Ein exzellentes Beispiel ist hierfür die Kombination von Ni1-xO und des farblose TMTU/TMFDS2+-Redoxmediator. Es wurde gezeigt, dass FTO- und ultradünnen ITO-Glas-basierte ECDs sehr attraktiv für energieeffiziente EC-Anwendungen sind, z. B. in Architektur- oder Automobilverglasungen, Flugzeugen, Schiffen, Haushaltsgeräten und Displays. Um die Änderung der Elektrodenpotentiale während des Schaltvorgangs zu überwachen, kann die Drei-Elektroden-Konfiguration helfen, die Zyklenstabilität zu verbessern. Die untersuchten ECDs zeigen einen Weg zur Farbneutralität auf, z.B. EC-aktives Ni1-xO, optisch inaktive Mischmetalloxide und farblose Redoxmediatoren. Dennoch sollte die Farbneutralität weiter verbessert werden, um die Anforderungen für industrielle Anwendungen zu erfüllen und für zukünftige Arbeiten ist ein Scale-up-Prozess von Laborgröße (wenige cm²) zu Prototypen (wenige m²) ECDs notwendig.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Lukas NiklausORCiD
URN:urn:nbn:de:bvb:20-opus-258554
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Funktionsmaterialien und Biofabrikation
Referee:Prof. Dr. Gerhard Sextl
Date of final exam:2022/01/24
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-25855
Sonstige beteiligte Institutionen:Fraunhofer-Institut für Silicatforschung ISC
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 541 Physikalische Chemie
GND Keyword:Elektrochromie
Tag:electrochromic device; metal oxides; metallopolymers; neutral tint
Release Date:2022/03/07
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand