H2A.Z – a molecular guardian of RNA polymerase II transcription in African trypanosomes

H2A.Z – eine molekulare Wächterin der RNA Polymerase II Transkription in Afrikanischen Trypanosomen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-250568
  • In eukaryotes, the enormously long DNA molecules need to be packaged together with histone proteins into nucleosomes and further into compact chromatin structures to fit it into the nucleus. This nuclear organisation interferes with all phases of transcription that require the polymerase to bind to DNA. During transcription – the process in which the hereditary information stored in DNA is transferred to many transportable RNA molecules - nucleosomes form a physical obstacle for polymerase progression. Thus, transcription is usually accompaniedIn eukaryotes, the enormously long DNA molecules need to be packaged together with histone proteins into nucleosomes and further into compact chromatin structures to fit it into the nucleus. This nuclear organisation interferes with all phases of transcription that require the polymerase to bind to DNA. During transcription – the process in which the hereditary information stored in DNA is transferred to many transportable RNA molecules - nucleosomes form a physical obstacle for polymerase progression. Thus, transcription is usually accompanied by processes mediating nucleosome destabilisation, including post-translational histone modifications (PTMs) or exchange of canonical histones by their variant forms. To the best of our knowledge, acetylation of histones has the highest capability to induce chromatin opening. The lysine modification can destabilise histone-DNA interactions within a nucleosome and can serve as a binding site for various chromatin remodelers that can modify the nucleosome composition. For example, H4 acetylation can impede chromatin folding and can stimulate the exchange of canonical H2A histone by its variant form H2A.Z at transcription start sites (TSSs) in many eukaryotes, including humans. As histone H4, H2A.Z can be post-translationally acetylated and as acetylated H4, acetylated H2A.Z is enriched at TSSs suggested to be critical for transcription. However, thus far, it has been difficult to study the cause and consequence of H2A.Z acetylation. Even though, genome-wide chromatin profiling studies such as ChIP-seq have already revealed the genomic localisation of many histone PTMs and variant proteins, they can only be used to study individual chromatin marks and not to identify all factors important for establishing a distinct chromatin structure. This would require a comprehensive understanding of all marks associated to a specific genomic locus. However, thus far, such analyses of locus-specific chromatin have only been successful for repetitive regions, such as telomeres. In my doctoral thesis, I used the unicellular parasite Trypanosoma brucei as a model system for chromatin biology and took advantage of its chromatin landscape with TSSs comprising already 7% of the total T. brucei genome (humans: 0.00000156%). Atypical for a eukaryote, the protein-coding genes are arranged in long polycistronic transcription units (PTUs). Each PTU is controlled by its own ~10 kb-wide TSS, that lies upstream of the PTU. As observed in other eukaryotes, TSSs are enriched with nucleosomes containing acetylated histones and the histone variant H2A.Z. This is why I used T. brucei to particularly investigate the TSS-specific chromatin structures and to identify factors involved in H2A.Z deposition and transcription regulation in eukaryotes. To this end, I established an approach for locus-specific chromatin isolation that would allow me to identify the TSSs- and non-TSS-specific chromatin marks. Later, combining the approach with a method for quantifying lysine-specific histone acetylation levels, I found H2A.Z and H4 acetylation enriched in TSSs-nucleosomes and mediated by the histone acetyltransferases HAT1 and HAT2. Depletion of HAT2 reduced the levels of TSS-specific H4 acetylation, affected targeted H2A.Z deposition and shifted the sites of transcription initiation. Whereas HAT1 depletion had only a minor effect on H2A.Z deposition, it had a strong effect on H2A.Z acetylation and transcription levels. My findings demonstrate a clear link between histone acetylation, H2A.Z deposition and transcription initiation in the early diverged unicellular parasite T. brucei, which was thus far not possible to determine in other eukaryotes. Overall, my study highlights the usefulness of T. brucei as a model system for studying chromatin biology. My findings allow the conclusion that H2A.Z regardless of its modification state defines sites of transcription initiation, whereas H2A.Z acetylation is essential co-factor for transcription initiation. Altogether, my data suggest that TSS-specific chromatin establishment is one of the earliest developed mechanisms to control transcription initiation in eukaryotes.show moreshow less
  • In Eukaryoten muss die genomische DNA zusammen mit Histonproteinen zu Nukleosomen und weiter zu kompakten Chromatinstrukturen verpackt werden, damit sie in den Zellkern passt. Diese Organisation behindert die Transkription bei jedem Schritt, bei dem die Polymerase an der DNA bindet. Während der Transkription – dem Prozess bei dem die in der DNA gespeicherte Erbinformation in viele transportable RNA Molekülen umgewandelt wird – stellen Nukleosomen ein physikalisches Hindernis für das Vorankommen der Polymerase dar. Aus diesem Grund wird dieIn Eukaryoten muss die genomische DNA zusammen mit Histonproteinen zu Nukleosomen und weiter zu kompakten Chromatinstrukturen verpackt werden, damit sie in den Zellkern passt. Diese Organisation behindert die Transkription bei jedem Schritt, bei dem die Polymerase an der DNA bindet. Während der Transkription – dem Prozess bei dem die in der DNA gespeicherte Erbinformation in viele transportable RNA Molekülen umgewandelt wird – stellen Nukleosomen ein physikalisches Hindernis für das Vorankommen der Polymerase dar. Aus diesem Grund wird die Transkription üblicherweise von Prozessen begleitet, die für die Destabilisierung der Nukleosomen sorgen, wie zum Beispiel post-translationale Modifizierung (PTM) der Histone oder der Austausch von kanonischen Histonproteinen durch eine ihrer Varianten. Soweit bisher bekannt ist Histonacetylierung am besten dafür geeignet, eine offene Chromatinstruktur bereit zu stellen. Die Lysinmodifizierung kann Interaktionen zwischen der DNA und den Histonen innerhalb eines Nukleosomes destabilisieren und als Andockstelle für einige Proteinkomplexe sogenannte Chromatin-Modellierer fungieren, die die Zusammensetzung eines Nukleosomes verändern können. Zum Beispiel, kann Acetylierung am Histon H4 das „Zusammenfalten“ des Chromatins erschweren und den Austausch von kanonischem H2A mit ihrer Variante H2A.Z an den Transkriptiosinitiationsstellen (TSSen) in vielen eukaryotischen Organismen, Menschen eingeschlossen, stimulieren. Wie Histon H4, kann auch H2A.Z post-translationell acetyliert werden und wie acetyliertes H4, findet man auch acetyliertes H2A.Z vor allem an TSSen. Deswegen geht man davon aus, dass es sehr wichtig für die Transkriptioninitiierung ist. Allerdings war es bisher nicht möglich, die Ursache und Wirkung von H2A.Z Acetylierung genauer zu untersuchen. Genom-weite Chromatinprofilstudien wie z.B. ChIP-Seq ermöglichen es die genomische Lokalisierung von vielen Histon-Modifizierungen und -Varianten zu bestimmen. Dennoch reichen sie nicht dafür aus alle Faktoren, die für die Bildung einer bestimmten Chromatinstruktur notwendig sind, gleichzeitig herauszufinden. Das würde voraussetzen, dass man alle Merkmale der genomischen Stelle kennt. Bisher waren Analysen von spezifischen Chromatinstellen nur erfolgreich, wenn das Chromatin von einer repetitiven Region, wie z.B. Telomeren, stammt. In meiner Doktorarbeit verwendete ich den einzelligen Parasiten Trypanosoma brucei als Modelsystem für Chromatinbiologie. Dabei machte ich mir dessen Chromatinorganisation zunutze, die eher untypisch für einen eukaryotische Organismus ist. TSSen machen hier ungefähr 7% des gesamten Genoms aus (Mensch: 0.00000156%). Protein-kodierende Gene sind in langen polycistronischen Transkriptionseinheiten (PTE) angeordnet. Jede dieser Einheiten besitzt eine eigene TSS, die vor der PTE liegt, und bis zu 10 kb lang sein kann. Jedoch, wie in anderen Eukaryoten, sind an den TSSen Nukleosomen angereichert, die sich durch acetylierte Histone und den Einbau der Histonvariante H2A.Z auszeichnen. Aus diesen Gründen verwendete ich T. brucei, um während meiner Doktorarbeit die Chromatinstrukturen, die TSSen auszeichnen, genauer zu untersuchen und die Faktoren, die bei der H2A.Z Positionierung und dadurch bei der Transkriptionsregulation in Eukaryoten eine Rolle spielen, herauszufinden. Dafür etablierte ich zuerst eine Methode, mit der man Chromatin von einer bestimmten genomischen Stelle isolieren kann und die es mir ermöglichen würde, die Merkmale von TSS-spezifischen und -unspezifischen Chromatin zu identifizieren. Später konnte ich das entwickelte Protokoll mit einer Methode zur Quantifizierung von Lysin-spezifischen Histonacetylierung kombinieren. Dadurch konnte ich herausfinden, dass Nukleosomen an trypanosomischen TSSen stark acetyliertes H2A.Z und H4 enthalten und dass für diese Modifizierungen die Histonacetyltransferasen HAT1 und HAT2 verantwortlich sind. Eine Reduzierung der HAT2-Levels führte zu einer Reduzierung von H4 Acetylierung, verschlechterte die gezielte H2A.Z Positionierung und führte dazu, dass die Transkriptioninitiierung sich verlagerte. Wohingegen eine Reduzierung von HAT1, die zwar nur einen kleinen Einfluss auf die H2A.Z Positionierung hatte, eine sehr starke Verringerung von acetyliertem H2A.Z und der Transkriptionsrate zur Folge hatte. Durch meine Ergebnisse konnte ich zeigen, dass in T. brucei, einem evolutionär divergenten eukaryotischem Organismus, die Prozesse der Histonacetylierung, H2A.Z Positionierung und Transkriptionsinitiierung sehr stark miteinander verbunden sind. Meine Arbeit ist des weiteren ein Beweis dafür, dass T. brucei ein sehr wichtiger Modellorganismus für die Forschung an Chromatin ist. Insgesamt erlauben meine Ergebnisse die Schlussfolgerung, dass H2A.Z, egal ob modifiziert oder nicht, ein Herausstellungsmerkmal für TSSen ist, während acetyliertes H2A.Z essentiell für die Transkriptionsinitiierung darstellt. Zusammengefasst, weisen die Daten meiner Doktorarbeit darauf hin, dass die Etablierung von bestimmten Chromatinstrukturen an TSSen eines der frühesten entwickelten Mechanismen zur Kontrolle der Transkriptionsinitiierung in Eukaryoten ist.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Amelie Johanna KrausORCiD
URN:urn:nbn:de:bvb:20-opus-250568
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Referee:Prof. Dr. T. Nicolai SiegelORCiD, Prof. Dr. Christian J. JanzenORCiD, Dr. Sonja LorenzORCiD, Dr. Andreas Schlosser, Prof. Dr. Thomas DandekarORCiD
Date of final exam:2021/12/03
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-25056
Sonstige beteiligte Institutionen:Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München
Sonstige beteiligte Institutionen:Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München
Sonstige beteiligte Institutionen:Research Center for Infectious Diseases, University of Würzburg
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Chromatin; Histone; Histonacetyltransferase; Transcription; Acetylation
Tag:Chromatin; H2A.Z; Histone; Histone Acetylation; Histone modification; Histone variant; Transcription; Trypanosoma Brucei
Release Date:2021/12/22
Licence (German):License LogoDeutsches Urheberrecht