Current-induced Magnetization Switching by a generated Spin-Orbit Torque in the 3D Topological Insulator Material HgTe

Strom-Induzierte Umorientierung einer Magnetisierung mit Hilfe eines Spin-Bahn Drehmoments auf der Oberfläche des 3D topologischen Isolators HgTe

Please always quote using this URN: urn:nbn:de:bvb:20-opus-240490
  • Magnetic random access memory (MRAM) technology aims to replace dynamic RAM (DRAM) due to its significantly lower power consumption and non-volatility [Dong08]. During the last couple of years the commercial focus was set on spin-transfer torque MRAM (STT-MRAM) systems, where a current is pushed through a ferromagnetic (FM) free layer and a reference layer which are separated by an insulator. The free layer can be set to parallel or anti-parallel depending on the current direction [Kim11]. Unfortunately these currents have to be quite highMagnetic random access memory (MRAM) technology aims to replace dynamic RAM (DRAM) due to its significantly lower power consumption and non-volatility [Dong08]. During the last couple of years the commercial focus was set on spin-transfer torque MRAM (STT-MRAM) systems, where a current is pushed through a ferromagnetic (FM) free layer and a reference layer which are separated by an insulator. The free layer can be set to parallel or anti-parallel depending on the current direction [Kim11]. Unfortunately these currents have to be quite high which could lead to damages of the tunnel barrier of the magnetic tunnel junction resulting in higher power consumption as well as reliability issues. At this point a new effect, where the current is passed below the ferromagnetic layer stack, can be exploited to change the direction of the free layer magnetization. The effect is known as spin-orbit torque (SOT) and describes the transfer of angular momentum onto an adjacent magnetization either by the spin Hall effect (SHE) or inverse spin galvanic effect (iSGE) [Manchon19]. The latter describes a spin accumulation due to a current. This is similar to the process of spin accumulation in TIs, where a current corresponds to an effective spin due to spin-momentum locking [Qi11]. Thus TIs exhibit a high current-to-spin conversion rate, which makes them a promising material system for SOT experiments. Among all TIs it is HgTe, which can be reliably grown as an insulator. This thesis covers the development of a working device for SOT measurements (SOT-device) in a CdTe/CdHgTe/HgTe/CdHgTe heterostructure. It involves the development of a tunnel barrier (ZrOx) as well as the investigation of the behavior of a ferromagnetic layer stack on top of etched HgTe. The main result of this work is the successful construction and evaluation of a working SOT-device, which exhibits the up to date most efficient switching of in-plane magnetized ferromagnetic layer stacks. In order to avoid hybridization between HgTe and the adjacent ferromagnetic atoms, which would cause a breakdown of the topological surface state, it is necessary to implement a thin tunnel barrier in between the TI and free layer [Zhang16]. Aside from hybridization a tunnel barrier avoids shunting of the current, that is pushed on the surface of the HgTe/CdHgTe interface. Thus a bigger part of the current can be used for spin accumulation and, at the same time, the resistance measurement of the ferromagnetic layer stack is not perturbed. In chapter 3 the focus is set on investigating the tunneling characteristics of ZrOx on top of dry etched HgTe. Thin barriers are used as the interaction of the current generated spin and the adjacent magnetization decreases with distance. On the other hand too small insulator thicknesses lead to leakage currents which disturb heavily the measurement of the resistance of the ferromagnetic layer stack. Thus an optimum thickness of 10 ALD cycles (\(d\approx 1.6\rm\, nm\)) is determined which yields a resistance area product of \(R\cdot A \approx 3\rm\, k\Omega\mu m^{2}\). This corresponds to a tunneling resistance of \(R_{T}\approx 20\rm\, k\Omega\) over a structure surface of \(A_{T} = 0.12\rm\, \mu m^2\). Multiple samples with different thicknesses have been produced. All samples have been examined on their tunneling behavior. The resistance area product as a function of thickness shows a linear behavior on a logarithmic scale. Furthermore all working samples show non-linear I-V curves as well as parabolic dI/dV-curves. Additionally the tunneling resistance \(R_{T}\) increases with decreasing temperature. All above mentioned properties are typical for tunnel barriers which do not include pinholes [Jonsson00]. The last part of chapter 3 deals with thermal properties of HgTe. By measuring the second harmonic of a biasing AC current in the channel below the tunnel barrier it is attempted to extract the diffusion thermopower of the heated electrons. Unfortunately the measured signal showed a far superior contribution of the first harmonic. According to electric circuit simulations a small asymmetry in the barrier (penetration and leaving point of electrons) could be responsible for this behavior. A ferromagnetic layer stack, consisting of PY/Cu/CoFe, serves as a sensor for magnetization changes due to external fields and current induced spin accumulations. The layer stack exhibits a giant magnetoresistance (GMR) which has been measured by a resistance bridge. The biggest peculiarity in depositing a GMR stack on top of HgTe is that its easy axis forms along only one of the crystal axes (\((110)\) or \((1\overline{1}0)\)). The reason for this anisotropy is still unclear. Sources such as an influence of the terminating material, miscut, furrows during IBE or sputter ripples have been ruled out. It can be speculated that the surface states due to HgTe might have an influence on the development of this easy axis but this would need further investigation. A consequence of this unexpected anisotropy is that every CdTe/CdHgTe/HgTe/CdHgTe wafer has first to be characterized in SQUID in order to find the easy axis. A ferromagnetic resonance (FMR) measurement confirmed this observation. The shape of the ferromagnetic layer stack is chosen to be an ellipse in order to support the easy axis direction by shape anisotropy. Over 8 million ellipses are used to generate a SQUID signal of \(m > 10^{-5}\rm\, emu\). This is sufficient to extract the main characteristics of an average nano pillar under the influence of an external magnetic field. As in the case of bigger structures the ellipse shaped structure shows a step-like behavior. A measured minor loop confirms the existence of the irreversible anti-parallel stable magnetic state. Furthermore this state persists for both directions at \(m=0\) resulting in an anti-ferromagnetic coupling between Py and CoFe. The geometry of the SOT-device is chosen in such a way that the current induced spin aligns either parallel or anti-parallel to the effective magnetic field \(\vec{B}_{eff}=\vec{B}_{ext}+\vec{B}_{aniso}+\vec{B}_{shape}\), which acts on the pillar. Due to interaction of the spin with the adjacent magnetization of Py the magnetization direction gets changed by a torque \(\vec{T}\). In general this torque can be decomposed into two components a field-like torque \(\vec{\tau}_{FL}\) and a damping-like torque \(\vec{\tau}_{DL}\) [Manchon19]. In the case of TIs \(\vec{T}\) is additionally depending on the z-component of \(\vec{m}\) [Ndiaye17]. In our case the magnetization is lying in the sample plane (\(m_{z}=0\)) which results in \(\vec{\tau}_{DL}=0\). Thus, in the case of \(\vec{S}\parallel\left(\vec{\hat{z}}\times\vec{j}\right)\) and \(\vec{j}\parallel\vec{\hat{y}}\), the only spin dependent effective magnetic field is \(\vec{B}_{FL}=\tau_{FL}\cdot\vec{\hat{x}}\) which is lying parallel or anti-parallel to \(\vec{B}_{eff}\). The evaluation of \(\vec{B}_{FL}\) can therefore be done in the following manner. First a high \(B_{ext}\) has to be set along the easy axis of the pillar. Then \(B_{ext}\) has to be reduced just a few \(\rm\, Oe\) before the switching occurs at the magnetic field \(B_{ext,0}\). At the magnetic field \(\Delta B = B_{ext}-B_{ext,0}\approx 0.5\rm\, Oe\) the lower resistive state should be stable over a longer time range (\(10-30\rm\, min\)) in order to exclude switching due to fluctuations. Now a positive or negative current can be pushed through the channel below the pillar. For one of the two current directions the magnetization of Py switches. It is therefore not a thermal effect that drives the change of \(\vec{m}\). Current densities that are able to switch \(\vec{m}\) at small \(\Delta B\neq 0\) lie in the range of \(j\approx 10^{4}\rm\, A/cm^{2}\). In all experiments the switching efficiency \(\Delta B/j\) decreases with rising \(j\). Furthermore the efficiency as a function of \(j\) depends on the temperature as \(\Delta B/j\) values tend to be up to 20 times higher at \(T=1.8\rm\, K\) and \(j\approx 0\) than at \(T=4.2\rm\, K\). This temperature dependence suggests that switching occurs not due to Oersted fields. Furthermore the Biot-Savart fields had been calculated for four different models: an infinite long rectangular wire, two infinite planes, a full volume and two thin volume planes. Every model shows an efficiency, which is at least three times lower than the observation. The highest efficiencies in our samples show up to 10 times higher values than in heavy-metal/ferromagnets heterostructures. In contrast to measurement procedures of most other groups our method leads to direct determination of SOT parameters like the effective magnetic field \(\vec{B}_{FL}\). Other groups make use of spin-transfer FMR (ST-FMR) where they AC bias their structure and extract SOT parameters (like \(\tau_{FL}\) and \(\tau_{DL}\)) from second harmonics by fitting theoretical models. Material systems consisting of TIs and magnetic insulators (MIs) on the other hand show 10 times higher efficiencies [Khang18,Li19]. In those cases the magnetization points out of the sample plane which is conceptually different from in-plane magnetic anisotropy geometries like in our case. The greatest benefit in-plane magnetic anisotropy systems is its easy realisation [Bhatti17]. Here only an elliptical shape has to be lithographically implemented instead of conducting research on the appropriate combination of material systems that result in perpendicular magnetic anisotropies [Apalkov16]. Despite the fact that in our case only \(\vec{\tau}_{FL}\) acts as the driving force for changing \(m\) our device still exhibits the up to date highest efficiencies in the class of in-plane magnetized anisotropies of all material classes ever recorded.show moreshow less
  • Magnetic random access memory (MRAM) ist eine Technologie, die darauf abzielt dynamic RAM (DRAM) aufgrund der geringeren Energieaufnahme und ihrer magnetischen Beständigkeit zu ersetzen [Dong08]. In den letzten Jahren wurde der kommerzielle Fokus auf spin-transfer MRAM (STT-MRAM) gelegt. Bei diesen Systemen wird der Strom an zwei durch einen Isolator getrennte Ferromagneten (FM), einer freien Schicht und einer Referenzschicht gelegt. Je nach Stromrichtung kann sich die freie Schicht parallel oder anti-parallel zur Referenzschicht anordnenMagnetic random access memory (MRAM) ist eine Technologie, die darauf abzielt dynamic RAM (DRAM) aufgrund der geringeren Energieaufnahme und ihrer magnetischen Beständigkeit zu ersetzen [Dong08]. In den letzten Jahren wurde der kommerzielle Fokus auf spin-transfer MRAM (STT-MRAM) gelegt. Bei diesen Systemen wird der Strom an zwei durch einen Isolator getrennte Ferromagneten (FM), einer freien Schicht und einer Referenzschicht gelegt. Je nach Stromrichtung kann sich die freie Schicht parallel oder anti-parallel zur Referenzschicht anordnen [Kim11]. Jedoch können die zur Ummagnetisierung notwendigen Ströme so hoch ausfallen, dass die Tunnelbarriere schaden nimmt, wodurch ein höherer Energieverbrauch und unzuverlässiges Verhalten hervorgerufen werden. An dieser Stelle besteht die Möglichkeit einen anderen Effekt auszunutzen, für den der Strom unter der freien Schicht angelegt wird, um die nächstgelegene Magnetisierung zu beeinflussen. Beim sogenannten spin-orbit torque (SOT) wird das magnetische Moment eines zur elektrischen Leitung beitragenden Elektrons auf die darüber liegende Magnetisierung übertragen. Dies geschieht entweder anhand des spin Hall effect (SHE) oder inverse spin galvanic effect (iSGE) [Manchon19]. Letzteres beschreibt eine Spinakkumulation aufgrund eines elektrischen Stromflusses, welche auch bei topologischen Isolatoren (TI) auftritt. Diese speziellen Materialsysteme besitzen leitende Oberflächenzustände, bei denen Impuls- und Spinvektor senkrecht aufeinander stehen (spin-momentum locking) und in der Probenebene liegen [Qi11]. Hieraus resultiert eine hohe Strom-zu-Spin Umwandlungsrate, wodurch sich TIs besonders gut für SOT Experimente eignen. Unter allen TIs ist HgTe das Materialsystem, welches zuverläassig als Isolator gewachsen werden kann. Die vorliegende Arbeit befasst sich mit der Entwicklung und dem Aufbau einer mikrostrukturierten Apparatur zur Bestimmung von SOT Parametern (SOT-Struktur) in einem CdTe/CdHgTe/HgTe/CdHgTe Materialsystem. Es umfasst die Entwicklung einer Tunnelbarriere (ZrOx), sowie die Untersuchung des Verhaltens ferromagnetischer Strukturen auf der Oberfläche von trockengeätztem HgTe. Die Kernaussage dieser Arbeit ist, dass das vorliegende erfolgreich realisierte SOT-device die höchsten bis dato bekannten Effizienzen in der Ummagnetisierung von planar anisotropischen ferromagnetischen Strukturen aufweist. Um die Hybridisierung zwischen HgTe und dem darüber liegenden FM und somit einen Zusammenbruch der Oberflächenzustände zu vermeiden, muss zwischen den beiden Materialien eine Tunnelbarriere eingefügt werden [Zhang16]. Neben der Verhinderung der Hybridisierung, sorgt die Tunnelbarriere für eine Verminderung des Leckstromes, wodurch der größte Teil des elektrischen Stroms zur Spinakkumulation beitragen kann. Zudem werden Störungen bei der Widerstandsmessung des ferromagnetischen Schichtsystems reduziert. Kapitel 3 befasst sich mit der Erforschung von Tunnelcharakteristiken von ZrOx auf trockengeätztem HgTe. Es werden dünne Schichten verwendet, da die Wechselwirkung zwischen Spin und Magnetisierung mit dem Abstand zueinander abnimmt. Andererseits führt eine zu dünne Isolatorschicht zu einem hohen Leckstrom, welcher die Widerstandsmessung der ferromagnetischen Schichtstruktur stark beeinflusst. Folglich wurde eine optimale Isolatordicke bestimmt, die 10 ALD Zyklen (\(d\approx1,6\rm\, nm\)) entspricht und ein Widerstandsflächenprodukt von \(R\cdot A \approx 3\rm\, k\Omega\mu m^{2}\) ergibt. Dies entspricht einem Tunnelwiderstand von \(R_{T}\approx 20\rm\, k\Omega\) bei einer Strukturfläche von \(A_{T} = 0.12\rm\, \mu m^2\). Es werden mehrere Proben unterschiedlicher Dicke hergestellt und auf ihre Tunnelcharakteristiken untersucht. Das Widerstandsflächenprodukt in Abhängigkeit von der Barrierendicke zeigt lineares Verhalten auf einer logarithmischen Skala. Darüber hinaus weisen alle funktionierenden Proben nicht-lineare I-V Kurven und parabolische dI/dV Verläufe auf. Der Tunnelwiderstand \(R_{T}\) steigt mit abnehmender Temperatur. Die genannten Eigenschaften sind typisch für Tunnelbarrieren ohne lokal stark ausgedünnte Stellen (pinholes) [Jonsson00]. Am Ende von Kapitel 3 wird die Möglichkeit zur Bestimmung thermischer Eigenschaften von HgTe erörtert. Hierbei wird das Signal der zweiten Harmonischen eines AC Anregungsstromes, der unterhalb der Tunnelbarriere verläuft, gemessen, um den diffusiven Seebeck Effekt durch die geheizten Elektronen zu bestimmen. Messungen zeigen jedoch, dass das gemessene Signal zum größten Teil aus der ersten Harmonischen besteht. Mit Hilfe von Schaltkreissimulationen kann gezeigt werden, dass dieses Verhalten vor allem der Asymmetrie der Tunnelbarriere (Ein- und Ausstiegspunkt der Elektronen) geschuldet ist. Eine ferromagnetische Schichtstruktur, bestehend aus PY/Cu/CoFe, dient als ein Sensor zur Erfassung von Magnetisierungsänderungen, die durch externe magnetische Felder und Spinakkumulationen hervorgerufen werden. Die erwähnte Schichtstruktur weist einen Riesenmagnetowiderstand (GMR) auf, der mit Hilfe einer Widerstandsbrücke gemessen wird. Die größte Besonderheit bei der Ablagerung einer GMR Schichtstruktur auf trockengeätztem \mt ist die Ausbildung einer leichten Richtung (easy axis) entlang nur einer bestimmten Kristallachse (\((110)\) oder \((1\overline{1}0)\)). Der Grund für diese Anisotropie ist weiterhin unbekannt. Mögliche Ursachen wie der Einfluss des terminierenden Materials, miscut, Furchenbildung während des IBE und Wellenbildung durch Magnetronsputtern konnten ausgeschlossen werden. Es besteht die vage Vermutung, dass die Oberflächenzustände von \mt in Verbindung mit der Ausbildung der easy axis stehen. Dies gilt es jedoch in zukünftigen Studien kritisch zu prüfen. Als Folge dieser unwerwarteten Anisotropie muss jeder neue CdTe/CdHgTe/HgTe/CdHgTe wafer zunächst im SQUID charakterisiert werden, um die easy axis einmalig zu bestimmen. Anhand von ferromagnetischen Resonanzmessungen (FMR) konnten die obigen Beobachtungen bestätigt werden. Die Schichtstrukturen (pillars) weisen eine elliptische Form auf, sodass die Formanisotropie die Bildung einer easy axis entlang einer bestimmten Richtung begünstigt. Über 8 Millionen Ellipsen werden verwendet, um ein SQUID Signal von \(m > 10^{-5}\rm\, emu\) zu generieren. Hierdurch werden die charakteristischen Merkmale eines durchschnittlichen nano pillars unter dem Einfluss eines externen Magnetfeldes bestimmt. Wie auch bei größeren Strukturen weist ein durchschnittlicher pillar eine stufenförmige Hysterese auf. Durch Umkehrung des Magnetfelds am Ort des Zwischenzustandes lässt sich beweisen, dass es sich um einen tatsächlichen irreversiblen stabilen anti-ferromagnetischen Zustand handelt. Dieser Zustand liegt bei beiden Magnetfeldrichtungen für \(m=0\) vor, was zeigt, dass Py und CoFe anti-ferromagnetisch koppeln. Die Geometrie der SOT-Struktur ist so gewählt, dass die strominduzierte Spinakkumulation entweder parallel oder anti-parallel zum effektiven Magnetfeld \(\vec{B}_{eff}=\vec{B}_{ext}+\vec{B}_{aniso}+\vec{B}_{shape}\), welches auf den pillar wirkt. Dieser Spin wechselwirkt mit der Magnetisierung des Py, was eine Richtungsänderung der Magnetisierung durch ein Drehmoment \(\vec{T}\) (torque) bewirkt. Im Allgemeinem lässt sich diese torque in zwei Komponenten, eine feldähnliche (field-like) torque \(\vec{\tau}_{FL}\) und eine dämpfende (damping-like) torque \(\vec{\tau}_{DL}\), aufspalten [Manchon19]. Im Falle von TIs hängt \(\vec{T}\) zusätzlich von der z-Komponente des magnetischen Moments \(\vec{\hat{m}}\) ab [Ndiaye17]. Im hier vorliegenden Fall liegt die Magnetisierung von Py in der Probenebene (\(m_{z}=0\)), wodurch \(\tau_{DL} = 0\). Folglich ergibt sich, unter der Annahme \(\vec{S}\parallel\left(\vec{\hat{z}}\times\vec{j}\right)\) und \(\vec{j}\parallel\vec{\hat{y}}\), als einziges spinabhängiges Magnetfeld \(\vec{B}_{FL}=\tau_{FL}\cdot\vec{\hat{x}}\), welches parallel oder anti-parallel zu \(\vec{B}_{eff}\) liegt. Die Bestimmung von \(\vec{B}_{FL}\) erfolgt somit auf folgende Art und Weise. Zunächst wird ein hohes \(B_{ext}\) entlang der easy axis des nano pillars angelegt. Anschließend muss \(B_{ext}\) soweit reduziert werden bis der magnetische Zustand nur wenige Oe vor dem Umklappprozess bei \(B_{ext,0}\) liegt. An der Stelle \(\Delta B = B_{ext}-B_{ext,0}\approx 0.5\rm\, Oe\) sollte der Zustand mit geringerem GMR für eine längere Zeitspanne (\(10-30\rm\, min\)) erhalten bleiben, um eine Ummagnetisierung aufgrund von Schwankungen auszuschließen. Nun wird ein positiver oder negativer Strom an den unter der GMR-Struktur liegenden Kanal angelegt. Der Umklapprozess der Py Magnetisierung erfolgt für nur eine der beiden Stromrichtungen, wodurch eine Beteiligung thermischer Effekte ausgeschlossen werden kann. Bei \(\Delta B\neq 0\) reichen bereits Stromdichten in der Größenordnung von \(j\approx 10^{4}\rm\, A/cm^{2}\) aus, um eine Ummagnetisierung herbeizuführen. In allen Versuchen sinkt die Effizienz \(\Delta B/j\) mit der Stromdichte. Zudem zeigt \(\Delta B/j\) eine starke Temperaturabhängigkeit, bei der \(\Delta B/j\) Werte für \(T=1.8\rm\, K\) und \(j\approx0\) bis zu 20 mal höher sind als bei \(T=4.2\rm\, K\). Eine solche Temperaturabhängigkeit weist stark darauf hin, dass die Ummagnetisierung nicht durch Biot-Savart Felder hervorgerufen wird. Zudem wurde das durch einen elektrischen Strom generierten Biot-Savart Feld auf vier verschiedene Weisen berechnet. Die hierbei verwendeten Modelle umfassen: einen unendlich langen im Querschnitt rechteckigen Draht, zwei unendlich ausgebreitete Ebenen, ein komplettes Volumen, sowie zwei Ebenen mit geringer Dicke. Bei jedem Modell ist die berechnete Effizienz mindestens drei mal kleiner als die Beobachtung. Die höchsten in dieser Arbeit gemessenen Effizienzen sind bis zu 10 mal höher als in Materialsystemen, die aus Schwermetallen und FM bestehen. Im Gegensatz zu anderen Gruppen werden in dieser Arbeit direkte Messmethoden zur Ermittlung von SOT Parametern (wie \(B_{FL}\)) verwendet. Die meisten dieser Gruppen verlassen sich auf spin-transfer FMR (ST-FMR) Messungen. Dabei wird ein AC Signal zur Anregung verwendet und zeitgleich die zweite Harmonische als Antwort gemessen. Hieraus werden anhand eines theoretischen Modells SOT Parameter (wie \(\tau_{FL}\) und \(\tau_{DL}\)) durch Fits bestimmt. Materialsysteme, die aus TIs und magnetischen Isolatoren (MI) bestehen, weisen dagegen bis zu 10 mal höhere Effizienzen auf [Khang18,Li19]. In diesen Fällen zeigt die Magnetisierung der MI aus der Ebene heraus, was sich konzeptionell von planar anisotropische Magnetisierungen unterscheidet, welche in unseren Geometrien vorliegt. Der Vorteil von planar anisotropischen Magnetisierungen ist ihre einfache Realisierbarkeit [Bhatti17]. Hierbei müssen lediglich elliptische Strukturen lithographisch implementiert werden, während bei Systemen mit senkrechter Magnetisierung eine passende Materialkombination erforscht werden muss [Apalkov16]. Trotz der Tatsache, dass in unserem Fall nur \(\tau_{FL}\) zum Umklappen der Magnetisierung \(m\) beiträgt, weisen unsere SOT-devices die bis dato höchsten gemessenen Effizienzen in der Klasse von in-der-Ebene magnetisierten Schichtstrukturen aller Materialsysteme auf.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Konstantin Martin
URN:urn:nbn:de:bvb:20-opus-240490
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Charles Gould
Date of final exam:2021/06/18
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-24049
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Tag:magnetization; mram; spin-orbit-torque; topological insulator
Release Date:2021/06/30
Licence (German):License LogoCC BY-NC-SA: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Weitergabe unter gleichen Bedingungen 4.0 International