Critical Phenomena in Topologically Disordered Systems

Kritische Phänomene in topologisch ungeordneten Systemen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-234998
  • Clearly, in nature, but also in technological applications, complex systems built in an entirely ordered and regular fashion are the exception rather than the rule. In this thesis we explore how critical phenomena are influenced by quenched spatial randomness. Specifically, we consider physical systems undergoing a continuous phase transition in the presence of topological disorder, where the underlying structure, on which the system evolves, is given by a non-regular, discrete lattice. We therefore endeavour to achieve a thorough understandingClearly, in nature, but also in technological applications, complex systems built in an entirely ordered and regular fashion are the exception rather than the rule. In this thesis we explore how critical phenomena are influenced by quenched spatial randomness. Specifically, we consider physical systems undergoing a continuous phase transition in the presence of topological disorder, where the underlying structure, on which the system evolves, is given by a non-regular, discrete lattice. We therefore endeavour to achieve a thorough understanding of the interplay between collective dynamics and quenched randomness. According to the intriguing concept of universality, certain laws emerge from collectively behaving many-body systems at criticality, almost regardless of the precise microscopic realization of interactions in those systems. As a consequence, vastly different phenomena show striking similarities at their respective phase transitions. In this dissertation we pursue the question of whether the universal properties of critical phenomena are preserved when the system is subjected to topological perturbations. For this purpose, we perform numerical simulations of several prototypical systems of statistical physics which show a continuous phase transition. In particular, the equilibrium spin-1/2 Ising model and its generalizations represent -- among other applications -- fairly natural approaches to model magnetism in solids, whereas the non-equilibrium contact process serves as a toy model for percolation in porous media and epidemic spreading. Finally, the Manna sandpile model is strongly related to the concept of self-organized criticality, where a complex dynamic system reaches a critical state without fine-tuning of external variables. Our results reveal that the prevailing understanding of the influence of topological randomness on critical phenomena is insufficient. In particular, by considering very specific and newly developed lattice structures, we are able to show that -- contrary to the popular opinion -- spatial correlations in the number of interacting neighbours are not a key measure for predicting whether disorder ultimately alters the behaviour of a given critical system.show moreshow less
  • Ohne Zweifel stellen vollständig regelmäßig aufgebaute komplexe Systeme sowohlin der Natur als auch in technischen Anwendungen eher die Ausnahme als die Regel dar. In dieser Arbeit erforschen wir, wie sogenannte kritische Phänomene durch eingefrorene räumliche Unordnung beeinflusst werden. Konkret untersuchen wir physikalische Systeme, welche einen kontinuierlichen Phasenübergang aufweisen, in Gegenwart von topologischer Unordnung. Die räumliche Struktur, auf der sich das dynamische System entwickelt, ist in diesem Fall durch ein unregelmäßigesOhne Zweifel stellen vollständig regelmäßig aufgebaute komplexe Systeme sowohlin der Natur als auch in technischen Anwendungen eher die Ausnahme als die Regel dar. In dieser Arbeit erforschen wir, wie sogenannte kritische Phänomene durch eingefrorene räumliche Unordnung beeinflusst werden. Konkret untersuchen wir physikalische Systeme, welche einen kontinuierlichen Phasenübergang aufweisen, in Gegenwart von topologischer Unordnung. Die räumliche Struktur, auf der sich das dynamische System entwickelt, ist in diesem Fall durch ein unregelmäßiges diskretes Gitter gegeben. Die Erlangung eines tiefergehenden Verständnisses des Zusammenspiels von physikalischer Dynamik und räumlicher Unordnung kann daher als das Hauptziel unserer Unternehmung angesehen werden. Ein gleichermaßen faszinierendes wie zentrales Konzept in der statistischen Physik stellt die sogenannte Universalität dar, gemäß welcher das kollektive Verhaltenvon Vielkörpersystemen im kritischen Bereich nahezu unabhängig von der spezifischen mikroskopischen Realisierung der Wechselwirkungen ist. Als Konsequenz sind selbst in völlig unterschiedlichen Systemen bemerkenswerte Ähnlichkeiten an den jeweiligen Phasenübergängen beobachtbar. Diese Dissertation geht nun der Frage nach, inwieweit diese universalen Eigenschaften erhalten bleiben, wenn das System topologischen Störungen ausgesetzt wird. Zu diesem Zweck werden umfangreiche numerische Monte-Carlo-Simulationen von einigen prototypischen Systemen, welche einen kontinuierlichen Phasenübergang aufweisen, durchgef ührt. Ein prominentes Beispiel für ein System im thermodynamischen Gleichgewicht stellt dabeidas Spin-1/2 Ising-Modell dar, welches unter anderem magnetische Eigenschaftenvon Festkörpern modelliert. Zusätzlich werden auch Systeme fernab des Gleichgewichts behandelt, wie etwa der Kontaktprozess, welcher ein vereinfachtes Modell für Perkolationsprozesse in porösen Stoffen oder auch für die Ausbreitung von Epidemien darstellt, sowie spezielle Modelle, welche in engem Zusammenhang mit selbstorganisiertem kritischen Verhalten stehen. Unsere Ergebnisse demonstrieren, dass der Einfluss von topologischen Störungen auf kritische Phänomene derzeit noch unzureichend verstanden ist. Insbesondere gelingt es uns mittels spezieller eigens entwickelter Gitterkonstruktionen zu zeigen, dass lokale räumliche Korrelationen in der Anzahl von wechselwirkenden Nachbarn, entgegen weitläufiger Meinung, kein adäquates Maß sind, um den Einfluss von Unordnung auf das Verhalten eines kritischen Systems vorhersagen zu können.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Manuel SchrauthORCiD
URN:urn:nbn:de:bvb:20-opus-234998
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Referee:Prof. Dr. Haye Hinrichsen, Prof. Dr. Fakher Assaad, Prof. Dr. Jens Pflaum
Date of final exam:2020/09/23
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-23499
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Ising-Modell; Nichtgleichgewichts-Phasenübergang; Unstrukturiertes Gitter; Ordnungs-Unordnungs-Umwandlung; Monte-Carlo-Simulation
Tag:Critical Phenomena; Directed Percolation; Disordered Lattice; Geometry; Ising model; Monte Carlo simulations; Phase Transition
PACS-Classification:60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES
Release Date:2021/04/26
Licence (German):License LogoCC BY-ND: Creative-Commons-Lizenz: Namensnennung, Keine Bearbeitungen 4.0 International